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Recently, Rueger and Sharp (1996) and Koperski (1998) have been concerned to show
that certain procedural accounts of model confirmation are compromised by non-linear
dynamics. We suggest that the issues raised are better approached by considering
whether chaotic data analysis methods allow for reliable inference from data. We pro-
vide a framework and an example of this approach.

1. Introduction. Presented with an array of ingenious techniques for esti-
mating features of non-linear dynamics from observations of time series
(Abarbanel 1996; Broomhead and King 1986; Fraser 1989; Grassberger
and Procaccia 1983; Kaplan and Glass 1992; Packard et al. 1980; Sauer
et al. 1991), philosophers of science have focused on an issue largely in-
ternal to their subject, the role of models in confirmation. According to a
tradition beginning at least with Pierre Duhem, theories alone imply noth-
ing about what is or can be observed in the laboratory or observatory. To
predict or explain any data, theories must be supplemented with some-
thing. A long tradition refers to the supplement as auxiliary hypotheses,
but it is more fashionable nowadays to call the combination—the theory
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1. There is a failed account (Glymour 1980), and recent work that is sketchy about the
allotment of praise and blame among a system of claims (Mayo 1996).

supplemented or amended with auxiliaries—a model. Models are sup-
posed to be confirmed or disconfirmed directly by observations, while the-
ories derive their confirmation, if that is what they have, only from the
confirmation of models with which they are associated (Cartwright 1983).
This thesis would be more interesting were there some separate, non-
circular characterization that enabled us to identify a system of claims, or
a practice including such a system, as a theory, and another, distinct,
characterization that did likewise for models, but there is only a list of
examples: Newtonian dynamics, relativity, quantum electrodynamics,
thermodynamics, and statistical mechanics are theories, the Bohr atom,
the liquid drop model of the nucleus, and ideal gases are models. Nor is
there some general account of how confirmation by particular observa-
tions is parceled out among the separate parts of the content of a model,
or to the theory that the model mediates with the data.1 There is, however,
the following procedural account of how data bear on a theory (Laymon
1985, 1989; Redhead 1980; Wimsatt 1987): it is known independently that
various models are, in various respects, false, and that various measure-
ments are inexact. As the models are made more realistic by modifying
auxiliary hypotheses, and as technological improvements make measure-
ments more exact, all the while keeping the theory without modification,
if the models and data increasingly agree then the theory is confirmed.

Two recent papers provide complementary arguments that methods for
inference to system structure from data on non-linear dynamics contradict
this procedural picture of the role of models. According to Rueger and
Sharp (1996), techniques of inference developed for non-linear dynamics
refute the claim that only models, and not theories, are directly confronted
by data. Features of the dynamics, the attractors or the Lyapunov expo-
nents, for example, and even whether the system is or is not chaotic, are
inferred directly from the data without the intervention of auxiliary hy-
potheses or a model. According to Koperski (1998), a characteristic of
chaotic non-linear systems, their sensitive dependence on initial condi-
tions, is inconsistent with the procedural account of the confirmation of
theories. As measurements of initial conditions successively become more
exact, and the difference narrows between actual initial conditions at a
time and the initial conditions estimated at that time from measurements,
the observed sequences of states subsequent to the initial states do not
converge uniformly to a single trajectory.

Each of these arguments seems to us opaque in some important respect.
Rueger and Sharp presuppose that traditional ideas about confirmation
for dynamical systems assume that a model will be numerically solved for
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a predictive time series, and the predictions will be compared to the em-
pirical time series. They argue that sensitive dependence on initial condi-
tions bars this kind of point-by-point comparison of models with data in
chaotic dynamics. In techniques such as those described in Abarbanel
(1996) and the other authors mentioned above, this problem is sidestepped
by using invariants of the motion (calculated from the empirical data) in
place of the time series. These invariants are then, they claim, compared
directly to theories without the use of mediating models.

Rueger and Sharp illustrate their point with the Belousov-Zhabotinsky
reaction. In this case the “theory” is the one-dimensional map that de-
scribes the Poincaré section of the attractor for the reaction, and can be
compared to data retrieved through the process of embedding.

They correctly claim that, rather than point-by-point comparisons of
data to numerical simulations, scientists instead regularly compare theo-
retical invariants of the motion to those calculated from the data. One
example of such an invariant is the Lyapunov exponent. The soundness
of the procedure, and thus of Rueger and Sharp’s argument, depends on
whether, even for a one-dimensional system one can actually reliably infer
the value of invariants such as the Lyapunov exponent from the data.
They do not address the question.

Koperski offers a more detailed argument for a related conclusion. He
analyzes three particular models of confirmation, and argues that un-
avoidable errors in measurement, coupled with round-off error in numer-
ical solutions of mathematical equations, preclude confirmation of math-
ematical models point-by-point with data from chaotic systems. Koperski
then goes on to claim that the problem lies in the traditional “top-down”
approach to modeling, and that it can be solved by considering a different
kind of model in non-linear dynamics, the reconstructed phase space. Ko-
perski does not consider the kind of confirmation that Rueger and Sharp
advocate, and that is practiced by researchers in the field—comparing
invariant quantities, such as the Lyapunov exponent, calculated from a
theory of the dynamics of the system, with estimated values of those in-
variants obtained through the reconstruction of the attractor in phase
space.

The arguments of these essays seem to presume answers to important
issues about inference from data to non-linear dynamics. Rueger and
Sharp seem to assume that features of dynamics can be inferred from time
series observations alone. Koperski seems to imply that if observations
are inexact, features of dynamics cannot be inferred from time series ob-
servations alone. We take these claims as issues, issues that are of interest
outside of the particular debates that generated them, and that need not
be embedded in vague claims about models and confirmation.

From Rueger and Sharp, we extract the following set of issues:
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1. From exact observations of time series of a dynamical quantity,
what features of its dynamics can be reliably inferred?

And from Koperski, the following set of issues:

2. From inexact observations of time series of a dynamical quantity,
what features of its dynamics can be reliably inferred?

These questions are themselves vague, specifically as to what, if any,
background assumptions are to be made, and as to what is meant by
“reliable inference.” In what follows we note the applicability of several,
relevant, precise senses of reliability, and characterize the answers to the
first of these questions for one-dimensional systems according to the vari-
ous senses of reliability considered. Corresponding answers to the second
of these questions depend on an open problem about Lyapunov estima-
tors. Our broader aim is to give a very simple illustration of how the formal
learning theoretic framework can illuminate and clarify intuitions in meth-
odological discussions, transforming ill-structured debates into well posed
mathematical questions (for such applications see Glymour 1994 and
Schulte 2000).

The formalisms of non-linear dynamics and of techniques for their
analysis are reviewed at length in the papers cited and in many other
sources (Abarbanel 1996; Broomhead and King 1986; Fraser 1989; Grass-
berger and Procaccia 1983; Kaplan and Glass 1992; Packard et al. 1980;
Sauer et al. 1991), and we will give no more background than is essential
for our examples. The framework of formal learning theory is developed
in several monographs (e.g., Osherson, et al. 1986; Kelly 1996), and we
will be comparably succinct about it as well. For ease of reading, all proofs
are postponed to the appendix.

2. Chaotic Systems and One-Dimensional Dynamics. We will consider one
dimensional maps:

xn�1 � f (xn)

where x is an observed real variable. As Koperski correctly points out,
there is not yet consensus on one precise definition of chaos; in fact dif-
ferent definitions may be used for different purposes. However, there does
seem to be agreement that chaos requires, at least, sensitive dependence
on initial conditions (SDIC). In the chaos literature, SDIC is generally
taken to be quantified by the Lyapunov exponent of the system (or the
largest Lyapunov exponent in the case of multi-dimensional systems). A
positive Lyapunov exponent indicates SDIC (and the more positive, the
greater the sensitivity), while a zero or negative exponent indicates no
sensitivity.
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The Lyapunov exponent for a data stream from a one-dimensional
system is given by:
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where xi is the ith iterated value of the function f, f � is the first derivative
of the function f at the point xi , k is the Lyapunov exponent evaluated at
the point xi , and n is the number of points used to calculate the Lyapunov
exponent thus far. Empirically, the Lyapunov exponent, calculated with
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where

f �(xi , di (n)) � | f (xi � di (n))� f (xi)|/ di(n)

where di (n) is the Euclidean distance between xi and its nearest neighbor
after n data points. Thus, we consider the following property:

Positive Lyapunov Exponent: there is an e greater than 0 and an M
such that for all n greater than M, kn is greater than e (∃e� 0 ∃M
∀n � M kn � e).

3. The Formal Learning Framework and Senses of Reliably Correct Infer-
ence. For our purposes, a data stream d is an infinite sequence of real
numbers not necessarily all distinct. A hypothesis determines, or for our
purposes is the same as, a set of data streams. An inference function for
a data stream is a partial function from the set of initial segments of the
data stream to [0,1]. An inference function for a set W of data streams is
a partial function from the set of all initial segments of all data streams
in W to the real interval [0,1].

Let W be a set of data streams, H a hypothesis, and F an inference
function for W. We define the following senses of reliability.

F verifies H with certainty in W iff for all data streams d in W, there is
at most a single initial segment of d for which: F is defined, and the
value of F is 0 or is everywhere undefined if d is not in H, and if d is
in H, F is defined for some initial segment and has the value 1.

F refutes H with certainty in W iff for all data streams d in W, there is
at most a single initial segment of d for which: F is defined, and the
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value of F is 0 or is everywhere undefined if d is in H, and if d is not
in H, F is defined for some initial segment and has the value 0.

F decides H with certainty in W iff F verifies H with certainty in W
and falsifies H with certainty in W.

F verifies H in the limit in W iff for all data streams d in W, if d is in
H, there are at most a finite number of initial segments of d for
which the value of F is 0 or is undefined, and if d is not in H there
is an infinity of initial segments of d for which the value of F is 0
or undefined.

F refutes H in the limit in W iff for all data streams d in W, if d is not
in H, there are at most a finite number of initial segments of d for
which the value of F is 1 or undefined, and if d is in H there is an
infinity of initial segments of F for which the value of F is 1 or
undefined.

F decides H in the limit in W iff F verifies H in the limit in W and F
falsifies H in the limit in W.

F gradually verifies H in W iff for all data streams d in W, F converges
to 1 as the initial segment length increases without bound if and
only if d is in H.

F gradually refutes H in W iff for all data streams d in W, F converges
to 0 as the initial segment length increases without bound if and
only if d is not in H.

F gradually decides H in W iff F gradually verifies H in W and F
gradually refutes H in W.

We say that H is verifiable in the limit in W if there exists an inference
function that verifies H in the limit in W. Analogous definitions apply in
all of the cases above. An example of a hypotheses that is verifiable in the
limit is: “There is a key that opens every door”, if we assume that there
are an infinite number of doors and an infinite number of keys. We can
see that this hypothesis is verifiable in the limit by considering its inves-
tigation. First, we pick a key, and try it in a door. Whether the door opens
constitutes a point in the data stream. If it does not open the door, our
inference function equals 0, and we pick another key. If the key does open
the door, our inference function equals 1, and we move on to check that
key in all the other doors. If the hypothesis is correct, we will eventually
find the right key, and there will be only a finite segment of the data stream
in which the inference function is zero, because the key will keep opening
doors. If the hypothesis is incorrect, there will be an infinity of finite seg-
ments of the data stream for which the inference function is zero, because,
for every key, we will eventually find a door that it did not open.

A pair �W, H� is a problem, and associated with each notion of reliable
inference there is a class of problems satisfying that criterion. The inter-
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section of the class of problems refutable with certainty and the class ver-
ifiable with certainty is the class of problems decidable with certainty; the
class of problems verifiable with certainty is included in the class of prob-
lems verifiable in the limit, and so on. Kelly (1996) gives a detailed char-
acterization of the hierarchy of discovery problems of these and other
kinds.

There is a connection between problems that are decidable in the limit
or gradually decidable and the more popular Bayesian notion of conver-
gence to the truth. A broad class of problems is decidable in the limit and
gradually decidable if and only if there is a prior probability distribution
over the hypothesis and the initial segments such that for all data streams
in W the sequence of posterior distributions converges to 1 if the hypoth-
esis is true in that data stream and to 0 otherwise.

4. Reliable Inferences about Chaos in One-Dimensional Systems with Exact
Observations. The sense in which, as defined above, sensitive dependence
on initial conditions can be reliably learned from time series of exact mea-
surements of a state variable is as follows:

For all data streams in which the calculation of the Lyapunov expo-
nent converges to the true Lyapunov exponent, the hypothesis that
the Lyapunov exponent is positive is verifiable in the limit and grad-
ually refutable.

This result is the best possible, i.e., Positive Lyapunov Exponent is not
verifiable with certainty and is not refutable in the limit (proofs of these
bounds are not included here but are discussed in Harrell 2000).

To prove the claim we need first to determine the conditions under
which estimates of the Lyapunov exponent converge to the true Lyapunov
exponent. In the case of exact observations, these conditions are relatively
weak (this proof is rather lengthy, and so will not be included here, but it
is given in Harrell 2000). Second, we must prove that, under these con-
ditions, there is a method that verifies the hypothesis in the limit, and also
a (possibly different) method that refutes the hypothesis gradually. Kelly
(1996) gives a general proof that if a hypothesis is verifiable in the limit,
then it is gradually refutable (see Proposition 3.13), so strictly speaking,
we are only burdened with proving that the Positive Lyapunov Exponent
hypothesis is verifiable in the limit. In the appendix we provide direct
proofs of verifiability in the limit and of gradual refutability.

If we assume that the observations are subject to some error, the proof
in the appendix shows that Positive Lyapunov Exponent hypothesis has
the same verifiability and refutability features as it does with perfectly
precise observations if estimates of the Lyapunov exponent converge to
the true Lyapunov exponent. This assumption, which is commonly made
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by researchers in chaotic dynamics (see, e.g. Abarbanel 1996), may very
well be false, but, to our knowledge, there is no characterization in the
literature of conditions under which it is true or conditions under which
it is false.

5. Conclusion. Rueger and Sharp claim inference to the structure of non-
linear dynamical systems proceeds without the intervention of “models.”
But the sense of “inference” is ambiguous. An “inference” to structure can
be made with no data at all if nothing is required about the reliability of
the inference procedure. When reliability is required, however, their claim
fragments into several claims, and, depending on the sense of “reliability,”
a variety of answers are obtained, as in our example. Koperski claims that
with inexact data an approximation procedure does not converge to the
truth. That is correct for some dynamical quantities, but for the Lyapunov
exponent there appears to be no established answer.

Our simple results are only illustrative. We have left open questions
about many other properties of discrete non-linear dynamical systems, and
about multi-dimensional systems, and we have not touched on continuous
systems at all. Nor have we considered reliability questions that arise when
inferences are to be made to unobserved dynamical quantities through
embedding theorems. We wish that such investigations would replace, or
at least substantially supplement, philosophical discussions of confirma-
tion in chaotic systems, discussions often premised, we believe, on unar-
ticulated intuitions about learning in the limit which may sometimes be
correct and sometimes not, but which are amenable to demonstration or
refutation.
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Appendix

Proposition 1. Assuming that the finite data calculation, kn, of the Lya-
punov exponent converges to the Lyapunov exponent, k, the Positive Lya-
punov Exponent hypothesis is verifiable in the limit.

Proof: Define F as follows. F comes equipped with an infinitely repetitive
enumeration q0, q1, . . ., qn , . . .of the rational numbers greater than zero (i.e.
each such natural number occurs infinitely often in the enumeration). F starts
out with a pointer at q0. F(�) � 1, and leaves the pointer at q0. Let qi be the
rational number pointed to after running F on dn�1. F(dn) � 0, and the pointer
is moved to qi�1, iff kn � qi. Otherwise, F(dn) � 1, and the pointer stays where
it is.

Since kn converges to k, ∀d ∃m ∀i�m |ki � k|� d. If k � 0, then there will
be a point, m, after which kn will never drop below k � d. Since there is a d
such that there is some qi less than k � d, there can be only finitely many
pointer bumps after m. Hence, there must be a point m� after which the pointer
will remain still forever, and F(dn) � 1 for all n � m�.

If k � 0, then ∀d ∃m ∀i�m |ki| � d. Therefore for all qj there is some mj

such that for all i � mj |ki| � qj. Thus, the pointer will move infinitely often,
and so F(dn) is 0 infinitely often.

If k � 0, then there will be some point, m, after which kn will forever stay
below 0. Since the qi’s are all positive, the pointer will move infinitely often
after the point m. Thus, F(dn) is 0 infinitely often. �
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Proposition 2. Assuming that the finite data calculation, kn, of the Lya-
punov exponent converges to the Lyapunov exponent, k, the Positive Lya-
punov Exponent hypothesis is gradually refutable.

Proof: Define F as follows. F comes equipped with an infinitely repetitive
enumeration q0, q1, . . ., qn, . . .of the rational numbers greater than zero, and
an infinite monotonically decreasing enumeration p0, p1, . . ., pn , . . .of a subset
of the rational numbers in [0, 1] that converge to 0. F starts out with a pointer
at q0. F(�) � p0, and leaves the pointer at q0. Let qi be the rational number
pointed to after running F on dn�1. F(dn) � pi, leaves the pointer at qi, and
begins the search anew with dn�1, iff kn � qi. Otherwise, F(dn) � pi�1, moves
the pointer to qi�1, and checks dn�1 against qi�1.

Since kn converges to k, ∀d ∃m ∀i�m |ki � k| � d. If k � 0, then there will
be a point, m, after which kn will never drop below k � d. Since there is a d
such that there is some qi less than k � d, there must be a point m� after which
the pointer will remain on one particular qi forever, and F(dn) � pi for all n
� m�.

If k � 0, then ∀d ∃m ∀i�m |ki| � d. Therefore for all qj there is some mj

such that for all i � mj |ki| � qj. Thus, the pointer will move infinitely often,
and so F(dn) will equal sequential pi’s, and correctly approach 0.

If k � 0, then there will be some point, m, after which kn will forever stay
below 0. Since the qi’s are all positive, the pointer will move infinitely often after
the point m. Thus, F(dn) will equal sequential pi’s, and correctly approach 0. �


