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Abstract

A large body of work has demonstrated the utility
of the Bayesian framework for capturing inference
in both specialist and everyday contexts. However,
the central tool of the framework, conditionaliza-
tion via Bayes’ rule, does not apply directly to a
common type of learning: the acquisition of con-
ditional information. How should an agent change
her beliefs on learning that “If A, then C”? This
issue, which is central to both reasoning and argu-
mentation, has recently prompted considerable re-
search interest. In this paper, we critique a promi-
nent proposal and provide a new, alternative, an-
SWeT.

Keywords: Indicative conditional reasoning; be-
lief change; probability

Introduction

An agent entertains the propositions A and C with
a prior probability distribution P defined over the
corresponding propositional variables. An impor-
tant question, both theoretically and practically, is
how the agent should change P once she learns the
natural language indicative conditional “If A, C”
(Collins, Krzyzanowska, Hartmann, Wheeler, &
Hahn, 2020). Following a proposal by Eva, Hart-
mann, and Rafiee Rad (2020), learning “If A, C”
imposes the probabilistic constraint Q(C|A) = 1
on the new probability distribution Q. See also
Eva and Hartmann (2018). The full new probabil-
ity distribution is then found by minimizing an ap-
propriate distance measure (such as the Kullback-
Leibler divergence) between Q and P, taking the
constraint into account. This procedure yields in-
tuitively plausible results for test cases such as
Douven’s ski trip example discussed below.

It is natural to generalize this proposed pro-
cedure to the learning of non-strict conditionals.
Such situations occur if the agent factors in the
partial reliability of the information source or if
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she takes disabling conditions into account. In
such situations the constraint is Q(C|A) = p’ < 1.
Eva et al. (2020) argue that this procedure yields
plausible results for key test cases in the literature.

Here, we scrutinize the generalized procedure,
showing that it has normatively unacceptable con-
sequences. As a remedy, we propose a rather min-
imal modification of the procedure: increasing the
probability of the conjunction of A and C instead
of the conditional probability. We show that min-
imizing the Kullback-Leibler divergence between
QO and P, taking that new constraint into account,
leads to intuitive, normatively plausible, conse-
quences.

The Standard Approach

We introduce binary propositional variables A and
C (in italic script) which have the values A and
—=A, and C and —C (in roman script), respectively.
These beliefs are represented by a probability dis-
tribution P which can be parameterized by the
prior probability

P(A)=a (1
with a € (0, 1) and the conditional probabilities
P(ClA)=p , P(CI7A)=q

with p,q € (0,1). The following proposition sum-
marizes our findings about the new probability dis-
tribution Q after learning a natural language in-
dicative conditional.!

Proposition 1 An agent considers the proposi-
tions A and C with a prior probability distribu-
tion P defined in eqs. (1) and (2). Learning the

'Here and below we use the convenient shorthand
notation P(A,C) for P(AAC).



conditional “If A, C” then imposes the constraint
Q(C|A) = p’ (with p < p' < 1) on the new prob-
ability distribution Q. Minimizing the Kullback-
Leibler divergence between Q and P then im-
plies the following claims: (i) Q(A) < P(A),
(ii) Q(C) > P(C), (iii) O(A,C) > P(A,C), and
(iv) Q(A|C) > P(A|C).

These qualitative results seem plausible.
Item (i) is perhaps most controversial, but it
can be justified by observing that learning a
conditional makes its antecedent more informa-
tive. But more informative propositions have a
lower probability, and so the probability of the
antecedent should decrease.

We now consider the behavior of Q(A), Q(C)
and Q(A,C) as p' increases from p to 1. To do so,
we parameterize? p' = A+ p-A with A € (0,1) and
plot the three quantities as a function of A. Fig. 1
shows that Q(A) decreases strictly monotonically
as p’ increases. This is plausible as there is no
reason why Q(A) should have an extreme value.
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Figure 1: Q(A) (blue), Q(C) (orange) and Q(A,C)
(green) as a function of A fora = .4,p=.6,q = .2.

Interestingly, this is exactly what happens for
QO(C) and Q(A,C)-a behavior which is not nor-
matively plausible. Once the strength of the condi-
tional (as measured by the parameter p’) increases,
one would expect the impact of learning the con-
ditional on the two respective probabilities to be
a strictly monotonic function of p’. But it is not
if one uses the present procedure. Here is a more
complex test case from the literature:

The Ski Trip Example. Harry sees his friend
Sue buying a ski outfit. This surprises him a

2Here and below we use the convenient shorthand
notation x := 1 —x.
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Figure 2: The Bayesian network for the ski trip
example
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bit, because he did not know that she had any
plans to go on a ski trip. He knows that she re-
cently had an important exam and thinks it un-
likely that she passed it. Then he meets Tom, his
best friend and also a friend of Sue’s, who is just
on his way to Sue to hear whether she passed
the exam, and who tells him: “If Sue passed
the exam, her father will take her on a ski vaca-
tion.” Recalling his earlier observation, Harry
now comes to find it more likely that Sue passed
the exam. So in this example upon learning
the conditional information Harry should intu-
itively increase the probability of the antecedent
of the conditional. (Douven & Dietz, 2011)

Eva et al. (2020) analyze this example as fol-
lows. First, they introduce the variables E (“Sue
passed the exam”), S (“Sue’s father invites her for
a ski trip”) and B (“‘Sue buys a new ski outfit”).
Second, they assume that B and E are probabilisti-
cally independent given S (see Fig. 2). Third, they
fix the prior probability of E, i.e.

P(E)=e (3)

with e € (0,1) and the conditional probabilities
PS[E)=p1 |
PBIS)=p>

P(S|=E) = a1
P(B|=S) = ¢

“4)

with p1, p2,q1,92 € (0,1). Fourth, they note that
the agent does not only learn a conditional, but
also that Sue bought a new ski outfit. If one con-
ditionalizes on these two pieces of information
(representing the conditional E — S as the mate-
rial conditional —E V S), then one obtains P*(E) =
e/(e+e-ly) with the likelihood ratio Iy := (g1 p2 +
g192)/(p1 p2). Hence, P*(E) > P(E) iff Iy < 1.
Eva et al. (2020) then show that this condition is
fulfilled given the information provided in the de-
scription of the example. The authors also show
that one obtains exactly the same result if one min-
imizes the Kullback-Leibler divergence with the



constraints Q(B) = 1 and Q(S|E) = 1. The follow-
ing proposition shows what happens if one relaxes
the second constraint.

Proposition 2 An agent considers the proposi-
tions B,E and S with a prior probability distribu-
tion P defined in eqs. (3) and (4). Fig. 2 rep-
resents the assumed conditional independencies.
Learning the information mentioned in the exam-
ple then imposes the constraints C1: Q(B) =1
and Cy : Q(S|E) = A+ P(S|E) - A (with A € (0,1))
on the new probability distribution Q. Minimizing
the Kullback-Leibler divergence between Q and P
then implies that Q(E) has a maximum in the open
interval (0,1) as a function of P(S|E).

To illustrate Proposition 2 we plot Q(E) as a
function of A which measures the increase of the
conditional probability from P(S|E) (for A = 0) to
1 (forA=1).
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Figure 3: Q(E) as a function of A for e = .3, p; =
4, pp=.8, go0 =.2 and q; = .1 (blue), g1 = .2

(orange) and g1 = .3 (green).

Fig. 3 clearly show that Q(E) has a maximum.
That is, after a certain value of A, Q(E) decreases.
It is even possible that Q(E) becomes smaller than
P(E) as A (and therefore p)) increases. This chal-
lenges our normative intuitions, suggesting a re-
jection of the present approach. As we would
like to keep the spirit of the distance-minimization
approach, we propose to replace the conditional
probability constraint by a normatively more ap-
pealing alternative.

Before presenting our new proposal, we would
like to note another interesting feature exhibited
in Fig. 3: For small values of A it is possible that
Q(E) < P(E). In this case, the learned information
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disconfirms E. This, however, is plausible as for
small values of A the contribution of learning the
other item of information (i.e. the proposition B)
dominates and we know already (see Proposition
1) that learning only this information decreases
the probability of E. But once the conditional be-
comes sufficiently strong (i.e. once A is above a
certain threshold), learning the conditional domi-
nates the learning of B and Q(E) > P(E).

A New Proposal

We have seen that the standard approach, which
assumes that learning a conditional prompts the
agent to increase the corresponding conditional
probability, leads to normatively implausible re-
sults. Alternatively, we propose that the agent in-
creases the probability of the conjunction of the
antecedent and the consequent instead. The fol-
lowing proposition states what this entails.

Proposition 3 An agent considers the proposi-
tions A and C with a prior probability distribu-
tion P defined in eqs. (1) and (2). Learning the
conditional “If A,C” then imposes the constraint
O(A,C) = o+ P(A,C)-a (with o € (0,1)) on
the new probability distribution Q. Minimizing
the Kullback-Leibler divergence between Q and
P then implies the following claims: (i) Q(A) >
P(A). (ii) Q(CIA) > P(C|A), (iii) Q(C) > P(C),
and (iv) Q(A),Q(C|A) and Q(C) are increasing
functions of Q.

This is an interesting result. We first note that
the increase of the probability of the conjunction
of A and C (i.e. @ p’ > ap) implies an increase
of the probability of the antecedent (i.e. @ > a)
and an increase of the conditional probability of
the consequent, given the antecedent (i.e. p’ > p).
This could, of course, be different. It would have
been possible that one of the two factors increases
strongly, while the other one decreases, but not
so much, making sure that the product increases.
Next, it is interesting to see that the probability
of the antecedent increases in the same propor-
tion as the probability of the conjunction of A and
C increases. That is, as a result of learning the
conditional “If A, C”, the probability of the an-
tecedent does not decrease as for the constraint
O(CJA) =1, but it increases.



This is intuitively plausible as the conditional
informs us about the relation between A and C
which has something to do with the joint occur-
rence of A and C. Hence, after the conditional is
stated, we expect A to be more likely to occur than
if the conditional would not have been stated. Note
also that the new probability of the antecedent only
depends on the prior probability of the antecedent
(and of course on ), but not on the prior condi-
tional probabilities p and g. Finally we note that p’
increases with a (for fixed a and p) and decreases
with a (for fixed o and p). p’ does not depend on
q. The following proposition presents the results
for the ski trip example on our new proposal.

Proposition 4 An agent considers the proposi-
tions B,E and S with a prior probability distribu-
tion P defined in eqs. (3) and (4). Fig. 2 rep-
resents the assumed conditional independencies.
Learning the information mentioned in the exam-
ple then imposes the constraints C1: Q(B) = 1
and C} : Q(E,S) =a+P(E,S)-o (witho € (0,1))
on the new probability distribution Q. Minimizing
the Kullback-Leibler divergence between Q and P
then implies the following claims: (i) Q(E) > P(E)
Sor a. > o, (specified in the proof). If P(E) =0
and Q(B|—=S) =~ 0, then o, ~ P(E)P(—S|E) ~
0, (ii) O(SE) > P(S[E) if P(BIS) > P(B|-S),
(iii) Q(E) and Q(S|E) are increasing functions
of o, and (iv) Q(S|—-E) > P(S|-E) iff P(B|S) >
P(B|-S).

It is interesting to compare these results to
the results of the standard approach presented in
Proposition 2. The standard approach assumes
that learning a conditional can be modeled by in-
creasing the conditional probability of the conse-
quent given the antecedent. Then the new proba-
bility of E, i.e. Q(E) first increases and then, as
the conditional probability (measured by the pa-
rameter A in Fig. 3) increases, decreases. This is
counter-intuitive if one takes the conditional prob-
ability as a measure of the “strength” of the corre-
sponding conditional. However, if one follows the
new proposal, one finds that Q(E) strictly mono-
tonically increases as a function of the “strength”
of the conditional (i.e. the respective probability
of the conjunction of the antecedence and the con-
sequent measured by the parameter o). One also
finds that Q(E) > P(E) once o passes a certain
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threshold .. This is plausible as for small val-
ues of a the contribution of learning the other item
of information (i.e. the proposition B) dominates
and we can argue as above. Once the conditional
becomes sufficiently strong (i.e. once o > 0O.),
learning the conditional dominates the learning of
B and Q(E) > P(E). To get a sense of the numer-
ical value of the threshold in the ski trip example,
we make two observations: (i) P(E) & 0 because
Harry “thinks it is unlikely that [Sue] passed the
exam”. (ii) Q(B|—S) & 0 because the story does
not mention any reason for Harry to expect Sue to
buy a skiing outfit if she is not invited on a skiing
trip. Hence, Proposition 4 informs us that o, ~ 0.
For larger values of P(E) and Q(B|—S), o, is cor-
respondingly larger.

Discussion

We have provided a new normative proposal for
belief change in response to a conditional. It re-
mains for the discussion to relate this proposal to
concerns in the wider literature. One such concern
is that the natural-language conditional is direc-
tional. Our constraint, however, is symmetrical.
This issue is part of the wider concern about “cen-
tering” as commonly understood in the psychol-
ogy of reasoning: the claim that the inference from
conjunction to conditional is valid (Cruz, Barat-
gin, Oaksford, & Over, 2015).

First, while this claim is clearly true for the ma-
terial conditional, it is not at all clear that it is true
for the indicative conditional of natural language.
Not only is it clear that the material conditional
is not an adequate formalization of the indicative
conditional, there is also a growing body of ex-
perimental evidence suggesting that the indicative
conditional involves some “connection” between
antecedent and consequent (e.g., Krzyzanowska,
Wenmackers, and Douven (2013); Mirabile and
Douven (2020)), though it remains a topic of de-
bate whether this connection is properly construed
as semantic or pragmatic). On such an account
of the indicative conditional, inference from con-
junction to conditional is no more valid than the
erroneous inference from correlation to causation
against which students of even the most introduc-
tory statistics class are warned: from the fact that
cigarette packaging and lung cancer co-occur it
does not follow that cigarette packaging causes



lung cancer. Indeed, even where conjunctions
have probability 1, so-called “missing link™ con-
ditionals such as if roses are plants, roses have
thorns are infelicitous (Krzyzanowska, Collins, &
Hahn, 2017).

Crucially, the account presented in this pa-
per does not fall prey to warranting such infer-
ence. The relationship detailed is between the
conjunction and the conditional probability. This
relationship is indeed inferentially symmetric in
that increasing one will increase the other (ce-
teris paribus). However, this is distinct from what
constitutes the semantics/pragmatics of the natural
language conditional. Some accounts equate the
indicative conditional with the conditional proba-
bility (Evans, Handley, & Over, 2003; Stalnaker,
1970), but those accounts need not be, and, in our
view, likely are not empirically adequate for the
reasons just outlined. On any account where there
is “more” to the semantics or pragmatics of the in-
dicative conditional than the conditional probabil-
ity, it will simply not follow that raising the prob-
ability of the conjunction raises that of the con-
ditional. Indeed, there may be no such quantity
as the probability of the conditional, because the
conditional does not constitute a proposition in the
first place (Adams, 1975).

As a result, the constraint posited in this paper
is not symmetrical, and thus does not fall prey to
familiar problems of asymmetry known from the
literature on explanation (Salmon, 1992). Our ac-
count is largely neutral on the details of the se-
mantics of the conditional itself and assumes only
that the indicative conditional imposes a proba-
bilistic constraints.This must not be confused with
the idea that this is what the conditional means.

Proofs

We begin with three preliminary remarks. First,
the Kullback-Leibler divergence between Q and P
is given by

)
P(S;)

Second, following Eva et al. (2020), we define

DL (Q||P) :

0(Si)log

n
i=1

P g
P, =¥ log)i +x long.
X x
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Note that @, > 0 for x’ # x and that d®,/dx’ =0
implies that x' = x. Third, readers unfamiliar with
the use of Bayesian networks in rationality re-
search are referred to Hartmann (2020) for a con-
cise introduction.

Proof of Proposition 1

Proposition 4 in Eva et al. (2020) implies that ¢’ =
gandd =a/(a+a-1) withl = (p'/p)” (?/ﬁ)p/.
Consider Q(A) first: I > 1 is equivalent to @, >0
which holds for p’ > p. Hence, Q(A) < P(A).
Second, we show that Q(A,C) =d'p’ > ap =
P(A,C). To do so, we first note that the previ-
ous inequality is equivalent to p'/p—1 > a(l —
1). It therefore suffices to show that p'/p > I
which follows from simple algebraic manipula-
tions. Third, Q(C) =d' p'+d' q>ap-+aq=P(C)
follows from @’ p’ > a p and the fact that a’ < a im-
plies that @ > @. Fourth, we consider Q(A|C) =
ap/dp+dq). Withd =a/(a+a-1) we find
that Q(A|C) = ap'/(ap’ +alq). Hence, defining
A:= Q(A|C) — P(A|C), we obtain

ap ap
ap'+adalq ap+idq

aaq-(p'—pl)
(ap'+alq)(ap+agq)’

A

from which we conclude that Q(A|C) > P(A|C)
iff p’/p > I, which holds as shown above. |

Proof of Proposition 2

We first note that the constraint Cy implies that
ph = g5 = 1. The Kullback-Leibler divergence is
then given by

KL=®,+¢ @) +e D, —

(¢' Py +¢ ) - log pr — (¢l +¢ d;) log .
Next, we differentiate KL with respect to ¢} and
set the resulting expression equal to zero. This

yields
o q1 P2
91

g
Analogously, we obtain ¢’ = ¢/(e+el) with

T
ATAYN
u v



and u := p1p2, v:=Ppiqz and w := q1 p2 +q1 q2.
We can now show that / always has a minimum in
(0,1) as a function of p}. (Hence, ¢’ always has
a maximum in (0, 1) as a function of p).) To do
so, we note that log!/ is a strictly monotonically
increasing function of /. Hence, / and log!/ have
the same extrema provided that [/ does not vanish
at the extremal points. (As [ > 0, this does not
happen.) We therefore differentiate log! by p|,

/
log g +u—v,
piu

and set the resulting expression equal to zero. This
yields

dlogl
o

o u exp(v)
=y exp(v) +vexp(u)

Note that p € (0,1) as u,v € (0,1). Hence, p| is
an extremum point. The extremum is a minimum
as 0°logl/op =1/(p} p}) > 0. |

Proof of Proposition 3

We have to minimize L = KL+ u(a’' p') with
KL=®,+d ®,+d P,

and a Lagrange multiplier u. To do so, we first
differentiate L with respect to ¢’ and set the result-
ing expression equal to zero. This yields ¢’ = g.
Analogously for ¢’ and p/, yielding

d = a(p+ﬁx)
a(p+px)+ax

and p' = p/(p + px) with x := exp(u). To deter-
mine x (and therewith u), we insert the expressions
for p’ and o' into the constraint @’ p’ = ot +apda.
This yields

_apa

~ a+apd’
Inserting this expression into the expressions for
a' and p’ and yields

/

a = o+ad
; _ Otapa
P atan

With this, we can show the claims made in the
proposition. (i) &' = a+a@=a+aa > a. (i) We
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note that
; _ OQtapa
a-+ad

po+po+apd

a+ad

Do

a+ad
(iii) We first set ¢ := P(C) =ap+agq and ¢’ :=
Q(C) =d p'+d q. Next, inserting the expressions
for @’ and p’, we obtain ¢’ = o+ c®. Hence, ¢’ >
c. (iv) We compute dda’ /oo, = a@ > 0, dp’/da. =
ap/(a+ad@)? >0,and ' /da=c>0. ||

P+ > p.

Proof of Proposition 4
We have to minimize L = KL+ u(¢’ p}) with
KL=®,+ D, + P, —
(¢ py+¢qi) logps — (¢ pl +€' ) log gy
and a Lagrange multiplier u. L takes the con-

straints Cy and C), into account. More explicitly,
C, is given by

®)

Differentiating L with respect to ¢} and setting the
resulting expression equal to zero yields

q/ _ q1 p2
Y aptaie

Note that ¢} > g1 iff p» > q1 p> +G1 q2 iff p2 > ¢o.
This completes the proof of claim (iv).

To determine ¢ and p}, we proceed analo-
gously. Setting u := p1p2, v:=p1q2 and w :=
q1 p2 +q1 g2 (as in Proposition 2), we obtain

¢pl=a+0ep;.

, e(u+vx)
e = —_—mm
eu+(evt+ew)x
;o u
= u-+vx’

with x := exp(u). Inserting these expressions into
eq. (5) and solving for x yields
eud 1—ep;
xX= . .
evt+ew O+epid

With this, we can calculate ¢’ and p|:

S = evtew(o+ep Q)
B ev+ew
J (ev+ew)(a+ep @)
1

evtew(a+ep @)



We use these expressions to proof the remaining
claims. First, we note that
e[(l—epr)wa—epiqi(p2—q2)]

—e= — .
ev+ew

/
e

Hence, ¢’ > e iff o > o, with

__epiq1(p2—q2)
< (I—ep))w
Note that if g, ~ 0, then w =~ ¢ p, and therefore
o ~ epi/(1 —ep;). If also e ~ 0 holds, then
we obtain 0, =~ epj. This completes the proof of
claim (i).
Second, we note that

_eepipiqi(p2—qp) +A0
evt+ew(a+ep @)

/

P1—Pp1

with
A=(l—ep;)(ev+epiw)>0.

Hence, p| > p; if p» > ¢». This completes the
proof of claim (ii).
Third and finally, we calculate

de’ ew

% _ (- 0

oo ev+ew (1=ep1)>

ap evievt+ew) - (1—epy) 50
do (evtew(atep @)

This completes the proof of claim (iii).
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