PREDICATIVE FREGE ARITHMETIC
AND ‘EVERYDAY’ MATHEMATICS

RICHARD G HECK JR

The primary purpose of this note is to demonstrate that predicative
Frege arithmetic naturally interprets certain weak but non-trivial arith-
metical theories. It will take almost as long to explain what this means
and why it matters as it will to prove the results.

1. FREGEAN ARITHMETICS

The sole non-logical axiom of Fregean arithmetics is the principle
generally known as HP:!

Nz :A(x) = Na: B(z) = IRVaVyVzVw(Ray AN Rzw — x =z =y = w) A
Va(A(x) — Jy(Rxy A B(y))) A
Vy(B(y) — Fz(Rey A A(z)))]

HP asserts that the number of As is the same as the number of Bs just in
case the As can be correlated one-one with the Bs. Fregean arithmetics
are thus theories of cardinal numbers.

Since HP quantifies over relations, the logic of a Fregean arithmetic
has to be some sort of second-order logic, and how much arithmetic
we can interpret will depend upon how strong that logic is. Now, the
strength of second-order logic derives from the so-called comprehension
axioms,? each of which states, in effect, that a given formula defines
a ‘concept’ or a ‘relation’: something in the domain of the second-order
variables. These axioms take the form:

AFVx[Fx = A(x))
IFVaVy[Foy = Az, y)]

and similarly for formulae of increasing arity. The weakest second-order
logic, which has no such axioms, adds essentially nothing to first-order
logic. At the other extreme, we have ‘full’ second-order logic, which has

Here Nz : ¢z’ is a ‘variable binding term-forming operator’ (vbto): It attaches to an
open formula to create a term. An alternative formulation uses a functor ‘#’ that attaches
only to variables, thus: #F. I prefer to use vbtos because it makes the definitions and
actual argumentation much simpler. The results proven here do not, however, seem to
depend upon this choice (though there are other results that do depend upon it). T'll
continue to confine remarks about this matter to the footnotes.

2There are other axioms one can also consider, such as various choice principles, but
these will not play a role here.
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comprehension for every formula in which ‘F’ does not occur free. Sys-
tems of intermediate strength place various restrictions on the formulae
that can appear on the right-hand side. Thus, ‘predicative’ second-order
logic has comprehension only for formulae containing no bound second-
order variables, and I1} second-order logic has comprehension only for IT}
formulae, that is, for formulae of the form VF - - - VG ¢, where ¢ contains
no second-order quantifiers.

Full Frege arithmetic (FA) is full second-order logic plus HP. As is now
well-known, it is strong enough to interpret full second-order arithmetic,
or ‘analysis’.? But the proofs of the key results here—the existence of
successors, sums, and products—require only II} comprehension (Heck,
2011a), so I11-FA interprets I1}-PA, and, indeed, the parallel extends up
through the analytical hierarchy: IT.-FA interprets II.-PA. The converse
is also true: II.-PA interprets II.-FA (Linnebo, 2004). We get just as
much induction as we are prepared to buy with comprehension.

2. INTERPRETATIONS, NATURAL AND UNNATURAL

When I speak of ‘interpretation’ here, I mean what Tarski, Mostowski,
and Robinson (1953) called ‘relative interpretation’.* A relative inter-
pretation of a target theory 7 into a base theory B is based upon a
translation from the language of 7 into that of B: of £+ into £z. The
translation consists of two parts: (i) ‘definitions’ of the primitives of L
in terms of those of L£3; and (ii) a specification of a ‘domain’ by some
formula §(z) of L. These induce a translation from formulae of L7 to
those of L;: The primitives are translated as specified by (i), and the rest
happens compositionally, with quantifiers being ‘relativized’ to J(x), so
that Va(¢p(x)) becomes: Va(d(z) — ¢tx), where ¢!(z) is the translation of
¢(x). Such a translation supports a relative interpretation if, under this
translation, axioms of 7 go over to theorems of 3,% so that theorems of
T also go over into theorems of B.% It then follows, among other things,
that, if 5 is consistent, so is 7.

The interpretation of analysis in full FA is ‘natural’ in the sense that
the ‘definitions’ used in the translation are themselves ‘natural’: that
is, they have some reasonable claim actually to count as definitions in

3This was first noted, though without proof, by Allen Hazen (1985), in his review of
Frege’s Conception of Numbers as Objects (Wright, 1983). Boolos (1998a) was the first to
publish a proof, in 1987. An improved version can be found in the second appendix of the
paper he and I wrote together (Boolos and Heck, 1998). That appendix is due entirely to
Boolos.

4Visser (2009b, §2) gives a precise account of what an interpretation is. He also
considers much more sophisticated notions of interpretation than we will need, but part
of the point here is precisely that we do not need to use anything very sophisticated.

5We also need B to prove that the domain is non-empty and, if there are constants
and function-symbols, to prove closure conditions with respect to the domain.

6This is because of the ‘compositional’ nature of the translation.
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something other than a purely formal sense. For example, the usual
‘definition’ of ‘0’ is:
04 Ng: (x # x),

which seems pretty reasonable. The definitions of predecession and of the
concept of a natural number, which we shall consider shortly, are more
controversial, but they still have at least some claim to be ‘natural’ in this
sense. Of course, there is in general no requirement that the translation
on which a relative interpretation is based should be ‘natural’, and there
are plenty of cases where it is not. One familiar example would be the
interpretation of syntax in arithmetic via Gédel numbering.

Our interest here is in predicative FA, and the goal is to show that
we can naturally interpret certain weak but non-trivial arithmetical
theories in it. If we do not restrict ourselves to ‘natural’ interpretations,
then this result does not now need proving. John P. Burgess (2005, ch. 2)
has already shown that predicative FA interprets Robinson arithmetic
and so, by well-established results, interprets stronger theories still,
such as IA.” From a philosophical point of view, however, there might
seem to be an element of cheating in Burgess’s argument. Consider,
for example, the proof that every number has a successor. If we define
predecession and the concept of a natural number in the usual way:

d
Pmn EfEFEIy[n:Nx:Fa:/\Fy/\m:Na::(Fa:/\m#y)}

d
Nn LVP[FO AVZ(Fa A Poy — Fy) — Fnl

then, as Linnebo (2004) shows, we cannot prove that every natural
number has a successor. The obvious sort of argument by induction fails,
because the induction would have to be on Jy(P{y). Since this formula
contains a second-order quantifier (in the definition of P), we do not
have comprehension for it in predicative FA and therefore do not have
induction for it either. We can still interpret a theory that proves that
successors exist by changing our definition of what a natural number
is, in effect, restricting the natural numbers to the numbers that do
have successors.? But, as Linnebo (2004, p. 172) notes, . . .it would be
exceedingly implausible to claim that anything like [this] notion of a
natural [number] is involved in our ordinary arithmetical knowledge”.

"Results closer to the one proven here have been obtained by Visser (2009b; 2011),
but he is not concerned with ‘natural’ interpretations, either.

8Linnebo (2004, pp. 172-3) raises questions about whether Frege’s definiton of prede-
cession is ‘natural’ in the sense at issue here. His worries concern the logical complexity
of the definition: the fact that it is ¥i. I have argued elsewhere, however, that its
complexity is something of an illusion (Heck, 2011d, §12.1) and so shall not discuss the
matter here.

9This makes it sound easier than it is. Burgess (2005, §2.2) gives an excellent account
of the details of this kind of construction, known as the shortening of cuts, which is
originally due to Robert Solovay.
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Something similar happens in the cases of addition and multiplication.
Addition can be defined in the following ‘natural’ way:*°

A(a,b,c) dEfEIFEG[a:Nx:Fx/\b:Nx:Gx/\
—3Jx(Fz A Gz) Nc=Nz:(Fz V Gr)]

Sums thus reflect the cardinalities of disjoint unions. Again, however,
we have no hope of showing that every pair of natural numbers has
a sum that is also a natural number, or even that sums always exist.
The only strategy that suggests itself is to argue by induction, and the
restriction to predicative comprehension will again frustrate the attempt.
As before, we can still interpret a theory that says that every pair of
natural numbers has a sum by changing our definition of what a natural
number is, in effect, simply restricting the domain to the numbers that
do have sums. Surely, however, our concept of natural number does not
include a clause specially restricting it to numbers that have sums and
products.

Burgess’s interpretation of Q in predicative FA is thus not ‘natural’
in the sense isolated above.!! (Not that he intended it to be.) The defi-
nitions of zero, predecession, addition, and multiplication (see below) are
‘natural’ enough. But the definition of natural number is not ‘natural’ at
all. Rather, the definition has been gerrymandered to give us what we
want.

As it happens, there is a way around these problems in the case of
successor (Heck, 2011e), but, so far as I can see, there is not much hope
that there will be a way around them in the case of addition and mul-
tiplication.'? Prior to the work reported below, therefore, the strongest
mathematical theory we knew could ‘naturally’ be interpreted in a pred-
icative version of FA was the simple theory of successor:

101f we want to work with the functor formulation, then this needs to be rephrased,
since in many cases below we will not have comprehension for disjunctions. One way to
rephrase it is:

A(a,b,c) gEIFHGEIH[a:Nx:Fa:/\b:N:Jc:Gm/\c:Nx:Hm/\
—3z(Fz A Gz) AVz(Fz V Gz = Hz))

It is precisely this sort of indirection that leads me to prefer the formulation with a vbto,
at least in contexts like this one, where we are talking about ‘natural’ definitions and
interpretations.

Hyjisser suggests that “it would be interesting to see whether there is a coherent
foundational idea corresponding to the methodology of shortening cuts”. I agree, but at
present we have, as he also says, “no hint what such an idea could look like” (Visser,
2011, p. 116).

121 4o not actually have a proof that existence of sums cannot be proven in ramified
predicative FA, but I suspect that the model Linnebo uses to show that existence of
successor cannot be proven in (simple) predicative FA can be used to establish this
conclusion, since that model presumably shows that even n + 1 does not always exist.
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(1) =Fx(Nx A Px0)

(2) VaVyVz(Pzz ANPyz — x =)
(3) VaVyVz(Pzy APxz — y = 2)
(4) Vz(Nz — Jy(Ny A Pzy))

But this theory is trivial, in the sense that it is decidable (or, at least,
has a decidable extension). Until recently, then, we did not know how
naturally to interpret any non-trivial arithmetical theory in a predicative
form of FA. My primary purpose here is to remedy this situation by
showing that there are mathematical theories that can be naturally
interpreted in predicative FA and that are non-trivial, in the sense that
they are subject to Godel’s first incompleteness theorem and so are
essentially undecidable.

Why care about whether the interpretation is ‘natural™? Investigations
of FA have generally been driven not by purely technical concerns but by
philosophical ones. FA arrived on the philosophical scene when Wright
(1983) suggested that it might support a reformed logicism according to
which the basic truths of arithmetic are, though not logical truths, still
analytic or conceptual truths, since they are logical consequences of HP,
which is itself an analytic or conceptual truth. There is much to debate
here.'® But the present point is simply that any claim of this form needs
there to be some close relationship between the technical definitions and
the intuitive notions that are their inspiration. I do not mean, then, in
any way to disparage ‘unnatural’ interpretations, but only to note that
there is a kind of philosophical significance one might want the fact that
one theory can be interpreted in another to have, a kind of significance
that an interpretation cannot have, unless the definitions on which it is
based are ‘natural’.

It has even been suggested that HP may be of some psychological sig-
nificance, that HP may, as a matter of empirical fact, play a foundational
role in our ordinary mathematical knowledge (Decock, 2008; Pietroski
and Lidz, 2008; Heck, 2011a). It should be clear that, if mathematical
work of the sort undertaken here is to throw any light at all on the psy-
chology of arithmetic, it is especially important that the interpretations
we consider should be ‘natural’, in the sense that they are faithful to the
content of everyday mathematical notions.

Of course, the notion of a natural interpretation is not likely to be
subject to scientific explication, not in our present state of knowledge.
For the time being, then, it remains a philosophical notion, so judge-
ments about what is ‘natural’ will be controversial and defeasible, as

13The exchange between Wright (2001) and Boolos (1998b) is a good place to start.
See my book Frege’s Theorem (Heck, 2011c) for my own explorations.
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philosophical judgements tend to be. If we had a general theory of con-
cepts and their contents, we could presumably do better, since the notion
of naturalness could then be recast in psychological or semantic terms,
and the question whether some interpretation was ‘natural’ might then
become an empirical one. But we do not now have such a theory, not one
that commands much agreement, anyway. For the time being, then, we
are stuck doing philosophy.

There is another point in the same vicinity. Linnebo (2004, p. 168)
argues that, “...if Frege’s Theorem is to have this sort of philosophical
significance, . ..its proof must have at least a reasonable claim to being
just an explication of our ordinary arithmetical reasoning”. That is:
The proofs themselves must, in a related sense, also be ‘natural’. I am
sympathetic (Heck, 2011a, pp. 156—60; 2011b, §11.2)—though I am not
as sure as Linnebo is that Frege’s proof of the existence of successors
cannot claim this title.'* But the proofs to be given below, I think, pretty
clearly can. It does not follow, of course, that the results proven here
really do have the sort of significance that some of us have thought
Frege’s Theorem might have. (Naturalness is a necessary condition, not
a sufficient one.) What does follow is that at least some of the objections
that have been brought against such views simply do not arise if we
limit our attention to what we might call ‘everyday’ arithmetic. These
include the objections, originating with Poincaré, to Frege’s definition of
natural number, since no appeal to the concept of natural number will
be made in what follows.” They also include Linnebo’s worries about the
proof that successors exist, and about the inability of predicative FA to
deliver the existence of sums and products, since, as we shall see, plenty
of mathematics is available without these claims. I'll return to this topic
in the final section.

3. EXCEEDINGLY WEAK ARITHMETICS

As said, I aim to show that there are non-trivial arithmetical theories
that can be ‘naturally’ interpreted in predicative FA. That this might be
possible emerges from the following observation. Although predicative
FA does not prove that all natural numbers have successors, given the

14The underlying idea is simply that every natural number is the number of its
predecessors, i.e., n = Nz : (z < n), and this can be given a fairly simple, intuitive proof
that appeals only to basic facts about predecession and its relation to <. Indeed, such a
proof is given below for each individual case. An even better version might begin with
n =Nz :(1 <z Az < n), which is one of the basic facts about counting, and then proceed
to observe that Nz : (0 < z A « < n) will therefore be one more than n. Turning either of
these into a rigorous proof takes work, no doubt, but that is mostly because of the role
played by the ancestral in relating < to predecession.

15As it happens, I think this objection can also be met, since I think it is possible to
give a ‘natural’ definition of the ancestral: one that has some claim (as Frege’s does not)
to being intensionally correct (Heck, 2012, §7.7).

6



‘natural’ definition of that notion, it does prove that each natural number
has a successor. And, although it does not prove that all pairs of natural
numbers have sums, given the ‘natural’ definition of that notion, it does
prove that each pair of natural numbers has a sum. In fact, predicative
FA proves that the sum is what one would expect it to be. Similarly for
multiplication. That makes it plausible that predicative FA might natu-
rally interpret a version of the theory Tarski, Mostowski, and Robinson
(1953, pp. 52-3) called ‘R’.

The language of R is {0, S, +, x}, and it has as axioms all instances of
the following five schemes:!®

(R1) n+m=n+m

(R2) nxXm=mnxm

(R3) n # m, whenever n # m
(R4) r<n=x=0V---Vx=n
(R5) r<nvn<gzx

Here, n is the numeral for n, defined in the usual way:

6 gco’
n+1 4 ‘S ~n
As for <, we can take it to be defined in the usual way as well:

x <y i (z+zxz=y)

It is also possible to treat < as primitive, governed by the preceding as
an axiom, and one can even treat < as primitive as as governed only by
(R4) and (R5) as axioms. This difference will not much matter for our
purposes, though I shall make some remarks on it in the footnotes.

Though R is in many ways obviously very weak, there are other ways in
which it is surprisingly strong.!” All recursive functions are ‘numeralwise
representable’ in R. That is, given any recursive function ¢(x1, ..., xx),
we can find a formula ®(z1, ..., zk,y) such that R proves

d(ny,...,np,y) =y=m
whenever ¢(ni,...,nx) is indeed m (Tarski et al., 1953, pp. 56ff). This
is enough for Godel’s first incompleteness theorem, so R is essentially
undecidable (Tarski et al., 1953, pp. 60-61). Moreover, R is X1 complete:
Every true X; sentence is provable in R.

1636 R has infinitely many axioms corresponding to each of the schemes.

1"There are other reasons that R is interesting, too. Indeed, it was Visser’s fascinating
paper “Why the Theory R Is Special” (Visser, 2009c¢) that got me thinking about the
present topic.
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Now, it is obvious that we are not going to be able to interpret R itself
in predicative Frege arithmetic in any ‘natural’ way. This is because the
language of R features function symbols S, +, and x, and so the following
are logical axioms of R:

Vz3y(Sx = y)
VaVydz(x +y = 2)
VaVy3z(x X y = 2)

The whole problem here is that we cannot prove the existence of succes-
sors, sums, and products given the ‘natural’ definitions of these notions
(and of the concept of natural number), so we are not going to prove
(translations of) these logical axioms, so we are not going to interpret R
using those definitions.

Function-symbols are often inconvenient, for this reason: They mask
existence and uniqueness assumptions and, worse, build them into the
logic.'® We can make these assumptions explicit by reformulating R in a
purely relational language, thus arriving at the purely relational theory
R* with the following axiom schemes:

(ROe) Vay(P(x,y))

(ROu) VaVyVz(P(z,y) AP(z,2) = y = 2)]

(R1e) VaVy3z(A(z,y, 2))

(R1uw) VaVyVVw(A(z,y, z) AN Az, y,w) = z = w)
(R1%) A(n,m,n +m)

(R2e) VaVy3z(M(z,y, 2))

(R2u) VaVyVzVw(M(z,y, z2) AM(z,y,w) — z = w)
(R2%) M(n,m,n x m)

(R3%) n # m, whenever n # m

(R4%*) r<n=x=0V---Vx=n

(R5%*) r<nvn<gz

Here, P, A, and M are relational substitutes for S, +, and x, and so < is

defined as: z <y g Jz(A(z,x,y)). Since we do not have S, the numerals
also have to be redefined. We do this contextually, using Russell’s theory

18Bgolos used frequently to make this very complaint about the cardinality operator
Nz : ¢x. Since it is a convention of logic that function symbols denote total functions,
the mere use of this expression involves assumptions of existence and uniqueness. The
formulation of HP that he called “Numbers” (Boolos, 1998a, p. 186) is thus analogous to
what we are doing here.
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of descriptions:!®

0%y
wy(P(0,y))

n g wy3zy ... Fxn—1(P(0,21) A+« AP(zp-1,y)), forn > 1

=
Il

Thus, n means something like: the unique thing that is n P-steps down-
stream from zero. We know from (R0Oe) and (ROu) that, in each case, the
description is proper and, moreover, that P(n,n + 1).

By itself, of course, this does not help: It simply makes it clear where
the problem is. But it turns out that the essential undecidability of R
does not at all depend upon the availability of (ROe), (R1e), and (R2e), or
even of (ROu), (R1u), and (R2u). What we need to know is only, e.g., that
each pair of numbers has a unique sum, not that every pair of numbers
has a unique sum. That is, we can weaken R* to the theory R’ that has

the following axiom schemes:2°

(RO) Jz[P(n,z) AVy(P(n,y) — = = y)]

(R1) A(n,m,n +m) AVz(A(n,m,z) =z =n+m)
(R2') M(n,m,n x m) AVx(M(n,m,x) — o =n x m)
(R3) n # m, whenever n # m

(R4)) r<n=x=0V---Vx=n

(R5') r<nvn<gzx

Here, (R1’) incorportates (R1*) and immediately yields the relevant case
of (R1e), and it contains an additional conjunct that gives us the relevant
case of (R1u). The same is true for the various replacements for (R2).
There are a couple of different ways to see that R’ is essentially un-
decidable. One is simply to reflect upon the proof that every recursive
function is representable in R and to note that we nowhere need to know
that successors, sums, and products exist and are unique in every case.?!
It is enough that they should exist and be unique in each case. The other
is to note that R’ interprets R*, which trivially interprets R. The proof

19This is really equivalent to:
6 éf‘o?
n+1 2uy(Pn,y)

though unwinding this one takes more work.
20Note that (R1’) and (R2') say precisely that addition and multiplication are numer-
alwise representable.
21This kind of argument is worked out in detail by Hajek (2007), though he is
concerned with the stronger theory Q" that we shall meet in Section 7.
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does not involve sophisticated techniques. One need only arrange for
there to be a (unique) throwaway value in the cases where a unique value
does not already exist. One can do whatever one likes with S and x, but
some care is needed with addition, due to how < is defined.?? If we were
tolet a+b =0, if a + b is not already defined, then that would imply that
b < 0, which could invalidate (R4’). But it suffices to let a + b = b, since
that only implies that b < b, which will not cause problems.?3

4. INTERPRETING R{] IN ADJUNCTIVE FREGE ARITHMETIC

Our initial goal, then, is to show that R’ can be interpreted in predica-
tive Frege arithmetic. But we can do even better.

It was observed by Alan Cobham (1960) that, if we drop (R5) from R,
then the resulting theory Ry is still essentially undecidable.?* The same
is true of the relational version, R, which has as axioms all instances of
(RO)—(R4).25 And it turns out that R} can be naturally interpreted in a
version of FA whose logic is even weaker than predicative second-order
logic. Following Visser (2011), we might call it ‘adjunctive logic’. It has
the following six axioms:2%

(ale) AFVz(—Fx)

(ala) VEVy3dGVx(Gx = Fx V x = y)

(a2e) JRVzVy(—Rzy)

(a2a) VRY2Vy3QVVw(Qzw = Rzw V (z =z Aw =y))

(a3e) JRVaVyVz(—Rxyz)

(a3a) VRY2VyVudQVzVYuVo(Qzwv = RzwoV (2 = x Aw = yVv = u))

221f we treat < as primitive, of course, then this problem does not arise, and we can
do as we wish with addition, too. One might then simply note that the version of R’ in
which < is defined trivially interprets the version in which it is primitive: Just use the
definition of < as an interpretation of it.
23Thanks to Albert Visser for confirming all of this for me.
24T, interpret Ry in R, simply define:
r<"y=0<yAVuu<yAu#y— Su<y) =z <y

Then (R4) still holds, and (R5) can be proven (Jones and Shepherdson, 1983, p. 62). This
assumes, of course, that < is primitive, not defined. But if the version with < taken
as primitive is essentially undecidable, then so is the version in which it is treated as
defined. As noted earlier, the definition amounts to an interpretation.

By the way, Jones and Sheperdson (1983, pp. 62-3) go even further and show that the
theory with just the schemes (R2), (R3), and (R4) in the language x, <, with the numerals
treated as primitive constants, is also essentially undecidable. The argument involves
the use of an ingenious definition of addition and successor in terms of multiplication
due to Julia Robinson (1949). But that will not help us.

25This is because R interprets Ry, via the same construction as at the end of the
previous section.

26The list can be continued in the obvious way, but we shall need only this much.
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Adjunctive logic tells us that empty concepts and relations exist, and it
allows us to ‘adjoin’ an additional object to any concept we already have
(or a pair or triple, as the case might be, to any relation we already have).

Let ¢ be a disjunction of identity-statements: z = ¢; V.-V = ¢,.
Then (ale) and n applications of (ala) yield comprehension for ¢:

AFVe(Fr=x =tV ---Va=t,)
Similarly, instances of comprehension of the form
JRVzVy|Rzy = (x =t Ay=u1) V- V(x =t, Ny = uy)]

follow from (a2e) and (a2a), and the same holds for three-place relations.
Most of the concepts and relations we need to know exist will be of these
forms.

Let adjunctive Frege arithmetic (AFA) be adjunctive logic plus HP.
Then the claim is that R, can be ‘naturally’ interpreted in AFA. We have
already seen the definitions of zero, predecession, and addition, but not
yet the definition of multiplication. The idea behind that defintion is to
take M(Nz : Fo, Nz : Gz, Nz : Hz) to be true just in case there is a one-one
correspondence between H and the pairs we can form from the F's and
the G's. We do not have pairing in AFA, so we cannot do quite that, but
we can do something similar.

Think of the three-place relation Rxyz as if it were a function from the
pair <z, y> to z. We say that R correlates F' and G one-one with H just
in case, as such a function, R is one-one

YV Vy1 Va1 VeoVyaVze [Re1y1 21 A Rrayaze —
(T1 =22 Ath = y2) = 21 = 22
and it maps F' x G onto H:
VaVy[Fx A Gy — 3z(Hz A Rxyz)| A
Vz[Hz — Jz3y(Fx A Gy A Rxyz)]

R
Abbreviate the conjunction of these two statements as: F' x G ~ H. Then
we define multiplication as follows:

M(a, b, c) g JF3Gla = Nz : FeAb = No: GeNFH(FxG 2 Hhe = Nz : Hz))

The translation on which our interpretation is based is thus the one
given in Table 1 on page 12.27 There is no need to restrict the domain, so
the interpretation we shall in fact be giving is unrelativized.

Showing that these definitions allow us to interpret Rj is then straight-
forward. I shall illustrate by proving representative instances of each of
the various schemata. It will be clear enough that the other instances
can be proved similarly, but I shall omit the ugly proof that they all can

271f we had taken < as primitive, then we would also need to interpret it. We could
do so via its definition in terms of addition, if we wished, but a more ‘natural’ definition
11



0 ﬁNgv:alcyéac

Pab l JF3ylb=Nz:Fx ANFyAa=Nz:(Fx Ax #y)]

4

A(a,b,c) = FF3Gla=Nz:Fz ANb=Nz:Gx A

—Jz(Fx AN Gz) ANe =Nz : (FzV Gr)]

af

M(a,b,c) = 3F3G3H[a=Nz:Fr Nb=Nz:Gx Ac=Nz:Hz A

FxG& H
TABLE 1. The Interpretation

be (which is by induction, of course, in each case). I will do the case of
predecession in a little more detail than the others, so we can get a feel
for how these proofs go. The rest I shall do a bit more quickly.

4.1. Some Useful Lemmas.

Lemma 1. For each formula A(x), AFA proves:
Nz:A(z) =0 = —3Jz(A(z))

Proof. Left to right: By HP, some R correlates A({) one-one with ¢ # &.
Hence, Vz(A(z) — Jy(y # y A Rzy)), so ~3z(A(x)).

Right to left: Let Q¢n be the empty relation.?® If —3Jz(A(x)), then Q&n
correlates A(£) one-one with £ # £. So Nx: A(x) =Na:(x #2z)=0. O

Many of the arguments I am about to give would be easier if we knew
that Nz : ¢z was extensional, i.e., that

Va(A(x) = B(z)) - Nz: A(x) = Nz : B(z)

Boolos (1998d, pp. 279-80) calls this principle ‘Log’ on the ground that
it has a reasonable claim to be a truth of logic. It does indeed, but we
do not have it in AFA, there is no hope of our proving it, and it is best to
avoid it where we can. So I shall instead prove a meta-theorem that does
much of the work of Log.

would be:
a<*b gﬂFﬂG{a:Nx:Fx/\b:Nx:Gm/\
ARNVazVyVzVw(Rzz ARyw >z =z =y =w) A
Vz(Fx — Jy(Gy A\ Rzy)]}
which says that Nz : Fa < Nz : Gz if the F's can be mapped one-one into the Gs. We
can show that a < b — a <* b in simple FA. To prove the converse, we seem to need

predicative comprehension. Nonetheless, this alternative defintion is also adequate for
the proof of (R4’), as I shall note below.

2830 we need only (a2e) for this argument.
12



Lemma 2. Suppose that A(x) is a disjunction of identities. Let B(x) be
any formula. Then AFA proves:

Va(A(x) = B(z)) - Nz : A(x) = Nz : B(z)

Proof. Consider a simple case. Let A(¢) be: £ =0V ¢ = 1. Now let Qab
be: (a=0Ab=0)V (a=1Ab=1). Then Q exists, and it is easy to show,
using the fact that Vz(A(z) = B(z)), that Q correlates A({) one-one with
B(e). 0

A similar but more general result can be proven in much the same way.

Lemma 3. For any formulae A(x) and B(z), AFA proves:
Ve(A(z)=x=a1 V--- VI =a,)A
Ve(B(z)=x=bV---Vx=>by)A

/\(ai % aj) A\ /\(bZ % bj) —
i#] i#]
Nz :A(z) = Nz:B(x)

Proof. Let Qabbe: (a =a1 Ab=0b1)V---V (a=anAb=by,). O
We have a corresponding result for inequality.
Lemma 4. For any formulae A(x) and B(z), if m # n, AFA proves:

Ve(Alz)=x=a1 V- - VT =anm)A
Ve(B(z)=x=bV---Vx=>by)A
Nlai # aj) A N\ (bi # b)) =

i i
Nz :A(z) # Nz : B(x)

Proof 1t is a simple exercise in first-order reasoning to show that, under
the hypotheses of the theorem, if we assume that R correlates A(¢)
one-one with B(¢), then we can reach a contradiction. O

Lemma 5. For any formula A(z), and for each n, AFA proves:

Nz:(z=a1V---Va=a,) :Nx:A(x)/\/\(ai # aj) —
i#]
Fyr - Ayl N\ Wi # 9j) AV2(AR) = (= V-V 2 = yn))]
i#]
Proof. Assume the antecedent. Then some R correlates § = a1 V- V&=
a, one-one with A(¢). The y; are the images of the a; under R. Their
distinctness follows from the fact that R is one-one. The final clause

follows from the fact that R is onto. O
13



In the remainder of this section, then, we shall show that the instances
of (R0')—(R4’) can all be proven in AFA. Except in the case of (R2'),
multiplication, we shall need to know no more about numbers than is
contained in the lemmata just proven. This fact is of interest because
they can themselves be proven from something much weaker than HP,
namely, what I have elsewhere called HPJ (Heck, 2011a, p. 170):

Nz:A(z) =Nz:B(x) = JAM,(A(z), B(x))

Here, ‘JAM,(A(x), B(x)) means: There are just as many As as Bs, and
we may take it to be characterized by the following three principles:

(ZCE®")  —3z(A(x)) = [JAML(A(z), B(x)) = —3z(B(2))]

(APC#) JAMy(A(z), B(z)) A ~A(a) AN =B(b) —
JAM, (A (x)\/:z:—aB()\/x:b)
B(

(RPC*)  JAM,(A(z), B(z)) A A(a) A B(b) —
JAM, (A(2) Az # a, B(z) Az # b)

More seems to be needed for (R2'), however, because the definition of
multiplication is somewhat complicated.

4.2. Schemata (R0’) and (R3’). We now turn our attention to schema
(RO"). For reasons that will become clear, we will also establish, as we

proceed, the relevant instances of schema (R3').
The first instance of (R0’) is:

Jz(P(0,z) AVy(P(0,y) — = =1y))

We take x to be: Nz :x = 0. We first need to show that P(0,Nz:z = 0),
i.e., that

JF3y[Nz:(x =0) =Na:FyAFyAO=Nz:(z =0Az #y)]

We take F¢ to be: £ = 0, which exists by adjunctive comprehension, and
y to be: 0. So we need to prove:

Nz:(x=0)=Nz:(x=0A0=0A0=Nz:(z=0Az#0)

This is trivial, except for the last conjunct, and it follows from Lemma 1.

We now need to establish uniqueness. So suppose P(0,y); we want
to show that y = Nz :(z = 0). By the definition of P, for some F' and
z, we have: y = Nx: Fx, Fz, and Nz : (x # z) = Nx:(Fx/\x # z). B
Lemma 1, nothing falls under FE¢ A # z, so Fx = © = z, whence
Nz:Fx = Nz:(x =0), by Lemma 3.

It follows that: 1 = Nz:(z = 0); so we might as well abbreviate
‘Nz:(zx=0)as: 1.

We now dispose of an instance of (R3’), namely: 0 # 1, that is: Nz : (z #
x) # Nz : (x = 0). This follows from Lemma 1.

The next instance of (R0) is:

32(P(1,2) AVy(P(1,y) — 2 =v)
14



In virtue of what we just did, this is equivalent to:
Jz(P(Nz:(x =0),2) AVy(P(Nz: (x =0),y) > z=1y)
We take z to be: Nz:(z = 0V 2 = 1) and first prove that P(Nz:z =
0,Nz:(z =0V =1)), thatis:
JFJyY[Nz:(x =0Vae=1)=Nz:Fx A FyA
Nz:(x=0)=Nz:(Fzx Az #vy)]

We take FE tobe: £ =0V E =1, and y to be: 1. So we need to prove:
Nz:(zx=0Vz=1)=Nz:(z=0Ve=1)A(1l=0V1I=1)A
Nz:(x=0)=Nz:(z=0Vez=1)Ax#1)

The first two conjuncts are again trivial. The last will follow from Lemma
2 if we can show that Va(zx = 0= ((r =0V a =1) Az # 1)). But that
follows from 0 # 1, which is why we needed to collect that instance of
(R3).

We now need to establish uniqueness. So suppose P(Nz: (z = 0),y); we
need to show that y = Nz : (x = 0V = 1). By the definition of P, for some
F and z, we have: y = Nz: Fz, Fz,and Nz: (z = 0) = Nz : (Fz A x # 2).
By Lemma 5, there is exactly one thing, w, that falls under FE A € # z,
sofr=(r=zVex=w),soNz:Fr=Nz:(xr=0Vaz=1), by Lemma 3.

It thus follows that: 2 = Nz:(x = 0V = 1), so we can abbreviate
Nz:(zx=0Vz=1)as: 2. o o

Again, we collect a couple instances of schema (R3'): 0 # 2 and 1 # 2.
These follow from Lemma 4.

The pattern should now be obvious. n will quite generally abbreviate:
Nz:(x =0V---Vz =n—1). Its successor will be: Nz: (z =0V---Va =n).
We will then need to show that

PNz:(z=0V---Vz=n—1),Nz:(x=0V---Vz=n))
that is, that
JFFy[Nz:(x =0V ---Vo=n)=Nz:Fx AN FyA
Nz:(x=0V---Vz=n—1)=Nz:(Fzx Az #vy)

We take F€tobe: £ =0V ---V & =n, and y to be: n. So we have to prove:
Nz:(z=0V---Vz=n)=Nz:(z=0V---Vax=n)A
(n=0V---Vn=n)A
Nz:(z=0V---Vz=n—-1)=Nz:((xt=0V---Vae=n) Az #y)]
Only the last needs proving, and the relevant instances of (R3’) will

imply that:
Ve[(x=0V---Vez=n)Az#n)=(x=0V---Vz=n—1)]

We can then appeal to Lemma 2.
15



For uniqueness, the definition of P gives us F' and z such that y =
Nz:Frand Fzand Nx:(x =0V ---Vx =n—1) = Nz:(Fx ANz # z2);
we will need to show that y = Nx:(x =0V --- V2 = n). By Lemma
5, there are z1,...,x,, all distinct, that are all and only the things
that fall under FEANE # 2. So Fr = (z =x, V-~V =z, VI = 2),
and Lemma 3 and previously established instances of (R3’) imply that
Nz:Fx=Nz:(z =0V---Vz =n). The ‘new’ instances of (R3’) will then
follow from Lemma 4.

So that takes care of schemata (R0') and (R3’).

4.3. Schema (R1’). For schema (R1’), let us look at the case of 2+ 1 = 3:
A2, 1,2+ 1) AVz(A2,1,2) w2 =2+1)
In light of the preceding, this becomes:
ANz:(z=0vz=1),Nz:(x =0),Ne:(z=0Ve=1Vzr=2))A
Vy[ANz:(z=0VvVzx=1),Nz:(x =0),y) —
y=Nz:(z=0Vze=1Vaz=2)

We start by proving the first conjunct and so need to find F and G such
that:2°

(a) Ne:Fx=Nz:(z=0vVz=1)

(b) Nz:Gx =Nz:(z =0)

(c) —Jdz(Fx A Gz)

(d) Nz:(FxVGzx)=Nz:(z=0Vz=1Vz=2)

Take F¢ tobe: £ =0V ¢ = 1; take G¢ to be £ = 2. Then (c) follows from
various instances of schema (R3’). And (a), (b), and (d) follow from those
same instances and Lemma 3.

The proof of uniqueness is similar. Suppose that we have F' and G such
that Ne: Fx =Nz:(x =0Vax =1), Ne:Gzr = Nzx:x =0, -Jz(Fz A Gr),
and Nz : (Fz V Gz) = z; we want to show that

z=Nz:(z=0Vaex=1Vz=2)

i.e., that:

Nz:(FxVGzx) = Nz:(z=0Vax=1Vz=2)
By Lemma 5, there are f; and f> such that f; # f; and Fz = (z =
fiVz = f2), and there is a g; such that Gz = (x = ¢1). So Fz vV Gz =
(x=five= foVa=g),andsince ~Jz(Fz A Gx), f; # g;, for all 7, j. So
our conclusion follows from Lemma 3, yet again.

291t is here that we find the stumbling block to a general proof of the existence of
sums: We cannot show, quite generally, that such disjoint 7' and G exist. Even if we
had induction, we would not have it for 3F3G(-3z(Fz A Gz) A ...), due to predicativity
restrictions.
16



4.4. Schema (R2’). For schema (R2'), let us look at the case of 2 x 2 = 4:
M(2,2,2 x 2) AVZ(M(2,2,7) = 2 =2 x 2)
That is:
M(Nz:(x=0Vz=1),Nz:(z=0VvVz=1),
Nz:(z=0Vz=1Va=2Vax=3)A
VyIM(Nz:(z=0Vz=1),Nz:(z=0Vaz=1),y) —
y=Nz:(z=0Vez=1Ve=2Vz=3)
So we need to show that the ‘pairs’ we can form from { =0V ¢ =1 and
¢ =0V ¢ =1 can be correlated one-one with the objects falling under
E=0VvE=1VE{=2VE¢=23. This is simple. Just take Rabc to be:
(a=0Ab=0Ac=0)Va=0Ab=1Ac=1)V
(a=1Ab=0ANc=2)Va=1Ab=1Ac=3)
Then it is easy to show that R is one-one, in the relevant sense, and that
it correlates =0V =1land { =0VvE =1with =0vE=1VvE =2VvE =3.
For uniqueness, suppose there are F, G, H, and R such that Nz : Fz =
Nz:(x =0Vax =1),Ne:Gz =Nz:(zr =0Vaze =1),y=Nz:Hz, and

Fx@G 2 H. Then there will be hq, hs, hs, hy, all distinct, such that
Hx=(x=hiVa=hyVx=hsVz=hs). Wecan then use Lemma 3 to
conclude that Nz: Hx =Nz:(z =0Vz=1Vz=2Vz=3).

4.5. Schema (R4’). Finally, then, we need to look at schema (R4’). We
prove the instance:

x <2

r=0Vex=1Vvze=2
d

Recall that < is defined as: z <y g 3z(A(z, z,y)).

Right to left: This follows easily from instances of schema (R1’). In

particular: A(2,0,2), so 32(A(z,0,2), whence 0 < 2. Similarly, A(1,1,2),
so1<2;and A(0,2,2),s02 < 239

Left to right: Suppose n < 2,i.e.,n < Nx:(x = 0V x = 1). So, for
some z, A(z,n,Nz:(x = 0V x = 1)). By the definition of addition, for
some F' and G, we have: z = Nz: Fx, n = Nz : Gz, -3z(Fz A Gz), and
Nz:(FxVGz) =Nz:(x =0V az =1). So, by Lemma 5, there are distinct
a1 and ay such that Fx vV Gz = (r = a1 V = ag). There are then four

possibilities:

1) Gai N Gas

By Lemma 3, Nz:Gzx =Nz:(x =0Vx =1),ie,Nor:Gz =2,s0n = 2.
(i) Gai A —-Gas

301f we use the alternative defintion of < mentioned in note 27, then the argument
has to be slightly different: Simply consider the different cases and define one-one maps
fromé#£EE=0,andE =0V E=11into £ =0V £ = 1 explicitly.
17



Then Nz:Gx =1,s0n = 1.

(1) —-Gai A Gas

Again, n = 1.

1iv) —-Gai AN —-Gasy

Then Nz:Gz =0,s0n=0.Son=0Vn=1Vn=2, as wanted.?!

That completes the proof that R{ is naturally interpretable in AFA.

In fact, we can do a bit better: It is easy to show that zero has no
predecessor. For suppose P(n,0). Then, for some F' and y, 0 = Nz: Fz,
Fy,and n = Nz :(Fz Az # y). But, since Fy, 0 # Nz : Fz, by Lemma 1.
Contradiction. So =3y (P(y,0)).

5. Ro Is NATURALLY INTERPRETABLE IN SIMPLE FA

Since predicative second-order logic clearly proves the axioms of ad-
junctive logic, the foregoing establishes that (R0')—(R4’) are provable in
predicative FA, using the ‘natural’ definitions of 0, P, A, and M given
in Table 1 on page 12. I shall now show that all instances of schema
(R5’) are provable in predicative FA and, in fact, are provable in an even
weaker theory. In this case, we do need to restrict the domain, since
(R5') clearly assumes that z is a number.?? So we restrict the domain to
numbers: §(y) = IF(y = Nz : Fx).

It is implicit in the foregoing that AFA proves every instance of the
following:

31}1---11”[/\(% #£0))AVe(Gz=(x=vnV---Vz=uv,)] > Nz:Gx=n
i#]
This will prove useful.

We prove a representative instance of (R5'): n < 3V 3 < n. Since n is a
number, n = Nz : Fx, for some F'. There are four cases to consider:

(i) —Jz(Fx)
(i) i (Fxi AVy(Fy = 21 =1y))
(i) FzqJze(Faxy A Fro Axy # 2o AVY(Fy — 21 =y Vas =vy))

31Using the alternative definition of < from note 27 make things a little more compli-
cated. Suppose n < 2. Then for some F' and G, where n = Nz : Fz and 2 = Nz : Gz, there
is a one-one map from the F's into the Gs. The Gs are thus ¢g; and g3, distinct. Suppose
that there were f1, f2, and fs, all F's, and distinct. Then we will get a contradiction. The
rest of the proof is similar to that of (R5’) below.

32Alternatively, one could reformulate R itself with a predicate Nz, saying that x is
a number, and then define N accordingly.
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In case (i), Nz : Fz = 0; in case (i), Nz : Fz = 1; in case (iii), Nz : Fz = 2.
The relevant instances of (R4') then yield, in each case, that Nz : Fiz < 3,
son < 3.

@iv) 3%13%23.%3(1‘1 # To A\ T 75 3 Nxo #x3 AN Fary AN Fag A F:L‘g)

Let Gébe: € = 21VE =29V E = x3. Then Nz : Gx = 3. Let H¢ be: FENE #
x1 N & # 19 N E # x3, which exists by predicative comprehension. I claim
that A(Nz: Hz,Nz:Gxz,Nz: Fz), whence 3z(A(z,Nz:Gz,Nz: Fz)), so
32(A(z,3,n)) and therefore 3 < n. To prove the claim, we need only
note that nothing is both G and H, which is obvious, and that the rela-
tion of identity, which exists by predicative comprehension, correlates
H¢V GE one-one with FE, since Vo (Fr = (Hzx V Gx)).

That completes the proof of schema (R5).23

The reader will note that predicative comprehension was used at just
two points. The first was when we claimed that FEAE # 21 AE # 2o NE #
x3 exists. This appeal to predicative comprehension could be replaced by
an axiom of class subtraction:

VFYy3GVx(Ge = Fx ANz # y)

The second was when we claimed that the relation of identity exists. This

could be replaced by an appeal to the principle Log we met earlier:3*

Vz(A(z) = B(z)) - Nz: A(z) = Nz : B(x)

So the foregoing shows, as well, that R is naturally interpretable in AFA
plus the subtraction axiom and Log, which I'll call simple FA, or SFA. We
shall see that SFA actually proves quite a bit more, and that predicative
FA proves a lot more.

6. MORE RESULTS

SFA proves that predecession is one-one, that every number other than
zero has a predecessor, and that addition is commutative:

(i)  P(a,b) AP(a,c) > b=c
(i) P(a,c) AP(b,c) >a=b
(i) a # 0 — Jy(P(y,a))
(iv) A(a,b,c) — A(b,a,c)

We assume that SFA has substraction axioms for relations, as well as for
concepts.

33Essentially the same proof works for the alternative definition of < mentioned in
note 27.
34Alternatively one could prove Log from the assumption that the identity relation
exists: IRVaVy(Rzy =z = vy).
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Frege’s own proofs of the first three actually use no more than is
available in SFA. We prove (i) and leave the proofs of (ii) and (iii) to the
reader.

Assume the antecedent of (i). Then we have F' and v such that b =
Nz:Fz, Fv,and a = Nz: (Fx A z # v), and we have G and u such that
¢ = Nz:Gz, Gu, and @ = Nz: (Gzx Az # u). So Nz:(Fz Az # v) =
Nz:(Gz A x # u), and so, by HP, there is a relation R that correlates
FENE # v one-one with GEAE # u. If we knew that neither v nor u was in
the field of R, then we could simply define Qzy as: Rxy V (z =v Ay = u),
and it would then be easy to show that @) correlates F'¢ one-one with G¢.
We do not know that, but we can arrange for it. What we really want is:
(Rey Nz #vAy #u)V(x=vAy=u). And SFA knows that this relation
exists.?®

For (iv), suppose A(a, b, c). Then there are H and I such that:

a=Nz:Hx ANb=Nzx:Ie N-Jx(Hz ANlz)Nc=Nzx:(Hz V Ix)
We need to show that A(b, a, ¢), that is, that:
FFAGb=Nz:Fx Na=Nz:Gx AN —Fx(Fx ANGx) Nc = Na: (Fz V Gr)]
But if let F' be I, and G be H, what we need to prove is just:
b=Nz:lzANa=Nz:Hx AN—Jx(Ix NHx) Nc=Nzx:(IzV Hzx)

All we really need to know, therefore, is that Nx: (Hx V Iz) = Nz : (Iz V
Hzx). This follows from Log.

Suppose we now enrich SFA with comprehension for quantifier-free
formulae. Call this Boolean FA, or BFA. Then we can prove that multipli-
cation too is commutative and establish the uniqueness of sums:

v)  M(a,b,c) = M(b,a,c)
(vi) A(a,b,c) NA(a,b,d) - c=d

For (v), the work is simply showing that, if ' x G £ H, then, for some

Q,GxF g H. But we can define Qxyz as: Ryxz. That is, the relevant
instance of comprehension is: IQVxVyVz[Qryz = Ryzz].

For (vi), suppose the antecedent. Then we have F| and G such that
a=Nz:Fiz,b=Nz:Gz, ~Jx(FizAGzx), and ¢ = Nz : (FizVGhx). Also,
we have F, and G; such that a = Nz : Fox, b = N : Goz, -Jx(Fox A Gax),
and d = Nz : (Fax V Gaz). So there is a relation R that correlates the
F1s one-one with the Fys, and another relation () that correlates the G1s

351t would apear that we could avoid appeal to the subtraction axiom, and so carry
out the proof in AFA, if we reformulated HP so that the required relation R had only
F's in its domain and G’ in its range. (Frege proves this strengthened form of HP as
Theorem 453 of Grundgesetze.) I do not think that would cause any problems elsewhere,
but one would have to check.
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one-one with the Gss. The problem now is to ‘paste’ these together to get
a one-one correlation between Fi¢ V G1€ and F>¢ V Go£. Define Sxy as:

(Rxy A Fix A Foy) V (Qzy A Gixz A Gay)

The initial conjuncts are needed to ensure that S will be one-one. It
clearly works as advertised.

If, now, we really do make serious use of predicative comprehension—
meaning: for formulae containing only first-order quantifiers—then we
can prove the uniqueness of products and the associativity of addition:

(vii) M(a,b,c) AM(a,b,d) - c=d

(viii) A(a,b,u) AA(b, ¢,v) = A(u, ¢, z) = Ala, v, 2)%8

For (vii), M(a,b,c) gives us Fi, G1, and H; such that a = Nz: Fiz, b =
Nz:Giz, and ¢ = Nz : Hiz, and a relation R; such that F; x Gy ’% Hy;
similarly, M(a, b, d) gives us Fs, G2, and Hs such that a = Nx: Fhz, b =
Nz :Gox, and d = Nz : Hyz, and a relation Ry such that Iy x Go % Hs.
So Nz : Fiz = Nz : Fox, and Nz : Gz = Nz : Gox, and there is a ()1 that

correlates F1£ one-one with Fy¢, and a (), that does the same for G1£ and
Go€.

We now need to paste all these together to get a one-one correlation
between H:¢ and H»&. The following diagram illustrates how we can do
this:

Q1
Rl—l /_\ R2
H1*>F1><G1 FQXGQHHQ
\/f
Q2

So we define Sab as:37
JzIy[Rizya A Fz3w(Qrz2 A Qayw A Razwb)]

Predicative comprehension assures us of the existence of S, and it is easy,
but mind-numbingly tedious, to verify that it correlates H;£ one-one with
H¢.

For (viii), assume the antecedent. We prove the left-to-right direc-
tion. (The other direction is parallel.) So assume A(u,c,z). Then
we have F' and G such that v = Nz: Fz, ¢ = Nz : Gz, -3z(Fx A Gz),
and z = Nz:(Fz VvV Gz). Since A(a,b,u), we have H and I such that
a = Nx:Hz, b = No: Iz, ~Jx(Hz A Iz), and v = Nz:(Hz V Iz). So
Nz:Fx = Nz:(Hx V Iz). This last fact allows us to ‘split’ F' into two
parts: A part corresponding to H and a part corresponding to I. More

36Here,u =a+bandv=">b+c,sou+c= (a+b)+c,anda+v=a+ (b+c), so the
conclusion asserts that (a +b) + c=a+ (b+ ¢).
37n effect, the relation Q1£n A Q2Cv is correlating Fi x G1 one-one with F; x G2, so
we have a chain of equinumerosities.
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precisely, HP gives us a relation R that correlates F¢ with H¢V I€. Define
Fpx as: Fx A Jy(Rzy A Hy) and Frx as: Fa A Jy(Rzy A Iy). These exist
by predicative comprehension. It’s clear that —3z(Fyz A Fjz) and also
that R correlates Fy£ one-one with H¢ and F;£ one-one with I€. So, by
HP,Nx:Hx = Nz: Fyzx and Nz : Iz = Nz : Frx.

We are trying to show that A(a, v, z). To do so, we need to find J and K
such that: « = Nz :Jz,v = No: Kz, -3z(JrAKx),and z = Nz : (JzV Kz).
We can take J just to be Fiy. We define Kz as: Frx V Gz. Since =3z (Fz A
Gz) and -3z (Fix A Fyzx), -3z(Jxz A Kx). Moreover, since -3z (Frx A Gx),
A(Nz: Frz,Nz:Gz,Nz : (FrzVGx)), trivially. Since A(b, ¢,v), b = Nx : Frz,
and ¢ = Nz : Gz, we have v = Nz : (Frz V Gz), by the uniqueness of sums,
so v = Nz : Kz. Finally:

JxV Kr = FraV (Fgz VvV Gz) = Fz V G

So, by Log, Nz : (Jz V Kx) = Nz : (Fz V Gx) = z, and we are done.

The associativity of multiplication can be proven in a similar way,
though the argument is much more complicated. We can do even better:
distribution laws, such as a x (b4 ¢) = a X b+ a x ¢ can also be proven.
The details are ugly—even the properly relational formulations of such
claims are ugly—so I will spare the reader the details. But it is easy
enough to convince oneself of these claims by drawing pictures and noting
that we just need to rearrange one-one correlations for the proofs. Such
arguments just ‘feel’ predicative.

7. RELATIONAL VERSIONS OF Q

We have thus shown that predicative FA naturally interprets relational
versions of R and even somewhat stronger theories. Might something
similar be done for Q?2® It too can be formulated in a purely relational
language, and one can then ask the same sorts of questions about it that
we have asked about relational versions of R.

As it happens, a question in this vicinity was posed a few years ago by
Andrzej Grzegorczyk, who asked whether Q remains essentially undecid-
able if we do not assume that addition and multiplication are total. That
is, Grzegorczyk asked whether the theory Q~, which has the following
axioms:

(Q1) Va(Sz # 0)

(Q2) VaVy(Sz =Sy — = = y)

(Q3) Va(x # 0 — Jy(z = Sy)

(A) VaVyVzVw(A(z, y, z) AN Az, y, w) = 2z = w)

38Amazingly, this question failed to occur to me until it was posed by an anonymous
referee, who also pointed me in the direction of the relevant literature. What a helpful
report!
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(Q4) Va(A(z,0,x))

(Q5) VaVyVz[Fu(A(z,y,u) A z = Su) — Az, Sy, 2)]
(M) VaVyVzYw(M(z,y, z) A M(z,y,w) = z = w)
(Q6") Vo (M(z,0,0))

Q7 VaVyVz[Fu(M(z, y,u) A A(u, x, z)) = M(z, Sy, z)]

is essentially undecidable.

Hajek (2007) answered a version of this question, though he consid-
ered instead a slightly stronger theory Q" in which (Q5) and (Q7) are
strengthened to biconditionals:

(Q5") VaVyVz[Fu(A(z, y,u) A z = Su) = A(z, Sy, 2)]
Q™) VaVyVz[Fu(M(z, y, u) A A(u, z, 2)) = M(z, Sy, 2)]

Hajek carefully analyzed the proof that Q is essentially undecidable and
showed that the axioms of Q" suffice.?? Svejdar (2007) then answered
Grzegorczyk’s original question by showing that Q is interpretable in Q™
(and so, of course, in Q").

By itself, of course, this does not help us very much. Successor is
still assumed to be total in Q. As mentioned previously, however, we
can prove in ramified FA that every natural number has a successor,
where ‘natural number’ is defined as Frege would have us define it (Heck,
2011e). And this fact can be used, along with what we shall do shortly,
to show that Q~ and Q" can be naturally interpreted in ramified FA.
But ramified predicative second-order logic is itself somewhat unnatural,
so it is worth considering whether we might do without the totality of
succession.

The theories in which we will be interested here thus replace (Q1)—(Q3)
with the following:

(Pe) P(n,n+1)%

(Pu) VavVyVz(P(z,y) AP(z,2) = y = 2)
Q1) -3z (P(x,0))

(Q2") VavVyVz(P(x,2) AP(y,2) — . =y)
Q3" Va(z #0 — Jy(P(y,x)))

39Héljek also showed that the axioms of a certain fuzzy logic suffice.
40Another option here is to use the schema:

Hml-nﬂmn(POml/\ /\ PCL‘iiL‘i+1)

0<i<n

But that is equivalent to what is in the text, given how the numerals are defined.
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Numerals are again defined contextually. We also need to reformulate

(Q5) and (Q7) as:

(Q5%) VaVyVzYwlP(y, w) A Ju(A(z,y,u) AP(u,2)) — Az, w, z)]
(Q7%) VaVyVzYw[P(y, w) A Ju(M(z,y,u) A Ay, z, 2)) = M(z,w, z)]
and similarly for (Q5") and (Q7"):

(Q5") VaVyVYw[P(y, w) — Ju(A(z,y,u) A P(u, 2)) = Az, w, 2)]
Q7 VaVyVzYw[P(y, w) — Ju(M(z,y,u) A A(u, z,2)) = M(z,w, z)]

Call the resulting theories Q and Q];%, respectively. Obviously, these
theories are not finitely axiomatized, due to the fact that (Pe) is a schema,
so they lack some of the technical interest of Q and Q. But our interest
here is not primarily technical.

7.1. The Essential Undecidability of Q. I am confident that Qj, is
essentially undecidable. But a proof that it is appears to involve either us-
ing sophisticated techniques such as shortening of cuts or reconstructing,
as Hajek does, the proof that every recursive function is representable.
By contrast, we can show that QI}% is essentially undecidable in a very
straightforward way, namely, by showing that it contains R/, in the usual
sense that every axiom of R’ is a theorem of Q%. The argument is just an
adaptation of the one given by Tarski, Mostowski, and Robinson (1953,
pp- 53—4) to show that Q contains R.
Recall the schemes that characterize R’:

(RO Jz[P(n,z) AVy(P(n,y) — = = y)]

(R1) A(n,m,n+m) AVx(A(n,m,x) = =n+m)
(R2)) M(n,m,n x m) AVz(M(n,m,z) — z =n x m)
(R3") n # m, whenever n # m

(R4) r<n=x=0V---Vz=n—1

The instances of (R0’) are an immediate consequence of (Pe) and (Pu).
For (R1’), we need only establish the first conjunct of each instance, since
the second will then follow from axiom (A) of Q). But we know that
A(n,0,n), by (Q4’). And the following is an instance of (Q5’):

Vz[P(0,1) — Ju(A(n,0,u) A P(u,2)) = A(n, 1, 2)]

which reduces to:

3|

)] = A

AP(n,n+1), so A(n,1,n +1). Re-
,2,n + 2), and so forth.

,1,2)]

Vz[3u(A(n,0,u) A P(u, 2)
P

since P(0,1). But certainly A(n,0,n)
peating the argument shows that A(n
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The same sort of reasoning establishes the various instances of (R2').

We know that M(n,0,0), by (Q6'). By (Q7"),
Vz[P(0,1) — Fu(M(n,0,u) A A(u,n,2)) = M(n, 1, 2)]

and so

Vz[Fu(M(n,0,u) A A(u, n, 2)) = M(n, 1, 2)]
But we have that M(n,0,0) A A(0,n,n x 1), by (Q6') and (R1’), whence
M(n,1,n x 1). Repeating the argument shows that M(n,2,n x 2), and so
forth.

For (R3'), that 0 # 1 follows from P(0,1) and (Q1’). Since P(1,2), w
have: 323y(P(x,y) A P(y,2)). But =323y(P(x,y) A P(y, 1)), since if P(y, ),
then y = 0, by (Q2’). And so forth.

For (R4’), consider first:

< 0=x=0
The right-to-left direction follows from an instance of (R1'). So suppose
32(A(z,x,0)), and suppose x # 0. The following is an instance of (Q5'):

(H1) P(y,z) — Ju(A(z,y,u) AP(u,0)) = A(z,,0)
Since z # 0, P(y, x), for some y, by (Q3’), so we must have:
Su(A(z,y, u) A P(u,0))

for that same y. But that contradicts (Q1’).

So suppose B B _

r<n=x=0V---Vz=n
We want to show
r<n+l=xz=0V---Voz=n+1

Again, the right-to-left direction follows from instances of (R1’). So sup-

pose 3z(A(z,z,n + 1)), and suppose z # 0. The following is an instance

of (Q5'):s

(H2) P(y,z) — Ju(A(z,y,u) AP(u,n+1)) = A(z,z,n+ 1)

Since z # 0, P(y, z), for some y, by (Q3’) again, so we must have:
Ju(A(z,y,u) AP(u,n + 1))

for that same y. So u = n, by (Pe) and (Pu), and so y < n. Hence, by the

induction hypothesis,y =0V ---Vy=n,sox=1V---Vx=n+1.

Q% thus contains R’ and so is essentially undecidable. Moreover, it
follows immediately that Q" is essentially undecidable, since it obviously
interprets Q’}%: Simply define P(z,y) as: y = Sz. This appears to be an
improvement over existing proofs.

Note, however, that we really did need the stronger axiom (Q5’) of Q]}%
rather than the weaker axiom (Q5*) of Q at (H1) and (H2) above, since
we needed to go right to left, not left to right. So this argument does not

show that the weaker Qj, contains R’. And, indeed, it is easy to see that
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the axioms of Q do not preclude there being a non-standard number b
for which A(b, b,0), in which case not even x < 0 = z = 0 will hold.

7.2. Q}}% Is Naturally Interpretable in Predicative FA. We have al-
ready seen that most of the axioms of Q}}% are provable in predicative FA.
At the end of Section 4, for example, we saw that (Q1’) is provable in AFA.
In Section 6, we saw that (Pe), (Pu), (Q2), and (Q3’) are all provable in
SFA; that axiom (A) is provable in BFA; and that axiom (M) is provable
in predicative FA. So we need only discuss (Q4')—(Q7’).

Axiom (Q4’) is provable in SFA. A(a, 0, a) amounts to:

JF3Gla=Nz:Fx N0 =Nz:Gz A —Jx(Fz ANGx) Na =Nz : (FzV Gz)]

But we are restricting attention to numbers, so « = Nz : Fx, for some
F. Moreover, 0 = Nx:2 # = so, by comprehension, 0 = Nz : Gx, where
—3Jz(Gz). So Vz(Fz vV Gx = Fx), by logic, and then Nz: (Fz vV Gz) =
Nz : Fz, by Log. So a = Nz : (Fz V Gz).

Though axiom (Q5’) can be proven directly, it is enough for our pur-
poses to observe that it is a consequence of associativity, since a + Sb =
S(a+b)isjusta+ (b+1) = (a+0b)+ 1 in disguise. Since the associativity
of addition is provable in predicative FA, we need only show that P(a,b)
iff A(a,1,b), which is easy enough to do.

Axiom (Q6') is provable in AFA. M(a, 0,0) amounts to:

3F3G3H[a =Na: Fr A0 =Nz:Ge A0 =Nz:He AF x G~ H

Since both G and H must be empty, what we need to show is that there
is a 1-1 relation R such that:

VaVy[Fx Ay #y — 32(z # z A Rxyz)] A
Vz[z # z — JxFy(Fz Ny # y A Rryz)]

But of course both conjuncts are trivial, and any one-one relation will do.
We can thus just let R be the empty relation.

Like (Q5'), axiom (Q7’) can be proven directly, but is also a consequence
of the distributivity of multiplication over addition, since a xSb = a xb+a
isjust a x (b+1) = (a xb) + (a x 1) in disguise. The distribution rules are
provable in predicative FA, so we need only show that M(a, 1, a), which is
trivial.

8. SUMMARY OF THE RESULTS

We have discussed four different theories, which, in order of increasing
strength, are:

e Adjunctive FA: HP plus axioms stating the existence of empty con-
cepts and relations and allowing the adjunction of single elements to
arbitrary concepts and relations.
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e Simple FA: Adjunctive FA plus (i) axioms allowing the removal of
single elements from concepts and relations and (ii) Boolos’s axiom
Log, stating the extensionality of Nz : ¢x.

e Boolean FA: HP plus comprehension for quantifier-free formulae.
e Predicative FA: HP plus predicative comprehension.

We have seen that all of these theories ‘naturally’ interpret essentially
undecidable arithmetical theories. Using the standard definitions of zero,
predecession, addition, and multiplication summarized in Table 1 on
page 12:

e Adjunctive FA proves the axioms of R{,, plus the claim that zero has no
predecessor.

e Simple FA proves the axioms of R’ and, moreover, that predecession is
one-one and that addition is commutative.

e Boolean FA proves further that multiplication is commutative and that
sums are unique (when they exist).

e Predicative FA proves yet further that products are unique (when they
exist) and that addition and multiplication are associative, and also
proves the distribution rules. Moreover, predicative FA proves the
axioms of Q5.

Significant chunks of arithmetic are thus derivable from HP using weak
fragments of second-order logic.

In the first two cases, these are very weak fragments of second-order
logic. What adjunctive logic adds to first-order logic is only the simplest
sort of reasoning about sets (or pluralities, or concepts, or what have you).
The natural model for adjunctive logic takes the second-order domain to
comprise only those sets that can be explicitly specified by listing their
elements. Reasoning with such sets seems well within the abilities of
ordinary folk, and even of children. And simple FA does not add much
more. It has, in fact, precisely the same natural model.

There is a clear technical sense, too, in which these are weak logics.

Proposition. Let T D |1Aq.4! Then T plus Boolean second-order logic is
locally interpretable in T.

Proof. In 1A(, we have a partial truth definition for Ay formulae, and
we can use it to code A definable sets as (the codes of) Ay formulae
(H4jek and Pudlak, 1993, pp. 361-65). We can then interpret Boolean
second-order quantification as quantification over such sets. O

4lle is Q plus induction for Ay formulae, that is, for formulae that contain only
‘bounded’ quantifiers of the forms Vz < ¢t and 3z < t.
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Nothing of the sort is true for predicative second-order logic,*? though it
too is known to be weak in a different sense: If 7 is a first-order theory,
then adding predicative comprehension to 7 yields only a conservative
extension of 7.

9. CLOSING REMARKS

In closing, let me emphasize a point that has already been noted a
couple times in passing, namely, that the concept of a natural number
has played no role whatsoever in this paper.*3 A critic might seize upon
this fact and suggest that the results proven here must therefore be of
little significance, since they do not tell us anything about our knowledge
of the natural numbers. But I have come to believe that the emphasis
one finds, in most philosophical discussions of the concept of number, on
the natural numbers may be misplaced.** It is particularly misplaced in
discussions of Fregean arithmetics. HP is meant to be the fundamental
principle of a theory of cardinal numbers: not of finite cardinal numbers,
but of cardinal numbers generally. If so, then our first question should
be: What sort of theory of cardinal numbers can we get out of HP? If
the answer is “Something akin to Q”, then that might well seem exactly
right, since Q is a very natural, if elementary, theory of cardinal numbers
(Boolos et al., 2007, p. 216).

As the results here make clear, but as should have been clear all along,
someone could have quite a lot of knowledge about cardinal numbers
without even having the concept of a natural number. Indeed, the concept
of a natural number—that is, the concept of finitude—is really very
sophisticated. I am not at all sure that most of the undergraduates I
have been privileged to teach have had more than a very tenuous grasp
of it. Sure, they can wave their hands, but what do they really know
about finitude?

The fact that the existence of sums and products is (probably) unprov-
able in any predicative form of Frege arithmetic thus leaves me unfazed.
Do ordinary folk really know that sums always exist? The claim that
sums always exist is very strong indeed, being equivalent to the claim

42This follows from the fact that, if 7 is finitely axiomatized and sequential, then T
plus predicative second-order logic interprets Q + Con(7) (Visser, 2009a, theorem 4.1),
which is not interpretable in 7, by a version of the second incompleteness theorem due
to Pudlak (1985).

43Earlier work establishing that various weak Fregean theories interpret Robinson
arithmetic does not make use of a concept of natural number, either, in a sense. But
those arguments generally have involved restricting the domain to something smaller
than the numbers, and this is typically done using either the ancestral or the method
of shortening cuts. In either case, it does still look as if something like the concept of
natural number is playing a role.

440ne might make similar criticisms of some of the psychological literature, e.g., Rips
et al. (2008).
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that the universe can be partitioned into two parts that are equinumer-
ous both with each other and with the universe itself.> What about the
claim that natural numbers always have sums? It takes a lot of concep-
tual sophistication, or so I am suggesting, even properly to grasp that
statement, so it does not bother me if it is no part of our ‘ordinary math-
ematical knowledge’, that is, if resources well beyond those necessary
for ‘everyday’ arithmetic have to be recruited for a proper proof of it, or
even for a proper formulation of it. It is perfectly possible, it seems to me,
that our knowledge of the most elementary parts of arithmetic should
be founded on predicative FA, but that our knowledge of other parts of
arithmetic should depend upon more sophisticated forms of reasoning.

The results proven here show, then, that predicative FA, and even ad-
junctive FA, are sufficient to ground a substantial fragment of ‘everyday’
arithmetic. Whether that establishes some form of logicism is, of course,
another question. But one should not discount that prospect simply
because it concerns only a small fragment of arithmetic. Logicism for
R’ and Q}}% would still be signficant results, if only because both theories
commit us to the existence of infinitely many numbers.

It is another question still whether the arithmetic knowledge of ordi-
nary folk is, in some sense, actually based upon HP. But that is not a
question for philosophers to adjudicate.*®
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