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Much climate change research aims to inform decision making in one way or another. A
common vision of how science and ethics work together in this decision making has science
spelling out the (probable) consequences of different policy options, while ethical judgments
determine which option’s consequences are most desirable. For example, climate projections
and impact studies may suggest the likely consequences of different mitigation pathways, but
ethical judgments are required to evaluate how good or bad those consequences are and how
preferrable one possible future is over another.

While correct as far as it goes, this standard picture can encourage an overly sharp distinction
between scientific activities and ethical deliberation. Far from entering only at the policy-making
stage, ethical judgments often shape scientific research itself. This is most obvious in the choice
of research questions. The choice of what to study ultimately affects what knowledge can be
brought to bear in real-world decisions, including consequences for which (and whose)
decisions can be made with the benefit of scientific insight. Such considerations are routinely
referenced when motivating funding proposals and research articles. Of course, more purely
scientific motivations such as fundamental discovery and filling gaps in knowledge are also
critical in choosing research questions. In this way, a researcher’s choice of what to investigate
illustrates a central concept of this chapter: coupled ethical-epistemic choices [1].

A little terminology is needed to unpack this jargon. We use the word values as a general term
for the reasons or perspectives from which one evaluates something as good or bad. Applying
this notion of values very broadly, any goal judged worthy of pursuit will be done so on the basis
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of values. Sometimes these will be ethical values such as concern for justice, human welfare, or
environmental protection. (The overlapping concept of social values includes things valued by
communities or individuals—like greenspaces or social services—even if these may not be
recognizably ethical in nature. Here we use “ethical values” broadly to also include these social
values.) In contrast, scientific findings can be valued for how they advance understanding, and
scientific methods or models can be valued for their accuracy, reliability, or generality. These
aspects of research are valued because they are thought to promote (or constitute) a central
aim of science: gaining knowledge. Such values are often called epistemic values.

Many decisions made in the course of scientific research are coupled ethical-epistemic choices
in the sense that their consequences can be judged both from the perspective of epistemic
values (i.e., what are the contributions to scientific knowledge) as well from the perspective of
ethical values (i.e., what are the upshots for policy, society, and the environment). Coupled
ethical-epistemic choices can be found at any spot along the continuum of research-design
choices from the broad end of choosing and refining research questions to narrower decisions
regarding approaches to answering those questions, specific methods, and interpretation of
results.

Scientific training tends to focus on epistemic values—especially when it comes to the narrower,
finer-grained research choices. In this chapter, we draw attention to the ethical values that are
often linked to the same choices. Our aim is to encourage more deliberate and more reflective
engagement with the ethical components of these choices. The topic of this volume is
uncertainty in climate change research, and decisions about how to address sources of
uncertainty in research provide a particularly rich arena for interaction between epistemic and
ethical values. We present a series of examples of such interaction followed by a short list of
recommendations on how to approach coupled ethical-epistemic choices in research.

ATTRIBUTION METHODS AND PUBLIC COMMUNICATION

Our first example concerns extreme event attribution [2]. Increasingly, climate scientists are
investigating the extent to which particular extreme weather events, such as floods, droughts
and heat waves, can be linked to anthropogenic climate change. Depending on the choice of
method, different pictures can emerge regarding what can and cannot be attributed to climate
change, with implications for public communication and litigation for damages.

The standard “risk-based” approach has been adapted from epidemiology [3–5]. Researchers
attempt to quantify the change in likelihood of a weather event like the one observed, given
rising greenhouse gas concentrations. This is done via climate modeling studies that compare
the frequency of such event types across simulations driven by different greenhouse gas
concentrations. In one set of simulations, historical (i.e., increasing) greenhouse gas
concentrations are used; in the other, concentrations are held (counterfactually) at pre-industrial
levels.
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For a variety of reasons, studies following the risk-based approach can be inconclusive. These
reasons include the difficulties and uncertainties in simulating the atmospheric circulation driving
some types of extreme events [6], use of null-hypothesis significance testing to interpret
simulation results, and use of “no change in likelihood” as a null hypothesis [6,7]. Failure to
reject such a null hypothesis means that the possibility of no change in likelihood cannot be
excluded at the chosen significance level, given available evidence. But careful and cautious
statements such as this are sometimes misinterpreted in public discourse as saying something
stronger and more conclusive, namely that there is no connection between anthropogenic
climate change and the weather event in question.

Uncertainties about circulation notwithstanding, broad thermodynamic changes in the climate
system such as rising sea surface temperature and increased moisture content are well
understood as anthropogenic. Moreover, it is very plausible that these thermodynamic changes
can make weather events, when they do occur, more intense than they would otherwise be.
Critics thus worry that the (often inconclusive) risk-based approach to attribution will miss some
valuable opportunities to communicate to the public, via salient events such as extreme floods,
that climate change is already having negative impacts [8,9]. This line of thought has led to a
second approach to attribution, sometimes referred to as the “storyline” approach. (Though note
that the storyline concept is also used more broadly for communication, uncertainty
characterization, and risk management beyond the context of attribution science [10,11].)

In general terms, the storyline approach to event attribution offers descriptive narratives of
specific past events, with emphasis on understanding the driving factors that were involved in
those events and that may shape future events as well [10]. Such an approach would typically
ask: how did “known” thermodynamic changes in climate make a difference to the intensity of
this particular weather event? To address this question, the first step is to simulate the extreme
event as it occurred. The second step is to re-simulate the event removing the human-caused
thermodynamic changes, e.g., making the nearby sea surface temperature cooler by a specified
amount in the simulations. These studies very often do find a link between anthropogenic
climate change and an extreme event of interest—specifically, an increase in intensity. For
example, the conclusion might be that rising greenhouse gas concentrations, via their effects on
sea surface temperature, increased a flood-causing storm’s precipitation by at least 30% [see
e.g., 12,13].

The risk-based and storyline approaches ask different questions [7]. One asks whether
increasing greenhouse gas concentrations have, all things considered, changed the probability
of a given event type. The other brackets anthropogenic circulation changes and asks whether
the thermodynamic consequences of increasing concentrations affected the intensity of a
specific event, holding fixed the actual circulation that led up to the event. When applied to the
same case, the two methods can give different answers (e.g., “no” and “yes” respectively) with
no logical contradiction.
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Given limited time and resources, which approach should attribution researchers prioritize? The
considerations that have been aired in discussions contrasting the two approaches include not
only aspects subject to epistemic values (different kinds of insights; different degrees of
uncertainty in results) but also consequences judged by ethical values. The latter include
purported differences in: messaging to the public regarding “links” from climate change to
extreme weather; potential for misinterpretation of results; relevance of results for climate risk
management; long-term effects on public trust in science; and potential for reputational damage
to individual scientists [7,14].

Each approach to attribution thus comes with a bundle of features and consequences, some of
which are important for epistemic reasons and some of which are important for ethical reasons.
The ethical and epistemic merits of an approach can be judged separately, yet they are bound
together in the same scientific choice. In this way, attribution methods illustrate the concept of
coupled ethical-epistemic choices in research.

PARAMETER CHOICES AND THE CONSEQUENCES OF ERROR

A second example concerns the way in which method choices can affect the balance of
inductive risk: the risk of erring in one’s scientific conclusions [15]. The errors at issue could be
Type I (“false positives”) versus Type II (“false negatives”) or could concern overestimating
versus underestimating a quantity of interest. A classic example is the choice of significance
level used in null-hypothesis significance testing. This significance level (often fixed
conventionally at .05) affects the balance between the relative risks of Type I and Type II errors.
More broadly, choices between alternative datasets, modeling assumptions, or statistical
algorithms can have analogous consequences for the risk of different types of error in the
findings of a study [see e.g., 16,17].

As an example, consider the assignment of numerical values to uncertain parameters in a
climate or impacts model (i.e., model calibration). When model output is compared to
observations across a suite of performance metrics, some parameter assignments result in
better model performance on some important metrics, while other assignments result in better
performance on others [18]. A number of different model versions might fit the observations
reasonably well and yet differ substantially in their projections. With different projections come
different inductive risk profiles: for a given quantity of interest (e.g., precipitation extremes, heat
stress, or crop loss), higher projections come with greater risk of overestimating that quantity
while lower projections risk underestimation to a greater degree.

One approach to managing inductive risk is to make one’s method choices while giving some
consideration to the potential consequences of erring in one way versus another. Would
overestimating future precipitation extremes or crop losses be worse than underestimating
them? If so, this could be factored in as the researcher chooses among the scientifically
reasonable approaches to addressing the research question. Indeed, it has been argued that
doing so helps the researcher fulfill her obligations as a moral agent, which include taking due
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care to avoid errors with particularly bad consequences [15,19]. Of course, the question of
which consequences are particularly bad is informed by ethical values, not epistemic ones. In
this way, consideration of the risks of error can generate coupled ethical-epistemic choices.
(Approaches to transparently incorporating ethical values in the model-calibration example
include risk-based calibration [e.g., 20] and careful definition of loss functions [21] when
comparing model performance with observations.)

When facing research design choices, instead of choosing a single approach, sometimes
several options can be tried, producing a range of results. Ensemble modeling studies, for
instance, involve multiple simulations that incorporate different options for modeling equations,
parameter assignments, or initial conditions. But ensemble studies can still involve uncertain
method choices, such as specifying the boundaries of the “plausible” ranges for the parameters
(or model structures) to be sampled. For these choices too, there may be a range of
scientifically reasonable options with different associated risks of error. Indeed, it seems likely
that almost every modeling study in the climate-change context will involve uncertain method
choices with potentially different risks of error.

This does not mean, however, that ethical values ought to influence method choices in every
modeling study, even if one is persuaded by the reasoning above. The inductive risk
implications of some choices will be unforeseeable in practice [22,23]. And there might be
overriding reasons for making choices on other grounds. For example, researchers might stick
with “default” parameter assignments for the sake of more meaningful model intercomparisons,
tractability, or to avoid upsetting an existing “balance of approximations” among model
components. The case for ethical values influencing method choices seems most compelling
when modeling is done in support of particular decision-making tasks, and where some method
options have clear inductive risk implications that align better with the aims and values of
stakeholders or clients. Such situations may arise, for instance, in the context of climate
services [24,25]. In any case, whenever such precautionary thinking does lead to ethical values
shaping method choices, this should be communicated clearly and transparently [24,26].

Ultimately, even if one remains unpersuaded that ethical judgments about potential errors ought
to influence method choices, there is a crucial insight here that should not be overlooked:
method choices that are not directly influenced by ethical values can nevertheless affect the
balance of inductive risk in ways that serve the needs and interests of some stakeholders better
than others. That is, even method choices that are not value-influenced can in an important
sense fail to be value-neutral.

MODEL COMPLEXITY AND HIGH-IMPACT EVENTS

High-impact, low-probability events provide another example of interaction between ethical
values and the treatment of uncertainties in research. By definition, high-impact events are
those that are particularly dangerous or concerning—a judgment based on ethical values.
Because they are of such concern, learning about the likelihood of high-impact events can be
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particularly important for understanding climate change impacts and assessing risk
management strategies. (In the terms of specific decision-support frameworks, the probability of
extreme, high-impact outcomes can, for example, have an outsize impact on expected damage
calculations [27] and can shape the range of possibilities across which satisficing strategies are
sought in robustness-based frameworks [28].)

The highest-impact events also tend to be low-probability occurrences, which can complicate
uncertainty assessment [29]. For example, where uncertainty in projections is characterized
through an ensemble of simulations, use of computationally expensive models can limit
ensemble size and impede estimation of the small probabilities associated with high-impact
outcomes [30–32]. A state-of-the-art Earth System Model may be the richest and most complete
encapsulation of  knowledge relevant to, e.g., sea-level rise by century's end. Yet the large
number of model runs needed for ensemble-based uncertainty quantification of extreme
sea-level rise may be feasible only using faster, more idealized models [33–35]. In this way,
some of the scientific or epistemic merits of models can, in practice, trade off against the
relevance of the questions that can be addressed using those models, where relevance is a
question of ethical values.

DISAGGREGATION AND DISTRIBUTIVE JUSTICE

So far, we have discussed examples that specifically concern the treatment of uncertainties.
Here we relax this focus somewhat in order to provide an indication of the broader character of
coupled ethical-epistemic research choices in climate change research (which need not always
link directly to the treatment of uncertainties).

There is a particularly rich and explicit role for ethical values when it comes to designing and
assessing climate risk management strategies. To be relevant for decision makers and
stakeholders, such analyses should characterize potential futures in terms that allow those
actors to apply their own values to the decision problem [36]. What are these values? Climate
change impacts people in many ways, and people care about those impacts from many different
perspectives [37,38]. To give just one example, an interview-based study with community
members in the city of New Orleans found that stakeholder views on coastal flood risk
encompassed values such as concern for personal safety, property damage, broader economic
impacts, sense of place, perception of safety, non-human welfare, distributive justice,
intergenerational justice, and having a say in risk management decisions [39]. Each of these
concerns provides a perspective from which projected outcomes and impacts can be evaluated
(except for the last one, which is about process rather than outcomes).

Consider one specific concern mentioned above: distributive justice. In the context of local flood
risk management, distributive justice addresses the fairness of how flood risk, or related costs
and benefits, are distributed across communities and populations. Analysis of adaptation
strategies (such as levees, evacuation planning, or funding programs for home elevation) that
estimates costs and benefits only in the aggregate—e.g., for a whole city or region—will be blind
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to differences in the way that alternative strategies distribute risk across smaller units such as
neighborhoods or households. For stakeholders who care about distributive justice, a
distribution-blind analysis will fail to provide relevant decision support because those
stakeholders will be unable to apply their values to the evaluation of the adaptation strategies
[40,41]. (For related illustrations, see Khosrowi [42]; Parker and Winsberg [43].)

Estimating the effectiveness of adaptation measures with attention to distributive justice may
require a more complex or disaggregated modeling framework that resolves neighborhoods or
even households [40]. For example, Vezer et al. [41] contrasts two specific models used for
coastal flood risk analysis in the state of Louisiana, including the city of New Orleans. Both
models take flood hazards and adaptation measures as inputs and project the success of those
measures as outputs. But one model [44] includes detailed and disaggregated spatial
information while the other [45] works with a simplified and highly aggregate representation of
the study system. The models also differ in their usability, adaptability, and transparency [41]. At
the same time, model choice is, as always, subject to a range of epistemic considerations
concerning the accuracy and trustworthiness of a model’s representations and projections.  Like
previous examples, here a single choice in the design of a study can have consequences both
for the epistemic or purely scientific side of a study (including but not limited to the treatment of
uncertainties) and also for the treatment of ethical values in the analysis.

CONCLUSION

We have presented a series of examples illustrating how choices made during the conduct of
research can carry implicit value judgments or create side effects and consequences with
ethical import. These consequences include what (and whose) questions receive scientific
attention, how mitigation and adaptation strategies are evaluated, which impacts are prioritized,
how science is communicated, and what kinds of errors are avoided. We have focussed on
examples in which the research choices in question also shape how uncertainties are
addressed: alternative attribution methods can subtly recast the research question and shift the
burden of proof; model complexity can enable or constrain the characterization of ethically
important uncertainties, and model calibration plays a key role in determining which
uncertainties and which types of futures are characterized and how.

Many research choices are like these examples. On the one hand, they have consequences
that might be judged from the perspective of ethical values, and on the other hand, they have
consequences—regarding, e.g., the depth of insight or reliability of findings—that can be judged
by scientific standards that express epistemic values. In other words, many research choices
(perhaps even most) are coupled ethical–epistemic choices (see [46] and [47] for further
illustrations). Scientific training naturally focuses on the epistemic side. Here we have
highlighted the ethical side and the coupling of the two sides.

Once this coupling is recognized, many further questions arise, such as: whose or which values
should be considered? How should we balance epistemic and ethical considerations when they
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are in tension? What are the best approaches for representing the tradeoffs between value
considerations? How should the connections between epistemic and ethical considerations be
discussed in scientific publications? For views on some of these questions, readers can consult
[24,26,48,49]. Here, we close with some brief recommendations on first steps toward engaging
with coupled ethical-epistemic choices (see [50] for related, complementary recommendations).

● Develop an eye for the ethical side of research choices. Make a habit of thinking
through how your findings might be used and by whom. Ask questions like: Whose
information needs does my research design serve? What value system does my
policy-evaluation framework assume? Whose vulnerabilities does my approach to
hazard mapping prioritize? Who might be disadvantaged by my research findings? What
kinds of errors have I been most/least careful to avoid?

● Discuss ethical values explicitly in research outputs. Answers to questions like
those listed under suggestion (1) can help readers to contextualize your findings and
assess whether they are useful for a given purpose. Be transparent about your explicit
and implicit working assumptions. Briefly explain how your research design balances
relevant ethical and epistemic values. Note any tradeoffs between value considerations.
Declare any motivating ethical priorities and, especially if the rationale for these priorities
is not obvious, defend them.

● Engage with end users and/or boundary organizations. While there are many
reasons to engage with decision makers, stakeholders, and boundary organizations, one
important reason is to facilitate the alignment of research with stakeholder values and
priorities [24,36].
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