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Abstract
I show that the mathematical description of opponent-colors theory is identical to the mathematical description of two-state quantum systems in a mixed state. Based on the dual-aspect theory of phenomenal consciousness, which suggests that one or more physical entities in our universe have phenomenal aspects that are dual to their physical aspects and therefore predicts an exact correspondence between a system’s phenomenal states and the objective states of its underlying physical substrate, I hypothesize that color sensations are phenomenal dual aspects of two-state quantum systems in a mixed state. Since nothing in this hypothesis suggests that what brings about the phenomenal experience that is dual to two-state quantum systems is the two-dimensionality of these systems, it is natural to generalize this hypothesis and suggest that other types of phenomenal experience (e.g., taste, odor, sound) are phenomenal dual aspects of quantum systems of higher dimensionalities. Finally, I propose that the two-state quantum systems that give rise to color in the brain are two-state ion-channels.
0. Preface (or: Taking consciousness seriously)
Like many others, my views on phenomenal consciousness changed dramatically after reading David Chalmers’s attack on physicalism in ‘The Conscious Mind’ (1996). Chalmers said nothing new, of course. Many thinkers before him, from Leibniz (with his mill) through Huxley (with his djinn) to Nagel (with his bat) and Jackson (with his Mary), had concluded that physicalism is impossible. But Chalmers’s argumentation was so forceful and lucid (and came exactly at a time when people were beginning to realize that neuroscience could not possibly solve what, thanks to Chalmers, has become known as the ‘hard problem of consciousness’) that it has led to a tectonic shift in the philosophy of mind: after being shunned from discussion for many decades, non-physicalist world views on the mind—including ones that had been considered totally crazy, like panpsychism—have become respectable again and are now thriving in the new atmosphere.

At the very beginning of this book, Chalmers urges us to ‘take consciousness seriously’. My understanding of this ‘call for arms’ is that we should accept—really accept, not merely as lip service—that there is some process in the brain that gives rise to this wonder of wonders, phenomenal consciousness. Since we can be almost certain that science now understands all the physiological, biophysical, chemical, and physical processes that take place in the brain (i.e., it is highly unlikely that some mysterious process that can explain phenomenal consciousness is going to be discovered in the future), the answer to ‘the biggest mystery’ (Chalmers, 1996, p. xi) must be within our reach. This is a tantalizing thought: one of those ‘mundane’, almost boring, processes in the brain—processes whose mechanistic details are dryly laid out in our textbooks for undergraduates to memorize—must be responsible for the most bizarre aspect of our universe (excluding, perhaps, the fact that it exists), namely, the existence of phenomenal consciousness. The answer must lie there, in one of those processes, seemingly right at our fingertips. Yet, when we look at those brain processes, all we see are—as predicted so long ago by Democritus—mechanistic movements of molecules and atoms. Thus, the famous words of Thomas Huxley—'How it is that anything so remarkable as a state of consciousness comes about as a result of irritating nervous tissue, is just as unaccountable as the appearance of the djinn when Aladdin rubbed his lamp in the story’—are as true today as they were in the 19th century. Although this has led some thinkers to despair of ever solving the ‘hard problem’ (McGinn, 1989), I suggest that there is a glimmer of hope. This glimmer comes from the stipulation of the dual-aspect theory of phenomenal consciousness that there exists an exact correspondence between phenomenal states and their underlying physical processes (Chalmers, 1996, chapters 6 and 8; Cortês et al., 2021; Lockwood, 1989, chapter 11). Here, for example, is G. E. Müller’s 1896 formulation of dual-aspect theory (translated in Boring, 1942, p. 89):
1. The ground of every state of consciousness is a material process, a psychophysical process so-called, to whose occurrence the presence of the conscious state is joined.
2. To an equality, similarity or difference in the constitution of sensations... there corresponds an equality, similarity or difference in the constitution of the psychophysical process, and conversely. Moreover, to a greater or lesser similarity of sensations, there also corresponds respectively a greater or lesser similarity of the psychophysical processes, and conversely. 
3. If the changes through which a sensation passes have the same direction, or if the differences which exist between series of given sensations are of like direction, then the changes through which the psychophysical process passes, or the differences of the given psychophysical processes, have like direction. Moreover, if a sensation is variable in n directions, then the psychophysical process lying at the basis of it must also be variable in n directions, and conversely.
Almost a hundred years later, Lockwood (1989, p. 172) phrased the same idea in an almost identical manner:
Take some range of phenomenal qualities. Assume that these qualities can be arranged according to some abstract -dimensional space, in a way that is faithful to their perceived similarities and degrees of similarities... Then my… proposal is that there exists, within the brain, some physical system, the states of which can be arranged in some -dimensional state space… And the two states are to be equated with each other: the phenomenal qualities are identical with the states of the corresponding physical system.
Thus, according to the dual-aspect theory, if we find a physical system whose states can be shown to have the same structure as the states of some type of phenomenal experience, this physical system should be considered a good candidate to have a phenomenal dual aspect. This is precisely what I do in this paper for what is arguably the simplest of all types of phenomenal experience—color. Specifically, I show that there exists an exact correspondence between the mathematical structure of opponent-colors theory and the mathematical structure of two-state quantum systems in a mixed state. This leads me to the conclusion stated in the title of this paper: color may be the phenomenal dual aspect of two-state quantum systems in a mixed state. 

I will be happy to receive any kind of response regarding this paper.
1. Introduction
As was first noticed by Leonardo da Vinci, there seem to exist six elementary color sensations: red, green, yellow, blue, white, and black (Valberg, 2001). These six sensations are elementary because they cannot be broken down to other color sensations (compare, for example, with the sensation of orange, which is perceived as some mixture of red and yellow). In his opponent-colors theory, Hering suggested that the six elementary colors are produced by three mechanisms, each containing a pair of opponent elementary color processes: a red–green mechanism, a yellow–blue mechanism, and a white–black mechanism (Hurvich & Jameson, 1957). The output of each mechanism results from the difference between the activities of its two constituent processes (which, of course, is why these processes are called opponent). Consequently, the color sensation that each mechanism produces is due to the process that is more active. 

This is the standard formulation of opponent-colors theory. It faces two problems. First, while the colors produced by each of the hued mechanisms do not mix to yield a phenomenal intermediate (i.e., there are no greenish reds, reddish greens, yellowish blues, or bluish yellows), the colors produced by the white–black mechanism do have a phenomenal intermediate—gray (Boring, 1942, p. 209; Heggelund, 1974a; Ladd Franklin, 1899). This, of course, raises the question of why the white–black mechanism behaves differently from its hued counterparts, a question that opponent-colors theory doesn’t answer. The second problem facing Hering’s opponent-colors theory is that it predicts that when all three opponent-colors mechanisms are in equilibrium (i.e., when their activities are zero), we should perceive nothing at all, but observation shows that in such a case we perceive gray (Boring, 1942, p. 213; Hurvich & Jameson, 1957; Titchener, 1910, pp. 90–91). (See Hendel (2023) for a more detailed discussion of the problems in Hering’s theory.)

In a recent paper, based on earlier work by Paul Heggelund (1974a, 1974b, 1991, 1992, 1993), Hendel (2023) provided a modification of Hering’s opponent-colors theory that doesn’t suffer from the above two problems. Here I show that the mathematical description of Hendel’s formulation of opponent-colors theory is identical to the mathematical description of two-state quantum systems in a mixed state. Although a mathematical identity between two theories in such disparate fields might be waved off as a meaningless coincidence, the dual-aspect theory of phenomenal consciousness, which suggests that one or more physical entities in our universe have phenomenal aspects that are dual to their physical aspects (see, e.g., Chalmers, 1996, chapter 8), predicts exactly such a correspondence between a system’s phenomenal states and the objective states of its underlying physical substrate (Chalmers, 1996, chapters 6 and 8; Cortês et al., 2021; Lockwood, 1989, chapter 11; also see G. E. Müller’s famous psychophysical axioms (Boring, 1942, p. 89)). Therefore, following the principles of dual-aspect theory, I suggest that color sensations are phenomenal dual aspects of two-state quantum systems in a mixed state. 
2. The mathematical description of opponent-colors theory
The basic tenets of Hering’s formulation of opponent-colors theory and the two problems that this formulation of the theory faces were described in the Introduction. Heggelund (1974a, 1974b, 1991, 1992, 1993) modified Hering’s theory in a way that solved these two problems. Specifically, Heggelund suggested that—in contrast to the assumption that Hering (and the vast majority of other color scientists) had been making—the hueless colors do not lie along a one-dimensional continuum stretching between black and white, but rather require two dimensions for their full description: a lightness dimension that has the sensations of light and dark (black) at its poles and a whiteness dimension. Thus, Heggelund’s theory adds the light sensation as a seventh elementary color. This hueless color sensation, which appears only in colors that are perceived as emitting light (these are known as aperture colors), forms an opponent pair with dark. The light–dark opponent pair is analogous to the red–green and yellow–blue opponent pairs in that the sensations light and dark are mutually exclusive. By contrast, on Heggelund’s theory, white has no opponent counterpart. Hence, this theory contends that white and black (dark) are not opponent colors, which explains why they mix to yield a phenomenal intermediate (gray).

However, Hendel (2023) showed that although Heggelund’s theory successfully solves the two problems in Hering’s theory, it is not self-consistent. He then revised this theory and obtained a consistent opponent-colors theory. In Hendel’s version of opponent-colors theory, every color is described by the following four-dimensional vector: 

where , , is the standard basis of , namely, , , and so on (the superscript  denotes transpose);  is the luminance contrast signal (see details below); , , , , , and  (which are all ) are, respectively, the values of the red, green, yellow, blue, light, and dark processes, and therefore , , and  are, respectively, the red–green, yellow–blue, and light–dark components of the color. For any light stimulus, the stimulus’s luminance contrast is the difference between the luminance of the stimulus itself and the luminance of its spatial surroundings (see more details in Hendel, 2023). The luminance contrast signal, , which is the -component of the color vector , is the visual system’s representation of luminance contrast. Hendel (2023) showed that the value of  is related to the values of , , , , , and  in the following manner:[footnoteRef:2] [2:  Hendel showed that this expression is one of two different, yet mathematically equivalent, expressions for . For our purposes here, the expression in Eq. (2) will be more useful. ] 


and to the magnitudes of the three opponent-colors components as follows:

Finally, the level of whiteness in the color, , is determined by the value that completes the inequality in Eq. (3) to an equality, namely,

3. The mathematical description of two-state quantum systems in a mixed state
The purpose of this section is to provide a brief review of the basic mathematical description of two-state quantum systems in a mixed state. This description can be found in many standard textbooks on quantum mechanics (e.g., Blum, 1981, chapter 1). 
3.1 Two-state quantum systems
Two-state quantum systems are quantum systems that exhibit two physically distinguishable states relative to some measurement. Some common examples of two-state quantum systems are the spin state of spin-1/2 particles, the polarization state of photons, and atomic systems that can be approximated as effectively having only two electronic levels (Altepeter et al., 2004). The two physical states of a two-state quantum system will be represented by the two Hilbert-space vectors .[footnoteRef:3] These two vectors are taken to be orthogonal and therefore constitute a basis for the two-dimensional Hilbert space . A two-state quantum system is then fully described by a state vector, denoted , given by the following superposition (i.e., linear combination): [3:  For our purposes here, Hilbert space simply means the vector space , where ] 


where  and  (Blum, 1981, chapter 1). A measurement conducted to determine the state of the system described by Eq. (5) has a probability of  of finding the system in the state  and a probability of  of finding it in the state . 
3.2 The Pauli operators
The Pauli operators, which are commonly denoted , , are a set of three  linear operators that obey a certain algebra (see Blum, 1981, chapter 1, for this algebra). In addition, the  identity operator is often referred to as the zeroth Pauli operator, . The Pauli operators are Hermitian, i.e., ,  (ibid.). This means that these operators are quantum observables operating on states of two-state quantum systems. I will therefore often refer to these operators as the Pauli observables. The set constitutes an orthogonal basis for the vector space of  operators (Aerts & Sassoli de Bianchi, 2017).[footnoteRef:4] Therefore, this basis, to which I will refer as the Pauli basis, also spans the space of all  Hermitian operators, which is the space of all observables of two-state quantum systems.  [4:  The orthogonality of the Pauli operators is defined with respect to the inner product , , where  is the trace operation.] 


It is easy to show that the eigenvalues of the three Pauli operators , , are .[footnoteRef:5] For each Pauli operator , , we will denote the eigenvectors associated with these eigenvalues by , namely, [5:  To show this, we represent the Pauli operators as matrices relative to some basis of  and then compute the eigenvalues using the standard procedure. ] 


Because the Pauli operators are Hermitian, the vectors in each of the pairs , , are orthogonal to each other and therefore constitute a basis of . If we take the two vectors  as the basis of , it is straightforward to show that the vectors  and  can be expanded in this basis in the following manner:
	
	

	
	



We can employ the spectral decomposition theorem to obtain the following expression for each Pauli operator , :

where the vectors  and  are, respectively, the transposed complex conjugates of the vectors  and . Therefore, Eq. (8) shows that each Pauli operator , , is composed of two underlying operators,  and , that operate in an opponent manner to each other. By applying linearity to Eq. (8) it is easy to show that the expectation values of the Pauli observables , , are given by

(Altepeter et al., 2004).

Just as we did above for the three Pauli operators , , we can use the eigenvalue decomposition theorem on the Pauli operator  (which, as will be recalled, is the identity operator). Since any two-dimensional vector is an eigenvector of the identity operator with an eigenvalue of , the result of eigenvalue decomposition in this case is the following:

where  and  are any two orthogonal unit vectors in . This is known as the completeness relation. In our case, we will use the completeness relation with the pair of orthogonal vectors  and , , namely,

By applying linearity to Eq. (10) we obtain that the expectation value of the Pauli observable  is given by

.
3.3 Two-state quantum systems in a mixed state and the density matrix
A mixture of quantum systems is an ensemble of quantum systems, each described by a state vector, in which the quantum states of the systems do not coherently interfere with each other (Blum, 1981, chapter 1). The systems are then said to be in an incoherent state, or, as it is referred to more commonly, in a mixed state. Because the quantum systems that comprise a mixture do not interfere with each other, the mixture cannot be described by a state vector, but rather is described by a Hermitian operator (i.e., a quantum observable), referred to as the density operator (ibid.), which is customarily denoted by . (By contrast, quantum systems that can be described by state vectors, namely, quantum systems whose component do coherently interfere with each other are said to be in a pure state.) Density operators have several unique properties that characterize them, but these will not particularly interest us here (for details, see ibid.). In the case of two-state quantum systems,  will be an operator acting on vectors that belong to . It turns out that density operators that describe two-state quantum systems can be expanded in the Pauli basis of observables, , in the following manner:

where the brackets  denote the expectation value of a quantum observable,  is the number of two-state systems in the mixture, and  (ibid.).[footnoteRef:6] The expectation values of the Pauli observables appearing in Eq. (12) obey the following constraint: [6:  Equation (12) gives the unnormalized version of the density operator. Usually, this operator is given with all values normalized by  (Altepeter et al., 2004; Blum, 1981, chapter 1). ] 


(ibid.).  
3.4 The Hamiltonian of two-state quantum systems
The time evolution of a quantum state is determined by the Hamiltonian operator . In the case of systems that are described by state vectors, the time-evolution equation is called the Schrödinger equation; in the case of systems that are described by density matrices (i.e., systems in a mixed state), the time-evolution equation is called the Liouville equation (Blum, 1981, chapter 2). Here we will only be interested in the Hamiltonian operators of two-state quantum systems. We will denote the eigenvectors of the Hamiltonian operator, which are commonly referred to as the energy eigenstates, by . If the Hamiltonian is constant in time, it is easy to show that the eigenvector/eigenvalue equation for the Hamiltonian can always be written as

where . For concreteness we will assume that . Hence,  is the ground state, while  is the excited state.
4. Color is the phenomenal dual aspect of two-state quantum systems in a mixed state
4.1 Establishing an identity between the mathematical descriptions of colors and two-state quantum systems
Let us postulate the following set of correspondences between the six expectation values , , and the six variables , , , , , and :
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Using this set of correspondences, we immediately see that the following correspondence exists between  in Eq. (11) and  in Eq. (2):

. Given Eq. (15), we also obtain that the following correspondences hold:
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Notice that the equalities on the left-hand side of Eq. (17) are from Eq. (9). Equation (17) matches pairs of opponent processes on the right-hand side with pairs of operators operating in an opponent manner to each other on the left-hand side. Now, from Eqs. (16) and (17) we find that there exists an exact correspondence between  in Eq. (12) and  in Eq. (1):

where, it will be noticed, the correspondence , , is implicitly assumed. Another exact correspondence that follows from Eqs. (16) and (17) is one between Eq. (13) and Eq. (3):


Overall, Eqs. (15)–(19) show that there exists an identity between the mathematical description of the proposed opponent-colors theory and the mathematical description of two-state quantum systems in a mixed state. Notice that there is no need to find a parallel to Eq. (4) of the proposed theory (which is the equation for whiteness) in the quantum description of mixtures of two-state systems because this equation is merely definitional (that is, the level of whiteness in a color is simply assigned the value of the right-hand side of Eq. (4)).
4.2 A privileged basis for Hilbert space 
In recent decades several notable researchers have advocated the hypothesis that the physical world is the result of a gigantic computation (Fredkin, 2003; Lloyd, 2007; ‘t Hooft, 2016; Wolfram, 2002; Zuse, 1982). A similar hypothesis, which elegantly explains the mysterious success that mathematics has in describing the physical world (Wigner, 1960), is that the universe is an abstract mathematical model (Carroll, 2022; Tegmark, 2008; also see Woit, 2015). The two hypotheses—namely, the world as computation and the world as a mathematical model—are, in fact, essentially identical. This is because mathematical models are inherently atemporal; hence, for a mathematical model to constitute an implementation of the physical universe it must be run in time. But this turns it into a computation.

In this paper I will adopt the general metaphysical framework suggested by the above hypotheses, namely, that the physical world is an implementation in time of a mathematical model. Moreover, I will assume that quantum mechanics provides a correct description of the physical world. Taking these two assumptions together, we arrive at the world picture suggested by Lloyd (2007), ‘t Hooft (2016), and Carroll (2022), in which the physical world is a computation that follows the rules of quantum mechanics. 

In quantum theory it is often emphasized that a quantum state, i.e., a Hilbert-space vector, can be represented in any basis of Hilbert space (e.g., position space, momentum space, etc.). However, when one carries out computations with Hilbert-space vectors, one must commit to a definite representation of these vectors, namely, one must choose a particular basis for Hilbert space. Since in the metaphysical world view adopted here, the physical world results from a computation, we must stipulate that there exists a specific basis for Hilbert space in which all quantum states in the universe are represented. ‘t Hooft (2016), for example, refers to this privileged basis as the ‘ontological basis’. Carroll (2022) suggests that the privileged basis for Hilbert space is given by the energy eigenstates, namely, the set of eigenvectors of the Hamiltonian. This choice is based on the fact that the Hamiltonian is the most fundamental operator in quantum theory since it is what moves the quantum world in time. 

Here I will follow Carroll (2022) in assuming that in the computation that gives rise to our universe quantum states are represented relative to the basis of the energy eigenstates. In the case of two-state quantum systems, these energy eigenstates are the vectors  that satisfy Eq. (14). We will denote this privileged basis of two-dimensional Hilbert space by , namely, . Ex hypothesi, the quantum states of all two-state quantum systems in the universe are represented in the privileged basis . For example, the six vectors , , i.e., the eigenvectors of the Pauli operators  (see Eq. (6)), are represented by  (the subscripted brackets  denote a vector coordinatized relative to the basis  (Lipschutz & Lipson, 2009, chapter 6)). Notice that the representation of the basis vectors  themselves relative to the basis  yields the standard basis of , namely,  and .

Since quantum observables (i.e., Hermitian operators) operate on quantum states, consistency requires that if the latter are represented relative to some basis, the former must be represented relative to the same basis as well. Thus, in the quantum computational universe hypothesized here, quantum observables are represented as matrices relative to the privileged basis of Hilbert space, namely, the basis of energy eigenstates. A trivial example is the Hamiltonian, which, as can be seen from Eq. (14), when represented in the basis of its own eigenvectors becomes the following diagonal matrix:

Another important example is the Pauli observables , , which, on our hypothesis, have a privileged representation as the matrices . These are the Pauli matrices. The set of Pauli matrices , , constitutes a basis for the space of  Hermitian matrices. We can decompose the Hamiltonian matrix  in this basis. Based on the algebra of the Pauli matrices it can be shown that this decomposition is given by:

The first matrix on the right-hand side of Eq. (20) is the  identity matrix, i.e., . It is customary to refer to the second matrix on the right-hand side of Eq. (20) as the third Pauli matrix, namely, . It can easily be shown that this necessarily means that 

Given Eq. (21) and given that the coordinatization of the vectors  yields the standard basis of  (see above), we conclude that the matrices , , are the Pauli matrices in their well-known standard representation (e.g., Aerts & Sassoli de Bianchi, 2017), namely,


Finally, recall from Subsection 3.3 that a quantum system in a mixed state is described by a density operator . On our hypothesis, the universe represents any two-state quantum system in a mixed state by a  matrix . From Eq. (12) we see that this matrix can be expanded in the Pauli basis , , in the following manner:

4.3 Color is the phenomenal dual aspect of two-state quantum systems in a mixed state
Subsection 4.1 established an identity between the mathematical description of two-state quantum systems in a mixed state and the mathematical description of opponent-colors theory (see Eqs. (15)–(19)). Such a correspondence between the states of a physical system and phenomenal states is exactly what the dual-aspect theory of phenomenal consciousness predicts. However, we are still falling short of the requirements of dual-aspect theory because the values on the left-hand sides of the correspondences in Eqs. (15)–(19) change with the choice of basis for Hilbert space. To clearly see the problem, consider, for example, Eq. (15). The expectation values , , on the left-hand sides of the correspondences delineated by this equation depend on the specific basis that was chosen for . Hence, different bases for  will lead to different expectation values. But on Eq. (15), these expectation values correspond to the fundamental color sensations, , , , , , and . Thus, as it stands, Eq. (15) makes the prediction that our color experiences should depend on the particular basis chosen for . This, of course, is absurd. To solve this problem with Eqs. (15)–(19), we invoke the hypothesis of Subsection 4.2 that the universe represents quantum states in a privileged basis. On this hypothesis, from nature’s point of view, the mathematical description of two-state quantum systems given in Eqs. (15)–(19) exists in a specific form, which is the representation relative to the privileged basis of , . For concreteness, let us rewrite Eqs. (15)–(19) in this privileged representation. We begin with Eq. (15), which establishes the basic correspondence between the realm of two-state quantum systems and the realm of opponent-colors theory. This equation now becomes
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The next step is to convert the correspondences listed in Eqs. (16) and (17) into

for , and
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	Using Eqs. (23) and (24) we can represent the left-hand side of Eq. (18) relative to the basis  to obtain
	



Finally, when the left-hand side of Eq. (19) is represented relative to  we get


Like their progenitors in Eqs. (15)–(19), Eqs. (22)–(26) establish an identity between the mathematical description of two-state quantum systems in a mixed state and the mathematical description of opponent-colors theory. However, in contrast to Eqs. (15)–(19), the mathematical description of two-state quantum systems delineated in Eqs. (22)–(26) is given relative to the privileged basis of Hilbert space. The most important correspondence in the set of correspondences listed in Eqs. (22)–(26) is the one given in Eq. (25). This equation establishes that for every state of a two-state quantum system, where the state is represented relative to the privileged basis of , there corresponds a specific color experience. Based on this exact correspondence and the principles of the dual-aspect theory of phenomenal consciousness, we reach the main hypothesis of this paper:
: Color is the phenomenal dual aspect of two-state quantum systems in a mixed state.
4.4 The hypothesis  explains several fundamental phenomenal properties of color 
The hypothesis  explains several fundamental phenomenal properties of color. First, it explains why there exist seven elementary colors. As can is evident from Eq. (22), six of those colors are associated with the six eigenvectors of the three Pauli matrices , , namely, with the vectors . The seventh elementary color, white, is the dual aspect of the zero vector in . Second, light and dark, which are the color sensations that are associated with the two privileged basis vectors of , , (see Eq. (21)), are perceived as more fundamental than the other elementary color sensations, which are associated with the vectors  and . Third,  explains the age-old puzzle (Purves & Yegappan, 2017; Shepard, 1994) of why the hues can be ordered in a closed continuum (the hue circle): as Eq. (7) shows, the vectors  and , whose dual aspects are the four fundamental hues (see Eq. (22a) and Eq. (22b)), can all be converted to each through a phase transformation (e.g., the vector  is  radians from the vector ).  Fourth, as can be seen from Eq. (24),  explains why color is generated by three pairs of opponent processes. 
5. Discussion
5.1 The differences between the hypothesis suggested here and previous suggestions relating consciousness and quantum mechanics
There have been many suggestions that consciousness and quantum mechanics might be related (e.g., Chalmers & McQueen, 2022; Hameroff & Penrose, 1996; Lockwood, 1989; Okon & Sebastián, 2020; Stapp, 1993; Wigner, 1961). The hypothesis made in this paper, i.e., that color sensations are phenomenal dual aspects of two-state quantum systems in a mixed state, is distinct from these past suggestions in three important respects. First, the motivation for the relationship between consciousness and quantum mechanics in the case of the current hypothesis stems from the identical mathematical description of opponent-colors theory and two-state quantum systems conjoined with the principles of the dual-aspect theory of phenomenal consciousness. By contrast, past suggestions that consciousness might be related to quantum mechanics were mostly motivated by ‘the fact that the problems in quantum mechanics seem to be deeply tied to the notion of observership, crucially involving the relation between a subject's experience and the rest of the world’ (Chalmers, 1996, p. 333). Namely, past suggestions have mostly attempted to relate the problem of consciousness with the problem of measurement in quantum mechanics. Second, whereas past suggestions relating consciousness and quantum mechanics were vague in what they meant by ‘consciousness’, the current hypothesis is very precise—it addresses a specific aspect of phenomenal consciousness, namely, color experience. Third, past suggestions of a relationship between consciousness and quantum mechanics all required that the brain be able to sustain a quantum coherent state. Given the physical properties of the brain, this is prima facie highly unlikely. Indeed, Tegmark (2000) has calculated that any coherent quantum state in the brain will decohere in a time that is orders of magnitude too short to be of any use for conscious processes. By contrast, quantum decoherence doesn’t pose a problem for the suggestion put forth here because on this suggestion color is a phenomenal dual aspect of a mixture of quantum systems, which is a population of quantum systems in an incoherent state.
5.2 Generalizing the argument to other types of phenomenal experience
On the suggested hypothesis, any two-state quantum system should have color experience as its phenomenal dual aspect. Since the world contains a vast number of such systems (e.g., the spin state of spin-1/2 particles or the polarization state of photons), the proposed hypothesis is clearly panpsychist in nature. Moreover, nothing in the hypothesis that color sensations are the phenomenal dual aspects of the states of two-state quantum systems suggests that what brings about the phenomenal experience is the two-dimensionality of these systems. It is therefore natural to generalize this hypothesis and suggest that other types of phenomenal experience result from quantum states of quantum systems with higher dimensionalities. On this suggestion, each type of phenomenal experience (taste, odor, sound, etc.) is ‘attached’ to a quantum system with a certain dimensionality. Thus, the various types of phenomenal experience that we humans (and presumably other creatures on earth) have are not generated de novo by the brain. Rather, these specific types of phenomenal experience are a fundamental part of our universe. Presumably, brains have evolved to tie these various types of phenomenal experience to various types of sensory information.
5.3 Two-state ion channels may be the two-state quantum systems that give rise to color
This paper proposes that color sensations are phenomenal dual aspects of two-state quantum systems in a mixed state. On this hypothesis, our color sensations arise from a mixture of two-state quantum systems that exists somewhere in the brain. What is the identity of these two-state quantum systems? Clearly, these systems must somehow be linked to color-related processes in the visual system. Further, since we are looking for a quantum system, it is likely to be found in the molecular level. Taking these two considerations together, I suggest that two-state ion channels—or, more likely, some component in them—are the two-state quantum systems whose phenomenal dual aspect is color. These channels, which lie at the very basis of neuronal activity, are large membrane-spanning proteins that transition between two discrete molecular conformations in response to the binding/release of a ligand or the presence/absence of voltage (for a review of ion channels, see Siegelbaum & Koester, 2000). The two molecular conformations of two-state ion channels correspond to two functional states: an open state, in which channel-specific ions are free to cross from the extracellular side to the intracellular side (or vice versa), and a closed state, in which no ions can pass through the channel. Since ion channels are huge protein molecules, and since the transition from one molecular conformation to the other entails many structural changes in the amino acids that comprise the channels (see details in DaCosta & Baenziger, 2013), it is unlikely that a two-state ion channel as a whole can be considered to be a two-state quantum system. Rather, it is more likely that the sought-for two-state quantum system is some component of the ion channel. Specifically, I suggest that the two-state quantum system that gives rise to color is the molecular component that resides at the orthosteric site, namely, the site where the channel’s agonist operates (Changeux & Christopoulos, 2016). The interaction with the channel’s agonist (e.g., the docking of a ligand) causes some conformational change in the orthosteric site which, in turn, cascades into the many structural changes that constitute the conformational change of the entire ion-channel molecule. 

A well-established example of a conformational change in the orthosteric site of a receptor protein is given by rhodopsin, which is the photoreceptor molecule of rod cells in the retina (Tessier-Lavigne, 2000). The rhodopsin molecule is composed of a large protein, opsin, that is covalently bonded to a small, light-absorbing molecule—retinal. ‘In its nonactivated form rhodopsin contains the 11-cis isomer of retinal. Absorption of light by 11-cis retinal causes a rotation around the 11-cis double bond. As retinal returns to its more stable all-trans configuration, it brings about a conformational change in the opsin portion of rhodopsin, which triggers the other events of visual transduction’ (ibid., p. 511).[footnoteRef:7] If the cis and trans configurations of retinal constitute the only two physical configurations of this molecule, then the configuration state of the retinal molecule is a two-state quantum system. Therefore, on the hypothesis suggested here, the configuration of retinal has a phenomenal dual aspect of color experience. (Of course, I do not claim that our color sensations stem from retinal rods; rather, our color experiences arise from somewhere in the visual cortex (see below). That is, for some unknown reason, the color sensations presumably generated by retinal molecules in our retinas are not used by the brain for our conscious color experience.) [7:  Notably, rhodopsin is not an ion channel, but rather a G-protein-coupled receptor. However, the biophysical principles behind its conformational changes are similar to those in ion channels (Changeux & Christopoulos, 2016).] 


Where can we expect to find the hypothesized two-state ion channels that give rise to color? The recent work by Li et al. (2022) has shown that there exist cone-opponent functional domains in the primary visual cortex (V1). The hue preferences in these functional domains are geometrically organized into so-called ‘pinwheels’. It is natural to suggest that the first place to look for two-state ion channels that give rise to color experience is in the neurons within these cone-opponent functional domains. 
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