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Abstract

Although probabilistic statements are ubiquitous, probability is still poorly under-
stood. This shows itself, for example, in the mere stipulation of policies like expected
utility maximisation and in disagreements about the correct interpretation of proba-
bility. In this work, we provide an account of probabilistic predictions that explains
when, how, and why they can be useful for decision-making. We demonstrate that a
calibration criterion on finite sets of predictions allows one to anticipate the distribu-
tion of utilities that a given policy will yield. Based on this, we specify assumptions
under which expected utility maximisation is a sensible decision criterion. We also
introduce the notion of prediction methods and argue that all probabilities are outputs
of such prediction methods. This helps to explain how the calibration criterion can be
satisfied and to show that also supposedly objective probabilities are model-dependent.
We compare our account of probability with common interpretations and show that it
recovers key intuitions behind the latter. We, thus, provide a novel account of what
probabilities are and how they can enable successful decision-making under uncertainty.

1 Introduction

We make probabilistic statements and use probabilistic reasoning all the time: If the pre-
dicted ‘probability of rain’ is sufficiently high, you bring your umbrella or even stay at home.
You decide to undergo surgery if this is thought to significantly ‘raise your chances’ of recov-
ery. Given that such probabilistic statements permeate both science and our everyday lives,
it is quite remarkable that it is still an open question what exactly we mean by them and
how they are useful: Do they refer to degrees of belief, to relative frequencies of repeated
trials, or to physical properties? Beyond philosophical curiosity, the meaning of probability
is considered to ‘bear at least indirectly, and sometimes directly, upon central scientific,
social scientific, and philosophical concerns’ (Hájek, 2019). Also in Machine Learning, the
meaning of probability is increasingly recognised as a ‘pressing question’ (Burhanpurkar
et al., 2021); as put by Cynthia Dwork, ‘without an answer to this definitional question, we
don’t even know what it is that the ideal algorithm should satisfy’ (Dwork, 2022).

The aim of this paper is to provide an account of predictions and prediction methods that
explains what probabilities are as well as when, how, and why they are useful for decision-
making. It is often simply assumed that probabilities should be action-guiding through
(some variant of) expected utility maximisation (EUM): EUM is assumed, for example, as
a premise in arguments about rational behaviour in philosophy (Hedden, 2013), as a model
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of human behaviour in microeconomics, as a theoretical basis for Machine Learning in the
form of expected risk minimisation, and even for the interpretation of evaluation scores in
weather forecasting (Palmer and Richardson, 2014). But considering that the predicted
event either does or does not occur, it is not well understood why and when decisions based
on EUM or other policies lead to desirable outcomes. In this paper, we approach the concept
of probability by taking finite sets of (probabilistic) predictions as our starting point. We
show that probabilities are useful because they allow us to predict how many events from a
given set will actually occur. More specifically, we demonstrate that when predictions are
calibrated on relevant sets of events – that is, when the sum of the predictions coincides with
the number of occurring events –, then we can predict the distribution of utilities we receive
from a specified set of decisions or policy. Based on this, we can explicitly state assumptions
under which, for example, EUM actually leads to desired outcomes. Our focus on sets of
predictions and relationships between them highlights the importance of the prediction
methods that generate them. These methods combine the construction of representations
with the application of a predictor (which is basically a mathematical function). We argue
that instead of relative frequencies, objective properties, or (models of) degrees of belief,
probabilities should generally be seen as outputs of prediction methods. We show that this
account not only captures key intuitions behind conventional interpretations of probability
but also reveals a generalised version of the reference class problem. While it has been
argued that it ‘is your problem too’ (Hájek, 2007), we suggest that it need not be seen as a
problem at all. In sum, our notion of calibrated prediction methods can explain successful
decision-making under uncertainty in everyday life rather than in theoretical Dutch books
(as used by Bayesians to justify probabilistic reasoning) and provides a novel, useful, and
general way of thinking about probability.

The paper is structured as follows. In Section 2, we demonstrate how predictions that
are calibrated on relevant sets help us to make actually good decisions (in terms of utility).
In Section 3, we introduce a novel notion of prediction methods and show that they cover
not only obvious examples like rain forecasts but also supposedly objective probabilities such
as relative frequencies and gambling odds. In Section 4, we connect all this to the literature
on interpretations of probability and argue that our account captures key intuitions behind
other interpretations without inheriting their problems, arguably making them obsolete.
Section 5 concludes with a brief summary and an outlook on practical implications for
algorithmic predictions.

2 Calibrated sets of predictions

Although it is often assumed that probabilistic predictions are somehow useful for decision-
making, it has not been demonstrated in general terms how or under which conditions this
is the case. In this slightly technical section, we show how sets of predictions are useful
to us if they satisfy a form of calibration (Section 2.1): They should allow us to predict
how many events from relevant sets of events will actually occur. Although it is almost
trivial to specify the calibration assumptions under which we can predict the distribution of
utilities received by specified policies, this seems to not have been discussed before, let alone
its relevance appreciated. We illustrate this theoretical insight with an example involving
rain forecasts (Section 2.2). We will show in Section 3.2 why prediction methods should
satisfy Kolmogorov’s axioms, but for the purpose of this section, it is enough to think of
predictions as arbitrary real numbers pi ∈ R. Here, a prediction pi relates to an event Ai
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and its label yi ∈ {0, 1} where yi = 1 or yi = 0 denote that the event does or does not occur,
respectively.1

2.1 Predicting utility

What is the difference between a prediction of 0.6 and a prediction of 0.9, given that the
predicted event either does or does not occur? An important difference surfaces when
considering multiple predictions: In general, of 100 events with prediction 0.6, we expect
roughly 60 to occur, whereas of 100 events with prediction 0.9, we expect roughly 90 to
occur. We can formalise this as a quality criterion for predictions called calibration: For a
given set of events, the sum of our predictions should coincide with the number of occurring
events.

Definition 1 (Calibration).
Predictions p1, ..., pd ∈ R are said to be calibrated for observations y1, ..., yd ∈ {0, 1} if they
satisfy

d∑
i=1

pi =

d∑
i=1

yi. (1)

Often, calibration is understood more narrowly as what Dawid (2017) calls ‘probability
calibration’, namely calibration on sets of equal prediction. This unnecessarily narrow un-
derstanding of calibration may be partly due to historical reasons, as discussed in (Höltgen
and Williamson, 2023), but also for its relevance in many settings (Section 2.2). Indeed,
we will argue that predicting how many events of certain sets will occur, i.e. calibration in
this general sense, is the purpose for having probabilities in the first place. For arbitrary
predictions, there is in general no reason to assume that such a criterion would be satisfied.
This is already a first hint at the importance of considering the methods that generated
the predictions, which we will turn to in Section 3. For now, we focus on implications of
calibration rather than how to achieve it.

In order to demonstrate how calibrated predictions are useful for decision-making, we will
consider the utilities gained (or losses incurred) in different events. Intuitively, a person’s
utility is a numerical representation of how much the person values the (non-)occurrence
of an event (which is clearly an idealisation). In our setting of binary events, we will use
utility functions ui : {0, 1} 7→ R where ui(0) and ui(1) capture how much I value yi = 0
and yi = 1, respectively. Now calibration can help us to foresee the (non-normalised)
distribution of utilities that I will receive: If my predictions are calibrated on sets of equal
utility, then I can predict the number of occurring events for each utility, by summing up
the relevant predictions. While we will come back to general utility distributions at the end
of Section 2.2, we will for now focus on a particularly intuitive property of that distribution
which we call cumulative utility.

Definition 2 (Cumulative utility).
My cumulative utility over a set of outcomes {y1, ..., yd} given utility functions u1, ..., ud is

d∑
i=1

[yiui(1) + (1− yi)ui(0)] . (2)

1While this section thus uses a very general notion of prediction, we will argue in Section 3 that predictions
ultimately need to be understood in relation to the respective methods that generate them.
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As yi denotes whether event 1 or 0 occurs, the cumulative utility is the sum over all utility
that I actually receive. This captures how well I will be off overall. We can formally show
that with suitably calibrated predictions, it is possible to estimate cumulative utility through
a very familiar quantity. The simple idea is that if for each utility value, I correctly predict
how many events with this utility will occur, then I will correctly predict my cumulative
utility. Note that for our purposes, it would be mathematically equivalent to consider the
average utility I get at each time step, i.e. the cumulative utility divided by d.

Proposition 3 (Predicting cumulative utility).
Let there be d predictions pi ∈ R for binary outcomes yi ∈ {0, 1}, i ∈ {1, ..., d} with utility
functions ui : {0, 1} → R and assume that the predictions are calibrated on sets of equal
utility ui(0) and on sets of equal utility ui(1) (formalised in (8) below).
Then I can correctly predict my cumulative utility (LHS) via

d∑
i=1

[yiui(1) + (1− yi)ui(0)] =

d∑
i=1

[piui(1) + (1− pi)ui(0)] . (3)

Proof.
Let U denote the set of all values that the ui can take, i.e. U :=

⋃
1≤i≤d{ui(0), ui(1)} ⊂ R.

d∑
i=1

[yiui(1) + (1− yi)ui(0)] (4)

=
∑
u′∈U

 ∑
i:ui(1)=u′

yi +
∑

i:ui(0)=u′

(1− yi)

 · u′ (5)

=
∑
u′∈U

 ∑
i:ui(1)=u′

pi +
∑

i:ui(0)=u′

(1− pi)

 · u′ (6)

=

d∑
i=1

[piui(1) + (1− pi)ui(0)] (7)

where for (5) = (6), we use the calibration assumption that ∀u′ ∈ U :∑
i:ui(1)=u′

yi =
∑

i:ui(1)=u′

pi and
∑

i:ui(0)=u′

yi =
∑

i:ui(0)=u′

pi. (8)

Given that the assumption of exact calibration on all sets of equal utility is extremely
strong, it is worth noting that approximate calibration (Appendix A.1) and calibration
on sets of approximately equal utility (Appendix A.2) suffice for approximately correct
predictions of the cumulative utility. In Appendix A.3, we show that a weaker calibration
criterion for imprecise predictions makes it possible to also incorporate risk aversion. Also
note that in the conventional probabilistic framework, where Ŷi is the random variable
taking value 1 rather than 0 with probability pi and Pi denotes its distribution, the RHS of
(3) is the sum over my expected utilities (my expected cumulative utility):

d∑
i=1

[piui(1) + (1− pi)ui(0)] =

d∑
i=1

EPi
[ui(Ŷi)]. (9)
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This shows that maximising expected utility is the policy that maximises my cumulative
utility if my predictions are calibrated! To capture the idea of maximising utility, we need
a notion of decisions between acts, which is not yet a part of the setup. For simplicity, we
consider d binary decisions, at step i consisting in a choice between (pai , u

a
i ) and (pbi , u

b
i ).

Corollary 4 (Comparing policies by expected utility).
For i ∈ {1, ..., d}, let there be predictions pai , p

b
i ∈ R for binary outcome yi ∈ {0, 1} and

utility functions ub
i , u

b
i : {0, 1} → R. For π ∈ {a, b}, policy π is then given by predictions

pπ1 , ..., p
π
d and utility functions uπ

1 , ..., u
π
d . Assume that the predictions of both policies are

calibrated on sets of equal utility in the sense of (8) for their respective utility functions.

Then, for Ŷ
π

i and Pπ
i as in (9), the policy with the higher expected cumulative utility∑d

i=1 EPπ
i
[uπ

i (Ŷ
π

i )] will actually provide the higher cumulative utility.

2.2 Example: Rain forecasts

We now illustrate the above with an example. Let there be d days and for i ∈ {1, ..., d}, let
pi ∈ {0, 0.1, 0.2, ..., 1} be the daily rain forecast (which I cannot influence) and let yi ∈ {0, 1}
denote whether it actually rains (yi = 1 denoting rain). Now assume that across days, my
attitude towards rain does not change over time but that it depends on whether I have an
umbrella: Let my utilities be given by ua(1) = 0 and ua(0) = −1 if I brought an umbrella
and ub(1) = −3 and ub(0) = 0 if I did not bring one. Then my predicted utility when
bringing an umbrella on day i is

pi · ua(1) + (1− pi) · ua(0) = (1− pi) · (−1) = pi − 1 (10)

whereas my predicted utility when not bringing an umbrella is

pi · ub(1) + (1− pi) · ub(0) = −3pi. (11)

As pi − 1 > −3pi ⇔ pi > 0.25, I maximise predicted utility (per day) if I bring an umbrella
on days where pi > 0.25. This policy can be defined by

ui =

{
ua if pi > 0.25

ub if pi < 0.25.
(12)

The calibration criterion (8) in Proposition 3 for this case amounts to∑
i:pi<0.25

yi =
∑

i:pi<0.25

pi and
∑

i:pi>0.25

yi =
∑

i:pi>0.25

pi. (13)

If this condition is satisfied, my cumulative utility will coincide with the sum of my daily
predicted utilities.

To assess the relative merits of this particular policy, we need to compare it with other
policies. (13) is one instance of a prediction-dependent threshold policy, where I bring an
umbrella whenever the predicted probability of rain is higher than a certain threshold (in
this case, 0.25). For Proposition 3 to apply to such a policy with any threshold t ∈ [0, 1],
the calibration criterion is∑

i:pi<t

yi =
∑

i:pi<t

pi and
∑

i:pi>t

yi =
∑

i:pi>t

pi. (14)
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Now note that as the possible utility functions are the same at each time step, for this
condition to be satisfied for all t ∈ [0, 1], it is enough to satisfy

∀v ∈ {0, 0.1, 0.2, ..., 1} :
∑

i:pi=v

yi =
∑

i:pi=v

pi. (15)

Now this is just the common condition of calibration on sets of equal prediction, which is
commonly expected of rain forecasters (Gigerenzer et al., 2005) and ‘even inexperienced
forecasters are capable of displaying’, except for extreme predictions (Sanders, 1963, p.
191), see also (Murphy and Winkler, 1977). Under this fairly benign assumption, choosing
0.25 as my threshold maximises not only my predicted utility among all threshold-based
policies but also my actual cumulative utility due to Proposition 3! Hence, people can
tailor their policies to their personal utilities and, thus, their decisions to the forecasts.
This also demonstrates why probabilistic forecasts are useful even in a deterministic world
without ‘real’ probabilities. We would like to highlight that calibration on sets of equal
prediction thus derives its importance (and prevalence) from their frequent concurrence
with the sets of equal utility when considering threshold-based policies. Note, however, that
calibration cannot be the only quality criterion for predictions here, as the constant base
rate predictor also satisfies (15): more refined predictions allow people to better tailor their
decisions to their utilities. Another property of interest is then what is sometimes called
sharpness or refinement, which relates to the information content of a predictor (DeGroot
and Fienberg, 1983). The Brier score, for example, can be decomposed into two terms
measuring probability calibration and sharpness, respectively (Sanders, 1963). These two
properties are at odds in the sense that it is more difficult to be calibrated on sharper
predictions. In this work, we focus not on the selection or construction of predictors but on
how they can be useful in general.2

Note that the calibration criterion was fairly benign in our example because the utilities
are the same each day and we restricted our comparisons to the 10 threshold-based policies
(arguably the only sensible policies here).3 The story would be more complex if we took
the utility in the umbrella problem to also depend e.g. on wind speed or on the day of the
week. In general, for d binary decisions, there are 2d possible combinations of decisions!
Accordingly, if we wanted to compare the cumulative utility of all possible choices via
Proposition 3, this would lead to a very strong calibration criterion – in fact, it would require
perfect binary predictions pi = yi. This should not be surprising, as the best combination
of decisions would be to always bring an umbrella if and only if it rains, which we can only
ensure if we can discriminate perfectly between rainy and dry days.

Let us now briefly consider alternatives to the cumulative utility for comparing policies.
Recall that predictions calibrated on sets of equal utility not only allow us to predict the
cumulative (or average) utility but the distribution of utilities more generally. Let D :=
{µ : R → N≥0} denote the space of utility distributions, i.e. functions indicating how often
different utility values occur.4 Let Uµ := {u ∈ R : µ(u) > 0} denote the support of a

2The relationship between calibration and point-wise loss functions is an interesting research avenue, see
e.g. (Gopalan, Kim, and Reingold, 2023).

3An essentially equivalent observation has been made by Zhao et al. (2021) who show that probability
calibration is necessary and sufficient for predicting the average future loss if we restrict ourselves to loss
functions (our utilities) that only depend on prediction and label and prediction-based policies. Note that
for us, this is only a special (albeit common) case.

4For u ∈ R, µ(u) = n then means that the utility u occurs n times in the distribution described by µ.
Instead of such distributions, one may also think of multisets. Note that calibration on sets of equal utility
generally only allows us to predict how often, but not when a specified utility will be received.
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utility distribution µ ∈ D, i.e. the set of utility values that do occur in the distribution
µ. With this notation, we can describe the cumulative utility of a distribution µ ∈ D as∑

u∈Uµ
u ·µ(u). Another potentially relevant property of utility distributions is the smallest

received utility, minUµ. For the umbrella policies, optimising for this property would mean
that we should always bring an umbrella when pi > 0, as we will otherwise incur a utility
of −3 at some point – assuming that the calibration condition (15) holds. The minimum
is quite an extreme property of a distribution as it ignores most information about the
distribution (in our case, all events except those with the lowest utility). Optimising other
properties of utility distributions will lead to other decision criteria but these questions are
not the focus of this paper, interesting as they may be. Instead, we focus on prediction
methods and probability.

3 Prediction methods

The previous section demonstrated that predictions are useful for decision-making if they
are calibrated on relevant sets of events. We considered predictions simply as numbers that
fell into our lap, without reference to any relationship between them that would justify such
an assumption (except for the rain forecasting example). In this section, we introduce and
discuss a general notion of prediction methods; this provides a basis for discussing rela-
tionships between predictions, and calibration in particular. In short, the deployment of a
prediction method in any given situation involves the construction of a representation and
the application of a predictor (Section 3.1). We show that Kolmogorov’s axioms are neces-
sary and sufficient for predictors to preserve calibration between sets of events (Section 3.2)
and argue that it is often indeed possible to construct calibrated prediction methods (Sec-
tion 3.3). Lastly, we demonstrate that prediction methods are much more general than the
rain forecast example of the previous section. Indeed, we show that supposedly objective
probabilities based on symmetries (Section 3.4) or relative frequencies (Section 3.5) actually
rely on prediction methods.

3.1 Predictors and prediction methods

We distinguish the (mathematical) function that takes an input and outputs a prediction
(which we call predictor or model) from the more complex prediction method that is applied
to an actual situation. The latter involves the construction of a representation (potentially
including measurements) before applying the former (Figure 1). We illustrate this with a
now familiar example.

select predictor p : X ×A → R

construct representation x ∈ X

 compute p(x,A)

Figure 1: A prediction method gives a prediction for an event A in some situation by selecting a
predictor p : X × A → R with A ∈ A, constructing a representation x ∈ X of the situation, and
computing p(x,A).

Definition 5 (Predictor).
A predictor is a function p : X ×A → R on some set X and algebra A.
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Definition 6 (Prediction method).
A prediction method for an event A ∈ A is an implicit or explicit scheme for selecting a
predictor p : X ×A → R and constructing a representation x ∈ X of the given situation.

For rain forecasts, the prediction method consists in first taking measurements (of tem-
peratures, air pressure, etc.) and then feeding them to a computer model (the predic-
tor) that outputs a prediction for the probability of rain. As in other settings that we
will discuss below, one of the two arguments of the predictor is effectively ignored: For
rain forecasts, the algebra of events is only implicit, although it can be formalised as
{∅, {rain}, {¬rain}, {rain,¬rain}}.5 By specifying a prediction pi for rain, the other events
get assigned predictions 0, (1− pi), and 1, respectively, if Kolmogorov’s axioms are obeyed.
We will demonstrate in Section 3.2 that they should indeed be obeyed in order to provide
calibrated predictions. Our notion of prediction methods thus elucidates the relationship
between gambling probabilities and weather predictions by tying together abstraction, prob-
ability theory, and successful decision-making. One could argue that outputs of predictors
which do not obey these axioms should not be called probabilities, but simply real-valued
forecasts or predictions. Note that the specification of events A ∈ A also involves choices of
definition or measurement. For example, how much rain counts as ‘no rain’ or in which area
it is recorded is more or less implicit – and depends on value judgements (Douglas, 2000).
These choices are, however, typically not part of the prediction method so we do not discuss
them further.

In our rain forecasting example, the representation constructed by the prediction method
consists in taking specific measurements of temperature, air pressure, et cetera. More gener-
ally, any sort of prediction requires focusing on a subset of all the information that could be
taken into account – a representation of the situation. Any given situation has an enormous
amount of potentially relevant information; typically, we decide what to look at based on
experience as well as common sense or expert knowledge. For rain forecasts, temperature
and air pressure are more interesting quantities than the current GDP.6 Different models for
rain prediction (the predictors) can be based on different information – for example, different
granularity, location, and timing of the temperature measurements. These models may also
work very differently – they may rely on simple look-up tables or sophisticated simulations.
They may even rely on human forecasters who also only use limited information for their
forecasts. While it is difficult to speak of human predictors as stable mathematical objects,
they can arguably be approximated as such. It is interesting to note that our predictors
resemble the confirmation function central to logical accounts of probability such as that of
Carnap (1950) or Keynes (1921) (with precursors as early as Leibniz, cf. (Hacking, 1975)).
Predictors, however, are neither objective relations nor relations between propositions –they
are functions of representations in a set X and events in an algebra A.

We defined calibration for predictions in Section 2.1. Based on this, we can define
calibration for predictors and prediction methods.

Definition 7 (Calibration of predictors and prediction methods).
A predictor (or prediction method) is said to be calibrated on events A1, ..., Ad ∈ A if its
predictions p1, ..., pd are calibrated for observations y1, ..., yd.

5An algebra over a set Ω is a set of subsets of Ω that includes both Ω and the empty set and is closed under
complements, finite unions, and finite intersections. Algebras are central to Kolmogorov’s axiomatisation of
probability (Section 3.2).

6Still, even the GDP may be predictive, given that long-term weather phenomena like El Niño can have
macroeconomic effects (Cashin, Mohaddes, and Raissi, 2017).

8



Note that implicit in the enumeration A1, ..., Ad ∈ A are d situations to which the predic-
tion method is applied, using representations x1, ..., xd ∈ X . When we speak of calibration
without specifying on which sets, we mean a vague notion of ‘sets of interests’. Before
providing more examples and arguing that calibration is often achievable, we demonstrate
a general property of prediction methods, namely, that it is good for a predictor to adhere
to the probability calculus.

3.2 Probabilistic predictors

Even attentive readers probably missed the interesting fact in Proposition 3 that 1 − pi
automatically emerged as the prediction for 1− yi, without imposing Kolmogorov’s axioms.
We now show more generally that predictors need to satisfy these axioms (in their second
argument) in order to be calibrated on certain sets.7 Take a predictor p : X × A → R
and d prediction instances represented by (xi, Ai) ∈ X × A with pi := p(xi, Ai) and let
yi ∈ {0, 1} denote whether Ai occurs. Let yA, yB , yA∪B , yΩ ∈ {0, 1} denote whether events
A,B,A ∪ B,Ω ∈ A occur at the last instance d. A is an algebra over some set Ω where Ω
is a sure event: It exhausts all possibilities, that is, for its label it is known that yΩ = 1.

1. Non-negativity: If there is a nontrivial subset I := {i : pi < 0} ⊂ {1, ..., d} where
p predicts negative values, then p cannot be calibrated on this subset, regardless of
whether the predicted events occur:∑

i∈I

pi < 0 ≤
∑
i∈I

yi. (16)

2. Normalisation: Let Ad = Ω and p be calibrated on the set {1, ..., d − 1}. Then p is
calibrated on {1, ..., d} if and only if p(xd,Ω) = 1, regardless of xd.

3. Additivity: Let A,B ∈ A be disjoint events in the sense that yA+yB ≤ 1 (i.e. it cannot
be that both labels are equal to 1 at the same instance); this implies yA+ yB = yA∪B .
Now assume p is calibrated on the set S := {(x1, A1), ..., (xd−1, Ad−1), (xd, A), (xd, B)},
where p is used for two predictions at instance d. Then

p(xd, A ∪B) +

d−1∑
i=1

pi − yA∪B −
∑
C∈J

yi (17)

= p(xd, A ∪B) +

d−1∑
i=1

pi − yA − yB −
d−1∑
i=1

yi (18)

= p(xd, A ∪B)− p(xd, A)− p(xd, B) + p(xd, A) + p(xd, B) +

d−1∑
i=1

pi − yA − yB −
d−1∑
i=1

yi

(19)

= p(xd, A ∪B)− p(xd, A)− p(xd, B) (20)

where the last step uses the assumption of calibration on S. So under that assumption,
p is calibrated on {1, ..., d} with Ad = A ∪B if and only if p(xd, A ∪B) = p(xd, A) +
p(xd, B), regardless of xd.

7Related observations for calibration on sets of equal prediction have been made in (van Fraassen, 1983).
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The sets that allow if-and-only-if statements are quite specific here – which resembles Dutch
book arguments where any single inconsistency can in theory be exploited indefinitely. Here,
the implications are more practical: If someone is perfectly calibrated on forecasting ‘rain’
but does not obey the probability axioms on one ‘no rain’ forecast, then for some utility
functions (in the setting of Section 2.2), they are guaranteed to make a sub-optimal decision
due to miscalibration.

We can also motivate the definition of conditional probabilities by the demand for cal-
ibration (somewhat analogous to definitions via relative frequencies). Consider the task of
predicting events A,B ∈ A at d instances. For ease of presentation, assume that all d inputs
coincide, i.e. x1 = ..., xd = x ∈ X . This allows us to drop p’s dependence on x ∈ X and
consider a predictor p : A → [0, 1] in the following derivation; a more general version is
presented in Appendix B. Now assume p to be calibrated on A ∩ B and on B across the d
instances, where yA∩B

i and yBi denote whether A∩B and B occur at instance i ∈ {1, ..., d},
respectively. That is, assume

∑d
i=1 p(A ∩B) =

∑d
i=1 y

A∩B
i and p(B) = 1

d

∑d
i=1 y

B
i > 0.

Then p is calibrated on A|B for {i : yBi = 1} (i.e. for the set of steps where B occurs, see

first line below) if and only if it satisfies p(A|B) = p(A∩B)
p(B) :∑

i:yB
i =1

p(A|B) =
∑

i:yB
i =1

yAi

∑
i:yB

i =1

p(A|B) =
∑

i:yB
i =1

yA∩B
i (since yAi = yA∩B

i when yBi = 1)

∑
i:yB

i =1

p(A|B) =

d∑
i=1

yA∩B
i (since yA∩B

i = 0 when yBi = 0)

∑
i:yB

i =1

p(A|B) =

d∑
i=1

p(A ∩B) (by calibration of p on A ∩B)

p(B) ·
d∑

i=1

p(A|B) =

d∑
i=1

p(A ∩B) (by calibration of p on B)

p(A|B) =
p(A ∩B)

p(B)
.

Summing up, the probability calculus can be seen as a sound and complete system for
generating calibrated predictions on certain sets from calibrated predictions on related sets.
While it remains an open question whether this is enough to demand that all predictors
follow the probability calculus (i.e. that they are probability measures in their second
argument), it does provide a rationale for it.

3.3 Induction and the feasibility of calibration

In general, there is no reason why an arbitrary set of predictions should be calibrated. It
is, however, often possible to design prediction methods so that they are (approximately)
calibrated on sets of interest, which simply means that they neither systematically over-,
nor under-predict. In addition to rain forecasts and later examples in Sections 3.4 and 3.5,
we can point to machine learning (ML) models which often aim for calibration on sets
of equal prediction. It has been observed that especially modern, over-parameterised ML
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models need explicit post-processing, whereas others are automatically calibrated on sets
of equal prediction (Guo et al., 2017). One could argue that on a high level, humans also
do something like this post-processing: if we are repeatedly over- or under-predicting on
sets of interest (i.e. are not calibrated), we will (ideally) notice that; since we do not know
on which of the individual events our predictions were too low/high, we systematically
increase/decrease our predictions for similar predictions in the future. But why should
future predictions then also be calibrated and what can we say about the relevant notion of
similarity?

Nelson Goodman (1972, p. 18) already suspected ‘that rather than similarity providing
any guidelines for inductive practice, inductive practice may provide the basis for some
canons of similarity’. Any prediction method, indeed any prediction about the future, relies
on an inductive assumption: that the future will be similar to the past in some relevant way.
This relevance can be made more precise for our purpose: that a prediction method which
has repeatedly proven to be (approximately) calibrated on some sets in the past will be
(approximately) calibrated on similar sets in the future. Below, we prove a formal result in
support of this particular inductive assumption, similar to the argument for induction made
in (Williams, 1947).8 In contrast to the cited work, we are dealing not only with integers
but with real numbers, which is why we draw on an established concentration inequality. In
particular, we make use of the combinatorial bound provided by Hoeffding’s inequality for
drawing without replacement.

Proposition 8 (Calibration on samples from a population).
Take a predictor p : X × A → [0, 1] and N prediction instances represented by (xi, Ai) ∈
X ×A. Now consider drawing a ‘sample’ of d instances from the ‘population’ of N instances.
Then the samples {j1, ..., jd} ⊂ {1, ..., N} whose average calibration error differs by more
than ϵ from the average calibration error of the population, i.e. where

1

d

d∑
i=1

(pji − yji)−
1

N

N∑
i=1

(pi − yi) ≥ ϵ, (21)

(yi denoting whether Ai occurs and pi := p(xi, Ai)) make up for less than exp
(
− 1

2dϵ
2
)
of

all possible samples of that size.

Proof.
Our result follows directly from Hoeffding’s inequality for drawing without replacement.
We simply insert zi := pi − yi, a = −1 and b = +1 in the below statement taken from
Proposition 1.2 of (Bardenet and Maillard, 2015):

Let Z = (z1, ..., zN ) be a finite population of N points and Z1, ..., Zd be a random sample
drawn without replacement from Z. Let

a := min
1≤i≤N

zi and b := max
1≤i≤N

zi. (22)

Then for all ϵ > 0,

µ

[
1

d

d∑
i=1

Zi −
1

N

N∑
i=1

zi ≥ ϵ

]
≤ exp

(
− 2dϵ2

(b− a)2

)
, (23)

8Note that we need not mean to provide an a priori justification for induction here: our goal is not to
solve any (old or new) riddle of induction but to elucidate the role of probability in it.
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where µ measures the proportion of admissible combinations in drawing d of the N points.

Hence, the average calibration error on large enough samples will mostly be close to the
average calibration error of the whole population. In a move analogous to that of (Williams,
1947), we can also infer that if I am approximately calibrated on a large enough sample from
a population or set of prediction instances, I will in most cases also be calibrated on the
whole set and, thus, on similar sets in the future. Let us illustrate the bound with concrete
numbers. If I have an average calibration error of 0.2 on the whole population, then I will
get a calibration error of less than 0.05 in less than 10% of possible samples of size d = 200;
for d = 500, this goes down to 0.4% of samples. Hence, the vast majority of possible
samples will not mislead me into thinking that I will be well-calibrated in the future in such
a setting. Note that the proposition only provides an upper bound and the actual number of
non-representative samples will be yet lower. While this result does not prove the possibility
of induction, it shows that calibration in the past is an indicator for calibration in the future
– on sets that can be thought to be drawn from the same population. Whether this is a
sensible model in a given situation depends on whether there is reason to believe that the
sample is unbiased.9 Another interesting implication of the result concerns the mixing of
predictions from multiple different calibrated prediction methods. If n prediction methods
are calibrated on d events each, then the resulting n ·d predictions are clearly also calibrated
on the n · d events; Proposition 8 can now also be applied to this larger set of predictions,
now inferring from the population to subsets: It shows that most large enough subsets of
these n · d predictions will also be approximately calibrated, even though they come from
a mix of prediction methods. This is important because it shows that Proposition 3 is not
only relevant for predictions from the same prediction method.

3.4 Example: Symmetry-based predictions

In many settings, probabilities are (typically) not thought to be model-dependent, to be
based on a particular prediction method; this includes probabilities for symmetrical gambling
devices. Assume you go to a casino where they offer a novel game based on a symmetric
8-sided and a symmetrical 20-sided ‘die’ (an octahedron and an icosahedron). Given that
it is an official casino, you assume that the dice are indeed symmetrical. How do you
make predictions? You can represent any possible outcome that you wish to predict as
the set of admissible combinations of faces, which can e.g. be represented as the algebra
A = 2{1,...,8}×{1,...,20}. For the prediction, you presumably ignore the name of the croupier,
the surface of the table, and so on and only focus on the symmetry of the dice. Each face of
the octahedron corresponds to a prediction of 1

8 and each face of the icosahedron corresponds
to a prediction of 1

20 . How exactly this reasoning is captured by a predictor p : X ×A → R
is under-determined; in particular, what counts as an argument versus a part or parameter
of the predictor: You may consider a predictor that only takes symmetrical dice, such that
the input space X = {x} can be ignored. Alternatively, you may take X = ∆8 × ∆20 to
be the set of all possible combinations of potentially biased 8-sided and 20-sided dice, of
which you consider the element x := ( 18 , ...,

1
8 ,

1
20 , ...,

1
20 ) ∈ X , reflecting your assumption of

fairness. You may also take a still larger X that can also capture dice with other numbers
of faces. In any case, you proceed by transforming your representation of fair dice into a

9An illuminating analysis of the difference between the means in terms of the bias of the sampling
procedure can be found in (Meng, 2018).
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number in [0, 1] through a combinatorial model p. You construct a representation and you
calculate.

Such symmetry-based prediction methods in gambling situations typically assume that
the setup is ‘fair’. Indeed, gambling devices are produced in such a way that each outcome
should occur equally often, which allows us to make roughly calibrated predictions on large
samples.10 We know from experience that the process of rolling a fair die is so opaque and
chaotic that it is practically impossible for us to predict better than uniformly. If we were
more proficient in discerning minuscule variations in die-throws and background conditions
(as Laplace’s demon would be), we might be able to make finer predictions. Indeed, Edward
Thorp and Claude Shannon developed a device to better predict roulette outcomes which
they successfully deployed in casinos in the 1960s (Thorp, 1998).11 After all, the assumption
of a fair die or roulette wheel is a particular way of representing (your beliefs about) the
situation you are in.

3.5 Example: Frequency-based predictions

Predictions that are explicitly based on looking up relative frequencies of similar events
also use a very simple type of prediction method. Such a method could be used for gam-
bling instead of (or combined with) symmetry-based considerations. There are also more
interesting examples, such as medical risks. Doctors typically base risk predictions on past
experience, sometimes by explicitly looking up data about similar people. In an example
recently discussed in (Dawid, 2017), which we shall return to later, Angelina Jolie got told
that she had a 87% risk of breast cancer – with the number presumably coming from sta-
tistical data about women with a particular genetic mutation. Hence, the doctors used
the following prediction method: They chose a particular representation of Angelina, as a
woman with this gene mutation, and then used a predictor that is basically a look-up table.
Presumably, women without that gene mutation get assigned into different categories (or
‘reference classes’) for which there is enough data for doctors to believe that the relative
frequency in this category is stable over time. Different doctors may use different categories,
that is, different representations. If the relative frequencies are indeed stable over time, the
doctors will be roughly calibrated in their predictions on large enough sets of people.12 As
in the rain example, we can consider this as a case where the implicit 4-element algebra is
ignored. Alternatively, we could see it as an application of a more general predictor that
can output predictions for different diseases, based on multiple look-up tables. This would
make A more complex by adding more diseases as fundamental events and means that X
needs to be fine enough that all relevant categories for all diseases can be distinguished.

These examples may suggest that induction about calibration always reduces to stable
relative frequencies of repeated trials; this is not the case. Consider simulation models
in the rain prediction example: If the measurements are fine enough, it may be the case
that no input xi ∈ X occurs more than once and no prediction is issued more than once,

10Hacking (1975, p. 4) notes that already ‘[t]he dice in the cabinets of the Cairo Museum of Antiquity,
which the guards kindly let me roll for a long afternoon, appear to be exquisitely well balanced.’ It also
seems that probabilistic calculations were already known to gamblers before mathematicians started to take
an interest in it in the 17th century (Garber and Zabell, 1979).

11Note that the story does not prove that there is a better way to make predictions before the ball is
started, but there may well also be such regularities.

12To much public as well as scholarly amazement, early ‘statisticians’ in the 19th century discovered
numerous stable relative frequencies at the population level, such as a ‘frightening regularity with which the
same crimes are reproduced’ (Porter (1986, p. 49) citing the highly influential Adolphe Quetelet).
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implying that there are no repeated trials. Further examples are given by logistic regression
or more complex Machine Learning models used for probabilistic predictions. In general,
calibrated predictors may rely on some structure in the relationship between inputs and
labels that does not reduce to stable relative frequencies. Otherwise, simulation-based and
ML-based predictions could simply be replaced by ‘reference class forecasting’, as developed
in (Flyvbjerg, Glenting, and Rønnest, 2004). We will elaborate on the relation between
prediction methods and frequentist reasoning in Section 4.3; more generally, we now turn
to the interpretation of our account.

4 An interpretation of probability

Norms of belief are as remote from empirical claims about nature as is Hume’s
simpler subjectivism. Propensity theories of probability propose a physical prop-
erty that cannot be recorded and does not necessitate or preclude any occurrence.
[. . . ] any limiting-frequency claim is consistent with any claim about any finite
collection of events.

– Clark Glymour (2001)

Even though Bertrand Russell’s famous dictum that ‘probability is the most important
concept in modern science, especially as nobody has the slightest notion what it means’
(cited in (Bell, 1945, p. 582)) is almost a century old and there have certainly been many
new developments, a thorough understanding is still lacking. The purpose of this section is
to argue that probabilities should generally be seen as outputs of prediction methods and
used to predict how many events from a set of them will occur. While this has already
been hinted at throughout, we now specifically relate this account to the literature on
interpretations of probability. This topic is often thought to depend on the question of
whether the world is deterministic or not – we briefly argue that this question is indeed
not relevant to our account (Section 4.1). It has sometimes been argued that there are two
concepts of probability – one relating to degrees of belief, the other to relative frequencies
(see e.g. (Hacking, 1975) for a historical account). We show how our account relates to
both, providing a comprehensive account of probability (Sections 4.2 and 4.3). Given that
sets of predictions are at the heart of our account, we discuss what this means for individual
predictions (Section 4.4). Lastly, we survey other interpretations of probability, highlighting
similarities and differences compared to our account (Section 4.5).

4.1 The question of (in-)determinism

During the nineteenth century it became possible to see that the world might
be regular and yet not subject to universal laws of nature. A space was cleared
for chance.

– Ian Hacking (1990)

The question of whether the universe is deterministic is sometimes taken to bear directly
on how we think about probability. For example, David Lewis (1980, p. 120) thought that
objective or physical probabilities rely on indeterminism. Karl Popper (1959) proposed the
propensity account of probability (according to which probabilities are physical properties)
in the context of Quantum Mechanics (QM). We should briefly note that QM does not imply
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that the world is indeterministic – different, empirically indistinguishable interpretations of
QM disagree on this question (not even getting into the question of scientific realism). So
there is certainly no need to presuppose this. Even if QM came with true ‘probabilities’,
it is unclear that they would be of any relevance to the probabilities we deal with day-
to-day, for two reasons: First, QM probabilities need to be described by a more general
theory of probability than that axiomatised by Kolmogorov (Streater, 2000). Second and
more importantly, even for a coin flip, we have no access to the true QM-based probabilities
(assuming it is indeterministic): We are neither able to determine the initial conditions,
that is, the complete wave function, nor to take into account the extremely high number
of occurring quantum interactions.13 The resulting values may, thus, vastly differ from any
predictions we are able to make – which, as we have shown, are still useful.

Indeed, the intuition that probabilities are objective may depend less on QM and more
on the often strong interpersonal agreements about ‘correct’ prediction methods e.g. for
gambling. In the words of Michael Strevens (2006, p. 31), probabilities in such settings
‘have attained a certain kind of stability under the impact of additional information. This
stability gives them the appearance of objectivity, hence of reality, hence of physicality’. We
argued that this is misleading in Section 3.4, as illustrated by the roulette story of Thorp and
Shannon. In line with this, the ‘erosion of determinism’ indeed did not follow the advent
of QM but of higher-level statistical regularities discovered during the previous century,
as captured by Hacking’s epigraph above.14 On the contrary, this erosion, if anything,
facilitated the formulation of QM. In sum, we do not see compelling reasons to either believe
in determinism or indeterminism nor to think that indeterminism at the level of QM would
contribute much to probabilistic reasoning. It is therefore a strength of our account that,
showing how probabilities can be constructed and used, it remains agnostic regarding the
question of determinism. Our notion of prediction does not even require that the predicted
events lie in the future, it suffices if the observations/labels are not available to the predictor.

4.2 Relation to degrees of belief

Chances are degrees of belief [. . . ]; not those of any actual person, but in a
simplified system to which those of actual people, especially the speaker, in part
approximate.

– Frank P. Ramsey (1928/1931)

While probabilities are often thought to have a close connection to degrees of belief, as
already reflected in Pascal’s wager, we hold that the notion of probability does not depend
on degrees of belief. In accordance with earlier chapters, prediction methods can be used
in a purely mechanical way, without any involvement of beliefs. A machine that takes
measurements and uses a predictor could make decisions based on probabilities without it
being plausible to ascribe to it beliefs that come in degrees. However, probabilities can also
be used to describe human reasoning under uncertainty. In most cases, it is difficult to pin
down a particular prediction method, especially as human predictions tend to be qualitative.
But humans also take only specific information into account and exploit regularities such

13This would require a QM version of Laplace’s demon.
14The growing popularity of numerical predictions in the 19th century was fuelled both by the broad ap-

plicability of statistical methods (Porter, 1986) and the increasing need for decision makers to communicate
and justify their judgements (Porter, 1995).
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as symmetries or observed relative frequencies.15 In some cases, the gap between human
reasoning and quantitative prediction methods can become fairly small – it seems that
some people, modestly described as ‘super-forecasters’, are particularly good at making
calibrated quantitative predictions (Mellers et al., 2015). As shown in Section 3.2, we can
get calibrated predictions from calibrated predictions of related events using the probability
calculus. This provides at least a pro tanto reason for considering the probability axioms
to constitute constraints on rationality. The notion of prediction methods can also shed
light on imprecise notions of (subjective) uncertainty. Particularly vague degrees of belief
or disagreements between different methods can be represented by imprecise predictions
(Appendix A.3)16 while Knightian uncertainty (Knight, 1921) corresponds to the absence
of a trusted prediction method.

While probabilities are not reducible to degrees of belief, the latter, in a sense, ‘happen’
to roughly behave like outputs of prediction methods. In Section 2.1, we derived that
calibrated prediction methods can be harnessed via an expected utility maximisation policy
– the same policy that is often taken to be an approximation of human decision-making: We
tend to make decisions such that good outcomes seem more likely to us. There are, of course,
considerable caveats. The most crucial ones are arguably diminishing marginal utility and
risk aversion, already highlighted by Ramsey (1926/1931, p. 172) and analysed e.g. in
(Wakker, 1994). Still, expected utility maximisation is useful as a baseline model – and, in
contrast to Bayesianism, we derived rather than assumed it under specific assumptions. In
Ramsey’s words, it is an ‘artificial system of psychology, which like Newtonian mechanics
can, I think, still be profitably used even though it is known to be false’ (Ramsey, 1926/1931,
p. 173). In this sense, Section 3 tells us an idealised story of human reasoning and decision-
making: Humans happen to implement something close to prediction methods – in that
sense, probabilities can model human degrees of belief, as expressed in Ramsey’s epigraph.
This does not mean that probabilities only model degrees of belief (given that probabilities
can also be used in a purely mechanical way) – on the contrary, one could say that degrees
of belief aspire to be outputs of useful prediction models.

4.3 Relation to frequencies

If we are asked to find the probability holding for an individual future event, we
must first incorporate the case in a suitable reference class. An individual thing
or event may be incorporated in many reference classes, from which different
probabilities will result. This ambiguity has been called the problem of the
reference class.

– Hans Reichenbach (1949)

Although our approach implies that probabilities are constructed, it also explains their
strong connection to observed relative frequencies. Indeed, if we restricted ourselves to
calibration on sets of equal probability (as calibration is sometimes understood), the rela-
tionship would be even closer: Then, the calibration condition would be equivalent to the

15Note that this is compatible with Hume’s position that such processes are not deliberate, that ‘[a]ll
inferences from experience, therefore, are effects of custom, not of reasoning’ (Hume, 1777, 5.1/43f). Against
Bishop Butler, he held that ‘[c]ustom, then, is the great guide of human life’ (ibid.).

16Such interval probabilities were also considered by De Finetti and Savage (1962) as models of degrees of
belief in ‘the case of a number of decision-makers who have to make a collective decision, and, second, the
case of a single individual who experiences a ‘kind of personality dissociation” (Feduzi, Runde, and Zappia,
2012, p. 348).
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definition of probability in finitary frequentism:

n∑
i=1

pi =

n∑
i=1

yi ⇔ pi =
1

n

n∑
i=1

yi. (24)

Instead of taking this as a definition, we think it more adequate to see it as a special case
of our main quality criterion. Not just because such finitary definitions are problematic
(Hájek, 1996)17, but also because it implies a too narrow evaluation criterion.

The ties between frequentism and our account become particularly clear in reference to
the so-called reference class problem. Its metaphysical version is a problem for objectivist
theories like frequentism which claim a unique true probability for each event (Hájek, 2007).
The epistemic version concerns the question of how a reference class should be chosen for
a given event, as different choices would lead to different probabilities. This has led, for
example, the cited author to argue that conditional probabilities are actually primitive,
as probabilities are always conditional on a certain conceptualisation of events. While
the form of our predictors does resemble a conditional probability, they are not actually
conditional probabilities as X is just an arbitrary set rather than an event space on which
probabilities are defined. Furthermore, it has been supposed that, rather than a marginal
probability, ‘[v]arious frequentists could tell us the conditional probability that John Smith
will live to age 61, given that he is a consumptive Englishman aged 50’ (ibid., p. 582,
original emphasis). This ignores that there might, for example, be different mortality tables
resulting in different ratios. More generally, the choice of representation does not yet fix
the prediction. This aspect is clear for prediction methods, as different methods may use
the same scheme of constructing representations but different predictors, relying e.g. on
different mortality tables. In sum, we agree that ‘probability is a subtler idea than relative
frequency’ (Freedman, 1997, p. 23). We would also argue that the reference class problem
is not actually a problem. Different prediction methods may be calibrated on different
sets, so one can choose a prediction method that promises calibration on sets of interest.
Similar observations, without reference to calibration, have been made e.g. in terms of the
‘goal-dependence in scientific ontology’ (Danks, 2015).

4.4 Individual predictions

Legends of prediction are common throughout the whole Household of Man.
God speaks, spirits speak, computers speak. Oracular ambiguity or statistical
probability provides loopholes, and discrepancies are expunged by Faith.

– Ursula K. Le Guin, The Left Hand of Darkness (1969)

Our discussions have focused on sets of predictions rather than individual ones. This is not a
coincidence as we take probabilities to not be free-floating numbers but to rely on prediction
methods which are useful when sets of predictions are calibrated.18 But what exactly is the
relation between a prediction and the corresponding event? And can we evaluate the quality
of a single non-trivial prediction? That is, is a prediction of 0.6 better than a prediction
of 0.4 if the predicted event occurs? What should we do if we only get a single prediction

17Glymour (2001) argues for what he calls an instrumentalist and approximate version of finite frequentism
which takes probabilities to be descriptions of frequencies rather than defining the former through the latter.
While this is not too far from our somewhat pragmatic approach in spirit, his focus is more on the description
of populations through distributions and he rejects the relevance of decision theory.

18Of course, singletons can be (approximately) calibrated when predictions are (approximately) 0 or 1.
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for some level of utility? The short and perhaps not very satisfying answer is that a single
prediction does not have much meaning on its own. Its relationship to the predicted event
is mediated through the prediction method and the regularity that it exploits.

The first three questions all relate to the dependence of a prediction on the method that
generated it. In particular, they relate to the previous discussion of the generalised reference
class problem: Which prediction method is most useful depends on which sets we want to be
calibrated on (although the perfect binary predictor is always optimal). In hindsight, we can
usually say which prediction would have been good or correct. The validation of prediction
methods cannot, however, be thus reduced to comparisons between individual predictions.
It is also important to emphasise that the probability is not a property of the event, as it
is constructed and depends on the choices of both the representation and the predictor. As
discussed in Sections 3.4 and 4.1, gambling setups only appear to have objective probabilities
because of their relative stability under additional information. Proper scoring rules also do
not help with the issue of evaluating single predictions. They do allow us to put a number on
our intuition that 0.6 is somehow a better prediction than 0.4 if the predicted event occurs;
but so does any notion of calibration error, such as the ℓ1 loss deployed in Appendix A.1.
After all, proper scoring rules are meant to be ‘appropriate for evaluating and comparing
forecasters who repeatedly present their predictions’ (DeGroot and Fienberg, 1983, p. 12, our
emphasis). We also mentioned the case of Angelina Jolie who stated ‘My doctors estimated
that I had an 87 per cent risk of breast cancer’, with the number presumably coming from
statistical data about women with a particular genetic mutation. Dawid (2017) asks, ‘Was
Angelina (or her doctors) right to interpret it as her own individual risk?’ (p. 3456). On our
account, they were – with the qualification that this risk is model-dependent and constructed
rather than objective and discovered – as is any other probability.

The fourth and last question about acting on single predictions is similar but more
complex. In general, we suggest that policies rather than single actions should be the
subject of justification and evaluation. An ex-post evaluation of a decision would ignore
the prediction and just consider whether an alternative decision would have been better
in hindsight – this is not particularly helpful. Instead, what is familiar also from legal
and ethical reasoning (especially deontological, but even rule-consequentialist), is to judge
decisions by the reasons or maxims that they were based on.19 For example, we showed
that maximising expected utility is a sensible policy if we can assume calibration on sets of
equal utility and wish to maximise cumulative utility (Section 2.1). As noted before, being
calibrated for all possible combinations of decisions would require perfect discrimination. In
the umbrella example of Section 2.2, we showed that the calibration criterion can be more
benign when comparing a more restricted set of sensible policies. But the problem is more
difficult e.g. when we only have a few predictions for particularly grave events: If we only
make a few high-stakes decisions such as a choice of treatment for breast cancer (where one
may even argue that the concept of numerical utility breaks down), it seems too big of an
assumption to hope for calibration on such a small set. For such situations, it may then be
more sensible to be risk-averse than in low-stakes settings where there are multiple events
with comparable utility (cf. Buchak, 2013; Thoma, 2019).20 A way to model this would be
via imprecise calibration as explored in Appendix A.3.

19This has been stated in particularly succinct form by Maurice Merleau-Ponty (1955, p. 9): ‘Il n’y a pas
des décisions justes, il n’y a qu’une politique juste.’

20This creates an asymmetry for the doctor-patient relationship, but also for algorithmic predictions,
similar to the insurance setting (Fröhlich and Williamson, 2024). CS Peirce (1878) thought that when
probabilistic reasoning is confronted with limited trials, ‘logicality inexorably requires that our interests
[. . . ] must not stop at our own fate, but must embrace the whole community’.
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4.5 Comparisons with other interpretations

Each interpretation that we have canvassed seems to capture some crucial insight
into a concept of [probability], yet falls short of doing complete justice to this
concept.

– Alan Hájek (2019)

Any new satisfactory account of probability can be expected to make proponents of previous
accounts feel vindicated on some aspects that are particularly close to their hearts. We think
that this is the case for our notion of probabilities as outputs of prediction methods aiming
to predict numbers of occurring events. We already commented on the relation to logical
accounts of probability in Section 3.2. In this section, we briefly survey a number of other
prominent interpretations and highlight what we take to be the most interesting similarities
and differences w.r.t. our account.

Bayesians usually posit that probability and its theory are concerned with degrees of
belief and rationality constraints thereon. What we agree with is that probabilities are
constructed and that it is misguided to search for true probabilities. However, we ground
them in prediction methods rather than degrees of belief (Section 4.2) and highlight that
these methods aim to track structure in sets of observations. This makes it possible to
replace notions of internal cohesion or rationality with that of calibration, and thereby an
actual guide to decision-making. A Bayesian account that is particularly close to ours is
that of (Dawid, 2017).21 On the one hand, his suggestion to arrive at ‘probability forecast[s]
by assessing the odds at which I would be willing to bet’ (p. 3471) is clearly Bayesian in
the spirit of (De Finetti, 1937). On the other hand, he also suggests evaluating individual
predictions on aggregate data via calibration – although its precise scope and relevance do
not yet become entirely clear. In particular, it remains unclear why calibration on future
data is important and on which (finite/infinite) sets it matters.22 In comparison, our notion
of prediction methods focuses on (potentially) inter-subjective models and the construction
of representations x ∈ X which are decoupled from the events A ∈ A that we wish to be
calibrated on. In a way, then, we posit a variant of Bayesianism without degrees of belief or
betting and with a more concrete connection to the world, enabling not only the avoidance
of sure loss in Dutch books but successful action in everyday life.

Hypothetical frequentism can be defined as the suggestion that ‘the probability of an
attribute A in a reference class B is the value the limiting relative frequency of occurrences
of A within B would be if B were infinite’ (Hájek, 2019). This captures the intuition of
identifying probabilities with ratios in repeated trials. While this sounds very different to
our account at first glance, we already discussed two similarities in Section 4.3: One is the
dependence of individual probabilities on other events and a choice of representation (via
prediction methods in our case), leading to a generalisation of the reference class problem.
Furthermore, probabilities equating relative frequencies is a special case of our notion of
calibration, which we consider for finite sets. We do reject the jump to declaring that
probabilities themselves are ‘out there’ in any interesting sense. The account of Glymour
(2001), mentioned in Footnote 17, provides, in a sense, an intermediate account.

Karl Popper abandoned frequentism in favour of his propensity account because the
former could not make sense of sequences with few trials. He thus proposed that frequentists

21Dawid’s work in statistics more generally, along with the mathematical work of (Shafer and Vovk, 2019)
that it partially inspired, is quite close to ours in spirit.

22For example, his notion of H-based calibration seems to require calibration on all sets that cannot be
further distinguished – which can amount to calibration on individual datapoints.
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should alter their theory by letting it ‘say that admissible sequences must be either virtual
or actual sequences which are characterised by a set of generating conditions – by a set of
conditions whose repeated realisation produces the elements of the sequence’ (Popper, 1959,
p. 34, original emphasis). This is still an objectivist theory, dispensing with the reliance
on infinite trials but invoking a new sort of mysterious property (especially in the case of
a deterministic universe, which Popper did not seem to assume). We argued that relevant
probabilities are independent of ‘true’ probabilities that may or may not be implied by
Quantum Mechanics (Section 4.1). Propensity accounts often have a frequentist flavour,
highlighting the importance of sets of events in a rather indirect way. It is interesting
to note that, as the equivalence classes of generative conditions are idealisations (ignoring
background conditions, cf. Section 3.4), they can be seen as the representation constructed
by prediction methods. However, propensities are typically thought to be physical rather
than model-dependent, which is in stark contrast to our account – although the relevant
literature sometimes also invites a reading of model-dependent propensities.

Another interesting interpretation of probability is the best-systems account of David
Lewis (1994), which also posits objective chances: On this view, ‘the chances are what the
probabilistic laws of the best system say they are’ (p. 480). ‘The best system is the one
that strikes as good a balance as truth will allow between simplicity and strength. [. . . ] If
nature is kind, the best system will be robustly best [. . . ] It’s a reasonable hope’ (ibid.,
p. 478f). Now this account presupposes what may seem a tremendous kindness of nature
as well as a perhaps weak notion of truth and objectivity – the latter fits well into Lewis’
Humean view on laws of nature. What is interesting here about Lewis’ account is that
it resonates with the hope for a best level of predictive depth expressed in (Dawid, 2017,
p. 3465) – similar to the ‘primary resolution’ of (Li and Meng, 2021). Indeed, Dawid could
be seen as linking the best-systems view on probability with our more pragmatic notion of
model-based predictions. The clearest differences on the side of Lewis are the integration
within a more global systematisation of the universe and the belief in objectivity, hinging
on the existence of a privileged description. If there were an objectively best predictor and
we assigned to it some notion of truth, these differences would blur.23 However, this hope
for or pretension of objectivity is also what Clark Glymour criticises in typical frequentist
takes.

In line with our analysis, Glymour thinks that central problems with Bayesianism and
frequentism lie, respectively, in the neglect of empirical claims and the unnecessary stipula-
tion of objectively true probabilistic statements:

The sometimes bitter debates between those who describe themselves as fre-
quentists and those who describe themselves as subjective Bayesians has often
turned on charges by the former that the latter abandon the “objectivity” of
science and by the latter that the former dissemble about the “subjectivity”
of their probability judgements. My belief is that, among statisticians anyway,
the dispute often confuses content with justification. The “objectivity” of the
frequentists is in the content of their probability judgements, which, while usu-
ally stated as about an unempirical probability, are often really vague empirical
claims about finite frequencies. That sort of objectivity is genuinely lost in sub-
jective Bayesian interpretations. The “subjectivity” kept hidden by frequentists
is that there is often no explicit justification beyond their own opinion for aspects

23This is perhaps not surprising given the subjectivism and pragmatism of Frank Ramsey, whom Lewis
credits with a first formulation of a best-systems approach.
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of their empirical claims. That subjectivity can be made entirely explicit without
sacrificing the objective–that is empirical–content of frequency claims, and its
recognition does not require, or even invite, recourse to subjective probability.
Bayesian criticisms do address a confused and uncertain frequentist statistical
practice, in which the point of making empirical claims is often forgotten or
fudged. (Glymour, 2001, p. 299f)

We have argued that our account avoids these problems by stating that probabilities are con-
structed rather than discovered while still taking their justification directly from empirical
observations. Even more, we connect successful decision-making with empirical evaluation
and assumptions about induction through a general notion of calibration, which has not
been considered a central concept by any of the conventional accounts.

5 Discussion

Recognising the importance of prediction methods and calibration, we have provided a more
or less pragmatic account of probabilities and how they are actually useful for decision-
making under uncertainty. We showed that if predictions satisfy an (often sensible) calibra-
tion criterion, then it is possible to predict the distribution of utilities that a given policy
will yield. In particular, the sum of one’s predicted utilities will match the actual cumulative
utility, which provides a rationale for expected utility maximisation. However, the larger
the pool of considered policies, the stronger the required calibration assumption. A central
element of our account is the semi-formal notion of prediction methods which construct
representations of given situations and feed them to a model. Arguably, the novelty here
consists less in the consideration of predictions than in the connections drawn to abstractions
and successful decision-making. This covers not only rain forecasts but also supposedly ob-
jective frequency- and symmetry-based probabilities, capturing key intuitions behind other
interpretations of probability. While our examples suggest that many prediction methods
are approximately calibrated on sets of interest, this is not always the case. In domains
where this is difficult, it may be advisable to resort to imprecise predictors or to refrain
from probabilistic reasoning altogether. In line with calibration being a criterion for sets of
predictions rather than individual ones, prediction methods track structures among sets of
events rather than free-floating individual probabilities (even in a potentially indeterministic
world). Our discussion of such structures has been very shallow – more substantial insights
likely need to be more case-specific, which provides interesting avenues for further research.
Given the dependence of causality on probability, the conclusions about model dependence
arguably also spill over to the former; we plan to take a deeper dive into this topic in future
work.

We believe that this novel account of probability has implications for the thriving area
of algorithmic predictions. For example, it highlights the importance of evaluating calibra-
tion beyond common notions like the Expected Calibration Error, as explored in (Höltgen
and Williamson, 2023). It also highlights that one should be wary of the often-invoked con-
cept of a ‘true distribution’ from which one can ‘sample’, especially outside highly controlled
gambling settings. Note that our insights about binary events also extend to probability dis-
tributions, as the latter are defined by cumulative distributions that specify the probabilities
of values falling into certain intervals – that is, for binary events. It has been observed that
algorithmic predictions based on Machine Learning tend to convey an air of authority and
objectivity, as the many choices involved in data collection (construction of representations)
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and model tuning (choice of predictor) often remain beneath the surface (Moss, 2022). This
is particularly relevant for predictions about people. Our work highlights that probabilities,
e.g. of finding a job, are not properties of people; instead, they depend on the selected
representation and model, which, in turn, depends on data about other people. Hence also
our answer to Cynthia Dwork’s question from the introduction: there is no ideal algorithm,
as there are no true probabilities to uncover and different algorithms can be better suited
for different goals. The observation that probabilities always reflect structures in the data
and model choices, rather than individual properties, also bears on questions concerning the
collection (or rather, construction) of datasets: Which representations of people through
data are admissible in different situations (Di Bello and O’Neil, 2020)? What effects does
the choice of representation, which constructs the joints along which society is cut, have on
societal inequalities downstream? While we hope that this work helps to sharpen the view
on topics relating to probability, a sea of open questions still calls for further exploration.
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De Finetti, Bruno and Leonard J Savage (1962). “Sul modo di scegliere le probabilità in-
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A Generalising Proposition 3

A.1 Approximate calibration

Here, we generalise Proposition 3 to only require approximate calibration – we give a bound
on how large the calibration error on each set of equal utility can be in order to keep the
difference between predicted and cumulative utility below some ϵ > 0.

Proposition 9 (Predicting cumulative utility: Approximate calibration).
We assume the same setting as in Proposition 3 except that we now require all utilities to be
positive – one may otherwise simply shift the values to a positive domain. If we then replace
condition (8) with the assumption that ∀u′ ∈ U ,∣∣∣∣∣∣

∑
i:ui(0)=u′

yi −
∑

i:ui(0)=u′

pi

∣∣∣∣∣∣ ≤ ϵ

2 · u′ · |U|
(25)

and the same for ui(1), then∣∣∣∣∣
d∑

i=1

[yiui(1) + (1− yi)ui(0)]−
d∑

i=1

[piui(1) + (1− pi)ui(0)]

∣∣∣∣∣ ≤ ϵ. (26)

Proof.

∣∣∣∣∣
d∑

i=1

[yiui(1) + (1− yi)ui(0)]−
d∑

i=1

[piui(1) + (1− pi)ui(0)]

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
u′∈U

 ∑
i:ui(1)=u′

yi −
∑

i:ui(1)=u′

pi

+

 ∑
i:ui(0)=u′

pi −
∑

i:ui(0)=u′

yi

 · u′

∣∣∣∣∣∣ (27)

≤
∑
u′∈U

∣∣∣∣∣∣
∑

i:ui(1)=u′

yi −
∑

i:ui(1)=u′

pi

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
i:ui(0)=u′

pi −
∑

i:ui(0)=u′

yi

∣∣∣∣∣∣
 · u′ (28)

≤
∑
u′∈U

(
ϵ

2 · u′ · |U|
+

ϵ

2 · u′ · |U|

)
· u′ (29)

= ϵ (30)

While we use a symmetric ℓ1 loss here, it may be interesting to also look into other
measures of error. For example, for settings where under-prediction and over-prediction are
valued differently, it may be instructive to look into asymmetric error functions.

A.2 Approximate utility level sets

Here, we generalise Proposition 3 to only require calibration on sets of approximately equal
utility: For this, we divide the utility spectrum into bins of some size δ > 0 and bound the
resulting difference between predicted and cumulative utility by a term dependent on δ and
the number of predictions d.
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Proposition 10 (Predicting cumulative utility: Approximate utility).
We assume the same setting as in Proposition 3 except that we now require all utilities to be
positive – otherwise, one may simply shift the values to a positive domain. We partition the
interval of relevant utilities from the lowest ui(a) to the highest ui(a) with i ∈ {1, ..., d}, a ∈
{0, 1} into bins B1, ..., Bm of size ≤ δ. If we then replace condition (8) with the assumption
that ∀k ∈ {1, ...,m},∑

i:ui(0)∈Bk

yi =
∑

i:ui(0)∈Bk

pi and
∑

i:ui(1)∈Bk

yi =
∑

i:ui(1)∈Bk

pi (31)

then ∣∣∣∣∣
d∑

i=1

[yiui(1) + (1− yi)ui(0)]−
d∑

i=1

[piui(1) + (1− pi)ui(0)]

∣∣∣∣∣ ≤ δ · d. (32)

Proof.
The maximal mismatch occurs when for each bin Bk and each a ∈ {0, 1}, one half of the
{i : ui(a) ∈ Bk}, we have (yi − pi) = 1 and ui(a) = mk + δ/2 whereas for the other half,
(yi − pi) = −1 and ui(a) = mk − δ/2, with mk denoting the midpoint of Bk. This gives

∀k ∈ {1, ...,m}, a ∈ {0, 1} :

∣∣∣∣∣∣
∑

i:ui(a)∈Bk

(yi − pi) · ui(a)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
i:ui(a)∈Bk

δ/2

∣∣∣∣∣∣ = bak · δ/2 (33)

where bak := |{1 ≤ i ≤ d | ui(a) ∈ Bk}|. Therefore,∣∣∣∣∣
d∑

i=1

[yiui(1) + (1− yi)ui(0)]−
d∑

i=1

[piui(1) + (1− pi)ui(0)]

∣∣∣∣∣ (34)

≤

∣∣∣∣∣
d∑

i=1

[yi · ui(1)− pi · ui(1)]

∣∣∣∣∣+
∣∣∣∣∣

d∑
i=1

[(1− yi) · ui(0)− (1− pi) · ui(0)]

∣∣∣∣∣ (35)

=

∣∣∣∣∣
d∑

i=1

[(yi − pi) · ui(1)]

∣∣∣∣∣+
∣∣∣∣∣

d∑
i=1

[(yi − pi) · ui(0)]

∣∣∣∣∣ (36)

≤
m∑

k=1

∣∣∣∣∣∣
∑

i:ui(1)∈Bk

(yi − pi) · ui(1)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
i:ui(0)∈Bk

(yi − pi) · ui(0)

∣∣∣∣∣∣
 (37)

≤
m∑

k=1

(
b1k · δ/2 + b0k · δ/2

)
(38)

= δ · d (39)

A.3 Imprecise calibration

We now consider imprecise forecasts which give interval predictions [a, b] ⊂ R and represent
them as tuples p∗ = (

¯
p, p̄) ∈ R2 of the lower and upper probability. This allows for a

weaker calibration criterion where the number of occurring events need not exactly match
the sum of predictions but should lie between the sum of the lower and the sum of the higher
predictions.
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Definition 11 (Imprecise calibration).
Imprecise predictions p∗1, ..., p

∗
d are said to be imprecisely calibrated for observations y1, ..., yd ∈

{0, 1} if they satisfy
d∑

i=1 ¯
pi ≤

d∑
i=1

yi and

d∑
i=1

p̄i ≥
d∑

i=1

yi. (40)

Note that for our definition, the vacuous forecast that always predicts (0, 1) is always
imprecisely calibrated.24 One could also apply the criterion of imprecise calibration to a
set of precise predictions, by simply converting every precise prediction pi into an imprecise
forecast [pi − ϵ, pi + ϵ] for some ϵ – this epsilon may also monotonically decrease in d to
account for lower variance on larger sets.

Proposition 12 (Predicting cumulative utility, imprecise version).
Let there be d imprecise predictions p∗i ∈ R2 for binary outcomes yi ∈ {0, 1}, i ∈ {1, ..., d}
with utility functions ui : {0, 1} → R and assume that the predictions are imprecisely cal-
ibrated on sets of equal utility ui(0) and on sets of equal utility ui(1) (formalised in (43)
below).
Then I can correctly predict a range for my cumulative utility (LHS) via

d∑
i=1

[yiui(1) + (1− yi)ui(0)] >

d∑
i=1

[
¯
piui(1) + (1−

¯
pi)ui(0)

]
(41)

and
d∑

i=1

[yiui(1) + (1− yi)ui(0)] <

d∑
i=1

[p̄iui(1) + (1− p̄i)ui(0)] (42)

The proof is analogous to that of Proposition 3, now with the calibration assumptions∑
i:ui(1)=u′

yi >
∑

i:ui(1)=u′ ¯
pi and

∑
i:ui(0)=u′

yi >
∑

i:ui(0)=u′ ¯
pi,

∑
i:ui(1)=u′

yi <
∑

i:ui(1)=u′

p̄i and
∑

i:ui(0)=u′

yi <
∑

i:ui(0)=u′

p̄i.
(43)

This allows people to not only optimise their utility but to also take risk-averse or risk-
seeking inclinations into account – selecting policies not based on the expected exact cu-
mulative utility but on e.g. the lowest or highest estimation of it. Here, we can see an
analogy between the move from deterministic to probabilistic and the move from precise
to imprecise predictions: The former allows people to take their (cardinal) preferences into
account (Section 2.2) whereas the latter allows them to take their risk aversion into account.
If we know that we will be calibrated, risk aversion does not make much sense. Cases where
we are less sure of it can be represented by an assumption of imprecise calibration. Note
that this notion of risk-aversion also captures unwillingness to bet, for decisions between
the utility function of a bet and the constant zero utility function with u(0) = u(1) = 0.

24Similar issues are discussed in the literature on imprecise probability (Walley, 1991), particularly for
Brier-style scoring rules (Seidenfeld, Schervish, and Kadane, 2012) and randomness (De Cooman and De
Bock, 2022, Prop. 9).
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B Conditional probabilities, generalised

We here generalise the analysis of conditional probabilities in Section 3.2. Consider a pre-
dictor p : X × A → [0, 1], events A1, ..., Ad, B ∈ A, and inputs x1, ..., xd ∈ X . We assume
p(x1, B) = ... = p(xd, B) and that p is calibrated on {(xi, Ai ∩ B) : 1 ≤ i ≤ d} and
{(xi, B) : 1 ≤ i ≤ d}, that is,

d∑
i=1

p(xi, Ai ∩B) =

d∑
i=1

yAi∩B
i (44)

and

p(x1, B) =
1

d

d∑
i=1

yBi > 0. (45)

Then p is calibrated on {(xi, Ai|B) : yBi = 1} (i.e. for the set of steps where B occurs) if
and only if it satisfies

d∑
i=1

p(xi, Ai|B) =

d∑
i=1

p(xi, Ai ∩B)

p(xi, B)
, (46)

as we derive below. In particular, a sufficient condition is

p(xi, Ai|B) =
p(xi, Ai ∩B)

p(xi, B)
. (47)

Now consider the special case where Ai = ... = Ad =: A and xi = ... = xd =: x. Here, the
familiar definition of conditional probabilities

p(x,A|B) =
p(x,A ∩B)

p(x,B)
(48)

is necessary and sufficient for p to be calibrated for predictions of A|B based on inputs x on
the set of steps where B occurs. That is, making predictions for A|B rather than A allows
us to be calibrated on the set where B occurs (which predictions for A would usually not
be).
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Now the promised derivation of the characterisation (46):∑
i:yB

i =1

p(xi, Ai|B) =
∑

i:yB
i =1

y
Ai|B
i∑

i:yB
i =1

p(xi, Ai|B) =
∑

i:yB
i =1

yAi∩B
i (since y

Ai|B
i = yAi

i = yAi∩B
i when yBi = 1)

∑
i:yB

i =1

p(xi, Ai|B) =

d∑
i=1

yAi∩B
i (since yAi∩B

i = 0 when yBi = 0)

∑
i:yB

i =1

p(xi, Ai|B) =

d∑
i=1

p(xi, Ai ∩B) (by (44))

p(x1, B) ·
d∑

i=1

·p(xi, Ai|B) =

d∑
i=1

p(xi, Ai ∩B) (by (45))

d∑
i=1

p(xi, Ai|B) =

d∑
i=1

p(xi, Ai ∩B)

p(xi, B)
.
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