9.

10.
11.
12.
13.
14.
15.

FORMAL BACKGROUND FOR THE
INCOMPLETENESS AND UNDEFINABILITY THEOREMS

RICHARD KIMBERLY HECK

CONTENTS

Languages
Basic Syntax
Induction on the Complexity of Expressions
More About the Language of Arithmetic
Theories
Languages and Theories
Derivation and Implication
Some Important Properties of Theories
Arithmetical Theories
Robinson Arithmetic is Weak
Robinson Arithmetic is Strong
w-Incompleteness
Peano Arithmetic and True Arithmetic
Comparing the Strength of Theories
Representability
Recursiveness and Representability in Q
Godel Numbering
Formal Theories
The Diagonal Lemma
Godel’s First Incompleteness Theorem
Undecidability
Godel’s Second Incompleteness Theorem
Tarski’s Theorem
Exercises

Appendix A. The Sequent Calculus
Example Deductions
References

Date: Version of August 13, 2022.

O OO UTU W -

The 1930s saw enormous advances in logic. One of the most important of
these came in 1931, when Kurt Godel proved his famous ‘incompleteness
theorems’. Not only did these results transform mathematical logic, but they
have had a significant influence on philosophy, and even on popular culture.
Unfortunately, however, much of the discussion of ‘Godel’s theorem” is
marred by a poor understanding of his results.

The only real way to acquire an understanding of Godel’s result is to
work one’s way through a proof of it. But it would, it seems to me, be
a shame if students who are, for whatever reason, unwilling or unable
to take a course on Godel’s theorem were, for that same reason, barred
from any real understanding of this important result. And one can acquire
such an understanding without wading through all the details that—as
conceptually interesting as they may be in their own right—throw no real
light on the incompleteness theorem itself. Hence this note, whose purpose
is to make it possible for those have a firm grasp of basic logic to acquire
a solid understanding of exactly what Godel proved and, at least roughly,
how he proved it.!

As will be familiar to insiders, the techniques needed for the proof of
Godel’s theorem also allow us to prove Tarski’s theorem on the indefinability
of truth. We’ll prove that here, too. A separate note discusses the positive
side of Tarski’s work on truth: his provision of a method that, applied to
any of a wide class of languages, yields a “materially adequate” theory of

truth for that language, the ‘object language’.”

1. LANGUAGES

1.1. Basic Syntax. Logic, as it is done in an introductory course, is generally
concerned with ‘schemata’, such as: Vx(Fx — Jy(Rxy)). Here, F and R
are ‘predicate letters’, whose interpretation varies from case to case. In
more advanced logic, we are often concerned instead with formulas whose
meaning we treat as more or less fixed, for example: Vx(0 < x — x < x +x).
And the set of formulas in which we are interested is often drawn from a
fixed ‘language’, whose ‘vocabulary” is determined in advance.

A language, in our technical sense, is just a collection of symbols. Any
collection of symbols may be regarded as a language, but we shall only
be interested here in so-called ‘first-order” languages. Such languages are
generated, in the obvious way, from the basic logical symbols—such as —,
Vv, 3,5 =, and the variables—plus as many ‘non-logical’ symbols as one

IWhat follows draws heavily upon the presentation by Boolos and Jeffrey (), which
is where I learned this stuff. See especially Ch. 15. More generally, my own understanding
of the ‘limitative theorems’ was heavily influenced by discussions with Boolos and by his
general logico-philosophical orientation.

25ee my “Tarski’s Theory of Truth”, available on my web site.

3Familiarly, exactly which symbols we include is to some extent a matter of choice and
convenience.

1

http://rkheck.frege.org/philosophy/teaching.php

likes. These may include constants, such as ‘0’, function symbols, such as
‘+" or ‘g’, and predicate symbols, such as ‘<’ or “F’, of various numbers
of arguments.* We assume that these languages have the usual syntax of
tirst-order logic, i.e., that formulas are built up from the primitives in the
usual way. And we regard languages as fixed—a language never gains or
loses vocabulary—and we identify a language with its stock of non-logical
expressions.’

One important language is the language of arithmetic, whose (basic) non-
logical symbols are the constant ‘0’, the one-place function symbol ’S’, a pair
of two-place function symbols, ‘4" and “x’, and a two-place relation symbol
‘<’ Another important language is the language of set theory, whose
only non-logical symbol is the two-place relation symbol ‘€”. So ‘0 + Sx” is
an (open) term of the language of arithmetic and ‘Vx3y(x = y + Sy)’ is a
sentence of that language. (A sentence is a formula with no free variables.)
On the other hand, neither ‘3z(+-x)" nor ‘Vx(Fx — Gx)’ is a sentence
of the language of arithmetic. The former is not well-formed and so it is
not a sentence of any (first-order) language. The latter is a sentence of
some languages, indeed, of any language that contains both ‘F’ and ‘G’ as
one place predicate-symbols. But it is not a sentence of the language of
arithmetic, which does not contain either.

Strictly speaking, as syntax is usually developed, much of the previous
paragraph is false. Strictly speaking, there are always supposed to be paren-
theses around the various terms and formulas that comprise a larger term
or formula in order to guarantee “‘unique readability’, i.e., to prevent am-
biguity. Thus, officially, we should write something like: ‘(Sy + y)’, rather
than: ‘Sy + v/, since the latter could also mean ‘S(y + y)’. In practice, when
nothing depends upon their visibility, we write parentheses with invisible
ink. But it is worth recalling, from time to time, that, strictly speaking, the
string ‘Vx3y(x = y + Sy)’ is not a sentence of the language of arithmetic,
though the string ‘Vx (Jy (x = (y + Sy)))’ is. That said, however, we shall
henceforth ignore about this point.”

4Sentence-letters are not often useful, but if one wants them, a sentence-letter may be
regarded as a zero-place predicate-letter. (Constants, for that matter, may be regarded as
0-place function-symbols.)

SAll of these restrictions can be relaxed. For example, one might regard some languages
as containing the means for defining new expressions.

The last is often omitted and instead treated as a defined symbol (i.e., an abbreviation),
but it is convenient, especially in the study of weak fragments of arithmetic, to take it as
primitive.

7One has some choice about where to put parentheses, and in some developments
other sorts of notation are used, e.g., so called ‘Polish notation’, which does not need
parentheses. Note, too, that, since the conventions that allow the invisibility of parentheses
define recursive functions between “strict’ and ‘sloppy’ formulae, we can, if we like, allow the
conventions to be part of the formal syntax, though this will make the syntax complicated.

2

It simplifies things considerably if one defines the language of arithmetic
in such a way that its ‘alphabet’ is finite, i.e., if every term, sentence, etc., is
constructed from some finite number of primitive symbols. Of course, the
logical symbols, and special arithmetical symbols, are finite in number, but
there are infinitely many variables. We can, however, construct our infinitely
many variables from a finite alphabet, as follows: x,x’, x”, etc.; a variable
is thus an “x” followed by a (possibly empty) string of prime-symbols. We
shall, however, frequently abbreviate ‘x"" as: y; ‘x”” as: z, and so forth, to
enhance readability. One also sees ‘x2’, e.g., used as an abbreviation for ‘x”’.

1.2. Induction on the Complexity of Expressions. Many of the proofs
we will give below are proofs about the syntactic features of languages.
And one of the most common methods used in such proofs is what is
known as induction on the complexity of expressions. This method is similar to
‘mathematical” induction. In arithmetic, one can show that every number
has a certain property P by showing that:

(i) OhasP

(i) If n has P, then n 4+ 1 must also have P

This works because every number is either zero or is the result of adding
one to zero some finite number of times. But similarly: Every term in the
language of arithmetic is either a basic term—either ‘0’ or a variable—or is
the result of applying certain syntactic operations to the basic terms some
finite number of times. So we can show that all terms have some property P
by showing that:

(i) ‘0" has P, and every variable has P

(ii) Whenever terms t and u have P, so do the terms "St7, "t +u, and
"txu'

Similarly, we can show that all formulae in the language of arithmetic have

some property P by showing that:

(i) Allatomic formulae (i.e., all formulae of the form "t = uand "t < u)
have P

(i) Whenever two formulae A and B have P, so do "—A™", TAV B,
"AANB,"A — B","JvATand "VvA'", for any variable 0.8

Indeed, any time one has a set whose elements are generated from some
‘basic’ elements by certain ‘operations’ on those elements,” one can always
show that all members of the set have some property P by showing (i) that all
the basic elements have P and (ii) that the constructing operations ‘preserve’
P,i.e.: If you have some things that have P and construct a new thing using
one of the operations, then you get something that also has P.

Note carefully: We are here talking about symbols and how to prove
things about them, not about numbers and how to prove things about them.

8Note that, if we include only ‘—’, “V’, and ‘3’ in the language, such proofs are greatly
simplified. That is one reason to do precisely that.
9Such structures can be regarded as ‘free algebras’.

3

Ordinary induction allows us to prove things about numbers; induction on
the complexity of expressions allows us to prove things about symbols. So
far as the latter technique is concerned, the symbols need not mean anything
at all, let alone mean something about numbers.

1.3. More About the Language of Arithmetic. The language of arithmetic
is an interpreted language: a language whose formulae and sentences mean
something. What they mean is determined by what is called the ‘standard
interpretation” of the language. The standard interpretation is an interpreta-
tion, in the usual sense: It has a domain, and it assigns values to constants,
functions to function symbols, and relations to relation symbols. In this case,
the interpretation in which we are interested is this one:

The domain is the set of all natural numbers
‘0" denotes zero

‘S’ denotes successor, i.e., plus one
‘+’ denotes addition

‘%’ denotes multiplication

‘<’ denotes the less-than relation

10

So we may now regard a given sentence, say, ‘Vx3Jy(x = y + y)’, as meaning
something, in this case that every number is the sum of some number and
itself (roughly, that every number is even).

Although the language of arithmetic has a standard interpretation, this
does not stop us from considering other interpretations, too. We need to do
so for the usual reason, e.g., to show that ‘Vy3x(y < x)’, though true in the
standard interpretation, is not logically valid.

Expressions like ‘SS0’—that is, strings of ‘S’s, followed by a ‘0’—are
called numerals."! Note that, in the standard interpretation, a string of n
‘S’s followed by ‘0" denotes the number n. (See Exercise 15.1.) Thus, ‘SS0’
denotes the number 2 in the standard interpretation, and so what ‘SS0 = S0’
says, as it were, is that 2 = 1. We write 7 to mean: the numeral that denotes
n, that is:

S...50
——

n

101f we want to use the standard reduction of functions to sets, then the extension of ‘S is
theset: {< x,y >:y = x +1}; thatof "+’ is: {< x,y,z >: x + y = z}; etc. But it is easier to
speak, as Frege does, in terms of functions. Similarly for relations.

More precisely, ‘canonical numerals’. It can sometimes be worth considering other kinds
of numerals, especially when discussing weak systems. For example ‘efficient numerals’ play
an important role in some areas. These are a kind of base-2 numeral. They are generated by
starting with ‘0" and then adding, at the each stage, both “S(SS0 x)" and “SS(SS0 x t)’, for
all the terms f created at the previous stage. Le., at the first stage, we get ‘S(5S0 x 0)’, which
is 1, and ‘SS(SS0 x 0)’, which is 2; at the next “S(SS0 x S(SS0 x 0))’, which is 3, “SS(550 x
5(550 x 0))’, which is 4, “S(SS0 x §5(SS0 x 0))’, which is 5, and “‘SS(550 x SS(5S0 x 0))’,
which is 6. So, at stage 7, one will generate 2" new numerals: those for 2”7 — 1 to ontl .
(What ways might there be to include something more like binary numerals?)

4

So we may now write things like "2 #£1", to mean: 5SSO # S0, i.e, that 2 is
not 1.

Note the use of the funny quotes, which are called corners and which are
strictly speaking necessary. Strictly speaking, ‘2 # 1’ is not a formula of the
language of arithmetic, for the simple reason that ‘2’ is not a symbol of the
language of arithmetic but is, rather, a name of such a symbol, namely, of
‘SSO’. (Strictly speaking, ‘#’ is not in the language of arithmetic either but is
an abbreviation. But let us not get too pedantic.) Corners are a solution to
this problem, introduced by the American logician and philosopher W. V. O.
Quine. Exactly how they work is not easily explained, but one does get the
hang of it fairly quickly.'> In much technical writing nowadays, the corners
are just written as ordinary quotes and context is left to distinguish them.

On occasion, quotes themselves are even written with invisible ink. We
may indulge in this practice ourselves from time to time. But we shall
try not to overdo it. Quotes are important because they are what let us
distinguish explicitly between using symbols—to talk about whatever the
symbols are names of—and mentioning symbols themselves—i.e., talking
about the symbols."® In some ways, this entire subject area is about that
difference: between use and mention.

2. THEORIES

2.1. Languages and Theories. In basic logic, we concern ourselves with
such questions as whether a certain schema is valid, or whether some
schemata imply some other schema. In more advanced logic, we are also
interested in such questions, but attention tends to be focused on certain
specific sets of schemata, and what they do or do not imply. Consider, for
example, these three sentences:

VaVyvz(x - (y-2) = () -2)
Vx(x-e=xAMNe-x=x)
Vxdy(x-y=eAy-x=ce)

The language here contains the constant symbol ‘e” and a two-place function
symbol ‘. These three formula together constitute the axioms of what
is known in abstract algebra as group theory, and we may regard them

12Well, it’s not all that hard to explain for this sort of case: An expression-in-corner-quotes
is a name of what you get by substituting, for any names of symbols that occur in it, what
those symbols are names of. The more complicated case is when ‘syntactic’ variables (ones
whose values are symbols) occur inside the corners. Then the expression-in-corner-quotes is
a kind of function symbol whose value is determined by replacing the syntactic variables
inside the corners with their values.

13Thus, we use ‘SS0” to talk about 2. We mention ‘SS0” when we want to talk about that
symbol, and we use “‘SS0"”—a left quote, followed by an ess, followed by another ess,
followed by a zero-symbol, followed by a right quote—to talk about “SS0” (an ess plus an ess
plus a zero-symbol).

5

as a formulation of the theory of groups. Then we can bring the tools for
formal logic to bear. It is easy to provide an interpretation in which all of
these axioms hold but in which, say, ‘VxVy(x -y = y - x)’ does not hold,
thus showing that the axioms of group theory do not imply that the group
operation - is commutative (i.e., not all groups are abelian).

We now generalize this idea.

Definition 2.1. A theory is a set of formulae of some fixed language, called
the language of the theory. A theory is stated in or formulated in its language.
The elements of a theory are called its axioms.

We shall typically use capital Greek letters, such as %, to range over theories.
Note that any set of formulae constitutes a theory, although some theories
will be more interesting than others.

Here are some more examples of theories.

(1) The set
{VxVy(Sx = Sy — x =y),—~3x(0 = Sx)}

is a theory stated in the language of arithmetic. It is also a theory
in the language {0, S}, where ‘0’ is a constant, and ‘S’ is a one-place
function-symbol. These are two different theories, since a theory is a
pair < X, £ > of a set of formulae and a language.

(2) The theory known as weak (or adjunctive) set theory is the set:

{IVy(y ¢ x),VuVodxVy(y e x =y cuVy =0)}

Its language is the language of set theory: {€}.

The empty set is always a theory, though we do need to specify, in each case,
what the language of the theory is.

2.2. Derivation and Implication. We assume here a notion of derivation
provided by ordinary* first-order logic. We say that A is derivable from the
set of formulae T if there is a formal derivation of A whose premises are all
in I'. Note that not all the sentences in I" need be used as premises—and of
course they cannot be if I' is infinite, which we want to allow.

Definition 2.2. A formula A is a theorem of the theory X if, and only if, A is
derivable from 2.

We write: £ F A, to mean that A is a theorem of X. This is often read as:
2 proves A.

One also sees such things as: A = B and X, A = B—meaning that B is
derivable from A, or from X together with A—where strictly we should
write: {A} F B, or: XU {A} F B. One also sees the notation: -5 B, meaning:

Y That s, classical first-order logic, based upon truth-tables and the like. There are other
sorts of first-order logics one can consider, such as intuitionistic logic (which, among other
things, gives up the law of excluded middle) and paraconsistent logics (which allow for the
possibility of true contradictions).

6

2 I B. This is more common when . is some important theory about which
we are proving a number of facts.

The notion of derivability is not the same as the notion of implication. Whether
a theory X implies a given formula A is a matter of whether A is true under
every interpretation that makes every formula in X true. Whether X proves
A is a matter of whether a formal derivation of a certain sort exists. The
completeness theorem for first-order logic (first proved by Godel, in 1929)
tells us that, in the case of (classical) first-order logic, it is possible to specify a
formal system (indeed, many formal systems) that have the property that
2 proves A (in that system) if, and only if, 2 implies A. But this is a deep
theorem about first-order logic, not a trivial fact of terminology. Its analogue
for other sorts of logics does not always hold."

As noted, X implies A if, and only if, A is true in every interpretation in
which all formulae in X are true. Interpretations in which all formulae in &
are true are thus of special interest. We call such an interpretation a model of
2. So X implies A if, and only if, A is true in every model of X. If there is
a model of X in which A is not true, then X does not imply A, so A is not
derivable from X (by the soundness theorem), so A is not a theorem of .
Such a model is called a counter-model for A.'®

All we need to know for present purposes is that there is a sound and
complete system of axioms and rules for first-order logic available for use in
derivations. To say that such a system is sound is to say that, if I' proves A,
then I' implies A. To say that it is complete is to say that the converse holds: If
I' implies A, then I" proves A. So, if a formal system is sound and complete,
then X implies A if, and only if, X proves A; this will hold for any system of
axioms and rules that is both sound and complete; and for any such system,
we can thus move freely back and forth between claims about derivability
and claims about implication. We will appeal to this fact frequently, without
explicit mention, and without bothering to say how exactly the logic is being
formalized. See Appendix A for one way of formalizing it, however.

3. SOME IMPORTANT PROPERTIES OF THEORIES

Definition 3.1. A theory X is consistent if for no formula A is "A A =A™
derivable from X. If X is not consistent, we say that it is inconsistent.

One might have thought we could state this definition instead as: ...iff
‘p A\ —p’ is derivable from X. But there is no guarantee that ‘p A —p” is in
the language of X. It is not, for example, in the language of arithmetic
(since “p” is not in that language). Note also that inconsistency, as it has

1510 particular, the completeness theorem fails for second-order logic (with the so-called
‘standard semantics’) and even for much weaker extensions of first-order logic, such as
ancestral logic.

16What we earlier called the ‘standard interpretation” of the language of arithmetic is
thus also known as the standard model of the sorts of arithmetical theories we shall consider
in Section 4.

7

been defined here (and as the notion is usually used in logic), is a syntactic
property (which has to do with derivability) not a semantic one (which has
to do with interpretations). We say that a theory is satisfiable if it has a model,
but the soundness and completeness of our logic guarantee that a theory is
consistent just in case it is satisfiable.

Proposition 3.2. ¥ is consistent if, and only if, there is a formula that is not
derivable from X.

Proof. This is Exercise 15.2. O
Proposition 3.3. X A iff X U {—A} is inconsistent.

Proof. Suppose £ I A. Then certainly XU {-A} - A. But XU {-A} - —A,
aswell. SoXU{-A} - AA-A.

Suppose, then, that ¥ U {—A} is inconsistent. Then 2 U {—=A} - B A =B,
for some B.Sox~ - A — BA—-B,soX - A. O

Since we have not said what formal system of deduction we are using,
the argument just given tacitly appeals several times to soundness and
completeness, and to some basic facts about implication. Exercise 15.3 asks
you to re-write the argument to make those appeals explicit. Note, however,
that, if we do specify a system of deduction, then Proposition 3.3 can be
proven purely syntactically. That is, we can show directly that, whenever
there is a derivation of A from ¥, that derivation can be ‘converted’ into a
proof of a contradiction from X U {—=A}, and conversely. See Exercise 15.4.

Definition 3.4. A theory X is said to be complete if, and only if, for every
sentence A (in the language of X)), either £ - A or X F —A. If ¥ is not
complete, then we say that it is incomplete.

If ¥ is incomplete, there is a sentence A such that neither A nor —A is
derivable from ¥ (and so there are infinitely many such sentences: A A A,
ANANA, etc).

Note that every inconsistent theory is complete, since both A and —A will
be derivable from it, for any sentence A. Inconsistent theories are boring,17
so let us mean by a complete theory a complete consistent theory. Note
also that the completeness of theories is a very different matter from the
completeness of a formal system of logic.'®

17Assumir1g, that is, that we are not working in a paraconsistent logic. In such logics,
contradictions do not imply everything and so Proposition 3.2 does not hold. In that setting,
we need to distinguish inconsistent theories, which prove some contradictions, from frivial
theories, which prove everything. Inconsistent theories need not be boring in such contexts,
though trivial theories are.

18Logic by itself—that is, the empty theory—certainly does not prove either A or —A,
for every sentence A, even in the most basic case where the language contains only logical
symbols. E.g., logic neither proves nor refutes ‘Ix3y(x # y)’.

8

Definition 3.5. A closed theory is one that is ‘closed under derivability’. That
is: 2 is closed iff every formula (in the language of X) that is deducible from
Y is already in X..

More formally: ¥ is closed iff, if & - A, then A € .7

Some authors use the term ‘theory” to mean what we are here calling a
‘closed” theory. So, on this usage, a ‘theory’ is a set of theorems of a theory
in our sense. For some purposes, it is sufficient to distinguish theories in
this way: by what they prove. But for our purposes, it is important to
individuate theories in a finer-grained way: in terms of their axioms.”

Note that closed theories need not be complete: The set of all logically
valid formulas of, say, the language of arithmetic is closed but not com-
plete. Nor need a complete theory be closed. To give a fairly trivial
example, it can be shown that the theory {VxVy(x = y)}, in the empty
language—sometimes called the theory of a one-element model—is com-
plete, but it is clearly not closed: The theory in question proves ‘VxVy(x =
y) ANVxVy(x = y)’, for example, but this is not an element (axiom) of the
theory.

4. ARITHMETICAL THEORIES

4.1. Robinson Arithmetic is Weak. We shall be especially interested here
in theories formulated in the language of arithmetic.
Robinson Arithmetic, or Q, is the theory with the following eight axioms:

Q1: Vx(Sx # 0)*!

Q2: VaVy(Sx = Sy — x = y)*?
Q3: Vx(x+0=x)

Q4: VaVy(x + Sy = S(x +y))*
Q5: Vx(x x 0=0)

Qé6: VaVy(x x Sy = (x x y) + x)**
Q7: Vx(x #0 — Jy(x = Sy)

19The converse is trivial, so, if X is closed, then X - A iff A € X.

20The terminology, of course, is not what matters here. It is what one takes to be the
fundamental notion. The fundamental notion for us is that of a theory, in our sense; the
notion of a theorem (and so of a closed theory) is less fundamental.

21I.e., x 41 # 0. Of course, it’s crucial here that we're talking about the natural numbers,
i.e., the non-negative integers.

2le,x+1 =y+1l—=x=y.

Ble, x+ (y+1) = (x+y)+ 1. Q3 and Q4 together are known as the recursion equations
for addition. As we’ll see in Proposition 4.2, they together suffice to determine the sums of
all pairs of natural numbers.

e, x x (y+1) = (x x y) +x. Q5 and Q6 together are known as the recursion equations
for multiplication. They together suffice to determine the products of all pairs of natural
numbers.

9

Qs8: x<y=3z(y =Sz +x)*
It can be shown that these axioms are independent, i.e., that none of them is
provable from the rest.

Note that all axioms of Q are true in the standard interpretation of the
language of arithmetic. Moreover, as its namesake, Raphael Robinson, noted,
Q is distinguished by the simplicity and clear mathematical content of its
axioms. It’s hard to imagine disputing Q, unless one wanted to dispute the
very coherence of arithmetical notions.

In some ways, Q is a very weak theory. There are all kinds of very
elementary facts about the natural numbers that Q does not prove. For
example:

Fact4.1. Q does not prove Vx(x # Sx).

We show this by constructing a counter-model for Vx(x # Sx), i.e., one in
which it is false, but in which the axioms of Q are true. To do that, we need
to say what the domain of the model is, and what the interpretations of ‘0,
‘S, '+’,"x’, and ‘<’ are. The details are provided below, for illustration, but
the reader who is familiar with this sort of construction can skip the proof.

Proof. Let the domain of the model consist of the natural numbers, IN,?® and
one additional element, say, Augustus Caesar, which we shall call A. The
expressions ‘0", ‘S’, ‘47, “x’, and ‘<’ are to behave as usual on the numerical
part of the model. So we just need to say how they behave when A is
involved.

The extension of ‘S’ is to be:

{<x,y>:(xeNAy=x+1)V(x=AANy=A)}

That is, roughly speaking, the successor of x is what it usually is if x € IN;
itis A if x is A. This will guarantee that Vx(x # Sx) is false in the model,
since ‘x # Sx’” will be false when ‘x” has A as value. Moreover, it is clear this
new interpretation makes axioms Q1 and Q2 true.

It is tempting to stop right there, but we cannot. We need to verify that all
the axioms of Q hold in our new interpretation. For note that ‘S” appears,
mixed with ‘+” and “x’, in several of the axioms: How do we know that
messing with the interpretation of ‘S’ in the way we just did is compatible
with specifying an interpretation for the other symbols that verifies the other
axioms of Q? Indeed, we have not even completed the definition of the
model, since we have not specified interpretations of ‘+’, “x’, and “<’. How

2>When ‘<’ is not included in the language, Q8 may be taken to define it as an abbrevia-
tion. Another option is instead to use x < y as an abbreviation for: 3z(y = z + x). Given
fairly weak assumptions, these are interchangable. (Does Q provex < yVx =y =x <y
when < and < are defined these ways? If not, what additional assumptions do we need for
that proof?)

261t can be shown that every model of Q will have to contain, at least as a part, a copy of
the natural numbers. (More strictly: Every model of Q contains a part that is isomorphic to
the standard model.)

10

S +| n A 3‘8 g 13
m|m-+1 m|m+n A mlo mxn A
A A A A A Alo0 A A

FIGURE 4.1. A Counter-Model for Vx(Sx # x)

do we even know that adding a new element to the domain is compatible
with the axioms governing these symbols?
The extension of ‘+ is to be:

{<x,y,z>:(x,yze NAx+y=2z)V((x=AVy=A)Az=A)}

Thatis: A+ x = x + A = A, no matter what x may be.
As far as “x” is concerned:
fAX0=0xA=0;ifn €« Nandn # 0,let Axn =
Axn=AletAxA=A.
This sort of specification is a bit less rigorous, but it is undeniably convenient,
and it is easy enough to convert it to a more formal specification if one wishes
to do so. It is fine to use it so long as one realizes what one is actually doing,
namely, specifying an interpretation of the symbol “x”. We can also present
the interpretation (to this point) graphically, as in Figure 4.1.
For <, we just let Q8 define it, in effect:?’

Let x < y iff 3z(x + Sz = y), where ‘4’ is defined as just
specified.
Thus, A < A since SO+ A = A; moreover, for any n € N, n < A, since
SA+n = A. On the other hand, A < n, since for no x do we have
Sx + Ax = n. So we can also give the same interpretation more formally as:

{<x,y>: (x,ye NAx<y)Vy=A}

We must now verify that the axioms of Q all hold in this model.

We already noted that Q1 and Q2 hold, but let’s verify that more formally.
For Q1, we need to show that ‘Sx # 0’ is true, no matter what the value of
‘x” may be, i.e., that the value of the term ‘Sx” is never 0. Now, either the
value of “x” is some n € IN or else it is A. If the former, then the value of ‘Sx’
isn + 1 # 0; if the latter, itis A # 0.2

2/ This is really the only sensible way to give the interpretation for <, since we need Q8 to
hold.

28Here, of course, it is crucial that Augustus Caesar is not a natural number, in particular,
that he is not 0. If he were, our interpretation would not even be well-defined.

If one were seriously worried about this, then it would be possible to re-describe the
interpretation so that only natural numbers are in the domain. In effect, we would let 1 play
the role of 0, 2 play the role of 1, etc, and then let 0 play the role of Augustus Caesar. Thus,
the extension of S would be:

{<x,y>:(x>0Ay=x+1)V(x=0Ay=0)}
The extensions of the other operators can be similarly specified. (Exercise!)
11

For Q2, we need to show that ‘Sx = Sy — x = v’ is true, for all assign-
ments to ‘x” and “y’, i.e., that if ‘Sx = Sy’ is true, so is ‘x = y’; i.e., that if "Sx’
and ‘Sy” have the same value, then so do “x” and “y’. Suppose the value of
‘x”is n € IN. Then the value of “Sx” is n 4 1. So, if ‘Sy” has the same value,
i.e., n + 1, the value of ‘y’ must also be n, in which case ‘x” and “y” have the
same value. And if the value of ‘x” is A, then the value of ‘Sx” is A; and “Sy’
cannot have the same value unless the value of “y’ is also A.

For 3, we need to show that ‘x + 0 = x’ is true, no matter what the value
of ‘x” may be. Let the value of “x” be n. If n € IN, then the value of the term
‘x + 0’ is the sum of the value of ‘x" and 0, i.e., n + 0, i.e., n; and of course the
value of “x” is also n; hence ‘x + 0 = x’ is true. If, on the other hand, n = A,
then the value of “x 4+ 0" is A, which is also the value of “x’; hence, again,
‘x +0 = x’is true. O

Digression: It is natural to want to compress the foregoing as follows.

e ForQl:If n € N, thenSn =n+1 # 0;and SA = A # 0.
e ForQ2:If n €« N,thenSn =n+1,s0 Sn = Smiff Sm = n+ 1 iff
m+1=mn+1iff m = n. Moreover, SA = Sy iffy = A.
e ForQ3:If n € N, thenn+ 0 =mn;and also A +0 = A.
This is all fine, in a way, but it is important to see that it really is an abuse
of language. The symbol ‘+ is not being used uniformly in this argument.
Sometimes, it is being used to mean ordinary addition (as when we assert
that n 4+ 1 # 0) and sometimes it is not (as when we speak of A + 0). More
generally, the ‘shorter proof” obscures the character of what is being proved,
which concerns a semantic fact about certain symbols, namely, that those
symbols—the formulae expressing the axioms of Q—are true in a certain
interpretation.
In practice, however, this sort of compression is extremely convenient,
and so we shall now indulge ourselves.

Proof of 4.1, completed.

e ForQ4:If n,m € N, thenn+Sm=n+ (m+1) = (n+m)+1=
S(n+m),and also A+ Sm = A = SA = S(A + m), whatever m is.

e For Q5: x x 0 = x, whether x € IN or not.

e For Q6, we need to show that x x Sy = x x y + x. If x,y € IN, then
this is obvious, since everything behaves as usual on the numerical
part of the model. ILe., we really only need to be checking what
happens when either x = Aory = A But AXxSy=A=A+A=
(A xy)+ A, no matter what yis. And x x SA = xx A = A =
A+ x = (x x A) + x, no matter what x is.

This model is, in a sense we shall not explore here, ‘isomorphic’ to the model described in
the text. Indeed, every model with a countably infinite domain is isomorphic to one with just
the natural numbers in its domain. So, in that sense, we can work with models otherwise
described, safe in the knowledge that we could always use just natural numbers if we were
pressed.

12

e For Q7, we need to show that x # 0 — Jy(x = Sy). The only case
we need check is when x = A, but A = SA.

Finally, Q8 holds because we just defined < according to it. O

One can show in a similar way that Q does not prove that addition is
commutative: That is, ‘VxVy(x +y = y + x)” is not a theorem of Q. Even
‘Vx(0+ x = x)” turns out not to be a theorem of Q. (This is Exercise 15.6.)
Similarly, Q does not prove that addition is associative, or that multiplication
is associative or commutative.

So, in one obvious sense, Q is a very weak theory: There are all kinds of
very basic facts about arithmetic that it does not prove. In another sense,
however, Q is quite a powerful theory.

4.2. Robinson Arithmetic is Strong. Q has a nice property we shall need
later: It proves all basic arithmetical equalities and inequalities. By this we
mean, for example, that whenever n is not m, Q proves 'n # m . So, for
example, since 2 # 1, Q proves 2 # 1 i.e.,SS0 # S0. Indeed, much more
is true.

Proposition 4.2. Q proves all basic arithmetical equalities and inequalities. That
is:

(1) Ifn=mQFn=m
(2) fn#m QbFn#m

3) fn+m=k, thnQFn+m=k
(4) fn+m#k thenQ-n+m#k
(5) fnxm=k, thnQFnxm=k
6) Ifnxm#k, then Q- nxm#k

(7) Ifm <n, thenQtm<n
(8) If ~m < n, then QF —m <n

Note carefully what these statements say. Each comprises infinitely many
cases. For example, (5) says that Q proves 2 x 2 =4 and 3 x 7 = 21 and so
on and so forth.

Proof. For part (1), suppose n = m. Then the claim is that Q proves n = m.
But this is just n = n, which is a logical truth.

For part (2), the proof is by induction on m. Before we actually proceed
with the proof, however, let me make a few remarks about it. This is a proof
by what is sometimes called ‘external” induction. It is an induction we are
carrying out in the language we are speaking. It is not an argument we are
carrying out in Q, or even one that can be ‘formalized” in Q. We shall see
later, in Section 11, that Q is perfectly capable of talking about what can be
proven in Q. Nonetheless, however, the argument we are giving, to establish

13

(2), is not an argument that can be given in Q, since Q doesn’t have any
axioms corresponding to mathematical induction.?

Second, the proof involves a number of syntactic claims. For example,
we shall shortly need to know that, if n # 0, then the numeral for 7, n,is
the result of adding a successor symbol to the numeral for n — 1, i.e., n is
the symbol: S(n —1). Note, as said, that this is a syntactic claim, not an
arithmetical one: The claim is one about which expression n is, namely,
that it is the result of adding a successor symbol (and some parentheses) to
another numeral. It’s a nice question what sorts of syntactic assumptions
we are making here, but we shall not address that question and shall simply
leave our background syntactic theory informal.

To return to the proof, then, for the basis, we must show that, if n # 0,
then Q proves n # 0. Now, as said, since n # 0, nis: S(n — 1). What must
be shown, then, is just that Q proves S(n — 1) # 0. But that is an instance of
axiom Q1.%

For the induction step, we suppose that Q proves n # m when n # m
and need to show that Q proves n # m +1 when n # m + 1. Note first
that this certainly holds if n = 0, by the preceding. So suppose n # 0.
Then nis S(n — 1), and m + 1 is S(m), so what we need to show is that Q
proves S(n — 1) # S(m), whenever, in fact, n # m + 1. Sincen # 0,n — 1
exists, and moreover n — 1 # m. So, by the induction hypothesis, Q proves
n—1 # m. By Q2, however, Q also proves S(n —1) = S(m) - n—1=m.
But then it proves S(n — 1) # S(m), by modus tollens.

The proof of part (3) is by induction on m. For the basis, we must show
that, if n + 0 = k, then Q proves n+ 0 = k. Le., we must show that Q proves
1+ 0 = n. But this is immediate by Q3.

For the induction step, we assume that Q proves n + m = k whenever
n+m = k and need to show that Q proves n+m+1 = k whenever
n+ (m+1) =k, ie., that Q proves n + S(m) = k. So suppose that k =
n+m+1; then kis S(n + m), and our goal is to prove n + S(m) = S(n + m).
Butn+ S(m) = S(n+ m), by Q4. And by the induction hypothesis, Q proves
n+m = n+ m. Hence, by logic, Q proves S(n +m) = S(n+m), and we
are done.

To put it differently:
QFn4+m=n+m induction hypothesis
QF S(n+m)=S(n+m) laws of identity

29%We'll meet a theory later, PA, that does have such axioms. Arguments like the one we
are giving can be formalized in PA—thus, Proposition 4.2 can actually be proven in PA—but
the distinction between ‘external” and ‘internal” induction still remains important, even in
that case.
30, strictly speaking: S(n — 1) # 01is a logical consequence of Q1, so it will be derivable
from it in any sound and complete proof system.
14

QF S(n+m)=n+S(m) Q4
QFn+S(m)=S(n+m) transitivity of identity
QFn+m+1=n+(m+1) syntax
So if (3) holds for m, it also holds for m 4 1, and that completes the proof of
3).
()The proof of part (5) is similar. Part (4) follows from parts (2) and (3); part
(6) follows from parts (2) and (5). Part (7) follows from part (2), making
crucial use of Q8. All of that is Exercise 15.5. O

For the proof of part (8), we need two other facts about Q.

Lemma 4.3.

i) QF—(x<0)!
(i) QFx<y=Sx<Sy

Note that the claim here is not just that Q = —(n < 0), for each particular n,
but rather that Q proves the generalization —(x < 0), and similarly for (ii).
There are plenty of cases where Q proves each case of a generalization but
does not prove the generalization itself. For example, Q proves n # S(n),
for each n, by part (2), but it does not prove Vx(x # Sx); Q proves 0+ n=mn,
for each n, by part (3), but does not prove Vx(0 + x = x); and so forth. So it
is very important to distinguish the ‘each’ claim from the generalization. In
the case of (i) and (ii), though, Q does prove the generalization and not just
all the instances of it.

Before we begin the proof, let me make a comment about how it will
be presented. Rather than talk about what Q proves, I am simply going to
present a proof in Q. Of course, it will not really be a formal proof, but it will
be clear—if I am doing my job correctly—that the proof is one that could
be ‘formalized” in Q; that is, I will strive to make it clear that the proof uses
only resources that are available in Q.*? This is sometimes called ‘reasoning
in Q" or ‘working in Q’, and it is a common method of presentation, as well
as a useful way to think.

Proof of the Lemma 4.3. We work in Q.

For (i): By Q8, —(x < 0) iff =3z(Sz + x = 0), i.e., iff Vz(Sz 4+ x # 0).
So it is enough to show that Sz + x # 0. Now either x = 0 or not. If so,
then Sz 4+ 0 = Sz # 0, by Q1. And if not, then, by Q7, x = Sy, for some y,
and Sz+x = Sz+ Sy = S(Sz+y) # 0, by Q4 and Q1. That is, Q proves
x=0—Sz+x#0and x #0 — Sz+x # 0, so Q proves Sz + x # 0, by
logic.

For (ii), Sz 4+ x = y iff S(Sz + x) = Sy, by logic, iff Sz + Sx = Sy, by Q4.
So x < yiff 3z(Sz + x = y), by Q8, iff 3z(Sz + Sx = Sy), by what we just
did, iff Sy < Sx, by Q8 again. O

Blpt s customary, when stating such generalizations, to drop initial quantifiers, as we
have done here. The same could have been done (and often is done) with Q1-Q7.
32Part of learning to give such proofs involves learning what counts as ‘clear’.
15

Proposition 4.2, part (8). We again use (external) induction on n. For the
basis, we need to show that Q proves —(m < 0) whenever —(m < 0), which
of course always holds. So we need to show that Q always proves —(m < 0).
But this is immediate from Lemma 4.3(i).

For the induction step, suppose that Q proves =(m < n) whenever —(m <
1). We need to show that Q proves =(m < n + 1) whenever —=(m < n +1).
So suppose —(m < n+1). Then m # 0, so m — 1 exists; m is S(m — 1); and
n+ 1is S(n). What we need to show is thus that Q proves —[S(m — 1) <
S(n)]. By Lemma 4.3(ii), it is enough to show that Q proves =[m — 1 < n].
But since ~(m < n+1),wehave ~(m—1<n+1-1),s0 7(m—1 < n).
So, by the induction hypothesis, Q does indeed prove =[m —1 < n]. O

Proposition 4.4. Q proves all true equalities and inequalities. That is, let t
and u be arbitrary closed terms of the language of arithmetic (i.e., terms without
variables). Then Q proves ‘t = u’ if it is true, and similarly for 't # u’, 't < u’,
and ‘= (t < u)’.

Proof. This is Exercise 15.7. O
Proposition 4.5. Q proves all true quantifer-free formulas.

Proof. Quantifier-free formulas are just truth-functional combinations of
atomic formulas. So the proof is by induction on the complexity of such
formulas. Now, one might think that we could proceed as follows: For the
basis, we show that Q proves all atomic formulas; then we show that if
Q proves both A and B whenever they are true, then it proves -A, A A B,
AV B, and A — B whenever they are true. But this will not work. The
most obvious problem is with negation: If - A is true, then A is false, and
now the induction hypothesis tells us nothing. So we have to consider both
the true and the false formulas. L.e., for the basis we show that Q proves all
the true atomic formulas and ‘refutes’ all the false ones (i.e., it proves their
negations); and, for the induction step, we show that, if Q proves A and
B if they are true and refutes them if they are false, then it also proves - A,
ANB, AV B,and A — B when they are true and refutes them when they
are false. This is called ‘strengthening the induction hypothesis’, and it is a
very common sort of maneouver.

The basis has already been proven in Proposition 4.4.

For the induction step: Suppose —A is true. Then A is false, so, by the
induction hypothesis, Q refutes it; i.e., Q proves —A, as wanted. So suppose
—A is false. Then A is true, so Q proves it; hence, by logic, Q proves =—A,
i.e., it refutes — A, as wanted.

Suppose A A B is true. Then both A and B are true, so Q proves them,
by the induction hypothesis, so Q proves their conjunction, by logic. So
supppose A A Bis false. Then at least one of A and B is false, and so Q proves
its negation, by the induction hypothesis. But then Q proves —(A A B), by
logic.

16

The other cases are similar and are left as an exercise.>> O

Definition 4.6. A formula is said to be bounded, or Ay, if all quantifed sub-
formulae are ‘bounded’, i.e., are of one of the forms ‘Vx(x < t — ...)" and
Ax(x <tA..L).

A formula is said to be ¥ if it is of the form ‘Jxq ... Ix(A(x1, ..., xx)),
where A(xy, ..., xg) itself contains only bounded quantifiers.

A formula is said to be IT; if it is of the form “Vxy ... Vxx(A(x1,...,x¢))",
where A(x1,...,xg) itself contains only bounded quamtifiers.34

Theorem 4.7 (¥; completeness). Q proves all true Ay formulas (and refutes all

false ones).
What's more, Q proves all true 3., formulas.

Proof. Assuming the first part, the last claim is easy. Suppose that the ¥
sentence 3x7 ... 3x,(A(x1,...,x;)) is true. Then it has some true instance:
A(ny, ..., ng), where that formula now contains only bounded quantifiers.
But then, Q proves that true instance, by the first part, and so proves the
existential generalization, by logic.

The proof of the first part is similar to that of Proposition 4.5 but a good
deal more complicated. There are some important facts about < we need to
know Q proves, and the induction needs, in effect, to treat the instances of a
quantified statement as being its “parts’. The reader is invited to consider, as
an exercise, just how the proof might go. O

Theorem 4.7 tells us that Q is complete for ¥y formulas—hence the name
of the theorem—in the sense that it proves all true X; formulas. It is not
true that Q refutes all false X1 formulas (or, equivalently, proves all true
IT; formulas). Indeed, no consistent theory can do that. That is part of
what Godel’s first incompleteness theorem tells us. So, in a sense, as far as
completeness is concerned, Q is as good as it gets, despite the fact that it
might otherwise seem so weak.

4.3. w-Incompleteness. Note carefully here what Q is being said to prove
in Proposition 4.4. It follows, for example, that, for each n and m, Q proves

331 we took our language only to contain — and A, then we would be done. Which is,
again, a possible reason to do that.

34The hierarchy can be continued: A formula is X, if it is of the form
“Fxp ... 3w (A(xq, ..., x%))", where A(xq,...,x;) is Il,; and is II,.1 if of the form
Vx1... Vxp(A(xy, ..., x;)), where A(xq, ..., x;) is Zy. In effect, if you group all the bounded
quantifiers on the inside, then a formula is X if it starts with 3 and IT if it starts with V; the n
is determined by how many ‘blocks’ there are of alternating types of quantifiers. (It can be
shown that every formula is provably equivalent—in Q, if I am remembering correctly—to
some formula that is I, or ¥,, for some n. This is not just a consequence of the fact that
every formula has a prenex equivalent, because we need to be able to confine all the bounded
quantifiers to the inner block.)

35That is not an additional claim, though, since the negation of a Ag formula is still a Ag
formula.

17

n+m=m+n.SoQis being said to prove each of infinitely many theorems.
But, as already said, Q does not prove that addition is commutative: It does
not prove VxVy(x +y = y + x). It proves each case, but it does not prove the
generalization. This difference, between ‘each” and ‘every’, arises constantly
in this area, and has to be kept firmly in mind.

Now, if X ¥ VxA(x), then the theory X U {=VxA(x)} is consistent, by
Proposition 3.3. Call this theory £*. Then, for each n, ¥* = A(n); but also
X* F dx—A(x). So, even though X* is not inconsistent, one might still
think that there is something strange about it. We call that strangeness
w-inconsistency.

Definition 4.8. Let X be a theory in the language of arithmetic (or, in fact,
in any theory containing ‘0" and ‘S’). Then X is said to be w-inconsistent
if there is a formula A(x), containing just the variable ‘x” free, such that,
for each n, £ - = A(n) but also £ F JxA(x). Otherwise, ¥ is said to be
w-consistent.

Example 4.9. Q plus dx(x = Sx) is consistent but w-inconsistent.
Note that any theory that is w-consistent is also consistent.

4.4. Peano Arithmetic and True Arithmetic. We will also want to talk about
two other arithmetical theories.

Peano Arithmetic, or PA, is the theory containing Q1-Q6 and Q8 plus all
instances of the induction scheme:

A(0) ANVx(A(x) — A(Sx)) — Vx(A(x))

Here A(x) is an arbitrary formula of the language of arithmetic containing
x (and possibly other variables) free. Obviously, there are infinitely many
such axioms. And the standard interpretation of the language of arithmetic
is a model of PA: All of the axioms of PA are true in it.

Induction allows PA to prove many things that Q cannot prove.

Example 4.10. PA proves Vx(x # Sx).

Proof. Let A(x) be the formula x # Sx. So the following is an induction
axiom:

0 # SOAVx(x # Sx — Sx # SSx) — Vx(x # Sx)
But 0 # SO follows immediately from Q1, and Vx(x # Sx — Sx # SSx)
follows just as immediately from Q2. O

Example 4.11. PA proves 0 + x = x.

Proof. The proof is by induction, using the formula just displayed. That is,
the relevant induction axiom is:

0+0=0AVx(0+x=x—=>0+Sx=S5x) = Vx(0+x = x)

The first conjunct follows from Q3. For the second, suppose 0 + x = x. Then
S(0+ x) = Sx, by logic; and by Q4, S(0+ x) =0+ Sx. So 0+ Sx = Sx. O
18

Note that it now follows, by Q1, that PA proves 0 + x = x + 0. This can
then be used as the basis for an inductive proof, in PA, thaty + x = x +y,
i.e., a proof of the commutativity of addition. We’ll leave that proof as
Exercise 15.9. It can further be shown in this way that PA proves all the basic
arithmetical facts, e.g., the associativity and commutativity of multiplication
and the distribution law. Indeed, PA is an extremely powerful arithmetical
theory: It proves, for example, the fundamental theorem of arithmetic, that
every prime has a unique prime decomposition.*® But if one reflects upon
the question for a bit, it will quickly become unclear how that statement
can even be formulated in the language of PA. (What’s meant by a prime
decomposition exactly?) We'll return to that question below.

One might wonder why we did not include Q7 among the axioms of PA.
The answer is that it would have been redundant.

Proposition 4.12. Q7 is provable in PA.
Proof. This is Exercise 15.8. O

We shall also have occasion to discuss a theory known as True Arithmetic
(or, sometimes, just ‘Arithmetic’). This is the theory containing all truths of
the language arithmetic—that is, all formulae in the language of arithmetic
that are true in the standard interpretation. Arithmetic is a complete, closed
theory. It is complete, because every formula in its language is either true
or false in the standard interpretation; so for any such formula A, either
A is in Arithmetic or its negation is. It is closed because, if A is derivable
from Arithmetic, it is true in every model of Arithmetic. But since the
standard interpretation is a model of Arithmetic, it follows that A must be
true in the standard interpretation, and so it is in Arithmetic. What True
Arithmetic is not is axiomatizable, in a sense we shall define below. This, too,
is a consequence of Godel's first incompleteness theorem.

5. COMPARING THE STRENGTH OF THEORIES

An important subject of logical investigation concerns the relative strength
of two theories. If the theories are formulated in the same language, then
one way of addressing this kind of question is obvious: A theory 7 will be
stronger than another theory 7" if every theorem of 7" is a theorem of 7.

Definition 5.1. A theory © extends a theory X if all theorems of X are theo-
rems of O, i.e,. if, whenever X - A, also © - A. We also say that © contains
pI

So, for example, PA extends Q: That is what Proposition 4.12 tells us.

301t is widely suspected, but has not yet been shown, that PA proves Fermat’s Last
Theorem, although the techniques used in extant proofs are well beyond PA’s capabilities.
The weakest theory in which FLT is known to be provable, as of this writing, is Zermelo set
theory, Z (or, more of less equivalently, simple type theory).
19

But what if the languages are not the same? Is there some way of com-
paring strength, then? We'll here address a fairly simple case, in which the
language of the one theory is an expansion (superset) of the language of the
other.”’

For the rest of this section, let 7 and 7" be theories in the languages £
and L*, respectively, and suppose £ C L*. If L is a proper subset of L*,
then of course T* will have theorems that are not theorems of 7, simply
because there are sentences in the language of 7* that are not sentences in
the language of 7. For example, if A is a sentence of £* but not of £, then
T*F AV —A,since that is a logical truth of £*, but of course 7 ¥ AV —A,
simply because A V —A is not in the language of 7. So the most for which
one could hope is that the only ‘new’ theorems of 7* are ones like that: ones
that are not in L. If that were so, then every sentence that even might be a
theorem of 7" would have the following property: If it is a theorem of 7*
then it is already a theorem of 7. This motivates the following definition.*®

Definition 5.2. 7™ is a conservative extension of T if, for every formula A of
L,if T*F A, then already 7 F A.

The easiest way to show that one theory is a conservative extension of
another is via a simple model-theoretic argument.

Definition 5.3. Let M be an interpretation of £. An interpretation M* of
L* is an expansion of M if M and M* differ only in what they assign to
non-logical symbols in £* that are not in £. That is: M and M* have the
same domain, and they assign the same values to the non-logical symbols

of L.

Lemma 5.4 (Extensionality Lemma). Let M be an interpretation of L; M*, an
expansion of M. Suppose that t is an expression of L. Then the value of t in M is
the same as the value of t in M*. In particular, if A is a sentence in L, then A is
true in M* iff A is true in M.

Intuitively, the point is simply that the value of an expression in an interpre-
tation depends only upon the domain of the interpretation and upon what
it assigns to the non-logical symbols occurring in that expression.

The proof is by induction on the complexity of expressions. We first need
to prove the corresponding fact for terms, and we need to take account, as
well, of assignments to variables.

Proposition 5.5. Let M be an interpretation of L; M*, an expansion of M.
Suppose that t is a term of L. Then the value of t in M, under any assignment

37The usual method of comparing the strength of theories when the languages are not so
related involves a syntactic notion of interpretation first made rigorous by Tarski. We shall
not discuss it here.
38The notion defined here is sometimes known as syntactic conservativity. There are also
semantic notions in the same general vicinity.
20

of values to variables in t, is the same as the value of t in M*, under the same
assignment of values to variables.

Proof. For the basis of the induction, we need to consider the constants of
L, if there are any, and the variables. Now the variables obviously have the
same value, since the assignment of values to variables is the same; and
the constants too have the same value, since they are in £, and M and M*
assign the same values to elements of L.

For the induction step, let f, be an n-place function symbol in £ (if such
there are). We need to show that, if t1,...,t, satisfy the statement of the
proposition, then so does f,(t1,...,t,). Let a be an assignment. By the
induction hypothesis, the t; all have the same value, under «, in both M
and M*. And since f, € £, M and M* assign it the same function as its
value. So, in both cases, the value of f,(t1,...,t,) is the result of applying
this function to the values of the t;, which are the same in both cases; so the
result is the same in both cases. O

Proof of 5.4. Very similar to the proof just given, though more complicated,
due to the need to take account of the quantifers. O

Theorem 5.6. If every model of T can be expanded to a model of T, then T *is a
conservative extension of T.

Proof. Suppose A is a sentence of L that is not a theorem of 7. By the
completeness theorem, there is a model M of 7 in which A is not true. So,
by assumption, M can be expanded to a model M* of 7*. Since A € L,
however, A must still not be true in M*, by Lemma 5.4. So A is not a
theorem of 7*. O

6. REPRESENTABILITY

PA is sufficient to prove many facts about numbers. Consider, for example,
the claim that Vx(1 < x — x < x2). Can that be proven in PA? It's important
to recognize that, as written, this statement isn’t even in the language of PA,
so it certainly can’t be proven in PA. But, while ‘1" isn’t a symbol in the
language of PA, ‘S0’ is; and, while the symbol for squared is not part of the
language of arithmetic either, there is an obvious way to define ‘x*’: as
‘x X x’. So we can instead ask whether PA proves ‘Vx(50 < x — x < x X x)".
And it does. One just has to formalize the usual proof of this claim.

Consider now the question whether PA can prove that Vx(x < 2¥). The
natural idea would again be to define exponentiation in the language of
arithmetic, just as we defined x? above: to find some term ¢(x) with just
‘x’ free that defines 2*—defines it, in the sense that the value of ¢(x), when
‘x” is assigned the number #, is 2". That, unfortunately, turns out to be
impossible, as the following two results show.

Proposition 6.1. Let ¢(x) be a term in the language of arithmetic with at most ‘x’
free. Then ¢(x) is equivalent to a polynomial in x, that is, to something of the form:
apx" +ay x4,

21

Proof. Induction on the complexity of expressions. Obviously, the basic
terms ‘0’ and “x” are equivalent to polynomials. And if t and u are, then so
are"St,Tt+u,and "t x u\. O
Proposition 6.2. Let ¢(x) be a polynomial. Then ¢(x) is ‘dominated by exponen-
tiation’. That is: There is some y such that, if z > y, then 2* > ¢(z).

We can also put this by saying that exponentiation grows faster than any
polynomial. (Rates of growth are important in the study of theories of
arithmetic.)

Readers with appropriate experience might wish to consider precisely
how this can be proved. A really careful proof shows how to calculate such
a y, given a specific polynomial ¢(x). (It depends upon the degree of the
polynomial and the greatest coefficient of any of the terms.)

It follows from the last two propositions that, if ¢(x) is a term in the
language of arithmetic containing just ‘x” free, then, for some 7, the value of
‘p(x)” when x is assigned n is less than, and so not equal to, 2. So no term
of the language of arithmetic defines exponentiation.

There is, however, a way around this problem. There is a formula EXP(x, y)
that defines exponentiation in a closely related sense: EXP(x, y) holds in the
standard interpretation when “x” is assigned n and “y” is assigned m if, and
only if, m = 2". So EXP(x,y) defines not the exponentiation function but the
graph of that function, that is, the relation y = 2*, and that is almost as good.
Moreover, ExP(x,y) is, as Frege liked to put it, PA-provably a ‘many-one’
relation: That is, this relation can be proven in PA to be ‘function-like’, in
the sense that existence

Vx3y(Exp(x,y))

and uniqueness
Vx3y(Exp(x,y) AVz(EXP(x,z) =y = z))

can be proven in PA.* So we can think of PA as proving that x < 2% if it
proves
Vxdy(Exp(x,y) Ax <y)

What that says is that, for each x, there is a y, such that y = 2* and x <
y. And given an appropriate definition of EXP(x,y), PA does prove the
mentioned formula.*’

These reflections motivate the following definition.

39Stric’cly speaking, of course, PA does not prove the mentioned formula, since
‘EXP’ is not in the language of arithmetic. What PA proves, strictly speaking, is
"Vx3Jy(EXp(x,y) AVz(EXP(x,z) — y = z))™: the result of substituting, for the various oc-
currences of “EXP(&, {)” in the mentioned formula, the formula of the language of arithmetic
that “ExP (&, {)’ abbreviates.

40The famous Theory of Descriptions, due to Bertrand Russell, was motivated by precisely

this kind of problem. We can think of '2¥" as meaning: the y such that y = 2%, and then

think of ‘2" as defined ‘contextually’. That is: We can then replace any formula of the form

‘...2% ..." by one of the form: Jy(y = ExP(x,y) A...y...). That we can prove existence and

uniqueness implies that the unabbreviated formula is equivalent to the abbreviating one and
22

Definition 6.3. A formula ®(x;,...,x,,Yy) defines the n-place function
@(x1,...,x,) in the language of arithmetic if, and only if,

() @y, ... kn,m)is true* iff @(ky, ..., k,) =m

(i) VaVyVz[®(xy,..., %0, y) ADP(x1, ..., %0, 2) = y = z] is true®

We say that a function is definable in the language of arithmetic if there is a
formula that defines it.

Example 6.4. Consider the function: the remainder on dividing x by y. Like
exponentiation, this cannot be defined by a term. But we can define a relation
REM(x, y, z) that is true just in case z is the remainder on dividing x by y:

REM(x,y,z) =z <y AJw(x = (y X w) + z)
Of course, there are many equivalent ways to state this definition.

Note that the notion of definability is semantic: It is given in terms of the
notion of truth.*> What we need here is the corresponding syntactic notion:
one that is defined in terms of proof.

Definition 6.5. A formula ®(x1,...,x,, V) represents44 the n-place function
@(x1,...,x,) in the theory X if, and only if, whenever ¢(k, ..., k,) = m:

D =F®(ky... ki m)

(i) = FVy(@ky,... kny) —y=m)
or, equivalently:

Y EVy(Dk, ... kny) =y =m)

We say that a function is representable in X if there is a formula that represents
itin X.
What this says, in effect, is that > proves that ¢ has the value it does, in each
specific case, and also proves that that is the only value ¢ has, in that case.

There are three other points it is imporant to note. First, it is not assumed
here that ¢ is total, that is, that it has a value for every possible sequence of
arguments: ¢ may be undefined in some cases (although not in the cases of

that the possible scope ambiguities do not matter (i.e., that all possible scope disambiguations
are equivalent).

4Tryth here is, of course, truth in the standard interpretation.

421 fact, this second condition is redundant: It follows from the first condition. Showing
that is Exercise 15.11. It is included here to make the definition of representabilitiy easier to
motivate.

#3The contrast between representability and definability here is thus not the same as the
contrast between these notions in Boolos and Jeffrey ()- There, definability is just the
analogue of representability for sets and relations. Here, on the other hand, definability is a
semantic notion; representability, a syntactic one. (My terminology is thus closer to Tarski’s.)
The reason for this change will become clear below.

44Quite a few different terms are used for this notion. Godel says that the formula
numeralwise expresses’ the function; Feferman says that it ‘binumerates’ it. The present
terminology is that of Boolos and Jeffrey.

23

s

interest to us here), in which case nothing need be proven about in for that
case; in particular, > need not prove that ¢ has no value (although it might).
Second, the definition requires only that 2 prove that ¢ has at most one
value in each specific case that it has a value. It is not required that X prove
the generalization:

Vg . Vg [Fy(D(xa, .- X0, y) AVZ(P(x1, ..., X0,2) = Y = 2)]

i.e., prove that ® is ‘function-like’. And, finally, even when ¢ is total, it
is not required that X should prove that it is, i.e., that it should prove the
generalization:

Vap ...V, y(®(x1, ..., %0, Y))
It is, in fact, important that we omit these stronger conditions. As we shall
see below, it is true that exponentiation is representable in Q: There is a
formula EXP(x, y) such that, whenever n = 2", Q proves:45
(i) Exp(m,n)
(i) Vy(Exp(m,y) —y=n)
But it is an important fact about Q—one that is, again, a reflection of its
weakness—that it does not prove that exponentiation is total nor that it has
a unique value in every case.*® That is:

Q¥ VaVyVz(EXp(x,y) NEXP(x,z) >y =z
Q¥ Vx3dy(Exr(x,y))

PA, however, does prove both of these claims (by the obvious sort of induc-
tion), once EXP(x,) has been appropriately defined.*’

Proposition 6.6. Let ®(xq,...,xy,Yy) represent a total function ¢(x1,...,x,) in
Y. Suppose also that ¥. is strong enough that, whenever m # n, ¥ proves 'm # n .
Then whenever ¢(kq, ..., ky) # m, T+ =D (ky, ..., ky,m).

So, if ¢ is total and m is not the value of ¢(ky, ..., k,), X proves that it is not.
So, roughly: When ¢ is total, X proves that ¢ has the values it does have
and also that it does not have the specific values it does not have.

1o put it differently, Q proves:
(1) Exp(m,2m)
@) Vy(Exp(m,y) —y =2")
Or equivalently: Vy(EXp(m,y) = y = 2'). But, typically, it is better to think of it in two
parts: existence, given by (i), and uniqueness, given by (ii).
46\More generally, it can be shown that, for any ‘formal’ theory ¥ in the language of
arithmetic (see Definition 9.1), there is some total recursive function that ¥ does not prove to
be total.
1f % proves the law of trichotomy, x <y Vx =y Vy < x, then we can always arrange
for uniqueness to be provable by adding, to whatever representing formula we already have,
the condition that the value (if it exists) must be least. If there were two values, then one of
them would have to be less than the other; but then one of them is not least. But Q does not
prove trichotomy.
24

Proof. Fix the k; and suppose that ¢(ky,...,k,) # m. Since ¢ is total, for
some n # m, ¢(ki,...,k,) = n and so, since ®(xq,...,Xn,Y) represents

o(x1,...,x,) In X, L proves Vy(q)(@,...,kn,y) — y = n). So, by logic,

Y. proves ®(ky, ..., k,,m) — m = n. But now, by hypothesis, X proves
"m #n', so it also proves ~®(ky, ..., k,, m). O

Corollary 6.7. Suppose D(x1, ..., Xy, y) represents a total function ¢(x1, ..., xn)
in Q. Then, if p(kq,..., ky) #m, QF =®(ky,..., ky,m).

Proof. Immediate from Proposition 4.2 and Proposition 6.6. g

Similar notions can be defined for sets—or, more generally, relations—
rather than functions.

Definition. We say that a formula ®(xy,...,x,) defines the n-place rela-
tion F(x1,...,x,) if ®(k,...,ky) is true (in the standard interpretation) iff
F(ky, ..., ky). We say that a relation is definable in the language of arithmetic
if there is a formula that defines it.

Equivalently: ®(xy,...,x,) defines the relation F(x1, ..., x,) if the extension
of ®(xq,...,x,) in the standard interpretation is the set
{<ki,....kn > F(ky,..., kn)}.

Definition 6.8. We say that a formula ®(xy, ..., x,) represents the n-place
relation F(x1,...,x,) in the theory X iff:

(i) whenever F(ky,... ky), =+ ®(ky, ..., ky)

(ii) whenever —F(ky,..., k;), ZF =®(ky,..., k)

We say that a relation is representable in X if there is a formula that represents
itin 2.

These definitions are reconciled with those for functions through the notion
of a characteristic

Definition 6.9. Let s be a set. Its characteristic function is the function ¢s(x)
whose value is 1 if x € s and 0 if x ¢ s. Similarly, if r is an n-place relation,
its characteristic function is the n-place function ¢,(xy, ..., x,) whose value,
for arguments ki, ..., k, is 1if r(ky, ..., k,) and 0 otherwise.

Proposition 6.10.

(1) A set or relation is definable in the language of arithmetic iff its characteris-
tic function is definable in the language of arithmetic.

(2) So long as £ + 0 # 1, a set or relation is representable in % iff its
characteristic function is representable in X.

Proof. This is Exercise 15.12. O

As noted above, we aim to use the notion of representability to overcome
the fact that the language of arithmetic is “term poor’. As also noted, how-
ever, a theory can represent a function without proving that the function

25

so represented really is a function. For example, Q does not prove that
exponentiation is either many-one or total. But if a theory X does prove
that exponentiation is both many-one and total—that is, if & proves both
Vx[3y(EXp(x,y) A Vz(EXP(x,z) — y = z)] and Vx3y(EXP(x,y))—then it
is very much as if a function-symbol for exponentiation is present in the
language. The following result helps make it clear in what sense that is so.

Theorem 6.11. Suppose that . proves:
VaVyVz(F(x,y) ANF(x,z) =y = z)
Vxy(F(x,y))
Expand the language of ¥ by adding a new function symbol f(x) and let X¢ be .
plus the new axiom:
fx) =y =Flxy)

Then ¥ is a conservative extension of X.

Proof. This is Exercise 15.13. O

7. RECURSIVENESS AND REPRESENTABILITY IN Q

We are going to need to know, below, that certain functions and relations
are indeed representable in Q. One way to prove that they are, obviously, is
to exhibit formulae that represent them: That, in fact, is how Godel proceeds
in his proof of the incompleteness theorem. We, however, shall take a
shortcut.

Certain functions are, in an intuitive sense, computable or calculable, in the
sense that there is a method, algorithm, or procedure by means of which
one can in principle determine, given some arguments for a function, what
its value is for those arguments. For example, addition and multiplication
are computable, in this sense: We all learned the relevant algorithms in
elementary school. Properties of natural numbers, and relations among
them, may, in the same sense, be computable. The relation: x divides y
(without remainder) is intuitively computable. Long division is an algorithm
by means of which one can decide whether one number divides another. It
is, by the way, also an algorithm by means of which one can calculate the
remainder upon dividing y by x, and so remainder is also computable.

Functions whose arguments and values are not natural numbers can be
computable, too, in much the same sense. So, for example, the syntactic
function: the negation of the expression x, is recursive. To compute it, one
just writes down ‘—’ followed by a left parenthesis, the expression x, and a
right parenthesis, and then one stares at the result.

There is a developed mathematical theory of computability, recursion
theory, which was founded by Alonzo Church, Alan Turing, Kurt Godel,
and others in the 1930s.*® This theory provides a mathematical definition

48500 Martin Davis’s collection The Undecidable, for some of the early papers in the subject.
(Davis was himself an important early recursion theorist.)
26

of the notion of a ‘recursive function’ that makes the intuitive notion of a
computable function rigorous. Indeed, there are many such definitions of
the set of recursive functions, all of which are provably equivalent. That
gives us reason to suppose that recursive functions form a ‘natural kind’.

Church famously conjectured that the recursive functions (in the rigorous
mathematical sense) are exactly the computable ones (in the intuitive sense),
a claim known as Church’s Thesis. It is widely, but not universally, held that
one cannot prove Church’s Thesis rigorously: To do so, one might think, one
would need a mathematical definition of the set of computable functions,
and that is precisely what the notion of recursive function is supposed to
be.* No one, however, has ever exhibited a function that is computable
in the intuitive sense but that is not recursive. Turing, for his part, offered
a philosophical argument for Church’s Thesis, namely, that his definition
of the class of recursive functions constitutes a philosophical analysis of the
intuitive notion of a computable function.

In any event, Church’s Thesis is now very widely accepted. We shall
assume it here. For our purposes, then, one can show a function to be recur-
sive by exhibiting (or, more often, alluding to) an algorithm that computes
it. So x divides y, for example, is recursive, since you can compute it by long
division. And so forth.

As we saw above, Q is, in many respects, a very weak theory. We are now
ready to see that, in another respect, Q is quite powerful.

Theorem 7.1. Every recursive function is representable in Q.

This was originally proven by Tarski, Mostowski, and Robinson (). For
a modern proof, see Computability and Logic (,)-

Corollary 7.2. Every computable function is representable in Q.

Proof. By Church’s Thesis. O

Here’s one way to think about the significance of this fact. We know that
we can calculate sums, exponents, least common multiples, and the like.
Question: What mathematical resources do we require when we do such
calculations? Do we need to make use, say, of the fundamental theorem of
the calculus? Do we need to use the fundamental theorem of arithmetic? Do
we ever need to appeal to induction? No, no, and no. The simple resources
that are available in Q suffice for all such calculations: If f(x1,...,x,) isa
computable function, then there is a formula F(x3, ..., x,,y) in the language
of arithmetic such that, whenever f(ky,..., k,) =m,QF F (k... ,E,y) =
y = m;ie., Qcomputes f(ki,..., ky).

Corollary 7.3. Every computable set and relation is representable in Q.
491t has been argued by Peter Smith (), by contrast, that one can prove Church’s thesis,

using what Georg Kreisel () called a ‘squeezing’ argument.
27

Proof. By Proposition 6.10, a set s is representable in X iff its characteristic
function g@s is representable in . But, if s is computable, then so is ¢;,
for one can compute ¢;(n) simply by computing whether n € S and then
returning the answer: 1, if it is, and 0, if it is not. O

So it suffices, for our purposes, to show that a function or set or relation is
representable in Q to show that it is computable, that is, to exhibit (or allude
to) an algorithm that computes it.

Now, if a function is representable in Q, then it is representable in any
theory that extends Q, since representability only requires that certain things

should be theorems of the theory in question. So we have:*

Corollary 7.4. Every recursive function (relation) is representable in every theory
2 that extends Q, in particular, in PA. Hence, so is every computable function
(relation).

8. GODEL NUMBERING

Computers crunch numbers. Yet they can also be used as word processors.
How does that work? Well, very simply. Letters and words and sentences
get represented, in the computer, by numbers. One of the earliest such repre-
sentations was the American Standard Code for Information Interchange, or
ASCII, which defines a correspondence between Roman letters (and some
other symbols) and numbers.”® The capital ‘A’, for example, is represented
as 65; ‘B’, as 66; and so forth; the small ‘a’ is represented as 97; ‘b’, as 98,
and so forth. The word “Abba’” might then be represented as: 65989897, just
stringing the digits together.

This (very important!) idea is due to Godel, and it plays a central role in
his proof of the incompleteness theorem.

To apply this idea to the language of arithmetic, we first establish a
correspondence between the primitive symbols of the language of arithmetic
and the hexadecimal (base-16) digits:52

() 3I VY VA== x"0S8+ x =

123 45 6 7 8 9abcd e f
We extend the correspondence to one between strings of symbols of the lan-
guage of arithmetic and hexadecimal numerals in the obvious way, basically,
by treating these symbols as if they just were the corresponding hexadecimal
digits. Thus, for example, we read the string ‘) + 03V as if it just were the
hexadecimal numeral “2db35’. This induces a correlation between strings
of symbols and natural numbers. The one-element string ‘0" is thus cor-
related with the number by¢, or 11; the string ‘) + 03V’ is correlated with

50The converse is also true: Every function representable in a formal theory X is recursive.
So, as far as representing functions is concerned, Q is as good as it gets.
51A more modern, and multi-cultural, standard is Unicode, of which the ASCII codes are
all part.
5254 4 is the digit for 10; b for 11; etc.
28

the number 2db3514, or 2 x 16* + 13 x 163 + 11 x 16 + 3 x 16! +5 x 167,
or 187,189. Every string of symbols is thus correlated with its own unique
natural number, called its Godel number. We indicate the Godel number of
an expression using corner quotes, thus: ") + 03V . We will also use this
same notation to indicate the numeral for the Godel number of an expression.
Context should disambiguate these usages.

For most purposes, the specific Godel numbering we employ does not
matter very much. What certainly does matter is that everything should be
computable: It should be computable what the Gédel number of a given
string is; conversely, it needs to be computable whether a given number is
the Godel number of a string and, if so, of which one. Note that our Godel
numbering is computable, in this sense. To calculate the Godel number of
a string, one just reads it as if it were a hexadecimal numeral. To decide
whether a number is the Godel number of a string and, if so, which one, first
calculate its hexadecimal representation. The number is the Godel number
of a string if, and only if, that representation contains no (non-leading) zeros
(since we don’t know how to decode those). If it does not, then just reverse
the correspondence to figure out which string the number represents.

Godel numbering allows us to talk about syntax—about properties of
strings, or sequences thereof, and operations on them—within the language
of arithmetic. Consider, for example, the function paren whose value, for
a given string, is the result of enclosing that string in parentheses. Thus,
paren[’) +03 V] isjust ‘() + 03 V)". Given our Godel numbering, there is a
corresponding numerical function that takes the Godel number of a string
and returns the Godel number of the result of enclosing that string in paren-
theses. Call this function PAREN[x]. Then PAREN[2db3515] = 12db3524,
since Godel number of “)+03V’ is 2db351¢ and the Godel number of “()+03 V)’
is 12db3521¢. More generally:

PAREN|[x| = 0, if x has (non-leading) zeros in its
hexadecimal representation;
=1 x 161 + 16 x x + 2 otherwise, where k is
the least n such that 16" > x

Here 0 is a ‘throwaway’ value, provided so that PAREN|x] is a total function.
Since PAREN|x| is clearly computable, it is representable in Q. So there
is a formula PAREN(x, y] such that, whenever n = PAREN|[m]|, Q proves:
PAREN|[m, n]. Thus, Q proves PAREN[2db3516,12db3521¢]. Or, as we may
also put it: Q proves that the result of enclosing “)+03V’ in parentheses is
‘0+03 Vv).

Generalizing the above, we have the following.

Lemma 8.1. Let ¢(sq,...,s,) be a computable n-place function from strings to
strings. Then there is a formula ®(x1, ..., x,,y) of the language of arithmetic that
represents it in Q, in the sense that, whenever ¢(si,...,s,) = tand o1,...,0,
and T are the Godel numbers of sy, ... ,s, and t, respectively:
i QkFd(oy,...,0u,7)

29

(i) QF Vx(®(0q,...,00,x) = x=T1)

Moreover, the same holds if ¢(s1,...,Su) is a computable n-place function from
strings to numbers. Le, whenever ¢(s1,...,5,) = mand oy, ...,0, are the Godel
numbers of s1,...,5x:

i QF@,...5m)
(i) QFVx(®(oy,...,00,%) = x=m)

Note that the Lemma has been stated, and will be proved, in such a way
that any it holds for all computable Gédel numberings.

Proof. We prove just the first part. The second part is Exercise 15.14.
Let ¢ be as in the statement of the Lemma. We define a numerical function
¢* as follows:
¢*(x1,...,x,) = the Godel number of ¢(s4,...,s,), if each
x; is the Godel number of a string s;
= 0, otherwise

The definition of ¢* makes it computable: To calculate ¢*(xy,...,x,), one
need only follow these steps: First, determine which string s; each of the x;
is the Godel number of, if any (there is a method for doing that, since the
Godel numbering is computable); return 0 if one of the x; isn’t the Godel
number of a string; otherwise, calculate ¢(s1,...,s,) and then determine
its Godel number (there are methods for doing each of those things, since
@ is computable and so is the Godel numbering); hence, ¢* is computable
and so is representable in Q. So there is a formula ®(x3, ..., x,,y) such that,
whenever ¢*(01,...,0,) = T

i) QF®(oy,...,04,7) -

() QFVx(®(oy,...,00,,x) > x= T)

But if, as in the statement of the lemma, ¢(s1,...,5,) =tand oy,...,0, and

T are the Godel numbers of s1, .. ., s, and t, respectively, then we do indeed
have that ¢* (01, ...,0,) = T, by the definition of ¢*. O

Corollary 8.2. Let ¢(s1,...,Su) be a computable n-place relation on strings. Then
there is a formula ®(x1, ..., x,) of the language of arithmetic that represents it in
Q, in the sense that, where oy, . . ., 0y, are the Godel numbers of sy, . .., Sy:

(i) whenever ¢(sy,...,s,), QF ®(0q,...,04)

(ii) whenever ~¢(s1,...,54), QF =P (04, ..., 004)
Proof. This is exercise 15.15. O

Many syntactic notions are now easily shown to be representable in Q by
appeal to the preceding results. Thus, it is obviously computable whether
a string of symbols of the language of arithmetic is a well-formed formula.
Hence, there is a formula WFE(x) of the language of arithmetic that repre-
sents ‘x is a well-formed formula’. Similarly, the relation ‘z is a conditional
whose antecedent is x and consequent is y” is obviously computable and
hence representable in Q. And so on and so forth.

30

9. FORMAL THEORIES

Definition 9.1. A formal theory is a theory—that is, a set of formulae—that is
recursive. The formulae in a formal theory are called its axioms.

Every finite theory is obviously a formal theory. PA is, too: There is an
obvious algorithm by means of which one can decide, or compute, whether
an arbitrary formula is an axiom of PA. As we shall see below, however, it
follows from Godel'’s first incompleteness theorem that True Arithmetic is
not a formal theory.

Definition 9.2. A theory . is said to be axiomatizable if there is a formal theory
O in the same language such that, for every formula A in that language:
LEAiffOF A

¥ is finitely axiomatizable if there is a finite theory © meeting the same
condition.

There is an equivalent statement of this definition: Given a theory X, define
its closure as follows:

Definition 9.3. The closure of a theory X—written: Cl(X)—is the set of its
theorems, that is, of the formulae derivable from it. Le.:

C(Z) = {A:ZF A}

We can easily prove that CI(X) is always closed (see Exercise 15.16), thus
justifying the terminology, and, moreover, that it is the smallest closed theory
containing ¥ itself. The equivalent definition of axiomatizability is then:

Definition 9.4. ¥ is axiomatizable if there is a formal theory ® such that
CI(X) = CI(®). Similarly for finite axiomatizability.

10. THE DIAGONAL LEMMA

We now prove the so-called diagonal lemma, which is the last piece we
need before we can prove the first incompleteness theorem.

First, a reminder. We shall use: "G, to mean: the numeral for the Godel
number of the expression G. We shall also use it to mean: the Godel number
of G, leaving it to context to disambiguate.

Lemma 10.1 (Diagonal Lemma). Let ¥ be a theory that represents every recursive
function, and let A(x) be a formula in the language of X with just ‘x’ free. Then
there is a sentence G such that L - G = A("G").

Thus, G (for Godel) is a sentence that ‘says of itself” that it has the property
that A(x) expresses: G is X-provably equivalent to the sentence A("G™),
which says precisely that G (through its Godel number) satisfies A(x). In this
sense, the existence of ‘self-referential sentences’ is mathematically provable:
It is, more precisely, guaranteed by the axioms of Q, since Q satisfies the
hypothesis of the diagonal lemma.

31

We shall prove the lemma two ways. We begin, however, with some
motivational remarks.
Consider the following open term (i.e., functional expression):

the result of substituting the quotation name of x for the sole
free variable contained in it

If we apply this function to ‘frogs eat x’, then we get:
frogs eat ‘frogs eat x’

which is false. (Frogs don’t eat formulas!) If we apply it to “x contains 16
symbols, including blanks’, then the result is:

‘x contains 16 symbols, including blanks’ contains 16 symbols,
including blanks
which is also false. And if we apply it to “x contains the word “the”’, we get:

7”7

‘x contains the word “the”” contains the word “the”

which is obviously true.

Consider now what happens if we apply the function to ‘the result of
substituting the quotation name of x for the sole free variable contained in it
is very strange’. The result is:

the result of substituting the quotation name of “the result
of substituting the quotation name of x for the sole free vari-
able contained in it is very strange’ for the sole free variable
contained in it is very strange

Call this sentence Buster. Then what we have just seen—proven, really, by
calculation—is that Buster is the result of substituting the quotation name
of ‘the result of substituting the quotation name of x for the free variable
contained in it is very strange’ for the sole free variable contained in it.
Le., Buster is the sentence named by the subject phrase of Buster itself
(everything except its last three words). So, by the laws of identity, Buster is
equivalent to the sentence: Buster is very strange. In that sense, then, Buster
‘says of itself’ that it is very strange. Which, indeed, it is.

The formal proof we shall give in a bit is just a formalization of this
informal argument. It is, however, in some ways more complicated than
it really ought to be. The complications are the result of the fact that, as
we saw above, the language of arithmetic is rather lacking in terms. If we
ignore that and pretend there are a lot of terms, we can give a much simpler
proof that makes the point of the argument a lot clearer.

Proof. (Somewhat dishonest variety)™ Consider the following syntactic opera-
tion: Given a formula A(x), with just ‘x” free, its “pseuso-diagonalization’ is

53There are ways one can make this argument legitimate, if X is strong enough. PA is
‘strong enough’. So is IX1, which is Q with induction for %1 sentences. See The Logic of
Provability (,), from which this proof is adapted, for the details. Moreover, there
are systems, such as primitive recursive arithmetic, in which we really do have a function
symbol such as PDIAG(x), and in such systems the proof can stand as is.
32

the result of substituting the numeral for the Godel number of A(x) for “x’
in A(x). That is, the pseudo-diagonalization of A(x) is: A("A(x)").>* This
operation is obviously recursive, so (we will pretend that) there is an open
term, PDIAG(x), that ‘represents’ pseudo-diagonalization in X, in the sense
that, whenever n is indeed the Godel number of the pseudo-diagonalization
of the expression whose Godel number is 11, ¥ proves PDIAG(m) = 1.
Now consider the expression:

(P) A(PDIAG(x))
which has only the variable ‘x” free. Its pseudo-diagonalization is then:
(G) A(PDIAG(" A(PDIAG(x)) "))

which contains no free variables® and so is a sentence. So "G is the Godel
number of the formula which is the pseudo-diagonalization of the formula
whose Godel number is " A(PDIAG(x) ". Hence:

Yt PDIAG(" A(PDIAG(x)) ') ="G™
and so, by the laws of identity:
Y.+ A(PDIAG(" A(PDIAG(x))) = A("G™)
But the sentence on the left-hand side here just is G! So
LEG=A(TG)

and we are done. O

The ‘real’ proof of the diagonal lemma we shall now give just recapitulates
this argument, but it makes use of a formula ‘DIAG(x,y)” instead of the
pretend term ‘PDIAG(x)’. As said earlier, this sort of complication is the
price we pay for the language of arithmetic’s poverty of terms. We first need
a definition.

Definition. Let A be an expression. Its diagonalization is the expression:
Jx(x ="A7A A), where " A7 is the numeral for the Godel number of A.

The way we have defined diagonalization, the expression A need not be a
formula. If it isn’t, then its diagonalization will not be a formula either. But
if A is a formula, then its diagonalization will also be a formula, and, if A
has only the variable “x” free, then its diagonalization will be a sentence, that
is, it will not have any variables free, since the free occurrences of ‘x” will all
be bound by the initial existential quantifier.

541f the argument isn’t a formula with just “x” free, then it doesn’t matter what the value
is. For definiteness, just take it to be the same as the argument.
55Note that this incorporates both of the usual conditions on representability.
56Note that ‘A(PDIAG(x))’ is the result of substituting PDIAG(x) for all free occurrences
of “x” in A(x).
57Note that ‘x’ does not occur in (G). It only appears within quotation marks.
33

All we really need to know for the proof of the diagonal lemma is that
diagonalization is representable in X. So what we will actually prove is

Lemma 10.2 (Diagonal Lemma). Let X be a theory that represents diagonalization
(as just defined). Then, for each formula A(x) with just ‘x’ free, there is a sentence
GsuchthatL+ G = A("G™).

Proof. Since diagonalization is representable in X, there is a formula DIAG(x, y)
of the language of X such that, whenever 7 is the Godel number of the diago-
nalization of the expression whose Godel number is m, & = Vx(DIAG(m, x) =
X = ﬁ).SS Now, consider the expression:

(P) Fy(DIAG(x,y) A A(y))

which has only the variable ‘x” free. Its diagonalization is then:
Jx[x = "3y(D1AG(x,y) A A(y)) ' A Jy(DIAG(x,y) A A(y))]

which we can abbreviate as:

(G) dx[x = "P7 A Jy(DI1AG(x,y) A A(y))]

Note that G is a sentence.
Since G is logically equivalent to:

Fy[DIAG("P7, y) A A(y)]
Y. proves that it is:
(1) 3x[x ="P?"A3Jy(DIaG(x,y) AN A(y))] = Jy[DIAG("P,y) A A(y)]

Further, G, as we said, is the diagonalization of P. So, obviously, "G is the
Godel number of the diagonalization of the formula whose Gédel number
is"P . Hence X proves:

(2) Vx[DIAG("P7,x) = x =G|
From (2), X will prove, by logic:
y[DIAG("PT,y) A A(y)] = Tyly = "G A A(y)]
but the right-hand side is logically equivalent to “A("G™)’, so X also proves:

©) SY[DIAG(TPT,y) A A(y)] = A(GY)
And now, from (1) and (3), X proves:
4) dx[x = "PT A Jy(DI1aG(x,y) N A(y))] = A("GT)
But the left-hand side here just is G! So (4) just is:
G=A(TG")
as wanted. 0

81t is worth emphasizing that DIAG(x, y) is a formula that can actually be written down.
George Boolos told me that he once had a graduate student write it out in primitive notation.
It was about six pages long.
34

The diagonal lemma, as we originally stated it in Lemma 10.1, is now eas-
ily provable. Since diagonalization is clearly computable, it is representable
in any theory that represents all computable functions. Any such theory
therefore satisfies the hypothesis of Lemma 10.2.

The diagonal lemma can be generalized in two ways: We can allow
other free variables to occur in A, which just get carried along; and we can
apply the construction simultaneously to a number of formulae. The fully
generalized version is thus:

Lemma 10.3 (Generalized Diagonal Lemma). Suppose ¥ represents every
recursive function. Foreachi =1,...n,let A;j(x1,...Xn, Y1,...,Ym) be a formula
in the language of X with at most the displayed variables free and in which x; is free
in A;j. Then there are formulae Gy, ..., Gy, such that, for each i,

LGy, ym) =A(GT, "G Y, Ym)

The proof is a generalization of that of the diagonal lemma and is left as
15.18.

11. GODEL’S FIRST INCOMPLETENESS THEOREM

We can now prove Godel’s first incompleteness theorem.

Before we do so, we need to talk a little bit about proofs. It is easiest
here to assume that our system of logic is a so-called ‘axiomatic” system,
in which formal proofs are simply sequences of formulas satisfying certain
conditions. So we think of proofs as precisely such objects: sequences of
formulas, satisfying certain conditions.

Now, just as we are able to talk about formulas in the language of arith-
metic, through Godel numbering, so we can talk about proofs. We need
only extend our Godel numbering so that it encompasses finite sequences
of formulas. This is easily done. Since we did not use 0 as the code of any
of our primitives, we can use it as a separator, the way one might use a
comma. So, e.g., the sequence Vx(x = x),0 = 0 can be given the Godel
number: 4919f920bfb;s. What comes before the ‘0" in this numeral is the
Godel number of ‘Vx(x = x)’; what comes after it is the Godel number
of ‘0 = 0. Note that, in some systems, this would therefore be the Godel
number of a (correct) proof of the sentence ‘0 = 0".

Terminology: By a Z-proof, we mean a proof that uses, as well as any
‘logical” axioms there may be, also any of the axioms in the formal theory
2. And the crucial point now is that the property ‘x is the Godel number
of a (correct) X-proof’ is intuitively computable, if X is a formal theory:
Given a putative proof, one can check it, mechanicially, for correctness. It is
essentially definitive of a “formal system of logic” that one can check purely
logical proofs in this way; and if X is a formal theory, then we can tell what
its axioms are, so we can check whether the (finitely many) ‘non-logical’
assumptions used in the proof are all axioms of X.

35

Moreover, the relation “x is the Godel number of a (correct) X-proof of y’
is also computable: One simply checks whether x codes a (correct) proof
and, if so, checks what is on the last line of that proof.

Hence, in Q, and in any other system that represents all recursive func-
tions, there will be a formula BEwy(x, y)59 that represents the relation: x is
the Godel number of a X-proof of the formula with Gédel number y.

Note: Henceforth, we shall not bother with the distinction between for-
mulas and their Godel numbers. So we shall allow ourselves to say such
things as: x is a X-proof of y, instead of what we just said.

Theorem 11.1 (First Incompleteness Theorem). Let X be a theory in which
every recursive function is representable, and suppose that X. is w-consistent. Then
there is a formula A that is undeciable by ¥, i.e., for which X ¥ A and also X ¥ —A.

Proof. Since every recursive function is representable in X, there is a formula
BEWsx(x,y) that represents, in X, the relation: x is a Z-proof of y. Consider
the following formula:

~3y(BEWx (y, %))
which says that there is no X-proof of x, i.e., that x is not X-provable. By the
diagonal lemma, we have a formula G such that

(1) X+ G=-3yBews(y,"G"))

Thus, G ‘says of itself” that it is not X-provable.

I claim, first, that, if X is consistent, then X ¥ G. For suppose X - G. Then
there really is a Z-proof of G. Let p be the Godel number of this proof. Then
p is a Z-proof of G, so, since BEWx (x,) represents X-proof in X:

Y+ BEws(p,"G")

and so by logic:
X+ Jy(BEWs(y,"G™))
But then by (1):
ZF-G

and so X is inconsistent.
I claim, second, that if > is w-consistent, then X ¥ =G. Suppose X - —G.
Then by (1),

) Y+ Jy(BEWx(y,"G™))

Now, if ¥ is w-consistent, it is also consistent. So no natural number is
actually the Godel number of a X-proof of G. Otherwise, there actually
would be a X-proof of G, i.e., X would prove G, and then ~ would be
inconsistent, since we are supposing it proves —=G. So, since BEWx(x,y)
represents X-proof in X:

(3) Y+ -BeEwg(n,"G")
59t is traditional to use ‘Bew’, which is taken from the German word for “proof”: Beweis.

This is what Godel uses.
36

for each n. But then (2) and (3) show X to be w-inconsistent. O

Note, again, that (3) says that £ proves each case of “BEWyx (x," G ™), not that
it proves the generalization Yx—-BEWy (x,"G™). If it did that, then it would
be inconsistent, since that contradicts (2). Since it only proves each case,
however, it is just w-inconsistent.

The hypothesis of w-inconsistency can be weakened to simple inconsis-
tency, as was first shown by Barkley Rosser.

Theorem 11.2 (Rosser’s Theorem). Let ¥ be a consistent theory containing Q.
Then there is a formula A that is undeciable by ¥, i.e., for which ¥ ¥ A and also
¥ A

The relation: x is the negation of y, is obviously recursive. So, since X%
contains Q, there is a formula NEG(x, y) that represents this relation in X.
Now consider the formula:

BEWs (y, x) A =3z(z < y A Jw(NEG(x, w) A BEWx(z,w)))

which I shall abbreviate RBEW (y, x). This says that y is a X-proof of x such
that there is no ‘earlier” proof of x’s negation (i.e., no such proof with a
smaller Godel number). Say, in that case, that y is a Rosser proof of x. Then
the key observation that lies behind the proof of Rosser’s Theorem is that
RBEW(y, x), just like BEWx(x, y), represents the relation “y is a Z-proof of
x”—note, not “y is a Rosser proof of x” but just “y is a proof of x”. It’s easy
to see, assuming (as we will be) that X is consistent, that RBEW (y, x) defines
X-proof. For, if X is consistent, then, if #n codes a X-proof of m, then there is
no X-proof of m’s negation, let alone one less than n. So

BEWx (1, m) A =3z(z < n A Jw(NEG(m, w) A BEWs(z, w)))

is true.
To see that RBEW(y, x) represents “y is a X-proof of x” take a bit more
work. We will need the following facts about Q.

Proposition 11.3. For each n,

@) QFVx(x<n=x=0Vx=1V---Vx=n—1)
(ii) QFVx(x<nVx=nVn<x)

When n = 0, (i) should be read as: Q - Vx(—x < O).60

Proof. We prove the first part and leave the second as Exercise 15.20.

The proof is by induction on n. For the basis, then, we must show that
Q F Vx(—=x < 0). We have already done this, however, in the course of
proving Proposition 4.2.

For the induction step, then, suppose

QFVx(x<n=x=0Vx=1V---Vx=n-1)
60That is, we treat the empty disjunction as being logically false (since none of its disjuncts

are true).
37

We want to show that
QFVx(x<n+1=x=0Vx=1V---Vx=n)

Right to left is easy: We know from Proposition 42 that Q - m < n+1
whenever m < n+1.But0 <n+ 1,50 QF 0 < n + 1 and similarly for the
othercases. S0 QF0<n+1AT<n+1A---An <n+ 1, whichlogically
impliesx=0Vx=1V---Vx=n—-1—-x<n+1

Left to right is harder. We work in Q. (See 4.2.) Suppose that x < n + 1.
We want to show that x = 0 or x = 1 or...x = n. So we shall suppose
further that x # 0, and we shall show that x = 1 or...x = n. Now, since
x<n+1, by Q8 we have 3z(Sz + x = n + 1), so fix some such z. As before,
n+1is S(n), so Sz + x = S(n). Butif x # 0, then by Q7, x = Sy, for some
y; hence Sz + Sy = S(n), and so by Q4, S(Sz+y) = S(n) and so by Q2,
Sz +y = n. Thus, 3z(Sz + y = n), and so y < n, by Q8. By the induction
hypothesis, then, y = 0or...ory =n — 1. So Sy = SO or...or Sy = S(n — 1).
Thatis: x = 1or...or x = n, as promised. O

Note carefully, again, what Proposition 11.3 says, namely, that Q proves each
case of the displayed formula. Thus, for example,

QF Vx(x <S8550=x=0Vx=S50Vx=_S550)
QF Vx(x < SSSO0V x = S550V SSS0 < x)

and so forth for the other cases. This is not to say that Q proves the general-
ization:

VyVx(x <yVx=yVy < x)
Indeed, Q does not prove the ‘law of trichotomy’. (Exercise!)

Proposition 11.4. Let X be a consistent theory containing Q, and suppose BEWy,(x,)
represents L-proof in . (or in Q). Then, if ¥ is consistent,®" the formula

BEWs(x,y) A =3z[z < x A Jw(NEG(y, w) A =BEWx(z, w))]
also represents X-proof in X (or in Q).
Proof. We need to show that, if p codes a proof of y, then ¥ proves
BEWx(p,y) A —3z[z < p A Jw(NEG(y, w) A =BEWx (z,w))]
and, if it does not, then X proves
—{BEWsx(p,y) A =3z[z < p A Jw(NEG(y, w) A =BEWx(z,w))]}

The latter is trivial: If p does not code a proof of y, then X proves =BEWx (p,),
and the second conjunct is irrelevant.

61 This hypothesis is essential: If 3 is not consistent, then RBEW (y, x) does not represent
X-proof. Can you see why?
38

Suppose, then, that p does code a proof of the formula with Godel number
y; let that formula be A. Then, of course, % proves BEWy, (E, TA™). So we
need to see that X also proves

=3z(z < p A Jw(NEG("A7, w) A =BEWg(z,w)))
for which, as before, it is enough to see that it proves
-3z(z < p A ~BEWg(z, —A")
But, as before (again), it will do so if it proves each of:
—BEwWg (0,7 A7)
-BEwg (1,7 =A7)

—\BEWZ(p -1, ’_—|A—')

And none of the mentioned numbers does code a proof of = A, since X is
consistent. So X does prove all of these sentences, and we are done. O

Proof of 11.2. In the original proof of the first incompleteness theorem, we
diagonalized on —3y(BEWx(y, x)). This time, we will diagonalize instead
on —~3y(RBEW(y, x)), i.e., on

—3y[BEWx(y, x) A =3z(z < y A FJw(NEG(x, w) A BEWx(z,w)))]

So, by the diagonal lemma, there is a formula R such that X proves:

(1) R= ﬁay[BEWZ (y, I—R—')/\

—3z(z < y A Jw(NEG("R™, w) A BEWx (z,w)))]
Thus, R ‘says of itself’ that it is not Rosser provable, i.e., that there is no
proof of it, unless there is an ‘earlier” proof of its negation.

We suppose throughout that X is consistent.

I claim first that £ ¥ R. Suppose Z does prove R. Let p be the Godel
number of some such proof. Then, since RBEW(y, x) represents L-proof in
2

Y+ BEWx(p,"R™) A =3z(z < p A Jw(NEG("R™,w) A BEWx(z, w)))
But then by logic X proves
X Jy[BEWs(y,"R™") A =3z(z < y A Jw(NEG("R™, w) A BEWx(z,w)))]

So, by (1), so £ = =R, contradicting the consistency of X.
I claim, second, that £ ¥ —R. For suppose X does prove —=R. And observe
that, since "—R™ is the negation of "R, X also proves:

Vy(NEG("RV,y) =y ="-R")
So, by logic, X proves:

) R = —-3y[BEWx(y,"R™) A =3z(z < y ABEWx(z,"=R"))]
39

Now, if we follow the original proof of the first incompleteness theorem, we
can reason as follows. If ¥ is consistent, then no number actually codes a
proof of R. So, since RBEW(y, x) represents X-proof, we have:

> + -RBEW(0, R
> + -RBEW(T, R7)

S+ =RBEW(p, "R7)

and, by (1), that
Y Jy(RBEW(y,"R™))

which would make ¥ w-inconsistent. So RBEW(x,y) can also be used
to prove the original form of the first incompleteness theorem, just as
BEWy (x, y) can.®?

But we can do better. For suppose that p is the Godel number of a proof
of =R. (We've supposed there is one.) Then we can show at one fell swoop,
as it were, that no number > p codes a Rosser proof of R. That is because, if
n > p, then we already know that there is a proof of =R below 1, namely,
the one coded by p. So we do not need to ‘check” all the infinitely many
cases above p, as we did in the original proof: We can just bundle them all
together. To put it slightly differently, we can prove the right-hand side of
)

3) —3Jy[BEWx(y,"R™") A =3z(z < y ABEWx(z,"=R™))

by trilemma: None of the proofs with Godel numbers less than p are proofs

of R, since X is consistent; certainly the proof of —R is not a proof of R; and

no proof of R that might come “after” the proof of =R can be a proof of R

that is not preceded by a proof of =R, since it is preceded by the proof coded

by p. What we need to see now is just that all of that can be “verified” in X.
Now (3) is logically equivalent to:

(4) Yy[BEWs(y,"R™) — Jz(z < y A BEWs(z, R)]

Since, by Proposition 4.2, Q - Vy(y < pVy = pV p < y), we can divide
this up into three cases. X will prove (4) iff it proves:

(4a) Vyly < p ABEWg(y,"R7) — 3z(z < y ABEWx(z,"=R"))]
(4b) Vyly = p ABEWg(y,"R7) — Jz(z < y ABEWg(z,"—R7))]
(4c) Vy[p < y ABEWx(y,"R7) — Jz(z < y ABEWg(z,"—=R7))]
6211 fact, any formula that represents “y codes a X-proof of x” will do. That is all we

assumed about BEWy (y, x) in the proof of Theorem 11.1.
40

But X clearly proves (4c), since it proves:

BEWs(p,"—R™)
and so proves
p<y— (p<yABEWz(p,"=R"))
and therefore proves
p <y — 3z(z <y ABEWg(z,"—R"))

which logically implies (4c).
Moreover, since p is not (the code of) a proof of R (it’s the code of a proof
of —R), X proves that it isn't:

—BEwx(p,"R")
and so proves
Vy(y = p = —BEWx(y,"R7))

which logically implies (4b), since it implies that the antecedent of (4b) is
never true.
Finally, since

QFVy(y<p=y=0vy=1v---vy=p-1)
X proves (4a) iff it proves each of:
BEwWx(0,"R™) — Jz(z < 0 A BEWx(z,"—R"))
BEWy(1,"R7) — Jz(z < TABEWg(z,"=R"))

©) :
BEWs(p —1,"R™) — 3z(z < p — 1 ABEwg(z," —R"))

But X is consistent, so there is no X-proof of R. In particular, neither 0, nor 1,
..., hor p — 1 codes a Z-proof of R. So:

>+ -BEwg (0, R")
Y+ -BEWg(1,"R7)

(6)

>+ -BEwg(p — 1, R7)

and each of the formulae in group (5) follows logically from the correspond-
ing formula in group (6). So £ does prove (4a), and we are done. O

12. UNDECIDABILITY

The first incompleteness theorem is often stated in a somewhat different
way, which we shall now formulate.
41

Definition. A theory X is said to be decidable if the set of its theorems, CI(X),
is recursive, and undecidable otherwise.

Y. is essentially undecidable if not only is ¥ undecidable but every consistent
theory © extending . is also undecidable.

Proposition 12.1. Every complete formal theory is decidable.

Proof. Let X be a complete formal theory. If X is inconsistent, then it is
trivially decidable. (All sentences are theorems!) So suppose X is consistent.

Here, then, is a procedure for deciding whether A is a theorem of X.
Starting with 0, look successively at each number and see if it is the code of
a X-proof of either A or —A. We can decide this because X is a formal theory,
so we can tell whether something is a Z-proof or not, and we can tell what
its last line is. Since X is complete, there is either a X-proof of A or a X-proof
of A, and we will eventually find one or the other. If we find a proof of
A, then of course A € X. If we find a proof of - A, then A ¢ X, since X is
consistent. O

Note that this same sort of construction shows that there is a recursive
procedure for listing the theorems of any formal theory X: One simply
works one’s way through the proofs, writing down their last lines. The set
of theorems is therefore said to be semi-recursive or recursively enumerable.

Lemma 12.2. Let X be a consistent theory containing Q. Then the set of X's
theorems, CI(X), is not representable in L.

That is: There is no formula THMy (x) of the language of X such that, when-
ever ¥ proves A, it also proves THMz (" A™), and whenever it does not prove
A, it proves “THMx ("A™).

Proof. Suppose there were such a formula. Then by the diagonal lemma
there is a formula G such that

Y+ G=-THMg("G")
The rest of the proof is Exercise 15.21. O
Theorem 12.3. Q is essentially undecidable.

Proof. If Q were decidable, then CI(Q) would be recursive. But then it would
be representable in Q, contradicting Lemma 12.2.

Now let X be a consistent theory extending Q. If X were decidable, then
CI(X) would be recursive and so representable in Q and so representable in
2, again contradicting Lemma 12.2. g

13. GODEL’S SECOND INCOMPLETENESS THEOREM

The first incompleteness theorem tells us that no ‘sufficiently strong’,
consistent formal theory decides every question that can be posed in its
language. Here, a ‘sufficiently strong’ theory is one that is capable of rep-
resenting every recursive function. The second incompleteness theorem

42

gives us a specific, and interesting, example of such an incompleteness.
Informally, what it says is that no ‘sufficiently strong’, consistent formal
theory can prove its own consistency.

How should we formalize the statement that X is consistent? The obvious
formulation would be something like: 3yVx(—BEWx(x,y)), i.e.: Thereis a
formula that is not X-provable. When the language is that of arithmetic,
however, it is traditional to formalize it as:

(Cony) —|E|X(BEWZ(X, 0= T—I))

So long as X proves 0 # 1, it will be inconsistent if it proves 0 = 1. And
of course any theory containing Q, or even just containing Q1, will prove
0#1.

The second incompleteness theorem, which one often sees called just ‘G2,
can then be stated as:

Theorem 13.1 (G2). If X is ‘sufficiently strong’, then £ ¥ Consy.

Exactly what “sufficiently strong” means in this case is a nice question, about
which we shall say a word below.

Note that it is perfectly possible for a consistent theory to prove its own
inconsistency. This is, in fact, a consequence of G2. For if ¥ does not prove
Cong, then the theory ¥ U {=Cony } is consistent. And it can be shown that
2 U{~Cong} proves =Cong ;_con,}-

However, we do have the following:

Theorem 13.2. Let X be an w-consistent formal theory containing Q; let BEWx (x, y)

be a formula that represents X-provability in ¥; and let Cony, be the corresponding
consistency statement. Then X does not prove —Consy..

Proof. Suppose X% = —~Conyg, i.e., suppose

(1) Y+ Ix(BEwg(x, 0=1"))

Since X is consistent, there is, in fact, no 2 proof of 0 = 1. So since BEWy (x, v)
represents X-provability in X, we have:

) Y -Bewg(n," 0=1")

for each n. But then (1) and (2) show X to be w-inconsistent. (]

A complete proof of Theorem 13.1 would be extremely long, and one
almost never sees anyone work through all the details. But the general
shape of the proof is fairly easy to understand. In the proof of the first
incompleteness theorem, we constructed a formula Gy, by diagonalizing on
—3Jy(BEWx(y, x)):

X Gy = ﬂﬂy(BEWZ(y,'_GZ—'))

We then showed that, if ¥ is consistent, then > does not prove Gs. That is,
we proved:

*) Cony — Gy,
3

We did not, of course, prove (*) in X; we just proved it informally. But
one might well ask in what kinds of theories this kind of statement can be
proven: Could it, for example, be proven in Q, or in PA? There is no real
chance it will be provable in Q, since there are so many simple facts that Q
does not prove. But it turns out that this statement is provable in PA, for any
Y. you like. In particular, PA proves:

(H-) Conpp — Gpa

But if (**) is provable in PA, then Conpa had better not be provable in PA,
since then PA would prove Gpa and would be inconsistent: We know from
the proof of the first incompleteness theorem that, if PA is consistent, it does
not prove Gpa. More generally, no consistent theory ¥ capable of proving
(*)—that is a first stab at what ‘sufficiently strong’ means in the statement of
G2—can prove Cong, since then it would prove Gs.

Careful analysis of the proof we gave of (*) shows that it appeals only to
three facts about provability. To make them easier to state, let us abbreviate
Jy(BEWx(y, x)) as: PRVy(x). Then the three facts we used were informal
versions of the following statements:

D1: If A is X-provable, then X I PrRvy(TA™)

D2: ¥+ PrRvy("A — B") APrRVy("A7) — PrVy("BT)

D3: X F Prvg(TAT) — Prvg("Prvg(TAT))

These are known as the Hilbert-Bernays-Lob derivability conditions.

It is easy to see that (D1) will be true so long as BEWx(x, i) represents prov-
ability in 2. For suppose that A is 2-provable, and let p be the Godel number
of some proof of it. Then ¥ - BEwx(p,"A™), so £ F Jy(BEws(y,"A7)), by
logic.

(D2) is sometimes known as ‘formalized modus ponens’: It says that %
knows that provability is closed under modus ponens. How hard this is to
prove will depend upon exactly what formalization of logic we are using.
But most such formalizations have modus ponens as a rule of inference, so
the proof will just formalize the following argument:

Proof of (D2). Suppose PRvy("A — B™) and PRVy("A™7). Then there is an
m-term sequence ¢; each of whose members is either a logical axiom or an
axiom of %, or else ‘follows’ from earlier members of the sequence by one
of the ‘rules of inference’, and whose last member is A — B; and there is a
similar n-term sequence ¢, whose last member is A.

Now consider the n + m + 1 member sequence T whose first m members
are the members of 07 and whose next n members are the members of 0,
and whose last member is B. Then 7 is a X-proof of B. That is: It is a
sequence each of whose members is either a logical axiom or an axiom of %,
or else is the result of applying one of ‘rules of inference’ to earlier members
of the sequence, and whose last member is B. That each of the first m terms
satisfies this condition follows from the fact that 07 does; that each of the
next n terms does, from the fact that 0, does; and that the last term of the

44

sequence, B, satisfies the condition follows from the fact that it is the result

of applying modus ponens to the m™ and (m + n)™ members, which are just
A — Band A. O

This is very elementary reasoning. As it turns out, it cannot be formalized
in Q, because Q is too weak to prove that we can always stick sequences
together in this way (that we can always ‘concatenate’ them, as it is said).
But this can certainly be done in PA.

Finally, (D3) is just the formalization of (D1): It says that X knows that,
whenever a formula is X-provable, then it is X-provable that that formula is
Y-provable. It is the proof of (D3) that is so tedious that one almost never
sees it carried out in detail. We will not even try to describe the proof here.

What we will do is show how (D1)—(D3) allow us to prove the second
incompleteness theorem. A ‘sufficiently strong’ theory is thus one that
allows us to prove the derivability conditions.

Lemma 13.3. Let X be a consistent formal theory that satisfies the derivability
conditions:

D1: If A is X-provable, then ¥ I PRy (TA7).
D2: X+ Prvy("A — B") APRVy("A7) — PrVy("BT)
D3: X F PrRvy("A™) — Prvy("PrRVy(TAT))

Then . does not prove Consy.
The proof is easiest if we first make this observation.

Proposition 13.4. Let X be a consistent formal theory that proves (D1) and (D2).
Then if Ay, ..., Ay logically imply B, X proves:

PrVg("TA1) A--- APRVy(TA,") — PrVg("BT)

We'll only need the case where n = 2, so we'll prove it and leave the
generalization as Exercise 15.22.

Proof. 1f A and Aj together imply B, then A} — (A — B) islogically valid,
and so certainly >~ - A; — (A2 — B)). So, by (D1),
2 F PRVZ(I—Al — (Az — B))—I)
So, by (D2),
P PRVz('—Al—') — PRVZ(I—AQ — B—')
so by (D2) again,
Y+ Prvy(TA1T) — (PRVy(TA2T) — PRy (TBT))
But then
X Prvy(TA17") APRVy(TAy7) — PrV:(TBT)

by logic. O

As said earlier, the proof of G2 is simply a formalization of the reasoning

used in the proof of (the first half of) G1.
45

Proof of 13.3. Consider the formula =PRVy(x), and diagonalize to get a for-
mula G such that

(1) L+ G=-Prvy("G")
in which case certainly
Y+ G— —Prvy("G")

By (D1):
Y+ Prvg("G — —PRrRvy("G™))
and so by (D2):
() Y PrVy("G") — PrRvg (" =PrVy("GT))
But by (D3):
3) Y+ Prvy("G") — PrVy("PrVy (TG)

But PRVy("G™) and ~PRvy("G™) logically imply 0 = 1, so by Proposition
13.4,
Y I PRVy("PRVs("G™) ") APRVy("=PRVs("GT)7) — PrRVg('0=1")
so putting that together with (2) and (3), we have, by logic:
Y PrRVs("GT) = Prvg('0=1")

or, to put it differently:

Y Prvy("G") — —Cong
and so, by logic:

Y Cony — —PRrVy("G")

But then, by (1):
Y+ Cony — G

Hence, if X = Cong, then also X - G, contradicting the first incompleteness
theorem. O

So no consistent formal theory that proves the derivability conditions proves
that it does not prove that 0 = 1.
But something much stronger is true.

Corollary 13.5. Let X be a consistent formal theory that proves the derivabilty
conditions and contains Q. Then for no formula A does ¥. prove =PRvVy("A™).

Proof. By Proposition 13.4, ¥ proves PRvg('0=1") APRvg('0 #1") —
Prvy("A™). But since ¥ contains Q, certainly ¥ 0 # 1, so by (D1), &
proves PRvy ("0 # 1), and so X proves PRvy ("0 =1") — PrRvg(TA7). Le,.
X F =Cong — PrRVy("A™) and so, by logic, £ - =PRvVy(TAT) — Cong. So
if > F =Prvy(TA™), then X - Cong, contradicting G2. O

Corollary 13.6. Let X be a consistent formal theory that proves the derivabilty
conditions and contains Q. Then X does not prove

Prvy((0=1")—=0=1
46

Proof. If it did, then, since it contains Q and therefore proves 0 # 1, it would
prove —Prvy("0=1"),1ie.,Cony, contradicting G2. O

This is somewhat surprising. One might have thought, for example, that PA,
say, should prove PRVpa("A™) — A, for all sentences A and, in particular,
for 0 = 1. After all, shouldn’t what is provable be true? Well, yes, of course,
but what 13.6 tells us is that PA cannot prove this fact about itself.

Indeed, something yet stronger is true. Obviously, if X actually proves A,
then of course it will prove PRvy ("A7) — A, by simple logic: B — A always
follows from A. So what would be helpful is if X proved PRvy(TA7) — A
in at least some cases in which it does not already prove A. The following
result tells us that this never happens, unless X is inconsistent.

Theorem 13.7 (Lob’s Theorem). Let X be a consistent formal theory that satisfies
the derivabilty conditions. Then if . - PRz ("TA7) — A, then £ F A.

Proof. Consider the formula PRvy(x) — A. Diagonalize to obtain a formula
C such that:

(1) YFC=Prvg("C") — A
and so, of course:
LFC— (Prvg("CT) — A)
Hence, by (D1):
X+ Prvy("C — (PrRVg("CT) — A))
and so, by two applications of (D2):
Y F Prvg("CT) — (PRVg("PrVg("CT)) — PrVg(TAT))

But, by (D3):
Y+ PrVg("CT) — PrVg ("PrRVy(TCT))

So the last two yield:
Y+ Prvy("CT") — Prvy(TAT)

And if, as we are assuming, X - PRy ("A™) — A, then we have:

(2) YEPrVg("CT) — A
But then (1) gives us:

~+-C
and so, by (D1):

L Prvg("CT)

But then, by (2):

YHA
as claimed. 0

47

It's easy to derive G2 from Lob’s Theorem. suppose & - —PrRvg (' 0 =1").
Then, trivially, & F PrRvy('0=1") — 0 = 1, and then Lob’s Theorem
implies that £ - 0 = 1, in which case X is inconsistent. So one might well
see Lob’s Theorem as a kind of generalization of G2.

It is also possible to derive Lob’s Theorem from the second incomplete-
ness theorem, a fact first noted around 1966 by Saul Kripke, but since
rediscovered by several other people.

We know that, if £ U {C} proves some sentence B, then X itself proves
C — B, and of course the converse is also true. So, in particular, Z U {C}
proves 0 = 1iff > proves C — 0 = 1. We will need to know below that X is
strong enough to prove such elementary facts, that is, that:

L+ PRVyycy("BT) = PRV ("C — B7)
and so, in particular:
ZFPRVy 1 (0=1)=Prvg(C—0=1)
In fact, what we need to know is just the left-to-right direction:
2+ PRVy 1 ((0=1") = Prvy((C—0=1")

As with the second derivability condition, how hard this is to prove will
depend upon how we formalize the logic. But this will certainly be provable
in any sensible theory capable of proving the derivability conditions, which
of course we already need for the second incompleteness theorem.

Proof of Lob’s Theorem from G2. Let X be a consistent extension of Q that satis-
fies the derivability conditions. Suppose £ - PRvy("A™) — A, and suppose
for reductio that ¥ does not prove A. Then the theory X U {—A} is also
consistent. Moreover, since £ U {—A} is an extension of X, certainly:

YU{-A}FPrVy("TA") = A

and so by logic:
(1) YU{-A}F —-Prvg("AT)
since obviously £ U {=A} - —A. However, since I 0 # 1, by logic, again:

LF(-A—=0=1)— A
so by (D1):

YFPrRVE("(mA—=0=1) = A"
whence by (D2):
Y FPrvg('=A = 0=1") = Prvg(TAT)
Since ¥ U {—A} is an extension of ¥, again:
YU{=A}FPrRVg('-A —-0=1") — Prvg("A7)

and so by (1):
SU{=A}F -Prvg((mA—=0=1")
48

But we are assuming that X is strong enough to prove:
S+ PRVy 43 ((0=1") = PrRvg((mA—=0=1")

and, again, > U { = A} will prove the same thing, since it is an extension of

2. So
SU{-A} F =PRVy 4y ((0=T")
ie,
2 U {—\A} F COI’IZU{ﬁA}
contrary to G2. O

Consider the formula

d
BEWs(x,y) A —=3z(z < x A Jw(NEG(y, w) ABEWs(z,w))) = BEWs (x,y) A —=3z[z < x AJw(NEG(y, w) .

used in the proof of Rosser’s Theorem. As we saw earlier (see Proposition
11.4), BEWs(x,y) A =3z(z < x A 3w(NEG(y, w) A BEWx(z,w))) represents
the X-proof relation whenever BEWx(x,y) does. So we can formulate a
notion of ‘Rosser consistency’ that corresponds to the notion of ‘Rosser prov-
ability’. Toward that end, let RCONy abbreviate =3y (BEWx (y, 0= T—') A
-3z(z < y A Jw(NEG("0 =1, w) A BEWg(z,w))). Then we have the fol-
lowing.

Theorem 13.8. Let X be a consistent theory. Then Q - RCONy.

It follows of course that Q - RCONgq and that, if £ contains Q, then
2~ + RCONsy.

Proof. Unpacking all the definitions, what we need to show is that Q proves
—3Jy[BEWs(y, 0 =1")A—3z[z < yASw(NEG('0 =1, w) A -BEWx(z,w))]

What this says, note, is that there is no Z-proof of 0 = 1 that is not preceded
by a proof of 0 # 1. But Q can prove this by the same ‘divide and conquer’
strategy used in the proof of Rosser’s Theorem itself. See that proof for the
details. I'll just sketch the general idea.

Since ¥ contains Q, it does prove 0 # 1. So let p be the least Godel
number of a proof of it. Then of course Q knows that p is a Z-proof of 0 # 1.
Moreover, Q knows that all numbers are either less than p, equal to p, or
greater than p. But, since X is consistent, none of the finitely many numbers
less than p can be the Gddel number of a proof of 0 = 1, and Q will be able
to verify that fact. And certainly p itself isn’t a proof of 0 = 1, since it is
actually a proof of its negation. Finally, just by logic, any number greater
than p that is the Godel number of a proof of 0 = 1 will be greater than a
number that is the Gédel number of a proof of 0 # 1, namely, p. O

What I'm calling ‘Rosser consistency” is thus completely trivial. It's no
achievement for a theory to be able to prove its own Rosser consistency. Q
already proves, of each consistent theory, that it is Rosser consistent.

49

But Theorem 13.8 does raise an important question, namely: When we
say that no sufficiently strong consistent theory proves its own consistency,
what exactly do we mean by “proves its own consistency”? What exactly,
that is to say, are these ‘consistency statements’” of whose non-provability
G2 is supposed to assure us? Well, consistency statements are just built,
in the obvious say, from notions of provability: To say that a theory is
consistent is just to say that it does not prove 0 = 1; so we would know
what a consistency statement was if we knew what a ‘notion of provability”’
was. More precisely, if we knew when to say that some formula BEWy(x, y)
appropriately formalized the relation: x is a X-proof of y, then we could just
say that a sentence is a consistency statement if it built from such a formula.

In the case of the first incompleteness theorem, it is enough for us to
assume that BEWx (x, y) represents the relation: x is a X-proof of y. Given
just that much, we can show that, if X is a consistent extension of Q, then
the result of diagonalizing on —3y(BEWx(y, x)) will be undecidable by .
That is, the arguments we gave above establish the following;:

Theorem 13.9. Let X. be an w-consistent extension of Q and suppose that BEWx, (x,)
is a formula that represents in X the relation: x is a X-proof of y. Then the sentence
G that is X-provably equivalent to =3y(BEWx(y,"G™)) is not decidable by X.

What Theorem 13.8 shows, however, is that this is too weak a condi-
tion for the purposes of G2. It is not true that, if BEWy(x,y) represents
in ¥ the relation: x is a X-proof of y, then the consistency statement built
from that formula will not be provable in ¥, no matter what reasonable
conditions we put on X. The problem is not that BEWx(x,y) A =3z(z <
x A Jw(NEG(y, w) A BEWx(z, w))) does not represent the proof relation; it
does. So what conditions do we need to put on BEWy(x, y) if we are to get a
satisfying, general statement of G2?

That is a good question.

14. TARSKI'S THEOREM
We now prove Tarski’s Theorem.

Lemma 14.1 (The Liar Paradox). Let X be a theory in which diagonalization is
representable and so for which the diagonal lemma holds. Suppose that there is a
formula T (x) of the language of ¥. such that, for every sentence A of the language
of X:

(T) YFA=T("A")
Then X is inconsistent.

Proof. Let T(x) be as in the statement of the theorem. Consider: =T (x). By
the diagonal lemma, there is a sentence A such that X proves:

1) A=-T(TAY)
50

But since X proves all instances of the T-schema, we have that ¥ proves:

() A=T(A)
But if ¥ proves both (1) and (2), it also proves
A=-A
and so is (clasically) inconsistent. O

There is another way of stating this result. First, we need a definition.

Definition. A theory X contains its own truth-predicate if there is a formula
T(x) of the language of X such that, for every sentence A of that language,
Y. proves: A=T("TA").

The restatement is then as follows.

Corollary 14.2. Let X be a consistent theory in which diagonalization is repre-
sentable. Then X does not contain its own truth-predicate.

Proof. Immediate from the Liar Paradox. O
Note that we have not assumed that ¥ is a formal theory. So we get:

Corollary 14.3. True Arithmetic does not contain its own truth-predicate. That
is, there is no formula T (x) of the language of arithmetic such that all instances of
schema (T) are true (in the standard interpretation).

Proof. Arithmetic is the theory whose members are all the sentences of the
language of arithmetic that are true in the standard interpretation. As we
saw earlier, arithmetic is closed: So its theorems are just its members. And so,
for every sentence B of the language of arithmetic, B is true in the standard
interpretation iff Arithmetic B.

Now, suppose there is a formula T'(x) in the language of arithmetic such
that, for every sentence A of that language, ‘A = T("A™)’ is true in the
standard interpretation. Then, for every sentence A, Arithmetic - A =
T("A™). But arithmetic extends Q and so represents all recursive functions
and so represents diagonalization. So that contradicts corollary 14.2, since
arithmetic is consistent. 0

Theorem 14.4. (Tarski’s Theorem, Special Case) Arithmetical truth is not arith-
metically definable. That is: There is no formula T (x) of the language of arithmetic
such that T(n) is true in the standard interpretation when and only when n is the
Godel number of a sentence of the language of arithmetic that is itself true in the
standard interpretation.

Proof. Suppose there were such a formula. Let A be an arbitrary sentence of

the language of arithmetic. A is either true or false in the standard interpre-

tation. If it is true, then T("A™) must be true in the standard interpretation,

whence ‘A = T("A™)’ is true, as well. Similarly, if A is false, then T("A™) is

false and so “A = T("A™)’ is again true. So all instances of schema (T) are

true, contradicting corollary 14.3. O
51

Here’s an application of the generalized diagonal lemma. Suppose ¥
represents diagonalization. Let Aj(x1,x2) be: =T (x2), and let A (x1, x2) be:
T(x1). By the generalized diagonal lemma, there are sentences A and y such
that X proves:

@A=-T("u")

®yp=T("A")
Suppose now that X proves:

QA=T("AT)

(@p=T(u")
Then ¥ is inconsistent. For we have A =y T("A™) =y p =) T("p") =g
—A, where the subscripts indicate to which of (a)—(d) we are appealing.

This is known as the Postcard Paradox: Imagine a postcard on one side of
which is written “The sentence on the other side of this card is false”; on the
other side is written “The sentence on the other side of this card is true”.

52

15. EXERCISES

Many of the exercises that follow are not particularly difficult. The goal is
thus not just to complete the problem: to prove the proposition, or whatever
it might be. Rather, the goal is to produce an elegant proof of the proposition:
one that, as far as possible, makes it clear precisely why the proposition is
true. A good proof has a narrative structure: It tells a story, the story of why
something is true. So you should aim, even in the simplest problems, to
produce something that is not just ‘right’ just elegant.

Exercise 15.1.

(i) Show by induction that, in the standard interpretaton of the language
of arithmetic, n always denotes n.

(i) Show that n + m always denotes the sum of n and m.

(iii) Show that n x m always denotes the product of n and m.

Exercise 15.2. Prove Proposition 3.2.

Exercise 15.3. Since we have not said what formal system of deduction we
are using, the proof above of Proposition 3.3 tacitly appeals several times to
soundness and completeness. Re-write the argument to make those appeals
explicit.

Exercise 15.4. Prove Proposition 3.3 purely syntactically for some system
of deduction with which you are familiar (e.g., that of Goldfarb’s Deductive
Logic) or for the one described in Appendix A.

Exercise 15.5. Prove parts (4)—(7) of Proposition 4.2.

Exercise 15.6. Show that ‘Vx(0 + x = x)’ is not a theorem of Q. (Hint: The
domain will need to be expanded, so that it contains not just the natural
numbers but also some ‘rogue’ objects for which addition behaves strangely.)

The model you give is likely to falsify other arithmetical truths, or easily
to be adapatable so that it does so. Play around with this a bit, and prove
that Q doesn’t prove some other simple arithmetical facts.

Exercise 15.7. Prove Proposition 4.4.

Hint 1: It is enough to show that Q proves every true equality of the form
‘t = n’, where n is a numeral. This, together with what we already know
from Proposition 4.2, immediately implies Proposition 4.4. Why?

Hint 2: The proof uses induction on the complexity of terms. What
Proposition 4.2 says is that Q proves every true equality of the form ‘t = n’,
where t contains only one operator (S, 4, or x). What you need to do is
show that this holds no matter how many operators t contains.

Exercise 15.8. Prove proposition 4.12. Note that you may reason informally
(i.e., you do not have to give a fully formal proof). Just make sure you are
appealing only to axioms of PA (and logic).

53

Exercise 15.9. Show that PA proves the commutativity of addition, i.e.,
VaVy(y + x = x+y). The proof uses induction on x, so the inductive
formula is Vy(y + x = x + y), and you want to show that PA proves Vy(y +
0=0+y)andVy(y+n=n+y) — Yy(y + Sn = Sn +y). You may again
reason informally.

Hint: There are a variety of ways to do this, but you are likely also to
need to prove some lemmas along the way, e.g., VxVy(Sx +y = x + Sy).

There are many more exercises of this type that one can do, for example,
the fact mentioned in the text that x < 1 — x < x2.

Exercise 15.10. A theory X is said to be maximal consistent if it is maximal
with respect to consistency. Le., ¥ is maximal consistent iff X is consistent
and, for every theory O in the same language, if X is a proper subset of ©,
then @ is inconsistent. Prove that every complete (consistent) closed theory
is maximal consistent, and that every maximal consistent theory is both
complete and closed.

Exercise 15.11. Show that condition (ii) in Definition 6.3 actually follows
from condition (i).

Note: There are two things that make this more difficult than it might
seem at first. (a) (i) is an ‘each’ statement whereas (ii) is an ‘every’ statement.
(b) (i) talks about numerals whereas (ii) has nothing to do with numerals.

Exercise 15.12. Prove Proposition 6.10.
Note: To do this problem correctly, you need to write down a formula that
shows, e.g., that the chacteristic function is definable.

Exercise 15.13. Prove Theorem 6.11 using Theorem 5.6. Better yet, but
optionally, prove it for the case of many-place functions, and not just for
one-place functions.

Exercise 15.14. Prove the second part of Lemma 8.1.

Exercise 15.15. Prove Corollary 8.2. (Hint: Since this is a Corollary of Lemma
8.1, it is supposed to be an easy consequence of it.)

Exercise 15.16. Let X be an arbitrary theory. Prove the following facts about

its closure:

(i) CI(2)is closed.

(i) CI(Z) = CI(CI(X)).

(iii) CI(XZ) is the smallest closed theory containing ¥.. Le., if > C ® and ®
is closed, then CI(X) C ©.

Exercise 15.17. As mentioned in the text, there is a formula Wff(x) that
represents “x is a well-formed formula” in Q. Consider the diagonalizations
of this formula and of its negation:

QF W = Wf(TW)
QF V= —WHf(TV7)
54

Show that W is provable in Q and that V' is refutable in Q. Can you think of
other amusing examples of this kind?

Exercise 15.18. (Challenging) Prove Lemma 10.3.

Exercise 15.19. Let X and G be as in the proof of Theorem 11.1. Show that
Y. U {—G} is consistent but w-inconsistent. Show, moreover, that G is true
(i.e., true in the standard model).

Exercise 15.20. Prove the second part of Proposition 11.3.
Exercise 15.21. Complete the proof of Lemma 12.2.

Exercise 15.22. Prove Proposition 13.4 in full generality.

55

APPENDIX A. THE SEQUENT CALCULUS

A sequent is an expression of the form: Ay, ..., A, = B. We think of the
formulae to the left of the arrow as describing a set, so they can be freely
re-arranged, and each formula need be written only once.®> We shall use
capital Greek letters to abbreviate sequences of formulas, thus: 2~ = A.

A derivation is a list of sequents each of which is either a basic sequent of
the form A = A or else follows from earlier sequents by one of the rules
below. A derivation of A from X is a derivation whose last lineisI' = A,
where I' C 3. This allows for the possibility that > might be infinite.

Note that, for each logical connective, there are two rules for it. These
are known as introduction and elimination rules. The introduction rule for a
given connective tells you how, most fundamentally, to derive a formula in
which that is the main connective. The elimination rule similarly tells you
how, most fundamentally, to derive something from a formula in which that
is the main connective.

A=A IfT' = Aand A DT, then
(Basic Sequents) A=A
(Thinning)
(—+) IA=B (—) = --A
A A= —-B S I=A
F,A = —A
(V+) r=A (V-) rA=2=C
I'=AVB A, B=C
®=AVB
(V+4) r—3B ~ILA®=C
I'=AVB
(A+) r=A (A=) '=AANB
A= B S I=A
A= ANB
(A=) I'=AANB
. I'=B

63This condition can be relaxed and, in some logics, is. So, more generally, one might
think of the expressions on the left as a sequence and have rules (so-called ‘structural’ rules)
permitting to be re-ordered and for repetitions to be deleted. Some logics (so-called ‘multiple
conclusion’ logics) also permit multiple formulas on the right. In that case, the sequent is
read as saying, roughly: If all the formulas on the left are true, then at least one formula on
the right must be true.
56

(—+) IA=B (—-) I'=A—B

. I'=A—B A=A
I, A= B
(=+) OQ=t=t (=-) I'= A(s)
A=s=t
S T,A= At)
(F+) T = A (&) T,A(y)=B
I'= JxA(x) A = JxA(x)
-~ I,A=B
(V+) I'= A(y) (V-) I = VxA(x)
oI = VxA(x) I'= A(t)

Note: In the identity and quantifier rules, t and s can be any term, subject
to restrictions on capturing; y can be any variable, subject to the condition,
in 3—, that it not be free in I" or in B, and in V-, that it not be free in T'.

Example Deductions.
Vx(Fx — Gx),3x(Fx) = 3x(Gx)

(1): Vx(Fx — Gx) = Vx(Fx — Gx) Basic
(2): Vx(Fx — Gx) = Fa — Ga V-
(3): Fa = Fa Basic
(4): Vx(Fx — Gx),Fa = Ga (2,3)— —
5): Vx(Fx — Gx), Fa = Jx(Gx) (4)3+
(6): Jdx(Fx) = Jx(Fx) Basic
(7): Vx(Fx — Gx),3x(Fx) = 3x(Gx) (5,6)3—
JyVx(Lxy) = Vx3Jy(Lxy)
(1): Vx(Lxa) = Vx(Lxa) Basic
(2): Vx(Lxa) = Lxa (HV—
3): Vx(Lxa) = Jy(Lxy) (2)3+
(4): Vx(Lxa) = Vx3y(Lxy) (B)V+
(5): JyVx(Lxy) = JyVx(Lxy) Basic
(6): JyVx(Lxy) = Vx3y(Lxy) (4,53—
Vx(Jy(Ayx) — Axx),VxVy(Lxy — Axy) = Vx(Jy(Lyx) — Jy(Ayx))
(1): Lau = Lau Basic
(2): VaxVy(Lxy — Axy) = Vx(Lxy — Axy) Basic

(3): VxVy(Lxy — Axy) = Vy(Lay — Aay) (V-
57

(4): VxVy(Lxy — Axy) = Lau — Aau (3)V—

(5): VaxVy(Lxy — Axy), Lau = Aau (14)— —

(6): Jy(Lyu) = Jy(Lyu) Basic

(7): VxVy(Lxy — Axy),3y(Lyu) = Aau (5,6)3—

(8): VxVy(Lxy — Axy), Hy(u) = Ju(Ayu) (7)3+

9): Vx(Jy(Ayx) — Axx) = Vx(Jy(Ayx) — Axx) Basic

(10): Vx(Jy(Ayx) — Axx) = Jy(Ayu) — Auu 9)V—

(11): Vx(y(Ayx) — Axx),VxVy(Lxy — Axy),3y(Lyu) = Auu (8,10)— —

(12): Vx(3y(Ayx) — Axx),VxVy(Lxy — Axy), Jy(Lyu) = Jy(Ayu))(11)3+
(13): Vx(Jy(Ayx) — Axx),VxVy(Lxy — Axy) = Jy(Lyu) — Jy(Ayu))

(12)— +
(14): Vx(Jy(Ayx) — Axx),VxVy(Lxy — Axy) = Vx(Jy(Lyx) — Jy(Ayx))
(13)V+

58

REFERENCES

Boolos, G. (1993). The Logic of Provability. New York, Cambridge University
Press.

Boolos, G. S., Burgess, J. P, and Jeffrey, R. C. (2007). Computability and Logic,
5th edition. Cambridge, Cambridge University Press.

Boolos, G. S. and Jeffrey, R. C. (1989). Computability and Logic, 3d edition.
New York, Cambridge University Press.

Kreisel, G. (1972). ‘Informal rigour and completeness proofs’, in I. Lakatos
(ed.), Problems in the Philosophy of Mathematics. Amsterdam, North Holland,
138-86.

Smith, P. (2011). ‘Squeezing arguments’, Analysis 71(1): 22-30.

Tarski, A., Mostowski, A., and Robinson, A. (1953). Undecidable Theories.
Amsterdam, North-Holland Publishing.

59

	1. Languages
	1.1. Basic Syntax
	1.2. Induction on the Complexity of Expressions
	1.3. More About the Language of Arithmetic

	2. Theories
	2.1. Languages and Theories
	2.2. Derivation and Implication

	3. Some Important Properties of Theories
	4. Arithmetical Theories
	4.1. Robinson Arithmetic is Weak
	4.2. Robinson Arithmetic is Strong
	4.3. -Incompleteness
	4.4. Peano Arithmetic and True Arithmetic

	5. Comparing the Strength of Theories
	6. Representability
	7. Recursiveness and Representability in Q
	8. Gödel Numbering
	9. Formal Theories
	10. The Diagonal Lemma
	11. Gödel's First Incompleteness Theorem
	12. Undecidability
	13. Gödel's Second Incompleteness Theorem
	14. Tarski's Theorem
	15. Exercises
	Appendix A. The Sequent Calculus
	Example Deductions

	References

