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Abstract

The topic of this article is the closure of a priori knowability under a priori knowable material
implication: if a material conditional is a priori knowable and if the antecedent is a priori knowable,
then the consequent is a priori knowable as well. This principle is arguably correct under certain
conditions, but there is at least one counterexample when completely unrestricted. To deal with this,
Anderson proposes to restrict the closure principle to necessary truths and Horsten suggests to restrict it
to formulas that belong to less expressive languages. In this article it is argued that Horsten’s restriction
strategy fails, because one can deduce that knowable ignorance entails necessary ignorance from the
closure principle and some modest background assumptions, even if the expressive resources do not
go beyond those needed to formulate the closure principle itself. It is also argued that it is hard to
find a justification for Anderson’s restricted closure principle, because one cannot deduce it even if one
assumes very strong modal and epistemic background principles. In addition, there is an independently
plausible alternative closure principle that avoids all the problems without the need for restriction.

1 Introduction
Ever since the work of Dretske (1970) and Nozick (1981), there has been an intensive debate in epis-
temology about the principle of closure of knowledge under known material implication, which can be
formalized as follows:

K (φ → ψ)→ (Kφ → Kψ) . (1)

The discussion is often framed in terms of general, so-called ‘subjunctivist’ theories about knowledge.
Recently, Holliday (2014) formalized the theories of knowledge proposed by Dretske (1970), Nozick
(1981), Heller (1989, 1999) and Sosa (1999) in a single framework and he showed that (1) fails on all of
them.1

What is perhaps less known is that Dretske (2005) has also implicitly challenged the principle of clo-
sure of knowability, i.e. possible knowledge, under known material implication, which can be formalized
as follows:

♦K (φ → ψ)→ (♦Kφ → ♦Kψ) . (2)

Dretske (2005) claims that we face a choice between: first, accepting that we have lots of easily obtainable
knowledge of light-weight propositions (e.g., there are cookies in the jar); second, accepting that it is very
hard or perhaps impossible to obtain knowledge about certain heavy-weight propositions (e.g., there is
no evil demon that deceives us); third, accepting that one often knows that light-weight propositions have
∗Jan Heylen is a Postdoctoral Fellow of the Research Foundation Flanders.
1If one takes into account the basis for a belief, then the outcome is different (Holliday, 2012, appendix 2.D).
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heavy-weight implications; fourth, accepting closure of knowledge under known material implication.
For discussion of this see the exchange between Dretske (2005) and Hawthorne (2005). Since Dretske
thinks that some of the heavy-weight propositions are not simply unknown but also unknowable, one can
replace the fourth option, namely closure of knowledge under known material implication, with closure
of knowability under material implication as well.

If one focuses not so much on knowledge in general but on a priori knowledge in particular, then it
seems initially plausible that a priori knowability is closed under known material implication, which can
be expressed as follows:

♦Ka (φ → ψ)→ (♦Kaφ → ♦Kaψ) . (3)

Assessing the material soundness of (3) is the main goal of this paper. Fritz (2013) has formalized
so-called epistemic two-dimensionalism and closure of a priori knowability under modus ponens is a
theorem in his framework. Yet it is not entirely uncontroversial. Assume the principle that all tautologies
> are a priori knowable, which can be formalized as follows:

♦Ka>. (4)

It follows from (3) and (4) that a priori knowability is closed under conjunction introduction,2 which can
be formalized as follows:

(♦Kaφ ∧♦Kaψ)→ ♦Ka (φ ∧ψ) . (5)

Anderson (1993) and Horsten (2000) each offer a counterexample to (5). They each also suggest a way
of dealing with these counterexamples. This is the subject of Section 2. I will argue against Horsten’s
proposal in Section 3. The justification of Anderson’s proposal is the subject of Section 4. In Section 5 I
will present an alternative principle that is more resilient to the problems encountered in this article and
that has good, independent justification.

2 Anderson and Horsten on Closure
Anderson (1993, p. 8-9) presents the following counterexample. Assume that (a priori) knowledge is
factive, which can formalised as follows:

Kaφ → φ . (6)

Let φ be of the form p↔ @p, with @ the actuality operator. Let p mean that I don’t have a priori
knowledge of any conjunction.3 Furthermore, suppose that p is actually true. Next, assume that I know a
priori that p↔@p and, therefore, it is a priori knowable for me. Given (4), it is a priori knowable that
p∨¬p. However, it cannot be the case that I know a priori that p↔@p and p∨¬p, since in that case
it would have to be true that p↔@p, which can only the case if p is true, because @p is true. But then
in that case it is true that I don’t know a priori any conjunction and, consequently, I don’t know a priori
that p↔@p and p∨¬p.

Let us consider how strong the counterexample really is. In the example it is assumed that it is actually
the case that I don’t have a priori knowledge of conjunctions, which is manifestly not the case. Anderson
also mentions the possibility that p means that I have made no inferences. On that reading of p, it again
is actually false. A third and final option Anderson considers is that p means that everything I know is of
a bounded complexity. This is more promising; it could actually very well be the case. Let us delve a bit
deeper.

2Interestingly, Holliday (2014) shows that this closure principle is a consequence of the various subjunctivist theories of knowl-
edge.

3As will become clear, this can only be the case if material equivalence is not analysed in terms of the conjunction of two material
implications. Alternatively, let p mean that I don’t have a priori knowledge of any conjunction of the form (θ →@θ)∧ (θ ∨¬θ).

2



Anderson does not say which complexity measure he has in mind, but a natural choice here is the
following: the complexity of a formula is the number of steps needed to construct the formula on the
basis of the recursive definition of well-formed formulas. E.g., the complexity of (p↔@p)∧ (p∨¬p)
is higher than the complexity of (p↔@p). Strictly speaking, the complexity of p is then of the lowest
complexity. However, this may be deemed somewhat misleading. After all, the complexity of formulas is
defined in a metalanguage, so p expresses something that is properly formulated in a metalanguage. This
might be the reason why Horsten (2000, p. 65, fn. 9) says that ‘[Anderson] gives a counterexample based
on self-reference’. In order to make sure that there is nothing paradoxical going on, it may be wiser to
make to use arithmetization to make explicit in the object language what p means in the metalanguage.
However, this raises the question how it is possible to say that I don’t know anything above a certain
complexity without exceeding that complexity. An arithmetized expression of the claim that nothing
above a certain complexity, denoted by the natural number n, is known to be true can be expressed as
follows:

¬∃x(KaT (x)∧ x > n) , (7)

with T (x) a truth predicate and with n the Peano numeral of the number n. The Gödel code of the above
formula is higher than n, since even the Gödel code of n is considerably greater than n. The Gödel code
of

¬∃x(KaT (x)∧ x > n)↔@¬∃x(KaT (x)∧ x > n) (8)

is higher still. But in that case (8) is not actually known, because nothing above complexity n is actually
known. Moreover, it is not knowable, since (7) is false in any world in which (8) is known, while @ (7) is
true in that world, thereby making (8) false. It is not my intention to claim that the above considerations
are a definite refutation of (Anderson, 1993)-style counterexamples. However, I think that the burden of
proof has shifted to those who want to provide such a counterexample.4

Horsten (2000, p. 50-51) also targets (5). Consider the following two sentences:

♦Ka∀x(Ka (x ∈ {x|∃y ∈ N(x = 2× y)})↔ (x = 2∨ x = 4)) ; (9)
♦Ka∀x(Ka (x ∈ {x|∃y ∈ N(x = 2× y)})↔ (x = 2∨ x = 4∨ x = 6)) . (10)

The first one says that is is a priori knowable that every number of which it is a priori known that it is
an even number is identical to two or to four. The second one says that it is a priori knowable that every
number of which it is a priori known that it is an even number is identical to two or to four or to six.
Combining the above with (5) and using elementary first-order, arithmetical and modal reasoning, one
can derive a contradiction via

♦(Ka (6 ∈ {x|∃y ∈ N(x = 2× y))}∧¬Ka (6 ∈ {x|∃y ∈ N(x = 2× y))}) .

Deeming the assumptions plausible, Horsten (2000) rejects (5).
Both Anderson (1993) and Horsten (2000) reject (5), which is entailed by (3) and (4). They both

think that on that basis (3) is to be rejected. Notwithstanding their rejection of (3), they both think that a
restricted version of (3) can be upheld, although they each favour a different restriction.

Anderson (1993, p. 7) accepts the principle when the a priori knowable propositions are also neces-
sary, which can be formalized as follows:

(♦Ka (φ → ψ)∧�(φ → ψ))→ ((♦Kaφ ∧�φ)→ ♦Kaψ) . (11)

The counterexample he used against (3) involved a contingent proposition, viz. p↔ @p and, hence,
it does not work against (11). Furthermore, Horsten (2000)’s counterexample also involved contingent

4Hawthorne (2005, p. 40, fn. 4) mentions a similar example: ‘Suppose I know P and know necessarily P [→] I will never perform
a deductive inference again.’ Without specifying what P is and without explaining how one could get a priori knowledge of this,
the example is underdeveloped.
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truths, viz. truths of the form Kaφ and ¬Kaφ . Moreover, (11) still has a large class of applications.
Analytic truths (e.g. all vixens are foxes) and mathematical truths (e.g. 2+ 3 = 5) are all thought to be
necessary. So far, the negative justification for (11). The positive justification offered by Anderson (1993,
p. 9) is, however, not relevant. He says the following:

Our knower has the potential to have both of the necessities p and q in mind and to put them
together into a conjunction. If both of them are known a priori, and he believes the conjunction as a
result of his inference, then he surely has a priori knowledge of that conjunction.

[. . . ] We know by proof the necessary truths theorem A and theorem B. Can it be that if we infer
their conjunction and believe it because of the inference we have made, we still may not necessarily
have a priori knowledge of that conjunction? Surely this is not a possibility.

The problem with these considerations is that that they do not directly support (5) or rather

((♦Kaφ ∧♦Kaψ)∧ (�φ ∧�ψ))→ ♦Ka (φ ∧ψ) .5 (12)

Instead, they support something along the following lines:

((Kaφ ∧Kaψ)∧ (�φ ∧�ψ))→ ♦Ka (φ ∧ψ) . (13)

I will later return to the logical difference between (12) on the one hand and (13) on the other hand.
Horsten (2000, p. 57, 60) adopts a closure principle that, unlike Anderson (1993)’s (12), has non-

trivial applications to contingent formulas. His closure principle says that, if two conjuncts are each a
priori knowable, then it is a priori knowable that each conjunct is possibly true, which can formalized as
follows:

(♦Kaφ ∧♦Kaψ)→ ♦Ka (♦φ ∧♦ψ) . (14)

It can easily be seen that both Anderson (1993)’s counterexample and Horsten (2000)’s counterexample
fail if (5) is replaced by (14). Unfortunately, the only reason given to accept (14) is that, if ♦Kaφ ∧♦Kaψ ,
then it is true that ♦φ ∧♦ψ (Horsten, 2000, p. 56). This follows in modal system K from the assumption
and (6). It is acknowledged that the ‘argument does not establish the soundness of this aggregation
principle beyond all possible doubt’ (Horsten, 2000, p. 66, fn. 15). Note that there is to some extent
agreement with Anderson in the case of necessary formulas. For suppose that φ and ψ are necessary.
Then it is true that φ ∧ψ . Analogous reasoning then leads one to the conclusion that ♦Ka (φ ∧ψ).

Horsten (2000, p. 51) is also prepared to go beyond (14). He thinks that the problem is due to the fact
that his counterexample is formulated in a very expressive language. He notes that the systems of inten-
sional mathematics found in (Shapiro, 1985) and (Horsten, 1994) each contain a version of the relevant
closure principle, but the languages in which these closure principles are formulated is less expressive
than the language that is used to give the counterexample to the closure principle. In particular, the
language used by Shapiro (1985) is the extension of the language of Peano Arithmetic (PA), LPA, ex-
tended with a single operator expressing complex a priori knowability, which will be expressed here with
〈Ka〉, whereas the language used by Horsten (1994, 1998) is the extension of LPA with both a possibility
operator, ♦, and an a priori knowledge operator, Ka. Call the first language LEA and the second lan-
guage LMEA. Neither language contains the set membership relation, ∈, or the set-abstraction notation,
{x| . . .}. So, neither (9) nor (10) can be formulated in LEA or LMEA. Similarly, the actuality operator
does not belong to either LEA or LMEA, so Anderson (1993)’s counterexample is also inexpressible in
those languages.

The positive proposals are related to one another. To see this, it is useful to define a translation from
LEA to LMEA that systematically replaces 〈Ka〉 with ♦Ka.

Definition 2.1. Let F be a translation from LEA to LMEA as follows (Heylen, 2013, p. 93):
5From this and closure of a priori knowability under tautological equivalence one can deduce (11).
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1. if φ is an atomic formula, then φ F = φ ;

2. if φ is ¬ψ , then φ F = ¬ψF ;

3. if φ is ψ → θ , then φ F =
(
ψF → θ F

)
;

4. if φ = ∃xψ , then φ F = ∃xψF ;

5. if φ is Kψ , then φ F = ♦KaψF .

For instance, (∃y∃z(y = z+z))F is just ∃y∃z(y = z+z) but (〈Ka〉∃y∃z(y = z+z))F is♦Ka∃y∃z(y = z+z).
Shapiro’s closure principle can then be expressed in LMEA as follows:

♦Ka
(
φ

F → ψ
F)→ (

♦Kaφ
F → ♦Kaψ

F) . (15)

If one assumes PA and quantified modal system S5, then one can prove that all formulas in the range of
the F-translation are true if possibly true, which can be formalized as follows:

♦φ
F → φ

F . (16)

The details can be found in (Horsten, 1994, p. 287) and (Heylen, 2013, p. 95). If one combines this
result with (6), then one can prove that (15) is deducible from Anderson (1993)’s (11). Ergo, Shapiro
(1985)’s version of the closure principle satisfies both Anderson (1993)’s restriction to necessary truths
and Horsten (2000)’s restriction to less expressive languages. The same does not hold for Horsten (1994,
1998)’s version of the closure principle, which allows instantiation with contingent truths, e.g. Kaφ and
¬Kaφ .

The main goal of this paper is to further assess the material soundness of the principle of closure of a
priori knowability under a priori knowable material implication. First, Horsten’s restriction strategy will
be examined. It will be shown that the relevant closure principle in combination with a few very plausible
other principles leads to a highly implausible consequence. No expressive resources other than the ones
needed to formalize the relevant closure principle are used. It is however crucial for obtaining this result
that one can instantiate the closure principle with certain contingent formulas. This takes Horsten (1994,
1998)’s version off the table but it still leaves Anderson (1993)’s and Shapiro (1985)’s versions on the
table. This is the subject of Section 3.

Second, Anderson’s restriction strategy will be examined. In particular, I will look at the closure
principle restricted to one kind of necessary truths, namely arithmetical ones. It will be shown that if the
arithmetical complexity of the consequent is low, the closure principle is provable, provided some fairly
weak background assumptions are made. However, it is not provable when also arithmetically more
complex sentences are allowed in the consequent, even if one throws in a substantial number of modal,
epistemic and modal-epistemic principles. This does not amount to a refutation of the closure principle
restricted to necessary truths, but it does raise the question of how exactly to justify it.

Third, I will present an alternative principle, which epistemic logicians and mainstream epistemol-
ogists have good reason to accept. Furthermore, it manages to avoid both the counterexamples offered
by Anderson (1993) and Horsten (2000) and it is immune to the Socratic objection. Moreover, it is not
restricted to necessary truths. This is the subject of Section 5.

3 Closure and the Socratic objection
Horsten (2000, p. 61-62) shows that (3) is not a theorem of his system. In fact, one needs only a subtheory
of his system. The argument makes use of three principles that have not been introduced before. The first
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is a principle of weak positive introspection and the second is a principle of weak negative introspection,
which can be formalized as follows:

Kaφ → ♦KaKaφ ; (17)
¬Kaφ → ♦Ka¬Kaφ . (18)

The third is what Horsten calls a ‘density’ principle:

♦¬Kaφ . (19)

The above is claimed to be the ‘opposite’ of logical omniscience (Horsten, 2000, p. 51), but this claim is
too strong, since even logically omniscient agents may be ignorant about truths that are not theorems of
the system, e.g. proposition letters. Given these principles, one can reconstruct his arguments as a mutual
inconsistency result.6 One advantage is that the focus shifts from whether or not (3) is a theorem of the
system in (Horsten, 2000)) to whether or not (3) is compatible with a number of other principles that may
belong to other theories as well. An additional benefit is that one no longer has to consider the plausibility
of certain factual assumptions such as (9) and (10), which were used in Horsten (2000)’s counterexample
to (3).

Theorem 3.1. If K4⊂ T , `T (3), `T (4) `T (6), `T (17), `T (18), `T (19), then T is inconsistent.

Proof. Let θ be p∨¬p. By (4), it follows that ♦Kaθ . It is a K4-consequence of the latter and (17)
that ♦KaKaθ . By (19), it is also the case that ♦¬Kaθ . It is a K4-consequence of the latter and (18) that
♦Ka¬Kaθ . By (5), it follows that

♦Ka (Kaθ ∧¬Kaθ) .

It is a K-consequence of the latter and (6) that ♦(Kaθ ∧¬Kaθ), which contradicts a theorem of extensions
of K.

A philosopher wishing to uphold (3), could choose to drop modal system K4, (4), (6), (17), (18) or
(19). I will first show that dropping (18) and (19) is not solution.

Lemma 3.2. If K⊂ T , `T (3), `T (4) `T (6), then

`T ¬(♦Kaφ ∧♦Ka¬φ) .

Proof. Suppose that ♦Kaφ ∧♦Ka¬φ . It follows that ♦Ka (φ ∧¬φ). Given modal system K and (6), it
follows that ♦(φ ∧¬φ). This contradicts a theorem of extensions of modal system K.

Theorem 3.3. If K4⊂ T , `T (3), `T (4), `T (6), then:

1. if `T (17), then `T ♦Ka¬Kaφ →�¬Kaφ ;

2. if `T (18), then `T ♦KaKaφ →�Kaφ .

Proof. By Lemma 3.2, it is the case that:

1. ♦Ka¬Kaφ →¬♦KaKaφ ;

2. ♦KaKaφ →¬♦Ka¬Kaφ .

Next, note that the following are K4-consequences of (17) and (18) respectively:
6In Horsten’s proof the density principle is invoked to infer ♦Ka¬Kaθ , where that principle by itself only allows the inference

of ♦¬Kaθ . However, one can give a charitable interpretation of the proof in which the desired conclusion follows from (19) and
(18), which is a trivial consequence of the axiom schemes of his theory.

6



1. ¬♦KaKaφ →¬♦Kaφ ;

2. ¬♦Ka¬Kaφ →¬♦¬Kaφ .

Finally, the following are tautological consequences of the above:

1. ♦Ka¬Kaφ →¬♦Kaφ ;

2. ♦KaKaφ →¬♦¬Kaφ .

Corollary. If K4⊂ T , `T (3), `T (4), `T (6), `T (17), `T (18), then:

1. `T Kaφ →�Kaφ ;

2. `T ¬Kaφ →�¬Kaφ .

Dropping (19) is not a solution, since one could then still prove a highly undesirable result (Corollary
3), namely that knowledge and ignorance are necessary. Dropping (19) and (18) is also not a solution,
since one could then still prove that a priori knowable ignorance entails necessary ignorance (Theorem
3.3).7 Suppose that one has a list of proofs that one has obtained. Next, one wants to check whether one
has proved some conjecture. After having gone through the entire list and not finding the conjecture on
it, one knows that one does not have a proof of it. It would be absurd to conclude that one consequently
cannot have a proof of the conjecture. Similarly, the result that known ignorance entails necessary igno-
rance is too strong. Knowing about one’s ignorance does not preclude learning. Since Socrates famously
stated that knowledge of one’s ignorance is the beginning of wisdom, I call this the Socratic objection to
(3).

Theorem 3.3 is bad news for Horsten (1994, 1998), because his system of Modal-Epistemic Arith-
metic (MEA) contains all of (3), (4), (6) and (17). Still, someone who would want to uphold (3) could
choose to drop (17). This is to no avail either, if one accepts that (a priori) knowledge is closed under
conjunction elimination, which can be formalized as follows:

Ka (φ ∧ψ)→ (Kaφ ∧Kaψ) . (20)

With only (6), (4) and (20) and modal system K in the background, one can still level the Socratic
objection to (3).

Lemma 3.4. If K⊂ T , `T (3), `T (4), `T (6), `T (20), then

`T ¬(♦Kaφ ∧♦Ka¬Kaφ) .

Proof. Suppose that♦Kaφ∧♦Ka¬Kaφ .8 It follows that♦Ka (φ ∧¬Kaφ). Given (20), it is K-consequence
of the latter that♦(Kaφ ∧Ka¬Kaφ). Assuming (6), it is a K-consequence of the latter that♦(Kaφ ∧¬Kaφ),
which contradicts a theorem of extensions of K.

7The principle of strong negative introspection for (a priori) knowledge says that ignorance entails known ignorance, which
can be formalized as ¬Ka → Ka¬Kaφ . This is not equal to the conclusion that knowable ignorance entails necessary ignorance.
Moreover, Theorem 3.3 does not assume weak negative introspection, let alone strong negative introspection. It is perhaps also
worth pointing out that, if strong negative introspection of (a priori) knowledge is combined with the principle of factivity of (a
priori) knowledge, then one can deduce that falsity entails known ignorance (Hendricks, 2006, p. 87). This is a particularly strong
consequence.

8The reader familiar with the paradox of Fitch (1963) will recognize this sentence, albeit that it contains an a priori knowledge
operator rather than a (general) knowledge operator. However, the argument does not start from the assumption of weak verifica-
tionism, namely that all truths are knowable. Indeed, it would hardly be credible that all truths are a priori knowable. Rather, my
argument starts from (5), which is derivable from (3) and (4). For discussion of the paradox of Fitch, see (Williamson, 2000, ch. 12).
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Theorem 3.5. If K⊂ T , `T (3), `T (4), `T (6), `T (20), then `T ♦Ka¬Kaφ →¬♦Kaφ .

So, philosophers who want to uphold (3) and avoid the Socratic objection have to reject modal system
K, (4), (6) or (20). (Horsten, 2000, p. 54, 60) is willing to accept even S5 for the diamond operator.
Anderson (1993, p. 2) is more cautious,9 but he is also willing to go beyond K, since he accepts T. Tau-
tologies are paradigm examples of a priori knowable truths. It is the standard view in epistemology that
knowledge in general is factive (Williamson, 2000, p. 33-41). That knowledge distributes over conjunc-
tion is a very reasonable assumption (Williamson, 2000, p. 275-283). Given the high plausibility of (4),
(6), (20) and the weakness of modal system K, the only reasonable option seems to be to reject (3).
Nothing hinges on the expressive power of the language: it suffices that the language contains the modal
possibility operator ♦, the a priori knowledge operator Ka and the usual logical connectives. Therefore,
Horsten (2000)’s suggestion that (3) is safe when formulated in a less expressive language, viz. LMEA,
is false.

The next question is whether the Socratic objection can be raised against Anderson (1993)’s (11) and
Horsten (2000)’s (14) as well, if modal system K4, (4), (6), (17) and (20) are in the background. The
answer is no.

Theorem 3.6. There is an awareness model of L ∪{♦,Ka} such that

M |= K4,(4),(6),(17),(20)

and
M |= (11),(14),

but M 6|= ♦Ka¬Ka p→¬♦Ka p.

Proof. Let M be an awareness model, with the the following characteristics:

1. W = {w1,w2};

2. RM =W ×W ;

3. RE = {〈w1,w1〉,〈w2,w2〉};

4. V is a function from proposition letters q and possible worlds w ∈W such that:

(a) V (p,w1) =V (p,w2) = 1;

(b) V (q,w1) =V (q,w2), for every other proposition letter;

5. A(w1) = L ∪ {♦,Ka} and A(w2) is the set of formulas of L ∪ {♦,Ka} recursively defined as
follows:

(a) ¬Ka p is in A(w2);

(b) if φ ∈ A(w2), then Kaφ ∈ A(w2);

(c) nothing else is in A(w2).

The key clauses in the definition of M ,w |= φ are the one for φ = ♦ψ and the one for φ = Kaψ:

• M ,w |= ♦ψ if and only if M ,w′ |= ψ for all w′ such that wRMw′;

• M ,w |= Kaψ if and only if ψ ∈ A(w) and M ,w′ |= ψ for all w′ such that wREw′.

9He refers to Salmon (1989), who argues that modal axiom scheme 4 is not correct for the logic of metaphysical or counterfactual
possibility. Williamson (2007) argues that even S5 is correct for metaphysical or counterfactual possibility.
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Given the definition of RE , the last conjunct of the last clause can be simplified to: M ,w |= ψ . Moreover,
given the definition of A(w1), the case of w1 can be simplified to: M ,w1 |= Kaψ if and only if M ,w1 |=
ψ .

Since RM is an equivalence relation, M |= S5 and, hence, M |= K4. Since RE is a reflexive relation,
M |= (6). Clearly, M |= (4), because for every w ∈W , there is a w′ ∈W , namely w1, such that wRMw′

and A(w′) = L ∪{♦,Ka}. It follows that φ ∈ A(w1). For any tautology φ , it is the case that M |= φ ,
i.e. M ,w′ |= φ for every w′ ∈W and, a fortiori, M ,w1 |= φ . Therefore, it follows that M ,w1 |= Kaφ .
Consequently, M |= ♦Kaφ , because w′RMw1 for every w′ ∈W . Hence, M |= (4). It is also the case that
M |= (17). If M ,w1 |= Kaφ , then M ,w1 |= KaKaφ and, given the reflexivity of RM , it is also the case
that M ,w1 |= ♦KaKaφ . The case of w2 can be proved on the basis of the construction of A(w2) and the
reflexivity of RM . Finally, M |= (20). The case of w1 is trivial as before. The case of w2 follows from
the fact that no formula of the form φ ∧ψ belongs to A(w2) and, therefore, M ,w2 6|= Ka (φ ∧ψ), which
makes (20) trivially true.

Next, M |= (11). The reason is that, if M ,w′ |= ♦Ka (φ → ψ)∧�(φ → ψ) and M ,w′ |= ♦Kaφ ∧
�φ , then M ,w′ |= �ψ . Since RM is an equivalence relation, the latter entails that M ,w1 |= ψ . Hence,
M ,w1 |= Kaψ and, given the properties of RM , it is also the case that M ,w1 |= ♦Kaψ and M ,w2 |=
♦Kaψ . Furthermore, M |= (14). Suppose that M ,w′ |= ♦Kaφ ∧♦Kaψ . Since the model makes (6) and
S5 true, it follows that M ,w1 |= ♦φ ∧♦ψ . Therefore, M ,w1 |= Ka (♦φ ∧♦ψ).

Finally, let us check that the model is a counterexample to ♦Ka¬Ka p→ ¬♦Ka p. First, note that
M ,w2 |= Ka¬Ka p, since ¬Ka p ∈ A(w2) and M ,w2 |= ¬Ka p, because Ka p 6∈ A(w2). Second, M ,w2 |=
♦Ka p, since M ,w1 |= Ka p (because M ,w1 |= p) and w2RMw1.

In this section it was shown that (3) entails that a priori knowable ignorance entails necessary igno-
rance, which was called the Socratic objection to (3). The consequence was deduced with the help of
principles that Horsten (1994, 1998) accepts (Theorem 3.3) or with the help of principles that are highly
plausible on independent grounds (Theorem 3.5). Apart from the usual logical connectives, neither result
depends on expressive resources beyond those needed to express (3). Therefore, Horsten (2000)’s restric-
tion strategy to salvage (3) from counterexamples, which was discussed in Section 2, fails. A hopeful
conclusion of the investigations in this section is that both Anderson (1993)’s (11) and Horsten (2000)’s
(14) are secure against the Socratic objection (Theorem 3.6). In the next section it is considered whether
these principles can also be positively justified.

4 Closure and the justification challenge
The good news about Anderson (1993)’s (11) and Horsten (2000)’s (14) is that they both block Anderson’s
and Horsten’s counterexamples (Section 2) and that they are immune to the Socratic objection (Section
3). Unfortunately, neither principle was adequately justified by Anderson and Horsten (Section 2). In this
section I will investigate the prospects of giving such a justification. In Subsection 4.1 it will be argued
that there is partial justification for (11). However, it will also be argued that it is very challenging to find
an adequate justification for (11) or (14) in their full generality – see Subsection 4.2.

4.1 Partial justification
Let us start with the partial justification for (11). One could reason as follows. If a material implication
and its antecedent are each a priori knowable, then the material implication and its antecedent are each
possibly true. Suppose that they each belong to a category of formulas that are such that, if they are
possibly true, then they are true. This category is, of course, a subset of the category of strict implications
(i.e. necessary material implications) with necessary antecedents. In that case the material implication
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and its antecedent are true and, therefore, its consequent is true as well. Suppose furthermore that the
consequent belongs to a category of formulas that are such that, if they are true, then they are a priori
knowable. In that case the consequent is a priori knowable as well. The natural question to ask is whether
there are examples of material implications, antecedents and consequents with the mentioned properties.
The answer is yes.

Let us consider material implications with arithmetical antecedents and consequents. First one needs
a definition of a particular class of arithmetical formulas. It is a consequence of (16) that these are true if
possibly true. Moreover, let us consider not just any arithmetical consequent, but so-called ∃-rudimentary
formulas. These are defined as follows.

Definition 4.1. A formula φ ∈LPA is a rudimentary formula if and only if:

1. if φ is an atomic formula of LPA, then φ is a rudimentary formula;

2. if ψ is a rudimentary formula, then so is ¬ψ;

3. if ψ and θ are rudimentary formulas, then so is ψ ∧θ ;

4. if ψ is a rudimentary formula and if t is a term of LPA, then ∀x(x < t→ ψ) and ∃x(x < t ∧ψ) are
rudimentary formulas.

An ∃-rudimentary formula is a formula of the form ∃xψ , with ψ a rudimentary formula. A ∀-rudimentary
formula is a formula of the form ∀xψ , with ψ a rudimentary formula. (Boolos et al., 2003, p. 204)

It is a an important theorem that an ∃-rudimentary sentence φ is true in the standard interpretation of
arithmetic if and only if `Q ψ (Boolos et al., 2003, p. 199, 208), with Q the system of minimal arithmetic.

Let MEA† be the extension of PA with modal system S5, (6) and the closure of a priori knowability
under provability in Q, which can be formalized as follows:

`Q φ ⇒ `Q ♦Kaφ . (21)

Theorems of Q constitute another class of paradigm examples of a priori knowable truths.

Theorem 4.1. For any formula φ ∈LPA, for any ∃-rudimentary sentence ψ , it is the case that `MEA†

♦Ka (φ → ψ)→ (♦Kaφ → ♦Kaψ).

Proof. Note that `MEA† ♦φ → φ (Heylen, 2013, p. 95). It follows that

`MEA† ♦Kaφ → φ

(Horsten, 1994, p. 287). Suppose that ♦Ka (φ → ψ). Therefore, (φ → ψ). Suppose that ♦Kaφ . Hence,
φ . By modus ponens, it follows that ψ . Suppose that ψ is an ∃-rudimentary formula. Either ψ is true in
the standard interpretation of arithmetic or not. If it is true, then `Q ψ . If it is false, then `Q ¬ψ . By (21),
`Q ♦Kaψ or `Q ♦Ka¬ψ . The second option is incompatible with the hypothetical fact that ψ , given that
♦Ka¬ψ →¬ψ . Hence, ♦Kaψ .

Corollary. For any formula φ ∈ LPA, for any ∃-rudimentary sentence ψ , it is the case that `MEA†

(♦Ka (φ → ψ)∧�(φ → ψ))→ ((♦Kaφ ∧�φ)→ ♦Kaψ).

So, it is possible to find justification for a restricted version of Anderson (1993)’s (11), namely the
version in which the antecedent is an arithmetical formula and the consequent is an arithmetical formula
of a certain low complexity. This raises the question what happens when the consequent is an arithmetical
formula of a higher complexity. For these formulas it is not provable that they are a priori knowable if
true, given (21).
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4.2 No more justification
It will be argued that that one cannot similarly justify (11) or (14) for all arithmetical cases, even if one
makes very strong modal and epistemic assumptions. The argumentation strategy is as follows. I will
introduce a theory that contains very strong modal and epistemic principles. Then I am going to show
that neither Anderson (1993)’s (11) nor Horsten (2000)’s (14) are theorems in this theory. This means
that even with some very strong modal, epistemic and modal-epistemic principles there is no deductive
justification for (11) or (14). The challenge is then to find some other (perhaps non-deductive or informal)
justification for (11) or (14). The thought is that, if it is very challenging to find justification for (11) and
(14) when restricted to arithmetic, it is also very challenging to find justification for those principles when
they are unrestricted.

Let MEA†† be the extension of PA with modal system S5, (6) and with the following other epis-
temic principles. First, add the principle that all theorems of MEA†† are a priori known, which can be
formalized as follows:

`MEA†† φ ⇒ `MEA†† Kaφ . (22)

Second, add the principle that a priori knowledge is closed under a priori known material implication,
which can be formalized as follows:

Ka (φ → ψ)→ (Kaφ → Kaψ) . (23)

Third, add the principle that all a priori knowledge is a priori known, which can be formalized as follows:

Kaφ → KaKaφ . (24)

All three principles are surely too strong, but this only makes the negative result stronger. I will show that
neither (11) nor (14) is a theorem of MEA††.

The proof will make use of a couple of facts about about undecidable arithmetical sentences (Boolos
et al., 2003, ch. 17, 18). Gödel’s first incompleteness says that there is no consistent, complete, axiomati-
zable extension of Q. If PA is consistent, then it is not complete. In particular, there is a sentence, GPA, i.e.
the sentence such that `PA GPA↔¬∃yProvPA (pGPAq,y), and 0PA GPA. Moreover, if PA is ω-consistent,
then 0PA GPA. It follows that both PA∪{GPA} and PA∪{¬GPA} are consistent. Let us refer to the first
theory as PA∗ and to the second theory as PA∗∗. What will be needed is that neither theory proves GPA∗ . It
follows from the first incompleteness theorem that 0PA∗ GPA∗ . It is true that, if `PA φ , then `PA∗ φ . What
we need, is that this can be formalized in PA, i.e. `PA ∃yProvPA (pφq,y)→∃yProvPA∗ (pφq,y). If this is
the case, then `PA ¬∃yProvPA∗ (pφq,y)→¬∃yProvPA (pφq,y). In particular, `PA GPA∗ →GPA. But then
0PA∗∗ GPA∗ . So, the question is whether one can prove that `PA ∃yProvPA (pφq,y)→∃yProvPA∗ (pφq,y).
The details depend on the details of arithmetization (Boolos et al., 2003, ch. 15) and they will be omitted
here, but the definition of ProvPA∗ (pφq,y) is identical to the definition of ProvPA (pφq,y), except that the
clause axiom(e) is defined as

logicalaxiom(e)∨PAaxiom(e)

in the second case and as

logicalaxiom(e)∨PAaxiom(e)∨Gödelsentence(e)

in the first case. Given these definitions, the theorem is essentially a case of disjunction introduction.
Finally, note that both GPA and GPA∗ are true in the standard model of arithmetic and that neither GPA nor
GPA∗ are ∃-rudimentary formulas.

Theorem 4.2. There is an interpretation M of LMEA such that M |=MEA†† but M 6|=(♦Ka (GPA→ GPA∗)∧�(GPA→ GPA∗))→
((♦KaGPA∧�GPA)→ ♦KaGPA∗) and M 6|=(♦KaGPA∧♦Ka (GPA→ GPA∗))→♦Ka (♦GPA∧♦(GPA→ GPA∗)).
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Proof. Let MEA∗ be identical to MEA††, extended with φ → Kaφ , for any φ ∈ LMEA. Let M be an
awareness model, with the following characteristics:10

1. W = {w1,w2};

2. D = N;

3. RM =W 2;

4. RE = {〈w1,w1〉,〈w2,w2〉};

5. V is N , the standard interpretation of the language of arithmetic;

6. S the set of variable assignment functions;

7. A is a function from W and S to LMEA, defined as follows:

(a) for any variable assignment a, A(w1,a) = {φ | Γ1 (a) `MEA∗ φ}, with Γ1 (a) = {GPA}∪{t =
t ′ | denM ,a (t) = denM ,a (t ′)};

(b) for any variable assignment a, A(w2,a) = {φ | Γ2 (a) `MEA∗ φ}, with Γ2 (a) = {GPA →
GPA∗}∪{t = t ′ | denM ,a (t) = denM ,a (t ′)}.

The key clause in the recursive definition of M |= φ is the clause for φ =Kaψ: M ,w,a |=Kaψ if and only
if ψ ∈A(w,a) and M ,w′,a, |=ψ for all w′ such that wREw′. Simplifying, this means that M ,wi,a |=Kaψ

if and only if Γi (a) `MEA∗ ψ and M ,wi,a, |= ψ .
We need to check that, if `MEA†† φ , then M |= φ . The proof is by induction on the complexity of

proof in MEA††.
Since RM is an equivalence relation, M |= S5. Since RE is a reflexive relation, M |= (6). Now

consider the case of (22). Suppose that `MEA†† ♦Kaφ , inferred from `MEA†† φ . It follows from the
latter by construction of A(w,a) that φ ∈ A(w), for any w ∈W . By the induction hypothesis, M |= φ .
Therefore, M ,w,a |= Kaφ and, by the reflexivity of RM , it is also the case that M ,w,a |= ♦Kaφ . Next,
consider the case of (23). Suppose that M ,w,a |= Ka (φ → ψ)∧Kaφ . It follows by reflexivity of RE
and the clauses for conjunction and material implication that M ,w,a |= ψ . It is also the case that φ →
ψ,φ ∈ A(w,a). Since A(w,a) is by its construction closed under modus ponens, it is also the case that
ψ ∈ A(w,a). Therefore, M ,w,a |= Kaψ . Finally, consider the case of (24). Suppose that M ,w,a |= Kaφ

for some w, a. Then φ ∈ A(w,a) and, by construction, Kaφ ∈ A(w,a). Since {w′ | wREw′} = {w},
it follows that M ,w,a |= KaKaφ . As for the first-order and arithmetical part, I will leave the proof to
the reader, except for noting that the {t = t ′ | denM ,a (t) = denM ,a (t ′)} part of A(w,a) is important
for proving a Principle of Replacement and a Principle of Agreement, which are used in the proofs of
universal instantiation and universal generalisation.

The model provides us with a counterexample to (3). First, note that GPA and GPA∗ are true in
the standard model of arithmetic and, therefore, M |= GPA and M |= GPA → GPA∗ . Second, note
that, by definition, GPA ∈ A(w1,a) and GPA → GPA∗ ∈ A(w2,a). Consequently, M ,w1,a |= KaGPA
and M ,w2,a |= Ka (GPA→ GPA∗). Therefore, M ,w1,a |=♦KaGPA and M ,w1,a |=♦Ka (GPA→ GPA∗).
Since M ,w,a |= φ for all φ that are true in the standard model of arithmetic and for all w ∈W , it is also
the case that M ,w1,a |= �GPA and M ,w1,a |= �(GPA→ GPA∗). The question then is whether there

10The model that will be constructed is of the type defined in (Heylen, 2013, Section 4, especially Definitions 4.10, 4.11).
Definition 4.10 (Heylen, 2013, p. 103) hard codes the Principle of Replacement, but it ought to hard code the Principle of Agreement
as well. The first is needed for proving the soundness of Universal Instantiation. The second is needed to prove the soundness of
Universal Generalisation. In the model constructed here the Principle of Agreement and the Principle of Replacement come out
true by construction of the awareness sets.
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is a w ∈W such that M ,w,a |= KaGPA∗ . It is sufficient for a negative answer that GPA∗ 6∈ A(w1,a) and
GPA∗ 6∈ A(w2,a). For this it needs to be shown that Γ1 (a) 0MEA∗ GPA∗ and Γ2 (a) 0MEA∗ GPA∗ .

I will demonstrate that the two cases under consideration can be reduced to GPA 0PA GPA∗ and
GPA → GPA∗ 0PA GPA∗ respectively. First, for every φ , if Γi (a) `MEA∗ φ , then Γi (a)

E `PA φ E , with
E the eraser translation from LMEA to LPA that erases all occurrences of ♦ and Ka. Note that the
eraser translation of any identity sentence belonging to Γi (a) belongs to LPA and that (GPA)

E = GPA,
(GPA→ GPA∗)

E = GPA→ GPA∗ and (GPA∗)
E = GPA∗ . Therefore, the case of Γ1 (a) `MEA∗ GPA reduces

to the case of Γ1 (a) `PA GPA∗ and the case of Γ2 (a) `MEA∗ GPA∗ reduces to the case of Γ2 (a) `PA GPA∗ .
Next, if t1 and t2 are closed terms and if t1 = t2 ∈ Γi (a), then `PA t1 = t2, since all true rudimentary
sentences are theorems of Q. Therefore, one can take them out of Γi (a) without affecting the deducibil-
ity. Call the reduced set Γi (a)

′. If Γi (a)
′ `PA GPA∗ , then there is a finite subset Γi (a)

′′ of Γi (a)
′

such that Γi (a)
′′ `PA GPA∗ . Let ti = t j, . . . , tk = tl be the identity statements belonging to Γ1 (a)

′′. If
Γ1 (a)

′′ `PA GPA∗ , then GPA, ti = t j ∧ ·· · ∧ tk = tl `PA GPA∗ . Let x1, . . . ,xn be the free variables in the
assumption. By the instantiation rule for the existential quantifier, if GPA, ti = t j ∧ ·· ·∧ tk = tl `PA GPA∗ ,
then GPA,∃x1 . . .∃xn (ti = t j ∧·· ·∧ tk = tl) `PA GPA∗ . Indeed, GPA and GPA∗ are sentences, so they do not
contain any free variables. Note that ti = t j∧·· ·∧tk = tl is satisfied in the standard model relative to a and,
therefore, ∃x1 . . .∃xn (ti = t j ∧·· ·∧ tk = tl) is true in the standard model as well. The latter sentence is a
∃-rudimentary sentence and, consequently, it is a theorem of PA. Therefore, one can take it out without
affecting the deducibility. Analogous reasoning can be used in the second case. Hence, one can further
reduce the two cases to GPA `PA GPA∗ and GPA→ GPA∗ `PA GPA∗ respectively.

The essential point is that neither PA∗ nor PA∪{GPA→GPA∗} entail GPA∗ . The first point was made
in the introduction to the proof. The second point follows from the fact that 0PA∗∗ GPA∗∗ or ¬GPA 0PA
GPA∗ , which was also noted in the introduction to the proof.

The second question is whether there is a w ∈W such that

M ,w,a |= Ka (�GPA∧�(GPA→ GPA∗)) ,

which is answered in the negative if

�GPA∧�(GPA→ GPA∗) /∈ A(w1,a)

and
�GPA∧�(GPA→ GPA∗) /∈ A(w2,a) .

The latter is the case if
Γi (a) 0MEA∗ �GPA∧�(GPA→ GPA∗) .

This can again be reduced to
GPA 0PA GPA∧ (GPA→ GPA∗)

and
GPA→ GPA∗ 0PA GPA∧ (GPA→ GPA∗) ,

which follow from the two facts noted in the introduction to the proof.

Let us recapitulate. It was proved that neither Anderson (1993)’s (11) nor Horsten (2000)’s (14) are
provable even when they are restricted to arithmetic and very strong modal and epistemic assumptions are
made (Theorem 4.2). This is in a way disappointing, since it was also proved that, if the antecedent in (11)
is an arithmetical formula and if the consequent is an arithmetical formula of a certain low complexity,
then (14) follows from modest modal and epistemic assumptions (Theorem 4.1). Of course, it is open
to defenders of (11) or (14) to suggest additional principles, e.g. (18), which do the trick and which are
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independently plausible. However, I think that it is fair to say that at this stage of the debate it is up to
them to make a move.

The foregoing highlights the difficulty of finding a positive justification for (11) or (14). It was argued
in Section 2 that the attempts by Anderson (1993) and Horsten (2000) to justify those principles fail. In
this section it has been argued that (11) is justified on two conditions. First, the material implication and
its antecedent have to be true if possibly true. Second, the consequent has to be a priori knowable if
true. When the material implication is arithmetical and the consequent is an arithmetical formula of a
certain low complexity, then those two conditions are satisfied. The challenge is to justify (11) when the
second assumption is not made or is not provable given some background assumptions. This should not
be mistaken for the claim that the second assumption is false. The case when the material implication is
arithmetical but the consequent is of a higher arithmetical complexity, is a nice case in point. Again, it is
not assumed that the formula in question, viz. GPA∗ , is really a priori unknowable.

In fact, Myhill (1960, p. 463) has made an interesting case for the a priori knowability of the arith-
metical statement that says that PA is consistent. The consistency statement for PA is equivalent with
the Gödel sentence for PA (Boolos et al., 2003, p. 233-234). Gödel (1995, p. 290 ff) claimed that the
following disjunction is true: either the mind is not a Turing Machine or there exist absolutely unknow-
able diophantine equations, which are ∀-rudimentary formulas (Gödel, 1995, p. 156 ff). Ever since Gödel
advanced his disjunction, attempts have been made to argue for one of the disjuncts. In particular, Leitgeb
(2009) and Horsten (2009) have investigated the limits of knowledge about arithmetic.11 But to repeat,
the argument developed here does not depend on the assumption that Gödel’s second disjunct is true or
on the more general assumption that there exist a priori unknowable propositions, although the argument
does assume that this has not been ruled out.

In Section 1 it was pointed out that Dretske (2005) has explicitly criticized (1) and that he has im-
plicitly challenged (2). In addition, his counterexample also affects logical competence, since it is easy
to know that you have hands and it is easy to know that, if you have hands, you are not a handless brain-
in-a-vat, but it is impossible to know that you are not a handless brain-in-a-vat. Of course, this does not
concern the notion of a priori knowledge. Interesting from our current perspective is that there is an
analogy between Dretske’s argument and the proof of Theorem 4.2: GPA is an easily knowable sentence
of lower arithmetical complexity; GPA∗ is an arithmetically more complex sentence that is not knowable;
GPA→ GPA∗ is knowable. A disanalogy is that, unlike the statement that connects having hands with not
being a handless brain-in-a-vat, GPA → GPA∗ is not a logical truth. To turn the proof in a Dretske-style
argument against (3) it is necessary but not sufficient to argue for the existence of a priori unknowable
arithmetical sentences of a certain complexity. This falls outside the scope of this article.12

5 Closure and logical competence
If it is already challenging to find a deductive justification for (11) and (14) when they are restricted
to arithmetic, it is also very challenging to find a deductive justification for those principles when they
are unrestricted. As I will argue next, the justification challenge is even stronger than one might think,
since there is a good alternative, which in one form or another is upheld by both epistemic logicians and
mainstream epistemologists. Since the work of Kuhn (1962) and Lakatos (1970), philosophers of science
are very much aware of the fact that scientists only leave a paradigm or research program if there is an
alternative paradigm or research program available.

It is an important task for epistemic logicians to steer between the Scylla of logical omniscience and
the Charybdis of logical incompetence: epistemic agents should be represented as agents that do not know

11For a critical reply to Horsten (2009), see (Heylen, 2010).
12The paradox of Fitch (1963) is not of any help here, since even if p is an arithmetical statement, the formula p∧¬Ka p is not

an arithmetical statement.
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all logical truths or all logical consequences of what they already know, but for whom those logical truths
and logical consequences are knowable. Besides (1), some examples of logical omniscience are:

K (φ ∧ψ)→ (Kφ ∧Kψ) ,

(Kφ ∧Kψ)→ K (φ ∧ψ) ,

Kφ → K (φ ∨ψ) ,

K¬¬φ → Kφ .

It can easily be seen that all the examples of logical omniscience follow from the closure of knowledge
under logical theoremhood and (23). Together these two principles are equivalent to the following gener-
alized logical omniscience rule:

Γ ` ψ ⇒ (K)Γ ` Kψ, (25)

with (K)Γ = {Kφ | φ ∈ Γ}. Some examples of logical competence are:

K (φ ∧ψ)→ (♦Kφ ∧♦Kψ) ,

(Kφ ∧Kψ)→ ♦K (φ ∧ψ) ,

Kφ → ♦K (φ ∨ψ) ,

K¬¬φ → ♦Kφ .

The examples of logical competence can easily be seen to subsume under the following generalized rule
of logical competence:

Γ ` ψ ⇒ (K)Γ ` ♦Kψ. (26)

Logical omniscience has been widely criticized, because it presents human knowers as having divine
cognitive capabilities. However, one should also avoid presenting human knowers as being cognitively
handicapped.13 If you know a material conditional and you know its antecedent and if you are logically
competent, then you can expand your knowledge by applying modus ponens, although you may not have
done so yet. Given enough time, attention and other resources, logically competent reasoners should be
able to know the consequent of a conditional if they already know the antecedent of that conditional and
the conditional itself, even if they have not devoted the time, attention and other resources to it.

A different position between logical omniscience and logical incompetence is the claim that epistemic
agents have the possibility to know all the logical consequences of what they can know. Examples of this
general principle are:

♦K (φ ∧ψ)→ (♦Kφ ∧♦Kψ) ,

(♦Kφ ∧♦Kψ)→ ♦K (φ ∧ψ) ,

♦Kφ → ♦K (φ ∨ψ) ,

♦K¬¬φ → ♦Kφ .

The above examples all subsume under the following rule of closure of knowability under logical de-
ducibility: which can be formalized as follows:

Γ ` ψ ⇒ (♦K)Γ ` ♦Kψ. (27)

Williamson (2000, p. 117) and Hawthorne (2005, p. 29-30) defend a closure principle that is closely
related to the logical competence principle (26). In the words of Hawthorne (2005, p. 29): ‘If one knows

13See (Heylen, 2013, p. 99) for the problem of logical incompetence that presents itself for syntactical models, awareness models
and impossible worlds models, which were introduced to avoid the problem of logical omniscience.
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some premises and competently deduces Q from those premises, thereby coming to believe Q, while
retaining one’s knowledge of those premises throughout, one comes to know that Q’. There seem to be
four differences between what Williamson calls ‘inuitive closure’ on the one hand and (26) on the other
hand. The first difference is that between a temporal conception of knowability, expressed by ‘coming
to know’, and a modal conception of knowability, expressed by ‘being able to know’. Based only on
this distinction and taking into account that metaphysical or counterfactual possibility is weaker than
temporal possibility, the modal version of the closure principle is weaker and, therefore, more easily
justified than the temporal version. It is no surprise then that this is compensated by the other three
differences, which are all about restricting the temporal version of the closure principle. The second
difference is that Hawthorne says that the conclusion of the deduction should come to be believed. The
third difference is that one should retain knowledge of the premises throughout. The reason he gives
for this is that one may get counterevidence to the premises in the meantime. The fourth difference is
that only deductions with at least one premise are considered. Whether one should also impose these
restrictions on the logical competence principle or not, the crucial point is that the ‘intuitive closure’
principle defended by mainstream epistemologists is a version of (26) rather than a version of (27), since
knowledge of the premises rather than possible knowledge of the premises is required.

The general rules (25), (26) and (27) are related to the closure principles with a priori knowledge.
Clearly, (23) is an instantiation of (25) and, moreover, (25) is equivalent to (23) and closure of a priori
knowledge under logical theoremhood. Horsten (2000, p. 60) endorses an axiom scheme from which an
instantiation of (26) follows:

Ka (φ → ψ)→ (Kaφ →�Kaψ) . (28)

In Section 2 it was pointed out that, when Anderson (1993, p. 9) tries to give a justification for his
closure principle, he actually ends up supporting (13), which can now be seen to be a special case of (26).
Finally, it can easily be seen that (27) entails (3) and is, in fact, equivalent to (3) and closure of a priori
knowability under logical theoremhood. Interestingly, neither (25) nor (26) justify either (11) or (14). It
is easily checked that (25) and (26), when restricted to a priori knowledge and when formulated in terms
of provability-in-MEA††, are derivable rules in MEA††. Hence, one can use Theorem 4.2 to back up this
claim.

Let us summarize the situation. There is an alternative closure principle, called a ‘logical competence’
principle, for which a reasonable case can be made that is based on the aims of epistemic logic and based
on the work of mainstream epistemologists. In addition, Anderson (1993) and Horsten (2000) endorse
some instantiations of the principle already. Moreover, the logical competence principle does not entail
(3), even if one adds some strong modal and epistemic assumptions. So, it looks like there is an alternative
to (3). This leaves us with checking whether it is a good alternative.

It can be proved that (26) is immune to the Socratic objection. This can also be proved with the help
of the model used in the proof of Theorem 26, if one replaces GPA→ GPA∗ in the definition of A(w2,a)
with ¬GPA, which does not affect the proof. It is then case that M ,w2,a |= Ka¬KaGPA. First, ¬KaGPA ∈
A(w2,a), because φ ↔ Kaφ ∈ A(w2,a) for every φ and ¬GPA ∈ A(w2,a). Second, M ,w2,a |= ¬KaGPA,
since GPA 6∈ A(w2,a). But M ,w1,a |= KaGPA. I leave it to the reader to check that (17) and (20) are true
on the model as well. Furthermore, (26) blocks Horsten (2000)’s counterexample, since (9) and (10) are
of the form ♦Kaφ , not of the form Kaφ . It was pointed out in Section 2 that there are reasons to doubt the
efficacy of Anderson’s counterexample, so I will ignore that example here. It should also be emphasized
that (26) does all this without being restricted, unlike Anderson’s (11) or Horsten (2000)’s (14).

To sum up, there is a good, if not better, alternative to (3). This strengthens the justification challenge
made in Section 4.
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6 Summary
The subject of this article is the closure of a priori knowability under a priori knowable material im-
plication. In a restricted version it is arguably correct: if the material implication and the antecedent
are true if possibly true, and if the consequent is a priori knowable if true, then the principle is correct.
These conditions are fulfilled when the material implication is arithmetical and when the consequent has
a certain low arithmetical complexity. See Subsection 4.1. Philosophers and logicians have endorsed the
closure principle even when not all of the conditions mentioned earlier are satisfied. For instance, Fritz
(2013) accepts the principle full stop. Anderson (1993) and Horsten (2000) are more cautious. They each
present counterexamples, although it was pointed out that Anderson’s counterexample is not unequiv-
ocally successful. In reaction to their own counterexamples they each put forward a certain restriction
strategy. Horsten suggests that the closure principle is safe when the language is not highly expressive and
Anderson proposes that the closure principle is secure when restricted to necessary truths. See Section 2.

Against Horsten’s restriction strategy I presented the so-called Socratic objection: even with very few
expressive resources and with modest background assumptions, one can deduce from the closure prin-
ciple that knowable ignorance implies necessary ignorance, which is a highly implausible consequence.
See Section 3. Against Anderson’s restriction strategy I put the so-called justification challenge: if even
with very strong modal and epistemic background assumptions, one cannot deduce the closure principle
restricted to necessary, arithmetical truths, the question arises how exactly to justify it. See Subsection
4.2. To raise the stakes, I introduced a so-called logical competence principle, which says that if all the
premises of a logical deduction are known, then the conclusion is knowable. It is claimed that an adequate
epistemic logic, which steers between the horn of logical omniscience and the horn of logical incompe-
tence, should adopt the logical competence principle. Moreover, it was pointed out that there is support
in mainstream epistemology for versions of the logical competence principle. Finally, it was shown that
the logical competence principle is not hit by the Socratic objection or Horsten’s counterexample and
that it accomplishes this without any restrictions. Taking into consideration the existence of a superior
alternative, the question arises why one should try to find a justification for Anderson’s restricted closure
principle at all.
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