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Abstract

Every language which conforms to classical logic is shown to have an extension for which a consistent

definitional theory of truth is formulated. Also a consistent semantical theory of truth is formulated

for that extension if every sentence of the object language is valuated by its meaning either as true

or as false. These theories of truth contain both a truth predicate and a non-truth predicate. The

case where they compose with predicates having several free variables is also included. Theories

are equivalent when sentences of the object language are valuated by their meanings.

1 Introduction

Based on ’Chomsky Definition’ (cf. [2]) we assume that a language is a countable set of sentences with
finite length, and formed by a countable set of elements. A theory of syntax is also assumed to provide
symbols and rules to construct well-formed sentences and possible formulas for that language.
A language is said to conform to classical logic if it has, or if it can be extended to have at least the
following properties (’iff’ means ’if and only if’):
(i) It contains logical symbols ¬ (not), ∨ (or), ∧ (and), → (if...then), ↔ (if and only if), ∀ (for all) and
∃ (exists), and the following sentences: If A and B are (denote) sentences, so are ¬A, A ∨ B, A ∧ B,
A → B and A ↔ B. If P (x) is a formula of the language, then P is called a predicate with domain
DP iff for every object of DP there is a term b which names it, and P (b) is a sentence of that language.
Denote by NP the set of those terms. ∀xP (x) and ∃xP (x) are then sentences of the language.
(ii) The sentences of that language are so valuated as true or as false that the following rules of classical
logic are valid : If A and B denote sentences of the language, then A is true iff ¬A is false, and A is
false iff ¬A is true; A ∨ B is true iff A or B is true, and false iff A and B are false; A ∧ B is true iff A

and B are true, and false iff A or B is false; A → B is true iff A is false or B is true, and false iff A is
true and B is false; A ↔ B is true iff A and B are both true or both false, and false iff A is true and
B is false or A is false and B is true. If P is a predicate with domain DP , then ∀xP (x) is true iff P (b)
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is true for every b ∈ NP , and false iff P (b) is false for some b ∈ NP ; ∃xP (x) is true iff P (b) is true for
some b ∈ NP , and false iff P (b) is false for every b ∈ NP .
(iii) The language is bivalent, i.e., every sentence of it is either true or false.
Main results of this paper are:
For every language which conforms to classical logic an extension which has properties (i)–(iii) is con-
structed, and a consistent definitional theory of truth is formulated for it. Also a consistent semantical
theory of truth is formulated for that extension if every sentence of the object language is valuated by
its meaning either as true or as false. These theories of truth contain truth and non-truth predicates.
In Section 6 these theories are extended so that both truth predicate and non-truth predicate compose
with predicates having several free variables.

2 Extended languages

Assume that an object language L0 conforms to classical logic, and is without a truth predicate. Before
Section 6 ’predicate’ means a predicate with one free variable.
The first extension L1 of L0 is constructed by adding those sentences ¬A, A ∨ B, A ∧ B, A → B,
A ↔ B, ∀xP (x) and ∃xP (x) which are not in L0 when A and B go through all sentences of L0 and P

its predicates. Valuate the sentences of L1 so that properties (ii) and (iii) are valid. This can be done
since L0 conforms to classical logic.
Replacing L0 by L1 and so on, we obtain a sequence of languages Ln, n ∈ N0 = {0, 1, 2, . . . }, so valuated
that the properties (ii) and (iii) are valid. The union L of languages Ln, n ∈ N0, called a basic extension
of L0, has properties (ii) and (iii).
If A and B denote sentences of L, there exist n1 and n2 such that A is in Ln1

and B is in Ln2
. Denoting

n = max{n1, n2}, then A and B are sentences of Ln. Thus the sentences ¬A, A∨B, A∧B, A → B and
A ↔ B are in Ln+1, and hence in L. If P is a predicate of L0, then the sentences ∀xP (x) and ∃xP (x)
are in L1, so that they are in L. Thus L has also properties (i), and hence all properties (i) – (iii).
The language LT is formed by adding to L extra formulas T (x) and ¬T (x), and sentences T (n) and
¬T (n), where n goes through all numerals which denote numbers n ∈ N0. Neither valuation nor
meaning is yet attached to these sentences. Numerals are added, if necessary, to terms of LT . Choose
a Gödel numbering to sentences of LT . The Gödel number of a sentence denoted by A is denoted by
#A, and the numeral of #A by ⌈A⌉, which names the sentence A.
If P is a predicate of L0 with domain DP , then P (b) is a sentence of L for each b ∈ NP , and ⌈P (b)⌉ is the
numeral of its Gödel number. Thus T (⌈P (b)⌉) and ¬T (⌈P (b)⌉) are sentences of LT for each b ∈ NP , so
that they are determined by predicates of LT with domain DP . Denote these predicates by T (⌈P (ẋ)⌉)
and ¬T (⌈P (ẋ)⌉), where ⌈P (ẋ)⌉ stands for the result of formally replacing the variable x of P (x) by the
term of NP (cf. [4]).
Denote by L0 the language which contains LT , and sentences ∀xQ(x), ∃xQ(x), ∀xQ(⌈P (ẋ)⌉) and
∃xQ(⌈P (ẋ)⌉), where Q is T or ¬T , and P is a predicate of L0 or T or ¬T . When a language Ln,
n ∈ N0, is defined, let Ln+1 be a language which is formed by adding to Ln those of the following
sentences which are not in Ln: ¬A, A ∨ B, A ∧ B, A → B and A ↔ B, where A and B are sentences
of Ln.
The language L is defined as the union of languages Ln, n ∈ N0. Extend the Gödel numbering of the
sentences of LT to those of L, and denote by D the set of Gödel numbers of sentences of L.
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Denote by P the set of predicates of L0 (with one free variable). Divide P into three disjoint subsets
as follows.

{

P1 = {P ∈ P : P (b) is true for all b ∈ NP}, P2 = {P ∈ P : P (b) is false for all b ∈ NP},

P3 = {P ∈ P : P (b) is true for some but not for all b ∈ NP}.
(2.1)

Define subsets Z1(U), Z2(U), U ⊂ D, and Zi, i = 1 . . . 5, of L by








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


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






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

Z1(U) = {T (n): n = ⌈A⌉, where A is a sentence of L and #A is in U},

Z2(U) = {¬T (n): n = ⌈A⌉, where A is a sentence of L and #[¬A] is in U},

Z1 = {¬∀xT (x), ∃xT (x),¬∀x¬T (x), ∃x¬T (x)},

Z2 = {∀xT (⌈P (ẋ)⌉), ∃xT (⌈P (ẋ)⌉),¬(∀x¬T (⌈P (ẋ)⌉)),¬(∃x¬T (⌈P (ẋ)⌉)) : P ∈ P1},

Z3 = {∀x¬T (⌈P (ẋ)⌉), ∃x¬T (⌈P (ẋ)⌉),¬(∀xT (⌈P (ẋ)⌉)),¬(∃xT (⌈P (ẋ)⌉)) : P ∈ P2},

Z4 = {¬(∀xT (⌈P (ẋ)⌉)), ∃xT (⌈P (ẋ)⌉) : P ∈ P3 ∪ {T,¬T}},

Z5 = {¬(∀x¬T (⌈P (ẋ)⌉)), ∃x¬T (⌈P (ẋ)⌉) : P ∈ P3 ∪ {T,¬T}}.

(2.2)

Subsets Ln(U), n ∈ N0, of L are defined recursively as follows.

L0(U) =

{

Z = {A : A is a true sentence of L} if U = ∅ (the empty set),

Z ∪ Z1(U) ∪ Z2(U) ∪ Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 if ∅ ⊂ U ⊂ D.
(2.3)

When a subset Ln(U) of L is defined for some n ∈ N0, and when A and B are sentences of L, denote


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
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
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








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
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

L0
n(U) = {¬(¬A) : A is in Ln(U)},

L1
n(U) = {A ∨B : A or B is in Ln(U)},

L2
n(U) = {A ∧B : A and B are in Ln(U)},

L3
n(U) = {A → B : ¬A or B is in Ln(U)},

L4
n(U) = {A ↔ B : both A and B or both ¬A and ¬B are in Ln(U)},

L5
n(U) = {¬(A ∨ B) : ¬A and ¬B are in Ln(U)},

L6
n(U) = {¬(A ∧ B) : ¬A or ¬B is in Ln(U)},

L7
n(U) = {¬(A → B) : A and ¬B are in Ln(U)},

L8
n(U) = {¬(A ↔ B) : A and ¬B, or ¬A and B are in Ln(U)},

(2.4)

and define

Ln+1(U) = Ln(U) ∪
8
⋃

k=0

Lk
n(U). (2.5)

The above constructions imply that Lk
n(U) ⊆ Lk

n+1(U) and Ln(U) ⊂ Ln+1(U) ⊂ L for all n ∈ N0 and
k = 0, . . . , 8. Define a subset L(U) of L by

L(U) =
∞
⋃

n=0

Ln(U). (2.6)
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3 Properties of consistent subsets of D

Recall that D denotes the set of Gödel numbers of the sentences of L. When U is a subset of D, denote
by G(U) the set of Gödel numbers of the sentences of L(U) defined by (2.6):

G(U) = {#A : A is a sentence of L(U)}. (3.1)

A subset U of D is said to be consistent if for no sentence A of L both #A and #[¬A] are in U .

Lemma 3.1. Let U be a consistent subset of D. Then for no sentence A of L both A and ¬A belong
to L(U), and G(U) is consistent.

Proof. We shall first show that there is no sentence A in L such that both A and ¬A belong to L0(U).
If U = ∅, then L0(U) is by (2.3) the set Z of true sentences of L. If A is in Z, then ¬A is false, and
hence not in Z = L0(U), since L has properties (i)–(iii).
Assume next that U is nonempty. As a consistent set U is a proper subset of D.
Let n be a numeral. If T (n) is in L0(U), it is in Z1(U), so that, by (2.2), n = ⌈A⌉, where #A is in U .
Since U is consistent, then #[¬A] is not in U . Thus, by (2.2), ¬T (n) is not in Z2(U), and hence not in
L0(U). This result implies also that T (n) is not in L0(U) if ¬T (n) is in L0(U).
(2.2) and (2.3) imply that sentences ∃xT (x), ¬∀xT (x), ¬∀x¬T (x) and ∃x¬T (x) are in Z1, and hence
in L0(U), but their negations are not in L0(U).
By the definitions (2.2) and (2.3) of Z2, Z3, Z4, Z5 and L0(U) neither both ∃xQ(⌈P (ẋ)⌉) and
¬(∃xQ(⌈P (ẋ)⌉)), nor both ∀xQ(⌈P (ẋ)⌉) and ¬(∀xQ(⌈P (ẋ)⌉)), are in L0(U) for any Q ∈ {T,¬T} and
P ∈ P ∪ {T,¬T}.
The above proof shows that for no sentence A of L both A and ¬A belong to L0(U).

Make the induction hypothesis: There exists an n ∈ N0 such that

(h0) For no sentence A of L both A and ¬A belong to Ln(U).

If ¬(¬A) is in Ln+1(U), it is in L0
n(U), so that A is in Ln(U). Thus, by (h0), ¬A is not in Ln(U) so

that ¬(¬(¬A)), is not in L0
n(U), and hence not in Ln+1(U).

If A∨B is in Ln+1(U), then it is in L1
n(U), whence A or B is in Ln(U). ¬(A∨B) is in Ln+1(U) iff it is

in L5
n(U), in which case ¬A and ¬B are in Ln(U). Thus A∨B and ¬(A∨B) are not both in Ln+1(U),

for otherwise both A and ¬A or both B and ¬B are in Ln(U), contradicting with (h0).

A ∧ B and ¬(A ∧ B) cannot both be in Ln+1(U), for otherwise A ∧ B is in L2
n(U), i.e., both A and B

are in Ln(U), and ¬(A∧B) is in L6
n(U), i.e., at least one of ¬A and ¬B is in Ln(U). Thus both A and

¬A or both B and ¬B are in Ln(U), contradicting with (h0).

If A → B is in Ln+1(U), then it is in L3
n(U), so that ¬A or B is in Ln(U). ¬(A → B) is in Ln+1(U) iff

it is in L7
n(U), whence both A and ¬B are in Ln(U). Because of these results and (h0) the sentences

A → B and ¬(A → B) are not both in Ln+1(U).

A ↔ B is Ln+1(U) iff it is in L4
n(U), in which case both A and B or both ¬A and ¬B are in Ln(U). If

¬(A ↔ B) is in Ln+1(U), then it is in L8
n(U), whence both A and ¬B or both ¬A and B are in Ln(U).

Thus both A ↔ B and ¬(A ↔ B) cannot be in Ln+1(U), for otherwise both A and ¬A or both B and
¬B are in Ln(U), contradicting with (h0).

The above results and the induction hypothesis (h0) imply that for no sentence A of L both A and ¬A
belong to Ln+1(U) = Ln(U) ∪

⋃8
k=0 L

k
n(U).

Since (h0) is proved when n = 0, it is by induction valid for every n ∈ N0.
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If A and ¬A are in L(U), then A is by (2.6) in Ln1
(U) for some n1 ∈ N0, and ¬A is in Ln2

(U) for some
n2 ∈ N0. Then both A and ¬A are in Ln(U) when n = max{n1, n2}. This is impossible, because (h0)
is proved for every n ∈ N0. Thus A and ¬A cannot both be in L(U) for any sentence A of L.

The above result and (3.1) imply that there is no sentence A in L such that both #A and #[¬A] are
in G(U). Thus G(U) is consistent.

Lemma 3.2. Assume that U and V are consistent subsets of D, and that V ⊆ U . Then L(V ) ⊆ L(U)
and G(V ) ⊆ G(U).

Proof. As consistent sets V and U are proper subsets of D. We shall first show that L0(V ) ⊆ L0(U).

If V = ∅, then L0(V ) = Z ⊆ L0(U) by (2.3).

Assume next that V is nonempty. Thus also U is nonempty.

Let A be a sentence of L. Definition (2.3) of L0(U) implies that A is in L0(U) and also in L0(V ) iff A

is in Z.
Let n be a numeral. If T (n) is in L0(V ), it is in Z1(V ), so that n = ⌈A⌉, where #A is in V . Because
V ⊆ U , then #A is also in U , whence T (n) is in Z1(U), and hence in L0(U).
¬T (n) is in L0(V ) if it is in Z2(V ), in which case n = ⌈A⌉, where #[¬A] is in V . Since V ⊆ U , then
#[¬A] is also in U , whence ¬T (n) is in Z2(U), and hence in L0(U).
Because U and V are nonempty and proper subsets of D, then Z1, Z2, Z3, Z4 and Z5 are in L0(U) and
in L0(V ) by (2.3).
The above results imply that L0(V ) ⊆ L0(U). Make the induction hypothesis:

(h1) Ln(V ) ⊆ Ln(U)

for some n ∈ N0. It follows from (2.4) and (h1) that Lk
n(V ) ⊆ Lk

n(U) for each k = 0, . . . , 8. Thus

Ln+1(V ) = Ln(V ) ∪
8
⋃

k=0

Lk
n(V ) ⊆ Ln(U) ∪

8
⋃

k=0

Lk
n(U) = Ln+1(U).

(h1) is proved when n = 0, whence it is by induction valid for every n ∈ N0.
If A is in L(V ), it is by (2.6) in Ln(V ) for some n ∈ N0. Thus A is in Ln(U) by (h1), and hence in
L(U). Consequently, L(V ) ⊆ L(U).
If #A is in G(V ) then A is in L(V ) by (3.1). Thus A is in L(U), so that #A is in G(U) by (3.1). This
shows that G(V ) ⊆ G(U).

Denote by C the family of consistent subsets of D. In the formulation and the proof of Theorem 3.1
transfinite sequences indexed by ordinals are used. A transfinite sequence (Uλ)λ<α of C is said to be
increasing if Uµ ⊆ Uν whenever µ < ν < α, and strictly increasing if Uµ ⊂ Uν whenever µ < ν < α.

Lemma 3.3. Assume that (Uλ)λ<α is a strictly increasing sequence of C. Then
(a) (G(Uλ))λ<α is an increasing sequence of C.
(b) The union

⋃

λ<α

G(Uλ) is consistent.

Proof. Since Uµ ⊂ Uν when µ < ν < α, it follows from Lemma 3.2 that G(Uµ) ⊆ G(Uν) when
µ < ν < α, whence the sequence (G(Uλ))λ<α is increasing. Consistency of the sets G(Uλ), λ < α,
follows from Lemma 3.1 because the sets Uλ, λ < α, are consistent. This proves (a).
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To prove that the union
⋃

λ<α

G(Uλ) is consistent, assume on the contrary that there exists such a sentence

A in L that both #A and #[¬A] are in
⋃

λ<α

G(Uλ). Thus there exist µ, ν < α such that #A is in G(Uµ)

and #[¬A] is in G(Uν). Because G(Uµ) ⊆ G(Uν) or G(Uν) ⊆ G(Uµ), then both #A and #[¬A] are in
G(Uµ) or in G(Uν). But this is impossible, since both G(Uµ) and G(Uν) are consistent. Thus, the set
⋃

λ<α

G(Uλ) is consistent.

Now we are ready to prove the following Theorem.

Theorem 3.1. Let W denote the set of Gödel numbers of true sentences of L. We say that a transfinite
sequence (Uλ)λ<α of C is a G-sequence if it has the following properties.

(G) (Uλ)λ<α is strictly increasing, U0 = W , and if 0 < µ < α, then Uµ =
⋃

λ<µ

G(Uλ).

Then the longest G-sequence exists, and it has the last member. This member is the smallest consistent
subset U of D satisfying U = G(U).

Proof. W is consistent, since L has properties (i)-(iii). We shall first show that G-sequences are nested:
(1) Assume that (Uλ)λ<α and (Vλ)λ<β are G-sequences. Then Uλ = Vλ when λ < min{α, β}.
U0 = W = V0 by (G). Make the induction hypothesis:
(h) There exists an ordinal ν which satisfies 0 < ν < min{α, β} such that Uλ = Vλ for each λ < ν.

It follows from (h) and (G) that Uν =
⋃

λ<ν

G(Uλ) =
⋃

λ<ν

G(Vλ) = Vν . Since U0 = V0, then (h) holds when

ν = 1. These results imply (1) by transfinite induction.
Let (Uλ)λ<α be a G-sequence. Defining f(0) = minU0, f(λ) = min(Uλ \ Uλ−1), 0 < λ < α, and
f(α) = min(D \

⋃

λ<α

Uλ), we obtain a bijection f from [0, α] to a subset of N0. Thus α is a countable

ordinal. Consequently, the set Γ of those ordinals α for which (Uλ)λ<α is a G-sequence is bounded from
above by the smallest uncountable ordinal. Denote by γ the least upper bound of Γ.
To show that γ is a successor, assume on the contrary that γ is a limit ordinal. Given any µ < γ, then
ν = µ + 1 and α = ν + 1 are < γ. (Uλ)λ<α is a G-sequence, whence Uµ =

⋃

λ<µ

G(Uλ), and Uµ ⊂ Uµ+1.

Thus (Uλ)λ<γ has properties (G) when α = γ, so that (Uλ)λ<γ is a G-sequence. Denote Uγ =
⋃

λ<γ

G(Uλ).

Uγ is consistent by Lemma 3.3(b). Because Uµ ⊂ Uν =
⋃

λ<ν

G(Uλ) ⊆ Uγ for each µ < γ, then (Uλ)λ<γ+1

is a G-sequence. This is impossible, since (Uλ)λ<γ contains all G-sequences.
Thus γ is a successor, say γ = α + 1. If λ < α, then Uλ ⊂ Uα, so that G(Uλ) ⊆ G(Uα). Then
Uα =

⋃

λ<α

G(Uλ) ⊆
⋃

λ<γ

G(Uλ) = G(Uα), whence Uα ⊆ G(Uα). Moreover, Uα = G(Uα),

for otherwise Uα ⊂ G(Uα) =
⋃

λ<γ

G(Uλ) = Uγ , and (Uλ)λ<γ+1 would be a G-sequence.

Consequently, (Uλ)λ<γ is the longest G-sequence, Uα is its last member, and Uα = G(Uα).
Let U be a consistent subset of D satisfying U = G(U). Then U0 = W = G(∅) ⊆ G(U) = U . Make the
induction hypothesis:
(h2) There exists an ordinal µ which satisfies 0 < µ < γ such that Uλ ⊆ U for each λ < µ.

Then G(Uλ) ⊆ G(U) for each λ < µ, whence Uµ =
⋃

λ<µ

G(Uλ) ⊆ G(U) = U . Thus, by transfinite

induction, Uµ ⊆ U for each µ < γ. In particular, Uα ⊆ U . This proves the last assertion of Theorem.
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4 Language LT and its properties

Let L0, L, L and D be as in Section 2, and let the sets L(U) and G(U), U ⊂ D, be defined by (2.6)
and (3.1). Define

F (U) = {A : ¬A ∈ L(U)}. (4.1)

Recall that a subset U of D is consistent if there is no sentence A in L such that both #A and #[¬A]
are in U . By Theorem 3.1 the smallest consistent subset of D which satisfies U = G(U) exists.

Definition 4.1. Let U be the smallest consistent subset of D which satisfies U = G(U). Denote by
LT the language formed by the object language L0, and those sentences of L(U) and F (U) and those
symbols, formulas and predicates of L0 which are not in L0. T and ¬T are predicates determined by
the formulas T (x) and ¬T (x) when their domain and the set of terms are defined by

DT = {the sentences of LT} and NT = {n : n = ⌈A⌉ , where A is in DT}. (4.2)

A valuation is defined for sentences of LT as follows.

(I) A sentence of LT is valuated as true iff it is in L(U), and as false iff it is in F (U).

Lemma 4.1. The language LT defined by Definition 4.1 and valuated by (I) is bivalent.

Proof. The subsets L(U) and F (U) of the sentences of LT are disjoint. For otherwise there is a sentence
A of LT which is in L(U) ∩ F (U). Then A is in L(U), and by the definition (4.1) of F (U) also ¬A is
in L(U). But this is impossible by Lemma 3.1. Consequently, L(U) ∩ F (U) = ∅.

If A is a sentence of LT , then it is in L(U) or in F (U). If A is true, it is in L(U), but not in F (U), and
hence not false, because L(U) ∩ F (U) = ∅. Similarly, if A is false, it is in F (U), but not in L(U), and
hence not true. Consequently, A is either true or false, so that LT is bivalent.

Lemma 4.2. Let LT be defined by Definition 4.1 and valuated by (I). Then a sentence of the basic
extension L of L0 is true (respectively false) in the valuation (I) iff it is true (respectively false) in the
valuation of L.

Proof. Let A denote a sentence of L. A is true in the valuation (I) iff A is in L(U) iff (by the construction
of L(U)) A is in Z iff A is true in the valuation of L. A is false in the valuation (I) iff A is in F (U) iff
(by (4.1)) ¬A is in L(U) iff (¬A is a sentence of L) ¬A is in Z iff ¬A is true in the valuation of L iff
(L has properties (i)–(iii)) A is false in the valuation of L.

Lemma 4.3. The language LT defined by Definition 4.1 and valuated by (I) satisfies the rules (ii) of
classical logic given in Introduction.

Proof. Unless otherwise stated, ’true’ means true in the valuation (I), and ’false’ means false in the
valuation (I). We shall first derive the following auxiliary rule.

(t0) Double negation: If A is a sentence of LT , then ¬(¬A) is true iff A is true.

To prove (t0), assume first that ¬(¬A) is true. Then it is in L(U), and hence, by (2.6), in Ln(U) for
some n ∈ N0. If ¬(¬A) is in L0(U) then it by (2.3) in Z. Thus ¬(¬A) is true in the valuation of L.
Then (negation rule is valid in L) ¬A is false in the valuation of L, which implies that A is true in the
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valuation of L. Thus A is by (2.3) in Z ⊂ L0(U) ⊂ L(U), whence A is true.
Assume next that n ∈ N0 is the smallest number for which ¬(¬A) is in Ln+1(U). It then follows from
(2.5) that ¬(¬A) is in L0

n(U), so that A is by (2.4) in Ln(U), and hence in L(U), i.e., A is true.
Thus A is true if ¬(¬A) is true.
Conversely, assume that A is true. Then A is in L(U), so that A is in Ln(U) for some n ∈ N0. Thus
¬(¬A) is in L0

n(U), and hence in Ln+1(U). Consequently, ¬(¬A) is in L(U), whence ¬(¬A) is true.
This concludes the proof of (t0).
Rule (t0) is applied to prove

(t1) Negation: A is true iff ¬A is false, and A is false iff ¬A is true.

Let A be a sentence of LT . Then A is true iff (by (t0)) ¬(¬A) is true iff ¬(¬A) is in L(U) iff (by (4.1))
¬A is in F (U) iff ¬A is false.
A is false iff A is in F (U) iff (by (4.1)) ¬A is in L(U) iff ¬A is true. Thus (t1) is satisfied.
Next we shall prove the following rule.

(t2) Conjunction: A ∧B is true iff A and B are true. A ∧ B is false iff A or B is false.

Let A and B be sentences of LT . If A and B are true, i.e., A and B are in L(U), there is by (2.6) an
n ∈ N0 such that A and B are in Ln(U). Thus A∧B is in L2

n(U), and hence in L(U), so that A∧B is
true.
Conversely, assume that A ∧ B is true, or equivalently, A ∧ B is in L(U). Then there is by (2.6) an
n ∈ N0 such that A∧B is in Ln(U). If A∧B is in L0(U), it is in Z. Thus A∧B is true in the valuation
of L. Because L has property (ii), then A and B are true in the valuation of L, and hence also in the
valuation (I) by Lemma 4.2.
Assume next that n ∈ N0 is the smallest number for which A ∧ B is in Ln+1(U). Then A ∧ B is in
L2
n(U), so that A and B are in Ln(U), and hence in L(U), i.e., A and B are true.

The above reasoning proves that A ∧ B is true iff A and B are true. This result and the bivalence of
LT , proved in Lemma 4.1, imply that A∧B is false iff A or B is false. Consequently, rule (t2) is valid.
The proofs of the following rules are similar to the above proof of (t2).

(t3) Disjunction: A ∨B is true iff A or B is true. A ∨ B false iff A and B are false.

(t4) Conditional: A → B is true iff A is false or B is true. A → B is false iff A is true and B is false.

(t5) Biconditional: A ↔ B is true iff A and B are both true or both false. A ↔ B is false iff A is
true and B is false or A is false and B is true.

Next we shall show that if P ∈ P ∪ {T,¬T} then ∃xP (x) and ∀xP (x) have the following properties
required in (ii).

(p6) ∃xP (x) is true iff P (b) is true for some b ∈ NP . ∃xP (x) is false iff P (b) is false for every b ∈ NP .

(p7) ∀xP (x) is true iff P (b) is true for every b ∈ NP . ∀xP (x) is false iff P (b) is false for some b ∈ NP .

If P ∈ P, then P is a predicate of L0, so that P is in L. Since L has property (ii), then P has properties
(p6) and (p7) in the valuation of L, and hence also in the valuation (I) by Lemma 4.2.
To simplify proofs in the cases when P is T or ¬T we shall derive results which imply that T is a truth
predicate and ¬T is a non-truth predicate for LT .
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Let A denote a sentence of LT . The valuation (I), rule (t1), the definitions of Z1(U), Z2(U) and G(U),
and the assumption U = G(U) imply that A is true iff A is in L(U) iff #A is in G(U) = U iff T (⌈A⌉)
is in Z1(U) ⊂ L(U) iff T (⌈A⌉) is true iff ¬T (⌈A⌉) is false.
A is false iff A is in F (U) iff ¬A is in L(U) iff #[¬A] is in G(U) = U iff ¬T (⌈A⌉) is in Z2(U) ⊂ L(U)
iff ¬T (⌈A⌉) is true iff T (⌈A⌉) is false.
The above results imply that the following results are valid for every sentence A ∈ LT .

(T) A is true iff T (⌈A⌉) is true iff ¬T (⌈A⌉) is false. A is false iff T (⌈A⌉) is false iff ¬T (⌈A⌉) is true.

Consider the validity of (p6) and (p7) when P is T . Because U is nonempty, then ∃xT (x) is in L0(U)
by (2.2) and (2.3), and hence in L(U) by (2.6). Thus ∃xT (x) is by (I) a true sentence of LT .
T (⌈A⌉) is true iff (by (T)) A is true iff (by (I)) A is in L(U). Thus T (n) is true for some n ∈ NT .
The above results imply that ∃xT (x) is true iff T (n) is true for some n ∈ NT . In view of this result and
the bivalence of LT , one can infer that ∃xT (x) is false iff T (n) is false for every n ∈ NT . This concludes
the proof of (p6) when P is T .
¬∀xT (x) is in Z1 ⊂ L0(U), and hence in L(U), so that it is true. Thus ∀xT (x) is false by (t1).
T (⌈A⌉) is false iff (by (T)) A is false iff (by (I)) A is in F (U). Thus T (n) is false for some n ∈ NT .
Consequently, ∀xT (x) is false iff T (n) is false for some n ∈ NT . This result and the bivalence of LT

imply that ∀xT (x) is true iff T (n) is true for every n ∈ NT . This proves (p7) when P is T .
To show that (p6) is valid when P is ¬T , notice first that ∃x¬T (x) is in Z1 ⊂ L0(U), and hence in
L(U), whence it is true.
¬T (⌈A⌉) is true iff (by (t1)) T (⌈A⌉) is false iff (by (T)) A is false iff (by (I)) A is in F (U). Thus ¬T (n)
is true for some n ∈ NT . Consequently, ∃x¬T (x) is true iff ¬T (n) is true for some n ∈ NT . This result
and the bivalence of LT imply that ∃x¬T (x) is false iff ¬T (n) is false for every n ∈ NT . This concludes
the proof of (p6) when P is ¬T .
Next we shall prove (p7) when P is ¬T . ¬∀x¬T (x) is in Z1 ⊂ L0(U), and hence in L(U), so that it is
true. Thus ∀x¬T (x) is false by (t1).
¬T (⌈A⌉) is false iff (by (t1)) T (⌈A⌉) is true iff (by (T)) A is true iff (by (I)) A is in L(U). Thus ¬T (n)
is false for some n ∈ NT . From these results it follows that ∀x¬T (x) is false iff ¬T (n) is false for some
n ∈ NT . This result and bivalence of LT imply that ∀x¬T (x) is true iff ¬T (n) is true for all n ∈ NT .
Thus (p7) is valid when P is ¬T .
It remains to show that the following rules are valid when Q ∈ {T,¬T} and P ∈ P ∪ {T,¬T}.

(qp6) ∃xQ(⌈P (ẋ)⌉) is true iff Q(⌈P (b)⌉) is true for some b ∈ NP .

∃xQ(⌈P (ẋ)⌉) is false iff Q(⌈P (b)⌉) is false for every b ∈ NP ;

(qp7) ∀xQ(⌈P (ẋ)⌉) is true iff Q(⌈P (b)⌉) is true for every b ∈ NP .

∀xQ(⌈P (ẋ)⌉) is false iff Q(⌈P (b)⌉) is false for some b ∈ NP .

Consider first the case when Q is T and P ∈ P1. Then P (b) is a true sentence of L, and hence, by
Lemma 4.2, a true sentence of LT for every b ∈ NP . This implies by (T) that T (⌈P (b)⌉) is a true
sentence of LT for every b ∈ NP , and hence also for some b ∈ NP .
Since U is nonempty and proper subset of D, then ∃xT (⌈P (ẋ)⌉) and ∀xT (⌈P (ẋ)⌉) are in L0(U) by (2.2)
and (2.3), and hence in L(U). Thus ∃xT (⌈P (ẋ)⌉) and ∀xT (⌈P (ẋ)⌉) are by (I) and Lemma 4.1 true
sentences of LT .
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The above results imply the first sentences, and by bivalence of LT also the second sentences of properties
(qp6) and (qp7) when Q is T and P is in P1. The proof in the case when Q is T and P is in P2 is
similar.
Assume next that Q is T and P is in P3. Then P (b) is a true sentence of L for some b ∈ NP , say b ∈ N1

P ,
and a false sentence of L for b ∈ N2

P = NP \N1
P . Hence, by Lemma 4.2, P (b) is a true sentence of LT for

b ∈ N1
P , and a false sentence of LT for b ∈ N2

P . This implies by (T) that T (⌈P (b)⌉)) is a true sentence
of LT for b ∈ N1

P , and a false sentence of LT for b ∈ N2
P . Since U is nonempty, then ∃xT (⌈P (ẋ)⌉) and

¬(∀xT (⌈P (ẋ)⌉)) are in Z4 by (2.2), and hence in L(U) by (2.3) and (2.6). Thus ∃xT (⌈P (ẋ)⌉) is true,
and and ∀xT (⌈P (ẋ)⌉) is false.
The above results imply the first sentence of (qp6) and the second sentence of (qp7) when Q is T and
P is in P3. The second sentence of (qp6) and the first sentence of (qp7) are also valid because LT is
bivalent. The proofs in the cases when Q is ¬T and P ∈ P are similar to those given above.
The sentences ∃xQ(⌈P (ẋ)⌉), where Q and P are in {T,¬T} are in Z4 or in Z5, whence they are in L(U)
and hence true. In every case there exists a b ∈ NT so that Q(⌈P (b)⌉) is true (b = n = ⌈A⌉, where A,
depending on the case, is in L(U) or in F (U)). These results imply truth part of (qp6) when Q and P

are in {T,¬T}. Falsity part in (qp6) is then valid by bivalence of LT .
The proof of (qp7) in the case when Q and P are in {T,¬T} is similar.

5 Consistent theories of truth

We say that a theory of truth is formulated for a language if truth values are assigned to its sentences,
and if it contains a predicate T which satisfies

T -rule: T (⌈A⌉) ↔ A is true for every sentence of the language.

A predicate T which satisfies T -rule is called a truth predicate. A theory of truth is said to be consistent
if A∧¬A is false for every sentence A. It is called definitional if truth values are defined for sentences,
and semantical if truth or falsity of sentences are determined by their meanings.

A definitional theory of truth is formulated as follows.

Theorem 5.1. Let L0 be a language which conforms to classical logic. The language LT , defined in
Definition 4.1 and valuated by (I), has properties (i)–(iii) given in Introduction. T is a truth predicate,
and ¬T is a non-truth predicate of LT . The so formulated definitional theory of truth (shortly DTT)
for LT is consistent.

Proof. It follows from Definition 4.1 that LT has properties (i). Properties (ii) are valid by Lemma 4.3,
and Lemma 4.2 proves the validity of (iii).

The results (T) derived in the proof of Lemma 4.3 and biconditional rule (t5) imply that the sentence
T (⌈A⌉) ↔ A is true and the sentence ¬T (⌈A⌉) ↔ A is false for every sentence A of LT . T and ¬T are
predicates of LT , and their domain DT , the set all sentences of LT , satisfies the condition presented in
[3, p. 7] for the domains of truth predicates. The above results imply that T is a truth predicate and
¬T is a non-truth predicate for LT .

Properties (ii) and (iii) imply that A ∧ ¬A is false for every sentence A of LT . Thus the so obtained
definitional theory of truth (shortly DTT) for LT is consistent.
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Next we shall formulate a semantical theory of truth for LT , by assuming that a meaning is assigned
to every sentence of the object language L0. Standard meanings are assigned to logical symbols. The
sentence T (⌈A⌉) means: ’the sentence denoted by A is true’. Thus meanings can be assigned to sentences
of the basic extension L of L0 constructed in Section 2, and to sentences of LT defined in Definition
4.1.

We shall first prove preliminary Lemmas.

Lemma 5.1. Assume that L0 is a language whose every sentence is valuated by its meaning either as
true or as false, i.e., what a sentence means is either true or false. Then the basic extension L of L0

has properties (i)–(iii) when its sentences are valuated by their meanings, and L0 conforms to classical
logic.

Proof. The object language L0 is bivalent, since every sentence of it is valuated by its meaning either
as true or as false. This bivalence remains valid for the basic extension L of L0 when its sentences are
valuated by their meanings. Moreover, L has syntactical properties (i), and rules (ii) are valid because
of standard meanings assigned to logical symbols. Thus the object language L0 has an extension L

whose sentences are valuated by their meanings, which is without a truth predicate, and which has
properties (i)–(iii). This implies that L0 conforms to classical logic.

Lemma 5.2. Let L0 be as in Lemma 5.1, and assume that sentences of both the basic extension L of L0

and the language LT given by Definition 4.1 are valuated by their meanings. Let W be the set of Gödel
numbers of true sentences of L, and let U be the smallest subset of D for which U = G(U). Given a
consistent subset V of D which satisfies W ⊆ V ⊆ U , assume that every sentence of LT whose Gödel
number is in V is true and not false by its meaning. Then every sentence of L(V ) is true and not false
by its meaning.

Proof. Because V ⊆ U = G(U), then every sentence whose Gödel number is in V , is in LT . We shall
first prove that every sentence of L0(V ) is true and not false by its meaning.
Since W ⊆ V , then every true sentence of L, i.e., every sentence of Z is true and not false by its
meaning.

A sentence of LT is in Z1(V ) iff it is of the form T (⌈A⌉), where A denotes a sentence of L whose Gödel
number is in V . A is by an assumption true and not false by its meaning. T (⌈A⌉) means that ’the
sentence denoted by A is true’, whence it is true iff A is true and false iff A is false. Thus the sentence
T (⌈A⌉), and hence the given sentence, is true and not false by its meaning. By the standard meaning
of negation the sentence ¬T (⌈A⌉) is then false and not true by its meaning. Replacing A by T (⌈A⌉), it
follows from the above results that T (⌈T (⌈A⌉)⌉) is true and not false by its meaning, and T (⌈¬T (⌈A⌉)⌉)
is false and not true by its meaning, whence ¬T (⌈¬T (⌈A⌉)⌉) is true and not false by its meaning.

A sentence of LT is in Z2(V ) iff it is of the form ¬T (⌈A⌉), where A denotes a sentence of L, and the
Gödel number of the sentence ¬A is in V . ¬A is by a hypothesis true and not false by its meaning,
so that A is false and not true by its meaning since V is consistent. Thus the sentence T (⌈A⌉) is false
and not true by its meaning. Replacing A by T (⌈A⌉), we then obtain that T (⌈T (⌈A⌉)⌉) is false and
not true by its meaning. Consequently, by the standard meaning of negation, the sentences ¬T (⌈A⌉),
¬T (⌈T (⌈A⌉)⌉) and T (⌈¬T (⌈A⌉)⌉) are true and not false by their meanings.

The set NT of numerals, defined by (4.2), is formed by numerals ⌈A⌉, where A goes through all the
sentences of LT . Thus, by results proved above T (n), T (⌈T (n)⌉), ¬T (⌈¬T (n)⌉), ¬T (n), ¬T (⌈T (n)⌉)
and T (⌈¬T (n)⌉) are for some n ∈ NT true and not false by their meanings and for some n ∈ NT false

11



and not true by their meanings. These results and the standard meanings of quantifiers and negation
imply that ∃xT (x), ∃xT (⌈T (ẋ)⌉), ∃x¬T (⌈¬T (ẋ)⌉), ∃x¬T (x), ∃x¬T (⌈T (ẋ)⌉) and ∃xT (⌈¬T (ẋ)⌉) are
true and not false by their meanings, and their negations are false and not true by their meanings,
whereas ∀xT (x), ∀xT (⌈T (ẋ)⌉), ∀x¬T (⌈¬T (ẋ)⌉), ∀x¬T (x), ∀x¬T (⌈T (ẋ)⌉) and ∀xT (⌈¬T (ẋ)⌉) are false
and not true by their meanings, and their negations are true and not false by their meanings.

In particular, the sentences of Z1, and those sentences of Z4 and Z5, where P is T or ¬T , are true and
not false by their meanings.

The proof that those sentences of Z4 and Z5 where P is in P3 are true and not false by their meanings is
similar to that given above for the corresponding sentences where P is T . The proof that the sentences
of Z2 and Z3 are true and not false by their meanings is even simpler and is left to the reader.
The above results and (2.3) imply that every sentence of L0(V ) is true and not false by its meaning.
Thus the following property holds when n = 0.

(h3) Every sentence of Ln(V ) is true and not false by its meaning.

Make the induction hypothesis: (h3) holds for some n ∈ N0.

Given a sentence of L0
n(V ), it is of the form ¬(¬A), where A is in Ln(V ). A is by (h3) true and not

false by its meaning. Thus, by standard meaning of negation, its double application implies that the
sentence ¬(¬A), and hence the given sentence, is true and not false by its meaning.

A sentence is in L1
n(V ) iff it is of the form A ∨ B, where A or B is in Ln(V ). By (h3) at least one

of the sentences A and B is true and not false by its meaning. Thus, by the the standard meaning of
disjunction, the sentence A ∨ B, and hence given sentence, is true and not false by its meaning.

Similarly it can be shown that if (h3) holds, then every sentence of Lk
n(V ), where 2 ≤ k ≤ 8, is true

and not false by its meaning.
The above results imply that under the induction hypothesis (h3) every sentence of Lk

n(V ), where
0 ≤ k ≤ 8, is true and not false by its meaning.
It then follows from the definition (2.5) of Ln+1(V ) that if (h3) is valid for some n ∈ N0, then every
sentence of Ln+1(V ) is true and not false by its meaning.

The first part of this proof shows that (h3) is valid when n = 0. Thus, by induction, it is valid for all
n ∈ N0. This result and (2.6) imply that every sentence of L(V ) is true and not false by its meaning.

Lemma 5.3. Let L0 be a language whose every sentence is valuated by its meaning either as true or
as false, and has not a truth predicate. Then the language LT given in Definition 4.1 and valuated by
meanings of its sentences has the following properties.
(a) If a sentence of LT is true in the valuation (I), it is true and not false by its meaning.
(b) If a sentence of LT is false in the valuation (I), it is false and not true by its meaning.

Proof. By Theorem 3.1 the smallest consistent subset U of D which satisfies U = G(U) is the last
member of the transfinite sequence (Uλ)λ<γ constructed in the proof of that Theorem. We prove by
transfinite induction that the following result holds for all λ < γ.

(H) Every sentence of LT whose Gödel number is in Uλ is true and not false by its meaning.

Make the induction hypothesis: There exists a µ which satisfies 0 < µ < γ such that (H) holds for all
λ < µ.
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Let λ < µ be given. Because Uλ is consistent and W ⊆ Uλ ⊆ U for every λ < µ, it follows from the
induction hypothesis and Lemma 5.2 that every sentence of L(Uλ) is true and not false by its meaning.
This implies by (3.1) that (H) holds when Uλ is replaced G(Uλ), for every λ < µ. Thus (H) holds when
Uλ is replaced by the union of those sets. But this union is Uµ by Theorem 3.1 (G), whence (H) holds
when λ = µ.
When µ = 1, then λ < µ iff λ = 0. U0 = W , i.e., the set of Gödel numbers of true sentences of L. Since
L, valuated by meanings of its sentences, is bivalent by Lemma 5.1, the sentences of U0 are true and
not false by their meanings. This proves that the induction hypothesis is satisfied when µ = 1.

The above proof implies by transfinite induction properties assumed in (H) for Uλ whenever λ < γ. In
particular the last member of (Uλ)λ<γ satisfies (H), which is by Theorem 3.1 the smallest consistent
subset U of D for which U = G(U). Thus every sentence of LT , which is true in the valuation (I), has
its Gödel number in U , and is by the above proof true and not false by its meaning. This proves (a).

To prove (b), let A denote a sentence which is false in the valuation (I). Negation rule implies that
¬A is true in the valuation (I). Thus, by (a), ¬A is true and not false by its meaning, so that by the
standard meaning of negation, A is false and not true by its meaning. This proves (b).

The next result is a consequence of Lemma 5.1, Lemma 5.3 and Theorem 5.1.

Theorem 5.2. Assume that L0 is a language whose every sentence is valuated by its meaning either
as true or as false, and which has not a truth predicate. A semantical theory of truth (shortly STT)
is formulated for the extension LT of L0 defined in Definition 4.1, when valuation (I) is replaced in
Theorem 5.1 with the valuation of the sentences of LT by their meanings. This valuation is equivalent
to valuation (I), and the results of Theorem 5.1 are valid for STT.

Proof. Let A denote a sentence of LT . A is by Lemma 4.1 either true or false in the valuation (I). If A
is true in the valuation (I), it is by Lemma 5.3 (a) true and not false by its meaning. If A is false in the
valuation (I), it is by Lemma 5.3 (b) false and not true by its meaning. Consequently, A is either true
or false by its meaning. Thus every sentence of LT is either true or false by its meaning. In particular,
T (⌈A⌉) ↔ A is true by its meaning and the sentence ¬T (⌈A⌉) ↔ A is false by its meaning for every
sentence A of LT . These results imply that T is a truth predicate and ¬T is a non-truth predicate for
LT . Valuation of LT by meanings of its sentences is by the above proof equivalent to the valuation (I).
This equivalence implies the last conclusion of Theorem.

6 An extension of language LT

Let L0 be a language which conforms to classical logic. Assume that P is a predicate of L0 with arity
m > 1, i.e., P has m free variables. The domain of P is denoted by DP = D1

P × · · · ×Dm
P , and the set

of terms b = (b1, . . . , bm) which name objects of DP by NP = N1
P × · · · ×Nm

P . Denote for each m > 1

Pm = {P : P is a predicate of L0 with arity m}. (6.1)

Assume that the following rule of of classical logic is satisfied whenever P ∈ Pm for some m > 1.
(iv) For everym-tuple (q1, . . . , qm) of quantifiers, where each qi is either ∀ or ∃, the sentence q1x1 . . . qmxmP (x1, . . . , xm)
is true iff the sentence P (b1, . . . , bm) is true for all choices of bi ∈ N i

P when qi is ∀, and for some
choices of bi ∈ N i

P when qi is ∃. q1x1 . . . qmxmP (x1, . . . , xm) is false iff its negation is true, i.e.,
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p1x1 . . . pmxm¬P (x1, . . . , xm) is true, where pi is ∃ if q1 is ∀ and vice versa. (p1, . . . , pm) is said to
be the complement tuple of (q1, . . . , qm).
Let P be a predicate of Pm. Denote by T (⌈P (ẋ1, . . . , ẋm)⌉) the predicate of sentences
T (⌈P (b1, . . . , bm)⌉), (b1, . . . , bm) ∈ NP . Similarly, the predicate of sentences ¬T (⌈P (b1, . . . , bm)⌉),
(b1, . . . , bm) ∈ Np, is denoted by ¬T (⌈P (ẋ1, . . . , ẋm)⌉). Their domain is the domain DP of P . Those
predicates are not in the language LT defined in Definition 4.1. In this section we extend the language
LT so that these predicates are in it, and that they satisfy rule (iv) whenever P is in Pm for some
m > 1.
The extension of LT is constructed as follows.
For every predicate P of L0 which has arity m for some m > 1 add to the language L0 constructed in
Section 2 predicates T (⌈P (ẋ1, . . . , ẋm)⌉) and ¬T (⌈P (ẋ1, . . . , ẋm)⌉) and sentences
q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉) and q1x1 . . . qmxm¬T (⌈P (ẋ1, . . . , ẋm)⌉)
for every m-tuple (q1, . . . , qm), where qi’s are either ∀ or ∃ .
Construct then a language L as in Section 2, choose a Gödel numbering to its sentences, and denote by
D the set of those Gödel numbers.
Denote for every m > 1

Zm
1 = {q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉) : P ∈ Pm and q1x1 . . . qmxmP (x1, . . . , xm) is true}; (6.2)

Zm
2 = {q1x1 . . . qmxm¬T (⌈P (ẋ1, . . . , ẋm)⌉) : P ∈ Pm and q1x1 . . . qmxm¬P (x1, . . . , xm) is true}. (6.3)

When U is a nonempty and proper subset of D, add to the set L0(U) defined by (2.3) all the sentences
which are in Zm

1 or in Zm
2 for m = 2, 3, . . . .

The equivalences
q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉) is in L0(U) iff (by (6.2)) q1x1 . . . qmxmP (x1, . . . , xm) is true iff (by (iv))
its negation p1x1 . . . pmxm¬P (x1, . . . , xm) is false iff (by (6.3)) p1x1 . . . pmxm¬T (⌈P (ẋ1, . . . , ẋm)⌉) is not
in L0(U) iff (by (iv)) the negation of q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉) is not in L0(U),
and
q1x1 . . . qmxm¬T (⌈P (ẋ1, . . . , ẋm)⌉) is in L0(U) iff (by (6.3) q1x1 . . . qmxm¬P (x1, . . . , xm) is true iff (by
(iv)) its negation p1x1 . . . pmxmP (x1, . . . , xm) is false iff (by (6.2) p1x1 . . . pmxmT (⌈P (ẋ1, . . . , ẋm)⌉) is
not in L0(U) (by (iv)) the negation of q1x1 . . . qmxm¬T (⌈P (ẋ1, . . . , ẋm)⌉) is not in L0(U)
imply that for every sentence added to L0(U) its negation is not in L0(U). Thus, for every sentence A

of L not both A and ¬A are in the extended L0(U), because the original L0(U) has this property by the
first part of the proof of Lemma 3.1. As in the proof of that lemma, it can be shown by induction that
A and ¬A cannot both be in L(U) for any sentence A of L if U is consistent. The result of Theorem 3.1
is valid, i.e., there exists the smallest consistent subset U of D which satisfies U = G(U), where G(U)
is the set of Gödel numbers of sentences of L(U). Let F (U) be defined by (4.1), let LT be defined by
Definition 4.1, and let the sentences of LT be valuated by (I) or by their meanings if the sentences of
L0 are so valuated.
LT has properties (i), because it has these properties before its extension. Since L0 is bivalent, then as
in the proof of Lemma 4.1 it can be shown that LT is bivalent, i.e., (iii) is valid. The proof of Lemma
4.3 implies that LT has properties (ii) in the extended case. Consequently, the extended language LT

has properties (i)–(iii).

Lemma 6.1. Let L0 be a language which conforms to classical logic. Then for every predicate P of L0

with arity m > 1 the predicates T (⌈P (ẋ1, . . . , ẋm)⌉) and ¬T (⌈P (ẋ1, . . . , ẋm)⌉) satisfy rule (iv) in the
valuation of LT .

14



Proof. To prove (iv) for predicates T (⌈P (ẋ1, . . . , ẋm)⌉), let P be a predicate of L0 with arity m > 1. It
follows from the result (T) derived in the proof of Lemma 4.3 that
(a) P (b1, . . . bm) is true in L0, and hence also in LT iff T (⌈P (b1, . . . , bm)⌉) is true in LT , and P (b1, . . . bm)
is false in LT iff T (⌈P (b1, . . . , bm)⌉) is false in LT .
If (q1, . . . , qm) is any m-tuple of quantifiers ∀ and ∃, then the sentence q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉)
is true iff it is in L0(U) iff it is in Zm

1 iff (by (6.2)) the sentence q1x1 . . . qmxmP (x1, . . . , xm) is true iff
(by (iv)) the sentence P (b1, . . . , bm) is true in L0, and hence also in LT for all choices of bi ∈ N i

P when
qi is ∀, and for some choices of bi ∈ N i

P when qi is ∃ iff (by (a)) the sentence T (⌈P (b1, . . . , bm)⌉) is true
for all choices of bi ∈ N i

P when qi is ∀, and for some choices of bi ∈ N i
P when qi is ∃.

The above equivalences imply the following result.
(b) The sentence q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉) true iff the sentence T (⌈P (b1, . . . , bm)⌉) is true for all
choices of bi ∈ N i

P when qi is ∀, and for some choices of bi ∈ N i
P when qi is ∃.

By the above proof (b) is valid for all 2m different m-tuples of quantifiers ∀ and ∃. Thus the predicate
T (⌈P (ẋ1, . . . , ẋm)⌉), where P is a predicate of L0 with arity m > 1, satisfies the truth part of rule (iv).

The result (T) derived in the proof of Lemma 4.3 ensures that
(c) ¬P (b1, . . . bm) is true in L0, and hence also in LT iff ¬T (⌈P (b1, . . . , bm)⌉) is true in LT , and
¬P (b1, . . . bm) is false in LT iff ¬T (⌈P (b1, . . . , bm)⌉) is false in LT .
In the proof that T (⌈P (ẋ1, . . . , ẋm)⌉) satisfies falsity part of (iv) we use the following equivalences.
The sentence q1x1 . . . qmxmT (⌈P (ẋ1, . . . , ẋm)⌉) is false iff (LT is bivalent) its negation is true iff (proved
above) it is not in L0(U) iff (by (6.2)) q1x1 . . . qmxmP (x1, . . . , xm) is not true iff (by bivalence of L0)
q1x1 . . . qmxmP (x1, . . . , xm) is false iff (by (iv)) the sentence pix1 . . . pmxm¬P (x1, . . . , xm) is true iff (by
(iv) ¬P (b1, . . . , bm) is true in L0, and hence also in LT for all choices of bi ∈ N i

P when pi is ∀, and for
some choices of bi ∈ N i

P when pi is ∃ iff (by (c)) ¬T (⌈P (b1, . . . , bm)⌉) is true for all choices of bi ∈ N i
P

when pi is ∀, and for some choices of bi ∈ N i
P when pi is ∃.

The equivalence of the first and the last sentences of the above chain of equivalences proves that
T (⌈P (ẋ1, . . . , ẋm)⌉) satisfies falsity part of (iv).
The proof that ¬T (⌈P (ẋ1, . . . , ẋm)⌉) satisfies rule (iv) is similar to the above one.

The above results imply that Theorem 5.1 can be extended as follows.

Theorem 6.1. Let L0 be a language which conforms to classical logic, and has predicates which have
several free variables. The language LT constructed above and valuated by (I) has properties (i)–(iii)
given in Introduction. To every predicate P of L0 with arity m > 1 the predicates T (⌈P (ẋ1, . . . , ẋm)⌉)
and ¬T (⌈P (ẋ1, . . . , ẋm)⌉) satisfy rule (iv). T is a truth predicate, and ¬T is a non-truth predicate for
LT . The so formulated definitional theory of truth (shortly DTT) for LT is consistent.

Theorem 5.2 can be extended similarly if L0 is a language whose every sentence is valuated by its
meaning either as true or as false. Thus a semantical theory of truth (shortly STT) can be formulated
for the extended LT if L0 has predicates with arity > 1.

7 On compositionality of truth in theories DTT and STT

One of the norms presented in [7] for theories of truth is that truth should be compositional. In this
section we shall present some logical equivalences which theories DTT and STT of truth prove.
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Lemma 7.1. Theories DTT and STT formulated in Theorems 5.1 and 5.2 prove the following logical
equivalences when A and B are sentences of LT , and P is a predicate of L0 or P is T .

(a0) T (⌈T (⌈A⌉)⌉) ↔ T (⌈A⌉) ↔ A.

(a1) ¬T (⌈A⌉) ↔ T (⌈¬A⌉) ↔ ¬A.

(a2) T (⌈A⌉) ∨ T (⌈B⌉) ↔ T (⌈A ∨B⌉) ↔ A ∨ B.

(a3) T (⌈A⌉) ∧ T (⌈B⌉) ↔ T (⌈A ∧B⌉) ↔ A ∧ B.

(a4) (T (⌈A⌉) → T (⌈B⌉)) ↔ T (⌈A → B⌉) ↔ (A → B).

(a5) (T (⌈A⌉) ↔ T (⌈B⌉)) ↔ T (⌈A ↔ B⌉) ↔ (A ↔ B).

(a6) ¬T (⌈A ∨ B⌉) ↔ ¬(A ∨B) ↔ ¬A ∧ ¬B ↔ T (⌈¬A⌉) ∧ T (⌈¬B⌉) ↔ ¬T (⌈A⌉) ∧ ¬T (⌈B⌉).

(a7) ¬T (⌈A ∧ B⌉) ↔ ¬(A ∧B) ↔ ¬A ∨ ¬B ↔ T (⌈¬A⌉) ∨ T (⌈¬B⌉) ↔ ¬T (⌈A⌉) ∨ ¬T (⌈B⌉).

(a8) ∀xT (⌈P (ẋ)⌉) ↔ T (⌈∀xP (x)⌉) ↔ ∀xP (x) ↔ ¬∃x¬P (x) ↔ T (⌈¬∃x¬P (x)⌉) ↔ ¬∃x¬T (⌈P (ẋ)⌉).

(a9) ∃xT (⌈P (ẋ)⌉) ↔ T (⌈∃xP (x)⌉) ↔ ∃xP (x) ↔ ¬∀x¬P (x) ↔ T (⌈¬∀x¬P (x)⌉) ↔ ¬∀x¬T (⌈P (ẋ)⌉).

(a10) ¬T (⌈∀xP (x)⌉) ↔ T (⌈¬∀x(P (x)⌉) ↔ ¬∀xP (x) ↔ ∃x¬P (x) ↔ T (⌈∃x¬P (x)⌉).

(a11) ¬T (⌈∃xP (x)⌉) ↔ T (⌈¬∃xP (x)⌉) ↔ ¬∃xP (x) ↔ ∀x¬P (x) ↔ T (⌈∀x¬P (x)⌉).

Proof. T-rule implies equivalences of (a0).
The first equivalences in (a1)–(a5) are easy consequences of rules (t1)–(t5) and T -rule (cf. [5, Lemma
4.1]). Their second equivalences are consequences of T -rule.
The first and third equivalences of (a6) and (a7) follow from T -rule. Their second equivalences are
DeMorgan laws of classical logic (cf. [1]), and their last equivalences are consequences of (a1).
The first equivalences of (a8) and (a9) are easy consequences of rules (tp6) and (tp7) and T -rule (cf.
[5, Lemma 4.2]). T -rule implies their second equivalences. The third equivalences are DeMorgan laws
for quantifiers (cf. [1]). The fourth ones follow from T -rule. DeMorgan laws with P (x) replaced by
T (⌈P (ẋ)⌉) imply equivalence of the last and the first ones. (a10) and (a11) are negations to some
equivalences of (a8) and (a9).

If L0 has predicates of several variables, the extended theories DTT and STT prove the logical equiva-
lences
T (⌈q1x1 . . . qmxmP (x1, . . . , xm)⌉) ↔ q1x1 . . . qmxmP (x1, . . . , xm) ↔ q1x1 . . . qmxmT (⌈P ((ẋ1, . . . , ẋm)⌉)
and
T (⌈q1x1 . . . qmxm¬P (x1, . . . , xm)⌉) ↔ q1x1 . . . qmxm¬P (x1, . . . , xm) ↔ q1x1 . . . qmxm¬T (⌈P (ẋ1, . . . , ẋm)⌉)
for predicates P of Pm for every m > 1 when (q1, . . . qm) is any of the 2m different m-tuples which can
be formed from quantifiers ∀ and ∃. T -rule implies the first equivalences, and the second equivalences
are consequences of (6.2), (6.3) and bivalence of LT .

Let L0 be a bivalent first-order language with or without equality. L0 conforms to classical logic, since
it has properties (i)–(iii) presented in Introduction. Moreover, if P and Q are predicates of L0 with
the same domain D, then ¬P , P ∨ Q, P ∧ Q, P → Q and P ↔ Q are predicates of L0 with domain
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D. Replacing P and/or Q by some of them we obtain new predicates with domain D, and so on.
Thus P in (a8) and (a9) can be replaced by anyone of these predicates Their universal and existential
quantifications are sentences of L. They are also sentences of LT . Anyone of them can be the sentence
A and/or the sentence B in results (a1)–(a7) derived above. Moreover, P can be replaced by anyone of
those predicates in (a8)–(a11). Take a few examples.

∀xT (⌈P (ẋ) → Q(ẋ)⌉) ↔ T (⌈∀x(P (x) → Q(x))⌉) ↔ ∀x(P (x) → Q(x)).
∃xT (⌈P (ẋ) ∧Q(ẋ)⌉) ↔ T (⌈∃x(P (x) ∧Q(x)⌉) ↔ ∃x(P (x) ∧Q(x)).
∀xT (⌈P (ẋ) → ¬Q(ẋ)⌉) ↔ T (⌈∀x(P (x) → ¬Q(x))⌉) ↔ ∀x(P (x) → ¬Q(x)).
∃xT (⌈P (ẋ) ∧ ¬Q(ẋ)⌉) ↔ T (⌈∃x(P (x) ∧ ¬Q(x)⌉) ↔ ∃x(P (x) ∧ ¬Q(x)).

These equivalences correspond to the four Aristotelian forms: ’All P ’s are Q’s’, ’some P ’s are Q’s’, ’no
P ’s are Q’s’ and ’some P ’s are not Q’s’ (cf. [1]).

If P is a predicate of L0 with arity m for any m > 1, then T (⌈P ((ẋ1, . . . , ẋm)⌉) ↔ P (x1, . . . , xm) is a
predicate of LT having the domain of P as its domain. An application of T -rule proves the universal
T -schema:
(UT) ∀x1 . . .∀xm

(

T (⌈P ((ẋ1, . . . , ẋm)⌉) ↔ P (x1, . . . , xm)
)

.

Example 7.1. Assume that L0 is the language of arithmetic with its standard interpretation. Let R(x, y)
be formula 2x = y, and let R be the corresponding predicate with domain DR = N0 × N0. Then the
truth theories DTT and STT formulated for the extension LT of L0 prove the logical equivalences
(q1) q1xq2yT (⌈R(ẋ, ẏ)⌉) ↔ T (⌈q1xq2yR(x, y)⌉) ↔ q1xq2yR(x, y)
and
(q2) q1xq2y¬T (⌈R(ẋ, ẏ)⌉) ↔ ¬T (⌈q1xq2yR(x, y)⌉) ↔ q1xq2y¬R(x, y),
and the universal T -schema
(q3) ∀x∀y

(

T (⌈R((ẋ, ẏ)⌉) ↔ R(x, y)
)

.

The sentences in (q1) are true iff q1q2 is ∀∃ or ∃∃, and false iff q1q2 is ∀∀ or ∃∀. In (q2) the sentences
are true iff q1q2 is ∀∀ or ∃∀, and false iff q1q2 is ∀∃ or ∃∃.

8 Remarks

Results of Theorems 5.1 and 5.2 imply that theories DTT and STT of truth together contain the theory
DSTT of truth formulated in [5, Theorem 4.1]. In particular, they conform by [5, Theorem 4.2] to the
norms presented in [7] for theories of truth.
The languages LT for which theories DTT and STT of truth are formulated extend languages L0 for
which theory DSTT is formulated in [5]. The amount of predicates and compositional sentences are
multiplied by means of the added predicate ¬T . While ¬T is used in first-order languages to construct
a Liar sentence (cf. [3, p. 185]), it is here a non-truth predicate. Moreover, in Section 7 it is shown
how to extend the language LT so that it both T and ¬T compose with every predicate of the object
language L0 which has several free variables.
The family of those languages which conform to classical logic is considerably larger than the families
of those object languages considered in [5]. For instance, the object language L0 can be any language
whose every sentence is valuated by its meaning either as true or as false. Every language L0 which
has properties (i) – (iii), e.g., every bivalent first-order language with or without equality, conforms to
classical logic. In such a case L0 coincides with its basic extension L.
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Object languages may have only a finite number of sentences. For example, let L0 be a language formed
by a sentence and its negation. If one of the sentences of L0 is valuated as true and the other one as
false, then L0 conforms to classical logic. But if both sentences are valuated as true, or both sentences
are valuated as false, then this valuation contradicts with the negation rule. Thus L0 does not conform
to classical logic although it is bivalent.
The set U in the above formulated theory is the smallest consistent set for which U = G(U), where
G(U) is the set of Gödel numbers of sentences of L(U). Thus U is the minimal fixed point of G : C → C,
where C is the set of consistent sets of Gödel numbers of sentences of L. Because every true sentence
of LT is in L(U) and other sentences are false, and LT is bivalent, the sentences of LT are grounded in
the sense defined by Kripke in [6, p. 18]. The language Lσ determined by the minimal fixed point in
Kripke’s construction contains also sentences which don’t have truth values. For instance, the sentence
A ↔ T (⌈A⌉) has not a truth value for every sentence A of Lσ. Thus a three-valued logic is needed in
[6], as well as in [3]. The only logic used in this paper is classical.
In the metalanguage used in the above presentation some concepts dealing with predicates and their
domains are revised from those used in [5] so that they agree better with the corresponding concepts
in informal languages of first-order logic (cf. [1]). The circular reasoning used in [5] to show that G(U)
is consistent if U is consistent is corrected in the proof of Lemma 3.1.
Mathematics, especially ZF set theory, plays a crucial role in this paper. Metaphysical necessity of pure
mathematical truths is considered in [8].
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