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As is well-known, the formal system in which Frege works in his
Grundgesetze der Arithmetik (Frege, 1962) is formally inconsistent, Rus-
sell’s Paradox being derivable in it. This system is, except for minor
differences, full second-order logic, augmented by a single non-logical
axiom, Frege’s Basic Law V, which we may take to be:1

∀F∀G [x̂(Fx) = x̂(Gx) ≡ ∀x(Fx ≡ Gx)]

Reading ‘x̂(Fx)’ as ‘the value-range of the concept F ’, Basic Law V thus
states that, for every F and G, the value-range of the concept F is the
same as the value-range of the concept G just in case the F s are exactly
the Gs.

In Frege: Philosophy of Mathematics, Michael Dummett (1991, pp.
217–22) raises the question how the serpent entered Eden, that is, how
we should understand the genesis of the contradiction in Frege’s sys-
tem. The standard view is that the inconsistency is simply to be blamed
on Basic Law V. The problem, seen this way, is that Basic Law V re-
quires for its truth that there be as many objects in the domain of the
theory as there are concepts true or false of those objects, i.e., that the
first- and second-order domains should be of the same cardinality: And
that, as Cantor showed us, is quite impossible. Note, however, that this
reflection shows only that the theory is unsatisfiable, that is, that it
does not have a standard model. And one might wonder whether this
explanation really answers Dummett’s question, since it does not, or at
least does not obviously, say why the theory ought to be inconsistent:
why a contradiction should be derivable from Basic Law V. These two
questions are not only different, but may need different answers, since
the completeness theorem fails for second-order logic. Dummett’s own
view is that the blame is to be ascribed, not so much to Basic Law V,
as to the impredicative character of Frege’s theory, in particular, to his
acceptance of an unrestricted comprehension schema.

In his paper ‘Whence the Contradiction?’, George Boolos (1998) ques-
tions Dummett’s view and argues in favor of the more standard line. In
the course of doing this, Boolos raises a number of technical questions
which, he suggests, would need to be answered before the issue can be

1Basic Law V in fact concerns the value-ranges of functions in general, not just the
extensions of concepts, but we shall ignore this point here.
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resolved. The first question is, quite simply, whether the predicative
fragment of Frege’s theory is consistent: Dummett’s claim would obvi-
ously be untenable if it were not. The second is how strong this theory
is, assuming that it is consistent: For only if it is a reasonably strong
theory, only if, say, some reasonable fragment of arithmetic can be devel-
oped within it, will it be plausible to place the blame on impredicative
comprehension, rather than on Basic Law V.

My goal in the present paper is to answer the first of these two ques-
tions, by showing that both the simple and ramified predicative frag-
ments of Frege’s theory are indeed consistent. At present, the second
question remains open. Though I shall show that ‘bounded arithmetic’,
I∆0, is relatively interpretable in the simple predicative fragment (and
that somewhat stronger theories are, too), it is as yet unknown just how
strong it might be.2

1. SOME REMARKS ON SECOND-ORDER LOGIC

Terence Parsons (1995) has shown that the first-order fragment of
Frege’s formal theory is consistent. The first-order fragment of Frege’s
theory is axiomatized by the single axiom schema:

x̂(A(x)) = x̂(B(x)) ≡ ∀x(A(x) ≡ B(x))

Here, A(x) and B(x) are (first-order) formulae which may contain ar-
bitrarily many free variables other than ‘x’. The proof to be given of
the main result of the present note is a straightforward extension of
Parsons’s argument.

There are some niceties concerning the formulation of the systems
we intend to study. Let us begin with matters syntactic. The language
of the first theory we shall be discussing is that of simple predicative
second-order logic: We have the usual logical symbols (including iden-
tity) and individual constants and variables. We also allow predicate
constants of each number of argument-places, but, for simplicity, we re-
strict ourselves to second-order variables of one argument-place.3 The
notions of a term and formula of the language are defined by simultane-
ous induction. Object-variables are terms; sentential constants are for-
mulae. If P is an n-place variable or predicate constant, and if t1, . . . , tn
are terms, then pPt1, . . . , tnq is a formula; and, if A(x) is a formula, not

2The probelm was open when this paper was written but has now been answered
definitively (Visser, 2009).

3The extension to richer languages poses no difficulties of principle. Adding vari-
ables of more argument-places requires almost no change to the proof given below: The
domain, for n-ary variables, is to contain all sets denoted by formulae A(x1, . . . , xn)
containing no variables other than the xi free. A richer language still allows the for-
mation of terms of the form ‘ ̂x1, . . . , xn(A(x1, . . . , xn))’, governed by analogues of Basic
Law V. Such terms can be assigned references simply by being included in the inductive
stipulation used in the proof below.
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containing ‘x’ bound, then px̂(A(x))q is a term. And, as usual, if A and B
are formulae, then so are their truth-functional compounds and quan-
tifications with respect to any variable not already bound in them. Only
such things are terms and formulae. Terms of the form px̂(A(x))q we
call value-range terms or, for short, vr terms.

We now need an axiomatization of simple predicative second-order
logic. As axioms and rules, we may take any complete set of axioms and
rules for first-order logic with identity and add, first, an axiom-schema
of universal instantiation for second-order variables:

∀uA(u)→ A(v)

Here u and v are second-order variables; A(u), some formula in which
u is free for v. Also, we need a rule of universal generalization that is
entirely analogous to the usual first-order rule. (Note that we may, if
we like, merely state the axioms and rules of universal instantiation
and generalization so as not to distinguish first- from second-order vari-
ables. It is in this that the strong analogy between first- and second-
order logic consists.)

Versions of second-order logic differ in strength according to the strength
of their respective comprehension axioms. In full, or standard, second-
order logic, every instance of the following is an axiom:

∃F∀x[Fx ≡ A(x)]

Here, A(x) may be any formula not containing ‘F ’ free. In simple pred-
icative second-order logic, on the other hand, only instances in which
A(x) contains no bound second-order variables are axioms. Note that
A(x) may contain arbitrarily many free second-order variables.4 Note
also, importantly, that A(x) may contain arbitrarily many value-range

4Frege’s formulation of second-order logic is somewhat different from this: He gets
the effect of comprehension by means of a rule of substitution. In such a formulation
of standard second-order logic, the rule of substitution states that, if A(v) is a theorem,
then the result of substituting any formulaB(x) for v inA(v) is also a theorem—subject,
of course, to the usual sorts of restrictions. In such a formulation of simple predicative
second-order logic, one requires the formulae B(x) not to contain bound second-order
variables.
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terms, so long as those terms do not contain bound second-order vari-
ables.5,6

The sole ‘non-logical’ axiom of the theories we shall be considering is
to be, as has been said, a version of Frege’s Basic Law V, which may, in
the context of a second-order theory, be formulated either as the axiom
schema

x̂(A(x)) = x̂(B(x)) ≡ ∀x(A(x) ≡ B(x))

or as the single, universally quantified axiom

∀F∀G [x̂(Fx) = x̂(Gx)) ≡ ∀x(Fx ≡ Gx)]

As additions to standard second-order logic, the scheme and axiom are,
as it is easy to see, equivalent. In the context of predicative second-
order logic, however, the schematic version of Basic Law V is stronger
than the single, quantified axiom. One instance of the schema is, of
course,

x̂(Fx) = x̂(Gx)) ≡ ∀x(Fx ≡ Gx)

from which the single axiom follows by universal generalization. How-
ever, there is no apparent way to derive, say, the instance

x̂(∃F (ẑ(Fz) = x ∧ ¬Fx) = x̂(Hx) ≡ ∀x [(∃F (ẑ(Fz) = x ∧ ¬Fx) ≡ Hx]

5It is for this reason that the consistency of the theory under discussion here was not
already settled by John Bell (1999). Bell proves, following Parsons, that the ‘Fregean
extension’ of any first-order theory that has infinite models is consistent. The Fregean
extension of a theory is the result of adding all instances of Basic Law V and closing. (I
should emphasize that the following reasoning is not due to Bell and that his result is
slightly more general.)

One might think, at first glance, that this result proves more than it does. Predica-
tive second-order logic can be treated as if it were a certain first-order theory, and that
first-order theory certainly has infinite models. Hence, its Fregean extension is consis-
tent, by Bell’s result. But, and here is the important point, this does not imply that the
theory under discussion in the text is consistent. To see that there is a problem, note
that standard second-order logic can also be treated as if it were a certain first-order
theory that has infinite models. Its Fregean extension is, by Bell’s result, consistent.
But standard second-order logic plus Basic Law V is not formally consistent, as Russell
showed.

What then is going on? The Fregean extension of a theory, in this sense, is merely the
result of adding Basic Law V to it, and here one is to think of the variable-binding, term-
forming operator ‘^’ as an addition to the language of the theory. What this means, in
the case of second-order logic, is that the comprehension axioms are in no way altered,
so no comprehension axiom contains a value-range term. The Fregean extension of
second-order logic is thus a weaker theory than what I am here calling ‘second-order
logic augmented by Basic Law V’.

6Oddly enough, comprehension axioms that contain second-order quantifiers within
value-range terms will be theorems of the predicative fragment being described. Con-
sider, for example, the concept: ξ = ẑ(∃F (z = ŵ(Fw)). By comprehension: ∃F∀x[Fx ≡
x = y]. So, by universal generalization: ∀y∃F∀x[Fx ≡ x = y]. But then, by uni-
versal instantiation: ∃F∀x[Fx ≡ ẑ(∃F (z = ŵ(Fw)). The trick is thus to replace the
value-range terms by variables, generalize, and then instantiate.
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from the universally quantified axiom without appeal to impredicative
comprehension.

What we shall be proving here is thus that simple, predicative second-
order logic, augmented by the schematic version of Basic Law V, is con-
sistent. Before proceeding with the proof of this theorem, however, it is
worth considering why Russell’s Paradox is not derivable in this theory.
Following Frege, membership may be defined as follows: An object x be-
longs to a value-range y if, and only if, y is the value-range of a concept
under which x falls. Formally:

x ∈ y
df
≡ ∃F [y = ẑ(Fz) ∧ Fx]

For any formula A(x), we can prove:7

(i) y ∈ x̂(A(x))→ A(y)

We can also prove a restricted version of the converse of (i):
(ii) A(y)→ y ∈ x̂(A(x))

for formulae A(y) not containing bound second-order variables. Thus:
1. A(y)
2. ∃F∀x[Fx ≡ A(x)] Comprehension
3. ∀x[Fx ≡ A(x)]
4. Fy ≡ A(y)
5. x̂(Fx) = x̂(A(x)) (3), Law V
6. x̂(Fx) = x̂(A(x)) ∧ Fy (1,4,5)
7. y ∈ x̂(A(x))

The reason (ii) is not provable in full generality is that (2) is an instance
of predicative comprehension only if A(x) does not contain second-order
quantifiers. So (ii) is provable only for such formulae.8 So naïve abstrac-
tion
(iii) y ∈ x̂(A(x)) ≡ A(y)

is provable only for formulae A(x) not containing second-order quanti-
fiers.

7Thus:
y ∈ x̂(A(x))
∃F [x̂(A(x)) = x̂(Fx) ∧ Fy] Def ∈
x̂(A(x)) = x̂(Fx) ∧ Fy
∀x[A(x) ≡ Fx] Law V
A(y) ≡ Fy
A(y)

Note that the proof uses no instances of comprehension and so goes through even in the
most trivial of second-order theories.

8If we adopt the alternate definition of membership

x ∈ y
df
≡ ∀F [y = ẑ(Fz)→ Fx]

precisely the opposite situation obtains. We can prove (ii) for all formulae A(x), but can
prove (i) only for formulae not containing second-order quantifiers.
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Now, consider the Russell class x̂(x /∈ x). By (i), we can prove

x̂(x /∈ x) ∈ x̂(x /∈ x)→ x̂(x /∈ x) /∈ x̂(x /∈ x)

But we can not prove

x̂(x /∈ x) /∈ x̂(x /∈ x)→ x̂(x /∈ x) ∈ x̂(x /∈ x)

since ‘x 6∈ x’ (abbreviates a formula that) contains a second-order quan-
tifier.9

It is worth emphasizing a few points about the foregoing discussion.
First, the term denoting the Russell class is well-formed: There is no
restriction upon the formation of value-range terms in the theory we
are considering. Second, the Russell class exists, and it provably does
not belong to itself. Third, the instances of Basic Law V needed in the
derivation of the Paradox are axioms of this theory; more generally, all
instances of Basic Law V are axioms of this theory, and so all value-
range terms are governed by Basic Law V. What prevents the derivation
of the Paradox is precisely the lack of a particular instance of compre-
hension.10

2. PROOF OF THE MAIN THEOREM

The main result of the present note is thus the

Theorem. Simple, predicative second-order logic, augmented by the schematic
version of Basic Law V, is consistent.

To prove this, we provide a model whose domain is the natural num-
bers. To complete the specification of the model, we must (1) fix denota-
tions for all value-range terms and (2) fix a domain for the second-order
quantifiers.

The proof will proceed in five stages. First, following Parsons’s orig-
inal construction (Parsons, 1995), we shall fix denotations, relative to
every interpretation of free variables contained in them, for all value-
range terms that contain no second-order variables. Second, we shall fix

9Indeed, given the relevant instance of comprehension:

∃F∀x[Fx ≡ x /∈ x]

a contradiction is forthcoming. So the negation of this formula is provable. More gen-
erally, this shows that second-order logic with comprehension for Σ1

1 formulas is incon-
sistent. Adopting the alternative definition of membership mentioned in the previous
note, one can also reproduce Russell’s paradox, if we have comprehension for Π1

1 formu-
las. Since this paper was published, it has been shown, by Fernando Ferreira and Kai
Wehmeier that this is best possible: It is consistent to assume comprehension for ∆1

1

formulas (Ferreira and Wehmeier, 2002).
10These remarks are intended to facilitate comparison between the present system

and those obtained by Nino Cocchiarella (1992). The systems he studies are related
to, but quite different from, those investigated here. His restrictions on comprehen-
sion, i.e., his various restrictions on his prinicple CP∗λ, also restrict what ‘nominalized
predicates’ (value-ranges) exist.
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the domain of the second-order quantifiers and show that this suffices to
fix denotations for all value-range terms containing free, but no bound,
second-order variables. Third, we shall show that all instances of com-
prehension are true. Fourth, we shall fix denotations for the remaining
value-range terms, those containing bound second-order variables. Fi-
nally, we shall check that the construction verifies all instances of the
schematic version of Basic Law V.

Fix the interpretations of any constants. We shall assume, for con-
venience, that among the constants are denumerably many numerals
n each of which denotes the corresponding natural number.11 The as-
sumption allows us to disregard free first-order variables in what fol-
lows. For example, the denotation of a term ‘x̂(A(x, y1, . . . , yk))’, under
the assignment of n1, . . . , nk to the variables may simply be taken to be
the denotation of the term: x̂(A(x, n1, . . . , nk)).

2.1. Value-range terms not containing second-order variables.
Define the rank of a vr term as follows: If A(x) contains no vr terms, let
the rank of px̂(A(x))q be 0. If A(x) contains a vr term and the term of
greatest rank that it contains is of rank n, let the rank of px̂(A(x))q be
n+ 1.

Order all vr terms in an ω×ω sequence, where the value-range terms
of each rank form an ω-sequence, and, for any vr term t, each term
preceding it is of a rank less than or equal to that of t itself. Let J(m,n)
be some pairing function. Define J0(m,n) = 2× J(m,n).

To the first vr term, assign the natural number J0(0, 0) as its denota-
tion. For induction, let t be some vr term in the ordering and assume
that we have assigned denotations to all prior terms. Assume, further,
that, if px̂(C(x))q and px̂(D(x))q precede t, then px̂(C(x))q and px̂(D(x))q
have been assigned the same denotation if, and only if: For every term
n, C(n) is true iff D(n) is. (If so, say that C(x) and D(x) are equivalent.)
For our inductive stipulation, we must assign some denotation to t, and
we must show that, if px̂(C(x))q and px̂(D(x))q precede or are identical
with t, then C(x) and D(x) are equivalent if, and only if, px̂(C(x))q and
px̂(D(x))q have been assigned the same denotation.

Let t be px̂(A(x))q. We intend to assign t, as its denotation, the deno-
tation assigned to the term u, if u is some prior term px̂(B(x))q such that
B(x) is equivalent to A(x). (By hypothesis, the denotations of all such
terms are the same.) If there is no such term, we assign to t the number
J0(m,n), where m is the rank of t and n is the smallest number k such
that J0(m, k) has not already been assigned as the denotation of some vr
term. (Note that there will always be such a number k.) The acceptabil-
ity of the definition depends only upon our having specified enough to

11If the predicative second-order theory in this language, whose axioms are the in-
stances of the schematic version of Basic Law V, is consistent, so is the corresponding
theory in the original language.
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determine, for any term px̂(B(x))q prior to t, whether A(x) and B(x) are
equivalent. But that we have. For only value-range terms contained
in A(x) and B(x) could possibly be problematic, all such terms are of
rank less than that of t, and hence all such terms have been assigned a
denotation.

We must now check that, if px̂(C(x))q and px̂(D(x))q precede or are
identical with t, then C(x) andD(x) are indeed equivalent if, and only if,
px̂(C(x))q and px̂(D(x))q have been assigned the same denotation. The
crucial case is that in which one of these terms is t. Suppose that the
former is: Thus, it is px̂(A(x))q. But then A(x) is equivalent to D(x) if,
and only if, px̂(A(x))q is co-referential with px̂(D(x))q, by construction.

2.2. The domain of the second-order quantifiers. We fix the do-
main of the second-order quantifiers as follows. A set α is to belong to
the domain if, and only if, it is the extension of some formula A(x) that
contains no free variables other than ‘x’ and that contains no second-
order variables at all. The extensions of all such formulas have been
fixed by the assignment of denotations to closed value-range terms in
the last section.

We now fix denotations for all value-range terms containing free, but
no bound, second-order variables. We make use here of the following
fact.

Fact. Given any interpretation I of the free variables contained in a
formula A(x), there is a formula A′(x), containing no free second-order
variables and no bound second-order variables not contained in A(x), to
which A(x) is equivalent, under that interpretation of the second-order
variables. (Say that A(x) and A′(x) are I/x-equivalent, if so.)12

Proof. Fix an interpretation I. Suppose that A(x) contains free vari-
ables V1, . . . , Vn, and let αi be assigned to Vi by I. Since the αi are in
the domain, there are formulae αi(x), containing no free variables other
than ‘x’ and no bound second-order variables at all, whose extensions
are the αi. Let A′(x) be the result of substituting the αi(x) for the V i in
A(x). Then A′(x) is I/x-equivalent to A(x). �

Now, if px̂(A(x))q is a vr term containing free, but no bound, second-
order variables, there is a formula A′(x), containing neither free nor
bound second-order variables, that is I/x-equivalent to A(x). Assign
to px̂(A(x))q, as its denotation relative to I, that already assigned to
px̂(A′(x))q.

12Carefully note the order of the quantifiers: The claim is not that there is a fixed
formula A′(x) to which A(x) is I/x-equivalent for all I, but that, for each I, there is a
corresponding such formula.
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2.3. All comprehension axioms are true. The comprehension ax-
ioms are all instances of

∃F∀x[Fx ≡ A(x)]

where A(x) contains neither free ‘F ’ nor any bound second-order quan-
tifier. Say that α is the I-extension of A(x) if for every n, n ∈ α iff A(n) is
true under I. To show that all comprehension axioms are true under ev-
ery interpretation, we must show that, for every interpretation I of its
free variables, the I-extension of A(x) is contained in the second-order
domain. As above, let A′(x) be a formula containing neither free nor
bound second-order variables that is I/x-equivalent to A(x) and there-
fore has the same I-extension as A(x). But the extension of A′(x) is in
the domain, by definition.

Since every set in the second-order domain is the extension of some
formula, we can henceforth ignore terms containing free second-order
variables, as we have been ignoring terms containing free first-order
variables: The value, under an interpretation I, of a term or formula
containing free second-order variables will just be the value under I of
the formula or term resulting from substituting formulas whose exten-
sions are the sets I assigns to the respective free variables.

2.4. Value-range terms containing second-order quantifiers. Due
to obvious analogies with 2.1, we merely sketch this part of the proof.

Say that a vr term px̂(A(x))q is of degree 0 if it contains no second-
order quantifiers. Say that it is of degree 1 if it does, but contains no vr
terms that themselves contain bound second-order quantifiers; other-
wise, let the degree of px̂(A(x))q be one greater than the greatest degree
of any vr term contained in it. Order the vr terms by degree in an ω× ω
sequence. Let K(m,n) be 4 × J(m,n) + 1. The foregoing has assigned
denotations to all terms of degree 0. Assume we have done the same
for all terms prior to some term t, i.e., px̂(A(x))q, of degree greater than
0 and assume, as above, that, for any terms px̂(C(x))q and px̂(D(x))q
prior to t, those terms have the same denotation just in case C(x) and
D(x) are equivalent. As before, we assign to t, as its denotation, that of
any prior term px̂(B(x))q such that B(x) is equivalent to A(x), if there is
such a term, and we assign as denotation K(m,n), where m is the rank
of t and, for all k < n, K(m, k) has already been assigned as denotation
to some vr term.

That enough has been stipulated to determine, for each term px̂(B(x))q
prior to px̂(A(x))q, whether B(x) and A(x) are equivalent may be shown
as in 2.1. The demonstration that, for any terms px̂(C(x))q and px̂(D(x))q
prior to or the same as t, those terms have the same denotation just in
case C(x) and D(x) are I/x-equivalent, is also similar to the proof of the
corresponding result in 2.1.
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2.5. Every instance of Basic Law V is true. Let px̂(C(x))q and px̂(D(x))q
be value-range terms. In the ω × ω ordering of all the vr terms, either
px̂(C(x))q is prior to px̂(D(x))q or conversely. Suppose the former. Then,
as just said, px̂(C(x))q and px̂(D(x))q have the same denotation just in
case C(x) and D(x) are equivalent. But p∀x[C(x) ≡ D(x)]q is true just
in case C(x) and D(x) are equivalent.

3. THE CONSISTENCY OF THE RAMIFIED PREDICATIVE FRAGMENT
OF FREGE’S SYSTEM

In the language of ramified second-order logic, we have, besides our
familiar variables ‘F ’, ‘G’, and the like, also variables of denumerably
many other types, ‘F 1’, ‘G1’, etc., ‘F 2’, ‘F 3’, and the like. We say that vari-
ables superscripted with the numeral n are of type n, and we re-describe
our previous variables as having been of type 0. Ramified second-order
logic has, as comprehension axioms, all instances of

∃Fn∀x[Fnx ≡ A(x)]

where A(x) contains no bound variables of type greater than or equal to
n, and no free variables of type greater than n.

By iterating the construction given above, the consistency of rami-
fied predicative second-order logic, augmented by Basic Law V,13 may
be proven. As the proof is very similar in spirit to that just given, we
merely sketch it here. Assume that we have so far specified a model that
assigns domains to variables of types less than or equal to n and that:
(i) Consistently with Basic Law V, assigns denotations to all vr terms
containing arbitrarily many bound and free variables of types less than
or equal to n, relative to any interpretations of those variables; (ii) Ver-
ifies all comprehension axioms for types less than or equal to n. (The
base case is then that of simple predicative second-order logic.) We then:
(1) Take as the type-n+1 domain the extensions of all formulasA(x) con-
taining no bound variables of type higher than n and no free variables
other than ‘x’. (2) Show, as in 2.2, that this suffices to fix denotations for
all vr terms containing bound variables of types less than or equal to n
and free variables of types less than or equal to n+ 1, i.e., that it allows
us to take care of free variables of type n+ 1. (3) Show, as in 2.3, that all
comprehension axioms for type n + 1 hold. (4) Show, as in 2.4 and 2.5,
how denotations can be assigned, consistently with Basic Law V, to all
vr terms containing bound and free variables of type n+ 1 and below.

13Note that Basic Law V is again to be formulated as a schema: We make no type-
restrictions upon what may occur in the formulae occuring in Basic Law V, other than
that they be well-formed.
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4. INTERPRETING Q IN THE PREDICATIVE FRAGMENT

It is, in retrospect, not so surprising that, without impredicative in-
stances of comprehension, no contradiction is forthcoming from Basic
Law V. One might wonder, however, just where the proof given above
would break down were we to attempt to extend it to a proof of the con-
sistency of standard second-order logic, augmented by Basic Law V. The
answer is that it breaks down at the second stage, when we attempt to
assign a domain to the second-order variables which will both verify all
comprehension axioms and allow us to fix denotations for value-range
terms containing free but no bound second-order variables. In the first
part, we had assigned denotations to terms containing no second-order
variables: In the extension to terms containing free second-order vari-
ables, it was crucial that, for every set which might interpret such a
variable, there was a formula of the language whose extension it was.
It is tempting to suppose that the difficulty is that, if the first-order do-
main is infinite, then, in a model of standard second-order logic, there
should simply be too many sets in the second-order domain for there
to be, for each of them, a formula whose extension it is. However, this
is mistaken:14 To prove the consistency of standard second-order logic,
plus Basic Law V—i.e., to prove that no contradiction can be proven
in the theory—it would suffice to show that there was a non-standard
model of second-order logic that validated Basic Law V. Non-standard
models of second-order logic need not have, as their second-order do-
mains, the full power set of the first-order domain, only a second-order
domain that verifies the comprehension axioms. (These are the so-called
Henkin models.)

In the predicative case, we stipulated that the domain was to contain
exactly the extensions of formulae which appear in comprehension ax-
ioms and that contain no second-order variables at all. The proof that
all comprehension axioms are true in the model then depended upon
our substituting the formula defining a given set in the second-order
domain for the free variable to which that set had been assigned. But
no similar trick will work in the case of standard second-order logic: If
the domain contains only classes defined by first-order formulae, that
will not verify all instances of comprehension, for the formulae appear-
ing in those axioms may contain bound second-order quantifiers. Nor
can we just say that the second-order domain is to contain the exten-
sions of all formulae appearing in the comprehension axioms. If we
have not said what the second-order domain is to be, not enough has

14It would be better to remark that Cantor’s theorem is provable in second-order
logic. But the situation here is complicated: A version of the theorem can, in fact,
be proven in predicative second-order logic, and yet the predicative fragment, which
associates a unique object with every ‘concept’ is consistent. The reason is that the
relation the theorem asserts not to exist is definable only impredicatively.



PREDICATIVE FRAGMENTS 12

been said to determine the extensions of such formulae; we do not know
what the extension of ‘∃F (. . . F . . . )’ is unless we already know what
the domain of the second-order quantifiers is to be. Perhaps this adds
some force to Dummett’s claim that Russell’s Paradox arises in Frege’s
system because of a circularity inherent in impredicative second-order
quantification.

As Boolos points out, however, this should not lead us to claim, with-
out additional argument, that the impredicativity of second-order logic
is responsible for the contradiction: Unless the resulting theory is rea-
sonably strong, it will be hard to blame the contradiction on the impred-
icativity of Frege’s logic. The predicative fragment is at least non-trivial:
The axioms of Robinson arithmetic, Q, can be relatively interpreted in
it, which implies that all recursive functions can be represented in the
predicative fragment and that it is essentially incomplete and undecid-
able. Since Edward Nelson has proved that I∆0, and even somewhat
stronger theories, are interpretable in Q, it follows that these theories
are also interpretable in the predicative fragment.15 It may well be that
one can do a little better still, but I do not now know how much better.16

Nonetheless, the predicative fragment is a natural theory for someone
with strongly finitist inclinations.

The initial goal is to intepret a version of Q formulated, not with
function-symbols ‘Sξ’, ‘ξ+η’, and ‘ξ×η’, but with relation-symbols ‘Pξη’,
‘A(ξ, η, τ)’, and ‘M(ξ, η, τ)’. Once this theory has been interpreted, we
can interpret Q in its usual form by means of Russell’s theory of de-
scriptions. The axioms of this version of Q, which we might call QR,
are:
P1 ∀x∃y(Pxy)
P2 Pxy ∧ Pxz → y = z
A1 ∀x∀y∃z(A(x, y, z))
A2 A(x, y, z) ∧A(x, y, w)→ z = w

15For formulations and proofs of the relevant results, see Hájek and Pudlák (1993,
pp. 366–71). I∆0 is Q with induction for ‘bounded’ formulae, that is, formulae all quan-
tifiers contained in which are of the form ‘∃x < y’ or ‘∀x < y’. The stronger theories in
question have axioms asserting the totality of, so to speak, fragments of exponentiation
whose totality is not provable in I∆0. The really hard part of Nelson’s proof, that the
theory Q+ is interpretable in Q, can be skipped here, since the proof to be given shows
directly that Q+ is interpretable in the predicative fragment.

16Shortly after this paper was published, John P. Burgess and Allen Hazen (1998)
showed that the fragment of primitive recursive arithmetic with function-symbols only
for addition, multiplication, and exponentiation is also interpretable in predicative
second-order logic with the axiom of infinity and so is interpretable in the predica-
tive fragment. For this result and more, see Burgess’s book Fixing Frege (Burgess,
2005). More recently, Albert Visser (2009) settled the question of the strength of the
predicative fragment definitively. Basically: It is very weak, far weaker than primtive
recursive arithmetic (aka, IΣ1). But it does interpret a perfectly reasonable fragment
of arithmetic.
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M1 ∀x∀y∃z(M(x, y, z))
M2 M(x, y, z) ∧M(x, y, w)→ z = w
Q1 Pxz ∧ Pyz → x = y
Q2 ¬Px0
Q3 x 6= 0→ ∃y(Pyx)
Q4 A(x, 0, x)
Q5 A(x, y, z) ∧ Pzz′ ∧ Pyy′ ∧A(x, y′, w)→ w = z′

Q6 M(x, 0, 0)
Q7 M(x, y, z) ∧A(x, z, w) ∧ Pyy′ ∧M(x, y′, v)→ w = v

Q1-Q4 and Q6 are self-explanatory. The first six axioms express exis-
tence and uniqueness conditions for the predicates ‘Pξη’, ‘A(ξ, η, τ)’, and
‘M(ξ, η, τ)’ and so guarantee that they serve to define total functions.
Q5 says that, if z′ is the successor of the sum of x and y, and if w is the
sum of x and the successor of y, then z′ is w: That is, it expresses what
‘x+Sy = S(x+y)’ expresses in the more usual formulation of Q. Similar
remarks apply to Q7.

One striking fact about the interpretation of the axioms of QR in the
predicative fragment is that it can be given in terms of Frege’s own
definition of number. Let ‘Eqx(Fx,Gx)’ abbreviate the usual formula
expressing that F and G are equinumerous, i.e.:

∃R[∀x∀y∀z∀w(Rxz ∧Ryw → x = y ≡ z = w)∧
∀x(Fx→ ∃y(Rxy ∧Gy) ∧ ∀y(Gy → ∃x(Rxy ∧ Fx)]

Then we define:

Nx :Fx df
= x̂(∃G[x = ŷ(Gy) ∧ Eqy(Fy,Gy)])

Thus, the number of Fs is the extension of the concept: ξ is the ex-
tension of a concept equinumerous with F (Frege, 1962, v. I, §40). The
idea is then to prove relativizations of the axioms of QR to the formula
‘Num(x)’, expressing that x is a number, which we define, again follow-
ing Frege, as follows:

Num(x)
df
≡ ∃F [x = Ny :Fy]

The definitions of ‘0’ and ‘Pξη’ are then, again, just Frege’s:

0
df
= Nx :x 6= x

Pmn
df
≡ ∃F∃y[n = Nx :Fx ∧ Fy ∧m = Nx : (Fx ∧ x 6= y)]

The definitions of ‘A(ξ, η, τ)’, and ‘M(ξ, η, τ)’ require a definiton of or-
dered pairs, for which we can use a version of the usual definition:17

<a, b>
df
= x̂(x = ŷ(y = a) ∨ x = ŷ(y = a ∨ y = b))

17Frege does define ordered pairs Frege (1962, v. I, §144), though differently (and
impredicatively).
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The proof of the ordered pair axiom

<a, b> = <c, d> ≡ a = c ∧ b = d

is then straightforward. We then define addition and multiplication as
the cardinality of the disjoint union and Cartesian product, respectively:

A(a, b, c)
df
≡ ∃F∃G{a = Nx :Fx ∧ b = Nx :Gx∧

c = Nx : [∃y (Fy ∧ x = <ẑ(z 6= z), y>) ∨ ∃y (Gy ∧ x = <ẑ(z = z), y>)]}

M(a, b, c)
df
≡ ∃F∃G[a = Nx :Fx ∧ b = Nx :Gx ∧ c = Nx :∃y∃z(Fy ∧Gz ∧ x = <y, z>]

This last definition is not Frege’s: In fact, he never defines multiplica-
tion in Grundgesetze. Nor does he offer a formal definition of addition,
though it is clear he had something like the present definition of addi-
tion in mind (Frege, 1962, v. II, §33).

The proofs of the axioms then proceeds as follows. First, we prove
Hume’s Principle (HP):

Nx :Fx = Nx :Gx ≡ Eqx(Fx,Gx)

The proof is essentially Frege’s proof (Frege, 1962, v. I, §§54–69),18 which
does not use impredicative axioms of comprehension. It is worth re-
hearsing the proof.

Basic Law V and the definition of number give us:

Nx :Fx = Nx :Gx ≡
∀x{∃H[x = ŷ(Hy) ∧ Eqy(Fy,Hy)] ≡ ∃H[x = ŷ(Hy) ∧ Eqy(Gy,Hy)]}

The work is to show that the right-hand side is equivalent to: Eqy(Fy,Gy).
All we really need to know is that equinumerosity is an equivalence re-
lation. The proof is straightfoward—Frege outlines it already in Die
Grundlagen—so one need only check that no appeal to impredicative
comprehension is needed.

So suppose that Eqy(Fy,Gy). We want to show:

∀x{∃H[x = ŷ(Hy) ∧ Eqy(Fy,Hy)] ≡ ∃H[x = ŷ(Hy) ∧ Eqy(Gy,Hy)]}

Left-to-right: Suppose ∃H[x = ŷ(Hy) ∧ Eqy(Fy,Hy)], e.g., x = ŷ(Zy) ∧
Eqy(Fy, Zy). We need to show that ∃H[x = ŷ(Hy)∧Eqy(Gy,Hy)]. But we
have both Eqy(Fy,Gy) and Eqy(Fy, Zy), so the symmetry and transivity
of equinumerosity give us Eqy(Gy,Zy). So x = ŷ(Zy)∧Eqy(Gy,Zy), and
existential generalization completes the proof. The other direction is
obviously similar.

Suppose, then, that:

∀x{∃H[x = ŷ(Hy) ∧ Eqy(Fy,Hy)] ≡ ∃H[x = ŷ(Hy) ∧ Eqy(Gy,Hy)]}

18The two directions of HP are Theorems 32 and 49. For discussion of their proofs,
see my paper “Frege’s Principle” (Heck, 1995).
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We want to show that Eqy(Fy,Gy). By the reflexivity of identity and
equinumerosity:

ŷ(Fy) = ŷ(Fy) ∧ Eqy(Fy, Fy)

so, generalizing: ∃H[ŷ(Fy) = ŷ(Hy) ∧Eqy(Fy,Hy)]. By the supposition,
then, ∃H[ŷ(Fy) = ŷ(Hy) ∧ Eqy(Gy,Hy)]. Fix such an H. Then, by Law
V, ∀x(Fx ≡ Hx), and we already know that Eqy(Gy,Hy). But it is easy
to show, predicatively, that equinumerosity is extensional, in the sense
that:

∀x(Fx ≡ Hx) ∧ Eqy(Gy,Hy)→ Eqy(Gy, Fy)

So Eqy(Gy, Fy), and symmetry completes the proof..
With HP in hand, we can then prove relativizations of axioms P2 and

Q1–Q3. Again, the proofs are just Frege’s proofs of Theorems 71, 89,
108, and 107 of Groundgesetze, respectively, which do not use impred-
icative comprehension. Proofs of axioms A1, A2, Q4, and Q5, concerning
addition, are in the appendix: The proofs of those concerning multipli-
cation are similar and are omitted.

The last remaining axiom is P1, whose relativization asserts that ev-
ery number has a successor:

Num(x)→ ∃y[Num(x) ∧ Pxy]

Frege’s proof of this claim will not work, since it appeals to impredica-
tive comprehension.19 However, there is a much easier proof, as follows.
The proof depends upon the two facts:

Eqx[Fx,∃z(Fz ∧ x = <w, z>)]

¬Fy → P [Nx :Fx,Nx : (Fx ∨ x = y)]

To prove the former, note that the relation Rξη that correlates these
two concepts one-to-one will just be: Fξ ∧ η = <w, x>, which exists by
comprehension. The latter follows immediately from the definition of
‘Pξη’.

Now suppose that a is a number, a = Nx :Fx. By comprehension, for
some G, Gx ≡ ∃y(Fy ∧ x = <ẑ(z 6= z), y>). By the mentioned fact, G is
equinumerous with F . So, by HP, a = Nx :Fx = Nx :Gx. But ¬G(ẑ(z 6=
z), since, for any x and y, <x, y> 6= ẑ(z 6= z). So P [Nx :Gx,Nx : (Gx∨x =
ẑ(z 6= z)) and so P [a,Nx : (Gx∨x = ẑ(z 6= z)). And Nx : (Gx∨x = ẑ(z 6= z))
is a number, by comprehension.

That, then, completes the interpretation of QR in the predicative frag-
ment.

I have argued elsewhere that it was important to Frege that he not
rely upon Basic Law V in his proofs of the basic laws of arithmetic, that
those proofs should appeal only to Hume’s Principle, but for inessential

19That said, it turns out that the existence of successor can be proven in a ramified
predicative version of Frege arithmetic, and, modulo the need to prove various versions
of reducibility, the proof is essentially Frege’s (Heck, 2011).
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uses of value-ranges for technical convenience (Heck, 1993, 1995, 2005).
What we have just seen is that, had Frege been willing to appeal to
Basic Law V in his proof that every natural number has a successor,
he could have given a much simpler proof than he did and, moreover,
proven that every number has a successor, not just that every natural
number has one. If one refuses to appeal to Basic Law V, the proof of
the more general claim has to wait until later; Frege’s proof depends
upon his Theorem 483, that Nx :x = x is Dedekind infinite, whereas the
proof given above appeals only to HP and the definitions of ordered pairs
and predecession. The existence of the proof discussed above, which is
hardly so difficult that Frege could not be expected to have seen it, thus
constitutes additional evidence for the claim mentioned.20

APPENDIX

I shall here sketch proofs of the axioms of QR concerning addition.
As said above, the proofs of the axioms concerning multiplication are
similar—although rather more tedious. Write ‘∅’ for ‘ẑ(z 6= z)’ and ‘V ’
for ‘ẑ(z = z)’. Write, e.g., ‘<∅, F>x’ for: ∃y(Fy ∧ x = <∅, y>).

For A1, let a and b be numbers, a = Nx :Fx, b = Nx :Gx. Let c =
Nx : (<∅, F>x ∨ <V,G>x). By comprehension, for some H, ∀x[Hx ≡
<∅, F>x∨<V,G>x)]; and so, by HP, Nx :Hx = Nx : [<∅, F>x ∨<V,G>x)].
So c is a number and A(a, b, c), by definition.

For Q4, let a be a number, say, Nx :Fx. By A1, for some z, A(a, 0, z),
so there are F and G such that:

a = Nx :Fx ∧ 0 = Nx :Gx ∧ z = Nx : [<∅, F>x ∨<V,G>x]

It follows from HP and the definition of ‘0’ that ¬∃x(Gx). By logic, then,
¬∃x∃y(Gy∧x = <V, y>), that is, ¬∃x(<V,G>x) and so<∅, F>ξ∨<V,G>ξ
is (co-extensional with and so) equinumerous with <∅, F>ξ which is, by
a fact used earlier, equinumerous with Fξ. Hence, by HP, a = Nx :Fx =
Nx :<∅, F>x = z.

A2 is a relatively trivial consequence of this fact:

¬∃x(Fx ∧Gx) ∧ ¬∃x(F ′x ∧G′x) ∧ Eqx(Fx, F ′x) ∧ Eqx(Gx,G′x)→
Eqx(Fx ∨Gx,F ′x ∨G′x)

The proof is straightforward and is, in fact, given by Frege (Theorem
469): Just put the maps that establish thatEqx(Fx, F ′x) andEqx(Gx,G′x)
together.

20Thanks to John Burgess and Allen Hazen for discussion, and to Michael Resnik for
comments that much improved the paper. Special thanks to George Boolos, for inspiring
my interest in this problem and for helping me to understand Parsons’s proof.
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Now, suppose that A(a, b, c) and A(a, b, d). Then, by the definition of
A(ξ, η, τ), there are F and G, and H and J , such that:

a = Nx :Fx ∧ b = Nx :Gx ∧ c = Nx : [<∅, F>x ∨<V,G>x]

a = Nx :Hx ∧ b = Nx : Jx ∧ c = Nx : [<∅, H>x ∨<V, J>x]

Now <∅, F>ξ is equinumerous with Fξ and so, by HP, with Hξ and so
with <∅, H>ξ; <V,G>ξ is equinumerous with Gξ and so with Jξ and so
with <V, J>ξ. Since <∅, F>ξ and <V,G>ξ are disjoint, as are <∅, H>ξ
and<V, J>ξ,<∅, F>ξ∨<V,G>ξ is equinumerous with<∅, H>ξ∨<V, J>ξ,
and then HP implies that c = d.

For Q5, suppose that A(a, b, c), Pcc′, Pbb′, and A(a, b′, d). It will suffice
to show that Pcd, since then it will follow from P2 that c′ = d. By the
various definitions, we have:

a = Nx :Fx ∧ b = Nx :Gx ∧ c = Nx : [<∅, F>x ∨<V,G>x]

a = Nx :F ′x ∧ b = Nx :Hx ∧ d = Nx : [<∅, F ′>x ∨<V,H>x]

b′ = Nx :H ′x ∧H ′y ∧ b = Nx : (H ′x ∧ x 6= y)

Define:

Jx
df
≡<∅, F ′>x ∨<V,H ′>x

z
df
=<V, y>

I claim that:

d = Nx : Jx ∧ Jz ∧ c = Nx : (Jx ∧ x 6= z)

from which it follows, by the definition of ‘Pξη’, that Pcd.
Note that Jz, since H ′y. Now, d = Nx : [<∅, F ′>x ∨ <V,H>x]; so, by

HP, it is enough to establish the first conjunct to show that <∅, F ′>ξ ∨
<V,H ′>ξ is equinumerous with<∅, F ′>ξ∨<V,H>ξ. And since<V,H ′>ξ
and <∅, F ′>ξ are disjoint, as are <V,H>ξ and <∅, F ′>ξ , it is enough
to show that <V,H>ξ is equinumerous with <V,H ′>ξ. But, as above,
<V,H ′>ξ is equinumerous withHξ and so withH ′ξ and so with<V,H>ξ.

Since c = Nx : [<∅, F>x ∨ <V,G>x], it will suffice to establish the
third conjunct to show that <∅, F>ξ ∨ <V,G>ξ is equinumerous with
Jξ ∧ ξ 6= z. Now, ‘Jx ∧ x 6= z’ just means:

[<∅, F ′>x ∨<V,H ′>x] ∧ x 6= z

If <∅, F ′>z, then for some y, F ′y∧<V, y> = <∅, y>, which is impossible,
so Jx ∧ x 6= z iff:

<∅, F ′>x ∨ [<V,H ′>x ∧ x 6= z]

Since H ′y ∧ z = <V, y>, <V,H ′>z, <V,H ′>ξ is equinumerous with H ′ξ,
and b = Nx :H ′x, we have:

b′ = Nx :<V,H ′>x∧H ′z∧Nx : (<V,H ′>x∧x 6= z) = Nx : (<V,H ′>x∧x 6= z)



PREDICATIVE FRAGMENTS 18

Thus, P [Nx : (<V,H ′>x ∧ x 6= z), b′], by definition; but then, by Q1,
Nx : (<V,H ′>x∧x 6= z) = b = Nx :Gx. But then, by HP, <V,H ′>ξ∧ξ 6= z
is equinumerous with Gξ. And <∅, F ′>ξ is equinumerous with <∅, F>ξ,
so<∅, F>ξ∨<V,G>ξ is equinumerous with<∅, F ′>ξ∨[<V,H ′>ξ∧ξ 6= z]
and so to Jξ ∧ ξ 6= z.
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