Mathematics and Statistics in the Social Sciences
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Over the years, mathematics and statistics have become increasingly important in the
social sciences'. A look at history quickly confirms this claim. At the beginning of the
20th century most theories in the social sciences were formulated in qualitative terms
while quantitative methods did not play a substantial role in their formulation and
establishment. Moreover, many practitioners considered mathematical methods to be
inappropriate and simply unsuited to foster our understanding of the social domain.
Notably, the famous Methodenstreit also concerned the role of mathematics in the
social sciences. Here, mathematics was considered to be the method of the natural
sciences from which the social sciences had to be separated during the period of
maturation of these disciplines.

All this changed by the end of the century. By then, mathematical, and especially
statistical, methods were standardly used, and their value in the social sciences
became relatively uncontested. The use of mathematical and statistical methods is
now ubiquitous: Almost all social sciences rely on statistical methods to analyze data
and form hypotheses, and almost all of them use (to a greater or lesser extent) a range
of mathematical methods to help us understand the social world.

Additional indication for the increasing importance of mathematical and statistical
methods in the social sciences is the formation of new subdisciplines, and the
establishment of specialized journals and societies. Indeed, subdisciplines such as
Mathematical Psychology and Mathematical Sociology emerged, and corresponding
journals such as The Journal of Mathematical Psychology (since 1964), The Journal
of Mathematical Sociology (since 1976), Mathematical Social Sciences (since 1980)
as well as the online journals Journal of Artificial Societies and Social Simulation
(since 1998) and Mathematical Anthropology and Cultural Theory (since 2000) were
established. What is more, societies such as the Society for Mathematical Psychology
(since 1976) and the Mathematical Sociology Section of the American Sociological
Association (since 1996) were founded. Similar developments can be observed in
other countries.

The mathematization of economics set in somewhat earlier (Vazquez 1995,
Weintraub 2002). However, the use of mathematical methods in economics started
booming only in the second half of the last century (Debreu 1991). Contemporary
economics is dominated by the mathematical approach, although a certain style of
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doing economics became more and more under attack in the last decade or so. Recent
developments in behavioral economics and experimental economics can also be
understood as a reaction against the dominance (and limitations) of an overly
mathematical approach to economics. There are similar debates in other social
sciences. It is, however, important to stress that problems of one method (such as
axiomatization or the use of set theory) can hardly be taken as a sign of bankruptcy of
mathematical methods in the social sciences tout court.

This chapter surveys mathematical and statistical methods used in the social sciences
and discusses some of the philosophical questions they raise. It is divided into two
parts. Sections 1 and 2 are devoted to mathematical methods, and Sections 3 to 7 to
statistical methods. As several other chapters in this handbook provide detailed
accounts of various mathematical methods, our remarks about the latter will be rather
short and general. Statistical methods, on the other hand, will be discussed in-depth.

1. A Plurality of Mathematical Methods

Social scientists use a wide variety of mathematical methods.” Given the space
constraints of the present chapter, it is impossible to list them all, give examples,
examine their domain of applicability, and discuss their methodological problems.
Instead, we broadly distinguish between three different kinds of methods: (1) methods
imported from the formal sciences, (i1) methods imported from the natural sciences,
and (ii1) social scientific methods sui generis. We review them in turn.

Methods imported from the formal sciences include (linear) algebra, calculus
(including differential equations), the axiomatic method, logic and set theory,
probability theory (including Markov chains), linear programming, topology, graph
theory, and complexity theory. All these methods have important applications in the
social sciences.” The axiomatic method nicely illustrates what one can call the
mathematician's approach to the social sciences. Here, a set of general principles is
formulated, which enable the study of the formal aspects of the system under
investigation. The tradition of proving impossibility theorems in social choice theory
is a good example for this approach.

In recent years, we have seen the importation of various methods from computer
science into the social sciences. There is also a strong trend within computer science
to address problems from the social sciences. An example is the recent establishment
of the new interdisciplinary field computational social choice which is dominated by
computer scientists.” Interestingly, much work in computational social choice uses
analytical and logical methods. There is, however, also a strong trend in the social
sciences to use powerful numerical and simulation methods to explore complex and
(typically) dynamical social phenomena. The reason for this is, of course, the

? Throughout this chapter, we use the word ‘method’ in a rather broad sense, including specific
methods such as the axiomatic method as well as more specific tools like utility theory. The latter is a
method in the sense that it is used to address certain questions that arise in the social sciences.
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availability of high-powered computers. But not all social scientists follow this trend.
Especially many economists are reluctant to employ simulation methods and do not
consider them appropriate tools for the study of economic systems.’

Methods imported from the natural sciences are becoming increasingly popular in
the social sciences. These methods are more specific than the formal methods
mentioned above. They involve substantial assumptions that happen — or so it is
claimed — to be fulfilled in the social domain. These methods comprise tools for the
study of multi-agent systems, the theory of complex systems, non-linear dynamics,
methods developed in synergetics (Weidlich 2006) and, more recently, in
econophysics (Mantegna and Stanley 1999). The applicability of these methods
follows from the ‘observation’ that societies are nothing but many-body systems (like
a gas is a many-body system composed of molecules) that exhibit certain features
such as the emergence of ordering phenomena. Hence, these features can be
accounted for in terms of a statistical description, just like the behavior of gases and
other many-body systems which are studied in the natural sciences. Such methods are
also used in new interdisciplinary fields such as environmental economics.

Besides providing various methods for the study of social phenomena, the natural
sciences also inspired a certain way of addressing a problem. Meanwhile, model
building is considered to be the core activity in the social.’ The developed models
contain idealized assumptions, and their consequences are often obtained with the
help of simulations. Due to its striking simiplarity with physics, we call this approach
the physicist's approach to social science, and contrast it with the mathematician's
approach to social science, described above.

Finally, there are mathematical methods that emerged from problems in the social
sciences. These include powerful instruments such as decision theory’, utility theory,
game theory®, measurement theory (Krantz et al. 1971), social choice theory
(Gaertner 2006), and judgment aggregation (List and Puppe 2009). The latter were
invented by social scientists for social scientists, with a specific social-science
application in mind. They help addressing specific problems that arise in the context
of the social sciences that did not have an analogue in the natural sciences when they
were invented. Only later some of these theories also turned out to be useful in the
natural sciences or have been combined with insights from the natural sciences.
Evolutionary game theory is a case in point.” Other interesting examples include the
study of quantum games (Piotrowski and Sladkowski 2003) and the application of
decision theory in fundamental physics (Wallace 2010). Many of the methods that
emerged from problems in the social sciences are in line with the mathematician's
approach, although the physicist's approach is increasingly gaining ground.

> For a discussion of computer simulations in the social sciences, see Hegselmann et al. (1996). In this
context it is interesting to study the influence of the work done at the Santa Fe Institute on mainstream
economics. See e.g. Anderson et al (1988). See also Waldrop (1992).
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global theories, and their assessment”) of this handbook. For a general review of models in science, see
Frigg and Hartmann (2006).
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Interestingly, there are other methods that cannot be attached to one specific science.
Network theory is a case in point: As networks are studied in almost all sciences,
parallel developments took place, and much can be learned by exploring
achievements in other fields (Jackson 2008)."°

Having listed a large number of methods, the question arises which method is
appropriate for a certain problem. This question can only be answered on a case by
case basis, and it is part of the ingenuity of the scientist to pick the best method. But
let us stress the following: While some scientists ask themselves which problems they
can address with their favorite method, the starting point should always be a specific
problem. Once a problem is chosen, the scientist picks the best method that helps
solving it. To have some choice, it is important that scientists are acquainted with a
variety of different methods. Mathematics and related disciplines provide the scientist
with a toolbox (to use a popular metaphor) out of which they have to pick an
appropriate tool.

2. Why Mathematize the Social Sciences?

A historically important reason for the mathematization of the social sciences was that
mathematics is associated with precision and objectivity. These are (arguably) two
requirements any science should satisfy, and so the mathematization of the social
sciences was considered a crucial step for the transformation of the social sciences
into real science. Some such view has been defended by many authors. Luce and
Suppes (1968), for example, provide a similar argument for the importance of
theoretical axiomatization in the social sciences. Here, mathematics is used to
precisely formulate a theory. By doing so, the latter’s structure becomes transparent,
and the relationships that hold between the various variables can be clearly specified
or inferred. Above all, mathematics provides clarity, generality, and rigor.

There are many ways to represent a theory. For long, philosophers have championed
the syntactic view, requiring theories to be represented in first-order logic; or the
semantic view in its various forms, identifying a theory with the collection of its
models (Balzer et al 1987; Suppes 2000). While such reconstructions may be helpful
for devising a consistent version of a theory, it usually suffices for all practical
purposes to state a set of equations that constitute the mathematical part of the theory.

The pioneers of the mathematization in the social sciences also developed
measurement theory (Krantz et al. 1971), that takes as its starting point the idea that
science is crucially about measurement.'' Contrary to this tradition, it has been argued
that the subject matter of the social sciences does not require the level of precision
demanded by the natural sciences, and that the social sciences are, and should, rather

' See also ch. 18 (“Networks™) of this handbook.

"' This view can be traced back to Kelvin’s dictum ...when you can measure what you are speaking
about and can express it in numbers, you know something shut it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.” See
Merton et al (1984). It gave rise to much controversy in the philosophy of social science, reflecting
deeper issues in the philosophy of mind and metaphysics.



be inexact (cf. Hausman 1992). After all, what works in the natural sciences may well
not work in the social sciences.

While Sir Karl Popper, one of the towering figures in the methodology of social
science, did not promote the mathematization of the social sciences in the first place,
it is clear that it nevertheless plays an enormous role in his philosophy. Given his
focus on prediction and falsifiability (Hands 2008), it makes sense to prefer a theory
that is mathematized to a theory that is not. This is due to the fact that it is generally
much easier to obtain falsifiable conclusions from clearly stated propositions than
from vague and informal claims.

It is a mistake, however, to overestimate the role of mathematics in the social
sciences. At the end, mathematics provides the social scientist only with tools, and the
result of using these tools will crucially depend on explicit or implicit assumptions.
This is a variant of the well-known GIGO principle from computer science (“garbage
in, garbage out”). All assumptions are informally motivated. Formulating them in the
language of mathematics just helps putting them more precisely. Once the
assumptions are formulated mathematically, the machinery of mathematics helps to
draw inferences in an automated way. This holds for analytical calculations as well as
for numerical studies, including computer simulations (Frigg and Reiss 2010;
Hartmann 1996).

This brings us to another advantage of mathematical methods in the social sciences.
While non-formal theories often remain rather simplistic and highly idealized, formal
theories can be made increasingly complicated and realistic, reflecting the messiness
of our world. The mathematical machinery then helps to draw inferences which could
not be obtained without them (Humphreys 2004). Often, different assumptions of a
theory or model pull in opposite directions, and it is not clear which one will be
‘stronger’ in a specific situation. However, when implemented in a mathematical
model, it can be calculated what happens in which part of the parameter space. And so
the availability of powerful computers allows the systematic study of more realistic
models.

There is, however, also a danger associated with this apparent advantage. Given the
availability of powerful computers, scientists may be tempted to construct very
complex models. But while these models may do well in terms of empirical adequacy,
it is not so clear that they also provide understanding. This is often provided by rather
simple models (sometimes called ‘toy models’), i.e., models that pick only one crucial
aspect of a system and help us get a feel for its implications."

There are several other reasons for mathematization in the social sciences:

a. Theory Exploration. Once a theory is represented in mathematical terms, the
mathematical machinery can be employed to derive its qualitative and
quantitative consequences. This helps to better understand what the theory is
all about and what it entails about the world. The deductive consequences of
the theory (and additional assumptions that have to be made) can be divided
into retrodictions or predictions. For retrodictions, the question arises which

'2 For more doubts about some of the uses of simulations in the social sciences, see Humphreys (2004).
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additional assumptions have to be made to obtain a certain (already measured)
value of a variable.

b. Theory Testing. The predictions of a mathematically formulated theory can
then be used to test the theory by confronting its consequences with relevant
data. At the end, the theory will be confirmed or disconfirmed, or to put in
Popperian terms, ‘corroborated’ or ‘falsified’.

c. Heuristics. Once the mathematical structure of a theory is apparent, a look at
it may reveal analogies to other phenomena. This may inspire additional
investigations, and lead to a better understanding of the class of phenomena
under investigation. Also, a numerical study of a theory may suggest new
patterns that can be incorporated into the assumptions of another theory.

d. Explanation. While it is controversial what a scientific explanation is, it is
clear that — once the theory is mathematically formulated — a phenomenon can
be fitted into a larger theoretical framework (as the unification account
demands) or a causal story can be read off from it (Kitcher 1989; Strevens
2009; Woodward 2005).

This list suggests the existence of interesting parallels between the use of mathematics
in the natural and the social sciences. Indeed, mathematization has similar functions
in both kinds of sciences. There are further parallels: In both kinds of sciences, we
find a variety of methods ranging from the axiomatic method to the use of computer
simulations. Moreover, the models that are constructed range, in both kinds of
sciences, from toy models to models that fit large amounts of data (e.g., in
econometrics). The latter is achieved with the help of statistical methods, which we
will discuss in the following sections.

The similarities (and dissimilarities!) between the use of mathematics in the natural
and social sciences are in need of further philosophical exploration. We hope that
futures research will shed more light on these questions.

3. The Development of Statistical Reasoning

Statistical reasoning is nowadays a central method of the social sciences. First, it
is indispensable for evaluating experimental data, e.g., in behavioral economics
or experimental psychology. For instance, psychologists might want to find out
whether men act, in a certain situation, differently from women, or whether
there are causal relationships between violent video games and aggressive
behavior. Secondly, the social sciences heavily use statistical models as a
modeling tool for analyzing empirical data and predicting future events,
especially in econometrics and operational research, but recently also in the
mathematical branches of psychology, sociology, and the like. For example, time
series and regression models relate a number of input (potential predictor)
variables to output (predicted) variables. Sophisticated model comparison
procedures try to elicit the structure of the data-generating process, eliminate
some variables from the model, select a ‘best’ model and, finally, fit the
parameter values to the data.

Still, the conception of statistics as an inferential tool is quite young: Throughout
the 19th century, statistics was mainly used as a descriptive tool to summarize



data and fit models. While, in inferential statistics, the focus lies on testing
scientific hypotheses against each other, or quantifying evidence for or against a
certain hypothesis, descriptive statistics focuses on summarizing data and fitting
the parameters of a given model to a set of data. The most famous example is
maybe Gaufd' method of the least squares, a procedure to center a data set (xn, yn)
around a straight line. Other important descriptive statistics are contingency
tables, effect sizes, and tendency and dispersion measures.

Descriptive statistics were, however, "statistics without probability" (Morgan
1987), or as one might also say, statistics without uncertainty. In the late 19th
and early 20th century, science was believed to be concerned with certainty,
with the discovery of invariable, universal laws. This left no place for uncertain
reasoning. Recall that, at that time, stochastic theories in the natural sciences,
such as statistical mechanics, quantum physics, or laws of inheritance, were still
quite new, or not yet invented. Furthermore, there was a hope of reducing them
to more fundamental, deterministic regularities, e.g., to take the stochastic
nature of statistical mechanics as an expression of our imperfect knowledge,
uncertainty, and not as the fundamental regularities that govern the motion of
molecules. Thus, statistical modeling contradicted the nomothetic ideal
(Gigerenzer 1987), inspired by Newtonian and Laplacean physics, of establishing
universal laws. Therefore, statistics was considered a mere auxiliary, imperfect
device, a mere surrogate for proof by deduction or experiment. For instance, the
famous analysis of variance (ANOVA) obtained its justification in the nomothetic
view through its role in causal inference and elucidating causal laws.

Interestingly, these views were held even in the social sciences, although the
latter dealt with a reality that was usually too complex to isolate causal factors in
laboratory experiments. Controlling for external impacts and confounders poses
special problems to the social sciences, whose domain are not inanimate objects,
but humans. The search for deterministic, universal laws in the social sciences
might thus seem futile - and this is probably the received view today. Yet, in the
first half of the 20th century, many social scientists thought differently. Statistics
was needed to account for measurement errors and omitted causal influences in
a model. But it was thought to play a merely provisional role:

"statistical devices are to be valued according to their efficacy in enabling us to
lay bare the true relationship between the phenomena under consideration. An
ideal method would eliminate all of the disturbing factors." (Schultz 1928, 33)

Thus, the view of statistics was eliminativist: As soon as it has done the job and
elucidated the laws at which we aim, we can dismiss it. In other words, the
research project consisted in eliminating probabilistic elements, instead of
discovering statistical laws and regularities or modeling physical quantities as
probabilistic variables with a certain distribution. This methodological
presumption, taken from 19th century physics, continued to haunt social
sciences far into the first half of the 20th century. Economics, as the "physics of
social sciences", was particularly affected by that conception (Morgan 2002).



In total, there are three main reasons for inferential statistics’ recognition as a
central method of the social sciences:

1. The advances in mathematical probability, as summarized in the seminal
work of Kolmogorov (1933/56).

2. The inferential character of many scientific questions, e.g., about the
existence of a causal relationship between variables X and Y. There was a
need for techniques of data analysis that ended up with an inference or
decision, rather than with a description of a correlation.

3. The groundbreaking works by particular pioneer minds, such as
Tinbergen and Haavelmo in economics (Morgan 1987).

The following sections investigate the different ways in which inferential
statistics has been spelled out, with a focus on the most prominent school in
modern social science: Fisher's method of significance testing.

4. Significance Tests and Statistical Decision Rules

One of the great conceptual inventions of the founding fathers of inferential
statistics was the sampling distribution (e.g., Fisher 1935). In the traditional
approach (e.g., classical regression), there was no need for the concept of a
sample drawn from a larger population. Instead, the modeling process directly
linked the observed data to a probabilistic model. In the modern understanding,
the actual data are just a sample drawn out of a much larger, hypothetical
population about which we want to make an inference. The rationale for this
view consists in the idea that scientific results need to be replicable. Therefore,
we have to make an inference about the comprehensive population (or the data-
generating process, for that matter) instead of making an ‘in sample’-inference,
whose validity is restricted to the particular data we observed. This idea of a
sampling distribution proved crucial for what is known today as frequentist
statistics. That approach strongly relies on the idea of the sampling distribution,
outlined in the seminal works of Fisher (1925, 1935, 1956) and Neyman and
Pearson (1933, 1967), parting ways with the classical accounts of Bayes, Laplace,
Venn and others.

In frequentist statistics, there is a sharp division between approaches that focus
on inductive behavior, such as the Neyman-Pearson school, and those that focus
on inductive inference, such as Fisherian statistics. To elucidate the difference,
we will present both approaches in a nutshell. Neyman and Pearson (1933)
developed a behavioral framework for deciding between two competing
hypotheses. For instance, take the hypothesis Ho that a certain learning device
does not improve the students' performance, and compare it to the hypothesis
H1 that there is such an effect. The outcome of the test is interpreted as a
judgment on the hypothesis, or the prescription to take a certain action
("accept/reject Ho"). They contrast two hypotheses Ho and H1 and develop
testing procedures such that the probability of erroneously rejecting Ho in favor
of H1 is bounded at a certain level a, and that the probability of erroneously
rejecting H1 in favor of Ho is, given that constraint, as low as possible. In other



words, Neyman and Pearson aim at maximizing the power of a test (i.e., the
chance of a correct decision for Hi) under the condition that the level of the test
(the chance of an incorrect decision for H1) is bounded at a real number . Thus,
they developed a more or less symmetric framework for making a decision
between competing hypotheses, with the aim of minimizing the chance of a
wrong decision.

While such testing procedures apply well to issues of quality control in industrial
manufacturing and the like, the famous biologist and statistician Ronald A. Fisher
(1935, 1956) argued that they are not suitable for the use in science. First, a
proper behaviorist, or decision-theoretic, approach has to determine costs for
faulty decisions (and Neyman-Pearson do this implicitly, by choosing the level a
of a test). This involves, however, reference to the purposes to which we want to
put our newly acquired knowledge. For Fisher, this is not compatible with the
idea of science as pursuit of truth. Statistical inference has to be "convincing to
all freely reasoning minds, entirely independent of any intentions that might be
furthered by utilizing the knowledge inferred" (Fisher 1956, 103).

Second, in science, a judgment on the truth of a hypothesis is usually not made
on the basis of a single experiment. Instead, we obtain some provisional result
which is refined through further analysis. By their behavioral rationale and by
making a ‘decision’ between two hypotheses, Neyman and Pearson insinuate that
the actual data justify a judgment on whether Ho or Hj is true. Such judgments
have, according to Fisher, to be suspended until further experiments confirm the
hypothesis, ideally using varying auxiliary assumptions and experimental
designs. Third, Neyman and Pearson test a statistical hypothesis against a
definite alternative. This leads to some seemingly paradoxical results. Take, for
instance, the example of a normal distribution with known variance 6% = 1 where
the hypothesis about the mean Ho: p = 0 is tested against the hypothesis Hi: p =
1. If the average of the observations centers, say, around -5, it appears that
neither Ho or Hi should be ‘accepted’. Nevertheless, the Neyman-Pearson
rationale contends that, in such a situation, we have to accept Ho because the
discrepancy to the actual data is less striking than with Hi. In such a situation,
when Hy offers a poor fit to the data, such a decision is arguably weird.

Summing up, Fisher disqualifies Neyman and Pearson's decision-theoretic
approach as a mathematical "reinterpretation” of his own significant tests, that is
utterly inappropriate for use in the sciences. In fact, he suspects that Neyman
and Pearson would not have come up with their approach, had they had "any
real familiarity with work in the natural sciences" (Fisher 1956, 76). Therefore,
he developed a methodology of his own which proved extremely influential in
the natural as well as the social sciences. His first two books, Statistical Methods
for Research Workers (1925) and The Design of Experiments (1935) quickly went
through many reprints and shaped the applications of statistics in the sciences
for decades. The core of his method is the test of a point null hypothesis, or
significance test. The objective here is to tell chance effects from real effects. To
this end, we check whether a null (default, chance) hypothesis is good enough to
fit the data. For instance, we want to test the effects of a new learning device on
students’ performance, and we start with the default assumption that the new
device yields no improvement. If that hypothesis is apparently incompatible with



the data (if the results are ‘significant’), we conclude that there is some effect in
the treatment. The core of the argument consists in Fisher's Disjunction:

"Either an exceptionally rare chance has occurred, or the theory [= the null
hypothesis] is not true."(Fisher 1956, 39)

In other words, the occurrence of a result that is very unlikely to be a product of
mere chance (students using the device scoring much better than the rest)
strongly speaks against the null hypothesis that there is no effect. Significant
findings under the null suggest that there is more than pure chance involved,
that there is some kind of systematic effect going on. As we will see below, this
disjunction should be regarded with great caution, and it has been the source of
many confusions and misunderstandings.
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Figure 1. Left figure: The null hypothesis Ho: N(0,1) (full line) is tested at the
5%-level against the alternative H1: N(1,1) (dashed line). Right figure: a
Fisherian significance test of Hp against an unspecified alternative. The shaded
areas represent the set of results where Hy is rejected in favor of Hy, respectively
where the results speak ‘significantly’ against Ho.

Figure 1 illustrates the difference between Neyman-Pearsonian and Fisherian
tests for the case of testing hypotheses on the mean value of a Normal
distribution. The probability

p(x) :=P (T >T(x) | Ho)

gives the significance level which the observed value x achieves under Ho, with
respect to a function T that measures distance from the null hypothesis Ho.. The
probability p(x) is also often called the p-value induced by x, and is supposed to
give a rough idea of the tenability of the null. The higher the discrepancy, the
more significant the results.

The rationale underlying Fisher's Disjunction displays a striking similarity to
Karl Popper's falsificationist philosophy of science: A hypothesis Ho, which
should be as precise and ambiguity-free as possible, is tested by checking its
observational implications. If our observations contradict Ho, we reject it and
replace it by another hypothesis. However, this understanding of falsificationism
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only applies to testing deterministic hypotheses. Observations are never
incompatible with probabilistic hypotheses, they are just very unlikely.
Therefore, Popper (1959, 191) expanded the falsificationist rationale by saying
that we regard a hypothesis Ho as false when the observed results are
improbable enough. This is exactly the rationale of Fisher's Disjunction. Notably,
Fisher formulated these ideas as early as Popper, and independently of him. The
methodological similarity between Popper and Fisher's views becomes even
more evident in the following quote:

"[...] it should be noted that the null hypothesis is never proved or established,
but is possibly disproved, in the course of experimentation. Every experiment
may be said to exist only in order to give the facts a chance of disproving the null
hypothesis." (Fisher 1935, 19)

This denial of positive confirmation of the null by non-significant results fits well
not only with Popper's view on confirmation and corroboration, but also with a
more modern textbook citation:

"Although a significant departure [from the null] provides some degree of
evidence against a null hypothesis, it is important to realize that a
‘nonsignificant’ departure does not provide positive evidence in favor of that
hypothesis. The situation is rather that we have failed to find strong evidence
against the null hypothesis." (Armitage and Berry 1987, 96)

Thus, the symmetry of the Neyman-Pearsonian approach is broken: While
Neyman-Pearson tests end up ‘accepting’ either hypothesis (and building action
on the basis of this decision), Fisherian significance tests understand a
significant result as strong evidence against the null hypothesis, an insignificant
result does not mean evidence for the null.

The attentive reader might have noticed that Fisher's Disjunction is actually
inconsistent with his own criticism of the Neyman-Pearson approach. Recall that
Fisher argued that significant outcomes do not deliver final verdicts on the
feasibility of the null hypothesis. Rather, they state provisional evidence against
the null. But how is this compatible with the idea of ‘disproving the null’ by
means of significance tests? To reconcile both positions, Fisher has to admit
some abuse of language:

"[...] if we use the term rejection for our attitude to such a [null] hypothesis, it
should be clearly understood that no irreversible decision has been taken; that
as rational beings, we are prepared to be convinced by future evidence that [...]
in fact a very remarkable and exceptional coincidence had taken place." (Fisher
1959, 35)

In light of these ambiguities, it does not surprise that Fisher's writings have been
the source of many misunderstandings, and that scientists sometimes use
fallacious practices or interpretations while believing that these practices have
been authorized by a great statistician. Before describing the problems of
significance tests, however, we would like to shed light on the contrast between
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frequentist statistics, which comprises Fisher's approach as well as the Neyman-
Pearson paradigm, and the rivaling school of Bayesian statistics.

5. Fisher versus Bayes

Bayesian inference is a school of statistics with great significance for some
theoretical branches of the social sciences, such as decision theory, game theory,
and the psychology of human reasoning. Since the principles of Bayesian
inference are explained in the chapter on decision theory, we restrict ourselves
to a brief outline of the basic idea. Bayesian statistics is, essentially, a theory of
belief revision: Prior beliefs on the credibility of a hypothesis H are represented
by mathematical probabilities, modified in the light of incoming evidence E and
transformed into posterior beliefs (represented by a conditional probability,
P(H|E)). The relevant formula that expresses how these beliefs are changed is
Bayes's Theorem:

P(H|E) = P(H) P(E[H) / P(E) = P(H) P(E[H) / [(P(E|H) P(H) + P(E|~ H) P(~H)]

=[1+((1-P(H))/P(H)) - (P(E|~H)/P(E[H))].

Thus, the sampling distributions of E under H and ~H are combined with the
prior probability of H in order to arrive at a comprehensive verdict on the
credibility of H in the light of evidence E.

Modern philosophers of statistics - but also scientists themselves - have
stressed the contrast between frequentist and Bayesian inference, depicting
them as mutually exclusive schools of statistics (Howson and Urbach 2006; Mayo
1996). The polemics which both Bayesians and frequentists use to mock their
respective opponents adds to the image of statistics as a deeply divided
discipline where two enemy camps are quarreling about the right foundations of
inductive inference. In particular, Bayesians have been eager to point out the
limitations and shortcomings of frequentist inference for scientific applications,
such as in the seminal paper of Edwards, Lindman and Savage (1963). Notably,
this influential methodological contribution appeared not in a statistics journal,
but in Psychological Review! On the other hand, frequentist criticisms of Bayesian
inference read equally harshly.

These heated debates do not do justice to the intentions of the founding fathers,
who were often more pragmatic than one might retrospectively be inclined to
think. Take the case of Ronald A. Fisher. Although Fisher is correctly perceived as
one of the founding fathers of frequentist inference, it is wrong to see him as an
anti-Bayesian. True, Fisher objects to the use of prior probabilities in scientific
inference. But it is important to see why and under which circumstances. In
principle, he says, there is nothing wrong with using Bayes' formula to revise
one's belief. It is just practically impossible to base a sound scientific judgment
on them. For how shall we defend a specific assignment of prior beliefs vis-a-vis
our fellow scientists if they are nothing more than psychological tendencies?
Most often, there is no knowledge available on which we could base specific
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prior beliefs (1935, 6-7; 1956, 17). That said, Fisher speaks very respectfully
about Bayes and his framework: Bayesian inference may be appropriate in
science if genuine prior knowledge is available (1935, 13), and he admits the
rationality of the subjective probability interpretation in spite of his own
inclination to view probabilities as relative frequencies.

It is therefore important to note that the debate between frequentist (here:
Fisherian) and Bayesian statistics is not in the first place a debate about the
principles of inductive inference in general, but a debate about which kind of
inference is more appropriate for the purposes of science. The following section
will cast some doubts on the appropriateness of pure, unaided significance
testing in the social sciences.

6. The Pitfalls of Significance Testing

The practice of significance tests has been dominating experiments in the social
sciences for more than half a century. Journal editors and referees ask for
significance tests and p-values (quantities describing the level of significance),
standardizing experimental reports in a wide variety of branches of science
(econometrics, experimental psychology, behavioral economics, etc.). Alternative
approaches, e.g., the application of Bayesian or likelihoodist statistics to the
evaluation of experiments, have little chance of being published.

These publication practices in the last decades are at odds with the existence of a
long methodological debate on significance testing in the social sciences (e.g.
Rozeboom 1960). In that debate, statisticians and social scientists - mostly
mathematically educated psychologists - have repeatedly criticized the misuse
of significance tests in the evaluation and interpretation of scientific
experiments. Before going into the details of that debate, we briefly list some
apparent advantages of significance testing.

a. Objectivity. Significance tests avoid the subjective probabilities of
Bayesian statistics. Thereby, the observed levels of significance seem to
be an objective standard for evaluating the experiment, e.g., for telling a
chance effect from a real one.

b. No Alternative Hypotheses. Significance tests are a means of testing a
single, exact hypothesis, without specifying a certain direction of
departure (i.e., an alternative hypothesis). Therefore, significance tests
detect more kinds of deviation from that hypothesis than Neyman-
Pearson tests do.

c. Replicability. Significance tests address the issue of replicability -
namely the significance level can be understood as the relative frequency
of observing a more extreme result if (i) the null hypothesis were true
and (ii) the trial were repeated very often.

d. Practicality. Significance tests are easy to implement, and significance
levels are easy to compute.
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However, it is not clear whether these advantages of significance tests are really
convincing. We discuss some objections.

Fisher's Disjunction revisited. The original example which Fisher used to
motivate his famous disjunction was the hypothesis that the stars are evenly
distributed in the sky, i.e., the chance that a star is in a particular area of the sky
is proportional to the size of that area. Thus, if there are a lot of stars next to a
particular star, such an event is unlikely to happen due to chance. Indeed,
clusters of stars are frequently observed. According to Fisher's Disjunction, we
may rule out the hypothesis of uniform distributions and conclude that stars
tend to cluster.

However, Hacking (1965, 81-82) has convincingly argued that such an
application of Fisher's Disjunction is fallacious. Under the hypothesis of uniform
distribution, every constellation of stars is extremely unlikely, and there are no
likely vs. unlikely chances, but only ‘exceptionally rare chances’. If Fisher's
Disjunction were correct, we would, independent of the outcome, always have to
reject the hypothesis of uniform distribution. This amounts to a reductio of
significance testing, since, clearly, hypotheses that postulate a uniform
distribution are testable, and they often occur in scientific practice.

To circumvent Hacking's objection, we might interpret Fisher's Disjunction in a
different way. For instance, we could read the “exceptionally rare chance' as a
chance that is exceptionally rare compared to other possible events, instead of “a
probability lower than a fixed value p'. Still, this does not help us in the present
problem, because the uniform distribution postulates that all star constellations
are equally likely or unlikely. Thus, the notion of a relatively rare chance ceases
to apply (Royall 1997, 65-68).

One might concede Hacking's objection for this special case and try to rescue
significance tests in general by introducing a parameter of interest, p. This is a
standard situation in statistical practice. For instance, let's take a coin flip model
which has ‘heads’ and ‘tails’ as possible outcomes, and where the parameter p
denotes the propensity of the coin to come up heads. Under the null hypothesis
Ho: u = 0.5, all sequences of heads and tails are equally likely, but still, it is
ostensibly meaningful to say that ' HHHHHTTTTT' or THTHTHTHTH' provides
less evidence against Ho than 'HHHHHHHHHH' does. The technical concept for
implementing this intuition consists in calculating the chance of a transformation
of the data that is a minimally sufficient statistic with respect to the parameter of
interest , such as the number of heads or tails. Then we get the desired result
that ten heads, but not five heads vs. five tails (in whatever order) constitute a
significant finding against Ho. Thus, there is no exceptionally rare chance as such
- any such chance is relative to the choice of a parameter that determines the
way in which the data are exceptional.

This line of reasoning fits well with the above example, but it introduces implicit
alternative hypotheses. When relativizing unexpectedness to a parameter of
interest, we are committing ourselves to a specific class of potential alternative
hypotheses - namely those hypotheses that correspond to the other parameter
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values. When applying Fisher's Disjunction, we do not judge the tenability of Ho
‘in general’, without recourse to a specific parameter of interest or a class of
alternatives. We always examine a certain way the data could deviate from the
null. Thus, we are not testing the probability model Ho as such, but a particular
aspect thereof, such as ‘'why that value of p rather than another one?'. The choice
of a parameter reveals a class of intended alternatives.13

This has some general morals: What makes an observation evidence against a
hypothesis is not its low probability under this hypothesis, but its low
probability compared to an alternative hypothesis. An improbable event is not
evidence against a hypothesis per se, but

"[...] what it does show is that if there is any alternative hypothesis which will
explain the occurrence of the sample with a more reasonable probability [...] you
will be very much more inclined to consider that the original hypothesis is not
true." (William S. Gosset (‘Student’) in private communication to Egon Pearson,
quoted in Royall 1997, 68.)

Thus, Fisher's Disjunction and the inference from relatively unlikely results to
substantial evidence is caught in a dilemma: Either we run into the
inconsistencies described above, or the choice of the test statistic reveals implicit
alternatives to which the hypothesis is compared. Then, the falsificationist
heuristics of Fisher's Disjunction has to be replaced by an account of contrastive
testing. Then, it is unclear to what extent the Fisherian framework of significance
testing can claim any advantage vis-a-vis Neyman and Pearson's tests of two
competing hypotheses.

The Base Rate Fallacy. Gigerenzer (1993) famously characterized the inner life
of a scientist who uses statistical methods by means of an analogy from
psychoanalysis: There is a Neyman-Pearsonian Super-Ego, a Fisherian Ego and a
Bayesian Id. The Neyman-Pearsonian Super-Ego preserves a couple of
unintuitive insights, e.g., that we cannot test a theory without specifying
alternatives, that significance tests only give us the probability of data given a
hypothesis instead of an assessment of the hypothesis' credibility. The Bayesian
Id is located at the other end of the spectrum, incorporating the researcher’s
desire for posterior probabilities of a hypothesis, as a measure of its tenability or
credibility. The Ego is caught in the conflict between these extremes, and acts as
the scientist's guide through reality. It adopts a Fisherian position where both
extremes are kept in balance: Significance test neither give behavioral
prescription, nor posterior probabilities. Rather, they yield "a rational and well-
defined measure of reluctance to the acceptance of the hypotheses they test"
(Fisher 1956, 44).

However, the Bayesian Id sometimes breaks through. As pointed out by Oakes
(1986) and Gigerenzer (1993), most active researchers in the social sciences -

13 There is no canonical class of alternatives: we could plausibly suspect that the coin has an in-built
mechanism that makes it come up with alternating results, and then, ' THTHTHTHTH' would not be an
insignificant finding, but speak to a high degree against the chance hypothesis.
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even those with statistical education - tend to interpret significance levels (e.g. p
= 0.01) as posterior probabilities of the null hypothesis, or at least as
overwhelming evidence against the null. Why is this inference wrong?

Assume we want to test a certain null hypothesis against a very implausible
alternative, e.g.,, that the person under test has a very rare disease. So, the null
denotes absence of the disease. Now, a highly sensitive test, that is right about
99.9% of the time, indicates presence of the disease, yielding a very low p-value.
Many people would now we tempted to conclude that the person probably has
the disease. But since that disease is rare, the posterior probability of the null
hypothesis can still be very large. In other words, evidence that speaks to a large
degree against the null is not sufficient to support a judgment against the null. It
would only do so if the null and the alternative were about equally likely at the
outset. Such a failure to recognize the dependency between the base rate of the
null hypothesis and the strength of the final evidential judgment is called the
base rate fallacy.

Although that fallacy is severe and widespread (and similar misinterpretations
of significance tests abound, see Gigerenzer 2008), those fallacies might speak
more against the practice of significance testing than against significance tests
themselves. In any case, they invite misinterpretations, especially because p-
values (significance levels) are hard to related to scientifically meaningful
conclusions.#

The Replicability Fallacy. This fallacy is more subtle than the base rate fallacy.
It does not interpret p-values as posterior probabilities, but understands a p-
value of, say, 0.05 as saying that if the experiment were repeated, a result that
was at least as significant as the present observations would occur at 95% of the
time. Thus, the outcome is believed to have implications for the recurrence of a
significant result and for the replicability of the present observations. And
replicability is, needless to say, one of the main quality brands of good
experiments.

In principle, there is nothing wrong with connecting replicability to significance
testing. But a crucial premise is left out — namely that the replication frequency
holds only under the assumption that the null hypothesis is true. Since the power
of many significance tests is low, implying that nonsignificant results often occur
when the null is actually false, the kind of replicability that significance tests
ensure is much more narrow than desired (Schmidt and Hunter 1997). A
solution to this problem that has gained more and more followers in the last
decades is to replace significance levels by confidence intervals that address the
issue of replicability regardless of whether the null hypothesis is actually true.

The Jeffrey-Lindley Paradox. This problem sheds light on the importance of
sample size in statistical testing, and applies to both Fisher's and Neyman and
Pearson's framework. For a large enough sample, a point null hypothesis can be

14 See Casella and Berger (1987) and Sellke and Berger (1987) for more detailed discussions of the
evidential value of p-values in different testing problems.
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rejected at a significant level, while the posterior probability of the null
approaches one (Lindley 1957). Take, for instance, a normal model N(0,1) where
we test the value of the mean, Ho: p = 0, against an alternative, Hi: p = 1. Since the
sampling distribution of the mean of n samples approaches N(0, 1/n), any slight
deviation of the mean from the null hypothesis will suffice to make the result
statistically significant. Even more, if we decide to sample on until we get
significant results against the null hypothesis, we will finally get them (Mayo and
Kruse 2001).

At the same time, the posterior of the null hypothesis also converges to 1 with
increasing n, as long as the divergence remains rather small. Thus, for large
samples, significance levels do not reliably indicate whether or not a certain
effect is present, and can grossly deviate from the hypothesis' posterior
credibility. Significance tests may tell us whether there is evidence against a
point null hypothesis, but they do not tell us whether that effect is large enough
to be of scientific interest.

Statistical versus Practical Significance. Typically, the null hypothesis denotes
an idealized hypothesis, such as "there is no difference between the effects of A
and B". In practice, no one believes such a hypothesis to be literally true. Rather,
everyone expects there to be differences, but perhaps just at a minute degree:
"The effects of A and B are always different — in some decimal place - for some A
and B. Thus asking "Are the effects different?' is foolish." (Tukey 1991, 100)

However, even experienced scientists often read tables in an article by looking
out for asterisks: One asterisk denotes "significant” findings (p < 0.05), two
asterisks denote "highly significant” (p < 0.01) findings. It is almost impossible to
resist the psychological drive to forget about the subtle differences between
statistical and scientific significance, and many writers exploit that fact:

"All psychologists know that statistically significant does not mean plain-English
significant, but if one reads the literature, one often discovers that a finding
reported in the Results sections studded with asterisks becomes in the
Discussion section highly significant or very highly significant, important, big!"
(Cohen 1994, 1001)

Instead, statistical significance should at best mean that evidence speaks against
our idealized hypothesis while we are still unable to give the direction of
departure or the size of the observed effect (Kirk 1996). This provisional
interpretation is in line with Fisher's own scepticism regarding the
interpretation of significance tests, and Keuzenkamp and Magnus' (1995)
observation that significance testing in econometrics rarely leads to the
dismissal of an economic theory, and its subsequent replacement.

Finally, under the assumption that null hypotheses are strictly spoken wrong, it
is noteworthy that significance tests bound the probability of erroneously

rejecting the null while putting no constraints on the probability of erroneously
accepting the null, i.e., the power of a test. Considerations of power, sample size
and effect size that are fundamental in Neyman and Pearson's approach fall out
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of the simplified Fisherian picture of significance testing. This is not to say that
these tests are worthless: For instance, in econometrics, a series of significance
tests can be very useful to detect whether a model of a certain process has been
misspecified. Significance tests look for directions in different departures
(autocorrelation, moving average, etc.), and significant results provide us with
reasons to believe that our model has been misspecified, and make us think
harder about the right form of the model that we want to use in future research
(Mayo and Spanos 2004; Spanos 1986).

In that spirit, it should be stressed once more that Fisher considered significance
tests to be a preliminary, exploratory form of statistical analysis that gives rise to
further investigation, not to final decisions on a hypothesis. But reading social
science journals, it is not always clear that the practicing researchers are aware
of the problem. The penultimate section briefly sketches how this problem was
addressed in the last decades.

7. Recent Trends

The criticisms of significance testing have led many authors to conclude that
significance tests do not help to address scientifically relevant questions. Using
them in spite of their inability to address the relevant questions only invites
misuse and confusion (Cohen 1994; Schmidt 1996). Since the problem and its
discussion was especially pronounced in experimental psychology, we focus on
the reactions in that field.

Recognizing that those criticisms were justified, the American Psychological
Association (APA) appointed a Task Force on Statistical Interference (TFSI)
whose task consisted in investigating controversial methodological issues in
inferential statistics, including significance testing and its alternatives (Harlow et
al. 1997; Thompson 1999a; Wilkinson et al. 1999). After long deliberation, the
Task Force gave with some recommendations that made the APA change their
publication guidelines, and affected major journals affiliated to the APA, such as
Psychological Review. The commission stated, for instance, that p-values do not
reflect the significance or magnitude of an observed effect, and "encouraged"
authors to provide information on effect size, either by means of directly
reporting an effect size measure (e.g., Pearson's correlation coefficient r or
Cohen's effect size measure d), or power and sample size of the test.

However, as predicted by Sedlmeier and Gigerenzer (1989), and observed by a
large body of empirical studies on research practice (e.g. Keselman et al. 1998),
the admonitions and encouragements of the APA publication manual proved to
be futile. First, psychologists were not trained at computing and working with
effect sizes. Second, "there is only one force that can effect a change, namely the
editors of the major journals" (Sedlmeier and Gigerenzer 1989, 315).
Encouragement was likely to be ignored when compared to the compulsory
requirements when submitting a manuscript and abiding by formatting
guidelines:
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“To present an “encouragement’ in the context of strict absolute [manuscript]
standards [...] is to send the message "these myriad requirements count, this
encouragement doesn't.” (Thompson 1999b, 162)

However, the extensive methodological debate finally seems to bear fruit. As
pointed out by Vacha-Haase et al. (2000), several editors changed their policy,
requiring the inclusion of effect size measures, where unwillingness to comply
with that guideline had to be justified in a special note. This development, though
far from overturning and eliminating all fallacious practices, shows that
sensitivity for the issue has increased, and raises hope for the future.

Also, Bayesian methods (and other approaches, such as Royall's (1997)
likelihoodism) gain increasing acceptance beyond purely technical journals. Such
inferential methods can now, to an increasing extent, also be found in major
psychology journals. Finally, there is an increasing amount of journals that
address a readership that is interested in mathematical and statistical modeling
in the social sciences, as well as in methodological foundations. Although the
presentation and interpretation of statistical findings in the social sciences is still
wanting, there is some reason for optimism: The problems have been discovered
and addressed, and we are now in the phase where a change towards a more
reliable methodology is about to be effectuated. As stated by Cohen (1994), this
change is slowed down by the conservativeness of many scientists, and their
desire for automated inferential mechanisms. But such ‘cooking recipes’ do, as
the drawbacks of significance tests teach us, not exist.

8. Summary

Let us conclude the present chapter. In this contribution, we have surveyed and
classified a variety of mathematical methods that are used in the social sciences.
We have argued that such techniques, in spite of several methodological
objections, can add extra value to social scientific research. Then, we have
focused on methodological issues in statistics, i.e., the part of mathematics that is
most frequently used in the social sciences, in particular in the design and
interpretation of experiments. We have represented the emergence of and
rationale behind the ubiquitous significance tests, and explained the pitfalls to
which many researches fall prey when using them. Finally, after comparing
significance testing to rivaling schools of statistical inference, we have discussed
recent trends in the methodology of the social sciences, argued that there is
reason for optimism, and that awareness of methodological problems, as well as
interest for mathematical and statistical techniques is growing.15
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