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Abstract

A number of philosophers of science and statisticians have at-
tempted to justify conclusions drawn from a finite sequence of evidence
by appealing to results about what happens if the length of that se-
quence tends to infinity. If their justifications are to be successful, they
need to rely on the finite sequence being either indefinitely increasing
or of a large size. These assumptions are often not met in practice.
This paper analyzes a simple model of collecting evidence and finds
that the practice of collecting only very small sets of evidence before
taking a question to be settled is rationally justified. This shows that
the appeal to long run results can be used neither to explain the suc-
cess of actual scientific practice nor to give a rational reconstruction
of that practice.

Keywords: philosophy of science; evidence; rational choice; for-
mal epistemology; Bayesian epistemology; sequential decision prob-
lems

∗This paper has been accepted by Philosophical Studies. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11098-014-0411-z. Thanks to
Kevin Zollman, Kevin Kelly, Liam Bright, Adam Brodie, and an anonymous referee for
valuable comments and discussion.
†Department of Philosophy, Baker Hall 161, Carnegie Mellon University, Pittsburgh,

PA 15213-3890, USA. Email: rheesen@cmu.edu.

1

http://dx.doi.org/10.1007/s11098-014-0411-z
mailto:rheesen@cmu.edu


1 Introduction
An important question in the philosophy of science concerns the relation
between hypothesis and evidence. Positive evidence is variously said to sup-
port, confirm, or prove a hypothesis, whereas negative evidence may detract
from, disconfirm, or refute it. But what exactly these relations consist in
remains an open question (Hempel 1945a,b, Popper 1959, Howson & Urbach
1989).

A number of approaches set up the problem as follows. The scientist is
faced with a potentially infinite sequence of evidence. At any given time
she has observed finitely many pieces of evidence, which is not sufficient to
pronounce on the hypothesis with certainty. The scientist may be forced to
act; what should she do?

On this setup, it is tempting to define successful methods as those that
get it right in the limit. Among philosophers of science, Reichenbach and
Peirce are perhaps the most prominent proponents of this line of thinking.
Reichenbach (1938) attempts to address the problem of induction by com-
paring predictive methods based on their long run behavior. Peirce (1931
[1878]) even goes so far as to define success in terms of the long run results
of certain methods of inquiry.

I discuss Reichenbach and Peirce in more detail in section 2. But they
are not the only ones to make recommendations and comparisons based on
limits of infinite sequences. Statisticians both on the frequentist and the
Bayesian side use laws of large numbers and Central Limit Theorems to jus-
tify conclusions from finite sets of evidence (Casella & Berger 2001, Earman
1992). And formal learning theorists compare learning methods based on
their performance on an infinite sequence (Kelly 1996).

What all of the above have in common is that limiting results are used to
make or justify claims about the present. Friedman (1979, section I) argues
that such long run justifications are useless to science, as they never provide
any guarantees on the truth or approximate truth of science’s current results.
“[Long run justifications] do not and cannot show that scientific method tends
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to produce true theories in actual practice.” (Friedman 1979, p. 368)
How can a defender of long run justifications respond to this? How can

limiting results and claims about the present be linked?
The link cannot be that there will come a time at which the entire infinite

sequence of evidence has been observed. This is of course impossible (and
none of the authors mentioned suggest it): various practical constraints put
a finite upper bound on the amount of evidence a scientist (or all of science)
could obtain.

But then what makes results concerning infinite evidence relevant to sci-
entific method or practice? Two suggestions have been given: either (i) the
limiting result is relevant because scientists collect evidence indefinitely, thus
getting ever closer to the limit, or (ii) it is relevant because the amount of
evidence collected (while finite) is large, so that the limiting result holds ap-
proximately. As I show in section 2, Reichenbach and Peirce rely on these
suggestions.

The problem is that scientists do not act in accordance with either (i)
or (ii). Often a single experiment (or a small number of replications) is taken
to decide a question. I will illustrate this with a few cases in section 3. But
the main point of this paper is to show that the practice of gathering small
amounts of evidence is (at least sometimes) rational.

I show first that scientists should not collect evidence indefinitely in a
fairly general model (section 4). Next I obtain some more specific results in
a model where evidence takes the form of Bernoulli trials, showing that in
most circumstances it is rational to do either zero, one, or a small handful of
experiments (section 5).

Sections 4 and 5 together show that there are cases where suggestions
(i) and (ii) both fail to provide a justification for appealing to long run
results. As long as no other suggestions are forthcoming, any explanation
or rational reconstruction of scientific practice that relies on long run results
fails. This forces us to rethink the arguments of many philosophers of science
and statisticians.
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2 Philosophers Appealing to the Long Run
Reichenbach (1938, § 39) is a classic example of a philosopher using long
run results to justify short run behavior. He characterizes the problem of
induction as the attempt to extrapolate from a finite sample the limiting
relative frequency of a certain type of event in an infinite sequence of events.
His proposal is to use the current relative frequency (based on the finite
sample) as an estimate of the limit.

His justification for this proposal depends on a convergence result: if the
size of the sample is made large enough the relative frequency in the sample
must approach the limit. Reichenbach admits that one can never be sure
if the current size of the sample is large enough to be close to the limit.
Moreover, I will show in section 5 that it can be irrational to collect a sample
of large size.

He replies: “We are not bound to stay at [the current sample size]; we may
continue our procedure and shall always consider the last [relative frequency]
obtained as our best value” (Reichenbach 1938, p. 351). So for Reichenbach
it is fine if the sample is not very large, as long as one keeps increasing its
size indefinitely. I address this argument in section 4.

Reichenbach’s approach to the problem of induction is not obscure. Among
contemporary philosophers, Kelly (1991, 1996) and Schurz (2008) have de-
fended similar views, both explicitly drawing on Reichenbach.

Similarly, Bayesian philosophers of science have used limiting results to
address the criticism that their views depend on arbitrary prior probabili-
ties. They point out that two scientists with different priors will eventually
find themselves with closely agreeing posteriors, assuming enough evidence
is collected (see Edwards et al. 1963 for a classic defense of this position and
Earman 1992, chapter 6 for critical discussion). This kind of argument is
also vulnerable to the issues I raise in sections 4 and 5.

Peirce represents a somewhat different example of a philosopher appealing
to the long run. He defines to be true (in the present) that which would be
believed at the limit of inquiry. But he does not want to be a relativist, so
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he rejects the notion that truth depends on the beliefs of actual people.

Our perversity and that of others may indefinitely postpone the
settlement of opinion (. . . ). Yet even that would not change the
nature of the belief, which alone could be the result of investiga-
tion carried sufficiently far. (Peirce 1931 [1878], p. 5.408)

So the right (not “perverse”) way of acquiring true belief is to carry
investigation sufficiently far. What is sufficiently far? Either some given
(large) finite amount suffices, or one simply needs to keep going indefinitely.
The results from my model in sections 4 and 5 show that rational scientists
may fail to do either.

Before discussing what is rational, I will discuss some cases from the
history of science. In these cases, scientists took a single experiment or
study to be decisive for some hypothesis, contrary to the requirements of the
philosophers I just discussed.

3 Scientists Working in the Short Run
On December 29, 1849, Hermann von Helmholtz performed his first experi-
ment to measure the speed of the nervous impulse (Olesko & Holmes 1993,
p. 88). He hooked a muscle from a frog’s leg and some of the nerve attached to
it onto his newly invented experimental apparatus (later to become known as
the myograph), stimulated the nerve, and measured the time until the mus-
cle contracted. By varying the location of the stimulation (nearer or farther
from the muscle) and observing the difference in reaction time he obtained
an estimate of the speed at which the signal propagates along the nerve.

Helmholtz repeated the experiment on January 4 and January 6, 1850,
using different frogs and varying the weight that the contracting muscle was
lifting. Over the course of the three days, the values he found for the speed
of the nervous impulse varied between 24.6 and 38.4m/s.
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After this, rather than doing further experiments to get a more precise
estimate of the speed or of the conditions that influence it, he wrote up his
results and announced them to his peers. The first presentation occurred on
January 21, little more than three weeks after the first experiment (Olesko &
Holmes 1993, fn. 86). The report was published in a number of venues over
the next few months. Edwin Boring, a historian of psychology, describes its
impact as follows.

Every one thought (. . . ) of his hand as of a piece with himself.
To move his finger voluntarily was an act of mind itself, not a
later event caused by a previous act of mind. To separate the
movement in time from the event of will that caused it was in
a sense to separate the body from the mind (. . . ). Helmholtz’s
discovery was a step in the analysis of bodily motion that changed
it from an instantaneous occurrence to a temporal series of events.
(Boring 1950, p. 42)

So Helmholtz’s experiment turned the accepted idea that sensation and
bodily motion are essentially instantaneous events into an untenable view.
While further experiments would be done later by Helmholtz and others,
this first set of results was sufficient to prove that the speed of the nervous
impulse was measurable, with Johannes Müller calling it “a great stride” and
Alexander von Humboldt “a noteworthy discovery” that had “stimulated as-
tonishment” (Olesko & Holmes 1993, pp. 90–91). It is an especially dramatic
example of a single experiment settling a hypothesis, since the result is so
different from what most scientists at the time would have expected.

It might be asked whether this really represents a single experiment. How
much evidence did Helmholtz actually collect before publishing his discovery?

During three days of experimental work, he used six different frog muscles
(one frog each day) and performed a total of 89 measurements of the reaction
time. This is not the same as a measurement of the speed of the nervous
impulse, as that is obtained by comparing the difference in reaction time
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when different parts of the nerve are stimulated. Helmholtz reports the 89
measurements in five groups, obtaining only five estimates of the speed (von
Helmholtz 1850, pp. 339-344).

Whether this should count as one, five, six, or 89 experiments is perhaps
a subjective matter. But in any case, a small set of evidence was used to
settle the hypothesis that the speed of the nervous impulse is measurable,
and both the experiment and the conclusion stand as paradigm cases of good
science to this day.

Other examples abound. Perrin’s experiment in 1908 was the first to
confirm Einstein’s theoretical work on Brownian motion. For physicists, this
settled the question whether atoms and molecules existed. In 1668, Redi dis-
proved the commonly accepted hypothesis that maggots arise spontaneously
from rotting meat with a simple experiment. He put some rotting meat in
two jars, covering one but not the other, and observed a few days later that
maggots appeared only on the latter.

The model to be introduced and analyzed in the next sections shows that
it is sometimes rational for scientists to take a single study or experiment
as decisive evidence for or against a hypothesis. The cases above are among
many that suggest that real scientists are sometimes willing to do this. But
they are merely illustrative: the argument in the rest of this paper does not
rely on the correctness of my analysis of these cases.

4 Should Scientists Collect Evidence Indefi-
nitely?

Consider a scientist who wants to know whether some hypothesis h is true
or false. For example, Helmholtz wanted to test the hypothesis that bodily
motion is instantaneous. Evidence about h takes the form of experimental
outcomes (represented in the model by numerical values) which have proba-
bilities associated with them that depend on the truth-value of h. That is,
a piece of evidence is a realization of a random variable that follows some
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given distribution X. Realizations of X are assumed to be independent given
either h or ¬h, so any collection of evidence is independent and identically
distributed (i.i.d.; the role of this assumption is discussed at the end of this
section).

At a cost c > 0, the scientist gains one piece of evidence (i.e., one real-
ization of X). Think of a piece of evidence as an experiment done by the
scientist, although it may also reflect what she learns by reading or talking
to other scientists.

The cost c may represent the costs of buying equipment or paying re-
searchers’ wages. Especially relevant in the present context, however, is the
opportunity cost: whatever time the scientist spends collecting evidence re-
lated to h is time she fails to spend on other questions. The cost is thus
(at least partially) an epistemic cost: it reflects the knowledge about other
questions lost to the scientist because she chose to gain knowledge about h.

The scientist collects evidence sequentially. That is, the decision whether
or not to collect a next piece of evidence may depend on what is learned from
previous pieces of evidence.

Whenever the scientist decides to stop collecting evidence, she has to
choose one of two terminal decisions: d1 represents the decision to believe
that h is true (and to act on that belief when appropriate), and d2 repre-
sents the decision to believe that h is false. For example, after three days,
Helmholtz decided that no more experiments were needed: bodily motion
was not instantaneous.

The scientist is faced with a trade-off. Collecting more evidence reduces
the chance of drawing the wrong conclusion about the truth-value of h (as
represented by the terminal decision), but increases the accumulated costs.
Collecting less evidence reduces costs, but increases the chance of drawing
the wrong conclusion about h.

What should a rational scientist do in this situation? I assume the sci-
entist acts as if she were a Bayesian statistician (I will argue later on that
my results will be the same if she acts like a frequentist statistician instead).
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This means the following.
The scientist has a subjective probability ξ ∈ [0, 1] that reflects how

likely she thinks it is that h is true. In response to evidence she updates this
probability using Bayes’ rule. She has a loss function that puts a numerical
value on each decision. And she makes decisions that minimize risk, where
the risk is the expected value (relative to her subjective beliefs) of the loss
plus costs.

In this model, the loss ` associated with the terminal decision is zero if
the decision is “correct” (d1 if h and d2 if ¬h), and β > 0 if the decision is
“incorrect” (d2 if h and d1 if ¬h, see table 1). The total loss is ` plus the
number of pieces of evidence collected times c.

`(·, ·) h ¬h
d1 0 β

d2 β 0

Table 1: The loss function `.

The risk function ρ gives the expected value of the total loss: ρ(ξ, δ)
denotes the expected total loss relative to a scientist’s subjective probability ξ
if she chooses the sequential decision procedure δ.

A sequential decision procedure δ specifies at each decision point whether
the scientist collects an additional piece of evidence (and which terminal de-
cision to choose if she does not) as a function of the evidence obtained so far.
Let d(δ) denote the terminal decision and N(δ) the number of observations
taken under δ.

The problem that the scientist needs to solve is that of finding an opti-
mal sequential decision procedure or optimal stopping rule (where optimal
means minimizing the risk function ρ). DeGroot (2004, sections 12.14–12.16)
provides an analysis of this situation.

Let f1 denote the likelihood function associated with a single realization
of X if h is true, and f2 the likelihood function if h is false. So f1 and f2
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are probability density functions if X is continuous and probability mass
functions if X is discrete. Let

Zi := log f2(Xi)
f1(Xi)

.

Consider the sequential decision procedure δ(a, b) that, for any n, takes an
n+ 1-st observation if

a <
n∑

i=1
Zi < b,

and stops otherwise. A procedure of this form is known as a “sequential
probability-ratio test”. The optimal procedure for the sequential decision
problem described above takes this form, unless it is optimal to take no
observations at all.

Proposition 1 (Wald & Wolfowitz (1948)). The optimal sequential decision
procedure among those that take at least one observation is δ(a, b) for some
a < 0 and b > 0.

This shows that a sequential probability-ratio test is optimal for a Bayes-
ian scientist. What if the scientist is a frequentist instead? In that case she
disavows priors and is instead interested in controlling the error probabilities
Pr(d(δ) = d1 | ¬h) and Pr(d(δ) = d2 | h) directly. Since observations are
costly, she wants to do so with a minimal number of observations.

Theorem 2 (Wald & Wolfowitz (1948)). Let a < 0 and b > 0. Let δ0 be a
sequential decision procedure that takes at least one observation. If

Pr(d(δ0) = d2 | h) ≤ Pr(d(δ(a, b)) = d2 | h),
Pr(d(δ0) = d1 | ¬h) ≤ Pr(d(δ(a, b)) = d1 | ¬h),

then

E[N(δ(a, b)) | h] ≤ E[N(δ0) | h],
E[N(δ(a, b)) | ¬h] ≤ E[N(δ0) | ¬h].
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If the evidence follows a continuous probability distribution, the error lev-
els of a sequential probability-ratio test δ(a, b) vary continuously as a function
of a and b. Thus, no matter what the desired error probabilities are, some se-
quential probability ratio-test achieves them exactly. By theorem 2 it does so
with a minimal number of observations. Thus the optimal sequential decision
procedure for a frequentist is δ(a, b) for some a < 0 and b > 0.

If the evidence follows a discrete probability distribution, there might not
be a sequential probability-ratio test that achieves the desired error proba-
bilities exactly. However, Wald (1947, section 3.3) provides a way of deter-
mining a and b such that δ(a, b) approximates the desired error probabilities.
Any test that is deemed superior to δ(a, b) must achieve either comparable
error probabilities with fewer observations, lower error probabilities with a
comparable number of observations, or lower error probabilities with fewer
observations. In any case, the expected number of observations for δ(a, b)
can act as an upper bound (at least approximately) for the number of obser-
vations taken by the test actually chosen. This means that the test actually
chosen by the frequentist inherits the features of δ(a, b) that I investigate
below and in section 5.

So regardless of whether the evidence is continuous or discrete, the Bayes-
ian nature of my analysis does not involve a substantive assumption.

Note that the sequence Z1, Z2, . . . is i.i.d. because the sequence X1, X2, . . .

is i.i.d. Unless one is in the trivial case where the likelihood functions f1

and f2 are identical almost everywhere (which would mean that Zi = 0 with
probability 1) this is sufficient to guarantee that δ(a, b) will terminate with
probability 1.

Theorem 3 (Stein (1946)). Let Z1, Z2, . . . be a sequence of i.i.d. random
variables with Pr(Zi = 0) < 1. It follows that Pr(N(δ(a, b)) < ∞) = 1 for
all a < 0 and b > 0.

Proposition 1 and theorem 3 together establish that the optimal sequen-
tial decision procedure either takes no observations at all or it takes a finite
number of observations with probability 1. In either case it is established that
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the scientist should not collect evidence indefinitely: for a given hypothesis,
there always comes a time at which it is better to stop collecting evidence.
This runs contrary to Reichenbach and Peirce’s claim that good scientists
will continue to gather more evidence for their hypotheses indefinitely.

To establish this result I have relied on the assumption that the evidence
gathered by scientists on a particular question is i.i.d. This assumption will
not always be appropriate. Experimental results may not be independent
when scientists build on each other’s work or reuse experimental setups.
They may not be identically distributed if different kinds of experiments are
used to test the same hypothesis.

However, it is sufficient for my argument that some scientific investi-
gations are well-described by an i.i.d. model. This shows that scientists are
sometimes rational not to collect evidence indefinitely. As a result, the justifi-
cation of their methodology, at least in these cases, cannot be as Reichenbach
and Peirce suggest.

Moreover, it is not clear that the results established here (optimality of the
sequential probability-ratio test and the fact that it terminates with proba-
bility 1) crucially depend on the assumption that evidence is i.i.d. Conditions
under which these results generalize have been investigated by Lai (1981) and
Liu & Blostein (1992).

5 Should Scientists Collect a Large Set of Ev-
idence?

Given that the scientist will not collect evidence indefinitely, the next ques-
tion is whether she will at least collect a large set of evidence. In that case
results that apply to infinite sets of evidence may perhaps have approximate
validity, so that appeals to such results by philosophers like Reichenbach may
be justified that way.

In order to get the more specific results that are needed to answer this
question, some assumption on the probability distribution of the evidence
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needs to be made. Here I will assume that evidence about h is Bernoulli-
distributed:

X | h ∼ Ber(1− ε),
X | ¬h ∼ Ber(ε),

for some given ε ∈ (0, 1/2). So if h is true it is more likely that X = 1
than that X = 0, while if h is false this is reversed. As a result, X = 1 is
positive evidence for h, and X = 0 is negative evidence, while neither type
of evidence settles the truth-value of h conclusively.

The assumption that the evidence is Bernoulli-distributed is restrictive.
However, the following three considerations should be kept in mind when
evaluating this restrictiveness.

First, the assumption allows for a range of possibilities for the informa-
tional value of a piece of evidence. As ε approaches 1/2 a piece of evidence
provides almost no information for or against h. If ε is close to zero a single
piece of evidence can settle the truth-value of the hypothesis with near-
certainty. Intermediate values of ε can model any situation in between those
two extremes.

Second, it seems unlikely that the particular form of the distribution
drives the results I will obtain in this section. To illustrate this point, I will
briefly consider evidence that follows a normal distribution at the end of this
section.

Finally, recall that I am trying to show that it is sometimes rational
for a scientist to gather a small amount of evidence. For my argument to
work, it suffices that there exist some scientific hypotheses for which the
evidence takes this form. I do not need to argue that all evidence is Bernoulli-
distributed.

For this distribution the likelihood functions f1 and f2 are given by

f1(x) = Pr(Xi = x | h) = ε1−x(1− ε)x, x = 0, 1,
f2(x) = Pr(Xi = x | ¬h) = εx(1− ε)1−x, x = 0, 1.
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Plugging this into the definition of Zi yields

Zi = log f2(Xi)
f1(Xi)

= (1− 2Xi) log 1− ε
ε

.

Note that Zi can take only two values: log 1−ε
ε

if Xi = 0 and − log 1−ε
ε

if
Xi = 1. Thus, for any n, ∑n

i=1 Zi only takes values that are integer multiples
of log 1−ε

ε
.

By proposition 1 the optimal procedure is δ(a, b) for some a < 0 and
b > 0 (unless it is optimal to take no observations at all). But now without
loss of generality only integer multiples of log 1−ε

ε
need to be considered as

possible values for a and b.

Proposition 4 (DeGroot (2004)). Suppose the random variables Zi can only
take the values z and −z for some z and a < 0 and b > 0 are integer multiples
of z. Then the risk of the sequential decision procedure δ(a, b) is

ρ(ξ, δ(a, b)) = βξ Pr(d(δ(a, b)) = d2 | h) + β(1− ξ) Pr(d(δ(a, b)) = d1 | ¬h)
+ cξE[N(δ(a, b)) | h] + c(1− ξ)E[N(δ(a, b)) | ¬h]

= βξ
1− ea

eb − ea
+ β(1− ξ)e

a(eb − 1)
eb − ea

+ cξ
a(eb − 1) + b(1− ea)

(eb − ea)E[Zi | h]

+ c(1− ξ)ae
a(eb − 1) + beb(1− ea)
(eb − ea)E[Zi | ¬h] . (1)

From propositions 1 and 4 it follows that the optimal sequential decision
procedure among those that take at least one observation is δ(a∗, b∗), where
a∗ < 0 and b∗ > 0 are those integer multiples of log 1−ε

ε
that minimize (1).

So I can restrict attention to procedures that take the form

δm,k := δ
(
−m log 1− ε

ε
, k log 1− ε

ε

)
,

where m and k are positive integers. To keep the notation uniform, I also
take δm,k to be well-defined when m or k is non-positive. In this case no
observations are taken and the scientist chooses a decision immediately.
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Here is how to interpret a procedure of the form δm,k for positive m
and k. The scientist should keep track of the following quantity: the number
of Xi so far observed that took the value zero minus the number of Xi so
far observed that took the value one. The procedure tells her to continue to
take observations as long as that quantity is strictly between −m and k. If
the quantity hits −m she stops taking observations and chooses decision d1,
and if it hits k she stops and chooses decision d2.

Let gk be defined by

gk(ε) := (1− ε)2k+1 − ε2k+1

(1− 2ε)2εk(1− ε)k
+ 2k + 1

1− 2ε ,

for all non-negative integers k and ε ∈ (0, 1/2). Since gk(ε) is increasing in k
for any fixed ε, there is a unique k∗ such that

gk∗−1(ε) <
β

c
≤ gk∗(ε),

unless β/c ≤ g0(ε); in that case define k∗ = 0 (see also table 2). The follow-
ing results, proved in the appendix, specify the optimal sequential decision
procedure in terms of k∗.

k∗ β/c

0 (0, g0(ε)]
1 (g0(ε), g1(ε)]
... ...
k (gk−1(ε), gk(ε)]

k + 1 (gk(ε), gk+1(ε)]
... ...

Table 2: k∗ is determined by finding an interval of the form (gk−1(ε), gk(ε)]
such that β/c is in that interval.
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Proposition 5. If ξ = 1/2, the optimal sequential decision procedure is
δk∗,k∗.

This proposition applies to a scientist who starts out thinking h is equally
likely to be true or false. What if the scientist has a different prior?

Proposition 6. Let d ∈ Z. If

ξ = ξd := εd

εd + (1− ε)d
,

the optimal sequential decision procedure is δk∗+d,k∗−d.

Corollary 7. For any ξ ∈ (0, 1) not covered by proposition 6 there must be
a d ∈ Z such that ξd < ξ < ξd−1. The optimal sequential decision procedure
for such a ξ is either δk∗+d,k∗−d, δk∗+d−1,k∗−d+1, δk∗+d−1,k∗−d, or δk∗+d,k∗−d+1.

One can derive general inequalities to determine which of these four pro-
cedures is optimal for given values of ξ, β, c, and ε, but this is not important
for my purposes here.

What proposition 6 and its corollary show is that independent of ξ a
larger value of k∗ indicates that more observations will be needed to come to
a decision on the truth-value of h. The value of ξ biases the process towards
one conclusion or the other but it does not change this general level k∗. I will
focus on the value of k∗ in the remainder of this section. This value depends
on ε and the ratio β/c (see figure 1).

How does k∗ respond to changes in the parameter values? All else being
equal, if β increases or c decreases the scientist takes more observations before
making a decision. These results are reasonable: a higher loss associated with
a wrong decision gives the scientist an incentive to play it safe by taking
many observations, while increased costs of observations encourage coming
to a decision quickly, at the expense of a higher risk of a wrong decision.

Now consider the reliability of the evidence. If ε is close to 0 or 1/2, it is
optimal to take at most one observation. In this case the evidence is either
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Figure 1: k∗ as a function of β, c, and ε (for β/c ≤ 1000 and 0 < ε < 1). The
lines are indifference curves as defined by the family of functions gk. Note
that the β/c-axis is logarithmic.

so good that it settles the hypothesis immediately, or so bad that it is not
worth collecting.

For moderate values of ε, there is more interesting behavior. At values
of β/c greater than 13.7, more complicated decision procedures than “decide
immediately” or “take one observation and then decide” start appearing. It
turns out that quite large values of β/c are needed before procedures that
wait for a larger difference than a few between the number of observations
favoring h’s truth and h’s falsity come into the picture. For instance, if
β/c ≤ 100, it is never optimal to wait for a larger difference than 4, whatever
the value of ε (i.e., no matter how informative a single piece of evidence is
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about the truth-value of h).
Are these results peculiar to the Bernoulli distribution? A brief investi-

gation with the normal distribution suggests that they are not. Suppose that
the hypothesis h and its negation both imply that the evidence is normally
distributed, but they disagree about its mean:

X | h ∼ N(µ1, σ
2),

X | ¬h ∼ N(µ2, σ
2),

with µ1 6= µ2 and σ2 > 0 known.
Proposition 1 applies so the optimal sequential decision procedure is ei-

ther δ(a, b) for some a < 0 and b > 0 or takes no observations at all. DeG-
root (2004, section 12.16) provides a formula for approximating the expected
number of observations E[N(δ(a∗, b∗))] taken by the optimal procedure.

The value of E[N(δ(a∗, b∗))] depends on the prior ξ, the difference between
µ1 and µ2, the variance σ2, and the value of β/c. However, if β/c ≤ 100, then
E[N(δ(a∗, b∗))] < 14 for all possible values of the other parameters. That is,
even in the “worst case”, the optimal procedure takes on average no more
than fourteen observations.

The amounts of evidence collected if evidence follows a Bernoulli or nor-
mal distribution are so small that it seems implausible to claim that limiting
results (e.g., the law of large numbers implicitly appealed to by Reichenbach
1938, § 39) may apply to them. Thus it is shown that there are cases (namely,
those where either of the models of this section applies) where it is rational
for scientists to stop collecting evidence after a small number of observations.
This completes my argument against the use of long run behavior as a generic
method of evaluation of scientific methods.
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6 Conclusion
I started this paper by observing that various philosophers of science have
been interested in identifying good methods based on their behavior as the
amount of evidence collected goes to infinity (e.g., Reichenbach 1938, who
recommends the straight rule for this reason). This makes sense only if
scientists collect evidence either (i) indefinitely (so they will eventually come
arbitrarily close to the limit) or (ii) in large finite amounts (so that the limit
applies approximately).

Using some cases from the history of science, I showed that scientists
do not always collect evidence indefinitely or in large finite amounts. I then
analyzed a model of a scientist trying to learn the truth-value of a hypothesis
by collecting evidence sequentially. The two conclusions were as follows.

First, the scientist should not collect evidence indefinitely, contra (i).
There is some finite number such that it is better for the scientist to stop
collecting evidence (perhaps so she can focus on some other question) after
seeing that number of pieces of evidence.

Second, if it is assumed that the evidence follows a Bernoulli distribu-
tion, more specific conclusions about the amount of evidence that should be
collected can be drawn. If the loss associated with a wrong decision is no
higher than the cost of thirteen observations (β ≤ 13c) then it is optimal to
take no more than one observation. Even if the loss is as high as the cost
of a hundred observations it is not optimal to wait for a difference larger
than four between the number of observations favoring one conclusion and
the number of observations favoring the other. So in these situations it is
rational to collect only a small amount of evidence, contra (ii).

This suggests that only the most important hypotheses (where the con-
sequences of having the wrong belief about it are many times worse than the
costs of collecting additional evidence) merit extensive investigation. For less
important hypotheses collecting a single piece of evidence (or simply guessing
the truth-value based on no evidence at all) is the best strategy.

The analysis in this paper casts serious doubt on the kind of view in
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philosophy of science that wants to justify scientific practices in terms of the
features those practices would have when applied to an indefinitely increasing
sequence of evidence. As the old saying goes: “In the long run we are all
dead”. I would add to this that scientists stop paying attention in the short
run already, and are rational to do so. Our philosophy of science should
reflect this fact.

A Proofs
From proposition 1 it follows that the optimal procedure that takes at least
one observation takes the form δ(a, b), where a is a negative and b a positive
integer multiple of log 1−ε

ε
. If ξ = 1/2, the symmetry of the problem (the loss

for a wrong decision β and the cost per observation c are the same whether h
is true or false) implies that in the optimal solution a = −b. So I can restrict
attention to procedures of the form

δk,k := δ
(
−k log 1− ε

ε
, k log 1− ε

ε

)
for some positive integer k. Note also that

E[Zi | ¬h] = (1− 2ε) log 1− ε
ε

= −E[Zi | h].

Applying equation (1) to δk,k yields

ρ
(1

2 , δk,k

)
= β

εk

(1− ε)k + εk
+ c

k

1− 2ε
(1− ε)k − εk

(1− ε)k + εk
.

Note that ρ(1/2, δ0,0) = β/2 correctly gives the risk of the procedure that
takes no observations. So the optimal procedure (without the caveat “among
those that take at least one observation”) is of the form δk,k for some non-
negative integer k.

Next, fix a value of k and ask whether δk+1,k+1 is better than δk,k. Some
algebra shows that ρ(1/2, δk+1,k+1) < ρ(1/2, δk,k) if and only if
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β

c
> gk(ε) = (1− ε)2k+1 − ε2k+1

(1− 2ε)2εk(1− ε)k
+ 2k + 1

1− 2ε .

Note that gk(ε) is increasing in k, so either there is a unique positive integer
k∗ such that

gk∗−1(ε) <
β

c
≤ gk∗(ε),

or β/c ≤ g0(ε); in that case set k∗ = 0. In either case δk∗,k∗ is the optimal
sequential decision procedure. This proves proposition 5.

Now consider a prior of the form ξd for some d ∈ Z (where ξd is as
defined in proposition 6). This might be called a conjugate prior for this
decision problem: the posterior after conditioning on evidence X1 is ξd−1 if
the evidence is X1 = 1 and ξd+1 if X1 = 0.

Note that ξ0 = 1/2 so the optimal sequential decision procedure for ξ0

is δk∗,k∗ by proposition 5. In light of the above this statement is equivalent
to the following: it is optimal to continue taking observations as long as the
posterior remains between ξk∗−1 and ξ1−k∗ , and it is optimal to stop if the
posterior is ξk∗ or smaller, or ξ−k∗ or larger.

But the latter statement does not depend on the prior one started with.
So for any prior ξd it is optimal to take observations if and only if the posterior
remains strictly between ξk∗ and ξ−k∗ . This is exactly the sequential decision
procedure δk∗+d,k∗−d (which takes no observations if either k∗ + d ≤ 0 or
k∗ − d ≤ 0). This proves proposition 6.

If ξd < ξ < ξd−1 then observing Xi = 0 k∗−d+1 times forces the posterior
to be less than ξk∗ , at which point it is optimal to stop taking observations.
Observing Xi = 0 less than k∗ − d times forces the posterior to be larger
than ξk∗−1, so continuing to take observations is optimal.

Similarly, observing Xi = 1 k∗ +d times forces the posterior to be greater
than ξ−k∗ , and observing Xi = 1 less than k∗ +d−1 times forces the posterior
to be less than ξ−k∗+1. Hence one of δk∗+d,k∗−d, δk∗+d−1,k∗−d+1, δk∗+d−1,k∗−d,
or δk∗+d,k∗−d+1 is the optimal sequential decision procedure. This proves the
corollary.
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