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Abstract 

Our color experience contains six elementary color sensations: white, black, red, yellow, 

green, and blue. All colors are perceived as some combination of two, three, or four of 

these elementary colors. The six elementary colors fall into two phenomenally distinct 

groups: two achromatic elementary colors (white and black) vs. four elementary hues. 

Newton noticed that the gamut of all hues can be arranged in a closed continuum 

known as the hue circle. Hering pointed out that there are no combinations of red and 

green or yellow and blue along this circle. To explain this, he suggested that our 

chromatic sensations arise from two pairs of opponent processes: a red–green pair and 

a yellow–blue pair. A white–black pair of achromatic opponent processes was suggested 

to account for the sensation of lightness. The achromatic opponent processes are 

noticeably different from their chromatic counterparts in that the elementary colors in 

this pair, white and black, clearly do combine to yield a phenomenal mixture, i.e., gray. 

A fourth dimension of color is its brightness, i.e., its perceived intensity. Although 

phenomenally distinct, there is an ill-understood relationship between lightness and 

brightness. What brings about these and other conspicuous properties of color 
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experience? Here I show that the phenomenal properties of color experience have 

remarkable analogs in the mathematical properties of qubit states reconstructed 

through quantum state tomography. I therefore hypothesize that color experience may 

be the phenomenal dual aspect of a qubit ensemble undergoing quantum state 

tomography somewhere in the brain.  

1. Introduction 

Our color experience contains six elementary color sensations: white, black, red, yellow, 

green, and blue. What makes these colors elementary is that they ‘have no 

characteristic resemblance to each other, while all other color percepts remind us of 

two, three, or four of these six’ (Hård et al., 1996, p. 184). It is immediately evident that 

the six elementary colors fall into two phenomenally distinct groups: a pair of 

achromatic elementary colors (white and black) vs. four elementary hues. Each of the 

elementary hues has a focal example that is referred to as unique since it is perceived as 

unmixed. For example, unique red is the variant of red that exhibits no hint of yellow or 

of blue. As was first observed by Newton (Kuehni, 2003, chapter 2), the gamut of all 

hues can be arranged in a closed continuum: starting (arbitrarily) with unique red, we 

move through shades of yellowish reds and reddish yellows to unique yellow; from 

unique yellow we continue through shades of greenish yellows and yellowish greens to 

unique green; from unique green we continue through shades of bluish greens and 

greenish blues to unique blue; and from unique blue, through shades of reddish blues 

and bluish reds, we return to unique red, where we started. This closed continuum is 

ordinarily portrayed as a circle. Hering, in the latter part of the 19th century, pointed out 
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that there are no combinations of red and green or combinations of yellow and blue 

along the hue circle (i.e., there are no reddish greens, greenish reds, yellowish blues, or 

bluish yellows on this circle) (ibid.). To explain this observation, he suggested that our 

chromatic sensations arise from two mechanisms of opponent elementary processes: a 

red–green mechanism and a yellow–blue mechanism (Hurvich & Jameson, 1957). To 

account for the achromatic colors, Hering further suggested that white and black 

processes operate as a third opponent pair of elementary processes (ibid.). The gamut 

of all outputs of the white–black mechanism gives rise to a continuum of achromatic 

colors that runs from black through grays to white. The phenomenal attribute that 

varies along this continuum is known as lightness. Notice, then, that the achromatic pair 

of opponent processes is very different from its chromatic counterparts in that white 

and black clearly do combine to yield a phenomenal mixture, i.e., gray.  

 

According to Hering, then, there exist three color mechanisms (or channels). Let us 

denote the red–green, yellow–blue, and white–black mechanisms by (𝑅 − 𝐺), (𝑌 − 𝐵), 

and (𝑊 − 𝑆), respectively. I will assume that the output of each mechanism is bounded 

by 1 from above and by −1 from below. That is, −1 ≤ (𝑅 − 𝐺) ≤ 1, and so on for the 

other two mechanisms. When the output of an opponent-processes mechanism is 0, the 

evoked sensation is that of middle gray, i.e., gray that is perceptually midway between 

black and white. When the output of an opponent-processes mechanism is at an 

extremum (i.e., −1 or 1), the evoked sensation is pure, namely, it does not contain any 

grayness in it. For example, when (𝑊 − 𝑆) = 1, the evoked sensation is of pure white, 
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i.e., white that exhibits no hint of grayness (and no hint of hue, of course). As the output 

of each mechanism moves from 1 to 0, the purity of the evoked sensation diminishes 

from 1 to 0 (concurrently, of course, the proportion of grayness in the evoked sensation 

increases from 0 to 1). Then, as the output of the mechanism moves from 0 to −1, the 

purity of the color sensation gradually increases from 0 to 1. Notably, the hue 

sensations evoked by each of the two chromatic mechanisms are the unique variants of 

their respective hues. That is, the red–green mechanism gives rise to unique red and 

unique green and the yellow–blue mechanism gives rise to unique yellow and unique 

blue. As mentioned earlier, these sensations will not be pure unless the mechanism’s 

output is at an extremum. For example, when (𝑅 − 𝐺) = 1, the evoked sensation is of 

pure unique red; when (𝑅 − 𝐺) = −1, the evoked sensation is of pure unique green.  

 

Hering’s theory of color experience can be visualized in the three-dimensional space 

shown in Fig. 1.  
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Figure 1. A scheme of phenomenal color space according to Hering. Any color percept can be 
represented as a vector in this three-dimensional space. One example, 𝒄, is shown in the figure. 
Hering’s three pairs of opponent elementary color sensations are arranged as three antipodal 
pairs: pure white vs. pure black, pure unique red vs. pure unique green, pure unique yellow vs. 
pure unique blue. The continuous curve between the four unique hues constitutes the hue 
circle.  

The scheme of Fig. 1 is similar in nature to other color spaces that follow ‘Heringian’ 

principles (for a historical review of such color spaces, see Kuehni, 2003, chapter 2). The 

most famous and most thoroughly worked out of these color spaces is the Swedish 

Natural Color System (NCS) (Hård et al., 1996).1 If we assign the output of the red–green 

mechanism to the 𝑥-axis in Fig. 1, the output of the yellow–blue mechanism to the 𝑦-

axis, and the output of the white–black mechanism to the 𝑧-axis, any color percept can 

then be represented as a vector in Cartesian coordinates in the following manner: 

𝒄 = (𝑅 − 𝐺) ̂ + (𝑌 − 𝐵) ̂ + (𝑊 − 𝑆)𝒌, (1) 

where ̂, ̂, 𝒌 are the standard basis vectors of ℝ . One example of such a vector is 

shown in Fig. 1.  

 

When two color stimuli are additively mixed, the resulting color percept is a weighted 

mixture of the two original percepts, where the weights are determined by the relative 

amounts of the addends in the mixture. This is the well-known ‘center of gravity 

principle’ of color addition (Boynton, 1979, chapter 5). Using the vector representation 

of color percepts in Eq. 1, this principle can easily be formalized: if we additively mix 𝑁  

 
1 In contrast to the scheme of color space of Fig. 1, the NCS does not use Cartesian coordinates to 
represent color vectors. 



6 
 

units of a color vector 𝒄  with 𝑁  units of a color vector 𝒄 , the resultant color vector is 

given by 

𝒄 =
𝑁

𝑁 + 𝑁
𝒄 +

𝑁

𝑁 + 𝑁
𝒄 . (2) 

Of course, Eq. 2 can be generalized to any number of color addends.2 Notably, at high 

intensities (i.e., when 𝑁  and 𝑁  are large), the linearity of this equation breaks down 

(see review of evidence in Shevell, 2003) and it only gives an approximation of the 

results of color addition.  

 

Note that if Hering’s three color mechanisms are assumed to be independent, then a 

consequence of Eq. 2 is that phenomenal color space should have the shape of a 

double-square pyramid. In such a space, the hue circle becomes a hue square. To see 

why, suppose, for example, that for some light stimulus we have (𝑅 − 𝐺) = 1, which 

gives rise to pure unique red. Further suppose that the same light stimulus also leads to 

(𝑌 − 𝐵) = 1, which gives rise to pure unique yellow. According to Eq. 2, the resultant 

evoked sensation will be of an orange color located in the middle of the line connecting 

 
2 Equation 2 is the basis for color matching experiments: any color 𝒄 can be matched by a correctly 
weighted mixture of three (or more) different colors 𝒄 , 𝒄 , and 𝒄  (Boynton, 1979, chapter 5). It is often 
stated that although equations like Eq. 2 ‘express the conditions for a color match, they do not tell us 
anything directly about what the matching colors look like’ (ibid., p. 136). Here, however, following 
Hering, the components of color vectors are specified by the phenomenal attributes red–green, yellow–
blue, white–black (see Eq. 1). Consequently, in the context of this paper Eq. 2 is to be understood as 
claiming that the color 𝒄 is perceived as a weighted average of the phenomenal attributes of the color 
addends 𝒄 and 𝒄 . That such an interpretation of Eq. 2 is tenable was conclusively shown by Hurvich and 
Jameson (1957). Their seminal hue-cancellation experiments allowed them to assign different relative 
amounts of Hering’s phenomenal attributes to each wavelength in the visual spectrum (‘chromatic 
valence’). The appearance of any color mixture could then be predicted using Eq. 2 (see details in Hurvich 
& Jameson, 1957, pp. 388–392).    
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pure unique red to pure unique yellow (see the vector 𝒄 in Fig. 1). Notice that this 

orange will not be pure since it will contain some grayness. Hering himself seems to 

have avoided this problem by using the color equation: 𝑐 + 𝑤 + 𝑠 = 1, where 𝑐 is the 

amount chromaticness in a color sensation, 𝑤 is the amount of whiteness, and 𝑠 is the 

amount of blackness (Hård et al., 1996; Kuehni, 2003, chapter 2). When 𝑤 = 𝑠 = 0, this 

equation does give a hue circle with radius 1. Using this equation, leads to a color space 

whose shape is that of a double cone (which is indeed the shape of the NCS color space; 

see details in Hård et al., 1996). There are two problems with Hering’s color equation: 

(a) it does not treat the achromatic elementary colors as part of an opponent pair, 

which is inconsistent with Hering’s own proposal of three opponent pairs (Hurvich & 

Jameson, 1957; for a discussion of Hering’s inconsistency on the issue of the achromatic 

processes, see Werner et al., 1984); (b) it is not consistent with the existence of two 

separate chromatic mechanisms because arithmetic rather than vectorial addition is 

used to arrive at 𝑐 (see Eq. 2 in Hård et al., 1996).3 Some of Hering’s followers did, 

however, seem to take his observations to their logical conclusion and constructed color 

spaces that have the shape of a double pyramid: Höfler, at the end of the 19th century, 

suggested a double-square pyramid color space (see Fig. 2-36 in Kuehni, 2003); at the 

turn of the 20th century, Ebbinghaus and Titchener (separately) suggested tilted double 

pyramids (see Figs. 2-38 and 2-39 in Kuehni, 2003). Since the term hue circle has 

become so ubiquitous in discussions of color science, I currently ignore this apparent 

 
3 As a consequence, the NCS must keep track of another variable, 𝜙, which indicates the polar angle of the 
hue sensation.  
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inconsistency in Hering’s thinking and continue to use the term in the discussion that 

follows. In addition, a hue circle is shown in the Heringian scheme of phenomenal color 

space of Fig. 1. 

 

Neurophysiological evidence from monkey retinal ganglion cells (De Monasterio et al., 

1975; Gouras, 1968) and lateral geniculate nucleus cells (which are fed by the ganglion 

cells) (Derrington et al., 1984; De Valois et al., 1967) shows that they receive excitatory 

and inhibitory inputs from various combinations of the long-wavelengths cones (L-

cones), medium-wavelengths cones (M-cones), and short-wavelengths cones (S-cones). 

These so-called ‘opponent cells’ were therefore initially thought to be the 

neurophysiological instantiation of Hering’s opponent-processes mechanisms. For 

example, cells that receive excitatory inputs from L-cones and inhibitory inputs from M-

cones (often colloquially referred to as (𝐿 − 𝑀)-cells) were suggested to be the neural 

implementation of Hering’s red–green mechanism. However, it gradually became clear 

that the zero crossings in the responses of these cells to spectral colors did not 

correspond to the spectral locations of the unique hues, thus precluding them from 

being an instantiation of Hering’s mechanisms (Broackes, 2011; Valberg, 2001; Webster 

et al., 2000). The response patterns of color-sensitive cells in the visual cortex also fail to 

show the properties required to be behind Hering’s opponent-processes mechanisms 

(Bohon et al., 2016; Lennie et al., 1990; Mollon, 2009). All in all, the neurophysiological 

mechanisms that presumably give rise to the three perceptual channels of opponent 
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processes and to the six elementary color sensations are still unknown (Forder et al., 

2017; Mollon, 2006, 2009). 

 

Another indication that opponent cells cannot account for Hering’s opponent-processes 

mechanisms comes from dichromats, namely, people who have only two types of 

functional cones (Sharpe et al., 1999). On the hypothesis that (𝐿 − 𝑀)-cells are the 

neural implementation of Hering’s red–green mechanism, the absence of L-cones (in the 

case of protanopia) or M-cones (in the case of deuteranopia) should lead to the 

vanishing of red and green percepts. Consequently, such dichromats should presumably 

only perceive hues along the yellow–blue axis. This indeed is the standard view (Byrne & 

Hilbert, 2010; see illustration in Fig. 1.13 of Sharpe et al., 1999). However, as the 

thorough review, analysis, and meta-analysis by Broackes (2010) conclusively shows, 

there is a plethora of evidence to contradict this consensual view. Specifically, when the 

size of the stimulus is large, when the chromatic saturation of the stimulus is high, and 

when the illumination is not restrictive, there is hardly any doubt that dichromats do 

perceive green and red (this was shown on rare individuals who have one eye that is 

normal and one eye that is dichromatic) (ibid.). Thus, in contrast to the prediction of the 

opponent-cells theory, the absence of either L- or M-cones does not lead to the 

disappearance of red and green. A similar conclusion is reached for the third kind of 

dichromats, namely, those people who lack the S-cone (tritanopes). On the opponent-

cells hypothesis, Hering’s yellow–blue mechanism is instantiated by (𝐿 + 𝑀) − 𝑆 -

cells. In tritanopes we would therefore expect the perception of yellow and blue to 
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vanish. This is emphatically not the case (reviewed in Mollon, 1982; note that Mollon’s 

review includes so-called ‘foveolar tritanopes’, who are normal observers that are 

brought to a tritanopia-like state through the usage of color stimuli that are restricted to 

the fovea, where S-cones are absent or extremely rare). The fact that tritanopes 

perceive blue and shades of yellow was dubbed ‘the tritanopic paradox’ by Mollon. As 

an important aside, notice that the evidence discussed above indicates that the 

phenomenal color space of dichromats is  three-dimensional, even though their input is 

only from two types of cones. This remarkable and counterintuitive fact might be at the 

root of the strong opposition among many researchers to the notion that protanopes 

and deuteranopes perceive red and green, despite the large body of evidence that 

supports this notion (Broackes, 2010). Interestingly, in the case of monochromats, i.e., 

people who have only a single type of photoreceptor functioning (either a single type of 

cones or rods), the phenomenal color space does—as expected—collapse to a one-

dimensional phenomenal attribute, which is the axis of lightness (Nordby, 1990; Sharpe 

et al., 1999). That is, in this case the dimensionality of phenomenal color space does not 

exceed that of the input. 

 

The discussion so far has left out a fourth phenomenal attribute of color—that of 

brightness, which is the perceived intensity of a color (Shevell, 2003). Phenomenally, 

brightness varies from very dim to dazzling. Overall, then, color is a four-dimensional 

phenomenon: the full description of a color percept consists of its red–green, yellow–

blue, white–black components and its brightness level. Evidently, lightness and 
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brightness are totally distinct phenomenal attributes: lightness is an attribute that varies 

from black to white, brightness is an attribute that varies from dim to dazzling (Gilchrist, 

2007). However, there are indications that the two attributes are related. When an 

achromatic color is viewed in isolation, namely, when there are no other colors in the 

field of view (this is called the unrelated mode of color presentation), the color is 

perceived as white (Shevell, 2003). This is because the sensation of black disappears in 

the unrelated mode of color presentation4 and consequently so does the sensation of 

gray. Hence, when the brightness of an unrelated achromatic color is varied, the evoked 

sensation is of white at different levels of intensity (ibid.). Gilchrist (2006, chapter 9) has 

shown that the same phenomenon occurs for a related achromatic color (i.e., an 

achromatic color viewed in the vicinity of other colors) once the color’s luminance (i.e., 

its absolute light intensity) crosses a certain threshold. His conclusion was that lightness 

and brightness—although phenomenally distinct—share a single dimension (ibid.; see 

his Fig. 9.18). Indeed, it is common in the literature to see a scheme of phenomenal 

color space where lightness and brightness share the same dimension (e.g., Palmer, 

1999, p. 114; Purves & Yegappan, 2017) or to read statements such as ‘Lightness can be 

understood as relative brightness’ (Kuehni, 2003, p. 371). This suspected affinity 

between lightness and brightness is probably behind the common confusion between 

these two phenomenal attributes and the common (yet erroneous) referral to color as a 

three-dimensional rather than a four-dimensional phenomenon. A final piece of 

 
4 The sensation of black cannot be evoked directly by a light stimulus; it only arises when the luminance of 
a stimulus (i.e., its absolute light intensity) is very much lower than its surroundings (Hurvich & Jameson, 
1957; Shevell, 2003). 
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evidence that points at some relationship between lightness and brightness is that in 

monochromats the surviving phenomenal attributes of color are lightness and 

brightness (Nordby, 1990). 

 

What brings about these phenomenal properties of our color experience? Specifically, 

following are nine basic questions about these properties whose answers are currently 

unknown: 

1. Why are color percepts four-dimensional? 

2. What are the mechanisms that instantiate the three perceptual channels of 

opponent colors? (As we have seen, neurophysiology hasn’t found these 

mechanisms.)  

3. Why do the outputs of the three color mechanisms fall into two phenomenally 

distinct groups (one achromatic, the other chromatic)? Or, looked at from a 

different perspective, why is it that the outputs of two of the three color 

mechanisms share a common phenomenal attribute (hue)?  

4. Why are there four unique hues? (Recall that neurophysiology hasn’t found the 

neural correlates of these hues.) 

5. Why is it that the gamut of all hues can be ordered in a closed continuum? To 

quote Shepard (1994, p. 17), ‘what in the world is the source… of the circularity, 

discovered by Newton, in the continuum of hues? For this circularity presents us 

with the psychophysical puzzle that the hues corresponding to the most widely 
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separated of the visible physical wavelengths, namely red and violet, appear 

more similar to each other than either does to a hue of intermediate 

wavelength, such as green.’ 

6. Why is it that white and black, i.e., the two achromatic opponent colors, can 

perceptually coexist in one color, but the two elementary colors of each of the 

chromatic opponent pairs are mutually exclusive? 

7. Why do colors additively mix according to the center of gravity principle (Eq. 2)? 

8. How is it that the phenomenal color space of dichromats is three-dimensional? 

Why, then, is the phenomenal color space of monochromats only one-

dimensional and restricted to lightness?  

9. What is the nature of the relationship between lightness and brightness? Do 

they indeed share a single dimension? 

 

Several of these intriguing questions have been addressed in the past. Much attention 

has been given to the question of why there exist four unique hues. Many (e.g., 

Broackes, 2011; Mollon, 2006; Shepard, 1992, 1994) have speculated that the evolution 

of four unique hues may be attributed to an adaptation to the illumination 

characteristics of our natural environment (e.g., the spectrum of illumination brought 

about by sunlight and skylight). Mollon (2006) suggested that similar factors can also 

explain the existence of white as an elementary color. In contrast to these suggestions, 

Valberg (2001) concluded that ‘The structuring of colour perception imposed by the 

unique hues does not seem to us today to have an obvious physical or environmental 
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cause. Neither do these hues have any behavioural importance…’ (p. 1654). Purves et al. 

(2000) hypothesized that the four unique hues arose as a solution to a ‘four-color-map 

problem’ that the two-dimensional retinal sheet presumably imposes on the visual 

system. Purves and Yegappan (2017) extended these ideas and proposed that the 

geometrical demands that the two-dimensional retinal sheet makes on the visual 

system can also explain the fact that the hue gamut can be continuously ordered in a 

circle. Tackling the riddle of how dichromats perceive a three-dimensional color space, 

Broackes (2010) suggested that ‘seeing a surface color under two different illuminants 

[might] provide a dichromat, who at first seemed to lack information on the red-green 

dimension, with information about that dimension’ (p. 337; italics in the original). 

 

Here I try to answer the questions regarding the source of the phenomenal properties of 

color experience by taking a very different approach from the evolutionary, ecological, 

and neurophysiological approaches of past studies. My starting point is the dual-aspect 

theory of phenomenal consciousness. This theory, which can be interpreted in either 

monistic or dualistic terms (Stubenberg, 2018, section 8.3), suggests that one or more 

entities in our universe have, in addition to their objective aspects, dual aspects that are 

subjective and phenomenal (see, e.g., Chalmers, 1996, chapter 8). On the dual-aspect 

theory, it makes sense to expect a precise correspondence between a system’s 

phenomenal states and the objective states of its underlying physical (or functional) 

substrate (Chalmers, 1996, chapters 6 and 8; Cortês et al., 2021; Lockwood, 1989, 

chapter 11). Here, for example, is Lockwood: 
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Take some range of phenomenal qualities. Assume that these qualities can be 

arranged according to some abstract 𝑛-dimensional space, in a way that is 

faithful to their perceived similarities and degrees of similarities... Then my… 

proposal is that there exists, within the brain, some physical system, the states of 

which can be arranged in some 𝑛-dimensional state space… And the two states 

are to be equated with each other: the phenomenal qualities are identical with 

the states of the corresponding physical system. 

(1989, p. 172) 

In this paper I identify such a physical system for the case of color experience. I show 

that the phenomenal properties of our color experience have exact analogs in the 

mathematical properties of qubit mixed states reconstructed through quantum state 

tomography. Based in this result I conjecture that color experience is the phenomenal 

dual aspect of an ensemble of qubits undergoing quantum state tomography 

somewhere in the brain.  

 

The paper has the following structure. In Section 2 I review qubits, their Bloch-space 

representation, and qubit quantum state tomography. Section 2 does not contain any 

original contribution, but it provides the necessary background for the main argument 

of this paper, which is presented in Section 3. In that section I lay out the analogs 

between the phenomenal properties of color percepts and the mathematical properties 

of qubit states reconstructed through quantum state tomography. Based on these 



16 
 

analogs I suggest that the former are phenomenal dual aspects of the latter. Section 4 is 

dedicated to a discussion.  

2. Qubits, their Bloch-space representation, and quantum state 

tomography 

2.1 Pure states and their Bloch-sphere representation 

Two-state quantum systems, which in the field of quantum computation are often 

referred to as qubits, are systems that can exist in a superposition of two physically 

distinguishable states. Some common examples of qubit systems are the spin state of 

spin-1/2 particles, the polarization state of photons, and atomic systems that can be 

approximated as effectively having only two electronic levels (Altepeter et al., 2004). I 

will represent the two states of a qubit by the Hilbert-space vectors |±⟩. These two 

vectors are orthogonal and therefore constitute a basis for the two-dimensional Hilbert 

space that they inhibit. A qubit is then fully described by a state vector, denoted |𝜓⟩, 

given by the following superposition: 

|𝜓⟩ = cos
𝜃

2
𝑒 |+ + sin

𝜃

2
𝑒 |−⟩, 

(3) 

where 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 , 𝜙 ≤ 2𝜋 (Blum, 1981, chapter 1). Since two-dimensional 

Hilbert space is isomorphic to ℂ , it has become customary to ignore mathematical 

niceties and treat the state vector |𝜓⟩ as if it was the vector cos 𝑒 , sin 𝑒  in 

ℂ  (e.g., Aerts & Sassoli de Bianchi, 2017; Blum, 1981, chapter 1). I will follow suit.  
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Because the global phase of a quantum state does not have any observational effect, all 

the qubit states 𝑒 |𝜓⟩, 𝜆 ∈ ℝ, are observationally identical (Blum, 1981, chapter 1). 

Clearly, it would be much more efficient to have a representation that condenses all the 

qubit states 𝑒 |𝜓⟩, 𝜆 ∈ ℝ, into a single mathematical entity. The density-operator 

representation of quantum states, 

𝜌 = |𝜓⟩⟨𝜓|, (4) 

where ⟨𝜓| = (|𝜓⟩∗) ≡ |𝜓⟩ , which is an alternative to the state-vector representation 

of Eq. 3 (ibid.), provides us with exactly such an entity because 𝑒 |𝜓⟩⟨𝜓|𝑒 =

|𝜓 ⟨𝜓| = 𝜌. Substituting the expression for |𝜓⟩ in Eq. 3 into Eq. 4 (or, for that matter, 

substituting 𝑒 |𝜓⟩ into Eq. 4) and using a couple of basic trigonometric identities we 

obtain the following matrix representation for the density operator: 

𝜌 =
1

2
1 + cos 𝜃 sin 𝜃 𝑒
sin 𝜃 𝑒 1 − cos 𝜃

, (5) 

where 𝜙 = 𝜙 − 𝜙 . It is easy to see that the expression for 𝜌 in Eq. 5 is isomorphic to 

the following unit vector in ℝ × ℂ: 

𝒃 = cos 𝜃 , sin 𝜃 𝑒 = sin 𝜃 cos 𝜙𝒙 + sin 𝜃 sin 𝜙 𝒙 + cos 𝜃𝒙 , (6) 

where 𝒙 = (0,1) , 𝒙 = (0, 𝑖) , 𝒙 = (1,0)  (Aerts & Sassoli de Bianchi, 2017). Notice 

that the loss of the global phase 𝑒  in the transition from the state vector 𝑒 |𝜓⟩ to the 
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density operator 𝜌 manifests itself in the transition of the representation from ℂ  to 

ℝ × ℂ.5  

 

If we interpret the parameters 𝜃 and 𝜙 in Eq. 6 as the inclination and azimuthal angles 

of a spherical coordinate system (0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋) , we see that 𝒃 provides us 

with a geometrical representation of the Hilbert-space vector |𝜓⟩ (more precisely, a 

geometrical representation of all Hilbert space vectors 𝑒 |𝜓⟩, 𝜆 ∈ ℝ). The unit vector 𝒃 

is commonly referred to as the Bloch vector. The set of all possible Bloch vectors 

(created by taking all possible values of 𝜃 and 𝜙 in Eq. 6) defines a unit sphere known as 

the Bloch (or Poincaré) sphere (Aerts & Sassoli de Bianchi, 2017; Altepeter et al., 2004). 

Figure 2 gives a schematic description of the Bloch sphere and one example of a Bloch 

vector. The ℝ × ℂ space in which the Bloch vectors exist is an abstract space called the 

Bloch space.  

 
5 In the literature it is more common to represent 𝒃 as a vector in ℝ  rather than in ℝ × ℂ (e.g., Aerts & 
Sassoli de Bianchi, 2017). However, I contend that the representation in ℝ × ℂ is the correct one because, 
unlike the ℝ  representation, it retains the roots of 𝒃 in ℂ .  
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Figure 2. The Bloch sphere/ball. All vectors on the surface of this unit sphere represent qubit 
pure states. One example is shown in the figure: the vector 𝒃, whose inclination angle is 𝜃 and 
whose azimuthal angle is 𝜙 The six unit vectors ±𝒙 ∈ ℝ × ℂ, 𝑖 = 1, 2, 3, are the Bloch-space 
representation of the Hilbert-space vectors |±𝒙 ⟩ (see text for details). The vectors ±𝒙 , ±𝒙  
reside on the complex unit circle in Bloch space. All vectors inside the Bloch sphere represent 
qubit mixed states. The vector 𝒃 shown in the figure (‖𝒃‖ < 1) is an example of such a mixed 
state.  

 

From Eq. 3 and Eq. 6 it is easy to confirm that the unit vectors ±𝒙  are the Bloch-space 

representations of the Hilbert-space basis vectors |±⟩. Therefore, from now one I will 

write |±𝒙 ⟩ instead of |±⟩. Similarly, it can readily be shown that the unit vectors ±𝒙  

and ±𝒙  in Bloch space correspond to the following Hilbert-space state vectors: 

|±𝒙 ⟩ =
1

√2
(|+𝒙 ⟩ ± |−𝒙 ⟩), (7a) 

|±𝒙 ⟩ =
1

√2
(|+𝒙 ⟩ ± 𝑖|−𝒙 ⟩). (7b) 

2.2 The Pauli operators 

The three operators that obey the following eigenvector/eigenvalue equations 

𝜎 |±𝒙 ⟩ = ±|±𝒙 ⟩, (8) 

–

–

–

Complex unit 
circle
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𝑖 = 1, 2, 3, are called the Pauli operators. (Notice, then, that the vectors ±𝒙 , 𝑖 = 1, 2, 3, 

are the Bloch-space representations of the Hilbert-space vectors that are the 

eigenvectors of the Pauli operator 𝜎 .) In the literature it is very common to represent 

the Pauli operators as matrices relative to the |±𝒙 ⟩ basis. The result, known as the 

standard matrix representation of the Pauli operators, is given by 

𝜎 =
0 1
1 0

, 𝜎 =
0 −𝑖
𝑖 0

, 𝜎 =
1 0
0 −1

. (9) 

Given the eigenvectors and eigenvalues of 𝜎  in Eq. 8, we can employ the eigenvalue 

decomposition theorem to obtain an explicit expression for 𝜎 : 

𝜎 = |+𝒙 ⟩⟨+𝒙 | − |−𝒙 ⟩⟨−𝒙 |, (10) 

𝑖 = 1, 2, 3. Equation 10 shows that each Pauli operator 𝜎 , 𝑖 = 1, 2, 3, is composed of 

two underlying operators that operate in an antagonistic manner: |+𝒙 ⟩⟨+𝒙 | and 

|−𝒙 ⟩⟨−𝒙 |. 

 

It can easily be shown (e.g., from Eq. 9) that the Pauli operators are Hermitian, i.e., 𝜎 =

𝜎 , 𝑖 = 1, 2, 3, and are therefore quantum observables (Blum, 1981, chapter 1). Hence, 

the physical content of Eq. 8 is that immediately after a measurement of the observable 

𝜎 , the measured system will be projected into the state |+𝒙 ⟩ or into the state |−𝒙 ⟩. 

The set {𝕀, 𝜎 , 𝜎 , 𝜎 }, where 𝕀 is the identity operator, constitutes an orthogonal basis 

for the vector space of linear operators acting on two-dimensional Hilbert space 

(Bertlmann & Krammer, 2008). I will refer to this basis as the Pauli basis. It spans the 
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space of all observables of two-state quantum systems. Since the identity operator in 

two-dimensional Hilbert space belongs to the Pauli basis, it is often referred to as the 

zeroth Pauli operator, 𝜎 . We can use the eigenvalue decomposition theorem to express 

the identity operator in the following manner: 

𝕀 = 𝜎 = |+𝒏⟩⟨+𝒏| + |−𝒏⟩⟨−𝒏|, (11) 

where |+𝒏⟩ and |−𝒏⟩ are any two orthogonal unit vectors in two-dimensional Hilbert 

space (for example, |+𝒙 ⟩ and |−𝒙 ⟩, 𝑖 = 1, 2, 3). Equation 11 is often referred to as the 

completeness relation. 

2.3 Mixed states and their Bloch-ball representation 

Quantum systems that can be described by a state vector (e.g., Eq. 3) are said to be in a 

pure state. However, quantum systems can also exist in a mixed state (Blum, 1981, 

chapter 2). Mixed states (or mixtures) arise when there is an ensemble of quantum 

systems where each is in a pure state, but the phase of each of these pure states does 

not affect the observational properties of the ensemble. That is, the states of the 

constituent systems do not interfere with each other. (By contrast, when the constituent 

systems do interfere with each other, the ensemble as whole is in a pure state.) 

Mathematically, mixed states are described by an extension of the density operator that 

we met in Eq. 4 above: 

𝜌 = 𝑊 |𝜓 ⟩⟨𝜓 |, (12) 

where 𝑘 goes over the different pure states in the ensemble, |𝜓 ⟩ is the 𝑘th pure state 

in the ensemble, and 𝑊  is the relative weight of this pure state (i.e., the ratio between 
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the number of particles in the 𝑘th pure state and the total number of particles in the 

ensemble) (ibid.). Thus, 0 < 𝑊 ≤ 1 and ∑ 𝑊 = 1. The expression for the density 

operator in Eq. 12 elegantly captures the fact that a mixture is a statistical average of 

quantum systems in a pure state that do not interfere with each other. It can be shown 

that the density operator is Hermitian and is therefore a quantum observable (ibid.). A 

second physical situation where mixed states arise when there is a composite quantum 

system that consists of several subsystems (Altepeter et al., 2004). Each of the 

subsystems is then in a mixed state because the entanglement prevents the phase of 

the subsystem from affecting the results of observations on it.  

 

Here we will be only interested in density operators that describe qubit mixed states. It 

can be shown that the density operator for qubits can always be written as the following 

linear combination of the Pauli operators:  

𝜌 =
1

2
(𝕀 + 𝑏 𝜎 + 𝑏 𝜎 + 𝑏 𝜎 ), (13) 

where 𝑏 , 𝑏 , 𝑏 ∈ ℝ and 𝑏 + 𝑏 + 𝑏 ≤ 1 (Blum, 1981, chapter 1). If we look at the 

density operator 𝜌 in Eq. 13 as a vector in the linear space of Hermitian operators, we 

see that the ℝ × ℂ vector 

𝒃 = (𝑏 , 𝑏 + 𝑖𝑏 ) = 𝑏 𝒙 + 𝑏 𝒙 + 𝑏 𝒙 (14)

(𝒙 , 𝒙 , and 𝒙  are defined as in Eq. 6) can be taken as its coordinate vector relative to 
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the Pauli basis.6 Hence, there is a one-to-one correspondence between the density 

operators of qubits and the set of vectors 𝒃. The fact that 𝒃 ∈ ℝ × ℂ reflects the loss of 

the phase of each of the pure states comprising the mixture (see the discussion related 

to Eq. 6 and its footnote). From the constraint 𝑏 + 𝑏 + 𝑏 ≤ 1 on Eq. 13, we see 

that ‖𝒃‖ ≤ 1 and conclude that the set of vectors 𝒃 fills the entire volume of the Bloch 

sphere of Fig. 2, i.e., these vectors constitute the Bloch ball. Thus, the vector 𝒃 is a 

generalization of the unit Bloch vector 𝒃 of Eq. 6. It is therefore referred to as the Bloch 

vector representing the density operator 𝜌 (one example is shown in Fig. 2). As we saw 

in Section 2.1, when ‖𝒃‖ = 1 the Bloch vector lies on the surface of the Bloch sphere 

and hence represents a pure state.  

 

As can be easily verified using Eq. 12, when two qubit mixtures (i.e., two qubit 

ensembles in a mixed state) are combined, the resulting mixture is represented by a 

Bloch vector that is a weighted average of the Bloch vectors of the addends. For 

example, if one mixture, represented by the Bloch vector 𝒃 , contains 𝑁  qubits, and a 

second mixture, represented by the Bloch vector 𝒃 , contains 𝑁  qubits, the Bloch-

vector representation of the resultant mixture is given by  

𝒃 =
𝑁

𝑁 + 𝑁
𝒃 +

𝑁

𝑁 + 𝑁
𝒃 . (15) 

 

 
6 This representation omits the uninteresting constant coefficient of the identity operator in Eq. 13.  
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Any measurement on a mixture is associated with some observable 𝑂. A measurement 

of 𝑂 projects each qubit in the mixture into one of its two eigenstates. The density 

operator can give us the probability of obtaining each of the eigenstates (Altepeter et 

al., 2004). Using these probabilities we can calculate the expectation value (i.e., mean 

value) of the measurement results of operating with 𝑂 on the mixture. This value, 

denoted 〈𝑂〉, is given by tr(𝜌𝑂), where tr() is the trace operation and 𝜌 is the mixture’s 

density operator (Blum, 1981, chapter 2). Using the expression for 𝜌 in Eq. 13 and taking 

the observable to be any one of the Pauli observables, 𝜎 , 𝑖 = 1, 2, 3, this formula yields 

𝑏 = 〈𝜎 〉 (16) 

 (Bertlmann & Krammer, 2008). An immediate conclusion from Eq. 16 is that the Bloch 

vector of Eq. 14 is given by 

𝒃 = (〈𝜎 〉, 〈𝜎 〉 + 𝑖〈𝜎 〉) = 〈𝜎 〉𝒙 + 〈𝜎 〉𝒙 + 〈𝜎 〉𝒙 . (17) 

2.4 Qubit quantum state tomography 

Suppose that we have an ensemble of qubits whose unknown mixed state we wish to 

determine. Relative to some specific Pauli basis of observables, the mixture’s density 

operator 𝜌 is given by some specific set of values of 𝑏 , 𝑖 = 1, 2, 3, in Eq. 13. To 

determine the mixture’s density operator (or, equivalently, determine its Bloch vector), 

we see from Eq. 16 (or from Eq. 17) that we need to measure the expectation values of 

the three Pauli observables in the chosen basis. This process of reconstructing a 

mixture’s quantum state is called qubit quantum state tomography (Altepeter et al., 

2004). Notice that to carry out qubit quantum state tomography (QQST) it is required 

that we choose a specific Pauli basis of observables. How do we do that? A related 
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question is: once we chose such a basis, what are the physical operations that we need 

to carry out to measure each of the Pauli observables in the triad? This section answers 

these two questions. 

 

Equation 10 shows that the three Pauli observables are constructed through the six 

Hilbert-space vectors |±𝒙 ⟩, 𝑖 = 1, 2, 3. Since we defined the Hilbert-space vectors 

|±𝒙 ⟩ and |±𝒙 ⟩ as linear combinations of the vectors |±𝒙 ⟩ (see Eq. 7), we conclude 

that choosing a specific Pauli basis of observables boils down to (a) choosing a specific 

basis for two-dimensional Hilbert space, and then (b) using this basis to construct the 

four Hilbert-space vectors specified in Eq. 7.  

 

Next, how do we operationally obtain the expectation values of the Pauli observables in 

the specific Pauli basis that we chose? From Eq. 10 it follows that 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉, (18) 

𝑖 = 1, 2, 3. The expectation value 〈|+𝒙 ⟩⟨+𝒙 |〉 gives the probability of projecting a 

mixed state into the state |+𝒙 ⟩, 𝑖 = 1, 2, 3 (ibid.). Similarly, the expectation value 

〈|−𝒙 ⟩⟨−𝒙 |〉 gives the probability of projecting a mixed state into the state |−𝒙 ⟩, 𝑖 =

1, 2, 3. Thus, Eq. 18 provides us with the answer to the question of how to find the 

expectation values of the Pauli observables of the specific Pauli basis that we chose: for 

each of the pair of states |+𝒙 ⟩ and |−𝒙 ⟩, 𝑖 = 1, 2, 3, we (a) conduct an experiment 

that measures the probability of projecting the mixed state into the state |+𝒙 ⟩; (b) 
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conduct an experiment that measures the probability of projecting the mixed state into 

the state |−𝒙 ⟩; (c) subtract the two probabilities. Notice, then, that QQST is a serial 

process because each of the measurements mentioned above is performed separately. 

Since each measurement changes the state of the mixture (projecting it into two 

orthogonal states; see previous section), we must have several identical copies of the 

mixture to carry out a complete QQST (ibid.).     

 

Actual experiments on a qubit mixture do not obtain the expectation values 

〈|±𝒙 ⟩⟨±𝒙 |〉, 𝑖 = 1, 2, 3, in Eq. 18 in terms of probabilities, but rather in terms of 

numbers of qubits in the mixture. To obtain the results in terms of probabilities, we 

need to first measure the overall number of qubits in the mixture (this number is often 

referred to as the mixture’s intensity; see Blum, 1981, chapter 1) and then use this 

number to normalize our expectation values. For clarity, it will be convenient to 

explicitly distinguish between the ‘raw’, unnormalized expectation values and the 

normalized ones, which are related in the following way:  

〈|±𝒙 ⟩⟨±𝒙 |〉 =
〈|±𝒙 ⟩⟨±𝒙 |〉

𝑁
, (19) 

𝑖 = 1, 2, 3, where 𝑁 is the number of qubits in the mixture and the subscript on the 

expectation value on the right-hand side indicates that this is an unnormalized 

expectation value. Substituting Eq. 19 into Eq. 18 we find that 〈𝜎 〉 = 〈𝜎 〉 𝑁⁄ , 𝑖 =

1, 2, 3. We therefore see that to complete QQST we need an additional measurement to 

the ones discussed above—one that counts the overall number of qubits in the mixture 
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(Blum, 1981, chapter 1). However, instead of conducting this measurement as a 

separate process, we can obtain the number of qubits in the mixture by simply summing 

the number of qubits in found in the states |+𝒙 ⟩ and |−𝒙 ⟩ for one of the values 𝑖 =

1, 2, 3. Since we chose |±𝒙 ⟩ as our basis of two-dimensional Hilbert space, it makes 

sense to use this pair to obtain the number of qubits in the mixture. We can express this 

counting process using the completeness relation of Eq. 11 in the following way:  

𝑁 = 〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 + 〈|−𝒙 ⟩⟨−𝒙 |〉 . (20) 

 

Notice that once we measured the pair 〈|±𝒙 ⟩⟨±𝒙 |〉 , we only need to measure one 

expectation value from the pair 〈|±𝒙 ⟩⟨±𝒙 |〉  and one expectation value from the pair 

〈|±𝒙 ⟩⟨±𝒙 |〉  to complete the QQST process. This is because the sum in each pair of 

expectation values is 𝑁, a number that we already obtained from the measurements 

specified in Eq. 20. Overall, then, QQST requires only four measurements rather than 

the six implicit in Eq. 18. It is easy to show that this equation can now be simplified to 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − (1 − 〈|+𝒙 ⟩⟨+𝒙 |〉), (21a) 

〈𝜎 〉 = (1 − 〈|−𝒙 ⟩⟨−𝒙 |〉) − 〈|−𝒙 ⟩⟨−𝒙 |〉, (21b) 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉, (21c) 

where we arbitrarily chose to measure the state |+𝒙 ⟩ from the pair |±𝒙 ⟩ 

and the state |−𝒙 ⟩ from the pair |±𝒙 ⟩. 
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3. Color percepts are phenomenal dual aspects of qubit mixed 

states 

3.1 The hypothesis 

The goal of this section is to convincingly make the case for the following hypothesis: 

H: Color percepts are phenomenal dual aspects of the qubit mixed states 

reconstructed through quantum state tomography. The phenomenal properties 

of color percepts are determined by the mathematical properties of these qubit 

states.   

To support H I will demonstrate that it answers the nine basic questions regarding the 

phenomenal properties of color experience that were posed in the Introduction. 

 

Before we delve into these questions, let us do some preparatory work. Color, as will be 

recalled from the Introduction, is a four-dimensional phenomenon: every color percept 

can be represented by the tetrad (𝑄, 𝒄), where 𝑄 is the color’s brightness and he vector 

𝒄 is given in Eq. 1. In Section 2.4 it was shown that to fully reconstruct the state of a 

mixture, QQST requires the measurement of four parameters, which we can aggregate 

into the tetrad (𝑁, 𝒃), where 𝑁 is the number of qubits in the mixture (i.e., the 

mixture’s intensity) and 𝒃 is the Bloch vector (Eq. 17). The hypothesis H suggests that 

the phenomenal properties of a color percept (𝑄, 𝒄) are dual aspects of the 

mathematical properties of (𝑁, 𝒃). In order to be duals of each other, there must exist a 

one-to-one correspondence (i.e., an isomorphism) between the tetrad (𝑁, 𝒃) and the 
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tetrad (𝑄, 𝒄). Let us unpack this statement. First, the isomorphism between 𝒃 and 𝒄 can 

be expressed in more detail using Eq. 17 and Eq. 1: 

𝒃 = 〈𝜎 〉𝒙 + 〈𝜎 〉𝒙 + 〈𝜎 〉𝒙  ⟷  𝒄 = (𝑅 − 𝐺) ̂ + (𝑌 − 𝐵) ̂ + (𝑊 − 𝑆)𝒌. (22) 

Since each color vector is matched to a Bloch vector, phenomenal color space must be 

isomorphic to Bloch space. This is schematized in Fig. 3.  

 

Figure 3. Color space as the phenomenal dual of Bloch space (see Fig. 2). Hering’s six basic colors 
are the phenomenal dual aspect of the unit vectors ±𝒙 , ±𝒙 , ±𝒙  in Bloch space. The lightness 
axis in phenomenal color space corresponds to the 𝑥 -axis in Bloch space. The hue circle in 
phenomenal color space corresponds to the complex unit circle in Bloch space.  

Substituting Eq. 18 into the left-hand side of Eq. 22 yields the following component-by-

component version of Eq. 22: 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑅 − 𝐺, (23a) 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑌 − 𝐵, (23b) 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑊 − 𝑆. (23c) 

Notice that in Eq. 23 opponent processes in Bloch space correspond to opponent 

processes in color space (more on this in Section 3.3 below). The correspondence 
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Pure Black
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Hue Circle

Midgray
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between 𝑁 and 𝑄 completes the isomorphism between (𝑁, 𝒃) and (𝑄, 𝒄). Using Eq. 20 

above we can express this correspondence as the fourth component of Eq. 23:  

𝑁 = 〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 + 〈|−𝒙 ⟩⟨−𝒙 |〉 ⟷ 𝑄. (23d) 

 

Finally, from a comparison of Figs. 2 and 3 we immediately see that the suggested 

isomorphism between phenomenal color space and Bloch space means that there is a 

correspondence between Hering’s six elementary color sensations and the six 

elementary Bloch vectors in Bloch space, i.e., ±𝒙 , 𝑖 = 1, 2, 3: 

−𝒙 = (0, −1)  ⟷  Pure uGreen, +𝒙 = (0, +1)  ⟷  Pure uRed,  (24a) 

−𝒙 = (0, −𝑖)  ⟷  Pure uBlue, +𝒙 = (0, +𝑖)  ⟷  Pure uYellow,  (24b) 

−𝒙 = (−1,0)  ⟷  Pure Black, +𝒙 = (+1,0)  ⟷  Pure White.  (24c) 

3.2 Preparing the mixture for QQST 

The hypothesis H suggests that color percepts are phenomenal dual aspects of qubit 

mixed states reconstructed through QQST. But how do these mixed states come into 

being in the first place? It is here that we finally make contact with the physiological 

machinery of the visual system. I suggest that the role of the complex physiological 

machinery that has been implicated in the processing of color is to prepare the qubit 

mixture for QQST. More specifically, when a light stimulus strikes a region of the retina, 

it differentially activates the L-, M-, and S-cones in the region, depending on the spectral 

composition of the light. The output of the cones then feeds the opponent cells and 

other color-sensitive cells along the visual pathway. It is suggested that the role of these 
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cells is to ‘encode’, so to speak, a qubit mixture according to the spectral distribution of 

the light stimulus.  

 

How is this encoding performed? Based on neurophysiological results it commonly 

assumed that there exist six populations of color-sensitive cells in the early stages of the 

visual system (see, e.g., Palmer, 1999, chapter 3): (𝐿 − 𝑀)- and (𝑀 − 𝐿)-cells, 

(𝐿 + 𝑀) − 𝑆 - and 𝑆 − (𝐿 + 𝑀) -cells, (𝐿 + 𝑀 + 𝑆)-, and −(𝐿 + 𝑀 + 𝑆)-cells. A 

possible scheme for the encoding of the qubit mixture is one where each type of color-

sensitive cell creates an ensemble of qubits in a certain mixed state. Here is a specific 

encoding scheme: 

(𝐿 − 𝑀) ⟶ 𝐼 𝛼 𝒙 + 𝛽 𝒙 +𝛾 (−𝒙 ) ≈ 𝐼 𝛼 𝒙 , (25a) 

(𝑀 − 𝐿) ⟶ 𝐼 𝛼 (−𝒙 ) + 𝛽 𝒙 + 𝛾 𝒙 ≈ 𝐼 𝛼 (−𝒙 ), (25b) 

(𝐿 + 𝑀) − 𝑆  ⟶ 𝐼 𝛼 𝒙 + 𝛽 𝒙 + 𝛾 𝒙 ≈ 𝐼 𝛽 𝒙 , (25c) 

𝑆 − (𝐿 + 𝑀)  ⟶ 𝐼 𝛼 (−𝒙 ) + 𝛽 (−𝒙 ) + 𝛾 (−𝒙 ) ≈ 𝐼 𝛽 (−𝒙 ), (25d) 

(𝐿 + 𝑀 + 𝑆)  ⟶ 𝐼 𝒙 , (25e) 

−(𝐿 + 𝑀 + 𝑆)  ⟶ 𝐼 (−𝒙 ), (25f) 

where 𝛼 , 𝛽 , 𝛾 ≥ 0, k = r, g, y, b, are constant parameters determined by the 

physiological or biophysical properties of the cells, whereas the coefficients 0 ≤ 𝐼 ≤ 1, 

n = r, g, y, b, w, s, represent the intensity of the cells’ outputs. Notice that the mixed 

states in Eq. 25 are written in terms of Bloch vectors. Since these vectors must be 

contained within the Bloch ball, we have the constraint that 0 ≤ 𝛼 + 𝛽 + 𝛾 ≤ 1, 

k = r, g, y, b. The conspicuous difference between the bottom two equations and the 
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upper four in Eq. 25 will be explained in Section 3.3. To sample Bloch space as fully as 

possible, the constant parameters in Eq. 25 should obey 𝛼 ≫ 𝛽 , 𝛾  in Eq. 25a, 𝛼 ≫

𝛽 , 𝛾  in Eq. 25b, 𝛽 ≫ 𝛼 , 𝛾  in Eq. 25c, and 𝛽 ≫ 𝛼 , 𝛾  in Eq. 25d. This leads to the 

approximations shown on the right-hand side of Eqs. 25a–d. The decision of which of 

the Bloch vectors ±𝒙 , ±𝒙  to take in each of the equations of Eq. 25 was based on the 

loci of unique hues in cone-excitation space (Webster et al., 2000). The decision of 

whether to take +𝒙  or −𝒙  in each of the Eqs. 25a–d was based on whether the 

spectral hue that the cell ‘attempts’ to encode is light or dark (spectral reds are darker 

than spectral greens, spectral yellows are lighter than blues (Gordon & Abramov, 1988)). 

Once the process of encoding is complete, the brain presumably combines the six 

ensembles of Eq. 25. It is the combined mixture that then undergoes QQST. Let us look 

at an example. Suppose that a region of the retina is illuminated with light whose 

spectral distribution is mostly concentrated around 574 nm, a wavelength that evokes a 

sensation of unique yellow (Webster et al., 2000). According to Eq. 25, the color-related 

physiological mechanisms would then create a qubit mixture whose resultant Bloch 

vector is in the vicinity of +𝒙  (see Eq. 25c). When QQST is applied to this mixture, Eq. 

24b shows that the phenomenal dual aspect will be of unique yellow. 

 

Since the sampling of Bloch space specified in Eq. 25 relies on physiological mechanisms, 

it is not expected to be uniform, symmetric, or full; rather, we can expect this sampling 

to be non-uniform, asymmetric, and only partial. Consequently, our actual phenomenal 

color space, which is the dual aspect of the sampled part of Bloch space, will not be the 
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spherical, uniform, and symmetric space of Fig. 3. Rather, it is expected to be irregular in 

shape, non-uniform, and asymmetric. The NCS color space, which, being a Hering-style 

color space, is a relative of the phenomenal color space of Fig. 3, confirms this 

prediction: it is grossly non-uniform, i.e., equal coordinate distances in it do not 

translate to equal perceptual distances (Kuheni, 2003, chapter 9; Kuehni, 2010; see 

Judd, 1968, for a discussion of uniformity in color spaces). Attempts to order our color 

percepts uniformly lead to color spaces with irregular shape, like the Munsell color 

space (Kuheni, 2003, chapter 2). Other asymmetries in our observed phenomenal color 

space are discussed in the next section. 

3.3 Explaining the properties of color experience using H  

The goal of this section is to show that H can explain various properties of color 

experience that are currently mysterious. To do this I will go through the questions 

posed in the Introduction, showing that using H we can give them elegant answers. For 

convenience, I repeat these questions here in bold. 

 

Why are color percepts four-dimensional?  

Color percepts have four dimensions because they are phenomenal dual aspects of the 

four parameters reconstructed by QQST, namely, the tetrad (𝑁, 𝒃) (or, put alternatively, 

〈𝜎 〉  and 〈𝜎 〉, 𝑖 = 1, 2, 3). 
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What are the mechanisms that instantiate the three perceptual channels of opponent 

colors? (As we have seen, neurophysiology hasn’t found these mechanisms.)  

Ex hypothesi, the three perceptual channels of opponent colors (see right-hand side of 

Eqs. 23a–c) are phenomenal dual aspects of the three pairs of opponent processes on 

the left-hand side of Eqs. 23a–c.  

 

Why do the outputs of the three color mechanisms fall into two phenomenally distinct 

groups (one achromatic, the other chromatic)? Or, looked at from a different 

perspective, why is it that the outputs of two of the three color mechanisms share a 

common phenomenal attribute (hue)? 

Recall from Section 2.1 that when pure qubit states, which exist in ℂ , are mixed in an 

ensemble (or become entangled with other quantum systems), the resulting Bloch-

space representation is in ℝ × ℂ. (This ‘demotion’ is due to the loss of the global phase 

of qubit pure states; see details in Sections 2.1 and 2.2.) More specifically, as Eq. 17 

shows, the Bloch vectors reconstructed by QQST are given by 𝒃 = (〈𝜎 〉, 〈𝜎 〉 +

𝑖〈𝜎 〉) ∈ ℝ × ℂ. Combining this expression for 𝒃 with Eqs. 23a–c we see that the fact 

that the two chromatic channels have a shared phenomenal attribute (hue) that is 

different from the phenomenal attribute of the achromatic channel (lightness) has a 

mathematical correlate in Bloch space: the channels 〈𝜎 〉 and 〈𝜎 〉, which correspond to 

the chromatic channels in color space, belong to ℂ in ℝ × ℂ, whereas the channel 〈𝜎 〉, 

which corresponds to the achromatic channel in color space, belongs to ℝ in ℝ × ℂ. To 
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put things more succinctly, H suggests that (a) the mathematical attribute of belonging 

to the ℂ component Bloch vectors gives rise to the phenomenal attribute of hue in color 

space; (b) the mathematical attribute of belonging to the ℝ component of Bloch vectors 

gives rise to the phenomenal attribute of lightness in color space.  

 

Why are there four unique hues? (Recall that neurophysiology hasn’t found the neural 

correlates of these hues.)  

In the previous answer it was suggested that the phenomenal attribute of hue is the 

dual aspect of the ℂ component of Bloch vectors. We now notice from examining Figs. 2 

and 3 that the four unique hues are phenomenal dual aspects of Bloch vectors that have 

a unique mathematical property: their ℝ component is zero while their ℂ component is 

either exclusively real or exclusively imaginary. Examples of this can be seen explicitly in 

Eqs. 24a–b for the case of the pure unique hues: they are the phenomenal dual aspects 

of the Bloch vectors ±𝒙 = (0, ±1)  and ±𝒙 = (0, ±𝑖) . Recall that the four unique 

hues are the unmixed examples of each of the four hue categories. We therefore see 

that according to H, mixed hues correspond to Bloch vectors whose ℂ component mixes 

real and imaginary numbers; by contrast, Bloch vectors whose ℂ component does not 

mix real and imaginary numbers give rise to unmixed hues, namely, to the unique hues. 

 

Why is it that the gamut of all hues can be ordered in a closed continuum?  
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The answer to this age-old puzzle (Purves & Yegappan, 2017; Shepard, 1994) is clear 

from a comparison of Figs. 2 and 3: the hue circle is the phenomenal dual aspect of the 

complex unit circle in Bloch space. A comment is in place here, however. Recall from 

Section 3.2 that in the preparation of the ensemble that undergoes QQST the brain 

combines several mixed states together (see Eq. 25). As a result, the combined mixture 

cannot be in a pure state (unless the stimulus is of pure white or pure black because 

then Eqs. 25e–f do allow pure states, for 𝐼 = 1 or 𝐼 = 1). Consequently, the hue circle 

of pure hues that appears in Fig. 3 is unattainable by the brain. Attainable are only hue 

circles whose hues are not 100% pure. (Note that this is essentially due to the same 

reasons discussed in the Introduction of why three independent opponent-processes 

mechanisms lead to a hue square rather than a hue circle.) This is indeed what is 

observed: even the purest hues, which are evoked by spectral colors, do not exhibit 

100% purity (Gordon & Abramov, 1988). This inability of the brain to fully sample Bloch 

space relates to the discussion at the end of Section 3.2 as to the implications of the 

non-uniform and only partial sampling of Bloch space by the brain.  

 

Why is it that white and black, i.e., the two achromatic opponent colors, can 

perceptually coexist in one color, but the two elementary colors of each of the 

chromatic opponent pairs are mutually exclusive?  

If we substitute Eq. 21 into the left-hand side of Eq. 22, we obtain the same 

correspondences as in Eqs. 23a–c but formulated in a way that will give us more insight: 
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〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − (1 − 〈|+𝒙 ⟩⟨+𝒙 |〉)  ⟷  𝑅 − 𝐺, (26a) 

〈𝜎 〉 = (1 − 〈|−𝒙 ⟩⟨−𝒙 |〉) − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑌 − 𝐵, (26b) 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑊 − 𝑆. (26c) 

Separating each of the correspondences in Eq. 26 into its constituents we find 

〈|+𝒙 ⟩⟨+𝒙 |〉  ⟷  𝑅, (27a) 

1 − 〈|+𝒙 ⟩⟨+𝒙 |〉  ⟷  𝐺 = 1 − 𝑅, (27b) 

〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝐵, (27c) 

1 − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑌 = 1 − 𝐵, (27d) 

〈|+𝒙 ⟩⟨+𝒙 |〉 ⟷  𝑊, (27e) 

〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑆. (27f) 

Notice that 𝐺 = 1 − 𝑅 and 𝑌 = 1 − 𝐵. That is, 𝐺 and 𝑌 do not exist as independent 

processes.7 To directly see the implications of this realization, we substitute Eq. 27 back 

into Eq. 26, slightly reorganize terms, and obtain 

〈𝜎 〉 = 2〈|+𝒙 ⟩⟨+𝒙 |〉 − 1 ⟷  2𝑅 − 1, (28a) 

〈𝜎 〉 = 1 − 2〈|−𝒙 ⟩⟨−𝒙 |〉 ⟷  1 − 2𝐵, (28b) 

〈𝜎 〉 = 〈|+𝒙 ⟩⟨+𝒙 |〉 − 〈|−𝒙 ⟩⟨−𝒙 |〉  ⟷  𝑊 − 𝑆. (28c) 

Equation 28 explains why the two elementary colors in the achromatic opponent pair, 

i.e., white and black, can be simultaneously perceived in one color, whereas the two 

elementary colors of each of the chromatic opponent pairs are mutually exclusive. Let 

us start with Eq. 28c. Since both the expectation values 〈|+𝒙 ⟩⟨+𝒙 |〉 and 〈|−𝒙 ⟩⟨−𝒙 |〉 

 
7 Of course, we could have chosen 𝑅 and 𝐵 as the dependent processes. Here they are the independent 
processes only because in Eq. 21 we arbitrarily chose to measure the probability of the state |+𝒙 ⟩ from 
the pair |±𝒙 ⟩ and the probability of the state |−𝒙 ⟩ from the pair |±𝒙 ⟩. 
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are measured during QQST, both their corresponding processes in color space, i.e., 𝑊 

and 𝑆, respectively, exist as independent processes. As a result, we have conscious 

access to both the white and black contents of a color percept. By contrast, Eqs. 27a–b 

argue that the outputs of the two chromatic channels do not arise from a pair of 

opponent processes. That is, in stark contrast to the achromatic channel, in the 

chromatic channels there are no two separate and independent processes. Rather, each 

of these channels exists as a one-dimensional continuum that stretches from −1 to 1. 

Thus, we never perceive red and green simultaneously because there are no separate 

red and green processes; there is only one process whose extremum values are pure 

unique red and pure unique green. The same, mutatis mutandis, applies to yellow and 

blue.  

 

Why do colors additively mix according to the center of gravity principle (Eq. 2)?  

This is because Eq. 2 for colors is the phenomenal dual of Eq. 15 for Bloch vectors. 

 

How is it that the phenomenal color space of dichromats is three-dimensional? Why, 

then, is the phenomenal color space of monochromats only one-dimensional and 

restricted to lightness? 

Let us take of example a dichromat who is a protanope (missing the L-cone). 

Presumably, the (𝐿 − 𝑀)- and (𝑀 − 𝐿)-cells in this person are not functional. However, 
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the (𝐿 + 𝑀) − 𝑆 - and 𝑆 − (𝐿 + 𝑀) -cells do survive, albeit as (𝑀 − 𝑆)- and 

(𝑆 − 𝑀)-cells. Now, according to Eqs. 25c–d, these cells will encode Bloch vectors that 

have some small components in the ±𝒙  directions. Consequently, when QQST applies 

measurements along the ±𝒙  directions (Eq. 23a), the result of these measurements 

will not be zero. We conclude that residual red or green perceptions will be evoked in 

such a person. Since the components along the ±𝒙  directions are small, the size of the 

stimulus, its intensity, and its purity must be high, as indeed observations show 

(Broackes, 2010). The explanations for the other types of dichromats are analogous.  

 

For monochromats, the situation is different. Since a monochromat has only a single 

type of cone functional, the physiological channels (𝐿 − 𝑀), (𝑀 − 𝐿), (𝐿 + 𝑀) − 𝑆 , 

and 𝑆 − (𝐿 + 𝑀)  are all inactive. The only surviving physiological channels are 

(𝐿 + 𝑀 + 𝑆) and −(𝐿 + 𝑀 + 𝑆), but they collapse to 𝐿/𝑀/𝑆 and −𝐿/−𝑀/−𝑆, 

depending on which cone is functional. Since the data shows that the phenomenal color 

space of monochromats is one-dimensional and is restricted to lightness (Nordby, 1990; 

Sharpe et al., 1999), we must conclude that the mixture encoding performed by the 

physiological channels (𝐿 + 𝑀 + 𝑆) and −(𝐿 + 𝑀 + 𝑆) has only ±𝒙  components 

without any ±𝒙  or ±𝒙  components. Otherwise, QQST along the ±𝒙 , ±𝒙  directions 

in Bloch space (Eqs. 23a–b) would not yield zero and the monochromat would have 

residual hue perception. Therefore, Eqs. 25e–f show an exact encoding along the ±𝒙  

directions. Now, this hypothesized ability of the physiological channels (𝐿 + 𝑀 + 𝑆) and 
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−(𝐿 + 𝑀 + 𝑆) to prepare a mixed state exactly along the ±𝒙  components in Bloch 

space is suspicious. How can such precision be accomplished? The only way this can be 

accomplished is if the encoding along the ±𝒙  components and the measurement along 

these directions use the same physical process. 

 

As an aside, notice that the meaning of Eqs. 25e–f is the brain is able to generate pure 

quantum states in the case of pure white and pure black stimuli. In other words, when a 

person views a strong white stimulus, H predicts that somewhere in the brain there 

should be an ensemble of qubits in a pure state. This prediction could perhaps serve in 

the future to locate the qubit system that presumably gives rise to our color sensations.  

 

What is the nature of the relationship between lightness and brightness? Do they 

indeed share a single dimension? 

Equation 23d allows us to multiply the left- and right-hand sides of Eq. 23c by 𝑁 and 𝑄, 

respectively. Using Eq. 19 and Eqs. 26e–f we then arrive at the following 

correspondence 

〈|+𝒙 ⟩⟨+𝒙 |〉 ⟷ 𝑊 , (29a) 

〈|−𝒙 ⟩⟨−𝒙 |〉 ⟷ 𝑆 , (29b) 

where 𝑊 = 𝑄 ⋅ 𝑊 and 𝑆 = 𝑄 ⋅ 𝑆 are the unnormalized versions of the processes 𝑊 

and 𝑆. (Note that because in reality 𝑊  and 𝑆  precede 𝑊 and 𝑆, these relationships 
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should actually be written as 𝑊 = 𝑊 𝑄⁄  and 𝑆 = 𝑆 𝑄⁄ .) From Eq. 24d and Eq. 29, we 

see that the color-space equivalent of Eq. 20 is 

𝑊 + 𝑆 = 𝑄. (30) 

Equation 30 answers both questions above. First, it clarifies the relationship between 

lightness and brightness: the basic constituents of both lightness and brightness are 

whiteness and blackness. More specifically, lightness arises from the difference of the 

normalized values of whiteness and blackness (Eq. 28c); brightness arises from the sum 

of the unnormalized values of whiteness and blackness (Eq. 30). Second, Eq. 30 makes it 

clear that in general lightness and brightness do not share a single dimension, as has 

been claimed (Gilchrist, 2006, chapter 9). Rather, lightness and brightness are distinct 

mathematically (compare Eq. 28c and Eq. 30) and therefore distinct phenomenally. 

However, Eq. 30 also explains why an identity between brightness and whiteness occurs 

for unrelated achromatic colors (Shevell, 2003) and for related achromatic colors at high 

levels of luminance (Gilchrist, 2006, chapter 9). In both these cases we can take the 

value of 𝑆  in Eq. 30 to be zero. Consequently, this equation simplifies to 

𝑊 = 𝑄, (31) 

which is exactly the observed phenomenon.  

 

Notice that together Eq. 28c and Eq. 30 make a testable prediction: for a constant level 

of whiteness in a color, increasing the blackness level should decrease the color’s 

lightness and increase its brightness (and vice versa). In other words, for a constant level 
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of whiteness, brightness should increase as lightness decreases. This prediction is 

beautifully confirmed in spectral colors. Violet (400 nm) is both the brightest and the 

darkest spectral color, while yellow (580 nm) is both the least bright and the lightest 

spectral color (Shevell, 2003). Similarly, spectral colors above 610 nm (which appear 

yellowish-red or red) are both brighter and darker than spectral colors in the range 480–

510 nm (which appear bluish-green or green) (ibid.).8  

4. Discussion 

The properties of our color experience have been studied for centuries. Although vast 

amounts of perceptual, psychophysical, and neurophysiological data on color 

experience have been accumulated, explanations for its phenomenal properties are still 

lacking. It was shown here that some of these phenomenal properties can be explained 

if it is hypothesized that our color percepts are the phenomenal dual aspects of qubit 

mixed states reconstructed through quantum state tomography.9 (For conciseness, this 

hypothesis was denoted H.) As Section 3.3 showed in detail, an intriguing feature of the 

proposed dual-aspect theory is that it suggests that the mathematical properties of 

 
8 These comparisons of brightness and lightness of spectral colors were all performed at equal luminance 
levels. I am assuming here that equal luminance levels also mean equal whiteness levels. To see why, note 
that the luminance level at a particular wavelength results from the product of the light energy at the 
wavelength and the luminous efficiency of the wavelength, denoted 𝑉  (Lennie et al., 1993). Following 
Hurvich and Jameson (1957), I am taking the whiteness spectral sensitivity function to be identical to the 
luminous efficiency function. This assumption is supported by the fact that—as was predicted by Hurvich 
and Jameson—the luminous efficiency for (induced) blackness is exactly the inverse of the luminous 
efficiency function (Cicerone et al., 1986; Werner et al., 1984). Given that the whiteness spectral 
sensitivity function equals the luminous efficiency function, equal luminance levels mean equal whiteness 
levels, as required. 
9 Remarkably, the nomenclatures used in color science and in quantum mechanics are virtually identical: 
both fields use a terminology of pure states and mixtures. I do not know whether the quantum 
mechanical nomenclature, which evolved somewhat later than the one of color science, was affected by 
the latter. 
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qubit mixed states are ‘translated’ in a law-like manner to phenomenal properties of 

color percepts. This ‘translation’ does not—and cannot—explain why color has the 

specific intrinsic qualities that it has (the redness of red, the greenness of green, etc.). 

What it does explain, however, is the properties of these qualities. For example, one of 

the great successes of H is that it explains why white and black, i.e., the two achromatic 

opponent colors, can perceptually coexist in one color, whereas the two elementary 

colors of each of the chromatic opponent pairs (red–green and yellow–blue) are 

mutually exclusive. Another important example is the ability of H to solve the riddle of 

why the gamut of all hues can be ordered in a closed continuum. If, as H argues, 

phenomenal properties are dual aspects of mathematical properties of a physical 

system, then it must be the case that mathematical properties of physical systems really 

exist (of course, this assumes that our consciousness really exists, something that I take 

to have been proven by Descartes). Such a possibility dovetails nicely with an 

ontological world view advocated by Tegmark (2008) and Carroll (2022) (also see Woit, 

2015) wherein the physical world around us is not merely described by mathematical 

objects and equations, but in fact is those objects and equations. A glaring lacuna in a 

such an ontology, however, is the absence of phenomenal experience. If we generalize 

H to other types of phenomenal experience, it could fill this lacuna. On this 

generalization, all types of phenomenal experience (color, taste, odor, sound, etc.) are 

dual aspects of quantum states reconstructed through quantum state tomography. 

Quantum systems that are more complex than a qubit, which is the simplest quantum 

system, are expected to give rise to types of phenomenal experience than are more 
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complex than color (notice, then, that on this hypothesis, color is the simplest type of 

phenomenal experience). 

 

Naturally, an unorthodox hypothesis such as H raises a host of issues and questions. 

What is the identity of the hypothesized qubit mixture? How exactly does the brain 

create and ‘encode’ this mixture (see Section 3.1)? What is the system performing the 

QQST? And a myriad of other hard questions. Since we don’t have answers to these 

questions, it would be best if we could simply test H directly. There might just be a way 

to do that. In a recent work, Forder et al. (2017) have found a neural signature of the 

unique hues: event-related potentials (ERPs) evoked by unique hues peaked significantly 

earlier than ERPs evoked by non-unique hues. A slight expansion of Forder et al.’s 

experiments may be used to test H. Since QQST is a serial process (see details in Section 

2.4), information regarding the brightness, lightness (i.e., white–black), red–green, and 

yellow–blue components of a color is collected successively. Specifically, the quantum 

measurements that give rise to brightness and lightness are most likely performed 

before the measurements that give rise to hue. Therefore, assuming that the ERPs 

recorded by Forder et al. are echoes of the presumed QQST process, we can expect the 

ERPs of achromatic colors to peak before the ERPs of the unique hues. 
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