
Vol.:(0123456789)

Axiomathes (2019) 29:285–288
https://doi.org/10.1007/s10516-018-9393-3

1 3

ORIGINAL PAPER

A Note on Carnap’s Result and the Connectives

Tristan Haze1

Received: 16 March 2018 / Accepted: 28 July 2018 / Published online: 6 August 2018 
© Springer Nature B.V. 2018

Abstract
Carnap’s result about classical proof-theories not ruling out non-normal valuations 
of propositional logic formulae has seen renewed philosophical interest in recent 
years. In this note I contribute some considerations which may be helpful in its phil-
osophical assessment. I suggest a vantage point from which to see the way in which 
classical proof-theories do, at least to a considerable extent, encode the meanings 
of the connectives (not by determining a range of admissible valuations, but in their 
own way), and I demonstrate a kind of converse to Carnap’s result.
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1 Introduction

In recent years there has been a surge of interest in a previously under-discussed 
result of Carnap’s.1 This result, given in Carnap (1943), shows that adding certain 
non-normal valuations to the set of admissible valuations for propositional logic for-
mulae does not destroy proof-theoretic soundness and completeness. (Exactly what 
this comes to will be explained shortly.) Carnap’s result has been used to cast doubt 
on the popular and natural idea that the rules of inference of propositional logic 
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1 Since Raatikainen’s (2008) reminder of the result, Murzi and Hjortland (2009) have considered how 
‘intuitionists like Dummett and Prawitz’ (p. 480) could respond to this issue, arguing that it does not 
vitiate their programme. They have also raised but left open the issue of how ‘classical inferentialists’ 
(p. 480) might respond. Detailed technical work by Peregrin (2010) has explored ‘the power of various 
inferential frameworks as measured by that of explicitly semantic ones’ (Peregrin 2010, p. 255). See also 
Smith and Incurvati (2010), Hjortland (2014) and Bonnay and Westerståhl (2016).
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encode the meanings of the connectives, and on the idea that the meanings of the 
connectives can be ‘fully formalized’.2

In the present note I consider the result, not from the point of view of a propo-
nent or opponent of a philosophical programme, but from a relatively theory-neutral 
point of view. My aim here is to contribute some considerations which may be help-
ful in the philosophical assessment of Carnap’s result.

In Sect. 2, I present Carnap’s result. In Sect. 3, I introduce some considerations 
which show us in a clear light the considerable extent to which ordinary classical 
proof theories do encode the meanings of the connectives. In Sect. 4 I show how the 
simple machinery introduced in Sect. 3 enables us to demonstrate a kind of converse 
to Carnap’s result. I put this result forward because I find it striking and interesting, 
and because I have a hunch that it may serve as a corrective to confused or mistaken 
lines of thought about the philosophical significance of Carnap’s result.

2  Carnap’s Result

In the formal semantics of propositional logic, we assign values to atomic formu-
lae, and the truth-tables determine values for compounds. The resulting complete 
valuation can be thought of as a total function from formulae to {1, 0}—a mapping 
on which every formula is assigned exactly one value. Consider the set of all such 
total valuation functions V. Now, there are obviously other total valuation functions 
which do not conform to the truth-tables—for example, a function on which both 
some formula and its negation are sent to 1. Let us call such functions ‘non-normal’. 
We know by soundness and completeness that a formula will be a theorem—where 
theoremhood is defined proof-theoretically—iff it is assigned 1 by all functions in 
V (that is, all normal functions). What Carnap showed was that we can add cer-
tain non-normal functions to V without destroying soundness and completeness. The 
most straightforward example is the function t which assigns all formulae to 1. A 
formula F is a theorem iff it is assigned 1 by all functions in the set V ∪ {t}. This 
holds, because in the case where F is not a theorem, there will be some function in V 
∪ {t} which does not send F to 1, and in the case where F is a theorem, all functions 
in V ∪ {t} will send F to 1. In neither case does t get in the way.

3  Truth‑Tables, Proof‑Theories, and What We Can Infer on Their Basis

One way of looking at the question of the extent to which some proof-theory 
encodes the meanings of the connectives is to take it for granted that the truth-tables 
encode their meanings, namely by determining a range of admissible (or normal) 

2 For instance, Raatikainen’s gloss of the result is:
 It can be shown that no ordinary formalization of logic, and not the standard rules of inference (of the 
natural deduction) in particular, is sufficient to ‘fully formalize’ all the essential logical properties of 
logical constants. That is, they do not exclude the possibility of interpreting logical constants in any other 
than the ordinary way. (Raatikainen 2008, p. 283)
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valuations, and then ask about the extent to which the proof-theory in question man-
ages to determine the same range. I think it is fair to say that this has been the domi-
nant way of looking at the issue. Here I want to suggest a different perspective: let 
us consider what may be inferred on the basis of the truth-tables, and then consider, 
separately, what may be inferred on the basis of an ordinary classical proof-theory. 
This enables us to see a way in which ordinary classical proof-theories do encode 
the meanings of the connectives, at least to a considerable extent—not by determin-
ing a space of admissible valuations, but in their own way.

Given the statement that ~ p has the value 1, I can consult the truth-tables and 
infer that p does not have the value 1. And vice versa (i.e. given the statement that 
p does not have the value 1, I can consult the truth-tables and infer that ~ p has the 
value 1). From the statement that p and q has the value 1, I can infer that p has the 
value 1 and q has the value 1, and vice versa. And from the statement that p v q has 
the value 1, I can infer that p has the value 1 or q has the value 1, and vice versa. 
Now, a statement which just says, of some formula, that it has the value 1 is not a 
truth-functional compound. How, then, does it come about that the statement about 
~ p is interdeducible with that negative statement about p, that the statement about 
p and q is interdeducible with that conjunctive statement about p and q, and that the 
statement about p v q is interdeducible with that disjunctive statement about p and 
q? Obviously, this is due to the truth-tables and their content. This, I think, is a clear 
vantage point from which to see the way in which the truth-tables encode the mean-
ings of the connectives.

Call a set of PC formulae all of whose members are literals (atoms and negated 
atoms), and which does not have as members any negations of its other members, 
a start set. Given the statement that ~ p follows from a start set S, I can consult my 
chosen proof-theory and infer that p does not follow from S, and vice versa. From 
the statement that p and q follows from a start set S, I can infer that p follows from 
S and q follows from S, and vice versa. From the statement that p v q follows from 
a start set S, I can infer that p follows from S or q follows from S, and vice versa.3 
Now again, how do these interdeducibilities come about? Obviously, my chosen 
proof-theory is getting into the act here in a way analogous to the way the truth-
tables got into the act in the previous paragraph.

Here we have a vantage point from which to see the way in which ordinary clas-
sical proof-theories do, at least to a considerable extent, encode the meanings of 
the connectives. Granted, there is something funny going on with ‘~’ in the proof-
theory case, and we needed to introduce start sets. Whereas we might be happy to 
say that the truth-table for ‘~’ encodes its meaning, it seems wrong to say that our 
chosen proof-theory encodes the meaning of ‘~’ all by itself.

3 The working-out will be easiest in tree systems, followed by natural deduction systems (since they have 
separate rules for each connective). In an axiom system with few axioms the working-out will be possible 
in principle but often very involved.
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4  A Converse to Carnap’s Result

When we work with valuation-theory, or with proof-theory together with the appa-
ratus of start sets introduced above, we observe the following principles:

The Valuation-theoretic Duality Principle Every atomic formula is to get exactly 
one of two values (0 or 1). (Then via the truth-tables, for every formula A, one of A 
and ~ A will get the value 1, the other 0.)

The Proof-theoretic Duality Principle The start set S is to contain, for every atom, 
either that atom or its negation, but not both. (Then via our chosen proof-theory, for 
every formula A, either A or ~ A will be derivable from S, but not both.)

The non-normal valuation t which we added to V in the explanation of Carnap’s 
result breaches the Valuation-theoretic Duality Principle. This can be seen from two 
angles. One can say that the truth-tables, such as that for ‘~’, are contravened. Or, 
one can say that the truth-tables are still in effect, and so formulae will now have 
more than one value: by definition of t, for any formulae A and ~ A, both will have 
the value 1, but, via the table for ‘~’, both with thereby also get the value 0.

Now: consider the set AS of all start  sets, i.e. all sets populated in accordance 
with the Proof-theoretic Duality Principle. Obviously, a formula can be derived 
from all sets in AS iff it is a tautology (i.e. gets 1 on all normal valuations). Let us 
consider the set AS ∪ {N}, where N contains all formulae whatsoever. Our converse 
to Carnap’s result can now be stated: a formula A can be derived from all sets in AS 
∪ {N} iff A is a tautology. This holds, because if A is not a tautology, then there will 
be some member of AS (and thus of AS ∪ {N}) from which A cannot be derived. If 
it is a tautology, then of course it will be derivable from AS, and N does not get in 
the way, since everything is derivable from N.

Acknowledgements Thanks to N. J. J. Smith for encouragement when this result was obtained in the 
course of work conducted under his supervision in 2010.
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