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This article investigates how the credit incentive to engage in questionable research practices
(up to and including fraud) interacts with cumulative advantage, the process whereby high-
status academics more easily increase their status than low-status academics. I use a mathe-
matical model to highlight two dynamics that have not yet received much attention. First, be-
cause of cumulative advantage, questionable research practices may pay off over the course of
an academic career even if they are not attractive at the level of individual publications. Sec-
ond, because of the role of bottleneck moments in academic careers, questionable research
practices may be selected for even if they do not provide a benefit in expectation. I also ob-
serve that within the model, the most successful academics are the most likely to have bene-
fited from fraud.
1. Introduction

Trust in academic science consists at least partially in trust in academics. It is a cause

of concern, then, when that trust appears to have been misplaced, as happens when

cases of fraud are revealed.

Cases of data fabrication, plagiarism, and other forms of outright fraud attract a lot

of attention when they are uncovered, but these are perceived by many observers as

being ‘rare’ (Merton [1957], p. 651). In contrast, so-called questionable research

practices (including p-hacking and salami publishing, among others) are perceived

as less bad but also ‘more frequent’ (Merton [1957], p. 651). For evidence that these

perceptions are widely shared and accurate, see (John et al. [2012]).

Here I focus on what fraud and questionable research practices have in common.

Practices that fall under either of these labels are ways of enhancing an individual

academic’s productivity and prestige (which mutually reinforce one another in a
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process known as cumulative advantage) at some epistemic cost. As a result, the

same reasons may attract academics to either of them.

This article investigates these reasons. I consider the consequences for an academ-

ic’s productivity and her career of engaging in these epistemically costly practices,

focusing on the role of cumulative advantage. I highlight two dynamics in particular.

First, even when the chance of being caught and associated penalties are sufficiently

high that epistemically dubious research outputs do not individually confer a net

benefit, academics may gain a career advantage from them. Second, evenwhen these

practices are not rewarded on average, they may spread in academic communities. I

will provide some tentative reasons to think that the most successful members of an

academic community are more likely to have benefited from fraud or questionable

research practices.

The article proceeds as follows: Section 2 provides a more careful introduction to

key concepts: cumulative advantage, the credit economy, fraud, and questionable re-

search practices. In section 3, I develop a simplified model of cumulative advantage

in which an academic’s productivity is represented as a non-homogeneous Poisson

process. Section 4 adds a key downside of questionable research practices to the

model, namely, the possibility of being exposed. Section 5 shows how the two dy-

namics mentioned abovemay arise in the model, while section 6 considers more sys-

tematically when this happens by varying the parameters of the model. Section 7

concludes.
2. Cumulative Advantage and Fraud

The academic world is strongly hierarchical (Cole and Cole [1973]). There is a small

group of professors who have it all: a chair at a prestigious university, time and

money for research, graduate students, frequently cited publications in highly regarded

journals, prizes, media appearances, and so on. In contrast, there is a much larger

group with few or none of these status markers, including lesser-known tenured

or tenurable professors and academics without secure employment (postdocs, ad-

junct professors, lab technicians, and graduate students). These differences in status

are often keenly felt, for example, through prestige bias in hiring or publishing: sta-

tus markers such as individual reputation, institutional affiliation, or publishing track

record influence one’s chances of being hired (Clauset et al. [2015]; de Cruz [2018])

or navigating a paper through peer review (Lee et al. [2013], p. 7; Tomkins et al.

[2017]).

Since the institution where one is hired and the journals one publishes in are them-

selves status markers, prestige bias has a self-reinforcing effect. Those who manage

to obtain some of these markers, especially early in their academic career, have an

easier time being hired into a prestigious job, acquiring research grants, and more

generally increasing their reputation. Meanwhile, those who struggle more at the

start of their career and fall behind in the prestige hierarchy find it more difficult
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to catch up. This general pattern, where early success begets more success, is known

as cumulative advantage (DiPrete and Eirich [2006]), or, in the academic context, the

Matthew effect (Merton [1968]).

Given the central importance of prestige, academics have reason to pursue it. We

study this as ‘the incentive structure of academic science’, or alternatively ‘the credit

economy’. Academics receive credit first and foremost for making (and publishing)

academic contributions, with originality being particularly prized (Merton [1957];

Strevens [2003]). As indicated above, this form of credit (or prestige; I treat these

as synonyms) interacts in a mutually reinforcing way with other forms, such as ci-

tations, prizes, and prestigious appointments and grants.

The only form of credit that academics have significant individual control over is

the production of academic contributions, and the submission of these contributions

to journals. Given the importance of credit, this leads to an intense pressure to pro-

duce and publish research output, the ‘publish or perish’ culture (Fanelli [2010];

Brischoux and Angelier [2015]).

Academics facing this pressure might look to take shortcuts to increase their

productivity. I use the term ‘questionable research practices’ (QRPs) for such short-

cuts. For my purposes, I regard all of the following behaviours as QRPs (some of

which aim to improve productivity directly, while others aim to increase the impact

of publications): fabricating data and other forms of outright fraud (Bruner [2013];

Bright [2017]); using multiple model specifications but only reporting those in which

a result is statistically significant, known as p-hacking (Simmons et al. [2011]);

hypothesizing after the results are known (Kerr [1998]); distributing findings from

a single study over multiple papers, called salami publishing (Abraham [2000]); gen-

eral sloppiness due to the desire to complete projects quickly and thus ‘rushing into

print’ (Heesen [2018]); and being named as author on work where one has made no

substantial intellectual contribution, that is, honorary co-authorship (Flanagin et al.

[1998]).

A few quick clarifications. First, not all QRPs are equally bad. Most would agree

that outright fraud is the worst one, and for some the jury is still out on whether they

should be regarded as bad at all. But when it comes to the incentive to engage in

them, these QRPs may be treated equally. That is, whenever this article identifies

scenarios in which academics have an incentive to engage in QRPs, this applies

to all of the foregoing behaviours. Emphasizing the worst-case outcomes that my ar-

gument supports, I sometimes summarize my findings in terms of an incentive to

commit fraud.

Second, when I say that an academic has an incentive to commit fraud or would be

rational to do so, I do not mean to imply that academics go through a conscious rea-

soning process anything like the analysis I provide here. This would be unrealistic

for all or most academics. For my purposes, an incentive to commit fraud exists

whenever an academic would in fact be better off (in expectation or probability) if

they committed fraud as opposed to making some other salient choice, regardless
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of whether the academic is aware of this. As I discuss in more detail in section 5,

selection effects entail that incentives have predictive power even if no one knows

they exist, as long as we assume some diversity of heuristics among agents (this

could include some random experimentation, some success-based imitation, and

some diversity of risk tolerance).
3. Modelling Cumulative Advantage

I now construct a relatively simple model of the credit economy with cumulative ad-

vantage built in at its core. I take the simplified nature of themodel to be a strength, as

it focuses attention on a small number of features of the credit economy and their

consequences. Combining this with empirical data regarding academics’ incentives

and behaviours yields a reasonable degree of confidence that the patterns of incen-

tives identified here also operate in the real world.

My model differs in a number of ways from others in the literature. First, it is ex-

plicitly dynamic, in contrast to earlier static models of the credit economy (Kitcher

[1990]; Dasgupta and David [1994]; Strevens [2003]; Zollman [2018]), although by

now plenty of dynamic models exist as well (Smaldino and McElreath [2016];

O’Connor [2019]; O’Connor and Bruner [2019]; Zollman [unpublished]). Second,

it uses continuous time rather than discrete time units. Where relevant, previous

models have tended to use discrete time (Boyer [2014]; Zollman [unpublished]).

Continuous time is more realistic and, perhaps surprisingly, also more mathemati-

cally tractable (compare Heesen [2017b] to Boyer [2014] and the present article

to Zollman [unpublished]). Third, rather than assuming that academics maximize

expected credit, I take academics’ aim to be to satisfice relative to particular credit

thresholds (partially inspired by tournament theory; see Lazear and Rosen [1981];

Hvide [2002]). I will motivate this modelling choice in section 5. This makes my

model unique among those that look at academic incentives in a rational choice

model (as opposed to an evolutionary model, where an analogous move has been

made by Smaldino and McElreath [2016] and O’Connor [2019]).

As already noted, publications play a central role in the academic world and in the

way credit is distributed. The basis of the present model is a stochastic counting pro-

cess that keeps track of the publications of a given academic over a period of time.

The idea is that an academic’s productivity (both the number of publications and

their distribution in time) has both a random component and a systematic compo-

nent. The random component stands in for all factors affecting productivity that

are not explicitly modelled, such as extraneous circumstances in the academic’s life

or the difficulty of the particular scientific problem she is working on. The systematic

component consists of the academic’s talent and skill, as well as the amount of time

and resources she has available. This includes cumulative advantage: an academic

who has already been productive is more likely to be given time and resources that

boost productivity.
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To model the random component I use a Poisson process (see any textbook on

stochastic models, such as Norris [1998], sec. 2.4; Tijms [2003], chap. 1). In a Pois-

son process, the time between two publications is an exponentially distributed ran-

dom variable. Moreover, the time between any two publications is probabilistically

independent of all events before the first of these two publications. In other words,

the ‘interarrival’ times of publications are independent and identically distributed.

Why model the random component in this way? The Poisson process has the fol-

lowing important feature: looking backwards the publications generated by it will

appear to be randomly scattered in time.More precisely, given that a Poisson process

produced a specific number of publications in a given time interval, the conditional

probability distribution for when each of these publications arrived is the uniform

distribution (Tijms [2003], theorem 1.1.5). So there is a precise sense in which this

is a truly random model. As Norris ([1998], p. 73) puts it, ‘a Poisson process is the

natural probabilistic model for any uncoordinated stream of discrete events in con-

tinuous time’. That said, this feature will no longer hold once I add the systematic

component to the model.

I have modelled academic productivity as a Poisson process in previous work.

Viewing the present article in this light highlights another virtue of the Poissonmodel:

it is very flexible. It can be used to analyse a number of trade-offs that academics

face: sharing as against secrecy (Heesen [2017b]), speed as against accuracy (Heesen

[2018]), high-risk high-reward as against incremental progress (Heesen [2019]), and

the risk–reward trade-off of questionable or fraudulent methods. The shared model-

ling framework of credit maximization under Poisson productivity provides some

confidence that the conclusions drawn in these articles cohere with each other (com-

pared to the potentially contradictory assumptions made if a new model is designed

from scratch for each trade-off ).

A Poisson process has one parameter, usually denoted l. It is interpreted as the

rate of publication, that is, the expected number of publications per unit time. This

can be used to add a systematic component to the model. For example, the publica-

tion output of two academics might be modelled using two Poisson processes with

parameters l1 and l2, with l1 > l2 to indicate that the first academic has more time

and resources and is therefore expected to be more productive.

Using the parameter in this way allows me to model persistent productivity differ-

ences between academics (see also Heesen [2017b]). However, I also want to cap-

ture cumulative advantage—the effect of earlier output on later productivity. This

requires the systematic component to vary dynamically and endogenously. For this

purpose I use a non-homogeneous Poisson process (also known as a non-stationary

Poisson process; see Tijms [2003], sec. 1.3), which is like a regular Poisson process

except that the rate of publication l(t) is a function of time.

I assume that publications generate credit over time (it takes time for a new pub-

lication to have its influence as word spreads, other academics start citing it, and so

on). The credit accumulated by an academic may be turned into time and resources
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for research (Latour and Woolgar [1986], chap. 5). This is a multi-faceted process

involving higher chances of winning research grants, a job at a more prestigious uni-

versity, more graduate students, and more. Rather than attempt to model this explic-

itly, I assume that credit buys time and resources directly.

Suppose that each publication generates cg units of credit per unit time (the sub-

script stands for ‘good’; a notion of ‘bad’ credit will be introduced below). For an

academic with pg publications this means she accumulates credit at a rate of cg ⋅ pg
per unit time. I use c(t) to denote the credit accumulation rate and C(t) for the total

amount of credit accumulated at time t, so

c(t) 5 cg � pg and C(t) 5

ðt

0
c(u)du : (1)

By turning this into time and resources, the academic increases her rate of publica-

tion. The following formula captures this effect:

d

dt
l(t) 5 log(c(t) 1 1) : (2)

That is, the rate of publication increases (over time) proportionally to the logarithm

of the credit rate (the11 makes sure that if c(t) 5 0 then (d=dt)l(t) 5 0). The log-

arithm reflects a type of decreasing marginal returns: if the credit accumulation rate

is already high then the effect (on the publication rate) of increasing it further is

smaller. The underlying idea is that large amounts of credit are harder to effectively

turn into resources.

The credit rate c(t) is a step function: it is constant between publications and

jumps instantaneously from cg ⋅ pg to cg(pg 1 1) when a new publication appears.

As a result, the rate of publication changes linearly between publications: if T0 and

T1 are consecutive publication arrival times then for T0 < t < T1 the rate of publica-

tion is

l(t) 5 l(T0) 1 log(c(T0) 1 1)(t 2 T0): (3)

It is useful to see an example of how the rate of publication develops. To this end I

have implemented the model described above in R (R Core Team [2020]). A sample

trajectory for l is shown in figure 1.1

The rate of publication stays flat until the first publication comes in just before

t 5 1, then increases in steepness as more publications arrive. Publications arrive

closer together as the rate of publication increases. Thus publications and the rate

of publication mutually reinforce one another, producing the cumulative advantage

effect.

In this example, the academic accumulates C(5) 5 22:74 units of credit (one unit

per publication from the moment of publication until the end of the simulation at

t 5 5). This may vary because of the stochastic nature of the process, but repeated
1 All code used in this article is available at (Heesen [2021]).
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simulation runs give a sense for the typical outcomes. In this case average credit at

t 5 5 is E½C(5)� ≈ 27:93. There is significant variation though: in 10,000 runs the

minimum credit was zero, the maximum 112.77, and the standard deviation 15.74.
4. Replications, Exposures, and Negative Credit

The model described above assumes that each publication generates credit indefi-

nitely. There are a number of respects in which this may be unrealistic. First, the im-

pact of most publications fades over time. Since my aim is to model relatively short

intervals of time (for example, from being hired to going up for tenure, or from start-

ing graduate school to going on the job market), I will ignore this factor—thoughmy

model is an instance of a more general model, known as a Hawkes process or self-

exciting process, which can incorporate this factor. Second, and more immediately

relevant, fraudulent or shoddy work may be exposed, and even research of the high-

est standard may fail to replicate. As recent studies have shown, significant propor-

tions of published results in various sciences fail to replicate (Open Science Collab-

oration [2015]; Nosek and Errington [2017]; Camerer et al. [2018]). When this

happens, it changes how the original work and its author(s) are perceived and thus

the credit associated with that publication.

To incorporate this in the model, assume that each publication has a chance of

being ‘exposed’. This may mean a failure to replicate, a discovery that the work

was fraudulent, or any other event with significant negative impact on the perception

of the work. In particular, I introduce a new parameter, the publication exposure rate

m, and assume that for each publication the time between it being published and it

being exposed is exponentially distributed with rate m. The probability of a publica-

tion never being exposed equals the probability that this exponential distribution

fails to trigger in the time window under consideration (this assumption is unrealistic

if the window is long, as it entails that every publication gets exposed eventually and
Figure 1. The rate of publication increases faster as more publications (indicated by
dots) come in (parameters: cg 5 1 and l(0) 5 1).
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that the chance of exposure for an unexposed paper does not depend on its age). As a

result, the stochastic process that counts exposure events for a given academic is a

non-homogeneous Poisson process, with a total exposure rate at any given time of

pg ⋅m (the number of publications available to be exposed times the exposure rate).

Once a publication is exposed, it is removed from the set of publications available

to be exposed (pg is reduced by one) and stops generating cg units of credit per unit

time. Instead it is added to the set of exposed (‘bad’) publications (pb is increased by

one) and starts losing cb units of credit per unit time. The idea is that as news of the

exposure spreads through the academic community, credit is taken away from the

academic whose paper has been exposed, adjusting the total amount of credit gen-

erated by this publication downwards. The credit accumulation rate function c is ad-

justed to reflect this:

c(t) 5 cg � pg 2 cb � pb: (4)

The credit accumulation rate may now decrease or even become negative. This re-

quires adjusting the formula for changes in the rate of publication as well, since the

logarithm is not defined for negative numbers:

d

dt
l(t) 5

log(c(t) 1 1) if  c(t) ≥ 0,

c(t) otherwise:

(
(5)

Figure 2 illustrates this increased range of possibilities (see Heesen [2021]). It

shows the development of the rate of publication for two simulation runs. In the for-

mer, the occasional exposure slows down the rate of publication, but on the whole

publications come in fast enough so the rate of publication continues to increase.

In the latter, there are fewer publications and more exposures, with the publication

rate eventually dropping down to zero. In the former, the academic accumulates
Figure 2. Two simulation runs (one in which publications outrun exposures and one in
which they do not) with parameters cg 5 1, cb 5 1=2, l(0) 5 1, and m 5 1=4. Publi-
cation events are marked as white dots and exposure events as black dots.
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C(5) 5 19:21 units of credit, whereas in the latter, the academic ends up with neg-

ative credit (C(5) 5 22:11). With these parameters, the former outcome is more

typical: after 10,000 runs average credit is E½C(5)� ≈ 14:65 (standard deviation

10.50), with only 6.16% of runs accumulating zero credit or less.
5. What Are Academics’ Incentives?

So far, questionable research practices have not taken centre stage. Such practices

allow the academic to work more quickly and will lead to higher impact publications

as she is able to achieve more surprising or more newsworthy results. Under what

circumstances might academics have an incentive to engage in fraud or QRPs?

Suppose an early career academic faces the choice whether to engage in QRPs.

Regular (non-fraudulent or ‘honest’) publications yield credit at a rate of c*g 5 1

whereas publications obtained using fraud or QRPs yieldmore: cyg 5 1:25. This cap-

tures the fact that the latter tend to have higher impact. Indirectly, it also captures the

fact that QRPs allow the academic to work more quickly, as the higher credit ob-

tained is converted into an increased rate of publication.

The use of QRPs comes at a cost. Publications acquired in this way are more likely

to be exposed: m is higher. Once exposed, they are also punished more harshly as

people recognize not only that the result is wrong, but that bad methods were used

to obtain it: cb is higher. There are important nuances here: sometimes academics are

falsely accused of fraud (as was probably the case with Fisher’s accusations against

Mendel, or Newton’s against Leibniz) and sometimes fraudulent work is recognized

as irreproducible but not fraud. Moreover, large collaborations make it harder to de-

tect fraud and to adjust individual credit in response (Huebner and Bright [2020],

p. 364; see alsoWray [2017], p. 129). Still, a publication is more likely to be exposed

as fraudulent if it is in fact fraudulent, so the assumption that cb is higher if QRPs are

used seems apt. To capture this with (fairly arbitrary) numbers, suppose m* 5 1=6

whereas my 5 1=4, and c*b 5 0 whereas cyb 5 1=2.

These choices of parameter values apparently favour honest academic work over

QRPs: a relatively modest (25%) increase in credit from publications seems to be

more than offset by the increased exposure rate and the associated negative credit.

To substantiate this, I have worked out (see the appendix) the credit expected to ac-

crue to a single publication up to a given time t1. For an academic with only a single

publication at time t0 (the first publication arrives at T0 5 t0 and the second publi-

cation arrival time T1 is after t1), expected credit is

E½C(t1)jT0 5 t0, T1 > t1� 5 cg 1 cb
m

1 2 e2m(t12t0)
� �

2 cb(t1 2 t0): (6)

With the parameters above and publication at time t0 5 0 (I will continue to use

t1 5 5 in all examples), the honest academic expects to get more credit than the

fraudulent one:
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E½C*(5) T0 5 0, T1 > 5� ≈ 3:39 > 2:49 ≈ E½Cy(5)
�� ��T0 5 0, T1 > 5�:

Similarly, if the publication arrives at t0 5 1 the honest academic expects 2.92 units

of credit from it and the fraudulent one merely 2.42. So from the perspective of ex-

pected credit per publication, it is better to be honest (although this result eventually

flips if the publication arrives close to t1, as such publications are less likely to be

exposed in the remaining time; but such publications contribute less overall as they

are around less long).

Considering only credit for a single publication is misleading, however, as this

credit is not evenly distributed over time. Whereas the honest academic expects a

steady stream of credit that lasts for a while, the fraudulent academic expects more

credit initially, but also for a shorter period, followed by a period of negative credit.

While the fraudulent academic ends up with less credit at time t1, she can use the

higher early credit to increase her rate of publication. She might be able to offset

the later negative effects by producing (many)more publications overall. The pattern

of credit accumulation by the fraudulent academic then resembles a Ponzi scheme

(Zollman [unpublished]).

So because of cumulative advantage, QRPs might pay off when the expected

credit of all publications is considered, even though the honest strategy is better from

the perspective of credit per publication. Once again I estimate expected credit by

simulating the process 10,000 times. In the running example this yields

E½C*(5)� ≈ 21:52 and E½Cy(5)� ≈ 21:28:

Despite cumulative advantage, with these parameters it is still slightly better to be an

honest academic from the perspective of maximizing expected credit.

In models like this one, it is typically assumed that academics’ goal is to maximize

expected credit. This makes a certain amount of sense, given the close analogy be-

tween credit (in motivating academics) and utility (in motivating arbitrary rational

agents), and the role of expected utility theory as the standard model of rational

choice. For most academics, however, it is arguably more important to meet specific

credit thresholds. The competitive aspects of academic life are felt most keenly at a

few pivotal career moments, such as when the academic is on the jobmarket or going

up for tenure.

On the job market, the credit the academic has accumulated is likely to play an

important role in her prospects. What matters in that moment is whether the aca-

demic has accumulated enough credit: enough to be competitive, enough to land that

dream job, enough to achieve whatever goal she has set for herself. Simplifying sig-

nificantly (and ignoring many other factors such as teaching competence, personal-

ity, or how fashionable her research area is), the academic’s goal may be formulated

as a target amount of credit. Meeting or exceeding this target constitutes success, and

falling short failure.
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Going up for tenure is similar, though typically not explicitly competitive. The

academic is given a set of (possibly vague) criteria she needs to meet. As far as

the research component of these criteria goes, the reputation the academic has built

(her accumulated credit) is the most important factor, if not the only one. In order to

get tenure, she needs to meet or exceed a credit threshold (here and in the next sec-

tion, I consider a single threshold; expanding the time horizon slightly, the academic

might need to consider two thresholds: first to get a job and then tenure; I consider

this variation in the appendix).

If getting a job or tenure is far more important to the academic than any other

credit-related goals, then it would be rational to aim to maximize the probability

of meeting the relevant credit threshold. We can capture this in a utility function

in a number of ways depending on what ‘far more important’means. If the academic

only cares about having a job, her utility function would be a step function: one if the

credit threshold is met, zero otherwise. If the academic only cares about maximizing

credit if she has a job, her utility function would be lexicographic, with the precise

amount of credit only being relevant if the threshold is met. If the academic cares a

little bit about credit even if she does not have a job, her utility function might be a

weighted average of the step function and accumulated credit (weighted heavily to-

wards the step function). In the first two cases, maximizing expected utility equates

to maximizing the probability of meeting the threshold, and in the third case, this

holds approximately.

Setting aside considerations of rationalitymomentarily, the jobmarket and the ten-

ure process are important points at which it is decidedwho stays in academia andwho

leaves (other points may be just as important in determining one’s place in the aca-

demic hierarchy, but having any such place at all is only possible if one stays in ac-

ademia). If those who meet credit thresholds stay and those who fail to meet them

leave, then academia effectively selects those academics whomaximize their chances

of meeting thresholds. This has been noted by Smaldino andMcElreath ([2016]) and

O’Connor ([2019], p. 27). Analogous phenomena have shown up elsewhere in evo-

lutionary models (for example, Robson [2002], especially note 8).

The strategy that maximizes the probability of meeting a threshold need not be the

same as the strategy that maximizes expected credit. In the model, an academic who

chooses QRPs introduces more random variation in the amount of credit she accu-

mulates than if she did honest work. Even whenQRPs decrease expected credit, they

increase the variance. It is possible that QRPs increase the probability of meeting a

threshold despite lowering the mean, provided the threshold is relatively high.

This is exactly what happens in the running example. If the threshold the aca-

demic aims to meet is, say, twenty-five, then it is better to use QRPs:

Pr(C*(5) ≥ 25) ≈ 0:3655 and  Pr(Cy(5) ≥ 25) ≈ 0:3708:

Here, doing honest academic work gives her a chance of meeting the threshold of

about 36.5%, but with QRPs her chances are just over 37%. The difference increases
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if the threshold is raised: with a threshold of thirty, the honest academic’s chances

are 24.2%, but QRPs raise this to 26.6%. With a threshold of fifty, the respective

chances are 2.1% and 3.5% (see Heesen [2021]).

A high threshold corresponds to a low probability of success. This may be a fea-

ture of the competitive process (a job market where few academics get a job, or a

tenure process in which only a fraction of candidates are given tenure), or a feature

of the specific academic (given her own dispositions, background, and training, she

is from the outset relatively unlikely to get a job or tenure), or both.

In the model, other academics are not explicitly represented: this is a decision-

theoretic rather than a game-theoretic model. In a game, one might represent com-

petition by assuming that academics have to beat each other’s credit totals instead

of a fixed threshold. This yields a ‘tournament model’ (Lazear and Rosen [1981]).

The phenomenon that agents might rationally choose to reduce their expected out-

put in favour of increasing its variance has been observed in tournament models as

well (Hvide [2002]).
6. How Common Is the Incentive to Commit Fraud?

Above I considered a single academic facing the choice to commit fraud (or more

generally use QRPs) or do honest research. I highlighted two phenomena. First,

the possibility that fraud may be rational for the academic even when the expected

credit of individual honest publications is higher, due to cumulative advantage. Sec-

ond, the possibility that fraud may be rational when the expected credit of honest re-

search is higher (even after taking cumulative advantage into account), if the ac-

ademic’s goals require beating a relatively high credit threshold. The previous

section may be interpreted as a proof of possibility: it suggests these phenomena

may occur, but says nothing about how often they do.

To say something a bit stronger, I now investigate these phenomena a little more

systematically as they arise (or fail to) under different parameter settings. If they turn

out to arise robustly in the model, this is not sufficient evidence to conclude they

commonly arise outside of the model as well, but it is suggestive, especially if

one has been persuaded by the preceding sections that the model captures important

qualitative features of the incentive structure of academic science.

The parameter settings considered in this section are as follows. First, I fix the

time scale by ending all simulations at t 5 5. For the intended interpretation of a

graduate school education or a tenure clock, this means one unit is roughly equal

to a year. This is a harmless assumption, as I could set the simulations to end,

say, at t 5 60, interpret this in months, rescale the other parameters appropriately,

and get exactly the same results. For the other variables I pick a range. For the initial

publication rate l(0), this runs from 0.5 to 2 in increments of 0.5 (interpretation: ac-

ademics vary in their initial average productivity between half a paper and two pa-

pers per year). For honest academics, the credit accumulation rate for non-exposed
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papers c*g is either one or two, the exposure rate m* ranges from 0 to 0.25, and the

negative credit for exposed papers c*b from 0 to 0.2.

The fraudulent academic expects to get more credit from her papers in the short

run, but they are more likely to be exposed and accrue more negative credit when

this happens. The former is implemented by increasing the credit accumulation rate

cyg by a percentage (ranging from 10% to 60%) relative to the honest academic’s rate

c*g . The exposure rate my is set to be between 0.05 and 0.25 higher than that of the

honest academic. And the negative credit cyb varies from 0.3 to 0.5 (so all possible

values for the fraudulent strategy are higher than all possible values for the honest

one). This is summarized in table 1. Results are estimated based on 10,000 runs

for each setting.

I focus on the effect of the (extra) credit for non-exposed fraudulent papers. The

first result is that even when this is at its lowest (cyg 5 1:1 � c*g , a 10% credit premium

for fraud), there is a non-negligible range of values of the other parameters for which

fraud is a better strategy than honesty in expectation. To state this more precisely,

note that if we fix cyg 5 1:1 � c*g there are 864 possible combinations of values of

the other parameters listed in table 1 (though this does involve some double counting

because when m* 5 0 the value of c*b has no effect). Of these combinations, there are

147 (about 17%) for which fraud is the best strategy in expectation (E½Cy(5)� >
E½C*(5)�). In the remaining 717 cases, the honest strategy is better in expectation

when cyg 5 1:1 � c*g .
As the value of cyg increases, fraud becomes more attractive: the number of param-

eter settings for which the fraudulent academic expects higher credit than the honest

academic gradually increases from 17% when cyg 5 1:1 � c*g to over 99% when

cyg 5 1:6 � c*g . This is shown by the solid lines and black dots in figure 3. Similarly,

the number of parameter settings where the fraudulent strategy has a greater proba-

bility of exceeding a credit threshold of thirty increases as cyg increases (dashed lines
and grey dots in fig. 3), as it does when the credit threshold is fifty (dot-dashed lines

and white dots in fig. 3). When the credit threshold is fifty and cyg 5 1:6 � c*g , the
fraudulent strategy has a greater probability of exceeding the threshold than the

honest strategy in all 864 cases (Heesen [2021]).
Table 1. Parameter values used in this section

Parameter Values

l(0) {0.5, 1, 1.5, 2}
c*g {1, 2}
c*b {0, 0.1, 0.2}
m* {0, 0.05, 0.15, 0.25}
cyg c*g ⋅ {1.1, 1.2, 1.3, 1.4, 1.5, 1.6}
cyb {0.3, 0.4, 0.5}
my m* 1 {0.05, 0.15, 0.25}
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This idea generalizes. Regardless of the value of the other parameters, if the credit

premium for non-exposed fraudulent papers is large enough, the fraudulent aca-

demic is better off than the honest academic. This holds regardless of whether ‘better

off ’ is cashed out in terms of expected credit or in terms of the probability of meeting

a credit threshold (a proof is given in the appendix).

Theorem 1: Let l(0) > 0 and t1 > 0. For all values of c*g , c*b ,m*, c
y
b, andm

y, there exist
values of cyg large enough such that E½Cy(t1)� > E½C*(t1)�. Moreover, for any credit

threshold v > 0 there exist values of cyg large enough such that Pr(Cy(t1) ≥ v) >

Pr(C*(t1) ≥ v).

The simulation results and the theorem are suggestive. They show the credit incen-

tive for fraud is not an isolated phenomenon, at least within this model. Rather, such

an incentive arises systematically whenever the credit premium for non-exposed

fraudulent papers is large enough. The theorem shows this in principle, and the sim-

ulation results show that the values of cyg required are not always unrealistically high.
In section 5, I highlighted the possibility that fraud can be incentivized even when

the expected credit of honesty is higher, as career success may require beating a

threshold. While the theorem does not speak to this directly, the simulation results

provide some support for this. Across 5,184 combinations of parameter settings,

there were 233 instances (about 4.5%) where Pr(Cy(5) ≥ 50) > Pr(C*(5) ≥ 50)

even though E½C*(5)� > E½Cy(5)� (see Heesen [2021]).

What does this tell us outside themodel? There is first the general questionwhether

themodel captures the right dynamics to have any relevance to real academics. I have

argued for this throughout the construction of the model. But there is a second, more
Figure 3. Percentage of parameter settings for which the fraudulent strategy is preferred
over the honest strategy as a function of the ratio cyg=c*g . Solid lines and black dots indi-
cate the percentage of cases where E½Cy(5)� > E½C*(5)�; dashed lines and grey dots indi-
cate the percentage where Pr(Cy(5) ≥ 30) > Pr(C*(5) ≥ 30); dot-dashed lines and white
dots indicate the percentage where Pr(Cy(5) ≥ 50) > Pr(C*(5) ≥ 50). Table 2 in the ap-
pendix shows the same data numerically.
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specific question: what should we make of the condition that the credit premium for

non-exposed fraudulent papers is ‘large enough’?

My claim is that in a given community, there are at least some academics for

whom there is a credit incentive to use QRPs or fraud, because the parameters of

the model are different for each academic. While some relevant factors are largely

fixed within an academic community (for example, the chance that a fraudulent pa-

per is exposed or the amount of credit one needs to have a chance at a job or tenure),

others depend on the skills, dispositions, and luck of specific academics (such as an

academic’s productivity with a fixed level of resources). Importantly, the credit pre-

mium for non-exposed fraudulent papers has aspects of both. It partially depends on

the community (through the value this community assigns to ‘surprisingness’ or

‘flashiness’), but also on the academic’s ability to dress up shoddy work, advertise

its virtues, hide its weaknesses, and quickly convert credit into productive resources.

If there is variety in the parameter values experienced by different members of an

academic community, the credit premium for non-exposed fraudulent papers will be

relatively high for some. The simulation results and the theorem suggest that these

academics may have an incentive to use QRPs or fraud.

Moving beyond a proof of possibility, this section provides tentative evidence for

a stronger claim. The claim is that in most (if not all) academic communities, some

academics have an incentive to use QRPs or fraud as a direct result of the need to

accumulate credit to get a job or tenure.

As noted, QRPs tend to increase the variance in how much credit an academic

accumulates. Roughly, this means that academics using QRPs are more likely to

do either very well or very poorly. These academics are then likely to be over-

represented at the bottom and the top of the credit distribution. So in those communi-

ties where some academics have an incentive to use QRPs, the most famous academ-

ics are likely to be the ones using them.

The simulation results illustrate this phenomenon. Suppose that the parameter

ranges in table 1 describe the variety among academics of a given community.

Themost famous academics in that community are those who accumulate the largest

amount of credit. We can get a sense for who this might be from the highest credit

totals realized across all simulation runs (since there are 5,184 parameter settings

with 10,000 simulation runs each for the fraudulent and the honest strategies, this

involves more than a hundred million data points).

The maximum of 458.0 units of credit is realized under the fraudulent strategy,

with l(0) 5 2, cyg 5 3:2, cyb 5 0:5, and my 5 0:05 (see Heesen [2021]). In contrast,

the highest credit achieved across all simulation runs using the honest strategy is

302.1 units. This is arguably not surprising given that the fraudulent strategy does

better than the honest strategy by most measures when cyg 5 1:6 � c*g . The following
result is more surprising: even among settings with cyg 5 1:1 � c*g , there is a simula-

tion run that achieves 327.9 units of credit (incidentally, this suggests that the fraud-

ulent strategy would also be attractive in an explicitly game-theoretic tournament
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model, with all or most of the payoff going to the academic achieving the highest

credit total, as mentioned in section 5).

So, with these parameter ranges, even if the credit premium for non-exposed

fraudulent papers is restricted to 10%, the most famous academics are likely fraud-

ulent. These extremely successful academics are those who have gotten lucky, in

that few or none of their papers have been exposed. (Elsewhere, I reach a similar

conclusion in a different model with a different notion of luck; see Heesen [2017a].)

While I have argued that the model gives a reasonable approximation of the pres-

sures faced by real academics, caution remains advisable in applying these findings.

One should arguably always check the robustness of the results (Frey and Šešelja

[2018]; Heesen et al. [2019]). This can be done by changing the parameter values,

changing specific modelling assumptions, or with an entirely different modelling

framework. I suspect the first two approaches will yield few surprises, as the key

results hinge only on the fact that the fraudulent strategy has higher variance than

the honest strategy. Nevertheless, one should be particularly cautious with accusa-

tions or suggestions of misconduct in the absence of specific empirical evidence

(Smith [2018], sec. 1).

It is difficult to test the hypothesis that more famous academics are more likely to

be fraudulent empirically. This is because we have no independent means to detect

undiscovered fraud, and samples based on discovered fraud are likely to exhibit se-

lection bias (one reason why modelling work in this area is particularly valuable).

Still, limited support for the hypothesis is provided by Stroebe et al. ([2012]),

who look at a ‘convenience sample’ of cases of exposed fraud, mostly in psychology

and biomedicine. They write: ‘[The following] pattern is quite typical for all of these

cases. Either the researchers committing the fraud were highly respected, or in the

case of young researchers, they published their work with highly respected senior

colleagues’ (Stroebe et al. [2012], p. 672).
7. Conclusion

I have highlighted two phenomena that favour the use of QRPs that become apparent

in a dynamic model of the credit economy. First, cumulative advantage may allow a

fraudulent academic to be successful even if the fraud does not pay off at the level of

individual publications (Zollman [unpublished]). Second, selection events in an ac-

ademic’s career may lead fraudulent academics to be successful even if fraud does

not pay off in expectation.

I emphasize two takeaways in this conclusion. First, the two highlighted phenom-

ena suggest that the incentive to engage in QRPs or fraud may be stronger than it

appeared based on previous models of the credit economy (Bruner [2013]; Bright

[2017]; Heesen [2018]). Second, within my model the most successful academics

tend to be the most unscrupulous ones: those who are willing to gamble on fraud

and manage to get away with it. If the model accurately captures the dynamics
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and incentives related to cumulative advantage and fraud, it raises the worry that

those academics who are praised for being the best actually work according to worse

than average epistemic standards.
Appendix

A.1. Multiple credit thresholds

Here I consider a variation of the model in which the academic must meet two credit

thresholds at different times, first to get a job and then to get tenure, say. To maxi-

mize the ability to compare results, I consider the same ranges of parameter values

used previously (see table 1). The simulation still ends at t 5 5, but in this variation

each simulation run is stopped early if the academic fails to beat a credit threshold of

five halfway through, so if C(2:5) < 5. The threshold value of five is chosen such

that approximately half of all simulation runs beat it.

Once again I consider whether the honest or the fraudulent strategy has a better

chance of beating a credit threshold of thirty and a threshold of fifty. Table 2 shows

the results.

The introduction of an additional threshold halfway through appears to favour the

fraudulent strategy. The percentage of cases where fraud is more likely to meet a

threshold of thirty than honesty is higher with the intermediate threshold for each

of the six values of the credit multiplier for fraud (rows 2 and 3 of table 2). With

a threshold of fifty the percentages are similar in the two variations of the model

(rows 4 and 5). I hypothesize that there are almost no cases in the original model

where the threshold of fifty is met at t 5 5 without also meeting the intermediate

threshold, which would explain the highly similar results. Probably for the same rea-

son, looking at the highest credit totals realized across all simulation runs yields

similar results with the intermediate threshold as without it: the overall maximum

in this variation is 515.4, the maximum using the honest strategy is 297.1, and
Table 2. Percentage of parameter settings for which the fraudulent strategy is pre-
ferred over the honest strategy as a function of the ratio cyg=c*g

cyg=c*g 1.1 1.2 1.3 1.4 1.5 1.6

E[Cy(5)] > E[C*(5)] 17.01 32.18 59.49 78.13 93.98 99.19
Pr(Cy(5) ≥ 30) > Pr(C*(5) ≥ 30) 9.49 31.60 51.16 68.98 87.15 96.30
Pr(Cy(5) ≥ 30, Cy(2.5) ≥ 5) >

Pr(C*(5) ≥ 30, C*(2.5) ≥ 5) 19.21 38.89 63.66 85.07 97.22 99.77
Pr(Cy(5) ≥ 50) > Pr(C*(5) ≥ 50) 18.63 34.84 63.31 81.02 98.50 100
Pr(Cy(5) ≥ 50, Cy(2.5) ≥ 5) >

Pr(C*(5) ≥ 50, C*(2.5) ≥ 5) 18.98 37.04 63.77 82.75 97.80 100
Note.—Rows 1, 2, and 4 reproduce the data from figure 3; rows 3 and 5 show the data for the var-
iation of the model with an intermediate threshold (Heesen [2021]).
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the maximum with the fraudulent strategy under the restriction that cyg 5 1:1 � c*g is

310.3 (Heesen [2021]).

Note that I have omitted consideration of expected total credit in the variation of

the model. This is because this concept has no unambiguous meaning here. One

could calculate the expected total credit given that the intermediate threshold is

met, or an overall expectation where runs that fail to meet the intermediate threshold

are included, either with the total credit achieved at t 5 2:5 or with some deemed

value. None of these are straightforwardly comparable to the expectation calculated

for the model without an intermediate threshold.
A.2. Proof of theorem 1

Let C(t) denote the credit directly associated with a single publication, or equiva-

lently, the credit that would be accrued up to time t if we assumed that the publica-

tion rate l drops to zero and stays there immediately after the first publication ar-

rives. Let T ∼ Exp(l(0)) be the arrival time for that publication. Let X ∼ Exp(m)

be the waiting time until the publication is exposed (so that exposure occurs at time

T 1 X ).

We first consider the expected credit conditional on T 5 t < t1. The density func-

tion of X is given by fX (x) 5 me2mx. If X ≥ t1 2 t the credit accrued is cg(t1 2 t),

otherwise it is cgX 2 cb(t1 2 t 2 X ). So

E½C (t1)jT 5 t� 5
ð∞

0
(cg minft1 2 t, xg 2 cb maxft1 2 t 2 x, 0g) fX (x)dx

5
cg 1 cb

m
1 2 e2m(t12t)
� �

2 cb(t1 2 t):

A few observations. First, this justifies equation 6. Second, E½C(t1)jT 5 t� is a lin-
early increasing function of cg. Consequently, we can guarantee that the expectation

is positive by choosing cg large enough:

E½C(t1)jT 5 t� > 0 if  and only if cg > cb
m(t1 2 t)

1 2 e2m(t12t) 2 cb: (7)

Third, if E½C(t1)jT 5 t0� > 0 then for all t ∈ (t0, t1) also E½C(t1)jT 5 t� > 0. This

can be seen from equation 7 by noting that x=(1 2 e2x) is a strictly increasing func-

tion for all x.

Now we consider E½C(t1)�. The density function of T is given by fT (t) 5

l(0)e2l(0)t. If T ≥ t1 the credit accrued is zero, otherwise the expected credit is

E½C(t1)jT �. So

E½C (t1)� 5
ð t1

0
E½C(t1)jT 5 t� fT (t)dt

5
m(cgl(0) 1 cbm)(1 2 e2l(0)t1 ) 2 l(0)2(cg 1 cb)(1 2 e2mt1 )

l(0)m(m 2 l(0))
2 cbt1:
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We are particularly interested in how E½C(t1)� varies with cg:

d

dcg
E½C(t1)� 5 m(1 2 e2l(0)t1 ) 2 l(0)(1 2 e2mt1 )

m(m 2 l(0))
:

So E½C(t1)� is also a linear function of cg. To see that it is an increasing function of cg
it suffices to show that the derivative is positive. One way to see this is by inter-

changing the derivative and the integral (which is legitimate because the functions

involved are differentiable and bounded):

d

dcg
E½C (t1)�5

ð t1

0

d

dcg
E½C(t1)jT 5 t� fT (t)dt 5

ðt1

0

1

m
1 2 e2m(t12t)
� �

l(0)e2l(0)tdt > 0

because the integrand is strictly positive for all 0 ≤ t < t1.

How does E½C(t1)� relate to E½C(t1)�? Recall that C(t) only counts the credit asso-
ciated with a single publication, whereas C(t) tracks the credit for all publications

combined. The probability distribution for the arrival time of each subsequent pub-

lication is (by design) quite complicated, as it depends on the number of previous

publications, the number of previous exposures, and the precise arrival times of each

of these. But conditional on its arrival time t, we know that the contribution each

publication makes to the expected credit is equal to E½C(t1)jT 5 t�. Moreover

we know from the third observation above that if E½C(t1)jT 5 0� > 0 then

E½C(t1)jT 5 t� > 0 for all t < t1. So it follows that if E½C(t1)jT 5 0� > 0 (which

we can make sure is true by choosing cg sufficiently high) then the contribution

to the expected credit of each publication beyond the first is positive, and therefore

E½C(t1)� > E½C(t1)�.
Since E½C(t1)� increases linearly with cg, we can make E½C(t1)� arbitrarily high by

setting cg sufficiently high. In particular, if l(0), t1, c*g , c*b , and m* are fixed then

E½C*(t1)� is thereby fixed as well. For arbitrary (fixed) values of cyb and my we can
then choose cyg high enough such that E½Cy(t1)� > E½C*(t1)�. If we also choose cyg
high enough so the inequality from the previous paragraph obtains, we get the de-

sired result regarding expectation:

E½Cy(t1)� > E½Cy(t1)� > E½C*(t1)�:

Moving on to the second part of the theorem, we now consider the probability of

exceeding a credit threshold v > 0, which requires a more detailed analysis. Let N (a

random variable) be the total number of publications that occurs in the time interval

[0, t1]. The event N 5 0 occurs just in case T > t1, and it entails that C(t1) 5 0. The

probability of this event is

Pr(C(t1) 5 0) ≥ Pr(N 5 0) 5 Pr(T > t1) 5 e2l(0)t1 :

Note that this probability does not depend on cg. Assuming (as the statement of the

theorem does) that l(0) > 0 and t1 > 0 are fixed, this establishes an upper bound on

the probability of interest:
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Pr(C(t1) ≥ v) ≤ Pr(N ≥ 1) 5 Pr(T < t1) 5 1 2 e2l(0)t1 :

In light of this, the following two claims are equivalent:

lim
cg →∞

Pr(C(t1) ≥ v) 5 Pr(N ≥ 1) and  lim
cg →∞

Pr(C(t1) ≥ vjN ≥ 1) 5 1:

The bulk of this proof aims to establish the latter (which will allow us to infer the

former). So we restrict attention to cases where N ≥ 1. We begin by claiming that

if N ≥ 1, then we can choose cg high enough that (with arbitrarily high probability)

N is ‘large’.

In fact, the claim we will prove is stronger. Let S denote the sum over all

publications of the time interval from publication until t1 (ignoring whether they

are exposed). That is, if T0, T1, ::: , TN21 are the publication times (where T0 5 T ),

then S 5 oN21
i50 (t1 2 Ti). We show that with an appropriate choice of cg, we canmake

S arbitrarily largewith arbitrarily high probability. That is, not only are there arbitrarily

many publications, but they do not all occur so close to t1 that the combined time they

are in existence remains small.

Let ε > 0. We want to show for some arbitrary (large) constant k that

Pr(S ≥ kjN ≥ 1) 5
Pr(S ≥ k,N ≥ 1)

Pr(N ≥ 1)
5

Pr(S ≥ k, T < t1)

Pr(T < t1)
> 1 2 ε:

Let

t* 5 min
1

l(0)
log 1 1

ε

3
(el(0)t1 2 1)

� �
,
1

m
log

1

1 2 ε=3

� �	 

> 0:

Then

Pr(S ≥ kjN ≥ 1) ≥
Pr(S ≥ k, T < t1 2 t*)

Pr(T < t1)

5 Pr(S ≥ kjT < t1 2 t*)
1 2 e2l(0)(t12t*)

1 2 e2l(0)t1

≥
�
1 2

ε

3

�
Pr(S ≥ kjT < t1 2 t*):

LetN* denote the number of publications that occur in the time interval ½T , T 1 (1=2)t*�.
Conditional onT < t1 2 t*, we know that T 1 t*=2 < t1 2 t*=2, that is, we haveN*

publications occurring before t1 2 t*=2, so S ≥ N* � t*=2. Thus if we let n 5 2k=t*

we have

Pr(S ≥ k T < t1 2 t*) ≥ Pr(N* ≥ n
�� ��T < t1 2 t*):

Let G2 denote the event that the first two publications fail to be exposed during the

first t*/2 time units after their publication (assuming these publications occur at all).

Note that

Pr(G2) ≥ e2mt* ≥ 1 2
ε

3
:
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Putting this together, so far we have

Pr(S ≥ kjN ≥ 1) ≥ 1 2
ε

3

� �
Pr(S ≥ kjT < t1 2 t*)

≥ 1 2
ε
3

� �
Pr(N* ≥ njT < t1 2 t*)

≥ 1 2
ε

3

� �
Pr(N* ≥ n,G2jT < t1 2 t*)

≥ 1 2
ε

3

� �2

Pr(N* ≥ n, jG2, T < t1 2 t*):

We now consider the probability in the last line above, which is the probability of at

least n publications in the time interval ½T , T 1 (1=2)t*� conditional on the first two
publications not being exposed during that same time interval. Choose

cg 5 max n � cb, e(16n124=ε)=(t*)2
n o

:

For the purpose of determining the probability that N* ≥ n, we may assume that

c(t) ≥ cg for all t ∈ ½T , T 1 (1=2)t*�. This is because (a) after the first publication
at time T, pg 5 1 and pb 5 0 so cgpg 2 cbpb 5 cg, (b) because of the condition G2,

the second publication occurs before the first exposure, (c) after the second publica-

tion but before the n-th publication, because of conditionG2, pg ≥ 2 and pb ≤ n 2 2

and hence cgpg 2 cbpb ≥ cg 1 ncb 2 (n 2 2)cb ≥ cg, and (d ) anything that happens

after the n-th publication (including any exposures) cannot reduce the total number of

publications that already occurred, and so is irrelevant to the probability that N* ≥ n.

It follows from equation 3 that the rate of publication is

l(t) ≥ l(0) 1 log(cg 1 1)(t 2 T )

for all t ∈ ½T , T 1 (1=2)t*�. This means that (at least as long asN* < n) the ‘average

intensity’ during the time interval is

L T , T 1
1

2
t*

� �
5

ðT1t*=2

T
l(t)dt ≥

1

2
l(0)t* 1

1

8
log(cg 1 1)(t*)2:

Let Y be a Poisson-distributed random variable with rate parameter �L 5 l(0)t*=2 1

log(cg 1 1)(t*)2=8. Then Pr(N* ≥ n, jG2, T < t1 2 t*) ≥ Pr(Y ≥ n) (see Tijms

[2003], theorem 1.3.1). Note that

�L ≥
1

8
log(cg)(t*)

2 ≥ 2n 1
3

ε
:

Since Y follows a Poisson distribution, E½Y � 5 Var(Y ) 5 �L. Since E½Y � 5 �L > n,

we can apply Cantelli’s inequality (a one-sided version of the Chebyshev inequality)

to get
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Pr(Y ≥ n) 5 Pr(Y 2 E½Y � ≥ n 2 E½Y �) ≥ 1 2
Var(Y )

Var(Y ) 1 (n 2 E½Y �)2 :

Thus

Pr(Y ≥ n) ≥ 1 2
1

�L 1 1 2 2n 1 n2=�L
≥ 1 2

1
�L 2 2n

≥ 1 2
ε

3
:

But now we are done:

Pr(S ≥ kjN ≥ 1) ≥ 1 2
ε

3

� �2

Pr(N* ≥ n, jG2, T < t1 2 t*)

≥ 1 2
ε

3

� �2

Pr(Y ≥ n)

≥ 1 2
ε

3

� �3

> 1 2 ε:

Returning to the big picture, recall that we are aiming to show that

lim
cg →∞

Pr(C(t1) ≥ vjN ≥ 1) 5 1:

For each publication i 5 0, 1, ::: ,N 2 1, consider the amount of time between pub-

lication and the cutoff time t1, which is t1 2 Ti. Suppose we form groups of pub-

lications such that for each group b, the sum of these amounts of time is at least t1
and at most 2t1:

t1 ≤ o
i∈b
(t1 2 Ti) ≤ 2t1:

Because t1 2 Ti ≤ t1 for each i, we can be sure that we can form such groups without

this sum exceeding 2t1 for any of them. Moreover, since we have just shown that

S 5 oN21
i50 (t1 2 Ti) becomes large for large values of cg, we can guarantee that the

number of such groups M is large.

We now place the following lower bound on the amount of credit accrued by the

combined publications in each group: if at least one of the publications in the group

is exposed at any time, we assume all the publications in the group are exposed the

entire time. Thus, the credit associated with each group in which at least one expo-

sure occurs is at least 22cbt1, and the credit associated with groups with no expo-

sures is at least cgt1. The probability of at least one exposure in a given group is at

most q 5 1 2 e22mt1 . Conversely, the probability of no exposures is at least 1 2 q.

Let Z be a random variable following a binomial distribution with parameters M

(the number of trials) and 1 2 q (the success probability). Then Z gives a conserva-

tive estimate of the number of groups in which no exposures occur, in the sense that

the probability of no exposures in at least m groups is bounded below by the prob-

ability that Z ≥ m. As explained above, we associate cgt1 credit with ‘successes’

(groups with no exposures) and 22cbt1 with ‘failures’. It follows that
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Pr(C(t1) ≥ vjN ≥ 1) ≥ Pr(cgt1Z 2 2cbt1(M 2 Z) ≥ vjN ≥ 1)

5 Pr Z ≥
2cbM 1 v=t1
cg 1 2cb

jN ≥ 1

� �

5 o
∞

m50

Pr Z ≥
2cbm 1 v=t1
cg 1 2cb

jM 5 m

� �
Pr(M 5 mjN ≥ 1):

Let ε > 0. Choose cg larger than (2cb 1 v=t1)=(1 2 q)2 but also large enough such that

Pr S ≥
4t1

q(1 2 q)ε
jN ≥ 1

� �
≥ 1 2

ε

2

(which we have previously shown is possible). Since Z is binomial, we know its mean

is E½ZjM 5 m� 5 (1 2 q)m and its variance Var(ZjM 5 m) 5 q(1 2 q)m. From

cg ≥ (2cb 1 v=t1)=(1 2 q)2 it follows that for all m ≥ 1,

cg(1 2 q)2m ≥ 2cb 1
v

t1

� �
m ≥ 2cb(1 2 (1 2 q)2)m 1

v

t1
:

Hence, for allm ≥ 1, (cg12cb)(12q)2m ≥ 2cbm1v=t1,which entails (2cbm 1 v=t1)=

(cg 1 2cb) ≤ (1 2 q)2m 5 (1 2 q)m 2 q(1 2 q)m. It follows that (2cbm 1 v=t1)=

(cg 1 2cb) 2 (1 2 q)m ≤ 2q(1 2 q)m < 0. So we can again use Cantelli’s inequal-

ity to get

Pr Z ≥
2cbm 1 v=t1
cg 1 2cb

jM 5 m

� �
≥ 1 2

q(1 2 q)m

q(1 2 q)m 1 ((2cbm 1 v=t1)=(cg 1 2cb) 2 (1 2 q)m)2

≥ 1 2
q(1 2 q)m

q(1 2 q)m 1 (2q(1 2 q)m)2

5 1 2
1

q(1 2 q)m 1 1
:

From the above we get that whenever m ≥ 2=(q(1 2 q)ε),

Pr Z ≥
2cbm 1 v=t1
cg 1 2cb

jM 5 m

� �
≥ 1 2

ε
2
:

Thus

Pr(C(t1) ≥ vjN ≥ 1) ≥ o
∞

m5⌈ 2=(q(12q)ε) ⌉

Pr Z ≥
2cbm 1 v=t1
cg 1 2cb

jM 5 m

� �
Pr(M 5 mjN ≥ 1)

≥
�
1 2

ε

2

�
Pr M ≥

2

q(1 2 q)ε
jN ≥ 1

� �

≥
�
1 2

ε

2

�
Pr S ≥

4t1
q(1 2 q)ε

jN ≥ 1

� �

≥
�
1 2

ε
2

�
2

> 1 2 ε:
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This establishes the result that

lim
cg →∞

Pr(C(t1) ≥ vjN ≥ 1) 5 1,

and hence

lim
cg →∞

Pr(C(t1) > v) 5 Pr(N ≥ 1) 5 1 2 e2l(0)t1 :

The desired claim follows straightforwardly from this. In particular, if l(0), t1, c*g ,

c*b , and m* are fixed then Pr(C*(t1) > v) is thereby fixed as well. Moreover, we

know that Pr(C*(t1) > v) < 1 2 e2l(0)t1 since v > 0 and Pr(C*(t1) 5 0) 5 el(0)t1

and Pr(0 < C*(t1) < v) > 0. Thus Pr(C*(t1) > v) is less than the limiting value

by some definite amount. For arbitrary fixed values of cyb and my, the limiting re-

sult just established guarantees that we can choose cyg large enough such that

Pr(Cy(t1) > v) is closer to 1 2 e2l(0)t1 than Pr(C*(t1) > v). Thus, in particular,

Pr(Cy(t1) > v) > Pr(C*(t1) > v): □
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