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Abstract. Accounting for the epistemic contribution of deduction has been
a pervasive problem for logicians interested in deduction, such as, among
others, Jakko Hintikka. The problem arises because the conclusion validly
deduced from a set of premises is said to be “contained” in that set; because
of this containment relation, the conclusion would be known from the mo-
ment the premises are known. Assuming this, it is problematic to explain
how we can gain knowledge by deducing a logical consequence implied by
a set of known premises. To address this problem, we offer an alternative
account of the epistemic contribution of deduction as the process required
to deduce a conclusion or a theorem, understanding such a process not only
in terms of the number of steps in the derivation but also, more impor-
tantly, in terms of the reason for or justification for every step. That is, we
do not know a proposition unless we have a justification or proof of that
proposition. With this goal in mind, we develop a justification logic system
which exhibits the epistemic contribution of a deductive derivation as the
resulting justified formula.

Keywords: epistemic contribution; propositional logic; justification logic;
deduction

1. Introduction

In (1970), Jaakko Hintikka referred to the problem of accounting for
the epistemic contribution of deduction as the “scandal of deduction.”
The problem had been acknowledged by others before Hintikka: Mill
(1843, Book II, chap. iii, §1), Cohen and Nagel (1934) who referred
to it as “the paradox of inference,” or Dummett (1978) who labeled it
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as “the justification of deduction.” According to (Parikh, 2008), Plato
had already alluded to this problem in Meno. Here we take Hintikka’s
exposition of the problem as our starting point because it is the one that
has received the most attention. According to Hintikka, the problem
seems to arise from the “tautological” or “analytical”1 nature of deduc-
tion: the conclusion validly deduced from a set of premises is said to be
“contained” in that set. Because of this relation of containment, it has
been problematic to explain how deducing the conclusion implied by a
set of known premises yields an epistemic contribution.

However, even if it is problematic to explain the epistemic contribu-
tion, it is actually the case that deduction yields an epistemic contribu-
tion for humans and other non-idealized epistemic agents with bounded
cognitive resources. Given these limits, humans are not logically omni-
scient, that is, we do not know all the logical consequences implied by our
current knowledge, but we can actually get to know some of them if we
deduce them. Deducing such logical consequences leads to knowledge of
them not only because it allows us to be aware of them, but also because
it provides us with the reasons or justification for accepting them. In
view of these facts, the aim of this paper is to offer an alternative ac-
count of the epistemic contribution of deduction in terms of the process
required to deduce a specific conclusion or a theorem, understood not
only in terms of the number of steps in the derivation, but also in terms
of the reasoning needed to justify each step. To explicitly exhibit such a
process, in the fourth section of this paper, we present a system of justi-
fication logic which will allow us to indicate the epistemic contribution
of a deductive derivation as the resulting justified formula.

The framework of justification logic originated in the logic of proofs
LP developed by Sergei Artemov (1994, 1995); the rough idea behind LP

is to “extend classical propositional logic by adding symbolically repre-
sented proofs into the language of the system” (Artemov and Nogina,
2005, p. 1061). LP is inspired by constructive (intuitionistic) mathemat-
ics, where truth is understood in terms of the existence of a proof, that
is, a mathematical statement is accepted as true only if it has a proof. In
epistemic terms, this means that it is necessary  though not sufficient 
to have reasons, a proof or a justification to know something. LP intends

1 Because of the deduction theorem, whenever a set of premises Γ entail a conclu-
sion α, the conditional Γ → α is a tautology; thereby, we have the tautological nature
of deduction. To understand how such a “tautological” nature of deduction has been
equated to its presumed “analytical” nature, see (Primiero, 2007, Chapter 2).
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to capture this idea and express it in the language: the existence of a
proof for a statement S that is true would be formalized as t : S, thereby
expressing within the language that t is a proof for S.

Thus, LP “may be regarded as a device that makes reasoning about
knowledge explicit and keeps track of the justification” (Artemov and
Nogina, 2005, p. 1061). Therefore, justification logic can show that the
epistemic contribution of finding the justified formula t : ϕ is greater
than just having the formula ϕ without a justification, which can be
acknowledged upon noting that justified formulas of the form t : ϕ are
meant to convey that t is a reason  or justification  for ϕ. Taking
advantage of this feature in the language of justification logic, we shall
present a justification logic system with enough power to deduce or de-
rive tautologies or theorems of propositional logic, explicitly exhibiting
the epistemic contribution of the derivations. Although our system has
enough power to deduce all tautologies of propositional logic, it doesn’t
include all tautologies as axioms of the system, which prevents logical
omniscience. By preventing logical omniscience, we give space for the
process that generates knowledge by deduction.

The remaining parts of this paper are organized in the following way.
The second section motivates our proposal by discussing some literature
on the problem of accounting for the epistemic contribution of deduc-
tion. Since it is not the aim of this paper to provide a comprehensive
survey of the literature on this topic, we focus on some relevant and
representative reactions to the problem of accounting for the epistemic
contribution of deduction; these reactions range from the philosophical
(represented by Cohen and Nagel) to the technical, which include the
tradition of logical responses (initiated by Hintikka), but have evolved
to incorporate theoretical tools and insights from computer science and
mathematics (Duží, Abramsky, D’Agostino and Floridi). Given the lack
of consensus on how to account for the epistemic contribution of deduc-
tion, in the third section we provide an alternative proposal in the form
of a justification logic system which allows us to deduce or derive the
tautologies of propositional calculus accompanied by their respective jus-
tification, thereby rendering explicit their epistemic contribution within
the language of the system.
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2. A selection of the literature

The precise epistemic contribution of deduction has been controversial
and puzzling within philosophy and scientific disciplines interested in
deductive inferences and knowledge, such as cognitive psychology and
other cognitive sciences. According to the standard understanding of
deduction, a conclusion that is logically implied by a set of premises is
“contained” in them. Because of this relation of containment, it has been
problematic to explain how knowledge can be gained by deduction. Ian
Rumfitt provides a concise description of the problem:

some philosophers have been puzzled by how a thinker can gain knowl-
edge by deduction. There are two problems here: first, how exercising
a deductive capacity can yield knowledge; second, how it can yield
knowledge that the thinker does not posses already?

(Rumfitt, 2008, p. 62)

The aim of this paper is to address the latter question  one which invites
an inquiry into the epistemic contribution of deduction.

Even though it seems to be widely accepted that deduction yields
an epistemic contribution by allowing us to gain knowledge, it is still
hard to understand exactly how this can happen if the conclusion of a
valid deduction is contained in the previously known premises. As Rohit
Parikh points out, the question can be traced as far back as Plato:

In deductive reasoning, if φ is deduced from some set Γ, then φ is already
implicit in Γ. But then how do we learn anything from deduction?
That we do not learn anything is the (unsatisfying) answer suggested
by Socrates in Plato’s Meno. (Parikh, 2008, p. 459)

However, as Parikh notes, such an answer is not only unsatisfying, but
also untenable given its commitment to logical omniscience.

Philosophers and logicians working on epistemic logic understand
logical omniscience as an agent’s ability to know all the logical conse-
quences that follow from her knowledge (and to know all the tautologies
as well); since no real agent possesses such ability, logical omniscience is
considered a problem. Moreover, a logically omniscient agent would not
be able to gain knowledge by deducing logical consequences; this is the
case because such kind of agent would not need to deduce any logical
consequences: she would know all of them from the beginning. Hence,
to account for the epistemic contribution of deduction, a logical system
should avoid any commitment to logical omniscience. However, even
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with this desideratum in mind, it is not easy to explain how deducing
the conclusion implied by known premises could yield an epistemic con-
tribution. For Morris Raphael Cohen and Ernest Nagel, this is so hard
to explain that it leads to a paradox:

If in an inference the conclusion is not contained in the premises, it
cannot be valid; and if the conclusion is not different from the premises,
it is useless; but the conclusion cannot be contained in the premises and
also possess novelty; hence inferences cannot be both valid and useful.

(Cohen and Nagel, 1934, p. 173)

Cohen and Nagel’s way of dealing with the paradox is to point out that
the sense of novelty we experience in deducing something is merely psy-
chological (Cohen and Nagel, 1934, p. 174); the agents may be surprised
by the conclusion, but this does not mean that its deduction yields any
epistemic contribution.

Jaakko Hintikka criticizes the kind of response provided by Cohen
and Nagel to the paradox, writing that

[i]f no objective, non-psychological increase of information takes place
in deduction, all that is involved is merely psychological conditioning,
some sort of intellectual psycho-analysis, calculated to bring us to see
better and without inhibitions what objectively speaking is already be-
fore our eyes [. . . and] all the multifarious activities of a contemporary
logician or mathematician that hinge on deductive inference are as many
therapeutic exercises calculated to ease the psychological blocks and
mental cramps that initially prevented us from being, in the words of
one of these candid positivists, “aware of all that we implicitly asserted”
already in the premises of the deductive inference in question.

(Hintikka, 1970, p. 135)

Hintikka acknowledges that deduction yields an epistemic contribution,
and he refers to the long-standing failure to account for it as the scandal
of deduction, pointing out that we cannot even properly answer first year
students who ask how we could learn from deduction, given that it is
“‘tautological’ or ‘analytical’ and that logical truths have no ‘empirical
content’.” (Hintikka, 1970, p. 135) Hintikka realizes that if deduction
only “brings us to see what is already before our eyes” then it is hard
to make sense of why it often seems that we actually do not know these
things.

To address the problem, Hintikka develops a proposal in which he
distinguishes between depth information and surface information; deduc-
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tion can only increase the latter in a set of deductions within polyadic
predicate calculus, but neither within monadic predicate calculus (a frag-
ment of first-order logic in which all relation symbols take only one ar-
gument and there are no function symbols) nor propositional logic. It is
worth mentioning that Hintikka’s proposal is framed within the classi-
cal semantic information theory developed by Yehoshua Bar-Hillel and
Rudolf Carnap (1952). According to this theory, logical truths are un-
informative while contradictions are maximally informative. The reason
underlying this apparently counterintuitive result goes back to Carnap’s
notion of intension.

The intension of a declarative sentence is identified as the set of pos-
sible worlds in which the sentence is true; tautologies are true in every
possible world and contradictions are false in every possible world. The
semantic information contained in a sentences is identified as the set
of possible worlds in which the sentence is false, which are the worlds
excluded by the truth of the sentence. Accordingly, the semantic infor-
mation contained in a sentence s is expressed as its content, which is
denoted as ‘cont’ and is defined as the measure m (which assigns the
same probability to every world) of the complement of the sentence s:

cont(s) = 1 −m(s).

A tautology t is a sentence that is logically true in every possible world:

m(t) = 1.

So, according to the Bar-Hiller-Carnap theory of semantic information,
the content of a tautology t (the number of possible worlds it excludes)
would be:

cont(t) = 1 − 1 = 0.

Hintikka realized that if tautologies are uninformative, deduction is also
uninformative because in classical logic a sentence ψ can be deduced
from a finite set of premises φ1, . . . , φn if and only if the conditional
φ1, . . . , φn → ψ is a tautology. Under the Bar-Hiller-Carnap theory of
semantic information, deduction can hardly provide anything new in
terms of knowledge.

Hintikka’s proposal that distinguishes between deep information and
surface information has not been further developed because it fails to
apply to deductions in the propositional calculus.2 However, since many

2 For an extensive and detailed explanation of Hintikka’s proposal, we recom-
mend (Sequoiah-Grayson, 2008).
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deductions that take place in the propositional calculus yield an epis-
temic contribution, in the following section of this paper we shall present
a justification logic system capable of recovering all tautologies from the
propositional calculus exhibiting the work involved in each derivation,
which in turn exhibits its epistemic contribution.

In a similar vein to Hintikka’s reaction, Marie Duží reacts to the
paradox of inference and the scandal of deduction asserting that

as many fellow logicians and mathematicians will no doubt agree, the
conclusion of a valid argument is often very useful [. . . ]. It seems evident
that there is something that we learn when deducing the conclusion of
a sound argument. (Duží, 2010, p. 474)

To address the problem posed by the paradox of inference, Duží develops
an account of information to show how deduction can provide novel and
useful information. For this purpose, she appeals to a framework of
procedural semantics, in which the meaning of a sentence is modeled in
terms of constructions (which are abstract, algorithmically structured
procedures), which in turn are the vehicles of information.

In Duží’s framework of procedural semantics,

although analytically true sentences provide no empirical information

about the state of the world, they convey analytic information, in the
shape of constructions prescribing how to arrive at the truths in ques-
tion. (Duží, 2010, p. 473)

As a result, the novel and useful contribution of valid deduction can be
acknowledged in the metalanguage:

A construction of the conclusion may not occur in the premises; if it
does not we have to discover it, and the construction we discover is new
to us, hence epistemically useful and non-trivial.

Since such constructions are not syntactic objects, their discovery does
not take place within the language in which the deduction takes place. In
contrast, the proposal we present in the next section explicitly exhibits
the epistemic contribution of deduction within the language.

Along with Duží, another computer scientist puzzled by this problem
is Samson Abramsky, who considers that if deduction does not yield any
contribution, then it is not clear why we have to compute the logical
consequences implied by a set of premises in order to know such conse-
quences. According to him, the natural answer to the question ‘Why do
we compute?’ is
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to gain information (which we did not previously have!) But how is
this possible? [. . . ] Isn’t the output implied by the input? [. . . ] If
we extract logical consequences of axioms, then surely the answer was
already there implicitly in the axioms; what has been added by the
derivation?’ (Abramsky, 2008, p. 483)

Abramsky’s proposal to address this problem is framed within the field of
information dynamics in computer science, and it is focused on informa-
tion flow in computation, drawing upon game-based models of interactive
processes.

Although Abramsky talks about information rather than knowledge,
it is easy to see the epistemological dimension in his question: follow-
ing Duží, we just need to realize that if a valid argument is considered
uninformative because its conclusion is contained in the premises, and
uninformative arguments are considered epistemically useless, then valid
arguments are epistemically useless (Duží, 2010, p. 482). However, ac-
cording to Johan van Benthem and Maricarmen Martinez, “deduction is
useful for the purpose of ‘extracting information’ from the data at our
disposal” (van Benthem and Martinez, 2008, p 227). Furthermore it is
safe to assume that the information extracted in this way by an agent
will become part of her body of knowledge, which shows that deduction
can be informative and epistemically useful. Even though at the end
they suggest that some work on Kolmogorov complexity or the logic of
proofs includes elements to address the problem of accounting for the
epistemic contribution of deduction (although they do note that the in-
crease in information from the point of view of Kolmogorov complexity
would be too short), van Benthem and Martinez’s main goal is rather
to discuss the role of information in logic throughout various logical
developments.

Marcello D’Agostino and Luciano Floridi’s (2009) approach to the
scandal of deduction deserves special attention: they propose a solution
motivated by complexity measures, focusing specifically on the complex-
ity of the Boolean satisfiability problem (SAT). D’Agostino and Floridi
develop a hierarchy of propositional logics that are tractable; they com-
mence by distinguishing uninformative inferences from informative in-
ferences. While in the former the information carried by the conclusion
is obviously contained in the premises, in the latter the information car-
ried by the conclusion is not obviously contained in the premises, and
virtual information (the introduction of hypotheses or assumptions) is
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necessary in order to reach the conclusion. Such virtual information is
not even implicitly contained in the premises of informative inferences,
so every time a new assumption is introduced, information is increased.
According to D’Agostino and Floridi, this would be the source of the
intractability of full propositional logic.

To tackle the problem, D’Agostino and Floridi propose a family of
restricted logical deduction systems. The first step towards achieving
this family of deduction systems is to eliminate virtual information by
eliminating discharge rules, thereby leaving out informative inferences.
Although informative inferences are those which increase information,
they are left out because this sense of information is “overloaded” and
leads to logical omniscience. By eliminating discharge rules, D’Agostino
and Floridi achieve a tractable system of introduction and elimination
rules for propositional connectives (“intelim” for short) that are “ana-
lytical” (i.e. only lead to uninformative inferences).

Once they have achieved such a tractable system, D’Agostino and
Floridi redefine the meaning of logical operators in informational terms.
This new meaning given to the logical operator does not require any use
of virtual information. However, by redefining the meaning of logical
operators and proposing a tractable system in which problems such as
satisfiability (SAT) would be tractable, D’Agostino and Floridi no longer
rely on the intractability of SAT to show that deduction is informative.
Moreover, their tractable system does not have the expressive power of
classical propositional logic, although

the problem of gradually retrieving the full deductive power of classical
propositional logic by means of a bounded recursive use of virtual infor-
mation [. . . ] its iterated incremental use leads to more and more pow-
erful deductive systems [. . . ]. Although these systems are all tractable,
their growing computational complexity approaches intractability as
their deductive power approaches that of classical propositional logic.

(D’Agostino and Floridi, 2009, p. 276)

In D’Agostino and Floridi’s system, the problem known as Logical En-
tailment (LE) is tractable:

Intelim deducibility is a tractable problem. Whether a formula P is
intelim deducible from a finite set Γ of formulas can be decided in
polynomial (quadratic) time. (D’Agostino and Floridi, 2009, p. 296)

However, in classical propositional logic, LE or deciding whether some
formula is the logical consequence of a set of formulas is not a tractable
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problem; LE is equivalent to TAUT, which is coNP-complete (Arora
and Barak, 2009). The proposal we present in the next section differs
from D’Agostino and Floridi’s insofar as ours is developed within the
language of classical propositional logic from the beginning and remains
at that level. Moreover, the motivation for our proposal considers not
only complexity aspects, but also epistemic questions.

As we can see, the problem posed by the so-called scandal of de-
duction and the paradox of inference has been understood in different
ways and thereby has motivated the most diverse reactions. Philosophers
like Cohen and Nagel understood the problem in terms of the supposed
impossibility of accounting for the usefulness of valid deductions, which
led them to conclude that any novelty in deduction is due to a mere
psychological feeling of surprise. Unlike Cohen and Nagel, we claim that
deduction can increase knowledge, and in this way, yield a significant
epistemic contribution; to underpin this claim, we present a justification
logic system that exhibits the epistemic contribution of derivations in
the following section.

Hintikka understood the problem in terms of accounting for the in-
formation gains through deduction, so his reaction differed from that
of Cohen and Nagel. Hintikka acknowledged that deduction can give
us new information, and he tried to explain this by the aforementioned
distinction between surface information and depth information. This
distinction has inspired many developments in logic that in turn distin-
guish between implicit and explicit attitudes within a logical system, for
instance, between implicit and explicit knowledge. The main difference
between them is that the former is closed under logical consequence,
while the latter is not.

Under the kind of logical framework develop by Hintikka, agents
implicitly know all the logical consequences of any known proposition,
so even if they derive new knowledge by deduction at the explicit level,
they remain logically omniscient at the implicit level. Considering that
logical omniscience is a problem even if it remains in the domain of im-
plicit knowledge, we shall appeal to a logical framework that avoids any
commitment to logical omniscience, i.e., justification logic (see Artemov
and Kuznets, 2009). It is well known that agents with bounded cognitive
resources  such as humans  are not logically omniscient; because of
that, such agents do not know all the logical consequences of what they
already know, but if they deduce some of those logical consequences,
they would get to know them, thereby enlarging their knowledge. In
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that way, deducing such consequences amounts to an epistemic contri-
bution. The proposal we are going to develop in this paper is focused
on the epistemic contribution that results from enlarging our knowledge
through deduction. Unlike authors like Artemov and Kuznets (2009),
our focus is not on the problem of logical omniscience; we do not aim to
propose a solution for the problem of logical omniscience, but to account
for the epistemic contribution of deduction experienced by agents with
bounded resources.

Other authors, such as Duží, Abramsky, or van Benthem and Mar-
tinez, have understood the problem in terms of information, so their
reactions have been proposals also developed in terms of information.
In contrast, the aim of this paper is to offer an alternative account in
terms of knowledge and the epistemic contribution of deduction. To this
end, we shall present a logical system which shows how the process of
deducing logical consequences yields an epistemic contribution.

3. Justification Logic

There are infinitely many logical consequences implied by the current
knowledge of a non-ideal epistemic agent with bounded cognitive re-
sources  no matter whether the agent is human or artificial. Although
this kind of agent cannot know each and every single one of these con-
sequences, she can known some of them if she performs the relevant
deduction which, besides delivering an unknown proposition, provides
reasons that justify the new piece of knowledge. In this way, deduc-
tion yields an epistemic contribution because it presents the agent an
unknown proposition as well as the reasons that justify it. However,
this may not be fully clear when it is considered in a system like clas-
sical propositional calculus. For example, the epistemic contribution of
deriving r from premises p, p → q and (p → q) → (q → r) would be
contested because r is “contained” in the premises as the consequent of
the consequent of the third premise:

1. p premise
2. p → q premise
3. (p → q) → (q → r) premise
4. q MP 2, 1
5. q → r MP 3, 2
6. r MP 5, 4
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To address this potential objection to the epistemic contribution of
deduction we developed the system JŁ to show the epistemic contribution
of deduction as the process required to deduce a conclusion or a theorem,
understanding such process not only in terms of the number of steps
in the derivation, but more importantly, the reason or justification for
every step. The system JŁ is based on justification logic and it has
the advantage of exhibiting the epistemic contribution of a deductive
derivation as the resulting justified formula.

The main feature of justification logics is the introduction of justifi-
cation terms within the language. Justification terms intend to explicitly

capture or express the existence of justifications or reasons to hold propo-
sitions. Thus, instead of simply asserting a proposition that is known
to be true, the justification or reason for the truth of the proposition
should also be asserted. For this purpose, an epistemic operator is in-
troduced in the form of justification terms for the propositions that are
actually justified: t : P , which can be read as “P is justified by reason

t” or “t justifies P”, where t is the justification term. Hence, working
with a justification logic system will allow us to explicitly express the
epistemic contribution of deduction as the resulting justified formulas
from a derivation or deduction. As an illustration, let us contrast an
example from classical propositional logic with one from justification
logic. While in classical propositional logic it might not be clear what is
the epistemic contribution of deducing q from p and p → q, in justifica-
tion logic the epistemic contribution is clear because we can show that
reasons to hold the derived conclusion are not the same as the reasons
to hold the premises. Let’s say that p and p → q are justified by t1 and
t2 respectively, then q would be justified by t1 · t2.

p

p → q

q

t1 : p
t2 : p → q

t1 · t2 : q

While more conventional versions of epistemic logic systems provide
the formal tools to model what the agent knows when she derives a
conclusion, justification logic provides the formal tools to model why

the agent knows such conclusion, which reflects the process required for
knowledge acquisition through deduction. Let us contrast justification
logic with a standard system of epistemic logic S4, in which the modal
operator K is used to express that an agent knows a formula φ as Kφ.
In a justification logic system J4 if φ is known, then it is necessary to
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express the reason that justifies the knowledge of φ in terms of t : φ.3 In
this way the use of justification terms allows us to express the process
or the reasons that leads to knowledge of the formula.

However, t : φ is still pretty similar to Kφ. As a matter of fact, the
system J4 is analogous to S4. The logic of proofs LP, from which J4

evolved, incorporates modal logic S4 and intutionistic logic. The modal
logic axiom schemes Factivity and Positive Introspection present in S4

are also part of LP.4 Hence, the justification logic developed by Artemov
is a counterpart of the modal logic S4. Like other modal logic systems,
S4 has the inference rule known as Rule of Necessitation:

⊢ ϕ

⊢ �ϕ

In view of this rule, if a formula is a tautology in the system, it is
known by an epistemic agent. So according to the Rule of Necessitation,
agents are logically omniscient because they know all the tautologies in
S4. Given that LP is equivalent to S4 and includes all the tautologies of
propositional logic, it also lead to epistemically omniscient agents who
know all the tautologies of propositional logic.

In contrast, the system we present below as JŁ is not so strong.
JŁ does not include all tautologies of propositional logic nor the Rule
of Necessitation.That is, the system JŁ is a non-normal modal logic by
design. These lacks are by design, but they are not ad hoc since they obey
the goal of accounting for epistemic processes of non-idealized agents
with bounded cognitive resources, who do not posses knowledge of all the
tautologies of propositional calculus. Most of the time, if these agents
want to know a tautology, they have to deduce it, and even if it’s a
tautology, it would not count as knowledge until it has been properly
proven or justified. The system JŁ captures these facts. We characterize
the system JŁ in the following section.

3 It is a common practice to name modal logic systems by stringing axiom names
after K; e.g., KT, K4, and so on, with K itself as the simplest case. In the names of the
justification logic counterparts for such modal logic there is a substitution of J for K.

4 In modal logic, Factivity is represented by the axiom scheme �ϕ → ϕ, which
in justification logic is t : ϕ → ϕ. In modal logic, Positive Introspection is represented
by the axiom scheme �ϕ → ��ϕ; in LP Positive Introspection is t : ϕ → t : t : ϕ. !
is a one-place function symbol on justification terms known as Fact Checker ; if t is a
justification of something, !t is a justification that t is such justification.
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4. The epistemic contribution of deduction in JŁ

4.1. System JŁ

The majority of justification logic systems take the system J0 as the point
of departure (which is axiomatically defined in Artemov and Fitting,
2019), but since J0 includes all the tautologies of the language of classical
propositional logic among its axioms, we are going to deviate from this
point of departure because the goal of our system is to derive tautologies
and theorems, showing their epistemic contribution. However, like most
justification logic systems, we shall include Application and Sum axioms,
plus Modus Ponens as an inference rule. Since a justification logic system
equipped with nothing more than Application, Sum and Modus Ponens

would be even weaker than J0, which cannot prove that any formula has
a justification (see Artemov and Nogina, 2005), we will extend it with
schemes for Łukasiewicz’s axioms accompanied by their respective justi-
fications  hence the name “System JŁ”. We have chosen Łukasiewicz’s
axioms because this set of axiom schemes has enough power to derive
the set of all tautologies of propositional logic.5 The standard definitions
of a justification logic system (justification terms, Application and Sum

axioms, constant specification, etc.) are borrowed from (Artemov, 2008;
Artemov and Nogina, 2005; Artemov and Fitting, 2019).

Definition 4.1 (Justification terms). The set T of justification terms is
built from countably many constants in the set C of constant justification
terms, and countably many variables in the set V of variable justification
terms, given by

t ::= c | x | [t · t] | [t+ t]

where c ∈ C and x ∈ V .6

Definition 4.2 (Justification formulas). Justification formulas φ, ψ in
the set of F of justification formulas are built according to the following
grammar

φ, ψ ::= p | ¬φ | φ ∨ ψ | φ ∧ ψ | φ → ψ | t : φ

5 The choice of Łukasiewicz’s axioms may affect the length of the derivations, but
since there is no polynomially bounded propositional proof system, we hypothesize
that our system is a good as any other one in terms of the length of derivations.

6 Following (Artemov and Fitting, 2019), we will use brackets “[]” for terms, and
parenthesis “()” for formulas.
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where p is in the set P of countably many atomic propositions, con-
nectives are defined in the standard way, and t is in the set T . The
justification formula t : φ is read as ‘the terms t is a justification for φ.’

Definition 4.3 (System JŁ). Let φ, ψ be formulas in the set of F of
justification formulas, and t, s terms in the set T of justification terms.
The system is defined by the Application and Sum axioms, schemes
for Łukasiewicz’s axioms with a justification constant for each instance
of these axioms, Modus Ponens (MP) as an inference rule, plus one
additional rule to infer instances of justified applications, which we call
Application introduction:7

Application s : (φ → ψ) → (t : φ → [s · t] : ψ)

Sum s : ψ → [s+ t] : ψ, t : ψ → [s+ t] : ψ

Łukasiewicz’s Axiom 1 c1 : φ → (ψ → φ)

Łukasiewicz’s Axiom 2 c2 : φ → (ψ → χ) → ((φ → ψ) → (φ → χ))

Łukasiewicz’s Axiom 3 c3 : (¬φ → ¬ψ) → (ψ → φ)

MP φ → ψ, φ ⊢ ψ

Application introduction s : (φ → ψ), t : φ, ⊢ [s · t] : ψ

Łukasiewicz’s axiom schemes can be instantiated as many times as
needed. Note that for each instance of these axiom schemes, there is
a constant specification c that justifies it. Regarding the condition on
the set of constant specifications, we are going to work with a schematic
set, that is, if A and B are both instances of the same axiom scheme,
c : A ∈ CS if and only if c : B ∈ CS , for every constant symbol c. Hence,
the system JŁ will have a constant specification schematic numerable
set of formulas CS to assign a unique constant for every axiom. The
working of the system JŁ is specified as follows:

Definition 4.4 (Consequence). Let JŁ be a justification logic system
with CS as its constant specification, and an arbitrary set Γ of formulas.
Then Γ ⊢JŁ

φ if there is a finite sequence of formulas ending with φ, in
which each formula is either an axiom of JŁ, a member of CS or Γ , or
follows from earlier formulas by applying the inferential rules allowed by
the system. The system benefits from the deduction theorem, that is,

7 Application introduction is an inferential rule we derived from the Application

axiom justification logic; this new rule is equivalent to call the axiom and then apply
Modus Ponens.
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for any Γ ⊆ T and φ, ψ ∈ T , it is true that Γ, φ ⊢JŁ
ψ if and only if

Γ ⊢JŁ
φ → ψ.

The system JŁ is the result of enriching a fragment of J0  that which
does not include all tautologies of propositional logic among its axioms 
with Łukasiewicz’s axioms, and since these axioms are valid, JŁ is sound
and complete with respect to Łukasiewicz’s proof system (Łukasiewicz,
1964, 1970) which in turn is sound and complete for the language of
propositional logic.8 It is easy to see that the system JŁ preserves the
soundness and completeness from Łukasiewicz’s proof system: if some-
thing is provable by means of instances of the Application or Sum axioms
and justified instances of Łukasiewicz’s axioms, then it is valid in JŁ and
if something is valid in JŁ, then it is provable by means of instances of
the Application or Sum axioms and justified instances of Łukasiewicz’s
axioms (see Theorems 4.1 and 4.2).

Hence, for every theorem that is a justified formula in JŁ, the formula
without the justification is a theorem in Łukasiewicz’s proof system, that
is, if t : α is a theorem in JŁ, then α is a theorem in Łukasiewicz’s proof
system. This claim is illustrated through the two following derivations
in which q → r is deduced from the premises p, q → (p → r); the first of
this derivations is in ⊢Ł and the second one in ⊢JŁ

:

Derivation in ⊢Ł:
1. p premise
2. q → (p → r) premise
3. p → (q → p) Łukasiewicz’s Axiom 1
4. (q → p) MP 1, 3
5. (q → (p → r)) → ((q → p) → (q → r)) Łukasiewicz’s Axiom 2
6. (q → p) → (q → r) MP 2, 5
7. q → r MP 4, 6

Derivation in ⊢JŁ
:

1. x : p premise
2. y : q → (p → r) premise
3. c1 : p → (q → p) JŁ Axiom 1
4. [c1 · x] : (q → p) Application introduction 3,1
5. c2 : (q → (p → r)) → ((q → p) → (q → r)) JŁ Axiom 2

8 It is well known that everything that can be proven using Łukasiewicz’s proof
system within the language of propositional logic is valid in this language, and every-
thing that is valid in this language can be proven by means of Łukasiewicz’s proof
system.
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6. [c2 · y] : (q → p) → (q → r) Application introduction 5,2
7. [c2 · y] · [c1 · x] : q → r Application introduction 4,6

The deduction in ⊢Ł is straightforward: q → r is deduced from p

and q → (p → r) using instances of Łukasiewicz’s axiom schemes and
Modus Ponens. The deduction in ⊢JŁ

illustrates how to deduce q → r

explicitly showing the justification of accepting q → r. In this proof, all
the tools available in the set T of justification terms from Definition 3.1
above are used: variables are used to justify the given premises, while
constant specifications are used to justify instances of Łukasiewicz’s ax-
ioms. Then, to prove that q → r is justified in JŁ, we rely on the
Application axiom of justification logic and the Application introduction

rule to derive a justification for the formula q → r; in this way we derived
[c2 · y] · [c1 · s] : q → r. From this, we can generalize that a formula φ can
be deduced in ⊢Ł if and only if there is a justification term t such that
⊢JŁ

t : φ; this result will be proved in theorem 3.1 bellow.
As the examples above show, it is easy to transform a ⊢Ł proof into

a ⊢JŁ
proof. The following theorem generalizes this idea.

Theorem 4.1. ⊢Ł β if and only if there exists a justification term t such

that ⊢JŁ
t : β.

Proof. From ⊢Ł β we can prove ⊢JŁ
t : β by induction on proofs in ⊢Ł:

(i) if β is an instance of an axiom, by definition we have a specification
constant c such that c : β;

(ii) if β was derived by MP from α → β and α, then by inductive
hypothesis there are terms s and u such that s : α → β and u : α. Then
by the Application axiom and two applications of MP we have [s · u] : β.

On the other hand, if ⊢JŁ
t : β, we can prove ⊢Ł β by structural

induction on t, as there are three options:
(a) t = c in which case β is an instance of an axiom and clearly ⊢Ł β;
(b) t = [s · u] and so previously we had ⊢JŁ

s : α → β and ⊢JŁ
u : α

for some α and, by induction hypothesis, ⊢Ł α → β and ⊢Ł α. Then, by
Modus Ponens we have ⊢Ł β;

(c) t = [s + u] in which case we previously had s : β or u : β, by
induction hypothesis then ⊢Ł β in either case;

(d) there is really no case t = x, as variable terms do not appear in
proofs without premises. ⊣

Observe how the “if” direction of this theorem is analogous to the
internalization property of traditional justification logics (Artemov and
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Fitting, 2019, p. 20), while the “only if” direction is analogous to inversed

internalization (Goetschi, 2012, p. 108).

Theorem 4.2. α1, . . . , αn ⊢Ł β if and only if there exist a justification

term t such that xi1
: α1, . . . , xin

: αn ⊢JŁ
t : β.

Proof. It is very similar to the previous case, but because we are adding
premises that may not be (instances of) axioms, we introduce variable
justification terms. In one direction we need to introduce a (iii) case
where β is a premise (and therefore, its justification term would be a
variable). In the opposite direction, we have to consider a (d) case,
because now it is possible that t = x, in which case β is a premise and
therefore it is trivial that β ⊢Ł β. ⊣

Again, this theorem is analogous to the Lifting Lemma (Artemov
and Fitting, 2019, p. 22) and inversed internalization (Goetschi, 2012,
p. 112).

The two proofs in ⊢Ł and ⊢JŁ
above exemplify how a formula that

was proven in ⊢Ł can be proven in ⊢JŁ
as well, but with the advantage

that the proof in ⊢JŁ
makes explicit the reasons that justify the formula.

In this way, JŁ exhibits the epistemic contribution of the deduction or
derivation of a formula. To the knowledge of the authors, such kind
of system has not been fully developed or presented in extent before,
although Artemov and Kuznets (2009) propose justification logic as a
logical framework that avoids any commitment to logical omniscience,
and as a way to model feasible knowledge (Artemov and Kuznets, 2014).
While JŁ adds to the efforts of Artemov and Kuznets by providing an
instance of a feasible non-omniscient logical system, its originality lies
in its capacity to account for the epistemic contribution of deduction.
I.e., JŁ is designed not only to avoid logical omniscience and show that
knowledge can be gained by deducing logical consequences, but to fully
exhibit such process stressing the reasons or justification for every step
rather than the number of steps in the derivation.

5. Conclusions and future work

In this paper we have developed an alternative account of the epistemic
contribution of deduction by exhibiting the process of deducing a the-
orem of the language of propositional logic, which in turn, allows the
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subject to know the deduced theorem. To this end, we have addressed
the following challenge:

To show that the process of deduction bears an epistemic contribu-
tion, in Section 4 we developed a justification logic system extended with
schemes for Łukasiewicz’s axioms: the system JŁ. The system JŁ allowed
us to explicitly express within the language the reasons or justification
for accepting a theorem, which in turn reflects the process that leads to
knowledge acquisition through deduction.

In this way, we have provided an alternative account for the epistemic
contribution of deduction that sheds new light upon classical problems
within the philosophy of logic such as Hintikka’s scandal of deduction
and Cohen and Nagel’s paradox of inference. Moreover, our proposal
not only provides theoretical tools to exhibit and measure the epistemic
contribution of deduction, but it also improves our understanding of
deduction as a process of providing reasons to justify the logical conse-
quences of our current knowledge. Therefore, the insights gained from
this work expand our understanding of knowledge by deduction and its
potential as a source of new knowledge.

Future work should focus on the complexity of deciding logical entail-
ment and its implications for the epistemic contribution of deduction. It
is known that, in terms of computational complexity, deciding whether
Γ ⊢ α is not a trivial task since it is at least as hard as deciding whether
a formula of propositional logic is a tautology, which is a decision prob-
lem known as taut and belongs to the co-np complexity class. Hence,
there is no efficient algorithm that can always tell whether a formula α
is implied by a Γ . Furthermore, even if it is the case that Γ ⊢ α, we
may not be able to verify it in polynomial time. This shows another way
in which getting to know the logical consequences of known premises is
complex enough. In addition, further research should also focus on the
complexity of finding a justification term t such that Γ ⊢JŁ

t : α. More-
over, finding the shortest term t such that Γ ⊢JŁ

t : α is even harder, as
at the very least it implies solving taut, but very likely more as right
now it is known to be an np-hard problem (Alekhnovich et al., 2001;
Cook, 1971).

Being limited to knowledge by deduction, this work has not covered
any other form of inference or argument, though the main results may
be generalizable. Notwithstanding this limitation, this work expands the
repertoire of epistemic formal tools by presenting a novel system JŁ to
account for the epistemic contribution of deduction. To the knowledge
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of the authors, formal tools from justification logic have never been used
to provide an account of the epistemic contribution of deduction. In
this way, the present work provides a useful framework to develop an
unprecedented and robust understanding of deduction and its epistemic
contribution.

Acknowledgments. Work by Nancy Abigail Nuñez Hernández was par-
tially supported by CONAHCYT through a postdoctoral scholarship.
Work by Francisco Hernández-Quiroz was partially supported by
DGAPA-UNAM through a sabbatical grant.

References

Abramsky, S., 2008. Information, processes and games. Pages 483–549 in
P. Adriaans and J. van Benthem, editors, Philosophy of Information, Hand-
book of the Philosophy of Science. North-Holland, Amsterdam. DOI: 10.

1016/B978-0-444-51726-5.50017-0

Alekhnovich, M., S. Buss, S. Moran, and T. Pitassi, 2001. Minimum proposi-
tional proof length is np-hard to linearly approximate. The Journal of Sym-

bolic Logic, 66(1): 171–191. DOI: 10.2307/2694916

Arora, S., and B. Barak, 2009. Computational Complexity: A Modern Ap-

proach. Cambridge University Press.

Artemov, S., 1994. Logic of proofs. Annals of Pure and Applied Logic, 67(1–3):
29–59.

Artemov, S., 1995. Operational modal logic. Technical Report 29, Mathematical
Sciences Institute, Cornell University.

Artemov, S., 2008. The logic of justification. The Review of Symbolic Logic,
1(4): 477–513. DOI: 10.1017/S1755020308090060

Artemov, S., and M. Fitting, 2019. Justification Logic: Reasoning with Reasons.
Cambridge University Press.

Artemov, S., and R. Kuznets, 2009. Logical omniscience as a computational
complexity problem. Pages 14–23 in Proceedings of the 12th Conference on

Theoretical Aspects of Rationality and Knowledge. TARK.

Artemov, S., and R. Kuznets, 2014. Logical omniscience as infeasibility. Annals

of Pure and Applied Logic, 165(1): 6–25.

https://doi.org/10.1016/B978-0-444-51726-5.50017-0
https://doi.org/10.1016/B978-0-444-51726-5.50017-0
http://dx.doi.org/10.2307/2694916
https://doi.org/10.1017/S1755020308090060


Justification logic and the epistemic . . . 401

Artemov, S., and E. Nogina, 2005. Introducing justification into epistemic logic.
Journal of Logic and Computation, 15(6): 1059–1073.

Carnap, R., and Y. Bar-Hillel, 1952. An outline of a theory of semantic in-
formation. Technical Report 247, Research Laboratory of Electronics, Mas-
sachusetts Institute of Technology.

Cohen, M., and E. Nagel, 1934. An introduction to logic and scientific method.
Routledge and Kegan Paul.

Cook, S. A., 1971. The complexity of theorem-proving procedures. Pages 151–
158 in Proceedings of the Third Annual ACM Symposium on Theory of Com-

puting.

D’Agostino, M., and L. Floridi, 2009. The enduring scandal of deduction: Is
propositional logic really uninformative? Synthese, 167: 271–315. DOI: 10.

1007/s11229-008-9409-4

Dummett, M. A. E., 1978. Truth and Other Enigmas. Harvard University Press.

Duží, M., 2010. The paradox of inference and the non-triviality of analytic
information. Journal of Philosophical Logic, 39(5): 473–510.

Goetschi, R., 2012. On the Realization and Classification of Justification Logics.
PhD thesis, University of Bern.

Hintikka, J., 1970. Information, deduction, and the a priori. Nous, 4(2): 135–
152. DOI: 10.2307/2214318

Łukasiewicz, J., 1964. Elements of Mathematical Logic. New York: Macmillan.

Łukasiewicz, J., 1970. Selected Works. North Holland Publishing Company.

Mill, J. S., 1843. Mill, A System of Logic, Ratiocinative and Inductive, Being a

Connected View of the Principles of Evidence and the Methods of Scientific

Investigation. Longmans, Green, and Co.

Parikh, R., 2008. Sentences, belief and logical omniscience, or what does deduc-
tion tell us? The Review of Symbolic Logic, 1(4): 459–476. DOI: 10.1017/

S1755020308090059

Primiero, G., 2007. Information and Knowledge: A Constructive Type-

Theoretical Approach. Springer Science & Business Media.

Rumfitt, I., 2008. Knowledge by deduction. Grazer Philosophische Studien,
77(1): 61–84. DOI: 10.1163/18756735-90000844

Sequoiah-Grayson, S., 2008. The scandal of deduction. Journal of Philosophical

Logic, 37(1): 67–94. DOI: 10.1007/s10992-007-9060-4

https://doi.org/10.1007/s11229-008-9409-4
https://doi.org/10.1007/s11229-008-9409-4
http://dx.doi.org/10.2307/2214318
http://dx.doi.org/10.1017/S1755020308090059
http://dx.doi.org/10.1017/S1755020308090059
http://dx.doi.org/10.1163/18756735-90000844
http://dx.doi.org/10.1007/s10992-007-9060-4


402 N. A. Nuñez Hernández and F. Hernández-Quiroz

van Benthem, J., and M. Martinez, 2008. The stories of logic and information.
Pages 217–280 in P. Adriaans and J. van Benthem, editors, Philosophy of

Information, Handbook of the Philosophy of Science. North-Holland, Ams-
terdam. DOI: 10.1016/B978-0-444-51726-5.50017-0

Nancy Abigail Nuñez Hernández

Institute of Philosophy
Czech Academy of Sciences
nancy.abigail1985@gmail.com

https://orcid.org/0000-0002-9874-9751

Francisco Hernández-Quiroz

Facultad de Ciencias, Departamento de Matemáticas
Universidad Nacional Autónoma de México (UNAM)
fhq@ciencias.unam.mx

https://orcid.org/0000-0002-9748-0201

https://doi.org/10.1016/B978-0-444-51726-5.50017-0
https://orcid.org/0000-0002-9874-9751
https://orcid.org/0000-0002-9748-0201

	Introduction
	A selection of the literature
	Justification Logic
	The epistemic contribution of deduction in JŁ Ł Ł Ł
	System JŁ Ł Ł Ł

	Conclusions and future work
	References


