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Abstract
As large language models (LLMs) continue to demonstrate remarkable abilities 
across various domains, computer scientists are developing methods to under-
stand their cognitive processes, particularly concerning how (and if) LLMs inter-
nally represent their beliefs about the world. However, this field currently lacks a 
unified theoretical foundation to underpin the study of belief in LLMs. This article 
begins filling this gap by proposing adequacy conditions for a representation in an 
LLM to count as belief-like. We argue that, while the project of belief measure-
ment in LLMs shares striking features with belief measurement as carried out in 
decision theory and formal epistemology, it also differs in ways that should change 
how we measure belief. Thus, drawing from insights in philosophy and contempo-
rary practices of machine learning, we establish four criteria that balance theoretical 
considerations with practical constraints. Our proposed criteria include accuracy, 
coherence, uniformity, and use, which together help lay the groundwork for a com-
prehensive understanding of belief representation in LLMs. We draw on empirical 
work showing the limitations of using various criteria in isolation to identify belief 
representations.
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“The truth may be out there, but the lies are inside your head.”
Terry Pratchett, Hogfather.
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1 Introduction

Large language models (LLMs) have been doing remarkable things: they can write 
code, summarize text, role play as different characters, and even play games of strat-
egy like chess at a reasonable level. In light of these recent achievements, there has 
been a push to understand how they are able to accomplish these feats and how their 
cognition (if they have it) works. In particular, computer scientists have been devel-
oping methods that aim to read things like belief and world models off of both the 
internal activations and the behavior of the LLM (Li et al., 2023; Olsson et al., 2022; 
Bubeck et al., 2023).

This work is valuable and exciting, but it is currently in a pre-paradigmatic state; 
individual groups are deploying engineering-style solutions in order to solve par-
ticular problems but without a shared understanding of the overall goal and theoreti-
cal basis of such an endeavor. The field currently lacks a philosophically rigorous 
and practice-informed conceptual foundation of belief representation in LLMs.

In this article we begin filling this gap. To do so, we propose conditions of ade-
quacy for an LLM to have a belief-like representation. Our conditions are motivated 
by insights from decision theory and formal epistemology, as well as by the details 
of actual machine learning models and practices. They build upon our previous 
work, and aim to address some of the shortcomings we identified in contemporary 
belief measurement techniques in LLMs (Levinstein & Herrmann, 2024). A central 
upshot of our proposal is its ability to guide the development of future belief meas-
urement techniques.

2  The Basics of LLMs

Contemporary LLMs are based on the transformer architecture first described by 
Vaswani et al. (2017). Here we’ll focus on decoder only (autoregressive) models like 
ChatGPT.

The basic idea is as follows. Some prompt like New Orleans is in is fed 
to the model. Each token (in essence, word, subword, or punctuation mark) gets 
converted into an initial vector called an embedding. Each embedding gets “mas-
saged” as it passes through a long chain of computations called layers. Finally, the 
model outputs a probability distribution over what the next token will be. In this 
case, Louisiana should get high probability if the LLM is good, and banana 
and aardvark should get low probability.1

At each of these layers, two things happen. The first is that the model moves 
information around from earlier tokens to later ones through the mechanism of atten-
tion. The embedding for Orleans in the above prompt receives information from 
the embeddings for New and for Orleans, while the embedding for in receives 
information from the embeddings from New, Orleans, is, and in. The second is 

1 In actual LLMs, tokens are typically smaller than full words, but we use words as convenient illustra-
tions of the core ideas.
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that the embedding for any given token passes through a vanilla neural network (i.e., 
a multi-layer perceptron, though usually with a single hidden layer).

Ultimately, the prediction for the next token is based solely on the embedding 
at the last layer for the last token. So, one way or another, the model must move 
all information relevant to prediction of the next token to this embedding. In other 
words, as illustrated in Fig. 1, the computational graph for transformers is directed 
and acyclic, with information flowing from earlier tokens to later tokens and from 
earlier layers to later layers.

To generate new text, we select a token the model assigns relatively high prob-
ability to, append it to the prompt, and then feed the new prompt to the LLM.

The way LLMs get so impressively good at generating text is via training. Train-
ing comes in two phases. In the first phase, called pre-training, we take a passage 
(e.g., a Wikipedia article) and give the model an initial segment of that passage. The 
model predicts what comes next. We slightly adjust the model’s parameters so that it 
would assign a higher probability to the actual next token were it to be fed the same 
initial segment of the passage again. After being trained on the high-quality portion 
of the internet multiple times, large models are able to achieve impressive fluency.

The second phase is called fine-tuning. Fine-tuning comes in many forms, but the 
most popular models like ChatGPT that retail users interact with are refined using 
Reinforcement Learning from Human Feedback (RLHF) or some variant, such as 
Constitutional AI.2 In essence, these methods make models be more conversational 
and get better at telling users what they want to hear.

Without going into too much technical detail, RLHF works by having the model 
generate multiple answers to the same prompt, having users rate the responses, and 
then gradually training the model to output responses rated higher. (At some point, 
this training is usually assisted by a second AI model that learns to predict what 
users will like.)

3  Beliefs in LLMs

Now that we have a handle on the basics of LLMs, let’s consider why we might 
want to attribute beliefs to them. As we described in Sect. 2, LLMs are trained first 
to minimize predictive loss (the pre-training stage), and then to output text that is in 
some sense desirable (the fine-tuning and RLHF stage). Furthermore, as described 
in Sect. 1, LLMs are very successful at achieving these goals. We want to under-
stand how they are so successful.

A standard explanation is that they are successful partially because they represent 
certain features of the world, and they use these representations to help decide what 
text to output (Li et al., 2023; Olsson et al., 2022; Bubeck et al., 2023; Marks & Teg-
mark, 2023). For example, there is strong evidence that LLMs have both spatial and 
colour representations (Abdou et al., 2021; Patel & Pavlick, 2021).

2 For RLHF see Christiano et al. (2017), Stiennon et al. (2020), and Ouyang et al. (2022); for Constitu-
tional AI see Bai et al. (2022) and Kundu et al. (2023).
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Given how useful it is to track truth in many contexts, it should be a live hypoth-
esis that LLMs represent whether or not certain sentences are true, just as they rep-
resent direction and colour. Indeed, if it is the case that LLMs are representing the 
truth at least some of the time, and this representation helps guide their outputs, then 
having a way to measure what they believe might help us make predictions about the 
model. Moreover, if our measurements and understanding of the LLM’s represen-
tation are good enough, this might allow us to intervene usefully on the model by 
manipulating the representation.

Some have expressed skepticism that LLMs have anything resembling beliefs, 
even in principle (Bender & Koller, 2020; Bender et  al., 2021; Shanahan, 2022). 
In particular, these arguments tend to rely on the claim that, “[a] bare-bones 
LLM doesn’t ‘really’ know anything because all it does, at a fundamental level, is 
sequence prediction.” (p. 5, Shanahan, 2022).3

Fig. 1  An illustration of an LLM on the left, and a probe on the right. A sentence is fed through the 
model. Some internal computation (such as an embedding vector) is extracted and input into the probe, 
which decodes it to recover the model’s belief about the sentence

3 The requirements we propose here focus on the action-guiding, truth-tracking aspects of belief. These 
are the ones that we think are most relevant for the pragmatic goals upstream of understanding LLM 
cognition. Though not of concern for us here, issues of communicative intent, symbol grounding, and 
reference also drive skepticism of belief in LLMs (Bender & Koller, 2020; Bender et al., 2021; Shana-
han, 2022). Mandelkern and Linzen (2023) counter these concerns using externalist arguments, claiming 
LLMs can refer, while Piantadosi and Hill (2022) use an internalist approach to dismiss grounding con-
cerns, emphasizing internal conceptual roles. Pavlick (2023) summarizes both internalist and externalist 
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We’ve argued in detail elsewhere that these concerns rest on a philosophical mis-
take (Levinstein & Herrmann, 2024). Briefly, this is an inference from the goal of 
a system4 to a claim about how the system accomplishes its goal. But just because 
truth-tracking is not the goal of the system, does not mean that the system does not 
track the truth as a means to accomplishing its goal. Indeed, humans are partially 
products of a process that maximizes inclusive genetic fitness; and yet, as a byprod-
uct of this process, we track the truth, at least in some domains some of the time.

As we’ve emphasized, it should be a live hypothesis that LLMs track the truth. 
In the remainder of the article, we propose conditions that more carefully spell out 
what would have to be hold of an internal representation of an LLM for it to count 
as a belief. To be clear: we are entirely open to the possibility that LLMs do not 
have representations that satisfy these conditions. In such a situation, we think that it 
would likely not be very useful to describe LLMs as having beliefs.

4  Where to Look for Beliefs

For guidance on how to measure beliefs, we might look to some of our best theories 
of belief. Given our interest in the truth-tracking, action-guiding aspects of belief, 
we might take inspiration from decision theory. In decision theory, there is a long 
tradition of reconstructing an agent’s beliefs and desires (credences and utilities) 
from her preferences via representation theorems (Ramsey, 1926; Savage, 1972; Jef-
frey, 1990). In the radical interpretation tradition, philosophers also attribute beliefs 
by appealing to interpretational maxims in conjunction with observable behavior 
and utterances (Davidson, 1973).

However, when it comes to LLMs, we have a number of disadvantages. It’s not 
clear they have preferences, and their behavior is quite limited. They do not engage 
in long-term planning nor do they have bodies that can physically interact with the 
world.5 They simply output probability distributions over tokens and have no robust 
ways of bending the world to their will.

The standard methods for eliciting honest beliefs from human agents also fall 
short with LLMs. For instance, to determine if a human judges that P is more likely 
than Q, we can offer a choice of a dollar if P or a dollar if Q. If they choose the bet 
on P, it indicates they believe P is more likely than Q. Alternatively, we can elicit 
human credences by paying them based on their announced forecasts in accordance 
with the Brier Score or other strictly proper scoring rules (Brier, 1950; Gneiting 

4 Or, more carefully, from what its training objective was.
5 Of course, there is a sense in which they do Ultimately, the LLM’s computations are executed on phys-
ical hardware somewhere. The point we are making is that its way of interacting with the world is filtered 
almost entirely through its textual outputs, unlike humans and other critters.

perspectives on whether or not the internal states of LLMs encode meaning.
Footnote 3 (continued)
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& Raftery, 2007).6 Strictly proper scoring rules incentivize an expected wealth-
maximizing agent to report their actual credences. That is, if they really believe a 
proposition to degree x, then they maximize their expected wealth by reporting their 
credence to be x.

In contrast, while we can offer LLMs bets or ask them about their beliefs and 
tell them we’ll pay them according to their Brier score, they can’t actually receive 
payment, and it’s unclear that they would care about money even if they had bank 
accounts. Therefore, standard methods of eliciting beliefs using betting or scoring 
rules are ineffective.

Given the lack of behavioral evidence and reliable reward methods, traditional 
tools from formal epistemology, decision theory, radical interpretation, and econom-
ics are inadequate for finding beliefs in LLMs. Moreover, LLMs have architectures 
unlike that of the human brain and lack shared evolutionary or cultural history with 
us, depriving us of certain shared understandings and common ground that we take 
for granted among humans.

Nevertheless, there are advantages in interpreting the minds of LLMs. Although 
the high-level algorithms they use are opaque, we have perfect low-level access. We 
can see the embeddings at each layer and the internal weights of the network. We 
can also perform precise modifications or ablations on the model’s weights or the 
components of any embedding. For instance, we can adjust the hidden embedding 
at a given layer for a token and observe how this changes the model’s output. Addi-
tionally, it is easy to reset the memory of LLMs; each new conversation or inference 
cycle begins with the LLM in the same state, with no memory of previous prompts.

Thus, given that we are in a different epistemic situation when we are trying to 
measure beliefs in LLMs than in humans, we propose looking internally—inside the 
model’s head, as it were—to find out what it believes. That is, we want to find inter-
nal representations of truth. If we find such a representation, then it makes sense to 
attribute beliefs to LLMs.

An internal representation of truth is a mechanism by which the model can inter-
nally tag a sentence as true or false (or mark it with some level of confidence) and 
use that tag along with other information it has computed to figure out what to 
output.

The question, then, is whether in the course of its computations an LLM inter-
nally distinguishes between true claims and false claims and uses this distinction, in 
part, when deciding what to output.

To be clear, internal representations of truth aren’t, in general, necessary on many 
accounts of belief. As we’ve seen, representation theorems in decision theory only 
require preferences with beliefs and desires derived thence. Indeed, belief-desire 
psychology has been very successful for humans for a long time even though we 
had at best very limited direct access to internal states of other people until a few 
decades ago. However, with LLMs, we have a very different evidential basis. Behav-
ioral evidence is much more limited, while internal access is much greater.

6 More explicitly, according to the Brier Score, if they announce a credence of x in a given proposition 
and that proposition turns out to be true, we will pay them $ 1 − (1 − x)2 , and if it’s false, we will pay 
them $ 1 − x

2.
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Discovering internal representations of truth also has important social and ethical 
implications. In the relatively near term future, society will likely use LLMs to auto-
mate a number of tasks previously reserved for humans, and we will want to know 
what they really think and whether we can trust them. For example, we might use 
LLMs to conduct job interviews, where they have a conversation with a candidate 
(just like current human interviewers do), and then make recommendations about 
who should be hired and give justifications for those recommendations.

However, without being able to check what their internal reasons are for their 
recommendations, we have no good way of ensuring the justifications they provide 
actually align with their thought processes. They may use some illicit feature like 
race or gender in a problematic way while also justifying their recommendations 
for totally different reasons. As Zhou and Joachims (2023) demonstrate, it is very 
easy to justify the decisions made by models in ways that aren’t faithful to the actual 
functioning of the model.7

In addition to checking that explanations are faithful to internal processes, belief 
measurement also provides a strategy to detect deception, which can be important 
for designing safe and cooperative AI systems (Dafoe et  al., 2020; Evans et  al., 
2021; Park et al., 2024). Indeed, this is the explicit motivation of many of the arti-
cles developing belief measurement techniques (Azaria & Mitchell, 2023; Levin-
stein & Herrmann, 2024).

We believe that belief measurement is one important tool in the effort to develop 
ethical and safe AI, but is not sufficient on its own, or even necessary in general. 
There are contexts in which trusting an AI system does not require looking at the 
internals of a system if other criteria are met, such as robust and reliable uncertainty 
quantification (Grote, 2021). Indeed, there are even strategies that try to bypass a 
need for lie detection by building systems that do not deceive in the first place (Ward 
et al., 2024), or are by their construction interpretable by design (Grote, 2023). We 
support such efforts—but we also believe that, given the pace of development of 
models that are not honest or interpretable by design, belief measurement can play a 
core role in developing safe AI.

4.1  Probes

To make matters concrete, we’ll turn to one method of deciphering what is being 
computed and represented inside an LLM, namely, probes (Alain & Bengio, 2016). 
Probes are models that are separate from the LLM itself. They are fed some internal 
state (such as an embedding for the last token at a certain layer) and are meant to 
output the LLM’s beliefs.8

Probes take as input part of the hidden state of the LLM. Importantly, they don’t 
have access to the underlying prompt. From the hidden state alone, they have to 

7 See Zhou et al. (2020) for an overview on how explainable AI and fairness in AI relate, and contribute 
to trust in AI.
8 Originally, Alain and Bengio (2016) had a narrow conception of probes as a certain type of linear clas-
sifier, but the concept has expanded over the years. Some may count any method at all of deciphering 
internal computations of the model as a probe.
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determine the LLM’s beliefs. In essence, probes take the encoded information in 
the internal states of the LLM and decode that information to reveal its beliefs. See 
Fig. 1.

This is analogous to using brain scans of individuals contemplating a claim to 
infer, just from the scan, whether the person believes the claim to be true or false.

In areas other than belief, probes and other decoding methods have proven suc-
cessful. For example, we’ve been able to: (i) understand to some extent how LLMs 
parse sentences and represent features like being a subject, being plural, and so on 
(Rogers et al., 2021); (ii) represent the state of the board in the game Othello (Li 
et  al., 2023a; Nanda et  al., 2023b); and (iii) learn to perform modular arithmetic 
(Nanda et al., 2023a; Zhong et al., 2024).

So, if we know what we’re looking for, we might with the proper techniques be 
able to decode an LLM’s beliefs. As we’ll discuss in Sect. 5, current probing tech-
niques for belief failed because they didn’t look for the right thing. This motivates a 
more careful set of requirements for belief.

To get a sense of how probes might be able find internal directions of truth, we’ll 
use a running toy example throughout this and the next section. Suppose internal 
activations consisted of only two dimensions instead of the many thousands we 
actually see.9 Suppose further that when we plot the activations corresponding to 
a large number of true and false prompts, we find systematic differences in internal 
representation. We might then investigate whether such differences actually capture 
an internal representation of truth or instead if they capture some other property. 
Such a potential difference is illustrated in Fig. 2. Importantly, this toy example is 
extremely oversimplified. There are many different ways a model might distinguish 
between truth and falsity internally that may not correspond to a simple difference 
in the internal activations at a particular layer. However, we hope this toy example 
proves illustrative of the concepts we develop below.

5  Requirements for a Belief‑Like Representation

As we’ve seen in Sect. 4, it makes sense to look at the internal state of an LLM when 
trying to extract its beliefs. Now, suppose we have some kind of candidate repre-
sentation in an LLM that we have identified along with a decoder, such as a probe. 
How can we determine if we have successfully identified and decoded a belief-like 
representation?

We provide four requirements that a representation must satisfy for it to count 
as belief-like: accuracy, coherence, uniformity, and use. The satisfaction of these 
requirements come in degrees; in general, the more a representation satisfies these 
requirements, the more helpful it is to think of the representation as belief-like.

Before we describe these requirements in detail, we first describe the general 
motivation behind them. We want these requirements to ensure that a representation 

9 There are many ways, in real models, of collapsing the many thousands of dimensions onto just a few 
(e.g., with principal component analysis). So this simplification isn’t actually as unrealistic as it may 
seem.
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that satisfies them can fruitfully play the role of belief in the context of LLMs. Thus, 
there are two dimensions along which we want a candidate representation to do well: 
how much it plays a belief-like role in the functioning of the LLM, and how useful it 
is for us. Of course, these two dimensions are not independent; a representation that 
plays no belief-like role would not be useful for us in the way that we want. But we 
can also imagine some representation that does play the belief-like role inside the 
LLM in some sense but which we cannot easily interpret or measure; this would not 
count as a representation that can fruitfully play the role of belief. Thus, how fruitful 
a representation is is not just a function of the role it plays in the LLM, but also what 
it does for us.

These two dimensions mirror our broad approach in this paper: we aim to pro-
vide a philosophically rigorous and practice-informed conceptual foundation for 
belief measurement in LLMs. Our approach aims to be philosophically rigorous 
by ensuring that the requirements for belief-like representations align with our best 
philosophical accounts of belief. It aims to be practice-informed in the sense that it 
engages with machine learning methodology and concerns, and is sensitive to the 
practical details of how we interrogate machine learning systems.

As we mentioned in Sect. 4, given the particular epistemic situation in which we 
find ourselves when it comes to LLMs, we don’t think that we can apply off-the-
shelf representation theorem methods from decision theory to extract beliefs from 
LLMs. In particular, while we believe that beliefs should be action guiding, what-
ever those actions are, we are skeptical of our ability to find stable beliefs in LLMs 
from behaviour alone. Thus, while the limited behavioural basis we discussed in 
Sect. 4 likely frustrates attempts to reconstruct beliefs purely from observed behav-
iour of an LLM, we do think that any representation of belief we do identify should 
still guide the LLM’s behaviour. This then in turn motivates conditions like accu-
racy and coherence which we describe below.

In light of this different epistemic situation, making full use of our easy access 
to the internals of systems to inform our requirements for representations of belief 
is essential, and encourages us to hew close to machine learning practice. However, 
attributing belief to LLMs should not be entirely divorced from philosophical theo-
ries of belief. Ultimately we are still after a set of conditions that would be help 
identify a representation that plays the role of belief in such systems, and it is theory 
that gives us guidance for what that role is.

In this spirit, at a high-level, we have the following motivations for the various 
requirements we propose. In order to agree with a core feature of standard accounts 
of belief, for example in folk psychology and decision theory, we want the repre-
sentation to be action-guiding. This most clearly motivates what we call use. Fur-
thermore, we want such a representation to help explain why LLMs are so success-
ful. Thus, we also want the beliefs to be accurate enough that they could help an 
LLM be successful. This motivates both what we call accuracy and coherence. We 
also want such a representation to be helpful for us interpreting the LLM. Thus, we 
would need such a representation to be measurable and interpretable. This, along 
with the requirement that we want the representation to allow us to make predictions 
across a wide range of domains, motivates what we call uniformity.
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In addition to describing and providing justification for each requirement, we’ll 
also use our toy example to help visualize the requirements. We will also use empir-
ical failures of contemporary probing techniques to illustrate why taking various 
requirements alone is insufficient for identifying belief.

5.1  Accuracy

Accuracy requires that the decodings of the identified representations be reasonably 
accurate on datasets where the LLM is expected to have true beliefs (or high subjec-
tive probability). The exact form this requirement takes will depend on the type of 
doxastic attitudes we think we’ve identified. If the LLM has on/off beliefs, many 
of its beliefs on the relevant dataset should be true. If it has credences, it should be 
accurate according to some strictly proper scoring rule.10

The main motivation for accuracy is that true beliefs (or high confidence in 
truths and low confidence in falsehoods) should partly explain the LLM’s impres-
sive performance. That is, if it’s worth attributing beliefs at all, one of the reasons is 
that we can explain the LLM’s general success by appeal to its true beliefs. For full-
fledged agents with both beliefs and desires, true beliefs help them get what they 
want. With LLMs, even if they don’t have desires, true beliefs should explain suc-
cessful and skillful performance. If not, then the LLM’s success is better explained 
solely by non-truth-tracking features, i.e., features other than beliefs.

This consideration is motivated, in part, by our requirement that the criteria pro-
posed be both practice informed and useful to us. If an LLM internally represents 
truth and falsity poorly and its misrepresentations do not affect performance, then it 
is not worthwhile for us, as interpreters, to dub those representations ‘beliefs.’

Usefulness to us also prohibits us from using reasonableness in place of accu-
racy, especially for large models trained on massive amounts of text in the wild. 

Fig. 2  In this toy example, the 
dots correspond to internal 
activations input into a probe 
for different prompts. Blue dots 
represent true claims, and red 
dots represent false claims. In 
this image, truth and falsity 
appear well-distinguished 
internally along the black arrow. 
Because this is merely a toy 
example with axes correspond-
ing to hypothetical dimensions 
in activation space, we do not 
label the axes or assume any 
type of scale

10 We might also use datasets with claims that we expect the LLM couldn’t possibly have reasonable full 
beliefs about, such as “There are an even number of stars in the Milky Way” to add a kind of calibration 
requirement as well.
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From a purely philosophical standpoint, it might be more appealing to require only 
that the LLM draws reasonable or justified or well-supported inferences from its evi-
dence. Because we control its evidence through its training data and prompts, we 
could in principle trick it into having terrible beliefs. (In essence, we can now play 
the role of a Cartesian demon.)

While this philosophical position is tenable, it is not as useful, operationally, as 
accuracy.11 Reasonableness is generally much harder to test for than truth. It’s hard 
to know what identifiable falsehoods an LLM should reasonably believe, for exam-
ple, after reading most of the high quality internet. Reasonableness is also less inter-
esting when it comes to explaining successful performance. True beliefs, not merely 
reasonable ones, lead to success.

It’s important to note that while we are ultimately interested in identifying belief-
like representations in general, including both true and false beliefs, we focus ini-
tially on true beliefs as a pragmatic starting point. This approach allows us to estab-
lish a baseline for identifying belief-like representations before tackling the more 
complex task of detecting systematically false beliefs.

This focus on true beliefs as a starting point aligns with established philosophi-
cal approaches to belief attribution. In particular, the accuracy criterion is closely 
connected to the Principle of Charity found in the radical interpretation literature 
(Davidson, 1973, 1974; Lewis, 1974). On Davidson’s view, for instance, we must 
begin by assuming the subject to be interpreted is generally a “believer of truths” in 
order to get the project of interpretation off the ground—if we don’t take the subject 
to be someone who has largely true beliefs, then we won’t be able to make sense of 
her beliefs at all (Davidson, 1970). Likewise, Lewis (1974) takes a different version 
of the Principle of Charity to be required to make sense of a physical system as hav-
ing beliefs, desires, and intentions.12

Importantly, our accuracy criterion, as with the Principle of Charity, requires 
accurate beliefs over the right sort of questions. Consider the case of trying to make 
sense of a human speaking a foreign language we do not understand. In this situa-
tion, we do not begin by assuming the speaker has true beliefs about complex topics 
like monetary policy or quantum computing. Instead, we start with common-sense 
and obvious questions such as whether there are any chairs in the room we’re sitting 
in or whether it’s currently raining. This allows us to connect the speaker’s utter-
ances to the world while still allowing the speaker to have many false beliefs.

Likewise, accuracy over the appropriate data set is key for discovering an 
LLM’s beliefs. The relevant datasets for testing accuracy will naturally be ones 
where we both are highly confident the LLM will or should have true beliefs13 given 

11 In some cases, it’s useful to train models on specially curated data or synthetic data instead of text 
from the wild. It’s conceivable that models trained in this way could potentially form beliefs that are not 
at all accurate. In this case, a reasonableness criterion might be more worthwhile.
12 Interestingly, Lewis’s Principle of Charity is closer to our rejected reasonableness criterion. Lewis 
suggests “We should even ascribe to [the subject] those errors which we think we would have made, or 
should have made, if our evidence and training had been like his” (1974, p. 336).
13 In some situations, we might use datasets where we have strong reason to suspect the LLMs will have 
false beliefs, but we expect this to be unusual for highly capable LLMs.
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its training data and ones where we know the ground-truth of the claims in question. 
We do not require accuracy in general, or accuracy over every domain.

This also limits how much we can lean on accuracy alone for identifying 
beliefs.14 It will be hard, for instance, to include claims about much of philosophy, 
economics, future world events, or any scientific claims aside from fully settled 
ones. We won’t be able to use sentences like “Keynesian economics is broadly cor-
rect,” “humans have free will,” or “most people won’t benefit from taking multi-
vitamins.” Similarly, statements like “climate change will cause a global economic 
recession by 2050," “artificial intelligence will surpass human intelligence within 
the next decade," or “string theory is the correct framework for understanding quan-
tum gravity” cannot be included in a good test set despite the fact that we really 
would like to know what LLMs think about such questions. These claims involve 
significant debate, varying interpretations, and a lack of consensus, making them 
unsuitable for testing accuracy in belief-like representations.

Once we have established a reliable method for identifying true beliefs, we can 
extend our approach to detect systematically false beliefs. This extension would 
be particularly valuable for addressing social and ethical concerns related to LLM 
deployment, as it would allow us to identify areas where an LLM might consist-
ently make errors or hold mistaken beliefs, even if its overall performance seems 
satisfactory.

Because we need well-settled, unambiguous, factual claims for training and test-
ing, many properties clearly distinct from truth will coincide with truth on usable 
datasets, such as: being true and easily verifiable online, being true and believed by 
most Westerners, or being accepted by the scientific community.

Indeed, empirical coincidence over the dataset is a clear problem. Azaria and 
Mitchell (2023) used accuracy alone to identify the beliefs of models. They found 
probes that, on their datasets, achieved impressively high accuracy scores. In Levin-
stein & Herrmann (2024), we noticed that the claims in their datasets did not con-
tain negations. For instance, they had claims like ‘Paris is the capital of France’ and 
‘Penguins can fly’ but did not have claims like ‘Paris is not the capital of France’ 
and ‘Penguins cannot fly’. We found that the representations Azaria and Mitchell 
(2023) discovered did not generalize at all once negations were added to the data-
sets even when we allowed their probes to receive some training on other negated 
sentences. For example, on a dataset of common facts, once negations were added, 
accuracy dropped from over 80% to 40–60% depending on the layers used and the 
training method. Although it is easy enough to add negations into a dataset, remov-
ing other properties of sentences that coincide with truth on the datasets will be 
more challenging.

14 For example, using accuracy measures to define a loss function for training probes, as in Azaria and 
Mitchell (2023).



Standards for Belief Representations in LLMs  Page 13 of 25     5 

Thus, while accuracy is a crucial starting point, it faces a significant challenge: 
the problem of generalization beyond the dataset.15 Because we need well-settled, 
unambiguous, factual claims for training and testing, many properties clearly distinct 
from truth will coincide with truth on usable datasets. This coincidence makes it dif-
ficult to ensure that what we’re measuring is a genuinely belief-like representation 
rather than some other correlated feature. This challenge points to the need for addi-
tional criteria to complement accuracy in identifying belief-like representations.

To continue with our toy example from the last section, we can see in Fig. 3 three 
different cases of internal separation of truth from falsity.

5.2  Coherence

Coherence is the requirement that the belief-like representation should be coherent 
and rich. By coherent we mean that the representation should satisfy the consistency 
conditions associated with belief. For example, if we are trying to infer the categori-
cal beliefs of an LLM, then we would want the beliefs to be logically consistent or 
near enough. More generally, if we are concerned not just with full belief but with 
degrees of belief, then we would want the representation to obey the probability axi-
oms.16 We also require that the representation give consistent answers on sentences 
with the same semantic content; i.e., rephrasing a sentence in a way that preserves 
its meaning should not change the belief we extract.

Of course, we don’t expect such systems to have perfectly coherent belief-like 
representations. Coherence comes in degrees.17 Humans don’t seem to have per-
fectly coherent beliefs either,18 but we think that they are coherent enough that we 
can fruitfully apply theoretical notions of belief. This also holds for LLMs: the more 
coherent the candidate representation is, other things being equal, the more it makes 
sense to think of it as belief-like.

Rich means that the attitude captured by the representation should work across 
logical combinations of sentences.19 For example, if we have a representation that 
allows us to measure belief of the LLM in the sentences “Paris is in France" and 
“Proust was a French author", then the same measurement technique should work on 
the sentence “Paris is in France and Proust was a French author".

There are three main reasons for requiring coherence. The first comes from the-
ory: in formal epistemology, decision theory, and the radical interpretation tradition 

15 Statistical learning theory formalizes this problem carefully. See, for example, Valiant (1984), Vapnik 
(1999), and Shalev-Shwartz and Ben-David (2014). Of course, using coherence as the reward is a kind 
of unsupervised learning, and thus requires a bit of a different analysis. But the core idea of identifying a 
model from a set of candidate models is still present.
16 See Ibeling et al. (2023) for a discussion of the relationship between more qualitative notions of com-
parative belief and quantitative notions.
17 This can be made precise. See, for example, Schervish et al. (2002) and Staffel (2020).
18 See, for example, Tversky and Kahneman (1974).
19 Or, perhaps, propositions. So far most of the work of belief elicitation has concerned sentences in nat-
ural language (for example, Burns et al. 2022; Azaria & Mitchell, 2023; Marks & Tegmark, 2023, Lev-
instein & Herrmann, 2024). However, we think that we might want to look a bit more at how the model 
itself represents possibility, in a way that is more natively propositional, and carry out an analysis there.
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we typically require that an agent’s degrees of belief be defined across an algebra 
of propositions (Savage, 1972; Jeffrey, 1990; Davidson, 1974; Lewis, 1974).20 This 
motivates the richness requirement. Furthermore, theory generally requires that the 
agent’s degrees of belief satisfy the probability axioms. There are many different 
ways to reach the conclusion that rational degrees of belief are probabilistically 
coherent (Ramsey, 1926; De Finetti, 1937; Cox, 1946; Wald, 1947; Savage, 1972; 
Hammond, 1988; Jeffrey, 1990; Joyce, 1998). Given that we want the belief repre-
sentation to help explain the success of LLMs, we would want the representation to 
at least approximate our best account of rational degrees of belief. This motivates 
both aspects of the coherence requirement.

Secondly, we would use the representation to measure belief, and we want our 
measurement technique to be consistent if we try to measure the same attitude in 
slightly different ways. For example, if we want to know how strongly an LLM 
believes that Paris is in France and Proust was French, we should get the same 
answer whether we measure its belief using the sentence “Paris is in France and 
Proust was French" or “Proust was French and Paris is in France". Furthermore, if 
our measurement technique tells us that the LLM strongly believes that Paris is in 
France, we would want to be able to infer from this that the LLM strongly disbe-
lieves that Paris is not in France.

Similarly, we would want the belief in “the cup is to the right of the dog” to have 
the same attributed belief as “the dog is to the left of the cup”. Even though these 
are not equivalent via Boolean operations, they still express the same state of affairs. 
This consistency across rephrasing, and closely related sentences, is a kind of 
semantic coherence: we want our techniques to measure the belief about the state of 
the world that the sentence expresses, not superficial features of the sentence itself.

Though this might seem trivial to satisfy, current measurement techniques fall 
short. Levinstein & Herrmann (2024) show that the belief measurement techniques 
of Burns et al. (2022) and Azaria and Mitchell (2023) are not robust under rephras-
ing sentences with negations. This is a dramatic failure mode; if our measurement 
technique yields very different answers depending on superficial changes in how a 
sentence is phrased, then it is not very reliable, undermining the inferences we can 
make about the LLM. Given that computer scientists are interested in making gen-
eral inferences about the cognition of LLMs, the failures of coherence shown in 
Levinstein & Herrmann (2024) have prompted them to look for representations that 
are coherent across Boolean combinations of sentences (Marks & Tegmark, 2023). 
Thus, far from being merely a philosophical worry, coherence also finds justifica-
tions in the practice of machine learning.

Third, coherence allows us to understand the LLM as viewing the world in 
(roughly) one way. For, suppose that the beliefs for the LLM we extract for the two 

20 For Davidson (1974) and Lewis (1974), coherence is a precondition for attributing any beliefs at all. 
Indeed, Davidson argues that we can only make sense of a subject as having beliefs if those beliefs form 
a largely coherent system—isolated “beliefs” that fail to cohere with one another would not really be 
beliefs at all. The coherence requirement we propose here serves a similar role: without some degree of 
coherence across different formulations of the same content and across logical combinations of beliefs, 
we cannot make sense of an LLM as genuinely representing truth rather than merely exhibiting superfi-
cial patterns in its internal states.
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sentences “Seven is larger than two" and “Two is smaller than or equal to seven" 
were very different. We wouldn’t know what to make of this kind of capriciousness 
of belief. What does the LLM really believe?

Used as a method for training probes, coherence doesn’t place as demanding 
constraints on the training and testing datasets as accuracy does. Even though we 
don’t know whether there are an even or odd number of stars in the Milky Way, we 
know that there are either an even or an odd number of stars. So, we can test for 
coherence of a set of claims without knowing the ground truth of any of the claims. 
However, coherence on its own is too weak to identify belief-like representations. 
For example, Burns et al. (2022) use a version of coherence as the core proxy for 
belief when developing a belief measurement technique.21 As we showed empiri-
cally, this method is fragile Levinstein & Herrmann (2024). We argued that this is 
because there are too many structures other than belief that satisfy coherence, such 
as sentence is true at world w, sentence is believed by most Westerners, and sentence 
is true and can be easily verifiable. Farquhar et al. (2023) make a similar argument.

Thus, once again, we face the problem of generalization. One might try using a 
larger set of sentences, and a set that includes more diverse Boolean structures of 
sentences to help generalize. However, in this situation, we fully expect that there 
will be many structures that satisfy (approximately) the kind of probabilistic coher-
ence that current probing techniques use, even if we look for coherence across a 
wider range of sentences. Thus, as with accuracy, coherence alone is also insuffi-
cient. Luckily, we have other ways to get at belief, such as use and accuracy that can 
help us identify plausible candidate representations.

In Fig. 4, we illustrate two different types of coherence using our toy example, 
with sentences that should get the same truth-value close along the direction of truth 
and far from sentences that should get an opposite truth-value. In our hypothetical 
example, we assume a notion of scale. In real cases, ‘close’ and ‘far’ will depend on 
the characteristics of the activation space that the probe discovers.

Fig. 3  As before, in the toy example, blue dots represent some internal activations corresponding to true 
claims, and red dots represent false claims. On the left, truth and falsity are well-separated by the rel-
evant activations, and the probe should be able to detect such a separation to achieve high accuracy. In 
the middle, the probe should achieve medium accuracy, and on the right, there is virtually no separation, 
so the probe should achieve only low accuracy 

21 Their version of coherence is a mixture of logical consistency and probabilistic coherence.
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5.3  Uniformity

Uniformity is the requirement that the representation of truth be consistent across 
different domains. Furthermore, the same decoding schema22 should be used across 
domains. What this means is that the representation of belief be the same, regard-
less of whether we are measuring beliefs about the locations of cities, or the rela-
tive magnitude of numbers, or the properties of individuals that are important for 
predicting job performance. If, instead, the representation works only for relations 
of numbers, and not for the locations of cities, then this representation would fail 
the uniformity requirement. Whereas coherence required that the representation be 
consistent across a Boolean algebra of propositions, uniformity requires that the 
representation be consistent across different subject domains in a way that allows for 
generalization: if the representation is uniform, we can decode beliefs in general, not 
just in the specific domains we used for training and testing.

Just as with coherence, uniformity is something that comes in degrees. An 
extreme form of uniformity would be a situation in which an LLM has a single 
direction in activation space, at a particular layer, which represents truth, no mat-
ter which sentence is fed to it. An extreme version of a non-uniform representa-
tion would be one in which there is no consistent direction in activation space that 
encodes for truth, even within certain very narrow domains. For actual LLMs, we 
expect something in between. The more uniform the candidate representation is, the 
more useful it is for us to think of it as belief-like.

If we find a representation that exhibits high uniformity, then such a representa-
tion would allow us to discover the belief of the LLM in new domains.23 This would 
help solve the problem of generalization we encountered above with our accuracy 
and coherence criteria. For example, if we identify a representation using a probing 
technique in the style of Azaria and Mitchell (2023) or Marks and Tegmark (2023), 
and we have good reason to think that the representation satisfied a strong version of 
uniformity, then we could use that representation to extract beliefs about domains 
that we didn’t use to train the model. This is incredibly powerful; it would allow us 
to use the representation to monitor the reasoning of the LLM across a wide range of 
different contexts.

Furthermore, uniformity makes sense as a requirement if we are looking for a 
single, unified belief-representation. Of course, an LLM could have some kind of 
more elaborate and piecemeal way in which it tracks the truth. If so, then there 
would be some sense it which the LLM has beliefs, but it would not have a single 
belief-like internal representation.

As we flagged in Sect. 4, there are many accounts of belief according to which 
internal representations are unnecessary. Uniformity would be against the spirit of 
such accounts, since it focuses strongly on the nature of the internal representation. 

22 For example, if the LLM uses the same dimension in activation space to store truth values, but 
the direction is flipped depending on the subject matter, then this would count as a different decoding 
schema.
23 In particular, it allows us to decode beliefs in areas in which we do not already know what the LLM 
believes or what the right answer really is, which are the domains we would use for training.
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However, as we noted, our requirements are tailored for the specific epistemic con-
text of LLMs and with pragmatic goals in mind. Thus, while our requirements, and 
especially uniformity, depart from some popular definitions of belief, they do so for 
principled reasons.

Unfortunately, we have some weak evidence against uniformity. Marks and Teg-
mark (2023) show that there are cases in which the direction of truth in the acti-
vation space seems to be different, even for closely related statement classes (for 
example, statements about cities phrased in a positive way, and statements about cit-
ies phrased in a negative way).24 Indeed, one of their three main hypotheses that 
explains these results is that “LLMs linearly represent the truth of various types of 
statements, without having a unified truth feature" (p. 5).

Uniformity is perhaps the requirement that can most easily change as our meas-
urement methods change. This is because uniformity is a pragmatic requirement: it 
ensures that the representation will be useful for us. Highly non-uniform representa-
tions would be difficult for us to extract and work with in any systematic way. If we 
have no way to predict where or how to look for beliefs in an LLM for each new sen-
tence for which we want to measure its belief, then while we might want to think of the 
LLM as a whole as somehow tracking truth, it doesn’t seem useful to think of it as hav-
ing a representation of truth. However, if we get better at understanding the internals 
of LLMs, such that we have a theory of where to look for different beliefs, we might 
be able to deploy a more sophisticated belief-measurement method that works across a 
wide range of domains, recovering a useful form of uniformity. This is a core way in 

Fig. 4  In the toy example here, we stipulate the orange dots correspond to activations for “A is to the 
left of B” and “B is to the right of A”; the purple dots correspond to “Paris is in France, and Toronto is 
in Canada,” and “Toronto is in Canada, and Paris is in France”; and the green dot corresponds to “A is 
not to the left of B”. The black arrow corresponds to the direction of truth. If the representations found 
are coherent, then the purple dots should be close together along the direction of truth. The orange dots 
should also be close together and far from the green dot along the direction of truth. The plot on the left, 
then, illustrates a fairly coherent pattern of activations, whereas the plot on the right does not

24 This is thus also some evidence against coherence.
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which our requirements are practice-informed: they are sensitive to changes in available 
measurement techniques.

To be clear, it is not that uniformity as a condition weakens as we get more sophisti-
cated belief measurement techniques. Uniformity always requires that our belief meas-
urement technique works across a wide range of domains. Rather, what a high level of 
uniformity will end up looking like depends on the techniques available. In this sense 
the way in which uniformity is satisfied is relative to the methods we use, even though 
the uniformity condition itself always requires that the representation be consistent 
across domains. We’ve focused our discussion on contexts in which we have relatively 
simple probing methods that identify single directions in activation space at a particu-
lar layer. However, if we were to have more sophisticated techniques available, then a 
highly uniform belief representation might look different than what we’ve discussed so 
far.

For example, Marks and Tegmark (2023) find that, as sentences increase in Boolean 
complexity, probes work better at later layers. Intuitively, if you are asked to evaluate 
the truth of “A and B”, you might first figure out what you think of A, then B, and 
then apply the conjunction to make a judgement about the original statement. A precise 
version of this, that can guide our measurement techniques, might prove very useful 
for finding out what LLMs think about new sentences. If we had such a belief meas-
urement technique and it worked across a wide range of domains then this would still 
exhibit high uniformity, even though the belief representations for different sentences 
lived at different layers.

Another example is recent work that develops techniques to extract interpretable fea-
tures from neural networks. Building on theoretical work in neuroscience by Thorpe 
(1989) and mathematics by Donoho (2006), computer scientists have developed an 
approach to extracting features that uses sparse autoencoders (Elhage et  al., 2022; 
Bricken et  al., 2023; Cunningham et  al., 2023; Templeton et  al., 2024). Though the 
details of the approach are too technical to describe here, the core upshot is that as 
we get better at finding interpretable features in LLMs our exact notion of uniformity 
might change to utilize the new techniques. Thus, while we have some weak evidence 
against a strong form of uniformity in current LLMs, relative to our best methods, as 
those methods improve our uniformity requirement will is more likely to be satisfied.

Continuing with our toy example, we illustrate a situation with high uniformity and 
one with low uniformity in Fig. 5, relative to simple linear probes.

5.4  Use

Our final criterion is use. Use requires that the LLM tend to use the identified repre-
sentations in a role appropriate for belief to determine what probability distribution 
to output, or what text to produce if we are using the distribution to generate text.

If the LLM has beliefs, it uses those beliefs along with other information to figure 
out what to output. In essence, use ensures that beliefs play the belief-role in the 
LLM’s master algorithm.

To check for use, we can look at how true beliefs lead to better performance and 
more skillful behavior. If an LLM shifts from false beliefs to true ones, it should 
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generally improve in its tasks, whatever they may be. We illustrate two positive 
instances of use in Fig. 6 using our running toy model.

The challenge with use is that the master high-level algorithm remains opaque. 
We don’t have a good holistic understanding of what any LLM’s master algorithm 
is, and there are many different ways the LLM could use its beliefs. To make a sim-
ple analogy, I can anticipate that a human will be more successful and skillful if 
she acquires more true beliefs. However, without knowing anything about what she 
wants or what her goals are, I can’t predict much about what exactly she’ll do. If the 
LLM is interested in truth-telling, for example, it will do a better job with more true 
beliefs. If the LLM is interested in deceiving, it will also do a better job with more 
true beliefs. But its behavior in those two cases will be quite different. The ultimate 
output is a function not only of its beliefs but of other things too.

Despite the algorithmic opacity, interventional techniques, such as ablating or 
modifying identified representations, can be helpful. For example, Marks and Teg-
mark (2023) attempt to identify directions of truth using mass mean probes. After 
determining candidate internal representations of truth and falsity, they ask a model 
to determine whether a statement is true or false. They might input “Determine 
whether the following statement is true or false: Paris is in France" and check the 
model’s performance—the probability the model assigns to the tokens True and 
False—when its activations are unaltered and again when its activations are sur-
gically altered by changing (supposedly) truth-encoding representations to false-
encoding ones (or vice versa for other prompts). If, systematically, model perfor-
mance degrades when the candidate representations are changed in this way, then we 
have evidence that the model was genuinely using these representations to encode 
truth and falsity.25

However, we do not yet have comprehensive tests for use across various domains 
and tasks due to the algorithmic opacity. Testing for use in beliefs is more subtle 
than testing for grammatical representations or board representations in Othello. For 
example, after prompting the LLM with the word People it will likely predict are 
with higher probability than is. By hand-editing the representation of People 
from plural to singular, the model should then predict is with higher probability. 
Checking use in this case is straightforward. But with beliefs, the process is more 
challenging.

5.4.1  Harding’s Criteria

Harding (2023) recently addressed the question of when a probe has successfully 
identified an internal representation of a linguistic property of inputs to a lan-
guage model, such as subjecthood or grammatical number. She proposes three 
criteria, which she dubs information, use, and misrepresentation. (We use italics 
here to distinguish her version of use from our use.)

• Information requires that the pattern of activations identified by the probe bears 
information about the property in question.

25 For other attempts to check use see Campbell et al. (2023) and Li et al. (2023).
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• Misrepresentation requires that, in principle, the activations could misrepresent 
the linguistic property.

• Use requires that the pattern of activations is actually used by the model in the 
right way to perform its task.

Fig. 5  In the toy example, blue and red represent true and false claims (respectively) for sentences about 
one domain, for example, sentences about cities, while green and orange represent true and false claims 
(respectively) for sentences about a different domain, for example, sentences about plants. On the left, 
there is a consistent direction of truth in the model’s representation space for both domains, suggesting 
high uniformity. On the right, the directions of truth are almost orthogonal, suggesting low uniformity 

Fig. 6  We consider two cases in our toy example. In the first, the purple dot represents the activation for 
the sentence “umbrellas help keep people dry”; in the second, it represents the activation for the sentence 
“75 is bigger than 50”. As before, the black arrow is the direction of truth. Initially, the activation for 
both sentences is far along the truth direction, since the LLM has an accurate belief. When responding 
to prompts, the answer given as Answer 1 in both cases is successful. The dotted red line represents 
an intervention that we carry out, pushing the activation towards the direction of falsity. If the answers 
change in the way depicted in the example as Answer 2, then this is evidence that the representation sat-
isfies use, since the behaviour degrades as the accuracy of the belief gets worse
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Our goal differs as we focus on representations of truth rather than linguistic proper-
ties. For example, our criteria of coherence and uniformity have no analog in the 
case of linguistic representation generally.

However, there is an interesting relationship between Harding’s criteria and ours. 
For us, information corresponds directly with accuracy. Beliefs should carry infor-
mation about the world by being true.

Our use also corresponds well with Harding’s use, although there is an important 
difference in practice. For linguistic representation, as we saw, it is usually easy to 
identify the model’s task well enough to determine whether a given representation is 
used appropriately. However, to determine use in the case of belief, we need a more 
holistic understanding of what the model is doing.

Harding’s misrepresentation is redundant for our purposes. If a model has a rep-
resentation of truth, then it could misrepresent a given claim by assigning it the 
wrong truth value. Indeed, part of determining use involves checking what happens 
when internal representations of truth-values are switched.

5.5  Diachronic Stability

In this paper, we’ve focused on attributing beliefs to LLMs at a particular time. How-
ever, when we attribute beliefs to humans, we also tend to expect a certain level of 
diachronic coherence between their beliefs at different times. That is, we expect their 
beliefs to bear a certain kind of relationship to one another from one time to the next.

From day to day, your beliefs largely remain stable. When you learn something 
new, your beliefs change, but in a somewhat predictable and reasonable way. The 
paragon example of diachronic coherence is updating by conditionalization. Accord-
ing to the standard Bayesian view, if your credences at time t

0
 are represented by P

0
 , 

and between t
0
 and t

1
 , the strongest proposition you learn is E, then P

1
= P

0
(⋅ ∣ E).

Our current coherence constraint says nothing about how an LLM’s beliefs 
should be related to one another across times. We think the question of which, if 
any, diachronic criteria for belief in LLMs is a fascinating one that deserves its 
own paper. Here, we’ll make only a few cursory remarks. First, in general, syn-
chronic constraints on belief seem to us much more accepted than any diachronic 
constraints.26 It is not, then, obvious that diachronic constraints are required for any 
kind of belief attribution to be useful.

Second, interpretability work is still in its infancy. While empirical techniques 
have evolved over the last few years, we do not as yet have sophisticated attempts 
to measure the relationship between belief sets using probes across times. We’re 
inclined to hold off on attempting to develop our coherence criterion further until 
engineering techniques evolve, given our commitment to a practice-informed con-
ceptual foundation for belief representation.

26 For example, Pettigrew (2016) claims that while there are good arguments agents should plan to con-
ditionalize, there’s no good argument that agents who fail to implement such plans are doing anything 
irrational. For other arguments against genuinely diachronic constraints on belief, see Hedden (2015) and 
Christensen (1991).
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There are at least two different ways an LLM’s beliefs could change across time. 
First, a model’s beliefs could change during training, when its weights are being 
updated via gradient descent. Second, a model’s beliefs could change within a given 
inference cycle as it learns new information from a prompt, or through a continued 
interaction with a user.

It is far from clear what sort of diachronic stability should be desirable as the model is 
trained. For the most part, end users interact with models with weights that are frozen (or 
nearly so) across multiple inference cycles. While advanced models that undergo some 
fine-tuning or tweaking should be fairly stable, we hesitate to put constraints on belief 
attribution because of diachronic inconsistency across changing weights.

After training, when a model is deployed, standard transformer-based models do 
not have memory from one inference cycle to the next, so any information learned 
within an inference cycle can’t be permanently retained in the model’s weights. 
However, models do learn in context and may update their beliefs temporarily (Dong 
et al., 2022). This in-context learning allows models to adjust their outputs based on 
new information provided within a single interaction, potentially leading to short-
term belief updates.

It may be reasonable to insist on some kind of diachronic coherence within an infer-
ence cycle. For instance, perhaps some of the model’s beliefs should remain stable in that 
new information should not generally cause such beliefs to be dropped (Leitgeb, 2017). 
Additionally, our other criteria (accuracy, uniformity, and use) could potentially be 
extended to consider diachronic aspects, such as how accuracy changes over time or how 
beliefs updated in some internally uniform way across different domains.

However, both philosophical and empirical waters are murkier here than in 
the synchronic case, so we leave open how and whether the our criteria should be 
expanded in the future. As research into LLMs with persistent memory or the ability 
to update their weights during deployment progresses, the relevance of diachronic 
stability in belief attribution may increase, particularly for models designed for long-
term interactions or ongoing learning.

6  Moving Forward

Both for understanding how LLMs function, and for deploying them ethically and 
responsibly, it would be useful to have a way to measure their beliefs. In order to do 
so in a way that is philosophically rigorous and practice-informed, we need to have 
clear criteria for attributing belief. We’ve proposed four criteria that an internal rep-
resentation of an LLM must satisfy in order for it to fruitfully count as belief.

Many challenges remain for each of these criteria, especially if we use them only 
in isolation to design probing techniques (as witnessed in Levinstein & Herrmann, 
2024). Furthermore, it may turn out that LLMs have no internal representation that 
satisfies these conditions. In that case we don’t think it would be helpful to attribute 
belief to them (or, at least, significantly less helpful). However, if we did find a rep-
resentation that satisfies these conditions, then this would be very powerful. It would 
help us better explain LLM behaviour; it would allow us to check for honesty in new 
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domains in which we don’t know the ground truth; and it would allow us to ensure 
greater fairness when deploying LLMs.
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