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Abstract I show that the social stratification of academic science can arise as a result
of academics’ preference for reading work of high epistemic value. This is consistent
with a view on which academic superstars are highly competent academics, but also
with a view on which superstars arise primarily due to luck. I argue that stratification
is beneficial if most superstars are competent, but not if most superstars are lucky. I
also argue that it is impossible to tell whether most superstars are in fact competent or
lucky, or which group a given superstar belongs to, and hence whether stratification
is overall beneficial.

Keywords Philosophy of science · Social structure of science · Formal epistemology ·
Social epistemology · Network formation

1 Introduction

Academic superstars are a familiar phenomenon. These academics write the papers
that everyone reads and talks about, they make media appearances, give presiden-
tial addresses, and they win grants and awards. The work of an academic superstar
generally attracts more attention than that of the average academic.

Attention can be quantified in various ways, e.g., number of papers published,
citations to those papers, awards received, etc. It is a well-established empirical fact
that, regardless of which metric is used, the vast majority of academics receives little
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attention (if any), while a rare few receive a great deal (Price 1965; Cole and Cole
1973).1

This fact has been called the social stratification of science (or academia) (Cole and
Cole 1973). Stratification is important in studying the social epistemology of science.
If some academic work receives more attention than other work, this influences the
flow of information in an academic community. This may affect, e.g., the consensus
that an academic community settles on for a particular question.

In this paper I raise the question whether the phenomenon of stratification serves
the aims of academic science.2 I argue that the answer to this question depends largely
on how one thinks academic superstars are distinguished from academic nobodies. In
particular, what are the roles of competence and luck in distinguishing the two groups?

I start by introducing some toy models which illustrate the different roles that
competence and luck might play (Sect. 2). In this section important concepts such as
“competence”, “luck”, “attention”, and “superstars” are left at an intuitive level (to be
made more precise later).

In Sect. 3 I develop a formalmodel focusing on how academics decidewhich papers
to read. In Sect. 4 I develop the idea that papers may differ in “epistemic value” and
that small differences in epistemic value can lead to large differences in attention;
large enough to match the pattern of stratification described above.

Section 5 returns to the notion of competence. I show that the model is consistent
with a scenario in which stratification in science is purely competence-based. I argue
that on this view stratification serves the aims of academic science, because it makes
it easier to identify competent academics, whose past and future work is likely to be
of high epistemic value.

In contrast, Sect. 6 focuses on the less optimistic lessons that can be drawn from the
model. I show that the model is also consistent with a scenario in which stratification is
determined by a large component of randomness. Because they cannot be distinguished
by their past performance, it is impossible to separate the lucky superstars from the
competent ones. But the epistemic benefit of stratification derives exactly from the
ability to identify competent academics, or so I argue. It follows that stratification
either hinders the aims of academic science, or, if it does help, it is impossible to show
this.

2 Some intuitions for competence and luck

The purpose of this section is to develop some intuitions for the notions of competence
and luck as they will be used in this paper. Consider the following toy models.

1 For example, the distribution of citations follows a “power law”: the number of papers that gets cited n
times is proportional to n−α for some α. Redner (1998) estimates α to be around 3.
2 Some care should be taken in using the phrase “the aims of academic science”. Academic science is not a
monolithic enterprise, uniformly directed at some aim or set of aims. Here I seek to identify ways in which
stratification may be beneficial or harmful to groups of academics and academic institutions, as distinct
from the ways individual academics may be helped or harmed by their own place in this stratified social
structure. This introduction uses “the aims of academic science” as a shorthand for that. In the rest of the
paper I will be more specific.
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Toy Model 1 Suppose a group of scientists are interested in the same experiments.
Suppose also that each scientist has a fixed amount of time to perform experiments;
perhaps they are all in a one-year post-doc and they need to produce a paper at the
end of it. Suppose further that the more competent a scientist is, the more replications
she can perform in that time. And suppose finally that the work of a scientist who has
performed more replications receives more attention. It follows that the superstars3 in
this toy model are exactly the most competent scientists.

Here, differences in productivity among the scientists are the result of differences
in competence. Contrast a case in which differences in productivity among scientists
are entirely random.

Toy Model 2 Consider again a group of scientists who have a fixed amount of time to
perform experiments. But now suppose that the equipment available to each scientist
restricts their productivity so that each scientist can perform exactly n replications
in the available time. However, the equipment is not perfectly reliable, so that each
replication succeeds (yields usable data) with probability α, and fails with probability
1 − α.

Suppose as before that the work of those scientists who performed more replica-
tions receives more attention. Since in this toy model the only difference between the
scientists is in the probabilistic behavior of their equipment, the superstars are those
lucky scientists for whom all n replications succeed (which happens with probability
αn if the success probabilities are independent).

What is the difference between these two toymodels? From an external perspective,
not much. A group of scientists perform some experiments, and those who come up
with more replications receive more attention.

Intuitively, the difference from an internal perspective is that there is something
systematic about differences in competence that does not exist when the differences
are due to luck. In the first toy model, we should expect the same scientists to perform
the most replications next year. Whereas in the second model, all scientists are equally
likely to have a lot of successful replications in the next year, except insofar as their
differential productivity in the previous year has affected their employment or funding
situation.

This will be the key difference between competence and luck in the discussion of
competent and lucky superstars in Sects. 5 and 6. Competent superstars are those for
whom good past academic work is predictive of good future academic work, while
lucky superstars are those for whom good past academic work is not indicative of the
value of their future work.4

3 If the scientists are post-docs,most likely noneof themare superstars in an absolute sense. The “superstars”
in this community are relative: their work receives more attention than that of the other post-docs in this
group. In an absolute sense, “rising stars” might be a more appropriate name. Cf. my discussion of the
Matthew effect in Sect. 5.
4 Although Louis Pasteur’s claim that “Fortune favors only the prepared mind” suggests otherwise. See
McKinnon (2014) andMerton andBarber (2004, Chap. 9) for discussion of the relation between competence
and luck. The kind of luck that results from competence counts as competence as far as this paper is
concerned.My aim is to take seriously the implications of the possibility of a kind of luck that is independent
from competence.

123



4502 Synthese (2017) 194:4499–4518

The next toymodel includes both factors—competence and luck—at the same time.
It seems plausible that in such a situation, the systematic contribution of competence
outweighs the unsystematic contribution of luck. But Proposition 1, below, shows that
this is not necessarily the case.

Toy Model 3 Suppose as before that scientists have time to perform n replications,
eachofwhich succeeds or fails independently from theotherswith somefixedprobabil-
ity. Competence is reflected in the value of that probability. Suppose further that there
are just two types of scientists: average scientists, whose success probability for each
replication is α, and good scientists, whose success probability is β (0 < α < β < 1).
As before the superstars are those scientists for whom all n replications succeed.

Let p denote the proportion of good scientists. It seems plausible that good scientists
are rare: most scientists are of average quality. It turns out that if good scientists are
sufficiently rare, the chance that a given superstar is a good scientist may be arbitrarily
small.

To make this more precise, suppose one draws a scientist at random from the group.
Let g denote the proposition that the scientist drawn is a good scientist and let s denote
the proposition that the scientist is a superstar.

Proposition 1 For all ε > 0 there exists a proportion of good scientists p ∈ (0, 1)
such that Pr(g | s) ≤ ε.

Proof Let ε > 0. Assume ε < 1 (otherwise the result is trivial). Choose p =
αnε

βn(1−ε) +αnε
. Since the superstars are those for whom all replications succeed,

Pr(s | g) = βn and Pr(s | ¬g) = αn . Therefore

Pr(g | s) = Pr(s | g)p

Pr(s | g)p + Pr(s | ¬g)(1 − p)

=
βnαnε

βn(1−ε) +αnε

βnαnε +αnβn(1−ε)
βn(1−ε) +αnε

= αnβnε

αnβn
= ε.

��
Note that while competence and luck are both present in Toy Model 3, their effects

are modulated by how they affect the number of replications each scientist is able to
perform. That is, whether a given scientist becomes a superstar is not directly a function
of how competent or lucky they are, but rather a function of how their competence or
luck translates into replications.

These toy models have a number of unrealistic features. The idea that whether a
scientist becomes a superstar depends only on the number of replications they perform
is one of them. While this assumption will be dropped in the next section, I retain the
idea that competence and luck do not affect superstar status directly, but rather via
what I will call the “epistemic value” of papers. In the next two sections I make the
notions of epistemic value, attention, and superstars more precise, and show how small
differences in epistemic value among papers can generate the characteristic pattern
of social stratification in science. This is consistent with either competence, luck, or
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a combination of both being responsible for creating differences in epistemic value
between papers. I return to discussing competence and luck explicitly in Sects. 5 and 6.

3 A model of academics reading papers

This section presents a formal model of information exchange in an academic commu-
nity. The guiding idea is that each academic does some experiments and publishes the
results in a paper. Academics may then choose to read each other’s papers depending
on their interests. The model focuses on the “short run”, that is, academics’ reading
behavior in the context of one research project or paper.

Viewing the academics as nodes and the choice to read a paper as a (directed)
edge yields a network. In Sect. 4 the idea of “attention for academic work” is given
a precise interpretation using a concept from network theory: the in-degree. Because
the structure of this network depends on the academics’ choices, this is a model of
(strategic) network formation in the sense of Jackson and Wolinsky (1996).5

The purpose of thismodel is to show that certain small differences among papers are
sufficient to generate patterns in the resulting network that are similar to those observed
in real academic networks. That is, most academic work receives little or no attention,
while a small amount of work receives a great deal of attention (a phenomenon I called
stratification in the Sect. 1).

The results obtained from the model show that the mechanisms of competence and
luck I outlined in Sect. 2 are (at least in principle) sufficient for generating the pattern
of stratification observed empirically. This secures the foundations for the subsequent
discussion of thesemechanisms: if either competence or luck can create these patterns,
we may legitimately ask if either or both of them do.

It may be remarked that the characteristic pattern of social stratification in science
already has a standard generating mechanism in the literature. This mechanism is
described by so-called preferential attachment models (Barabási and Albert 1999).
In a preferential attachment model new papers cite older papers proportional to the
number of citations that older paper already has.

It can be shown that this generates a power law distribution of citations with an
exponent equal to three (Barabási and Albert 1999). This is very close to what is
observed in real citation data (Redner 1998, cf. footnote 1). While this is illuminating
in many contexts (for example, in relating citations to other social phenomena where
power laws occur), it does not address the question at issue in this paper for the
following reason.

5 Contrast this with recent philosophical work on epistemic networks, which compared the performance
of different network structures on various epistemic desiderata (Zollman 2010; Grim et al. 2013). In this
work the network structures being compared are fixed in advance, rather than formed endogenously. Such
work is thus complimentary to the type of model considered here. However, this paper differs from Jackson
and Wolinsky (1996) in that pairwise stability and other notions of equilibrium are not a key issue. This is
because forming an edge in my model is a unilateral act (an academic does not need another academic’s
permission to read her paper). In the terminology of Zollman (2013, Sect. 2), this is a “one way, one pays”
information transmission model without second-hand communication.
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Preferential attachment models do not include any features that distinguish papers
from one another (other than their number of citations). So these models can only
explain how existing differences in citations get exacerbated, not where these differ-
ences came from. In particular, the epistemic dimension of science (or: its content) is
abstracted away entirely. The model of this paper, at minimum, introduces a way of
talking about this.

Consider an academic community,modeled as a set I . Each element i ∈ I represents
an individual academic. I is best thought of as consisting of academics at a similar
stage in their career, e.g., a group of post-docs. I is assumed to be finite.

Each academic, as part of her own research, performs some “experiments”.6 Sup-
pose there are m experiments one might do. Each academic’s research involves doing
each of these experiments some (possibly zero) number of times. Write n(i, j) to
denote the number of times academic i performs experiment j .

The set of results of academic i’s experiments is called her information set Ai .
Experiments aremodeled as random variables, with different experiments correspond-
ing to different probability distributions, so an information set is a set of random
variables. Information set Ai thus contains n(i, j) random variables for each experi-
ment j .

The number of random variables of each type is the main feature I use to distinguish
information sets.On a strict interpretation, this is amodest generalization of the number
of replications that I used in Sect. 2. But there is an alternative interpretation on which
the experiments refer to different categories academics might use to evaluate each
other’s work (e.g., Kuhn’s accuracy, simplicity, and fruitfulness), and the number of
replications of each experiment gives the score of the academic’s work in that category.
More on this in Sect. 4.

Each academic publishes her information in a paper. In this “short run” model, each
academic publishes a single paper, and this paper contains all the information in her
information set.7

A generalization of my model would have separate sets of academics and papers,
with an information set for each paper. This allows for academics who publishmultiple
papers, and academics without papers. For example, if I is a group of post-docs, senior
academics may be included without papers: their reading choices may influence who
among the post-docs becomes a superstar, but their own papers are irrelevant. Results
qualitatively similar to those presented in Sect. 4 can be derived for this generalization.

6 While I use the word “experiment” to refer to individual research units, I do not intend to restrict the
model to academic fields that perform experiments. One “experiment” could be one collision of particles in
particle physics, one subject examined in a medical or psychological study, or one text studied in a corpus
analysis.
7 Thus, information sets are characteristics that differentiate the academics (nodes) in the network. Infor-
mation sets consist of random variables. This generalizes Anderson (2016), where academics’ information
consists of deterministic bits (called “skills” by Anderson). Anderson’s model in turn generalizes the early
network formation models (Jackson and Wolinsky 1996; Bala and Goyal 2000), where information is
additive and each node has exactly one unit of it. Creating a model of strategic network formation with
heterogeneous nodes and stochasticity constitutes the main technical innovation of this paper (discussed in
more detail in Heesen 2016).
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Academics can read each other’s papers. Reading a paper means learning the
information in the information set of the academic who wrote the paper.8 The only
information that is transferred is that in the information set of the academic whose
paper is being read: the academic who wrote the paper does not learn anything as a
result of this interaction9, nor is there any second-hand transfer of information.10

What (strategic) decisions do the academics need to make, and what do they know
when they make them? Each academic needs to decide which papers to read. I do
not consider the order in which the different academics make their decisions. That
is, academics do not know what other academics are reading, or if they do, they
ignore this information. But I do allow that individual academics make their decisions
sequentially: after reading a paper they may use what they have learned in deciding
what to read next (or whether to stop reading). After all, often one only becomes
interested in reading a paper after reading some other paper, and such a decision can
be made on short notice.

In contrast, due to the time and cost involved in designing and running an experi-
ment, which experiments to run is not changed as easily. I assume that in the “short
run”, which this model focuses on, it cannot be changed at all. The type and num-
ber of experiments performed by each academic is taken as fixed. The model can be
viewed as looking only at the time associated with a single research project: doing
some experiments and exchanging results with epistemic peers. More on the import
of this assumption in Sects. 5 and 6.

Academics are assumed to know, before choosing to read a paper, how many repli-
cations of each type of experiment it contains (that is, they know the values n(i, j) for
all i and j). My justification for this assumption is as follows.11 The time required to
search for papers on a certain subject (perhaps looking at some titles and abstracts)
is negligible compared to the time required to actually read papers and obtain the
information in them. Idealizing somewhat, I suppose that the title and abstract contain
enough information to determine the type and number of experiments, but not enough
to learn the results in full detail. Alternatively, in relatively small academic communi-
ties this assumption may be justified because everyone knows what everyone else is
working on through informal channels.

8 Academics learn each other’s experimental results (or evidence) not each other’s conclusions as expressed,
say, in a posterior probability. In this sense mymodel differs from that of Aumann (1976). If academics only
learn each other’s posterior on some set of possible worlds, they may not actually learn anything substantial
(Geanakoplos and Polemarchakis 1982, Proposition 3).
9 Zollman (2013, Sect. 2) calls this “oneway” information transmission. In contrast, “twoway” information
transmission occurs when an edge in the network allows information to flow in both directions, such as may
happen when two academics meet at a conference. But since information is transmitted through reading in
the present model, “one way” transmission seems like the more appropriate assumption.
10 That is, if academic i has read academic i ′’s paper, and then a third academic reads academic i’s paper,
the third academic only learns the contents of the information set of academic i , not of academic i ′. In this
way my model differs from other information transmission models, e.g., those by Jackson and Wolinsky
(1996) and Bala and Goyal (2000). There are two reasons for this. First, academic i’s paper presumably
focuses on reporting academic i’s experimental results, not those she learned from others. Second, even if
some iterated transfer of information happened, and the third academic learned something interesting about
academic i ′’s work this way, one might expect her to then read the paper by academic i ′ as well.
11 Cf. Sect. 6, where I argue that dropping this assumption does not affect the conclusions I draw there.
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So academics choose sequential decision procedures (Wald 1947), which specify
what to read as a function of information gained from their own research and papers
they have already read. Because that information takes the form of random variables,
the decision procedure itself is also random. A simple example illustrates this.

Example 1 Suppose that there are two possible worlds, a and b. Suppose that there is
one experiment and each academic has performed that experiment once. In world a,
the experiment outputs either a zero or a one, each with probability 1/2. In world b
the experiment always outputs a one. So upon observing a zero an academic is certain
to be in world a.

Consider an academic who initially thinks she is equally likely to be in either world
and uses the decision procedure “read papers until you are at least 99% certain which
world you are in”. Assume world a is the actual world. Then she reads no papers with
probability 1/2 (if her own experiment yields a zero), one paper with probability 1/4
(if she saw a one but the first paper she reads has a zero), and so on. So a decision
procedure does not specify which papers to read, but it specifies the probability of
reading them.

In the next section I put some constraints on the way academics choose a sequential
decision procedure.

4 Superstars in the model

How do academics choose which papers to read? One might want to assume that
academics have some form of utility function which they maximize. But this has a
number of problems: whether (expected) utility maximization can provide a good
model of rationality is controversial; and even if it is a good model of rationality
academics may not act rationally so the descriptive power of the model may be poor.

Moreover, one would need to argue for the specific form of the utility function,
requiring a detailed discussion of academics’ goals. For example, if academics aim
only at truth an epistemic utility function may be needed, and it is not clear what that
should look like (Joyce 1998; Pettigrew 2016). If they aim only at credit or recognition
(as in Strevens 2003), a pragmatic utility function is needed. If they aim at both truth
and credit (as seems likely) these two types of utility function must be combined
(Kitcher 1993, Chap. 8; see also Bright 2016 for a comparison of these three types of
utility function), and if they have yet other goals things get even more complicated.

Here I take a different approach. I state two assumptions, or behavioral rules, that
constrain academics’ choices to some extent (although they still leave a lot of freedom).
I then show that these assumptions are sufficient for the appearance of superstars in
the model.

For those who think that, despite the problems I mentioned, academics’ behavior
should be modeled using (Bayesian) expected utility theory, I show that a wide range
of utility functions would lead academics to behave as the assumptions require (see
theorems 1 and 2). For those who are impressed by the problems of that approach, I
argue that one should expect academics to behave as the assumptions require even if
they are not maximizing some utility function.
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The first assumption relies on the notion that a paper may have higher epistemic
value than another. I first state the formal definition of higher epistemic value and the
assumption before discussing how they are intended to be interpreted.

Consider the information sets (i.e., papers) of two academics, i and i ′. Say that
academic i’s paper is of higher epistemic value than academic i ′’s paper if academic i
has performed at least as many replications of each experiment as academic i ′, and
more replications overall. Formally, Ai is of higher epistemic value than Ai ′ (written
Ai ′ � Ai ) if n(i, j) ≥ n(i ′, j) for all experiments j , with n(i, j) > n(i ′, j) for at
least one j .12

The “higher epistemic value” relation is a partial order. For example, if academic i
has performed experiment 1 ten times and experiment 2 zero times, and academic 2
has performed experiment 1 zero times and experiment 2 five times, neither paper has
higher epistemic value than the other.

Assumption 1 (Always Prefer Higher Epistemic Value). If academic i’s paper has
higher epistemic value than academic i ′’s (Ai ′ � Ai ) then other academics prefer to
read academic i’s paper over academic i ′’s.

On a strict interpretation, Always Prefer Higher Epistemic Value requires that aca-
demics prefer to read papers that contain more replications (of those experiments that
they are interested in reading about in the first place). For example in the medical sci-
ences, where the number of replications might refer to the number of patients studied,
a higher number of replications would correspond to more reliable statistical tests, and
would as such be preferable.

The strict interpretation, however, probably has limited application. Academics
presumably care about more than just the quantity of data in a paper when they judge
its epistemic value (although it should be noted that Always Prefer Higher Epistemic
Value will usually not fix academics’ preferences completely, leaving at least some
room for other considerations to play a role). For example, an important consideration
may be what, if any, theoretical advances are made by the paper. How could such a
consideration be incorporated in the model?

One suggestion is to consider the theoretical advancesmade by the paper as an addi-
tional experiment, and to define the number of replications of the additional experiment
as a qualitative measure of the importance of the theoretical advances. Assuming that
academics will mostly agree on the relative importance of theoretical advances this
idea can be made to fit the structure of the model.

This suggests a looser interpretation of the notion of higher epistemic value in
Always Prefer Higher Epistemic Value (one I alluded to in Sect. 3). On this interpre-
tation the different “experiments” are categories academics use to judge the epistemic
value of papers, and “replications” are just a way to score papers on these categories.
Always Prefer Higher Epistemic Value then says that academics will not read a paper
if another paper is available that scores at least as well or better on all categories.13

12 The reason for the “�” notation is that this relation among information sets is closely related to the usual
set-theoretic relation of inclusion “⊂”. See Heesen (2016, Sect. 2.2) for more on this.
13 More formally, academics only read papers on the Pareto frontier. But note that the Pareto frontier
may change with each paper that is read. Any paper may eventually get read by a given academic;

123



4508 Synthese (2017) 194:4499–4518

The loose interpretation makes a more complete picture of academics’ judgments
of epistemic value possible, at the cost of some level of formal precision. But on either
interpretation Always Prefer Higher Epistemic Value may be unrealistically simple.
Given that there is, tomy knowledge, no research trying tomodel academics’ decisions
what to read, Always Prefer Higher Epistemic Value should be read as a tentative first
step. Future research may fruitfully explore improved or alternative ways of making
the factors that go into such decisions formally precise.

The second assumption gets its plausibility from the observation that there is a
finite limit to how many papers an academic can read, simply because it is humanly
impossible to read more. More formally, there exists some number N (say, a million)
such that for any academic the probability (as implied by her decision procedure) that
she reads more than N papers is zero.

But rather than making this assumption explicitly, I assume something strictly
weaker: that the probability of reading a very large number of papers is very small.

Assumption 2 (Bounded Reading Probabilities). Let pi,A,n denote the probability
that academic i reads the papers of at least n academics with information set A.14 For
every ε > 0, there exists a number N that does not depend on the academic or the size
of the academic community, such that n · pi,A,n ≤ ε · pi,A,1 for all n > N .15

So Bounded Reading Probabilities says that for very high numbers, the probability
of reading that number of papers is very small, independent of the academic reading
or the size of the academic community. If, as I suggested above, no academic ever
reads more than a million papers, then pi,A,n = 0 for all i and A whenever n is greater
than a million, and so the assumption would be satisfied.

As I indicated, these assumptions are not only independently plausible, but are also
satisfied by Bayesian academics (who maximize expected utility) under quite general
conditions. The most important of these conditions is that reading a paper has a fixed
cost c. This cost reflects the opportunity cost of the time spent reading the paper.16

The relation between my assumptions and Bayesian rationality is expressed in the
following two theorems. The proofs are given in Heesen (2016, Sect. 3).

Theorem 1 If c > 0 and if each replication of an experiment is probabilistically
independent and has a positive probability of changing the academic’s future choices,
then the way a fully Bayesian rational academic chooses what to read satisfies Always
Prefer Higher Epistemic Value.

Footnote 13 continued
Always Prefer Higher Epistemic Value merely requires that the academic first reads any papers of higher
epistemic value than that paper.
14 An academic has information set A if her information set contains the same number of realizations of
each experiment as A does. See Heesen (2016, Sect. 2.2) for more on what this means formally.
15 Note that the assumption distinguishes the number of times the academic reads a paper with a given
information set. This is because for technical reasons, I need to distinguish between cases where pi,A,1 is
zero (i.e., the academic never reads any papers with information set A) and cases where pi,A,1 is positive.
But for interpreting the assumption this is mostly irrelevant, because the number of papers with a given
information set an academic reads is always less than the total number of papers she reads.
16 Note also that without such a cost the unrealistic and uninteresting result would be that academics read
every paper (Good 1967). For this reason a cost is commonly included in models of this kind (Zollman
2013, Sect. 2).
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Fig. 1 Two networks for small academic communities. The network on the left is highly stratified (acad-
emic 7 has in-degree 6 while the other academics have in-degree 0). The network on the right is egalitarian
(all academics have in-degree 1)

Theorem 2 If c > 0 and if each replication of an experiment is probabilistically
independent, then a community of fully Bayesian rational academics with the same
prior probabilities over possible worlds and the same utility functions chooses what
to read in a way that satisfies Bounded Reading Probabilities.

Now consider the graph or network formed by viewing each academic as a node,
and drawing an arrow (called an arc or directed edge in graph theory) from node i to
node i ′ whenever academic i reads academic i ′’s paper.17

In order to study social stratification in this network, I need a metric to identify
superstars. A natural idea suggests itself: rank academics by the number of academics
who read their work. In the network, the number of academics who read i’s work
is simply the number of arrows ending at i . In graph-theoretical terms, this is the
in-degree of node i . This idea is illustrated in Fig. 1.

If, as the empirical evidence suggests, science is highly stratified, then one should
expect large differences in in-degree among academics. Theorem 3, below, says that
this is exactly what happens in my model.

The theorem relates the average in-degrees of academics (denoted, e.g., E [d(A)]
for the average in-degree of an academic with information set A).18 In particular, it
relates the average in-degrees of academics with information sets A and B to that
of academics with information sets A � B and A � B. An academic has information
set A � B if she has performed each experiment as many times as an academic with
information set A or an academicwith information set B, whichever is higher (whereas
an academic with information set A � B takes the lower value for each experiment).19

17 More formally, the graph of interest is G = (I, {(i, i ′) ∈ I 2 | i reads i ′}), where I is the set of nodes
and {(i, i ′) ∈ I 2 | i reads i ′} is the set of arcs.
18 Recall that an academic has information set A if her information set contains the same number of
realizations of each experiment as A does.
E [d(A)] denotes an average in two senses. First, it averages over all academics with information set A.
Second, it takes the mean over all the possible graphs that may arise due to the probabilistic nature of
individual academics’ decisions to form connections.
19 Formally, Ai ′′ = Ai � Ai ′ if n(i ′′, j) = max{n(i, j), n(i ′, j)} for all j , and Ai ′′ = Ai � Ai ′ if
n(i ′′, j) = min{n(i, j), n(i ′, j)} for all j . These notions are closely related, but not identical, to the
standard set-theoretic notions of union and intersection. See Heesen (2016, Sect. 2.2) for details.
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For example, if information set A contains twelve replications of experiment 1 and
eight replications of experiment 2 and information set B contains ten replications of
each experiment then A� B contains twelve replications of experiment 1 and ten repli-
cations of experiment 2 (and A � B contains ten and eight replications, respectively).
Or, on the loose interpretation, if the paper represented by information set A makes
a greater theoretical advance than the paper represented by information set B, but B
contains valuable empirical work as well, then information set A� B indicates a paper
containing as great a theoretical advance as A, and empirical work as valuable as that
in B.20

Theorem 3 (Stratified In-Degrees). Let I be an academic community satisfying
Always Prefer Higher Epistemic Value and Bounded Reading Probabilities. If I is
large enough, then for any two information sets A and B such that at least one acad-
emic in I has information set A � B

E [d(A � B)] + E [d(A � B)] ≥ E [d(A)] + E [d(B)] .

Moreover, if neither A nor B is identical to A � B21 and E [d(A � B)] > 0 then the
above inequality can be strengthened to

E [d(A � B)] > E [d(A)] + E [d(B)] .

What the theorem says is that if the set of academics is sufficiently large, the number
of times a given paper is read increases rapidly—on average, faster than linearly—in
the epistemic value of the information set. See Heesen (2016, Sect. 2.5) for a proof.

What do I mean by “faster than linearly”? The following corollary makes this more
precise.22 Suppose that (part of) the academic community only performs replications
of some subset E of the experiments (where E contains at least two experiments).

Let AE (n) denote an information set containing n replications of each of the exper-
iments in E (and nothing else). Let n̂ be the highest value of n such that at least one
academic in I has information set AE (n). Say that I is dense in E if for each combina-
tion of number of replications of the experiments in E some academic has performed
exactly that number of replications.23 The corollary (proven inHeesen 2016, Sect. 2.6)
shows that in dense communities the average number of times a paper is read increases
exponentially in n.

Corollary 1 (Exponential In-Degrees). Let I be an academic community satisfying
Always Prefer Higher Epistemic Value and Bounded Reading Probabilities. Let E be
a subset of the experiments (|E | ≥ 2) and suppose that I is dense in E. If I is large

20 How often does this happen? In social sciences like psychology and economics one frequently sees
empirical work included in papers whose primary contribution is theoretical, or vice versa. This could be
interpreted as at least attempting to create situations like that described in the main text.
21 That is, if neither A nor B contains the same number of replications of each experiment as A � B.
22 Thanks to Dominik Klein for suggesting that I include a corollary along these lines.
23 More formally, I is dense in E if for any combination of numbers n1, . . . , nm (where 1 ≤ n j ≤ n̂ if
j ∈ E and n j = 0 if j /∈ E) there is an academic i ∈ I such that n(i, j) = n j for all j .
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enough, then for all n (with 1 ≤ n ≤ n̂),

E [d(AE (n))] ≥ 2(n−1)(|E |−1)
E [d(AE (1))] .

The theorem and its corollary show that the pattern of stratification in my model
reflects the pattern that can be seen in empirical metrics of stratification, e.g., using
citation metrics. That is, most papers have few citations, while a rare few have a great
number of citations (Price 1965; Redner 1998). This pattern is seen to arise from
academics’ preference for papers of high epistemic value. Thus this preference can be
viewed as a sufficient condition for these patterns to arise.

5 A competence-based view of academic superstars

In this section I show that the results from the previous section are consistent with a
purely competence-based view of academic superstars. I argue for two consequences
of this insight. First, one should not be too quick in concluding that particular patterns
of stratification could not have resulted from differences in competence. Second, if
the competence-based view is correct stratification has some important benefits. The
next section considers the flip side of these arguments.

Stratified In-Degrees, the main result of Sect. 4, identified differences in the epis-
temic value of papers as a source of differences in the number of times they get read
(their in-degree in the network). Because differences in competence can create differ-
ences in epistemic value, the result is consistent with a view on which only the most
competent academics become superstars.

Toy Model 1 in Sect. 2 illustrates this. Differences in competence can create dif-
ferences in the number of replications each academic is able to do, and by Stratified
In-Degrees the most competent academics will be superstars.

Speaking more generally, on any interpretation of competence on which more com-
petent academics tend to write papers of higher epistemic value (on either the strict
or the loose interpretation), the competent academics will be the superstars. By Expo-
nential In-Degrees, differences in epistemic value may be enlarged exponentially in
terms of the amount of attention paid to academic work, as measured in, e.g., citation
or productivity metrics.

This casts some suspicion on research that uses linear models to argue that differ-
ences in citation metrics or productivity metrics cannot be explained by differences in
competence (e.g., Cole and Zuckerman 1987; Prpić 2002; Medoff 2006; Knobloch-
Westerwick and Glynn 2013). Their line of reasoning is roughly as follows:

1. There are differences in citation or productivity metrics that correlate with mea-
surable characteristics of academics such as academic affiliation (Medoff 2006) or
gender (Cole and Zuckerman 1987; Prpić 2002; Knobloch-Westerwick and Glynn
2013).

2. In a linear model that controls for competence, this correlation is not explained
away.

3. Therefore, differences in competence cannot explain all differences in citation or
productivity metrics.
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They would thus use the results of regression analyses to reject the competence-
based view of superstars I outlined. But this conclusion is too quick. The fact that a
model in which competence and citations (or productivity) stand in a linear relation
cannot explain all of the variance in citations does not rule out the possibility that a
model using a nonlinear relation can. According to my results this may be exactly
what is needed.

I do not claim to have shown that their conclusion is incorrect: I think it is quite
plausible that characteristics of academics other than competence affect citations and
productivity. I merely caution against basing this conclusion on linear models.

For the remainder of this section, suppose that the competence-based view of super-
stars I outlined is correct (cf. Cole and Cole 1973; Rosen 1981; Strevens 2006). That
is, papers of high epistemic value tend to get read the most, competent academics tend
to produce papers of high epistemic value, and therefore academic superstars are more
competent than academic nobodies.

On this view, the social stratification of science has a number of benefits for acad-
emics and academic institutions. I identify three of them.

First, stratification greatly simplifies the maintenance of consensus in an academic
community. Without a relatively high degree of consensus, scientific progress might
be impossible, as the following quote argues.24

Scientific progress is in part dependent upon maintaining consensus by vesting
intellectual authority in stars. Without consensus, scientists would go off in
hundreds of different directions, and science might lose its cumulative character.
The stars in a particular field determine which ideas are acceptable and which
are not. (Cole and Cole 1973, p. 78)

So stratification seems necessary for progress. But “[i]t is only when the scientific
community sees those exercising authority as deserving of it that the authority will be
accepted” (Cole and Cole 1973, p. 80). If the competence-based view of superstars is
correct, academics can rest assured that those exercising authority are in fact deserving
of it.

Second, stratification can be of use to grant-awarding agencies such as the NSF
and the NIH. In evaluating a research proposal, an important question is whether the
academic who submitted it will be able to carry it out successfully. These agencies thus
have an interest in estimating the academic competence of those submitting proposals.

On the competence-based view of superstars, this is easy. Citation metrics and
publication counts provide straightforward measures of competence.25 Agencies like
the NSF or the NIH use this information, presumably for this reason.

Third, stratification may be used by academics themselves to identify competent
academics. Even if academics who work on very similar things are able to judge each

24 Kuhn (1962) makes a similar point.
25 At least relatively speaking. If citation metrics or publication metrics were used as if they provided a
numerical scale of competence, differences in competence would likely be exaggerated, as I showed above.
But the competence-based view supports judgments like “Academic i is among the 10% most cited in her
field, therefore she is among the 10% most competent”.
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other’s competence directly, they still lack the time and the expertise to judge the
competence of academics outside their small range of collaborators and competitors.

This suggests an explanation for the Matthew effect, the observation that when
two academics make the same discovery (either independently or collaboratively), the
academic who is already a superstar receives more recognition for it (Merton 1968).
On Merton’s own view, it is a result of the fact that academics pay more attention
to papers written by superstars. According to Merton, this fact aids the efficiency of
communication in science, but the Matthew effect itself is a pathology.

Strevens (2006) goes a step further by arguing that differential recognition is jus-
tified. The idea is that the mere presence of a superstar’s name makes a paper more
trustworthy. In this way the superstar earns the additional recognition. So theMatthew
Effect is not a pathology.

The competence-based view of superstars endorses both suggestions. If academics
use the names of superstars to identify papers to read outside their own subfield, they
will identify papers of high epistemic value, aiding the efficiency of communication.
And because superstars can be trusted to be competent, putting more trust in papers
written by superstars is also justified.

It is worth noting how the model and the Matthew effect interact here. The idea is
thatwhenever a paper by a young academic is published, its epistemic value determines
howmany academics in the immediate academic community of the author will read it.
Papers of high epistemic value stand out, and their authors stand out from their peers.

This is where the “short run” analysis of the model stops. In the longer run, the
Matthew effect takes over. The differences in recognition already present in the group
of young academics are exacerbated as academics further afield notice the work of the
ones that stood out and ignore the work of the others. If the initial differences in recog-
nition are the result of differences in competence, the larger subsequent differences in
recognition—driven by the Matthew effect—continue to track competence.

6 A role for luck

I have suggested that differences in epistemic value might be responsible for the social
stratification of science (in combination with the Matthew effect). If this is correct, it
does not follow that the competence-based view of superstars is correct. In this section
I consider the possibility that luck is partially or wholly responsible for differences in
epistemic value. I argue that the mere fact that this is possible has consequences for
evaluating stratification.

To see that luck by itself could produce the patterns typical of socially stratified
academic science, we need only consider Toy Model 2 from Sect. 2 again. Here,
differences in epistemic value between papers are generated purely randomly, yet by
Stratified In-Degrees and Exponential In-Degrees these differences are sufficient for
extremely stratified patterns of attention.

Moreover, Toy Model 3 and Proposition 1 suggested that, at least in some circum-
stances, luck can drown out competence.

The consequences drawn in this section regarding luck do not depend on the par-
ticular interpretation of luck given in Sect. 2. Any alternative interpretation suffices
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as long as it (a) can generate differences in epistemic value (on either the strict or the
loose interpretation), and (b) academics who have produced work of high epistemic
value in the past are not particularly likely to do so again in the future (although the
Matthew effect may create an impression to the contrary).

What conclusions can one draw about individual superstars in light of the possibility
of lucky superstars? Suppose one thought that academics who produced work of high
epistemic value in the past are likely to do so again in the future. Strevens seems to
endorse this when he writes “I do not need to argue, I think, that a discovery produced
by a scientist with a demonstrated record of success has more initial credibility than
a discovery produced by an unknown” (Strevens 2006, p. 166).

I have argued that it is possible that the “demonstrated record of success” was
obtained through luck. This does not show that one would be mistaken to assign more
credibility to a discovery made by an academic with such a record. But it does show
that that record is not in itself a decisive argument for this assignment of credibility.
(This is essentially the first argument of Sect. 5 run in reverse.)

If an academic becomes a superstar through luck, independent of competence
(cf. footnote 4), then the epistemic value of her past work is not predictive of her
future work. In fact, her past performance is indistinguishable from that of a highly
competent academic, while her future performance is (probabilistically) indistinguish-
able from that of an average academic.

This undermines the second and third benefits of stratification I identified in Sect. 5.
According to the second benefit, grant-awarding agencies can use stratification to
assess the competence of academics. According to the third benefit, academics them-
selves can do the same, assessing in particular academics outside their own subfield.
But these assessments may go awry if there are lucky superstars. In the worst case
(see Proposition 1), the vast majority of these assessments are mistaken.

What about the first benefit, according to which stratification is a necessary con-
dition for maintaining consensus, which is itself a necessary condition for scientific
progress? The possibility of lucky superstars undermines the argument that those able
to affect what counts as the consensus in an academic community are particularly well-
suited for that position. While competent superstars may be better judges of future
work that challenges or reaffirms the consensus, there is no reason to expect lucky
superstars to be. If academics thought most superstars were lucky rather than compe-
tent, they might no longer rely on superstars’ opinions to determine the direction of
the field, effectively destroying consensus and progress.

However, that point does not affect the claim that stratification may be necessary
for progress. If most academics believe that superstars are competent—as they seem
to do—consensus and the possibility of progress are maintained (albeit through a kind
of “noble lie” if in fact most superstars are lucky). Perhaps this is the only way to
maintain consensus and the possibility of progress, as Cole and Cole (1973, pp. 77–
83) suggest. This is the only purported benefit of stratification I found in the literature
that does not rely on the competence-based view.

Is it true that consensus and progress are impossible without stratification? This
is a hard question to answer, as modern academic science has always been highly
stratified. Onemight construct a model to investigate under what conditions consensus
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and progress are possible in a non-stratified academic community, but that is beyond
the scope of this paper. I offer some informal remarks instead.

The absence of stratificationmaywell prevent academics from judging those outside
their own subfield. But it does not seem to prevent academics in small communities
(say, up to a hundred or so) from learning to trust (or distrust) each other (Holman
and Bruner 2015, Sect. 5). Consensus and progress would seem to be possible within
such communities.

Aggregating the results of these communities would be harder. For one, it may
be impossible to tell for those outside a community whether a given academic is
representative of it. And the communities may be less interested in unifying their
results with those of other communities. Governments and grant-giving agencies may
need to play a more active role to extract socially useful information from such a
decentralized academic environment.

These considerations certainly do not show that non-stratified academic science
would be particularly effective. But they show that it is not obviously true that stratifi-
cation is necessary for consensus and progress. A more sustained argument is needed
to settle this question one way or the other.

In the absence of such an argument, all the benefits of stratification that I have iden-
tified rely on the possibility of using the stratification of science to pick out particular
academics as highly competent. But if there is a role for luck, not all superstars are
highly competent. Worse, because they are indistinguishable by past performance, it
is impossible to tell a lucky superstar from a competent one.

The problem could be mitigated if there was a way to show that most superstars
are in fact highly competent. This might appear to be a testable proposition. Take
a random sample of superstars and a random sample of nobodies, and measure the
epistemic value of their next paper. If stratification mostly tracks competence, the
superstars should produce more valuable work than the nobodies, whereas if stratifi-
cation mostly tracks luck, their work should be of similar epistemic value. Evidence
of the former would suggest that using stratification to assess competence is a mostly
reliable mechanism, and so the identified benefits mostly hold.

The problem is that the only way tomeasure epistemic value is via other academics’
assessment. The Matthew effect establishes that academics rate the work of superstars
more highly than that of nobodies even when they are of similar epistemic value.26

So regardless of whether stratification in fact tracks competence or luck, superstars
would appear to produce more valuable work than nobodies.

Thus the Matthew effect makes it impossible to determine whether superstars are
mostly competent or mostly lucky. Because the benefits of stratification depend on
the assumption that most superstars are competent (in the absence of an argument that
stratification is necessary for progress), it is impossible to prove that stratification is

26 If I am right that epistemic value can only be measured by academics’ assessments, how could Merton
(1968) establish the Matthew effect in the first place? He noted that if a superstar and a nobody co-authored
a paper together, the superstar received more credit than the nobody; this obviously controls for epistemic
value. He also noted that if a superstar and a nobody made the same discovery independently, the superstar
received more credit; this arguably also controls for epistemic value. However, these strategies are not
helpful in the measurement problem I describe.
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beneficial, at least in the ways identified in the literature. This is not an argument that
stratification is not beneficial; merely that it cannot be shown to be.

Having stated this conclusion, I return briefly to some of the assumptions of the
model. I assumed that academics prefer to read papers of high epistemic value and
that academics know the epistemic value of the papers produced in the community
before they read them.

While these assumptions may be unrealistic, it seems unlikely that relaxing them
would change the conclusion. I reason as follows. The benefits of stratification depend
on the assumption that superstars are competent. Competent academics aremore likely
to produce papers of high epistemic value. Relaxing either of the assumptions justmen-
tioned would make the correlation between epistemic value and stratification weaker
rather than stronger. As a result, superstars are less likely to be highly competent.
So relaxing these assumptions does not make it easier to prove that stratification is
beneficial.

7 Conclusion

I have used a formal model to show that a preference for reading papers of high
epistemic value is sufficient to produce social stratification in science.

The model is consistent with a competence-based view of superstars. In particular,
small differences in competence are sufficient to produce extreme stratification. On
this basis, I caution against those who would conclude (based on linear models) that
the stratification actually observed is too extreme to be explained by competence.

On a competence-based view of superstars, stratification has a number of benefits
to academics and academic institutions. All but one of these benefits, however, assume
that stratification can reliably be used to identify highly competent academics. The
remaining one I found to be underargued.

Luck may also give rise to superstars. In fact, there is some reason to believe that if
luck and competence both give rise to superstars, lucky superstars are more common
than competent ones. Because they are indistinguishable by past performance, the
possibility of lucky superstars prevents the reliable identification of competence via
stratification.

Due to the Matthew effect, it is impossible to measure the ratio of competent to
lucky superstars. Since the benefits of stratification rely on that ratio being high, it is
impossible to show that stratification has the benefits hitherto ascribed to it.

I conclude by raising a few questions for future work. First, what happens if the
model is changed to explicitly consider longer periods of time?While I have described
informally a situation in which multiple iterations of the model are used successively,
interacting with the Matthew effect, capturing these interactions in a formal model
can make my claims more precise.

Second, what would a science without stratification look like? Under what circum-
stances are consensus and progress possible? Explicitly considering an alternative
picture of science or academia may also bring into focus other potential benefits or
harms of stratification. Formal models are ideally suited to investigate counterfactuals
like these.
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