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1. THE PROBLEM

Frege’s Theorem, in its most familiar form, states that second-order Dedekind-
Peano arithmetic can be derived in second-order logic from Hume’s Princi-
ple, or HP, using Frege’s definitions of the basic arithmetical notions zero,
predecession, and natural number. HP says that two ‘concepts’ have the
same number if, and only if, they are in one-one correspondence. Formally:

Nx : Fx = Nx : Gx iff ∃R[∀x∀y∀z∀w(Rxy∧Rzw→ x = z≡ y = w)∧
∀x(Fx→∃y(Rxy∧Gy))∧
∀y(Gy→∃x(Rxy∧Fx))]

Frege’s definitions of zero, predecession, and natural number will be ex-
plained below. As for second-order Dedekind-Peano arithmetic, the axiom-
atization most convenient for our purposes is the following:

(1) N0
(2) Nx∧Pxy→ Ny
(3) ∀x∀y∀z(Nx∧Pxy∧Pxz→ y = z)
(4) ∀x∀y∀z(Nx∧Ny∧Pxz∧Pyz→ x = y)
(5) ¬∃x(Nx∧Px0)
(6) ∀x(Nx→∃y(Pxy))
(7) ∀F(F0∧∀x∀y(Nx∧Fx∧Pxy→ Fy)→∀x(Nx→ Fx)

If (slightly non-standardly) we take Frege arithmetic to be the second-order
theory whose non-logical axioms are HP and Frege’s definitions of the
arithmetical notions, re-construed as axioms, then Frege’s Theorem may
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be stated in the following form: Frege arithmetic extends Dedekind-Peano
arithmetic.1

Frege’s Theorem came to contemporary attention as a result of work by
Crispin Wright, who presented a proof of it in Frege’s Conception of Num-
bers as Objects [Wright, 1983]. Subsequent historical work has shown that
a proof was also known to Frege himself [Heck, 1993, Boolos & Heck, 1998].
Subsequent mathematical work has been driven by a desire to understand
this surprising result: What is it about the seemingly innocent HP that
gives it its strength? Precisely how do the axioms of arithmetic follow
from it? In particular, how does it disgorge infinitely many natural num-
bers? Early work on this question was focused on HP itself. For exam-
ple, George Boolos investigated the conditions HP imposes on the domain
[Boolos, 1998c] and carefully analyzed the proof that every number has a
successor [Boolos, 1998a]. Following his lead, I looked into the importance
of the fact that HP, as it is usually formulated, assigns cardinal numbers to
all concepts, including the universal concept, and so not just to finite ones
[Heck, 1997a], and in other work discussed the significance of HP’s impred-
icativity, that is, the fact that it treats numbers themselves as individuals, so
that they are in the domain and range of some of the relations over which
the quantifiers in HP range [Heck, 1997b]. There are, of course, philosoph-
ical questions that surround these mathematical ones, and there is now a
substantial literature on them, too.2

More recently, attention has been focused on the logic used to derive the
axioms of arithmetic from HP, the obvious question to ask being how weak
that logic may be taken to be. The power of standard second-order logic
derives from the so-called comprehension axioms, which are of the form

∃F∀x[Fx≡ A(x)],

1Frege arithmetic is usually taken to be simply second-order logic plus HP. There are
two reasons for the change of terminology. First, and most importantly, the problem I
intend to discuss has been solved for that case: John Burgess has shown that Robinson
arithmetic can be interpreted in predicative second-order logic plus HP, but Burgess’s proof
uses a definition of natural number very different from Frege’s [Burgess, 2005, pp. 113–
7]. The second reason is that, to a significant extent, the philosophical significance fans of
Frege’s Theorem have hoped it would have depends upon the use of Frege’s definitions.
The hope is that Frege’s Theorem reveals something important about arithmetic as we
ordinarily understand it. If so, however, the formal theorems derived from HP must express
(something not too different from) what the corresponding arithmetical claims express.
Hence, the definitions of central notions must reflect the ordinary meaning of those notions,
and Frege’s definitions are intended to do so.

Obviously these two reasons are connected: As Burgess himself notes, fans of Frege’s
Theorem won’t find much of philosophical significance in his result.

2Reasonable starting points for anyone interested in those questions are
[Demopoulos, 1995] and [?].
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each essentially asserting that a given formula A(x) defines a ‘concept’,
that is, something in the range of the second-order variables. Sub-systems
of second-order logic arise from restrictions on comprehension, that is, on
what sort of formula A(x) may be. If, for example, we require it not to
contain bound second-order quantifiers, we have predicative second-order
logic. If we require it to be Π1

1,3 we have second-order logic with just Π1
1

comprehension. And so forth. Full second-order logic, with unrestricted
comprehension, gives rise to what we might call ‘full’ Frege arithmetic.

The question of interest may then be stated roughly as follows: What is
the weakest natural fragment of Frege arithmetic in which Frege’s Theorem
can be proven? This rough statement of the question needs refinement,
however.4 Frege’s Theorem, as it is usually stated, is that full second-order
arithmetic can be interpreted in second-order logic plus HP, using Frege’s
definitions. But it is easy to see that, if we define the concept of natural
number in Frege’s way, we shall never get any more induction than we
are prepared to buy with comprehension axioms: If we assume just Π1

1
comprehension, we will get just Π1

1 induction, and so forth. So another
way to put the question would be: What is the weakest fragment of Frege
arithmetic in which a reasonable amount of arithmetic can be developed?
That will depend, obviously, upon what one means by “a reasonable amount
of arithmetic”.

Careful examination of standard proofs of Frege’s Theorem shows that no
more than Π1

1 comprehension is needed in them.5 Axioms (1) and (2) follow
directly from Frege’s definitions of zero, predecession, and natural number,
with no appeal either to comprehension or to HP. Axioms (3), (4), and (5)
can be derived from HP using only predicative comprehension. The proof
of axiom (6), on the other hand, which asserts the existence of successor,
appeals to Π1

1 comprehension at several points, and Øystein Linnebo has
shown that axiom (6) cannot be proven in the predicative fragment of Frege
arithmetic: There is a model of predicative Frege arithmetic in which axiom
(6) is false [Linnebo, 2004].6

3That is, of the form: ∀F . . .∀Gφ , where φ contains no second-order quantifiers, but
may contain free second-order variables.

4Moreover, there are many other sorts of fragments of second-order logic, determined
not only by other sorts of restrictions on comprehension but by other sorts of axioms that
may be assumed, such as choice principles of various sorts. These are not always compa-
rable in strength, so it may be that there is no single weakest such fragment. If not, then
not.

5This observation was first made in [Heck, 2000, p. 192]. See [Linnebo, 2004, pp.
161ff] for the details. Linnebo also proves a converse: Π1

1-FA can be interpreted in Π1
1-PA.

6Here again I am assuming that ‘Frege arithmetic’ includes Frege’s definitions of zero,
predecession, and natural number. As noted above, Robinson arithmetic can be interpreted
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Linnebo also notes that Π1
1 comprehension is needed for the usual proofs

of the axioms governing addition and multiplication:
x+0 = x
x+Sy = S(x+ y)
x×0 = 0
x×Sy = (x× y)+ x

No such axioms were included in the above axiomatization of second-order
arithmetic, because they did not need to be: As Dedekind showed, we can
define addition and multiplication in terms of zero and succession and then
prove the axioms for addition and multiplication from those for zero and
successor [Dedekind, 1902].7 But those proofs—in particular, the proofs
that sums and products are unique and always exist—are by induction, and
the predicates with respect to which these inductions are carried out will of
course contain the formulae that define addition and multiplication. Those
formulae are Π1

1, so Π1
1 comprehension is needed for these proofs.

Finally, Π1
1 comprehension is needed for the proof of axiom (7), that is,

for the proof of mathematical induction. The point is easy to overlook.
I have often said in lectures on Frege, and may even have said in print,
that Frege defines the natural numbers as “the numbers for which induction
works”. But that is not quite right, as a close look at how Frege actually
defines the natural numbers reveals. Frege defines the ‘strong’ ancestral of
a relation R as follows:

R∗ab
d f
≡ ∀F [∀x(Rax→ Fx)∧∀x∀y(Fx∧Rxy→ Fy)→ Fb],

and the ‘weak’ ancestral as:

R∗=ab
d f
≡ R∗ab∨a = b.

It is then easy to prove, via predicative comprehension, that:

R∗=ab≡ ∀F [Fa∧∀x∀y(Fx∧Rxy→ Fy)→ Fb].

Frege then defines the concept of natural number as:

Nn
d f
≡ P∗=0n,

where the relation P is that of predecession, defined in a way we shall see
shortly. We then have immediately that

Nn→∀F [F0∧∀x∀y(Fx∧Pxy→ Fy)→ Fn],

in predicative second-order logic plus HP, but the proof uses definitions other than Frege’s,
so there is no conflict with Linnebo’s result.

7See [Heck, 1995] for a discussion of related results from Frege’s Grundgesetze [?].
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which is equivalent to:

∀F [F0∧∀x∀y(Fx∧Pxy→ Fy)→∀x(Nx→ Fx)].

But this is weaker than (7), due to the absence of Nx from the antecedent of
Fx∧Pxy→ Fy. Now if we instantiate F with Nξ ∧Fx, thus arriving at:

∀F{(N0∧F0)∧∀x∀y[(Nx∧Fx)∧Pxy→ (Ny∧Fy)]→∀x[Nx→ (Nx∧Fx)]},

then (7) will follow quickly, but this move depends upon comprehension,
specifically upon the availability of

∃G∀x[Gx≡ Nx∧Fx],

and the definition of N contains bound second-order quantifiers: It is, more
precisely, Π1

1. So Π1
1 comprehension is sufficient here, but it also seems to

be necessary.
So second-order arithmetic with Π1

1 induction8 can be interpreted in second-
order arithmetic with Π1

1 comprehension. Can this result be improved? We
have seen that there are three places Π1

1 comprehension is needed in the
usual proofs of Frege’s Theorem: In the proof that every number has a suc-
cessor, in the proof of the axioms for addition and multiplication, and in
the proof of induction. Even if our goal were just to interpret first-order
arithmetic, all of these would remain obstacles.

As it happens, two of these obstacles can be overcome. First, Linnebo’s
work leaves open the possibility that the existence of successor can be
proven in ramified predicative second-order logic. And, perhaps surpris-
ingly, it can be. That is the main technical result of this note.

Second, work by John Burgess and Allen Hazen [Burgess & Hazen, 1998]
implies that, if we can prove the existence of successor, then we can define
addition and multiplication and prove the axioms that govern them. More
precisely, consider what we might call the simple theory of successor, the
theory whose axioms are the universal closures of

(1) 0 6= Sx
(2) Sx = Sy→ x = y
(3) x 6= 0→∃y(x = Sy)

It is well known that the first-order version of this theory is decidable. What
Burgess and Hazen show, however, is that, if the logic of the theory is taken
to be ramified predicative second-order logic, then this theory interprets

8Again, axiom (7) will give us only as much induction as we buy with comprehension.
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I∆0(exp).9 That’s not everything, but it’s a significant amount of arith-
metic. Alternatively—and, from the present point of view, perhaps more
interestingly, because these definitions are more in the spirit of Frege’s own
definitions—one can define addition and multiplication as cardinal addition
(roughly, as disjoint union) and cardinal multiplication (roughly, as the car-
dinality of the Cartesian product) and then interpret the usual axioms gov-
erning addition and multiplication using techniques Burgess adapts from
earlier work on weak fragments of arithmetic.10 That will be enough to
allow Robinson arithmetic, or Q,11 to be interpreted in ramified Frege arith-
metic. Results due to Edward Nelson and Alex Wilkie then show that I∆0
and even slightly stronger theories can be interpreted, as well. Again, that’s
not everything, but it’s a significant amount of arithmetic.12

There are probably limits to how far we can go in this direction: It does
not seem likely that full first-order arithmetic is interpretable in ramified
Frege arithmetic.13 But the interesting point that emerges is why not. If
you had asked me not long ago, I would have told you that it was because
Frege’s proof that every number has a successor makes essential use of
impredicative second-order reasoning. Well, I was wrong. Frege’s proof
does make use of impredicative second-order reasoning, but impredicative
reasoning is not, in fact, essential to Frege’s proof. The proof I shall give
below follows Frege’s quite closely: Modulo the need to prove and use

9I∆0, to be mentioned shortly, is PA with induction limited to ∆0 formulae, that is,
formulae in which only ‘bounded’ quantifiers—quantifiers of the forms ∀x < y and ∃x <
y—occur. (In such theories, we take < as a primitive subject to the axiom that is otherwise
used to define it: x < y≡ ∃z(y = x+Sz).)

Exponentiation can be defined by a ∆0 formula, but I∆0 does not prove that exponentia-
tion is total. So I∆0(exp) adds a function-symbol for exponentation and adds the recursion
equations for it as axioms: exp(0) = 1; exp(Sn) = 2× exp(n).

10This observation is due to John Burgess. Showing that sums and products are unique
and that the usual axioms are satisfied when sums and products exist is a simple matter. It
is the proof that sums and products exist that is difficult. But it turns out to be sufficient
to show that the predicates “∀n(ξ + n exists and is unique)” and “∀n(ξ × n exists and is
unique)” are inductive. One then uses these formulae to re-define what counts as a natural
number: Natural numbers are those things for which sums and products always exist and
are unique. (That makes it sound easier than it is, but that is the idea.) See [Burgess, 2005]
for the details. It appears that this can be extended to cardinal exponentiation, as well.

It does have to be admitted that, in defining addition and multiplication in this way,
we are modifying the definition of ‘natural number’, whence the question how well our
definition captures the ordinary meaning of this notion can again be raised. It’s a nice
question whether there is a way around this, say, by going up a few more degrees.

11The axioms of Q are those of the simple theory of successor plus the recursion equa-
tions for addition and multiplication.

12For some of the details of the work mentioned, see [Hájek & Pudlák, 1993].
13See note 14.
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what amounts to a restricted form of reducibility, Lemma 13, my proof just
is Frege’s proof.

The lesson is thus that impredicative second-order reasoning is needed
for the proof of Frege’s Theorem only in so far as it is needed for the proof
of mathematical induction. But it was only to be expected that it would be
needed there: As said before, it’s been obvious for some time that we will
only get as much induction as we’re prepared to buy with comprehension.

The remainder of the paper is devoted to the proof that the existence
of successor can be proven in ramified Frege arithmetic. Section 2 de-
scribes the system itself and considers how HP and Frege’s definitions of
arithmetical notions should be formalized within it. Section 3 analyzes the
usual proof that successors exist to identify where, precisely, impredicative
comprehension is used. Section 4 explores the question how we can work
around these uses of impredicative comprehension. Section 5 contains the
actual proof that every number has a successor.

2. RAMIFIED FREGE ARITHMETIC

In ramified second-order logic, predicate variables are divided into de-
grees, which I shall indicate by subscripts on such variables. So, for exam-
ple, F0 is a predicate variable of degree 0, and R3 is a predicate variable of
degree 3. Comprehension takes the form:

∃Fn∀x[Fnx≡ A(x)],

where A(x) is a formula containing no bound second-order variables of de-
gree higher than n−1, and no free second-order variables of degree higher
than n. I shall use similar notation to indicate the degree of defined notions.

In such a language, HP admits of a wide variety of formulations. The
first question is what degree we should assign the relation variable occuring
on the right-hand side of HP.14 For present purposes, we can take it to be of

14Actually, the first question, in any context in which we do not have full comprehen-
sion, is how to formalize the cardinality operator. One may regard it as a functor, attaching
only to variables—it might then be written: #Fn—or one may regard it as a term-forming
operator, attaching to arbitrary formulae, in which case it would be written: Nx : A(x). The
former gives rise to a system that could prove weaker. Burgess has given a constructive
consistency proof for systems with a functor #. It follows that we cannot interpret IΣ1 in
ramified Frege arithmetic, formulated with #. (In fact, we cannot get nearly that much:
See [Burgess, 1998] and [Burgess, 2005, pp. 128ff].) It is not known whether treating ‘N’
as a variable-binding term-forming operator, attaching to arbitrary formulae, increases the
strength of such systems, but it now seems likely to many of us that it does. How much is
unclear.

As it happens, this choice does not affect anything we shall do here. So I shall use the
operator Nx : A(x), as it allows for cleaner formulations, and make appropriate remarks
about the operator version in the notes.
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lowest degree, so that HP takes the form:15

Nx : A(x) = Nx : B(x) iff ∃R0[∀x∀y∀z∀w(R0xy∧R0zw→ x = z≡ y = w)∧
∀x(A(x)→∃y(R0xy∧B(y)))∧
∀y(B(y)→∃x(R0xy∧A(x)))]

Note that A and B are syntactic variables, ranging over arbitrary formulae.
It may be worth exploring the relation between this form of HP and the
other forms that arise when one takes R to be of other degress. I will not
undertake that investigation here, however.

As noted above, axioms (1), (2), (3), (4), and (5) of Dedekind-Peano
arithmetic are all provable in predicative Frege arithmetic, using Frege’s
definitions. Something similar will obviously be true in the case of ramified
Frege arithmetic, though we first have to make some choices about how
to formulate Frege’s definitions of arithmetical notions. Frege’s definition
of zero—0 = Nx : x 6= x—does not pose any problem, since no second-
order quantifiers occur in it. Such quantifiers do occur, however, in Frege’s
definitions of P and N, so we must decide what degrees to assign to the
bound predicate variables appearing in those definitions.

2.1. Predecession. Frege’s definition of predecession, as formulated in stan-
dard second-order logic, is:

Pmn≡ ∃F∃y[n = Nx : Fx∧Fy∧m = Nx : (Fx∧ x 6= y)]

The question is what degree we should assign to the predicate variable F.
For our purposes here, we may simply assign it degree zero, so that the
definition becomes:16

P1mn≡ ∃F0∃y[n = Nx : F0x∧F0y∧m = Nx : (F0x∧ x 6= y)]

It is nonetheless worth considering the question how we should define pre-
decession more generally, as it may be of some independent interest. Con-
sider the definition schema:

Pk+1mn≡ ∃Fk∃y[n = Nx : Fkx∧Fky∧m = Nx : (Fkx∧ x 6= y)]

Here the subscript on the defined term P indicate the degree of the formula
that defines it, which is one greater than the degree of any bound second-
order variable occurring in that formula. That is, we have, in general:

∃Rk+1∀x∀y[Rk+1xy≡ Pk+1xy],
15In the functor formulation, we of course have #F0 = #G0 iff . . . , but HP is otherwise

unchanged.
16If we want to use the functor #Fn, then the definition must be given as:

P1mn≡ ∃F0∃G0∃y[∀x(F0x≡ G0x∧ x 6= y)∧n = #G0∧m = #F0].

Note that P1 is still of degree 1, so nothing significant changes below.
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so we may treat Pk+1 as if it were a free variable of degree k+1.
It is not difficult to see, by reflecting on the model Linnebo produces

to show that axiom (6) is not provable in simple predicative second-order
logic, that the various Pk will typically have different extensions. However,
although their extensions may differ, they will never conflict. It is obvious,
in particular, that: Pkmn→ Pk+lmn, the reason being that any concept of
degree k is also of degree k+ l.17 The converse is not provable, in general,
but a restricted form is provable. Say that n is a number of degree k if it is
the number of some set of degree k−1:

Numk(n)≡ ∃Fk−1(n = Nx : Fk−1x)

Then the restriction we need is that n is a number of degree k:

Remark 1. Numk(n)→ Pkmn≡ Pk+lmn

Proof. As noted earlier, the left-to-right direction is trivial. So we must
prove that, if ∃Fk−1(n = Nx : Fk−1x) and Pk+lmn, then Pkmn. So suppose
that n = Nx : Fk−1x and suppose that Pk+lmn. Let j = k + l− 1. By the
definition of Pk+l , there are G j and b such that G jb, n = Nx : G jx, and
m = Nx : (G jx∧x 6= b). So Nx : Fk−1x = Nx : G jx, and so, by HP, there is a
1-1 relation R0

18 that correlates the G js with the Fk−1s, and so for some c,
R0bc and Fk−1c. Now, by the definition of Pk:

Pkmn iff ∃Fk−1∃z[n = Nx : Fk−1x∧Fk−1z∧m = Nx : (Fk−1x∧ x 6= z)]

We need only show that m = Nx : (Fk−1x∧x 6= c). But R0ξ η also correlates
the G js other than b with the Fk−1s other than c. Hence, Nx : (G jx∧ x 6=
b) = Nx : (Fk−1x∧ x 6= c). Since m = Nx : (G jx∧ x 6= b), we are done. �

My own early investigations of the matters under discussion here made
use of these various versions of predecession and the relation just proved
to hold between them. As it happens, I eventually stumbled upon a cleaner
approach. But the Remark may yet prove of use, and it is a simple example
of a phenomenon that will be important later.

Henceforth, I write P1mn as just: Pmn, dropping the subscript to avoid
cluttering the formulae.

Given this definition of predecession, the usual proofs of axioms (3), (4),
and (5) can then easily be transcribed into the present framework. For ex-
ample, suppose that Py0. Then, for some F0 and for some a, we have:
Nx : F0x = 0, F0a, and Nx : (F0x∧ x 6= a) = y. And so, by HP, there is a

17That is, we always have: ∃Fk+l∀x[Fk+lx≡ Fkx], as an instance of comprehension.
18Note that the proof here does not depend significantly upon the decision we made

above regarding the degree of this variable.
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relation R0 that correlates the F0s one-one with the non-self-identicals. But
since F0a, that is impossible.

This proof actually delivers something stronger than (5), namely:
5′. ¬∃x(Px0)

The increased strength is a result of the fact that the condition Nx that is
present in (5) has vanished. Frege’s proofs also deliver strengthened ver-
sions of (3) and (4):

3′. ∀x∀y∀z(Pxy∧Pxz→ y = z)
4′. ∀x∀y∀z(Pxz∧Pyz→ x = y)

This fact will be crucial below.

2.2. Natural Number. Frege’s definition of natural number famously de-
pends upon his definition of the ancestral. In this case, too, we can give
the definition at any degree we like and therefore have a family of similar
notions. We define ∗k as an operator on formulae that binds two variables.
So, where A(x,y) is a formula, we have:

∗k
xy(A(x,y),a,b)≡

∀Fk−1[∀x(A(a,x)→ Fk−1x)∧∀x∀y(Fk−1x∧A(x,y)→ Fk−1y)→ Fk−1b].

In principle, A(x,y) can be of any degree, but it is convenient to require
that it be of degree ≤ k: that is, that it contain no free variables of degree
greater than k and no bound variables of degree greater than k− 1. In that
case, the degree of the defined notion will be k, as indicated by the super-
script. Henceforth, I shall write R∗kab instead of using the official, more
cumbersome notation, with the understanding, again, that Rxy is a formula
of degree no greater than k.

One quickly sees that R∗k+lab→ R∗kab, again because every concept of
degree k is a set of degree k+ l. The converse is not provable.19

We define the weak ancestrals as follows:

R∗=k ab≡ R∗kab∨a = b

Our attention here will be focused upon the case where Rxy is Pxy. In that
case, we will write, instead of ‘P∗k ab’, just: a <k b, and similarly: a≤k b.20

19In an earlier verison of the proof to be given below, I relied upon the following partial
converse: If k ≥ 2, then (4′),(5′) ` 0 ≤k+2 n→ ∀x(x <k n→ x <k+1 n). As it happens, a
simplification made possible by an observation by an anonymous referee—see note 25—
made appeal to this result unnecessary. But it is perhaps worth mentioning, anyway.

20Note that, since Pxy is of degree 1—it contains only a bound second-order variable
of degree zero—P∗k ab is indeed of degree k and so the notation a <k b is not misleading as
regards the subscript. (It can be misleading in a different way, since we can have a <k a.)
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We thus have a sequence of definitions of natural number as well:

Nkx≡ 0≤k x,

with the first of these being N1. As noted, if k ≤ l, then Nlx→ Nkx, but the
converse does not, in general, hold. For the most part, the ‘Nkx’ will not
often appear in what follows: ‘0 ≤k x’ is already sufficiently terse, and the
notational complexities are already daunting.

3. THE USUAL PROOF OF THE EXISTENCE OF SUCCESSOR

One of the most surprising discoveries yet made about the proof of Frege’s
theorem is due to George Boolos: In full Frege arithmetic, axiom (6)—
which asserts the existence of successors—is redundant [Boolos, 1998c].
More precisely, consider the following principle, which asserts the exten-
sionality of the cardinality operator N:21

∀x[A(x)≡ B(x)]→ Nx : A(x) = Nx : B(x)

Boolos calls this principle ‘Log’, on the ground that it is a logical truth: It is
true in every model, since models are extensional. Boolos’s observation was
that axiom (6) can be derived, in standard second-order logic, from Frege’s
definitions of the arithmetical notions, axiom (3), and Log. In particular, no
appeal to HP is needed. Careful examination of Frege’s own proof of axiom
(6) shows, in fact, that he himself derives it from axioms (3), (4), and (5),
and Log. It is this weaker claim that we shall be exploiting: What we shall
show is that, in ramified second-order logic, axiom (6) follows from Log,
the versions of Frege’s definitions mentioned in the previous section, and
(3′), (4′), and (5′).22

The object is thus to adapt Frege’s proof of axiom (6) in full Frege arith-
metic to ramified Frege arithmetic. It will thus be worth our having a version
of Frege’s proof before us.

Lemma 2. (Grundgesetze 145) 0≤ n→¬n < n

Proof. The proof is by induction on the predicate: ¬ξ < ξ . So we must
show:23

21In its functor form, Log is: ∀x(Fmx≡ Gnx)→ #Fm = #Gn.
22So far as I can see, axiom (6) will not follow just from axiom (3′), since (4′) and

(5′) play important roles in the proof to be given below. This probably reflects the fact
that, in the derivation of (6) from (3), we have to load a large number of conditions into
the predicates over which the various inductions are performed. That does not require us
to use anything stronger than Π1

1 comprehension, but it does seem to make the use of Π1
1

comprehension harder to avoid.
23The form of induction being used here is licensed by:

R∗=ab→∀F [Fa∧∀x∀y(Fx∧Rxy→ Fy)→ Fb],
11



(i) ¬0 < 0
(ii) ¬m < m∧Pmn→¬n < n

For (i), suppose 0 < 0. We then have what Boolos called the ‘roll-back
theorem’:

R∗ab→∃x(Rxb∧R∗=ax)

And so, in this case, for some x, Px0 and 0≤ x. But that contradicts axiom
(5).

For (ii), suppose that Pmn and suppose that n < n. By the roll-back
theorem, again, for some y, Pyn and n ≤ y. Since Pmn, axiom (4) implies
that y = m. But then, by the transitivity of the ancestral, m < m, and we are
done. �

Lemma 3. (Grundgesetze 102) Fy→ P(Nx : (Fx∧ x 6= y),Nx : Fx)

Proof. By definition, P(Nx : (Fx∧x 6= y),Nx : Fx) if, for some G and some
z, Gz, Nx : (Fx∧x 6= y) = Nx : (Gx∧x 6= z), and Nx : Fx = Nx : Gx. But we
may obviously just take G to be F and z to be y. �

Theorem 4. (Grundgesetze 155) 0≤ n→ P(n,Nx : x≤ n)

Proof. The proof is by induction on the predicate: P(ξ ,Nx : x ≤ ξ ), the
induction being of the strong form:

0≤ n∧F0∧∀x∀y(0≤ x∧Fx∧Pxy→ Fy)→ Fn

So we must show:
(i) P(0,Nx : x≤ 0)
(ii) 0≤ m∧P(m,Nx : x≤ m)∧Pmn→ P(n,Nx : x≤ n)

For (i), by Grundgesetze 102, P(Nx : (x ≤ 0∧ x 6= 0),Nx : x ≤ 0), since
0 ≤ 0. So it will be enough to show that ∀x(x ≤ 0∧ x 6= 0 ≡ x 6= x), since
then Nx : (x≤ 0∧ x 6= 0) = Nx : (x 6= x) = 0, , by Log and the definition of
zero. Obviously, right-to-left is trivial. So suppose x ≤ 0 and x 6= 0. Then
x < 0. By the roll-back theorem, for some y, Py0 and 0 ≤ y, contradicting
axiom (5).

For (ii), suppose the antecedent. Since n≤ n,

P(Nx : (x≤ n∧ x 6= n),Nx : x≤ n),

by Grundgesetze 102, so it will be enough to show that ∀x(x≤ n∧ x 6= n≡
x ≤ m). For, if so, then, by Log, Nx : (x ≤ n∧ x 6= n) = Nx : (x ≤ m).
But since P(m,Nx : x ≤ m) and Pmn, Nx : x ≤ m = n, by axiom (3). So
Nx : (x≤ n∧ x 6= n) = n, whence P(n,Nx : x≤ n).

which is easily derived from the definition of the ancestral: If Fa, then, since ∀x∀y(Fx∧
Rxy→ Fy), certainly ∀x(Rax→ Fx). Note that this proof uses no comprehension.

12



Left-to-right: Suppose that x ≤ n and x 6= n. Then x < n. By the roll-
back theorem again, for some y, Pyn and x≤ y. But Pmn, so, by axiom (4),
y = m, and so x≤ m.

Right-to-left: Suppose that x ≤ m. By the transitivity of the ancestral,
x ≤ n. So we need only show that x 6= n. Suppose that x = n. Then n ≤ m
and Pmn, so, by transitivity again, m < m, which contradicts Grundgesetze
145. �

4. RE-FORMULATING THE PRINICPLES USED IN THE USUAL PROOF

4.1. Three Facts About the Ancestral. The proof just given depends upon
three general facts about the ancestral:

Transitivity: R∗ab∧R∗bc→ R∗ac
Strong Induction: R∗=ab∧Fa∧∀x∀y(R∗=ax∧Fx∧Rxy→
Fy)→ Fb
The Roll-back Theorem: R∗ab→∃x(Rxb∧R∗=ax)

To formulate and prove these results in the present context, we must make
suitable assignments of degree to the predicate variables that occur in them.

I shall state the results to be proven below using expressions taken from
the language of ramified Frege arithmetic: 0, P, <k, and ≤k, in particular.
The proofs of the results, however, do not depend upon any assumptions
about these notions other than those explicitly mentioned. So, for example,
transitivity (5) in fact holds quite generally, and the restricted form of the
roll-back theorem we shall prove below (9) holds for any ‘one-many’ rela-
tion of appropriate degree, that is, for any relation of appropriate degree that
satisfies an analogue of (4′). The reader will note that none of these results
depend upon HP, and only two of them depend even upon Log.

Transitivity is the easiest of these three facts to handle. Frege’s proof,
which terminates in proposition 98 of Begriffsschrift [Frege, 1967], requires
Π1

1-comprehension, but proposition 98 is in fact provable without any ap-
peal to comprehension [Boolos, 1998d, p. 159].24

Lemma 5. (Transitivity of the Ancestral)

a <k b∧b <k c→ a <k c

Proof. Suppose the antecedent. By definition:
(i) ∀Fk−1[∀x(Pax→Fk−1x)∧∀x∀y(Fk−1x∧Pxy→Fk−1y)→
Fk−1b]
(ii) ∀Fk−1[∀x(Pbx→Fk−1x)∧∀x∀y(Fk−1x∧Pxy→Fk−1y)→
Fk−1c]

24We will also be using, without special mention: Pab→ a≤k b. The proof is straight-
forward, requiring no comprehension: If Pab and ∀x(Pax→ Fx), then certainly Fb.

13



Suppose now that ∀x(Pax→ Fk−1x) and that ∀x∀y(Fk−1x∧Pxy→ Fk−1y).
We need to show that Fk−1c. By (i), Fk−1b. Since ∀x∀y(Fk−1x∧Pxy→
Fk−1y), certainly ∀x(Pbx→ Fk−1x). So Fk−1c, by (ii). �

Strong induction, which Frege proves as Theorem 152 of Grundgesetze,
on the other hand, is not predicatively provable. Frege’s proof involves
applying induction to: R∗=aξ ∧Fξ . Hence, if the initial occurrence of the
weak ancestral R∗=ab is of degree k + 1, then this predicate must be of
degree k, in which case R∗=aξ and Fξ must also be of degree k. So the
most we should expect to prove is:

Lemma 6. (Strong Induction)

a≤k+1 b∧Fka∧∀x∀y(a≤k x∧Fkx∧Pxy→ Fky)→ Fkb

Proof. Suppose the antecedent. Since a≤k ξ ∧Fkξ is of degree k, we may
apply induction to it. We must prove:

(i) a≤k a∧Fka
(ii) a≤k x∧Fkx∧Pxy→ a≤k y∧Fky

The former is obvious. The latter follows from transitivity. So a≤k b∧Fkb,
and we are done. �

Consider now Frege’s proof of the roll-back theorem, which appears as
Theorem 142 of Grundgesetze. The proof is by induction, the inductive
predicate being: ∃x(Rxξ ∧R∗=ax). In order for the induction to work, the
universally quantified predicate variable occurring in the definition of the
initial R∗ will have to be instantiated with ∃x(Rxξ ∧R∗=ax). So, if we take
R∗ab to be of degree k + 1, then the formula ∃x(Rxξ ∧R∗=ax) will have
to be of degree k. Thus, R∗=ax has to be of degree ≤ k. It follows from
a notational convention mentioned above that R itself therefore has to be
of degree ≤ k, as well. Thus, Frege’s proof will deliver only: R∗k+1ab→
∃x(Rkxb∧R∗=k ax).

As it happens, however, we do not need the full force of the roll-back
theorem for our purposes here. All we need is a <k b→∃x(Pxb∧ x ≤k b),
and it turns out that this can be derived from (4′).25 First, we prove a more
limited result.

Proposition 7. a <k b→∃x(Pxb).

25I owe this observation to an anonymous referee, who pointed out that 7, Frege’s proof
of which is also by induction, can be proven by the method used here. The referee then
also observed that if we put 7 together with 8, which I was already using, then we get a
version of the roll-back theorem. This observation substantially simplifed the proof of the
main result, eliminating the need to appeal to the result mentioned in note 19. As a result,
the degree on N in theorem 18 was reduced from six to two, which is best possible.

14



Proof. Suppose that a<k b and, for reductio, that¬∃x(Pxb), which is equiv-
alent to ∀x∀y(Pxy→ y 6= b). Then by the definition of <k:

∀Fk−1(∀x(Pax→ Fk−1x)∧∀x∀y(Fk−1x∧Pxy→ Fk−1y)→ Fk−1b).

Take Fk−1ξ to be: ξ 6= b, which is certainly of degree k−1. Then we have:

∀x(Pax→ x 6= b)∧∀x∀y(x 6= b∧Pxy→ y 6= b)→ b 6= b.

The two conjuncts in the antecedent then follow from ∀x∀y(Pxy→ y 6= b),
so b 6= b. Contradiction. �

We now prove a variant of proposition 124 of Frege’s Begriffsschrift,
which also occurs as Theorem 242 of Grundgesetze:

∀x∀y∀z(Rxy∧Rxz→ y = z)∧R∗ab∧Ram→ R∗=mb.

The variant we need is:

∀x∀y∀z(Pxz∧Pyz→ x = y)∧a <k b∧Pmb→ a≤k m,

which Frege proves as Theorem 143 of Grundgesetze.26 Frege’s proof ap-
peals to the roll-back theorem: If a <k b, then for some x, Pxb and a ≤k x.
But then x = m, since Pmb, so we are done. We do not have the roll-back
theorem available and, indeed, are presently trying to prove a restricted form
of it. But it turns out that Theorem 143 can be proven using only predicative
comprehension.

Proposition 8. (Grundgesetze 143)

(4′) ` a <k b∧Pmb→ a≤k m

Proof. If a = m, then a ≤k m trivially, so suppose that a 6= m. Suppose
further that Pmb and, for reductio, that ¬a ≤k m, from which it of course
follows that ¬a <k m. We want to show that ¬a <k b.27

Since¬a<k m, we have that, for some Fk−1, ∀x(Pax→Fk−1x), ∀x∀y(Fk−1x∧
Pxy→ Fk−1y), and ¬Fk−1m. We want to show that for some Gk−1:

(a) ∀x(Pax→ Gk−1x)
(b) ∀x∀y(Gk−1x∧Pxy→ Gk−1y)
(c) ¬Gk−1b

26Actually, Theorem 143 is just: a <k b∧Rmb→ a≤k m. The conjunct ∀x∀y∀z(Pxz∧
Pyz→ x = y) is eliminated slightly earlier, since it is just Theorem 88.

27What follows is not pretty, but the idea is quite simple: If there is an inductive property
that all successors of a have that m does not have, then there is no good reason that b should
have it, since m is the only predecessor of b. (If b had other predecessors, it could be that
every inductive property that all successors of a possessed was also possessed by one of
them.)
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That will imply that ¬a <k b. We take Gk−1 to be: Fk−1ξ ∧ξ 6= b, which is
clearly of degree k−1.

For (a): If Pax, then, since ∀x(Pax→ Fk−1x), Fk−1x. Suppose x = b.
Then Pab and Pmb, whence a = m, by (4′). But a 6= m, so x 6= b, and thus
Fk−1x∧ x 6= b, that is, Gk−1x.

For (b): Suppose Gk−1x—that is, Fk−1x∧x 6= b—and Pxy. Then certainly
Fk−1y, by heredity. And since Fk−1x and ¬Fk−1m, x 6= m. Suppose y = b.
Then Pxb and Pmb, so x = m, by (4′). So y 6= b and thus Fk−1y∧y 6= b, that
is, Gk−1y.

For (c): Obviously, ¬(Fk−1b∧b 6= b), that is, Gk−1b. �

A restricted form of the roll-back theorem now follows quickly.

Lemma 9. (4′) ` a <k b→∃x(Pxb∧a≤k x)

Proof. Suppose the antecedent. By 7, Pmb, for some m. By 8, a≤k m. �

And we can now prove the axiom x 6= 0→∃y(x = Sy) of Q, for numbers
of any degree:

Corollary 10. (4′) ` Nkn∧n 6= 0→∃m(Nkm∧Pmn)

Proof. Suppose the antecedent. By definition, 0≤k n and so 0 <k n. So by
9, for some m, Pmn and 0≤k m, that is, Nkm and Pmn. �

4.2. Grundgesetze 102. The need to reformulate strong induction makes a
straightforward adaptation of the standard proof that every natural number
has a successor impossible: One cannot simply sprinkle degree subscripts
throughout that proof and expect to get anything useful. That is not terri-
bly surprising, since it is not terribly surprising that strong induction is not
predicatively provable. What is surprising is that the simple move that is
made in the standard proof when one writes

Since n≤ n, P(Nx : (x≤ n∧x 6= n),Nx : x≤ n), by Grundge-
setze 102.

also poses a serious problem. We can easily prove28

F0y→ P(Nx : (F0x∧ x 6= y),Nx : F0x),

but no matter what degree we assign to ≤, it will never be of degree zero.
To use Grundgesetze 102 to prove that P(Nx : (x≤k n∧x 6= n),Nx : x≤k n),
that is to say, we would need to prove that, for some F0 of degree zero,
∀x[F0x≡ x≤k n]. That is not likely to be provable, in general, and messing
with the definition of predecession doesn’t seem to help.29 Fortunately,

28Or, in the functor formulation: F0y∧∀x[G0x≡ (F0x∧ x 6= y)]→ P(#G0,#F0).
29I’m not absolutely sure it won’t help, but my limited experimentation suggests that it

just pushes up the degree of ≤.
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it turns out that we actually only need the following very special case of
Grundgesetze 102:

0≤2 n∧a≤1 n→ P(Nx : (x≤1 n∧ x 6= a),Nx : x≤1 n).

And we would have that if we had the following limited form of reducibil-
ity:

0≤2 n→∃F0∀x[F0x≡ x≤1 n],

which can be derived from (4′) and (5′).
We begin by proving two simple facts that we shall need several times.

Fact 11. (5′) ` ¬(x <k 0)

Proof. Suppose x <k 0. Then 7 implies that for some y, Py0, which contra-
dicts (5′). �

Corollary 12. (5′) ` ∀x(x≤k 0≡ x = 0)

Proof. If x ≤k 0, then either x <k 0 or x = 0, but the former is ruled out by
11. �

Lemma 13. (4′),(5′) ` 0≤2 n→∃F0∀x[F0x≡ x≤1 n]30

Proof. The proof is by strong induction on the predicate: ∃F0∀x[F0x≡ x≤1
ξ ]. The induction is legitimate, because this predicate is of degree 1. So we
must prove:

(i) ∃F0∀x[F0x≡ x≤1 0]
(ii) 0 ≤1 m∧∃F0∀x[F0x ≡ x ≤1 m]∧Pmn→ ∃F0∀x[F0x ≡
x≤1 n]

For (i), we may simply take F0ξ to be: ξ = 0, by 12.
For (ii), suppose that 0 ≤1 m, ∀x[G0x ≡ x ≤1 m], and Pmn. It will be

enough to show that

∀x[(x≤1 m∨ x = n)≡ x≤1 n].

If so, then ∀x[(G0x∨x = n)≡ x≤1 n), and the formula on the left-hand side
is of degree 0, whence ∃F0∀x[F0x≡ x≤1 n].

Left-to-right: If x = n, then x ≤1 n, trivially; if x ≤1 m, then, since Pmn,
we have x≤1 n again, by transitivity.

Right-to-left: Suppose x≤1 n and x 6= n. Then x <1 n and so, by 9, there
is some y such that Pyn and x≤1 y. By (4′), y = m, so x≤1 m. �

30Here and below, such results are formulated with the minimum degrees they can be.
Other forms will also be provable by ‘lifting’ the degrees. For example, in this case, we
have: (4′),(5′) ` 0≤k+1 n→∃F0∀x[F0x≡ x≤k n], for each k.
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Corollary 14. Log,(4′),(5′) ` 0 ≤2 n∧ a ≤1 n→ P(Nx : (x ≤1 n∧ x 6=
a),Nx : x≤1 n)31

Proof. Suppose the antecedent. By 13, for some F0, F0x ≡ x ≤1 n. Since
a≤1 n, F0a. Moreover, by Log, Nx : F0x = Nx : x≤1 n. Further: (F0x∧x 6=
a) ≡ (x ≤1 n∧ x 6= a), whence Log also yields: Nx : (F0x∧ x 6= a) = Nx :
(x≤1 n∧ x 6= a). That is:

Nx : F0x = Nx : x≤1 n∧F0a∧Nx : (F0x∧ x 6= a) = Nx : (x≤1 n∧ x 6= a).

Generalizing on F0 and a and applying the definition of P then yields the
consequent. �

5. A PREDICATIVE PROOF THAT EVERY NUMBER HAS A SUCCESSOR

We are now ready to prove that every number has a successor.
We begin with the proof of Theorem 145 of Grundgesetze: 0≤ n→¬n<

n. One might reasonably have supposed that the proof that every natural
number has a successor would require that we have the same subscript both
times: Surely 0 ≤2 n→ ¬n <1 n, for example, would not be enough. As
it happens, though, it is enough—and it is, in fact, stronger than 0 ≤2 n→
¬n <2 n, since, as noted above, if x <2 y, then x <1 y, so if ¬n <1 n, then
¬n <2 n .

Theorem 15. (Grundgesetze 145)

(4′),(5′) ` 0≤2 n→¬n <1 n

Proof. Suppose that 0 ≤2 n. Since ¬n <1 n is of degree 1, we may apply
strong induction. So we must show:

(i) ¬0 <1 0
(ii) 0≤1 m∧¬m <1 m∧Pmn→¬n <1 n

We have already established (i). For (ii), suppose 0≤1 m, Pmn, and further
that n <1 n. We want to show that m <1 m. By 9, for some y, Pyn and
n≤1 y. Since Pmn, y = m, and so n <1 m. But also Pmn, so, by transitivity,
m <1 m. �

31Expressions of the form Nx : A(x) have not occurred in any of the proofs to this
point—as mentioned above, the results proved so far are all general results about relations
satisfying various conditions—so they all go through unchanged if we use the functor #F0,
instead, and the alternate definition of P given in note 16.

Such expressions do occur, however, in the statement of this result, so we need to refor-
mulate it as:

Log,(4′),(5′)` 0≤2 n∧a≤1 n→∃F0∃G0[∀x(G0x≡ x≤1 n)∧∀x(F0x≡ (x≤1 n∧x 6= a))∧P(#F0,#G0)]

That there is a G0 such that ∀x(G0x≡ x≤1 n) follows from 13; that there is an F0 such that
∀x[F0x ≡ (G0x∧ x 6= n)] and so ∀x[F0x ≡ (x ≤1 n∧ x 6= a)] then follows from comprehen-
sion, and we can then apply the result mentioned in note 28 to conclude that P(#F0,#G0).
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Finally, then, we prove the existence of successors.

Theorem 16. (Grundgesetze 155)32

Log,(3′),(4′),(5′) ` 0≤2 n→ P(n,Nx : x≤1 n)

Proof. The proof is by strong induction on the predicate: P(ξ ,Nx : x≤1 ξ ).
So we must prove:

(i) P(0,Nx : x≤1 0)
(ii) 0≤1 m∧P(m,Nx : x≤1 m)∧Pmn→ P(n,Nx : x≤1 n)

For (i), by 14, P(Nx : (x ≤1 0∧ x 6= 0),Nx : x ≤1 0), since certainly 0 ≤1 0
and 0≤2 0. Now, by 12, ∀x(x≤1 0≡ x= 0), so ∀x[(x≤1 0∧x 6= 0)≡ x 6= x],
whence Nx : (x≤1 0∧ x 6= 0) = Nx : (x 6= x) = 0, by Log and the definition
of zero.

For (ii), suppose the antecedent. By (3′), n = Nx : x ≤1 m, so we need
only prove

P(Nx : x≤1 m,Nx : x≤1 n).

Since, 0≤2 m and Pmn, 0≤2 n, and obviously n≤1 n, so we can apply 14
to get:

P(Nx : (x≤1 n∧ x 6= n),Nx : x≤1 n).

It will therefore be enough to show that

∀x[(x≤1 n∧ x 6= n)≡ x≤1 m],

since then Nx : (x≤1 n∧ x 6= n) = Nx : (x≤1 m), by Log.
Right-to-left: Suppose that x≤1 m. Since Pmn, x≤1 n, by transitivity. So

we need only show that x 6= n. Suppose that x = n. Then n≤1 m and Pmn,
so, by transitivity again, m <1 m, which contradicts 15.

Left-to-right: Suppose that x ≤1 n and x 6= n. Then x <1 n. By 9, for
some y, Pyn and x≤1 y. But Pmn, so by (4′), y = m, and so x≤1 m. �

Corollary 17. 0≤2 n→∃x(0≤2 x∧Pnx)33

Proof. By the theorem, P(n,Nx : x ≤1 n). By transitivity, 0 ≤2 Nx : (x ≤1
n). �

32This result can be reformulated as:

Log,(3′),(4′),(5′) ` 0≤2 n→∃F0[∀x(F0x≡ x≤1 n)∧P(n,#F0)].

The existence of an appropriate F0 follows from 13, and the rest of the proof goes through
pretty much unchanged.

33Obviously, this also follows from the functor formulation of 16 mentioned in note 32.
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6. CLOSING

We now complete the proof that Robinson arithmetic can be interpreted
in ramified Frege arithmetic.

Theorem 18. The following
(1) N20
(2) N2x∧Pxy→ N2y
(3) ∀x∀y∀z(N2x∧N2y∧N2z∧Pxy∧Pxz→ y = z)
(4) ∀x∀y∀z(N2x∧N2y∧N2z∧Pxz∧Pyz→ x = y)
(5) ¬∃x(N2x∧Px0)
(6) ∀x[N2x→∃y(N2y∧Pxy)]
(7) ∀x[N2x∧ x 6= 0→∃y(N2y∧Pyx)]

are provable in ramified Frege arithmetic.

Proof. (1) follows immediately from the definition of N2; (2), from transi-
tivity. As we saw earlier, (3), (4), and (5) can be proven purely predicatively,
even without the restrictions on the quantifiers. Axiom (6) is corollary 17,
and axiom (7) is corollary 10. �

Corollary 19. Robinson arithmetic is intepretable in ramified Frege arith-
metic.

Proof. As noted earlier, Q can be interpreted in the ramified theory of suc-
cessor. So we need only show that the ramified theory of successor can be
interpreted in ramified Frege arithmetic. Take the domain to be given by
N2x. By (1), zero is in it. The successor of anything in the domain then
exists by (6), is in the domain by (2), and is unique by (3). That then allows
us to define Sx as ιy(Pxy), which we eliminate via Russell’s theory of de-
scriptions. We then have 0 6= Sx from (5); Sx = Sy→ x = y, from (4); and
x 6= 0→∃y(x = Sy), from (7). �

Corollary 20. I∆0(exp) is interpretable in ramified Frege arithmetic.

Proof. By the results of Burgess and Hazen mentioned above. �

The situation is thus as follows: Ramified Frege arithmetic interprets
I∆0(exp). Frege arithmetic with Π1

1 comprehension interprets PA with Π1
1

induction. What lies in the vast space between these two theories? What
forms of reducibility, or other principles we might add to ramified Frege
arithmetic, would allow us to interpret intermediate theories?34

34The only result along these lines that is known to me is Fernando Ferreira’s proof that,
if we add a form of ‘finite reducibility’ to the ramified predicative fragment of Grundge-
setze, which otherwise interprets just I∆0(exp), then we can interpret PA [Ferreira, 2005].
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