WILLIAM HARPER

CONSILIENCE AND NATURAL KIND REASONING

(in Newton’s Argument for Universal Gravitation)

1. STRENGTH vs SECURITY

In his ongoing debate with Clark Glymour and other scientific realists,
Bas van Fraassen (e.g. 1983 pp. 165—168, 1985 p. 247 pp. 280—281
pp. 294—295) has often appealed to a widely accepted doctrine that
strength and security are conflicting virtues which must be traded off
one against the other. In limiting his commitment to only the empirical
adequacy of a theory van Fraassen claims to be simply more cautious
than his realist opponents. Certainly, as he delights in pointing out, a
theory T cannot be more probable than its empirical consequences E.
For Probability is monotone with respect to entailment, so P(7T) <
P(E)if T entails E. If security is measured by any function which, like
probability, is monotone with entailment, then it would seem that the
kind of trade-off between strength and security van Fraassen appeals to
is unavoidable.!

Upon hearing some of these debates it occurred to me that some
celebrated cases from the history of science which involve unification
under a theory provide prima facie counterexamples to the opposition
between strength and security. Examples such as the unification of
Galileo’s terrestrial mechanics and Kepler’s laws of planetary motion by
Newton’s theory of universal gravitation seem to be ones where accept-
ing the stronger unified theory provides more security than would be
obtained by accepting only the weaker hypotheses alone.

Imagine-an acceptance context wherein the theoretical commitments
include the approximate truth of Kepler’s Laws of Planetary Motion
and the approximate truth of Galileo’s terrestrial mechanics. If we
choose the approximations in a reasonable way then these commit-
ments will be entailed by Newton’s account of the system of the world
in Principia Book III. Now consider a rival planetary hypothesis. Let it
be a version of Tycho Brahe’s system which has just the relation to
Kepler’s system that Tycho’s original proposal had to Copernicus’
system. According to such an hypothesis the six known primary planets
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all orbit the sun (just as they do for Kepler), but the sun (in its annual
motion) orbits the earth. We now know that in so far as Kepler’s system
gives a correct account of the relative (annual) motions of the solar
system from a reference frame on the sun (that is not rotating with
respect to the fixed stars), so too will this Brahean system be a correct
account of the relative (annual) motions of the solar system from a
reference frame fixed at the centre of the earth (and not rotating with
respect to the fixed stars). Now consider some data — the absence of
stellar parallax. This data rightly counts against Kepler and for the
Brahean account, since on the Keplerian account we have the diameter
of the earth’s orbit (two AU’s) as a base for generating parallax.”

Now imagine an acceptance context in which the theoretical commit-
ments include those of Newton’s account in Principia. This is a context
in which the theoretical commitments are stronger — the original
commitments are entailed by this much richer account. Nevertheless,
it seems clear that these commitments may reasonably have been
regarded as more secure in the sense of more immune to revision. Once
these richer commitments are accepted, Newton’s dynamical argument
at Proposition XII (using a centre of mass calculation to find an
approximately inertial frame) can be used to support the Keplerian
hypothesis against its Brahean rival (Stein 1967, pp. 177—184). Given
Newton’s dynamical argument the proper response to the absence of
stellar parallax data was to reason that the fixed stars are very much
farther away than they had been thought to be.

Sometimes it is rational to hang on to one’s theory in the face of
putative counter-evidence. Our little thought experiment suggests that
security in the sense of such immunity of our theoretical commitments,
to revision in the face of putative counter-evidence can sometimes be
legitimately increased by moving to accept a stronger theory. What it
shows is that if only the weaker theoretical commitments are accepted
the data about absence of stellar parallax might reasonably lead to
rejection of Kepler (in favour of Brahe); but if the stronger Newtonian
theory is accepted it would be legitimate to protect the theory by
putting the blame on initial conditions (the fixed stars are much farther
away than they had been thought to be).

This idea of immunity to revision in the face of hypothetical (or
actual) evidence is one of a number of closely related conceptions of
security that have begun to attract attention as philosophers of science
have become aware that high probability is not the only conception of
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security we need to do justice to real life scientific reasoning.* I shall
argue that a closer look at Newton’s unification of terrestrial and
celestial motion phenomena in Principia supports the suggestion that
some such alternative conception of security does play a critical role in
the evolution of science. I shall also argue that Newton’s reasoning in
support of universal gravitation is a vivid illustration of non-empiricist
aspects of scientific practice that are quite widespread, reasonable, and
perhaps even essential to science as we know it. As far as I know, no
contemporary work by philosophers of science deals as adequately with
some of these important but neglected aspects of the practice of science
as the methodological work by William Whewell to which Robert Butts
has for so long been calling our attention,

2. THE COLLIGATION OF FACTS INTO GENERAL
PROPOSITIONS

In his analysis of the process of induction (Chapter V) of Book III of
his Novum Organon Renovatum Whewell tells us,

“. .. the colligation of ascertained Facts into general Propositions may be considered as
containing three steps, which 1 shall term the selection of the idea, the construction of
the conception, and the determination of the magnitudes (Butts 1968, p. 211).

He also tells us

“These three steps correspond to the determination of the Independent Variable, the
Formula, and the coefficients, in mathematical investigations, or to the Argument, the
Law and the Numerical Data in a Table of an Astronomical or other Inequality
(Aphorism XXXV, Butts 1968, pp. 210—211).

Malcolm Forster (1988) has recently interpreted Whewell’s notion of
induction as colligation of facts by explicating how these three steps
work in a number of examples. One of these is the colligation of tidal
data into the phenomenon that heights of highest tides vary sinusoidally
~ with the angle from solar conjunction of the moon, so that spring tides
(highest high tides) correspond to the two syzygies (0° = 360° and 180°)
while neap tides (lowest high tides) correspond to the quadratures (90°
and 270°). The selection of the idea is the selection of the angle of the
moon from solar conjunction as the independent variable with respect
to which to represent the approximately fortnightly cycle of spring and
neap tides. The construction of the conception is the selection of a
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certain curve (a cosine curve) as that of the best fitting forumula
representing the variation of heights of high tides with respect to this
independent variable. Finally, the determination of the magnitudes is
the determination of values of such coefficients of this curve as its
amplitude and (of particular interest to Newton as we shall see) the
numerical ratio between its high and low values.

It should be emphasized that what we are talking about here is as
Whewell put it in our first quotation, “the colligation of ascertained
facts into general propositions”. The output of the three-step procedure
is a generalization — the empirical law of the variation of neap and
spring tides with the moon’s angle from solar conjunction. It is this
general proposition that counts as the primary tidal phenomenon which
Newton (Principia, Book III, Proposition XXIV) explained by the joint
action of the moon’s and sun’s gravity on our seas.

According to Whewell we extract such a general proposition from
the mass of particular facts by imposing our idea and conception on the
data.

Thus in each inference made by induction there is introduced some General Concep-
tion, which is given, not by the phenomena, but by the mind (Butts 1968, p. 141).

He points out that the task of finding an illuminating idea (independent
variable) and an appropriate conception (formula) requires sagacity and
often also great effort and even luck. Anyone who doubts this should
consider the difficulties faced, and the problems overcome, in Kepler’s
great struggle to master the motion of Mars.> He called this his war on
Mars. It ended triumphantly with his successful extraction of the
elliptical orbit law and the law of areas for Mars from the mass of data
made available by Tycho Brahe’s extensive and careful line of sight
observations. Kepler’s - extraction of these two laws for Mars, his
extension of them to the other planets and finally his extraction of his
harmonic law some years later are all examples cited by Whewell (Butts
1968, pp. 130, 141, 142) as colligations of facts into general propos-
tions.

It is important to note that once the idea is selected and an appro-
priate formula constructed the magnitudes of the coefficients are fixed
(up to appropriate limits for error) by the data. Having settled upon an
elliptical orbit with the sun at one focus the data fix the magnitudes of
the greatest and least semi-axes and the period of the orbit, therefore
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they settle such interesting magnitudes as the average centripetal
acceleration of the planet.

The idea or independent variable depends on what we choose to
consider. Some choices are more illuminating than others and we shall
defer discussing what Whewell has to say about evaluating such choices.
For now I want to say something about Whewell’s account of special
methods of induction available in quantitative investigations to constrain
the construction of an appropriate formula once the independent
variable has been chosen. Whewell offers a very interesting account of
how methods such as curve fitting, and the methods of means and least
squares facilitate finding generalizations that might otherwise lie hidden
among the errors and secondary effects which infect the data (Chapter
VI, Book Il of Novum Organon Renovatum (Butts 1968, pp. 223—
237). Forster (1988) suggests that a proper appreciation of how such
methods can average out errors (especially in large data sets such as the
13000 observations extending over 19 years Whewell cites [Butts
1968, p. 233] for Lubbock’s first investigation of the tides at London)
will lead us to interprete Whewell’s controversial claim that the result of
a colligation can be ‘more true than the individual facts themselves’
(Butts 1968, p. 227) in a way that makes it both interesting and
plausible.

Forster (1988) also explains how Whewell’s method of residues can
be used to separate out effects of component forces. On Forster’s
account Kepler’s laws are true descriptions of that part of the motions
of the planets due to the gravitation of the sun. Forster argues quite
plausibly that when one considers them as generalizations revealed by
averaging over a great mass of data the Keplerian effects are there to be
found, even though mutual perturbations among the planets are also
there to be found in the data.® Perturbations such as those resulting
from the mutual action of Jupiter and Saturn on each other near
conjunction can be revealed when the method of residues is applied to
colligate laws about the various deviations from the Keplerian average
values.’

I may have left the impression that data do not put any very strong
constraint on our choice of formulae. That this impression is wrong
should be clear from Forster’s example of the tides. Once the indepen-
dent variable is fixed any appropriate formula has to fit the general
trend correlating spring tides with syzygies and neap tides with
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quadratures. Our choice of formula may be a conception we impose to
go beyond the data, but it is a conception we construct to fit the data.
Our scope for free invention in constructing this conception is signif-
icantly constrained by the data even if the data do not uniquely
determine the correct formula.

3. WHEWELL’s TESTS OF HYPOTHESES

According to Whewell, our choice of a formula in a colligation is not
Just a construction made to fit some given data. It is also an hypothesis
subject to empirical tests. Whewell devoted a section of his chapter on
scientific induction (Section III, Chapter V, Book II, NOR) to tests of
hypotheses. Here are the subsection headings for this section from his
table of contents (NOR, pp. XV—XVI): '

Section III Tests of Hypotheses

Art. 10 True Hypotheses Foretell Phenomena

Atrt. 11 Even of Different Kinds — Consilience of Inductions

Art. 12 True Theories Tend to Simplicity

Art. 13 Connexion of the Last Tests
These headings suggest that Whewell distinguishes three tests of
hypotheses, but that he sees a special connection between the last two
of them.

3.1. True Hypotheses Foretell Phenomena

After setting the stage with a discussion of hypotheses which may be
useful even though they turned out to be false (in article 9), Whewell
opens article 10 with the following introduction to his first test.®

10. Thus the hypotheses which we accept ought to explain phenomena which we
have observed. But they ought to do more than this: our hypotheses ought to foretell
phenomena which have not yet been observed; at least all phenomena of the same kind
as those which the hypothesis was invented to explain. For our assent to the hypothesis
implies that it is held to be true of all particular instances. That these cases belong to
past or to future times, that they have or have not already occurred, makes no
difference in the applicability of the rule to them (Butts 1968, p. 151). '

Whewell also devoted one of his aphorisms on induction to this first
test

It is a test of true theories not only to account for, but to predict phenomena
(Aphorism XII, Chapt V, Butts 1968, p. 138).

He illustrated the application of this test by noting a number of
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examples of useful theories which eventually failed to meet it. These
include what he called the “Epicyclical Theory of the Heavens”,
Newton’s hypothesis of Fits of Easy Transmission and Easy Reflection
and the doctrine of Phlogiston (Butts 1968, pp. 151—152).

I want to consider how this test applies to Kepler's so-called
‘vicarious theory’ of the orbit of Mars. This theory was Kepler’s intitial
attempt.” It is a classic example of an hypothesis that was useful, but
discovered to be false. Kepler has left us a detailed account of the
episode (in the second part of Astronomia Nova). We know exactly
what data were used to construct it, what data verified it and what it
could be relied upon to predict. We also know how Kepler refuted it.

For our purposes it may be sufficient to point out that the theory
specified an eccentric (off-centre) circular orbit with an equant point
(point about which equal angles are swept out in equal times) on the
aphelion-line (line from the sun through the centre. It meets the circle
on the far side at the aphelion, the point most distant from the sun. On
the near side it meets the circle at the perihelion, the point closest to
the sun). The equant point was to be on the side of the centre opposite
the sun so that the planet would move fastest when it was closest to the
sun. These specifications can be regarded as the conception in a
Whewellian colligation. Kepler included two key geometrical param-
eters among the magnitudes to be fixed by the data. These were the
distance between the sun and the centre as a fraction of the radius (the
eccentricity) and the distance between the sun and the equant point as a
fraction of the radius. Two more parameters, the direction from the sun
of the Aphelion and the mean anomaly (time from aphelion as a
proportion of the planet’s period) of any one observation of the
direction of Mars from the sun would complete this theory’s specifica-
tions of the variation of Mars’ direction from the sun with time
(Stephenson 1987, p. 42).

The angular distance of the projection onto the plane of the ecliptic
of the line from the sun through Mars from the point on the zodiac
marking the vernal equinox is called its heliocentric longitude. About
every 780 days Mars and the sun are in opposition (exactly on opposite
sides of the earth). At such a time the observed location of Mars against
the fixed stars in the zodiac fixes its heliocentric longitude. Kepler had
twelve such observations to work with (ten from Tycho and two more
he made himself). He was able to use four of them to fix the geomet-
rical parameters (see Stephenson 1987, pp. 42—43). He had mean-
anomalies for all so he was able to complete the theory when he
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managed to specify the heliocentric longitude of Mars’ aphelion (Small,
pp. 185—187). He then used the eight additional opposition observa-
tions to test the theory. Kepler concluded from these tests (the
observed heliocentric longitudes were well scattered about the zodiac)
that the theory could be relied upon to predict heliocentric longitudes
to within about two minutes of arc, which was about the accuracy of the
observations.

He went on to give two different refutations (Small, pp. 189—196,
Stephenson, pp. 45—49) of the theory each of which used two observa-
tions, one near perihelion and one near aphelion, to constrain the ratio
of the sun-aphelion distance to the sun-perihelion distance (Wilson, p.
92, diagram on p. 102). This contradicted the value of the eccentricity
parameter (ratio of sun centre distance to radius) that had been fixed by
the original four longitudes. Kepler was able to show that if the
eccentricity were fixed to be consistent with the sun-Mars distances
then any way at all of fixing the equant point would make for errors of
up to eight minutes in some longitudes. This was sufficient for Kepler to
reject this type of theory. The original version, however, continued to
be a useful hypothesis for predicting longitudes. Indeed, Kepler con-
tinued to use this “vicarious” theory to make such predictions long after
he had given it up as a candidate for the true account of Mars’ orbit.

When we apply Whewell’s first test to this episode we can surely
count the four heliocentric longitudes used to fix its parameters as
phenomena it was invented to explain. Perhaps, the eight heliocentric
longitude observations used to verify it can count as successful predic-
tions. They established its usefulness as a predictor of heliocentric
longitudes. What about the solar-Mars distances that refuted the
theory? If they are also phenomena of the same kind as those it was
invented to explain then we can say that (after some initial success) the
vicarious theory failed Whewell’'s first test. Suppose, however, we
consider only the four longitudes used to construct the theory as the
phenomena it was invented to explain and count only other heliocentric
longitudes of Mars as phenomena of the same kind. On this way of
settling what are to count as phenomena of the same kind as those it
was invented to explain the vicarious theory did not fail Whewell’s first
test. It was a reliable predictor of heliocentric longitudes. In addition to
the observations used to explicitly verify it, we can count later success-
ful predictions when Kepler continued to rely on it to calculate
longitudes.
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We see here that Whewell’s prediction test depends on how we
specify which data are to count as phenomena of the same kind.
Whewell’s other examples show a similar relativity of the application of
this first test to how data are sorted into kinds of phenomena. What he
says about the Epicyclical Theory has an especially close parallel with
the episode of Kepler’s “vicarious” theory.

For example, the Epicyclical Theory of the heavens was confirmed by its predicting
truly eclipses of the sun and moon, configurations of the planets, and other celestial
phenomena; and by its leading to the construction of Tables by which the places of the
heavenly bodies were given at every moment of time. The truth and accuracy of these
predictions were a proof that the hypothesis was valuable, and, at least to a great extent,
true; although as was afterwards found, it involved a false representation of the
structure of the heavens (Butts 1968, p. 151).

In both cases the successful predictions are of line of sight observations,
and in both cases the problem is a false representation of the structure
of the heavens, specifically wrong relative distances.

In all of these examples Whewell cites as cases where an initially
useful hypothesis failed this first test, the original regularities the
hypotheses were actually constructed to fit continue to hold, at least
more or less, even today. Whewell never provides a case where such
regularities just stopped holding, as would be the case, for example, if
the general trend correlating spring tides with syzygies and neap tides
with quadratures were to begin to go radically wrong. Nor does he
show us cases where we have discovered that we were radically mis-
taken from the beginning about such putative empirical regularities.

If we stick with a narrow interpretation of what count as phenomena
of the same kind, then each of these examples is a case where the
rejection of the hypothesis resulted from a failure to predict phenomena
of a kind different from those it was invented to explain. This would
make the rejection a failure of Whewell’s second or third tests rather
than this first test. Some ambiguity about this on Whewell’s part may be
shown by the fact that he discusses exactly these same cases as
examples where it is the third test which fails to be met — what this
third test demands is convergence to simplicity and unity as the
hypothesis is generalized to explain phenomena of kinds different than
those it was constructed to fit (Butts 1968, pp. 156—157).

We can see that Kepler’s elliptical orbit unifies both heliocentric
longitudes and sun-Mars relative distances so that it is superior to the
vicarious theory. This may suggest that the vicarious theory fell because
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it was displaced by this superior rival, but such a suggestion is incorrect,
Kepler rejected the vicarious theory before he had developed any
hypothesis that could successfully account for both heliocentric
longitudes and relative distances. Kepler was committed to finding a
theory that could give a true account of the motions -of the heavenly
bodies among themselves. He intended the vicarious theory to account
for relative distance phenomena as well as the heliocentric longitudes
that were used to construct it.

A tradition in astronomy going back, at least, to Ptolemy treated
astronomical theories as geometrical devices for predicting eclipses,
eclipse magnitudes, and geocentric line of sight locations of heavenly
bodies with respect to the fixed stars. These are the phenomena that
Whewell (quoted above) pointed out that the epicycle theory could
correctly predict. On this mathematical tradition the only constraints on
an astronomical theory were that it save these phenomena and provide
convenient methods of predicting them. Kepler can be regarded as a
pioneer in a new physical-astronomy in which the aim is to give a true
account of the motions of the heavenly-bodies and not just to predict
the geocentric line of sight data.'

Whewell offers some interesting remarks about the role played by
advances in measurement in making new phenomena count as kinds
that an adequate theory must account for (Butts 1968, pp. 156, 157).
Tycho Brahe’s observations made it possible to give much more
accurate measurements of relative distances by triangulation than had
been available when the line of sight angles were less closely fixed by
the data. The use of the telescope and especially of the micrometer to
give, by Newton’s day, really precise data about relative visual angles
occluded by bodies made an even more impressive increase in the
availability of accurate relative distance data (van Helden 1985, pp.
118—156). Similarly, Whewell points out (Butts 1968, p. 157), it was
the use of the balance in chemistry that made available the data about
weights that led to the rejection of the phlogistan doctrine (though here,
it appears, the rejection came only after the superior rival oxygen
theory was developed).

Most of Whewell’s discussion of his first test was devoted to its use
to falsify hypotheses; however, in the last paragraph before moving on
to discuss the much greater force of the evidence in favour of an
hypothesis provided by its predicting phenomena of a different kind
from those it was designed to fit, Whewell does acknowledge that
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successful predictions do count as positive evidence in favour of an
hypothesis. This suggests that he would regard the accumulating mass
of data points which the tidal correlation continues to fit as a continuing
increase in its evidential support.

3.2 (Predicting) even Phenomena of Different Kinds — the Consilience
of Inductions

Whewell introduces his second test of hypotheses with the following
passage, which opens article 11, Chapter V:

11. We have here spoken of the prediction of facts of the same kind as those from
which our rule was collected. But the evidence in favor of our induction is of a much
higher and more forcible character when it enables us to explain and determine cases of
a kind different from those which were contemplated in the formation of our
hypothesis. The instances in which this has occurred, indeed, impress us with a convic-
tion that the truth of our hypothesis is certain. No accident could give rise to such an
extraordinary coincidence. No false supposition could after being adjusted to one class
of phenomena, exactly represent a different class, where the agreement was unforeseen
and uncontemplated. That rules springing from remote and unconnected quarters
should thus leap to the same point, can only arise from that being the point where truth
resides.

Accordingly the cases in which inductions from classes of facts altogether different
have thus jumped together, belong only to the best established theories which the
history of science contains. And as I shall have occasion to refer to this peculiar feature
in their evidence, I will take the liberty of describing it by a particular phrase; and will
term it the Consilience of Inductions.

This test also has one of Whewell’s aphorisms on induction devoted to
it.

The Consilience of inductions takes place when an Induction, obtained from one class
of facts, coincides with an Induction, obtained from another different class. This con-
silience is a test of the truth of the Theory in which it occurs.

(Aphorism XIV, Chapter V NOR, Butts 1968, pp. 138—139)

Let us put aside, for the present, Whewell’s claims about the forcible
character of the evidence consilience provides, and look to these
passages to find out what consilience is.

The first part of this passage suggests that an induction has the virtue
we are trying to explicate

when it enables us to explain and determine cases of a kind different from those which
were contemplated in the formation of our hypothesis.
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'The main emphasis, however, appears to be on a coming together of
two or more different inductions and the term that actually gets
introduced in the definition at the end is “consilience of inductions”.
The Aphorism, similarly, characterizes the coming together of different
inductions. Here is how Malcolm Forster explicates what these passages
say about the sort of coming together that counts as a consilience of
inductions:

Here we must recall Whewell’s insistence that every colligation of facts adds a new
conception to the facts. Now, if we consider two separate domains of inquiry, then the
colligation of facts within one domain will introduce conceptions unconnected (or not
thought to be connected) with the conceptions introduced in the second domain. When
these different inductions, i.e. colligations of facts, “jump together”, Whewell means that
the magnitudes independently measured within separate domains agree with one
another, or are connected by some law-like regularity (i.e. connected by some formula).
(Forster 1988, p. 74)

On this explication the consilience of inductions takes place when a
higher level induction colligates the results of two or more lower level
inductions,

Forster’s claim that each case of the consilience of inductions is a
higher order induction is, surely, a correct explication of Whewell’s
view, as the following passage indicates:

For when the theory, either by the concurrence of two indications, or by extension
without complication, has included a new range of phenomena, we have, in fact, a new
induction of a more general kind, to which the inductions formerly obtained are
subordinated, as particular cases to a general proposition (Butts 1968, pp. 159—160).

The phrase “concurrence of two indications” refers to consilience, while
the phrase “by extension without complication” refers to the tendency
toward unity and simplicity which is the virtue Whewell discusses in his
third test of hypotheses. Here we see that each of these two virtues is
realized by a higher order induction to which the lower level inductions
it brings together are subordinated.

Forster’s contention that by “consilience” of two or more inductions
Whewell means just that their magnitudes have been colligated by a
higher order induction — that, in consequence, any such higher order
colligation counts as a consilience of inductions — is perhaps more
controversial. Whewell tells us that the cases colligated have to be of
different kinds. According to Forster, the absence of the higher-order
colligation shows that they count as different kinds at least in the
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respects which are relevant to the case. This line is attractive even if it
means admitting as examples of consilience many higher order colliga-
tions which do not have some of the impressive characteristics of
Whewell’s favorite examples.

Kepler’s third law is a functional relationship among the magnitudes
measured from the several applications of his first law to planets
orbiting the same primary. According to this Law the ratio R3/T? is
constant, where R is the major semi-axis of the elliptical orbit and T is
its period.!! On Forster’s account this shows a consilience of the
different inductions colligating each of these planets’ motions into its
own elliptical orbit.

Whether or not this is something Whewell would count as a con-
silience of inductions depends upon whether or not we can find an
appropriate respect in which these separate elliptical orbits can be
regarded as phenomena of different kinds. I think we can reasonably
follow Forster’s suggestion here and take the absence of knowledge of
any such functional relation among them as is specified by the third law
as an exactly appropriate respect in which they were regarded as of
different kinds before and as of the same kind afterward. If this is
viable, then, on Forster’s interpretation, consilience exhibits exactly
what Larry Laudan suggested is its real virtue.

The real strength of such an hypothesis is usually that it shows that events previously
thought to be of different kinds are, as a matter of fact the ‘same’ kind of event. (1971,
p.374)

This historical relativity of what count as appropriately different kinds
of phenomena is in line with Whewell’s grand historical view of induc-
tion on which inductions are represented as stages in hierarchically
organized tables representing the progress of science toward the
unification of different kinds of phenomena. It suggests that the sorting
of phenomena into kinds relevant for any stage in the development of
science is determined by the colligations which have been achieved by
that stage.

3.3. True Theories Tend to Simplicity
Here is how Whewell introduced his third test of true hypotheses:

12. In the preceding Article I have spoken of the hypothesis with which we
compare our facts as being framed all at once, each of its parts being included in the
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original scheme. In reality, however, it often happens that the various suppositions
which our system contains are added upon occasions of different researches.

This being the mode in which theories are often framed, we have to notice a distinc-
tion which is found to prevail in the progress of true and false theories. In the former
class all the additional suppositions tend to simplicity and harmony; the new supposi-
tions resolve themselves into the old ones, or at least require only some easy modifica-
tion of the hypothesis first assumed: the system becomes more coherent as it is further
extended. The elements which we require for explaining a new class of facts are already
contained in our system. Different members of the theory run together, and we have
thus a constant convergence to unity. In false theories, the contrary is the case. The new
suppositions are something altogether additional; — not suggested by the original
scheme; perhaps difficult to reconcile with it. Every such addition adds to the
complexity of the hypothetical system; which at last becomes unmanageable, and is
compelled to surrender its place to some simpler explanation (Butts 1968, p. 155).

This third test is one which applies to the process of theory construc-
tion. Whewell tells us that as the various suppositions are added in the
course of its development a true theory tends toward greater simplicity
and unification, while a false theory degenerates into complications
until it becomes so unmanageable that it is compelled to surrender its
place to some simpler explanation.

Robert Butts has long argued that one ought to take seriously
Whewell’s contention that his account of induction is to be construed as
an account of discoverer’s induction (1968, p. 20; 1973, pp. 56—57,
66—70). Whewell’s discussion of this third test suggests that Butts has
been on the right track in looking to the context of discovery for
illumination of these views. In his important paper on Whewell’s logic
of induction (Butts 1973, p. 68) he called attention to an interesting
passage at the beginning of section 13 where Whewell discussed the
close comnection between consilience and the explanatory virtues of
convergence toward simplicity and unity exhibited in successful theory
building,

13. The last two sections of this chapter direct our attention to the two
circumstances, which tend to prove, in a manner which we may term irresistible, the
truth of the theories which they characterize: — the Consilience of Inductions from
different and separate classes of facts; — and the progressive Simplification of the
Theory as it is extended to new cases. These two characters are, in fact, hardly different;
they are exemplified by the same cases. For if these Inductions, collected from one class
of facts, supply an unexpected explanation of a new class, which is the case first spoken

of, there will be no need for new machinery in the hypothesis to apply it to the newly-
comtemplated facts; and thus, we have a case in which the system does not become
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more complex when its application is extended to a wider field, which was the character
of true theory in its second aspect. The consiliences of our Inductions give rise to a
constant convergence of our Theory towards Simplicity and Unity.

Butts argues that this close connection Whewell claims between con-
silience and the theory-building virtues of simplicity and successive
generalization shows that consilience is more a pointer toward explana-
tory excellence than a measure of either entailment content or cor-
roboration (1973, p. 69).

Butts also suggests (1973, p. 68) that for Whewell the concepts of
consilience, simplicity, and successive generalization mean the same
thing, Whewell does tell us-that Consilience and Simplicity are hardly
different, and that they are exemplified in the same cases; but he does
not tell us that they mean the same thing. I think Forster (1988) has
shown that Butts’ main point — the importance of the context of theory
building as the arena where consilience operates — can be even better
served by distinguishing consilience from these explicitly explanatory
virtues and then explicating the last sentence of the passage — where
Whewell tells us that the consiliences of our inductions give rise to a
constant Convergence of our theory towards Simplicity and Unity.

According to Forster the bottom-up character of Whewell’s philos-
ophy of scientific discovery is the key to understanding how it is that
the consilience of inductions gives rise to convergence toward simplicity
and unity.

However, Whewell’s emphasis is on the philosophy of scientific discovery, whereas the
top-down emphasis of hypothetico-deductivism obscures the most important com-
ponent of this process — the discovery that two, or more, coefficients invented to
explain diverse phenomena actually represent a common “cause”. This feature is given
its proper empbhasis in the “bottom-up” approach to the philosophy of science.

Whewell has provided roughly the following picture of science. At the phenomeno-
logical level a colligation of facts will generally introduce the means of measuring
formula coefficients, which may be instances of variable quantities when viewed more
globally. These ‘theoretical’ variables may themselves enter into higher-level colliga-
tions, which may then introduce further coefficients and so on. This hierarchical
procedure will eventually end when the coefficients introduced are no longer variable
— as in the case of fundamental physical constants — or when the coefficients
introduced are easily interpreted as conversion factors between different scales of
measurement. (Forster 1988, pp. 76—77)

On this view the bottom-up character of Whewell’s philosophy of
discovery is shown by the step by step progression through the history
of science toward increasing simplicity and unification. These are what
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Butts (1973, p. 68) calls the steps of successive generalization exhibited
in Whewell’s inductive tables. Each step is guided from below by
correlations colligated among the magnitudes measured in lower level
colligations.

Forster’s remarks continue with a simple illustration from laboratory

physics of the way consilience can facilitate convergence toward
simplicity and unity.
Examples are everywhere; e.g. consider the magnitude of ‘mass’ as measured from
balance phenomena or from spring phenomena. In cases like this, the observed correla-
tion between independent measurements is explained in terms of an identity relation:
The independently determined values are approximately the same (after being
converted to a common scale) because they are measurements of the same thing, e.g. of
‘mass’, rather than measurements of the different properties of ‘spring mass’ and
‘balance-mass’. The importance of these explanations is that they give rise to a simplif-
ication and unification of our previous theoretical committments (e.g. by replacing
‘spring-mass’ and ‘balance-mass’ with ‘mass’) (1988, p. 77).

In later remarks Forster expands upon this theme in a specific comment
on the passage from Whewell we have been considering.

Consilience is not the same as simplicity; the former merely gives rise to a convergence
fowards the latter. The goal — of simplicity and ontological unification — is only
achieved once the observed consilience is deemed to be non-accidental and is
subsequently explained in terms of an identity. Consilience is the evidence for accepting
the identity. After that the theory can be further tested by its deductive consequences,
but it is the discovery of the identities and unity in nature that is the admirable part of
the process (Forster 1988, p. 79).

On this view the consilience of inductions gives rise to the convergence
toward simplicity and unity by providing the evidence for introducing
an identity. The agreement between the separate values is explained by
a common cause — they are measurements of the same magnitude.

We have already pointed out that, on Forster’s view, Kepler’s third
law is, itself, an example of consilience even if it doesn’t directly
illustrate the level of the explanatory virtues of convergence to sim-
plicity and unity associated with Whewell’s favorite examples where
consilience is exhibited in grand unifying theories. The functional
relationship colligated in Kepler’s third law tells us that the ratio R 3/T?
is constant for all of the planets orbiting the sun. On Forster’s view this
gives rise to convergence toward simplicity and unification when these
approximately equal values can be explained by introducing an identity
so that each can be regarded as a separate measurement of the same
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magnitude. This is just what Newton did. The equal ratios R3/T?
(suitably adjusted for scale) calculated from these various orbits can be
understood as separate measurements of what Newton (Definition VI,
Book I) called the absolute quantity of a common inverse square
centripetal force holding all these planets in their orbits. He went on to
establish that these could be understood as measurements of the mass
of the sun. This magnitude can be regarded as the common cause of the
ratio’s characterizing the orbits of all the planets.

4, NEWTON’S ARGUMENT FOR UNIVERSAL GRAVITATION

4.1. Phenomena

Newton begins by citing six phenomena. The first specifies that Jupiter’s
moons satisfy Kepler’s Law of Areas (by radii to the centre of the
primary they describe areas proportional to the times of description)
and Kepler’s Harmonic Law. The second specifies that the moons of
Saturn also satisfy these two laws. The last, Phénomenon VI, specifies
that Kepler’s Law of Areas is satisfied by our moon as well. The third,
fourth, and fifth are of special interest to us.

Phenomenon III

That the five primary planets, Mercury, Venus, Mars; Jupiter, and Saturn, with their
several orbits, encompass the sun.

Phenomenon IV

That the fixed stars being at rest, the periodic times of the five primary planets, and
(whether of the sun about the earth, or) of the earth about the sun, are as the 3/2th
power of their mean distances from the sun.

Phenomenon V

Then the primary planets, by radii drawn to the earth, describe areas in no wise
proportional to the times; but the areas which they describe by radii drawn to the sun
are proportional to the times of description.

Two poirits, rather immediately, strike an attentive reader. First, these
phenomena do not specify that any of these orbits are ellipses. Secondly,
they leave open our Brahean alternative to Kepler’s account. Whether
the earth orbits the sun, as Copernicus and Kepler specify, or the sun
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orbits the earth, as in the Brahean hypothesis, is not decided by what
Newton takes as phenomena.

We saw that Whewellian colligations are general propositions col-
ligated from the data by imposing a conception on them. Each of these
phenomena cited by Newton is such a general proposition giving what
purports to be an empirical law of the relative motions of a satellite (or
satellites) with respect to its (their) primary. Another feature we noted
about Whewellian colligations is that they are constrained to fit the data
they colligate, even if they go beyond what these data logically imply.
Newton discusses the evidence for each phenomenon. I think these
discussions make it clear that the idealizations introduced by the
conceptions which generalize on the data are fairly well within what
would count for Whewell (or even contemporary statisticians) as
reasonable estimates of fit.!?

Not just any colligations count as phenomena. I think we can say,
roughly, that only those colligations that can be reasonably regarded as
presumed common-knowledge among appropriate experts are to count.
Moreover, this presumption is defeasible in that corrections are allowed
for. Professor 1. B. Cohen (conversation, November 1987) suggested to
me that G. E. L. Owen’s (1961) interesting discussion of Aristotle’s
Tithenai Phainomena can illuminate the role played by Newton’s
phenomena. According to Owen (pp. 170—173) Aristotle’s Tithenai
Phainomena are the common conceptions on the subject accepted by
all, or most, or by the wise. They are not rock hard data, but starting
points that can be corrected as the investigation proceeds.

4.2. Deductions from Phenomena

In Proposition I, Book III, Newton infers that the moons of Jupiter (and

Saturn)

(a) are held in their orbits by forces directed to the centre of their
primary

and

(b) that these centripetal forces vary inversely with the square of the
distance from their centre,

from the phenomena that they satisfy (a’) Kepler’s Law of Areas and

(b') Kepler's Harmonic Law. In Proposition II he infers by similar

arguments that the five primary planets are also held in their orbits by

centripetal forces that vary inversely with the square of the distance

from the centre of their primary. These are the paradigmatic examples

of Newton’s practice of inferring forces from phenomena.
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(a) Equivalence Theorems and Bootstrap Confirmations. In each case
the inference is backed up by theorems establishing equivalences
between values of a phenomenal magnitude (say the behaviour of the
rate at which areas are being swept out by radii to a centre as increas-
ing, constant, or decreasing) and corresponding values of a theoretical
magnitude of interest (say the direction of a deflecting force as off
centre in the direction of tangential motion, centripetal, or off centre in
opposition to the tangential motion). The assumptions used in the
proofs allow for a range of possible values for the phenomenal
magnitude, and equivalences with corresponding values of the theoret-
ical magnitude are proved to hold over the whole range.
These equivalence theorems show that Clark Glymour (1980, pp.
203—225) was correct when he argued that Newton’s deductions of
forces from phenomena satisfy the requirements for bootstrap confir-
mations. A bootstrap confirmation is an inference where an instance of
a theoretical claim is deduced from data together with theoretical
background assumptions. The basic requirement is that the background
assumptions be compatible with alternative data which would have led
to a contradiction of the instance of the theoretical claim that was
deduced from the actual data. Newton’s deductions of forces from
phenomena, however, are especially interesting special cases of boot-
strap confirmations. Not only are the background assumptions compat-
ible with alternative values of the phenomenal magnitude which would
have contradicted the theoretical claim that was actually inferred, as
bootstrap confirmation requires, but these background assumptions
also entail the theorems which give the equivalences between the
various values of the phenomenal magnitude and corresponding values
of the theoretical magnitude over a whole range of alternative values
which they leave open. This suggests that (given the background
assumptions) the values of the phenomenal magnitudes can be regarded
as measuring the corresponding values of the theoretical magnitude just
as readings on a thermometer measure temperatures. Given Newton’s
theorems the motions of orbiting bodies can be regarded as measure-
ments of directions of deflecting forces, and for cases where these are
centripetal forces the motions can measure the variation of those forces
with power of distance.

(b) The Dynamical Significance of the Law of Areas. Theorems I and II
of Book I give the two directions of the equivalence between centripetal
direction of a force deflecting a body from uniform rectilinear motion
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and constant rate for sweeping out areas by radii drawn to that centre,
while Corollary I of Theorem II, Book I gives the relevant equivalences
for increasing and decreasing rates. These theorems show that motions
satisfying Kepler's Law of Areas with respect to a centre moving
inertially measure the centripetal direction of a force deflecting the
body from uniform rectilinear motion with respect to that centre.
Theorem III extends this result to centres, howsoever moved, so that
motions of a body satisfying Kepler’s Law of Areas with respect to the
centre of another body measure a force compounded of a centripetal
force together with all the accelerative force by which that other body is
impelled.

This shows that the dynamical significance Newton finds for Kepler’s

Law of Areas is not limited to idealizations where the centre counts as
in inertial motion and the only force operating is the centripetal force
deflecting the body. Rather, as Forster points out, Newton shows how
relative motions satisfying Kepler’s Law of Areas let us infer centripetal
component forces even in the presence of other unknown accelerating
forces. )
This virtue of the theorems backing up Newton’s deductions of
centripetal forces from phenomena suggests that Forster’s emphasis on
the use of residues in large masses of data to make room for decompos-
ing effects into components from which to infer component causes may
not always be necessary. Such deductions of component centripetal
forces from appropriate relative motions will work even when there are
no multiple data points corresponding to repetitions of the motion. This
is important for Newton’s applications to motions of comets where
there might be just a few observations on a single fly past of the sun.
Newton’s equivalence theorems make it possible to infer a component
centripetal force from even a single case of a motion where equal areas
are swept out in equal times by radii to a centre.

4.3. Newton's Mathematical Theory of Forces and Motions

Howard Stein (conversation) once called my attention to the fact that
Newton places the laws of motion together with the definitions in a
separate section before the actual beginning of Book One. Newton
actually tells us (Scholium to the Laws translation [1987] by I. B. Cohen
and Anne Whitman) that these principles are “accepted by mathe-
maticians and confirmed by many kinds of experiments.” They are
assumptions we readers are expected to agree to before we are to even
begin working our way through his rich investigation of the motions of
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bodies. These laws together with Euclidean geometry, and the lemmas
on first and last ratios (which do for Newton what we would do with
the calculus) are the general background assumptions which make
possible Newton’s deductions of forces from motion phenomena.

We saw that the deductions from phenomena we considered were
special bootstrap confirmations because they were backed up by equiv-
alence theorems that let us measure the forces from the phenomena.
Here we see that they are special because the background theory is
special — the very general assumptions of Newton’s mathematical
theory of forces and motions. In “On the nature of the truth of the Laws
of Motion” (Butts 1968, pp. 79—100) Whewell held that the laws of
motion were necessary truths even though they also had empirical
elements. Butts (1965, especially pp. 169—173) has offered an interest-
ing account of the interplay of empirical and a priori elements in
Whewell’'s account of how we come to have a clear intuition of the
necessity of the laws of motion to the application of the idea of cause
construed as force.

-Consider the situation with kinerhatics. The vector composition of
motions according to Galiliean transformations were explicitly taken by
Kant and Hertz as a priori. Moreover, I doubt that many scientists or
philosophers from Newton’s day through most of the 19th century
would have regarded them as empirically refutable. Nevertheless, when
Poincare developed an alternative conception that could take over their
role in making intelligible the composition of motion and forces and
Einstein used it to formulate special relativity theory, few had any
difficulty understanding certain experiments as empirical refutation of
Galilean kinematics. Putnam (1983, p. 95) coined the nice term “con-
textually a priori” for the special status I claim was enjoyed by
kinematics. In the earlier context, when no alternative conception was
available to make intelligible the compositions of motions, the Galilean
transformations were treated as immune to any empirical refutation.
When an alternative conception was developed enough to count as a
serious rival the context changed and the earlier conception became
open to empirical test.

4.4. Maintaining Simplicity in the Face of Hard Tests: Proposition 3
and the Lunar Precession Problem

In Proposition 3 Newton argued that the moon is held in its orbit by an
inverse square centripetal force. That the force is centripetal is deduced
from Phenomenon VI by the Areas Law theorem. The argument to
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establish the inverse square variation was more problematic. What
made it a problem was the well established precession of the lunar
apsides of about 3° forward every revolution.

Newton appealed to Corollary 1 of Proposition XLV, Book I, which
establishes equivalences between precession of aphelion for a body
orbiting under a centripetal force and the variation of that force with
power of distance. A stable elliptical orbit corresponds exactly to an
inverse square variation. Precession forward measures variation that
falls off faster than the inverse square, while precession backward
measures variation that falls off slower than the inverse square.

The precession of our moon is about 3° forward every revolution
which would measure variation inversely as the 2 and 4/243 power
rather than the inverse square variation. Newton argued that this lunar
precession can be neglected. For one thing the variation is approx-
imately equal to the inverse square. More importantly, the precession is
to be neglected because it is due to the action of the sun (as he
promised to show later). Finally, to the puzzlement of more than a few,
he explicitly appealed to the moon test agreement with Huygens’ value
that results from the inverse square variation as a reason for neglecting
the lunar precession.

The precession theorem is a one-body idealization. It only takes into
account the centripetal force, but Newton used it as his main tool to
solve for the gravitational effect of a third body on an orbit. His method
was to calculate the centripetal (say earth-moon axis) component of the
action of the third body, then compose this force with the basic inverse
square centripetal force to give a new total centripetal force that no
longer would vary inversely as the square. In Corollary 2 of Proposition
XLV he developed a formula for calculating precession from the
centripetal component of a foreign force as a fraction of the main
central force.

When Newton applied this method with the correct value for the
ratio of the centripetal component of the sun to the action of the earth
on the moon he could only account for about one-half of the observed
precession. When Clairault, d’Alambert and Euler all worked on the
problem in the 1740’s with no more success than Newton had, Clairault
and Euler were led to propose modifying the basic inverse square law
(Watf 1976). When Clairault used a calculation that took into account
not just the centripetal but the transverse component of the action of
the sun he was probably trying to conclusively falsify Newton’s theory,
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much as Kepler falsified his vicarious theory (Waff 1976, p. 175). To
his great surprise, he found that this accounted for the lunar precession.

4.5. Unification, the Moon Test and the Tides

(@) The Moon Test. Newton’s famous moon test showed that the
inverse square force on the moon (calculated from the centripetal
acceleration of its orbit) would, at the surface of the earth, equal the
force of terrestrial gravity (measured by Huygen’s seconds pendulum).
In Proposition IV, he appealed to his first two Rules of Reasoning,

Rule 1 No more causes of natural things should be admitted than
are both true and sufficient to explain their phenomena.

Rule 2 Therefore, the causes assigned to natural effects of the same
kind must be, so far as possible, the same (Cohen I. B. and
Whitman A. 1987).

to argue from this agreement in measured value to the claim that the
. centripetal force on the moon is identical with terrestrial gravity.

Newton’s calculation of the centripetal acceleration of the moon
used the simplifying geometrical assumptions that the moon orbits the
centre of the earth (rather than the common centre of gravity of the
~earth-moon system) and that the earth was a perfect sphere (rather than
oblate with a larger semidiameter at the equator). Yet he put great
weight on the resulting close agreement with Huygens’ value in the
moon test. He made the key inference to identify the centripetal force
on the moon with gravity, and he even appealed to the agreement with
Huygens’ as an additional excuse for neglecting the lunar precession in
his inference to the inverse square variation of the force on the moon in
Proposition 3.

Forster sees the role of Newton’s first two rules here as that of
endorsing a Whewellian policy to identify magnitudes when this is
appropriately supported from below by a consilience showing agree-
ment in their independently measured values. On this view Newton
should have kept his evidence for colligating the inverse square varia-
tion of the force on the moon completely independent of the resulting
agreement with Huygens. Moreover, he should have made sure that the
simplifying assumptions were not giving an accidental agreement before
regarding the consilience as independently established. Forster (1988,
pp. 86—87) explicitly worrries that the moon’s orbit cannot provide an
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appropriately independent measurement of its centripetal acceleration
from celestial phenomena until it can be backed up with an indepen-
dent measurement of the Moon’s mass so that its contribution to the
joint force can be factored out by using the common centre of gravity.

Newton’s use of the rules to put so much weight on the agreement,
even when its warrant from below had not been established, shows that
his practice of theory construction is more free-wheeling than the
bottom up procedure Forster admires.!? I think it is clear that, once the
initial agreement has been shown, the task of showing that it will hold
up as simplifying assumptions are removed is not one of attempting to
generate enough force of evidence to carry the inference to the identifi-
cation through, rather it is simply making sure that the new unified
theory can account for the data, so that the unification will not be
undone by a failure to satisfy the first test. For Newton the Rules
provide the weight for the identification. The consilience is needed only
to license permission to give the unification a chance to get off the
ground.

(b) The Tides. Newton did provide a way to measure the mass of the
moon so as to show that the agreement in measured values in the moon
test would hold up when the simplifying assumption that the moon’s
orbit is centred on the centre of the earth is replaced by the more
correct assumption that they orbit a common centre of gravity.
Newton’s way of measuring the mass of the moon was to appeal to
the tidal phenomenon which Forster gave as his first example of a
Whewellian colligation. Newton used the ratio between high and low
values calculated from the coefficients of the equation colligating the
correlation of spring and neap tides with syzygies and quadratures to
measure the ratio of the moon’s mass to that of the sun from their
relative contributions to this tidal phenomenon.

Consider the effect one body (say the moon alone) would have on
the seas of a water-covered earth. On the side toward the moon the
water is pulled away from the earth, because it is nearer to the moon
than the solid part of the earth is. On the side away from the moon
there is a similar increase in the depth of water, because the solid earth
is closer to the moon and so is pulled away from the water on that side.
The basic effect of the moon’s gravity on a sea-covered earth is to cause
nearly equal water bulges on the near and far sides of it.
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Now consider the additional effect of the sun’s gravitation. At
conjunction and equally at opposition the sun’s force adds maximally to
that of the moon to increase the basic effect. This is why the spring
tides (highest high tides) occur at both syzygies (at 0° and at 180°). At
quadratures (90° and 270°) the action of the sun is maximally opposed
to the stronger action of the moon (its basic effect here would be to
take water away from the sides on which the moon is making it deeper).
This is why the neap tides (lowest high tides) occur at quadratures.

Newton was not satisfied with this merely qualitative causal explana-
tion. He wanted to be able to use the tidal ratio to calculate the ratio of
the mass of the moon to the mass of the sun. Such a calculation can be
given from the theory. The basic differential effect of the moon between
the water at a point B and the centre of the earth C when the moon is
at A directly over head is

L =GMm/(AB)*>— GMm/(AC)?
Similarly, for the sun
§=GMs/(A'B)*>— GMs/(A'C)~

When it is directly over head at A’. If we had a perfectly unimpeded
water flow, an untilted earth with the moon’s orbit and the earth’s
equator in the plane of the ecliptic then we would have
(Spring height) L +§
(Neap height)y L —S§
so that we could start from the tide ratio and solve the equations for the
ratio of Ms to Mm.

For cases where the earth is in equinoxes we can calculate the
differential effect at a given latitude, taking into account the inclination
of the lunar orbit by averaging over the various combinations of
greatest and least angles from zenith of the sun and moon at syzygies
and quadratures. Philip Catton (1988) was able to show that such a
calculation for latitude 50° would give Newton’s 9:5 ratio, when it was
further corrected by three corrections Newton actually applied in his
own calculation. Newton’s tidal data were taken from equinoxial syzygies
and quadratures (Cajori, p. 479) and were from about latitude 50°. One
of the corrections is for tidal delays which could be established by local
observations. The other two are corrections for true special features
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exhibited by the lunar orbit when the earth is near equinoxes. We can
go from Newton’s data back through the equations to recover the true
ratio of the mass of the moon to that of the sun.

(c) Explanation. Newton established for the first time a new mathe-
matical ideal for causal explanations. One should develop one’s mathe-
matical force model sufficiently so that when it is applied to explain a
phenomenon one can establish from the model the sort of equivalence
theorems that back up the deductions of forces from phenomena. This
very strong sort of explanation requires that the relevant features of the
magnitudes that explain the phenomena are also measured by the
phenomena they explain. Here we see a realization with Newtonian
component forces of Cartwright’s (1983) ideal that causal explanations
require that the cause be measured by the effect it explains.

4.6. Generalization Using the Rules of Reasoning

In Proposition V Newton extended the identification of orbital force
with gravity to the moons of Jupiter and Saturn and to the Planets. His
argument for this consisted in noting the inverse square centripetal
nature of the accelerative measures of these forces (accelerations of
satellites of the same primary depend only on their distances not on
their respective sizes) and applying Rule 2. These inverse square
centripetal forces are of the same kind as the force on the moon,
therefore they should, as far as possible, be assigned the same cause —
gravitation of the satellites to their respective primaries.

Whewell (Butts 1968, p. 332) argues that the problem of deciding
when effects are of the same kind renders applications of Rule 2
vacuous.

Are the motions of the planets of the same kind with the motion of a body moving
freely in a curvilinear path, or do they not rather resemble the motion of a floating
body swept round by a whirling current? The Newtonian and the Cartesian answered
this question differently. How then can we apply this rule with any advantage? (p. 332).

It is only when it appears that comets pass through this plenum in all directions with
no impediment, and that no possible form and motion of its whirlpool can explain the
forces and motions which are observed in the solar system, that he [the Cartesian| is
compelled to allow the Newtonian classification of events of the same kind (p. 333).

Whewell suggests that Newton’s claims to deduce inverse square
centripetal forces from the phenomena of orbital motion (as well as his
use of Rule 2 in Proposition V to identify these as gravitational forces)
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depend on his being able to refute the Cartesian alternative hypotheses
of vortices. This would make Newton’s internal criticism of Cartesian
vortices in Book II an essential part of the argumentation supporting
Newton’s deductions from phenomena in Book III.

Rule 4 makes it clear (as does the famous remark about hypotheses
in the general scholium) that Newton thought that mere hypotheses can
be ignored because they are not deduced (or inferred by general
induction) from phenomena.

Rule 4 In experimental philosophy, Propositions gathered from
phenomena by induction should be considered either exactly
or very nearly true notwithstanding any contrary hypotheses,
until yet other phenomena make such propositions either
more exact or liable to exceptions (Cohen I. B. and Whitman
A.1987).

We have seen that Newton’s deductions from phenomena depend upon
background assumptions and upon idealizations about what phenom-
enon a certain effect is to count as. In the case of the centripetal force
on the moon the very precession theorem (Corollary I, Proposition
XLV, Book I) connecting variation of force with power of distance to
apsidal motion would allow inverse variation with the 2 and 4/243
power of distance to be deduced from the observed apsidal motion,
unless the assumption of no interfering forces can be undercut. Relative
to that assumption, the theorem shows that the phenomenal magnitude
would count as a measurement of this alternative to the inverse square
variation. This is why Newton must make plausible the claim that the
apsidal motion of the moon is due to an interfering force.

I assume that Newton thought that the Cartesian hypothesis was not
backed up by any similarly detailed mathematical equivalences between
vortical magnitudes and specifications of relative motions that could
count as phenomena.!* I see no reason why the reasonableness of this
opinion should depend on his actually having carried out his internal
criticisms of Cartesian theory in Book II. These criticisms may perhaps
be viewed as an attempt to show that no plausible vortical magnitudes
could have values equivalent to Keplerian orbital phenomena. Even if
Newton had not provided these arguments, however, he would have
been reasonable in regarding the burden of proof on the Cartesians to
provide such equivalences if their proposals are to count as serious
rivals rather than mere hypotheses that can be safely ignored.
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In the first part of Corollary I, Newton extends the power of gravity
to planets without moons.

There is, therefore, a power of gravity tending to all the planets, for, doubtless, Venus,
Mercury, and the rest, are bodies of the same sort with Jupiter and Saturn.

Here there are no already established inverse square centripetal forces
to go on, so there are no similar natural effects that can be used to
apply Rule 2. Instead, the inference is carried by the assertion that
these planets are bodies of the same sort as the others. In Corollary II,
Newton infers that the gravitational forces to all planets are inverse
square forces. Again, no rule and no additional facts are cited. The idea
seems, again, to be that the gravitational forces toward the planets
without moons are the same kind of forces as those towards planets
with moons and therefore that they too should be inverse square.

Rule 4 tells us to regard as true those propositions inferred by a
induction from phenomena, and Newton tells us

This rule we must follow, that the arguments of induction be not evaded by hypotheses
(p-400).

This makes it clear that it is even propositions like Corollary II and the
first part of Corollary I, which are not deduced or inferred by Rule 2
but only inferred from phenomena by induction, that get protected
from evasion by mere hypotheses.

We can use the fourth rule as a clue to illuminate some of the
puzzles about the “vera causa” clause in Rule 1. There has been
considerable discussion over what role, if any, the requirement that we
admit only causes which are frue should play in applications of Rule 1
(e.g. Whewell, Koyre). If we take Newton at his word, Rule 4 provides
the answer. We are to regard as true those propostions inferred by
general induction from phenomena (as well, of course, as those actually
deduced or otherwise more directly inferred). This suggests that
Forster’'s Whewellian interpretation of the “vera causa” condition in
Rule 1

Whewell’s reading of Newton’s “true causes” (verae causae) as those “causes” that are
found to be identical with the causes of other phenomena corresponds with our
understanding of Newton’s Rule 1 and reinforces the previous interpretation of what
Whewell meant by consilience (Forster 1988, p. 80)

would be rejected by Newton. The extension of the power of gravity
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and its inverse square variation to planets without moons such as Venus
and Mercury in Corollaries I and II of Proposition five is not backed up
by any consiliences of independently measured forces.

In Proposition VI Newton argued that the motive quantity of the
centripetal force of gravity of a planet on a body is proportional to the
inertial mass of that body. In Proposition VII he argued that the
absolute quantity of the gravity of any body is proportional to its
inertial mass. This stage in his argument involved an appeal to rule
three to extend gravity and its proportionality to inertial mass to all
planets. It also involved the generalization to universal gravitation.
These generalizations are even more radical departures from Forster’s
bottom-up ideal.

Forster’s common cause realism may be less restrictive than the
rather extreme bottom up interpretation I have put upon it. This is
suggested by the warm remarks he makes toward Newton’s third Rule
of Reasoning (1988, p. 94).

To complete this story, we should emphasize that, once discovered to hold within a
certain domain, the law is automatically extended universally to apply in all future
instances and for all bodies whatsoever. There is an inductive- generalization as
traditionally construed, but it is a generalization constrained by the results of experi-
mentation. Newton’s third rule of reasoning is as follows: “The qualities of bodies,
which admit neither intensification nor remission of degrees, and which are found to
belong to all bodies within the reach of our experiments, are to be esteemed the
universal qualities of all bodies whatsoever.” In particular, the power of gravity
measured by the gravitational mass of a body is found to be invariant over all
independent determinations for all applications and for all times so far examined, so
this property should be extended to other bodies and to other times. So, we. should
extend the previous measured value for the mass of the cup to apply to future times,
and we assume that all as yet undiscovered bodies obey the same laws (as was
instrumental in the discovery of Neptune). However, the preconditions placed on this
inductive inference — conditions demanding the consilience of the coefficients so far
measured — protect this form of inference from the usual counterexample to enumera-
tive induction (such as the chicken that is fed every day 99 times in a row and then
killed on the 100th day). As Whewell says, it is the intermediate step of adding a new
conception — in this case the ‘mass’ concept — that enables us to verify the truth of our
law in terms of the consilience of inductions. It is this form of verification (Whewell’s
second and third tests of hypotheses) that the naive cases of enumerative induction lack
(Forster 1988, p. 94).

Whewell (Butts 1968, pp. 333—334) did not at all share Forster’s
enthusiasm for Newton’s third rule. As Butts (1970) has pointed out
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It is central to Whewell’s philosophy of science that we recognize that observation, even
experimentally regularized observation, can confer on propositions about facts only a
probable universality (Butts 1970, p. 144).

Forster has largely avoided talking about Whewell’s views on necessity
and conceptual change (except in so far as colligation involves imposing
a conception). These are aspects of Whewell’s philosophy of induction
that Butts has drawn to our attention (Butts 1976). I think the issue of
inferences to universality Forster confronts in this passage require him
to deal with these more problematic aspects of Whewell’s thought.

5. NATURAL KIND REASONING

I think Newton’s generalizations by induction, and his applications of
Rule 3, are examples of Natural Kind inferences such as the inference
from a value of the specific gravity of one or a few samples of a given
alloy of metal to the same specific gravity for others. Such inferences
abound in science. We measure the charge of one or a very few
electrons and are quite sure all other electrons have the same charge.
They are cases where we generalize even when there are no significant
masses of data points on which to use means, least squares and other
statistical techniques to support the inference. I have argued (1986) that
such super-inductive inferences are legitimate when made relative to a
natural kind conception that specifies which features are essential to the
kind in question. Thus, we can infer specific gravity but not shapes for
samples of an alloy.

If we accept a conception into the role of specifying a feature o
which allows such super-inductive inferences for a kind x then we have
to accept the enabling conditional,

If any x has o then every x has g,
as certain; or we will not be able to infer anything more than probable
universality. So it is, I think, that when Newton tried to use Rule 3 to
establish that gravity applied universally to all bodies and that it
universally varied directly with inertial mass and inversely with square
of distance, he could not avoid making these features essential to a
natural kind conception for bodies, without giving up his inference to
universality.

I also think that it is a part of our regular practice in science to re-
gard these essential properties, on which we base such inferences to
universality, as necessary. Kripke and Putnam are surely correct in
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their explication or how we reason about identities and natural kind
terms. Therefore, if I am correct about the fact that we do make natural
kind inferences and thus treat some conceptions as explicating natural
kind essences, it follows that (contrary to the view of most empiricists)
science does seriously involve modalities.

These scientific natural kind conceptions I have been talking about
do not have some features Newton worried about when he resisted
calling gravity essential to bodies. He was worried making gravity
essential would preclude any further investigation into its causes. In
particular he wanted to keep open the possibility of a mechanical
explanation of gravity; nevertheless he was sure that gravity really
existed and operated by the universal laws he had discovered. I think
Newton’s discussion in De Gravatatione (Hall, A. R. and Hall, H. B,
1962, pp. 89—156) where we can generate true and universal mathe-
matical laws of motion phenomena without any metaphysical account
of their ultimate nature can be regarded (in part) as an argument for
introducing mathematical natural kind conceptions of just the scientific
sort I am talking about. We don’t stop making natural kind inferences
with respect to charge on an electron when we explore deeper explana-
tions of their nature. That their nature has such and such features
essentially does not preclude further investigation in which we search
for an explanation of these features.

Secondly, as I have indicated, scientific natural kind conceptions are
subject to overthrow when an alternative conception becomes available
which is developed enough to count as a serious rival. The status these
natural kind conceptions enjoy when they are accepted is at most only
- contextually apriori. They are regarded as absolutely certain and,
perhaps, even immune to any merely empirical refutation, but they are
not incorrigible. Once a serious rival becomes available these concep-
tions lose their invulnerability and are open to refutation by being
tested against the rival.!®

There is a great deal of similarity here with Whewell’s program. Not
just any colligations count as natural kind conceptions, but those
colligations Whewell characterizes as theories of causes do.

Inductive truths are of two kinds, Laws of Phenomena, and Theories of Causes. It is
necessary to begin every science with the Laws of Phenomena; but it is impossible that
we should be satisfied to stop short of a Theory of Causes (Aphorism XXIV).

On Forster’s common cause interpretation we begin to have a theory of
causes when we can unify by identifying magnitudes so that several
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lower level colligations can be regarded as measurements of the same
thing. On the view I am advocating these measurements do not count as
causal explanations unless the equivalences grounding them are based
on a natural kind conception. We do not treat them as really causal
until they are based on conceptions we are prepared to universally
generalize upon. This is why there is a point to Whewell’s distinction
between causal theories and laws of phenomena,

We have seen the close connection between Newton’s use of his
third rule and the respectable scientific practice of making natural kind
inferences. Newton’s other rules also make good sense in the context of
natural kind reasoning (Harper 1983, 1986). The first two rules
function to endorse a policy to introduce unifying conceptions wher-
ever possible, while the 4th rule expresses the resilience of an accepted
kind conception. It can be corrected by phenomena, but it will not be
undercut by mere hypotheses. Until an alternative conception is
developed enough to rival capacity of the original theory to illuminate
the phenomena it colligates that alternative hypothesis should not be
allowed to undercut the theory.!¢

What makes an alternative count as a serious rival, rather than as a
mere hypothesis to be ignored? When we think of the role of a natural
kind conception as that of making intelligible the phenomena in its
range by providing causal explanations, the answer is obvious. A rival
has to be a plausible candidate for developing into a theory that will
provide alternative explanations for enough of these phenomena to
count as a better account of the causal powers underlying them. This is
why the Brahean hypothesis became a non-starter once Newton’s
dynamical explanation of Kepler’s phenomena became available. Any
hypothesis to restore it would have to come up with a rival treatment of
Newton’s dynamical explanation of motions including, for example, the
force of the sun to move the tides.

What makes unification and simplicity contribute to security is that
each identification of coefficients as measurements of a common cause
adds a new range of phenomena that must be explained by any rival
conception that would replace the conception grounding the causal
explanation. Each supposition that is deduced from a phenomenon in
the old theory must be maintained as true or approximately true, or the
phenomenon must be challenged, or the background assumptions of the
equivalence theorems must be undercut. Moreover, if the rival theory is
to explain such a phenomenon it must provide for new equivalence
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theorems which are more defensible than the old ones and which allow
the relevant coefficients of its alternative causal supposition to be
measured by that phenomenon. Thus it is, that as the network of
deductions from phenomena supporting a theory becomes more exten-
sive and more closely knit the theory becomes more secure.

Forster’s recommendation that each move to identify magnitudes as
measurements of the same common cause be first backed up by
consilience established by independent measurements may be a more
restrictively bottom-up requirement than we want to impose on theory
building. His moderate “common-cause” realism, which counts as real
only those causes which have been measured by more than one effect,
may also be less generous than we would like. Nevertheless, his positive
view — that unifications which are supported by successful over-deter-
mination of a common cause by independent measurements provide
powerful evidence in favor of a theory — accurately represents both
common sense reasoning and scientific practice.

We can agree with Forster that this common sensical as well as
scientific practice of attributing evidential force to independent mea-
surements of a common cause is a reasonable one. We have seen that
new (successful) independent measurements add new phenomena for
which a rival must account. Indeed, we have seen that such new
measurements can increase support, even though the theory being
supported may be regarded as already certain. The increased support
adds to security by legitimately stiffening resistance to revision.!”

NOTES

! 1 say “it would seém to be unavoidable” rather than that “it would be unavoidable”
because it is not clear that conceiving the new theory would not lead to a new prior
probability function (perhaps by actually modifying the relevant algebra of propositions
over which degrees of belief are defined) that would legitimately make the new theoret-
ical commitments more secure (even more probable) than the old ones were. Some
such proposal was suggested by L. J. Cohen in his insightful comment (1967) on Mary
Hesse’s (1967) interesting attempt to explicate Whewellian consilience within the
framework of confirmation theory.
2 Brahe actually used this point.to argue against the Copernican hypothesis. His
measurements were good enough to detect stellar parallax greater than 1° of arc. This
implied that if the Copernican hypothesis were correct the fixed stars would have to be
much farther away than any of what were regarded as reasonable estimates of this
distance (van Helden, 1985, p. 51).

There was also a problem about the implications for the sizes of the stars. It was
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generally agreed that the apparent diameter of a third magnitude star was about 1’ so
that the Copernican hypothesis implied that even third magnitude stars would be at
least as large as the earth’s orbit with major stars cgmf)arably larger (van Helden 1985,
p. 51). Galileo helped defend the Copernican hypothesis against this latter implication
by pointing out that the stars’ apparent diameters are much smaller when the sparkling
rays surrounding them are removed by observation through a telescope or in twilight
(van Helden 1985, pp. 66—67).

Stellar parallax was. not actually observed until Bessell detected a shift of Alpha
Centauri against more distant stars in 1838 (Hansen 1973, p. 20) long after the
Newtonian revolution had settled the issue in favour of Kepler rather than Brahe.

3 We can specify an approximation under which the Keplerian account follows from
Newton’s and the Brahean account is ruled out by Newton’s. Newton applied an
hypothesis that the centre of the system is at rest. Kepler’s centre (the sun) is much
more nearly unaccelerated than Brahe’s centre (the earth).

4 Other closely related ideas are Skyrms’ (1980) concept of resilience, ideas about
relative importance of information used by Gardenfors (1984, 1988) and by Spohn
(1988), and concepts: of robustness which have been appealed to by Rosenkrantz
(1977), Wimsatt (1981)and Glymour (1988).

> Kepler's Astronomia Nova: Tradita Commentariis de motibus Stellae Martis,
Heidelberg 1609 gives his own account of this struggle. N. R. Hanson (1973) Constella-
tions and Conjectures (pp. 253—282) and C. R. Wilson “How Did Kepler Discover His
First Two Laws?”, Scientific American 226 (1972) pp. 92—106 are two quite acces-
sible and illuminating accounts. The most impressive and helpful account I found was in
B. Stephenson (1987, pp. 39—49).

¢ Howard Stein suggested to me that this is somewhat oversimplified since the so-
called “secular inequities” don’t average out, but rather accumulate.

7 Forster makes this point a cornerstone of his cogent answer to skeptical arguments
by Cartwright (1983) and Ellis (1965) about the existence of component forces.

8 There is a discrepancy between Whewell’s text and table of contents. In the text
(NOR, pp. 83—85) he includes article 9 which is entitled. “Hypotheses may be useful
though inaccurate” in Sect. III, while his table of contents (NOR, pp. XV) located this
article in Sect. I on the use of Hypotheses.

I am leaving aside Kepler’s work on the inclination of Mars® orbit to the ecliptic
(Wilson'1972, pp. 94—95; Small 1894, pp. 145—184; Stephenson 1987, pp. 21—39).

10 Stephenson (1987, pp. 1—4 and especially pp. 21—49) makes a compelling case
that Kepler was motivated throughout his work on Mars (and indeed in all his work) by
an attempt to give an account that would fit with plausible reasoning about physical
causes of the motions. His discussion makes it clear that there is much more going on in
Kepler’s move from the vicarious theory through various stages to eventually settle on
the elliptical orbit than can be accounted for by simply noting the availability to him, in
Brahe’s data, of greatly improved information about relative distances.

! Herbert Simon’s group have developed computer programs for discovery of quanti-
tative empirical laws [The Bacon Programs (Langley et al. 1987, pp. 65—170)] that will
generate Kepler’s third law from the data. There is, perhaps, a significant difference
between Kepler’s war on mars, where causal reasoning led eventually to successful
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colligation of the elliptical orbit (as well as the law of areas) and the more purely
computational search for higher order symmetries that led to the third law,

12 Here I am disagreeing with R. Laymon’s (1983) suggestion that it was Newton’s
regular practice to count as phenomena idealizations that were beyond reasonable error
limits on the measurements available. I think Laymon has failed to distinguished
between those empirical generalizations Newton explicitly cited as phenomena and the
special mathematical idealizations appealed to in proofs of theorems, in what I. B.
Cohen (1980, pp. 52—153) has called “Newton’s mathematical style”.

My investigations suggest that Newton devoted some effort to, and on the whole did
quite well at, keeping the idealizations he explicitly cited as phenomena within
reasonable limits of error on the measurements available to him. For example, when we
analyse the data in the table corresponding to the evidence for the Harmonic Law of
Jupiter’s moons, we find that the distances calculated from the periodic times differ
from the means of the cited astronomical measurements by respectively 0.74, 1.1, 1.28,
and 1.02 standard deviations. Newton goes on to give additional values for these
distances calculated from Pound’s measurements (Cajori, p. 402). If these are added in,
the differences from the new means are respectively 0.324, 0.471, 0.525 and 0.372
standard deviations.

'3 Though I shall not take them up here, Mary Hesse’s interesting discussions (e.g.
1967, 1974) of the role of analogical reasoning in consilience illuminate important
aspects of this more free wheeling character of Newton’s practice of theory construc-
tion.

'4 Howard Stein pointed out to me that Huygens and Leibniz (major defenders of
vortical theories) accepted Newton’s deductions of centripetal forces from phenomena,
and did not take issue with Newton’s argument for Propostition V. This suggests that
Whewell’s objection is even less cogent than I have allowed. Indeed, much work by
vortical theorists following the publication of Principia can be regarded as an attempt
to make vortical theory recover more or less similar versions of Newton’s own deduc-
tions from phenomena.

15 According to Quine’s (1970) compelling picture, science is a piecemeal process of
introducing and improving theories to replace prescientific natural kind conceptions
based on innate ideas of similarity. Quine (pp. 21, 22) sees explicit scientific theories as
rendering the modal associations of the old natural kind conceptions redundant. I see
our scientific theories as taking on the modal features of prescientific natural kind
conceptions as they take over their role in making ranges of phenomena intelligible. I
think natural kind reasoning is unavoidable. We cannot get outside the process Quine
describes. I do not think Cartesian doubt is an epistemic stance that any of us can
actually take. What we can do is to try to improve our natural kind conceptions. This, I
suggest, is just what science is doing for us.

16 When we consider the failure of the vortical hypothesis to support equivalences that
could seriously rival those Newton provided we can see that this is not as Van Fraassen
(1985, p. 265—266) would have it, an excessively conservative principle. Nor is it, as
he would also have it (van Fraassen 1985, pp. 265—266), limited in its descriptive
application to the superceded scientific practices of an earlier age. As I see it, this rule
and the others are reasonable policies for introducing and revising scientific theories
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construed as natural kind conceptions. The history of science and its developing
situation today reveal that these policies have been and continue to be a regular part of
our scientific practice.

'7 The same point can be made probabilistically if we agree with Brian Skyrms (1979)
that science aims at not just high probability but a resiliently high probability. The
resiliency of an hypothesis # is defined relative to a set of conditions c;, each of which
is consistent both with % and with not-A.

Res (k) =Min {P (k/c;): all the £’s}.

Let the ¢;’s be various possible data to be added by future observations to those already
colligated by two or more phenomena which have been successfully unified by an
hypothesis 4, which takes each of the phenomena as independent measurements of the
same common cause (say the mass of the Sun). Let /; be an hypothesis about
coeffiencts of one of these phenomena separately (say the ratio R3/T? for Jupiter’s
orbit in some appropriate units). Let ¢; be some bad data for the hypothesis /; (say new
observations which would put R %/ T? far away from the previously colligated value). If
our conditional probabilities are sensitive to reasonable statistical estimates of fit in
relevant data sets then

Pl(h/-/c,') < Pz(hu/cf)’

where P, is the original prior and P, is the new epistemic probability after the unifica-
tion, since the relevant data base for &, includes all the data supporting 4; together with
all the data supporting the other phenomena that have been successfully unified as
independent measurement of /,. Moreover, it sould be clear that some such worst case
for h; will be worse for it than any worst case for 4, just because the set of data
supporting 7, is so much larger.
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