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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 49, Number 4, Dec. 1984

 FINITE LEVEL BOREL GAMES AND A PROBLEM
 CONCERNING THE JUMP HIERARCHY

 HAROLD T. HODES

 ?1. Introduction. The jump hierarchy of Turing degrees assigns to each 4 < (N J'
 the degree 0(?; we presuppose familiarity with its definition and with the basic
 terminology of [5]. Let i be a limit ordinal, A < (N1)L. The central result of [5]
 concerns the relation between O(? and exact pairs on IA = {O(4) | < A}. In [6] this
 question is raised: Where a is an upper bound on IA, how far apart are a and 0(i)? It is
 there shown that if i is locally countable and admissible, they may be very far apart:
 -(A) = the least member of {a(Ind(A)) a is an upper bound on 1s}; this is rather
 pathological, for Ind(A) may be larger than A. If A is locally countable but neither
 admissible nor a limit of admissibles, we are essentially in the case of i < 4K; by
 results of Sacks [12] and Enderton and Putnam [2], O(? = the least member of
 {a(2) 1 a is an upper bound on IA}. If i is not locally countable, Ind()) is neither
 admissible nor a limit of admissibles, so we are again in a case like that of A < wfK.
 But what if A is locally countable and nonadmissible, but is a limit of admissibles?
 For the rest of this paper let A be such an ordinal. The central result of this paper
 answers this question for some such A.

 Let "Det(2:0, Y)" for a field of play Y be the statement: "Any two-player infinite
 game on Y is determined if the set of plays for which I wins is X? (relative to the
 Baire topology on [Y])." (The definition of a field of play will be given in ?2.) Let
 Det(X?) = Det(1?, w < '). The connection between our initial question and the
 determinacy of games was discussed in [4]; the following improves the results
 presented there.

 THEOREM 1. (i) If LA I= m Det(Z?), then WA) = the least member of {a(3) I a is an
 upper bound on I}.

 Recall that a is a local Nm iff La+ 1 1= # = Nm. Let ) be m-well-behaved iff there are
 /3, y < A so that for all a, if a is a local Nm+1 and /3 < a < A then La+y l= o :+ +1

 (ii) If ) is n-well-behaved, LA # (Det(2+:0) & m Det(Z?+4)), then O(A) = the least
 member of {a(n+4) 1 a is an upper bound on 1s.

 CONJECTURE 1. The restriction to ) which are n-well-behaved may be eliminated
 from (ii).

 Can the A for which Theorem 1 answers our question be characterized in other
 terms? The following result goes some distance in that direction.

 Received June 16, 1983.

 C 1984, Association for Symbolic Logic

 0022-481 2/84/4904-0024/$02.80

 1301

This content downloaded from 132.174.252.179 on Tue, 08 Feb 2022 02:04:32 UTC
All use subject to https://about.jstor.org/terms



 1302 HAROLD T. HODES

 THEOREM 2. (i) If A is not a limit of a < A such that Lp s Det(Z2?), then

 LA Det(1?).
 (ii) If A is n-well-behaved and A is not a limit of a such that L<, #= Det(2+:), then

 LA 1V Det(2:n?+4).
 CONJECTURE 2. The restrictions to A which are n-well-behaved can be eliminated

 from (ii).

 On the positive side, we will show:

 THEOREM 3. If a is a local Nn + 1 (in fact if Lot is a model for the 'n+ 1 -comprehension
 fragment of (n + 2)th order number theory and Lot # Nn exists), then Lot # Det(:n?+ 3)

 (in fact if n > 0 and L, # T = =1, Ly t Det(# :)
 Applying I~l absoluteness twice, this yields the following.
 THEOREM 4. If A is a limit of ordinals meeting the conditions on a in the antecedent

 of Theorem 3, then LA I= Det(Zn + 3).

 ?2. ?? games in general. We begin with a careful look at Z? games on arbitrary

 fields of play. The key ideas (except for one small but important change) are implicit
 in Morton Davis' original proof of Det(Z2?).

 A set Y with p e Y is a field of play starting at p iff Y is a set of finite sequences such

 that:

 if q e Y and p c r c q, then r e Y;

 if q e, Y, then for some x, q A <x> e Y;
 length (p) is even.

 Let [Y] = {f If is a function on co, f P n = p L n for n < length (p), and for all
 n e wt,f [ (n + 1) = (f [ n)A<x> e Yfor some x}. Thus [Y] is the set of plays on field
 Y. Where B c [Y] and Z c Yis a field of play starting at p' e Y. G(B, Z) is the two-
 player infinite game of perfect information played from p' as follows: I selects an x0

 so that p' <x0> e Z; II selects an x, so that p A xo, x, > e Z; etc.; wheref is the play
 produced, I wins iff f e B.

 If Z does not start at q e Z, by "G(B, Z) from q" we mean the game G(B, Z'q)

 where Z'q = {r e Z I q c r}. Z is a 11-imposed subgame of Y if Z is a field of play
 starting with p and for any q e Z, if length(q) is even and qA <x> e Y, then

 q K<x> e Z; similarly, for "Z is a I-imposed subgame of Y," except with "odd"
 replacing "even."

 In the Baire topology on [Y], a closed set is one of the forms [S] where S is a tree
 in Y, i.e. S c Y, S is a field of play starting with p. Where S is a function carrying
 (i, j) E 2 to a tree Si(j), a set B = nir')iEUJW[Si(j)] is a Ho set. We fix a I? game
 G = G([ Y] - B, Y) for the next two sections. We suppose that Y starts at the empty

 sequence < >. We will provide an inductive analysis of { p e Y I - I has a winning
 strategy for G from p}.

 SupposeZ c Y, Zafield of play,peZ. For i e , X Y, letHi(Z,X,p)be the
 game which is played as follows. First, player II selectsj e co; play continues in Z'". I

 picks an x so that p A<x> G Z, etc. The play <j> A'f fe [ZDP], is a win for I iff
 fo [Si(j) u X] n' B. Hi(Z, X, p) is a 2? game (on an appropriate field of play).

 Let Pi z(X) = {p E Z | I has a winning strategy in Hi(Z, X, p)}. It is not hard to
 see that hiZ is a monotone (in fact positive) IV inductive operator on Y(Y), where
 the second-order quantifiers range (roughly) over Y(Y).
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 BOREL GAMES AND THE JUMP HIERARCHY 1303

 The following fact is hidden in [1].

 FUNDAMENTAL TECHNICAL LEMMA. The following are equivalent.

 (l)pe 0,z.
 (2) There is a II-imposed subgame of Z'P, (Z, i, p)*, so that

 (a) [(Z, i, p)*] C Uj.1 [Si(j)], and
 (b) I does not have a winning strategy in G([ Y] - B, (Z, i, p)*).
 (3) p E Z and I does not have a winning strategy in G([Y] - B, Z) from p.
 LEMMA 1. For p E Y, p E .i5z(X) if p E Z and for somej E co:
 (4) 11 has a winning strategy in G([Y] - [Si(j) u X], Z) from p; and
 (5) where U is the II-imposed subgame of ZrP produced by II's aforementioned

 strategy, I has no winning strategy in G([Y] - B, U).
 PROOF. (t=) For p E Z, suppose j Ec w satisfies (4), but p ? P z(X). Let s be I's

 winning strategy in Hi(Z, X, p). Let II start a play of Hi(Z, X, p) by choosing j; let I
 follow s. After her initial move, let II impose U. Where f is the play produced in Z,
 since <j> Afis a win for I in Hi(Z, X, p) and [U] c [Si(j) u X], f ? B; thus I has a
 winning strategy for G([Y] - B, U) from p, contrary to (5).

 (=:) Suppose noj satisfies (4) and (5) and p e Z. We describe a winning strategy for
 I in Hi(Z, X, p). Let II start a play of Hi(Z, X, p) with. If (4) fails for the chosen, let I
 play to win G([Y] - [Si(j) u X], Z) from p; that game is open, so I may do this.
 Then I wins Hi(Z, X, p). If (4) holds for j, then U exists and (5) fails. Let s be I's
 winning strategy for G([Y] - B, U). As long as II stays inside U let I follow s; if II
 never leaves U, I wins Hi(Z, X, p); if II leaves U at position q, I has a winning strategy
 for G([Y] - [Si(j) u X], Z) from q, since U was designed to keep the play in a
 closed set; let I then play to win that game, thereby also winning Hi(Z, X, p). Thus
 P ? Oiz(X). QED.

 PROOF OF THE FUNDAMENTAL TECHNICAL LEMMA. (1) (2). Suppose p e O'iz.
 We describe how II imposes (Z,i, p)*. Let po = p, I pIo, = 40 for 1 = 0iz. Since
 p e O(O < ), by Lemma 1 there are a jo c- w and a U0, so that U0 is a II-imposed
 subgame on ZrP, [U0] c [Si(jo) u P<'O] and I has no winning strategy in
 G([Y] - B, U0) from po. Let II keep the play in U0 until the end of time or until a
 Pt X Si(jo) is reached. In the latter case, Pt e 0I< O; let Ip~I, J= 4j < &0; since
 Pt e O(P< 1) we may fixj1 and U1, and iterate. Eventually we reach a finaljn and Un
 and the play ends up in Si(jn). At no position does I get a winning strategy in
 G([Y] - B, Uk) for k < n. The resulting II-imposed game, hereafter denoted
 (Z, i, p)*, is clearly as desired.

 (2) (3) is trivial.
 (3) (1). Suppose p e Z, p ? O'. We now show how I can win G([Y] - B, Z)

 from p. Let so be I's winning strategy in Hi(Z, O, po) for po = p. I pretends that he is
 playing Hi(Z, O, po) and that II started that play with = 0; I follows so. Either the
 play in Z produced is not in B or else a Pt ? Sj(0) u O' is reached. In the latter case,
 since Pt ? ?, I has a winning strategy s, for Hi(Z, O, Pt); now I drops the previous
 pretense and instead pretends to be playing Hi(Z, O, Pt), and that II started that
 play with j = 1. I now follows sj. And so on. If a final pj is reached, the play in Z
 produced is not in B. Otherwise for all j w o a pj is reached, pj ? Si(j); thus the play
 does not belong to uj<c0, [Si(j)] B; so I wins G([Y]-B,Z) from po. QED.

 Supposed I has no winning strategy in G([Y] - B, Y) from < > = po. We
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 1304 HAROLD T. HODES

 describe a strategy for II. It will be important that this construction, unlike Davis'

 construction in [1], does not assume that [Y] is compact. Let Z(p0) = (Y,0,po)*,
 using the Fundamental Technical Lemma, (3) (2). I moves and II responds by
 selecting Pt E Z(p0); since Z(p0) is 11-imposed this is possible. I has no winning
 strategy for G([Y] - B, Z(p0)). Let Z(pl) = (Z(p0), 1,pt)*, using (3) = (2) again.
 Continue in this manner. Since [Z(pi)] ' Uj< O [Si(j)], II wins G([Y] - B, Y).
 Notice that the II-imposed subgame corresponding to this strategy is { p E Y I Z(p) is
 defined}.

 Observation 1. Det(:n?+ 3) is a theorem of (n + 2)th order number theory, in fact
 of the 2n+ 2-comprehension fragment of (n + 2)th order number theory.
 PROOF. Suppose S is a function on Cjln+2 whose values are trees in Y0 = wc<'. Let

 n u n ...U [S(ij, i*1,.*, in)] if n is even;
 B = j 1 in

 n n .. ([Y] - [S(ij, i*,..*, in)]) otherwise.
 i j il in

 Let Go = G([ Y0] - B, Y0); Go is a typical Zn?+ 3 game. For i < n let G + 1 be the result

 of applying Martin's *-operation from [9] to G1; Gi+1 is a game on Yj+j = Y!,
 which may be viewed as a subfied of play of y'i+1(w))< . Thus Gn is a ?3 game on
 Y = Yn. [Y] is not compact; hence the need to revise the Davis proof.
 In (n + 2)th order number theory, we can formalize the previous proof that Gn is

 determined. In fact, 2n+ t'-comprehension suffices to prove the existence of the fixed
 points for the fnn+1 monotonic operators involved in that proof. Suppose sn is a
 winning strategy for Gn; in [9] Martin describes a procedure which converts a
 strategy si + 1 for G' + 1 into a strategy s' for G'. This procedure can be described and
 shown to work in (n + 2)th order number theory. Thus in (n + 2)th order number
 theory we can show that so, a winning strategy for G, exists.

 If a is a local n + l, then L. is a model of (n + 2)th order number theory; thus
 Lo I Det(I2n+ 3). Theorems 3 and 4 follow immediately.
 We will now relativize the previous discussion to models of V = L. Let T be the

 set consisting of these sentences:

 Extensionality, Pairing, Union, Infinity, Foundations,
 (V')(3x)(x = Lo), V = L.

 Let X = (M, 'X) be an arbitrary w-model of T; Ma = {x e M | ai- x e La} for
 a e On(-X); Sp1a = (Ma, e r Ma); a = o(^I) = the least ordinal not represented in
 S'. Suppose Y E X, di # Y is a field of play starting at < >.

 LEMMA 2. If X 1= (V4)(]i > 4)(ij is admissible), then there is a lit formula defining
 p E Pi z(X) over X, where "Z" and "X" are regarded as first order variables.

 PROOF. Recall that p e YPz(X) is defined by the following H2 formula:

 (Vs)(if s is a strategy for I in the field of play for

 Hi(Z, X, p) then (3f )(f is a play of Hj(Z, X, p)
 in which I follows s and which II wins)).

 Fix s e M, 5 s is a strategy for I in the field of play for Hi(Z, X, p). What follows
 the "(3f)" above may be rewritten in this form:

 (3f)(3g)(f and g are functions on w and
 (Vn - w)V(s, Y,Z,i,p,f n, g Lnn)),
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 BOREL GAMES AND THE JUMP HIERARCHY 1305

 where f is 2o. The formula is equivalent to the statement that a certain tree T has an
 infinite branch, where Tdepends in a 20 way on the parameters s, Y, Z, i, p. Where
 T E Ma, if X& # (a < b and b is admissible and T has an infinite branch), then
 X t (T has an infinite branch in Lb +1), by a relativized version of the Kleene basis
 theorem. Thus our original formula holds in X/ iff the following does:

 (Vs)(if s is a strategy for I in the field of play for Hi(Z, X, p)
 then (V4)(if T(s, Y, Z, i, p) E LX and 4 is admissible, then
 (3f)(f e L 1 and f e [T(s, Y, Z, i, p)]))).

 The latter is clearly equivalent to a H1 formula. QED.

 For the rest of this section, we will assume that di ( (V4)(1j > c)(qj is admissible).
 For a E On(X#), a is ///-stable iff pa -< . Where / = (La, e r La), /-stability
 coincides with a-stability. Let "In Projectibility" be the sentence: "There is a In
 function projecting the ordinals one-one into a set"; "Projectibility" is "Z1
 Projectibility." Clearly a is Zn-projectible (i.e. pn < af) iff La l= In Projectibility. The
 familiar Skolem argument, showing that a is not projectible iff o is a limit of a-
 stables, generalizes to /4: .# I= (m Projectibility) if the i#-stables are unbounded
 in On(-w) under < '; & I= (a is not projectible) iff the X&-stables <'-below a are

 unbounded under <X. Let {ab}b c for B c On(,l) be the increasing enumeration
 of the /&-stables (under < A). This listing is continuous under <A.

 Suppose c, d E Mab and X # ab + 1 = a'. Where i is a I 1 formula, there is an
 e e M such that/l# (e = {x e c j O(x, c, d)} and e e La'); this is because 'a<1 1.

 Suppose S E M, X# # (S is a function on w2 such that for all i, j E co, Si(j) is a tree in

 Y). In this case we will say that the game G = G([Y] - B, Y), for B =niUASi(A]
 is defined in di. Fix i, Z E M, X t (i c o and Z is a subfield of play of Y). Let

 O = Pi z. For a E On(JI) fix 0<a = 0 such that

 l 1= 0 is a function on a and (VQ < a)(0(4) = 7P(U Range(0<'))),

 provided that for all b < 'a,0<b is defined; let Oa = 0<a where ,/// a' = a + 1;
 let "p E Oa" abbreviate "p E Oa(a)", "4p E k <a" abbreviate "p E U Range 0< a",
 "I pJ4, = a" abbreviate "p E Ma - -<a" and "O' exists" abbreviate

 "(3 4)(U Range(0 < 4) = P(U Range(0' )))." Suppose that Y, Z E Ma. For b' =
 c +?b E B ./ a= 0<b is definable over Lab; so 0<b e Ma' where X# # a' =
 ab' + 1; this is proved by induction on b within Xl, using Lemma 2. We are now
 ready to consider the Fundamental Technical Lemma within S.

 LEMMA 3. If X& F p E Ma, then X satisfies proposition (2) of the Fundamental
 Technical Lemma.

 PROOF. Within Xl we carry out the construction of (Z, i, p)* using 0<a E M; notice
 that (Z, i, p)* is actually a member of M, since it is A1 in 0<a and relevant parameters;
 it clearly meets conditions (2a) and (2b). QED.

 LEMMA 4. Suppose that X O # ' exists) and Y, Z, px e Lab. If X # (P X
 then /I = (I has a winning strategy in G from p which belongs to La'), where
 il# ~ab + 1 = a'.

 PROOF. Carry out the construction used in proving the Fundamental Technical

 Lemma, (3) ==> (1), within S&. Notice that all of I's subsidiary strategies, the sj's of that
 proof, belong to Mab; thus definably over Mab we may assemble them into a strategy
 for I in G from p. QED.

This content downloaded from 132.174.252.179 on Tue, 08 Feb 2022 02:04:32 UTC
All use subject to https://about.jstor.org/terms



 1306 HAROLD T. HODES

 Suppose X I= m- I has a winning strategy in G from p. We now construct a system
 of notation within S. Let Y E Mac, where c is the < '-least such ordinal. We will
 define a partial two-place function gu = g. Let g(< >a-? p) = a iff a = c + p ID,
 where P = S0oy. If g(< >a, < >X) is defined, Xk I= (< > e sb) for some b e On(X);
 by Lemma 3 we may fix Z(< >X) by w' # (Y, 0,< >)* = Z(< >X). Now.. suppose
 that g(q, q) and Z(q) are defined, X I (q E Y and length(q) = 2i) and A # m I has a
 winning strategy in G([Y] - B,Z(q)) from q. Suppose X' 1 q' = qA<x, y> E Z(q).

 Let g(q', p) = a iff X# a = g(q, q) + IjpIJ, where ' = Aj+ 1,Z(q) If g(q', q') is defined,
 for some b, ./A # q' E sib; fix Z(q') by X/ # (Z(q), i + 1, q')* = Z(q'). Thus X' K - I
 has a winning strategy for G([Y] - B, Z(q')) from q'; so the induction hypothesis is
 preserved.

 LEMMA 5. Suppose that b e B and for all q, p: if g(q, p) is defined, then g(q, p) < X b.
 Then X F II has a winning strategy in G.

 PROOF. For ' = ?0 y, 1=( (if I p (exists, then I p ,J < b); so XJ '?PX exists. Using
 Lemma 4, X < > e P0 ; so 1 1= (1< >k1 = b'), for some b' e On(.X&). /& 1 c + b'
 exists; otherwise fix b" so that X1 # c + b" = b; since b" < ' b', for some r, X/ #
 Irl.0 = b"; so g(< >', r) = b, a contradiction. Thus g(< >a, < >^) is defined, and so
 is Z(< >^). In fact Z(< >^) is A 1 in 0<b', and so belongs to Ma,,. Now suppose that
 Z(q) and g(q, q) are defined, Z(q) e Ma,,, XA I (q e Y and length(q) = 2i), Xk 1 -m I
 has a winning strategy in G([Y] - B, Z(q)) from q. Let X W q' = q A <x, y> e Z(q).
 For 'P = YE+ 1,Z(q), as above we have X0 W A exists. By Lemma 4, Xd W q' e 'P;
 thus there is a b' e On(,/) so that X& # Iq'l, = b'. As before, 1/ 1= c + b' exists; so
 g(q', q') is defined, as is Z(q'); again Z(q') e Mab. Since for all q so that Z(q) is defined,

 Z(q) e Mab, we can define {q I Z(q) is defined} over M'b; it is a winning strategy for II
 in G which belongs to M. QED.

 We will use go later. For now we note the following fact.
 LEMMA 6. Suppose oc is a limit of admissibles, La # (N,, exists and Y is a subfield of

 play Of ? n(W)<w). If L, # Det(1?, Y), then La W Det(# :)
 PROOF. We use the notation of Observation 1, where G is defined in Lao i.e. S E La.

 We define the sequence G' and x? using the Martin *-operation within La, i.e.

 La= + 1 = Y', where Y is a subfield of play of 9i(o)<co r) L, Suppose for s' e La,
 La Sn is a winning strategy for Gn. It suffices to note that si may be defined from

 Si + I within L(,. If Si+ 1 is a winning strategy for I, this is straightforward. If s is a

 winning strategy for II and si+ 1 E Lo, where La l # > Ni+ l, then si e L, where
 fl' = f + + 1. (fi + = the least admissible < ft.) To see this, recall the closed games of
 the form G' from [9, p. 367]. The set of winning positions for I in G' belongs to Lt.
 By Theorem 7B.2 of [11], a winning strategy for G' belongs to Lo . By finding such
 strategies and using them as detailed in [9], Si is defined in L. Thus La # si is a
 winning strategy; so s' is as required. QED.

 ?3. Computing infinite descending chains. Suppose X is a nonstandard wo-model

 of T, X = (M, ea), M c co; let o = o(A') and suppose that La W T = .m is the
 greatest cardinal, and X t T' = Nm is the greatest cardinal, where m E co. Let & be
 an arithmetic copy of L., i.e. & = (E, if) for E c wo, S isomorphic to L., for x < 5c.
 We will investigate various cases of this question: how hard is it to compute an
 infinite descending e, chain given an oracle for A = Sat(,X) 0 Sat(g)?

 For a E On(,//) let Ma = {b I X I b E La}, A (Mal 8 ' Ma); for a e On(&)
 define 6va analogously. Let M' = U {Ma a is a standard ordinal of l}, Al' =
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 BOREL GAMES AND THE JUMP HIERARCHY 1307

 (M', r' [ M'). Let Ea = the domain of 07a for a = ac if oi > o; let Ea be E if aL = a. Let
 F: Ea -* M be the unique isomorphic embedding of (Ea, e Ea) onto A Let
 Fi = F j x I x E '?'(w)} for i < m + 1. Where confusion is unlikely, we will identify
 & and La.

 LEMMA 7. F, is recursive in A(').
 PROOF. For i = 0, this is clear. Fi+ 1(a) = b iff L_ l a c ?(cw), 4 # b c 9i(w),

 and for all c such that La # c E 9i(wo): La #= c c a iff X Fi(c) E b; so Fi+ 1 is H' in Fi,
 so by induction is recursive in A(+ 1)

 COROLLARY 1. If La #= card(b) = Ni, then F 6 6 is recursive in A(') for i < m.
 PROOF. Fix W, g E L., Wa well-ordering of height I, Fld(W) c '(w) r) La and g

 the order-preserving map of Fld(W) onto (. For 4 < I, F(s) = b iff for some a,

 La t g(a) = 4 and X g'(Fi(a)) = b. So F [ ( is recursive in A ?3 Fi, and thus in
 A (i). QED.

 LEMMA 8. F [ o and F are recursive in A(m+ 1).
 PROOF. Using any reasonable way of coding constructible sets as ordinals, it

 suffices to prove this for F [a. Let (p(x, y) be the Zl formula which defines the
 enumeration of gem+ 1'(w) r- L in increasing order under <L, i.e. L # p(x, d) il x is
 the Xth member of gem+ 1'(w) under <L. This remains true within La. Let Xb = a iff
 X# po(a, b) for b E On(,X), y = a iff La == q()a, 4) for 4 < o. Then F(s) = b if
 Fm+l(Y4) = Xb; so F o is recursive in A? Fm+l and so in A(m+l). QED.

 COROLLARY 2. There is an infinite descending Ui-chain recursive in A(m+2).
 PROOF. By Lemma 7, On(,Ii) - On(A1') = On(,&) - FV, which is co-r.e. in

 A(m+1), and so is recursive in A(m+2); an infinite descending v-chain may now
 be easily constructed. QED.

 The rest of this section concerns improvements of Corollary 2. We recall the

 generalization of projectibility from Z1 to Zn: C is Zn-projectible iff there is an f
 mapping oa one-one into some ( < o, where f is Zn over La.

 LEMMA 9. Suppose that a is 2n + 1-projectible. If there is a nonstandard a such that
 #' -n Aid then there is an infinite descending ?'-chain recursive in A(m).

 PROOF. Let f be a Zn + 1 over L. projection of ar into A, where L. i= #m = T. Suppose
 f is defined over L. by (3z) p(p, x, y, z), p E L., (p a FIn formula. Suppose A4' -<Kn /t;
 otherwise replace X by an appropriate 4a. Then X 1 (3z) p(pp, 4X, f(4)', z) for
 all 4 < c.

 Claim. For b E On(,X), b is nonstandard iff one of the following conditions
 obtains:

 (1) X 1= 7 (3] < T )(3z) o(p', b, q, z);
 (2) for some q <T, A Q Range(f) and Xk/ t (3z)p(p', b, 1A1, a);
 (3) X/ F (i4)(i4')(]i5 < y f)(]z)(]zI)(4 # 4 & <', z'> <L <,z> & <4 z> E Lb &

 p(p, X , X, z) & p(p, , Z7, z')).
 Thus the set of nonstandard b E On(,X) is RE in A (D (F 4 T), which by Corol-

 lary 1, is recursive in A(m); this suffices to compute a descending Un-chain as in the
 proof of Lemma 8. QED.

 LEMMA 10. Suppose that for all nonstandard a E On(,X), a.' 1 4 If a is not
 Z1-projectible and the order-type of the a-stable ordinals = ft < a, then there is an
 infinite descending ?'-chain recursive in A(m).

 PROOF. Let {2a}4<B be the increasing enumeration of the a-stable ordinals. Let
 {ab}bEB for B c On(,X) be the <'-increasing enumeration of the JI-stable
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 1308 HAROLD T. HODES

 ordinals. We describe a procedure effective in A(') for selecting a nonstandard
 a E On(,X); it is sufficiently independent of 1 to be repeatable with A in the place
 of 4; iterating this procedure, we will obtain our desired Ec-chain. Assume without
 loss of generality that k -1 At.
 If B is nonempty, there is a bo which is the < '-maximal b such that ab is standard;

 otherwise A' -<, S. Clearly bo is standard; let bo = (o)' and a* = ab,. Where
 y=a,,0, y is a-stable: for suppose e eL L, p is Ho and L #= (3x)p(x, e); then

 (3x)(p(x, en) and e' e-4*; thus A* # (3x)p(x,e') and so L, 1= (3x)(p(x, e).
 We may prove more along these lines: for 3 < y, 3 is x-stable iff 3 is /X-stable. Let
 e e Lb and let p be Ho0. Suppose that 3 is x-stable; if di (3x)p(x, e'), then
 4* # (]x)p(x, em"); so LY # (3x)p(x, e); so Lb # (3x)p(x, e); so Gus #= (3x)p(x, em);
 thus 3' is X-stable. Suppose that 3' is A-stable; if La # (]x)p(x, e) then
 X # (3x)(p(x, em); so Gus k (3x)p(x, em); so Lb #= (3x)p(x, e), showing 3 to be x-

 stable. This implies the following important fact: For 4 < 40 and b = 4X, ab = (a,)'.
 We now describe three search procedures; we will engage in Search 1 if B is

 nonempty, in Search 2 if B is nonempty and has a < -maximum member, and in
 Search 3 if B is empty. All of these searches can be carried out effectively in
 A 0B (F O).

 Search 1. Search for 4 < / so that for b = F(4) e B, ab # (ax)<. We
 try to determine whether a, =# (a<)' as follows: search for r e La and s E M so that

 La l= r is the aith subset of 9k1(co) under <L;

 M F s is the abth subset of 9A'(c) under <L;

 then search for an e E= L. r m(o) so that La - e E r iff X e e' E s, using Fm. Such
 an e exists, and so will be found, if ab # (aJ)'. We output the first ab found in this
 manner. Such an ab is nonstandard; otherwise b < X bo, in which case ab = (ac)'.

 Search 2. Let c0 be the <'-maximum member of B. Find qo so that q4 = c0.
 Then search for qj,. . . .,,k < qo and C1,... ,Ck E B, a E On(w) and p a HO formula so
 that (F ,/)(j)=c; for t < i < k, aC <maa and:

 Los 0 (3x)c(Px, a170 LXll 1 ark)

 X I=- (2x E- La) (p(x, agog able .. *, aJ.)
 Output a.

 Claim. If this search succeeds, a is nonstandard. If aco is nonstandard, so is a;
 otherwise c0 = bo, q0 = 40; thus aci = (a h)4 for i < k. If I= # .(e, ac ac . * * * , aCk)

 and e E AJ', then e = d' for d E L. and Lx F p(d, ax0, c, ... .9 aJk), contrary to what
 holds in Lw; thus for a witness e E 4da, a must be nonstandard.

 If B has no <'-maximum member, then b = bo + 1 E B and %o + 1 < /5 meet
 the conditions of Search 1; so eventually Search 1 succeeds. If B has a <'-
 maximum member c0 and c0 >o bo, Search 1 will succeed. Now suppose that
 co = bo. Also suppose that for all H0 formulae p and all Cl, .qk < q0 = 40 < /
 and ci = (qi)4 for i < k: if

 M (3 x) (p(x, acot ac, I *.. * a aCk)

 then

 La (3x)p(x, afl0, 21. ,XUk)
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 BOREL GAMES AND THE JUMP HIERARCHY 1309

 for 6 = ao+1. Then for b = 6', Yb /'- (3x)p(x, a,,, ac, a ... , aCk). Thus b is /X-stable,
 standard, and b > ' abo, contrary to the choice of bo. So our supposition is false and
 Search 2 will succeed.

 Search 3. We suppose that B is empty. Search for a Ho formula Ap without
 parameters, and an a E On(,X) so that La A (3x)(p and X # (3x E La)p; output a.
 Clearly a is nonstandard. If no such 0 and a exist, (ao)' would be //-stable, and so

 -E B.

 To construct an infinite descending v-chain, proceed as follows. If X # (a is the
 greatest ordinal), output a; otherwise run the appropriate searches, outputting the

 first appropriate a we find. Replace X by a and do it again; etc. QED.
 We are now ready to use the apparatus of ?2 to obtain another improvement of

 Corollary 2.

 LEMMA 11. If Ll V Det(Z?+ ), then there is an infinite descending Un-chain
 recursive in A(m).

 First we show that without loss of generality we may suppose that a is 2
 projectible. Fix Y so that La l= Y = Ym, for Yi, i < m, as defined in the observation
 from ?2.

 LEMMA 12. If a is not Z2 projectible, then La # Det(Z? +3).
 PROOF. Suppose ar is not Z2 projectible. By Lemma 6 it suffices to show that
 L all Z? games on Y are determined. By the analysis of such games in ?2, it

 suffices to show that if ( is a monotone inductive operator on I(Y) r) La with a

 H1 definition over La, then La # P' exists. Observe that "1pk1 = l, is expressible
 over L. as:

 (]f)(f is a function on 4 + 1 and p E f()- Uf X and
 (Va < ?)(Vq E Y)(q E f (i) iff q E O(U f i))).

 Since L. 1= #2 Bounding, this formula may be put into Z2 form. By the Z2 uni-
 formization of La (see [8]) there is a function h uniformizing {(4, p) I La # IpIl, =
 4}; h is Z2 over L,. Familiar arguments show that a is the limit of a many x-
 stable ordinals; so by results of ?2, La l= (V4)(04 exists). If La V P' exists, for any

 4 < c there is a p so that La I= #pI<P = 4; thus dom(h) = a. Clearly h is one-one and
 projects a into Yn E La; this violates the fact that a is not Z2 projectible. QED.

 Therefore we may as well suppose that i' - 1 X and I # i g for all
 a E On(X), a nonstandard. By Lemma 10 we also may as well suppose that the

 order-type of the a-stable ordinals is a. Let {?a}:<, be the increasing enumeration of
 the a-stables.

 LEMMA 13. If a E On(J() is nonstandard, then there is a nonstandard b <At a such
 that 4 #= b is nonprojectible.

 PROOF. Since the order-type of the a-stables is a, a is a limit of limits, and thus a
 limit of nonprojectibles. If 4 < a is nonprojectible, X t is nonprojectible; so the

 standard nonprojectible ordinals in X are unbounded. If this lemma fails for a, then

 {b I at # b < a and (V1)(if b < q < a, then q is nonprojectible)} is represented in X
 but has no < -least member. QED.

 Without loss of generality, suppose that X - Projectibility; otherwise select a
 nonstandard b E On(,X) so that 4 1= (b is nonprojectible), and replace X by I1b.

 Trivially A/ = (V4)(3q ? 2) (q is admissible). Let {ab}beB be as in the proof of
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 Lemma 10. Since XW -I= Projectibility, the X/-stables are unbounded in < 'and B
 has no maximum member. We now use the apparatus of ?2. Let G' =
 G([Y0] - B, YO) be our typical 'n?+3 game defined in La. Form G = G' on Y = Y'
 as in the proof of Lemma 6. Suppose that L,, V (there is a winning strategy in GO). By
 Lemma 6, La A (there is a winning strategy in G). Let 9 = 9Lg and -=go. Fix

 = the least ordinal so that Y G La, c = the <'-least member of B so that
 YA E MaC. Let 40 and bo be as in the proof of Lemma 10.

 LEMMA 14. For g(q, p) = -, -(q', pa) = b: if < 40 or b <A bo then b = ha; and
 if -(qA, pa) = bo then g(q, p) = o0.

 PROOF. Suppose q = < >. Since q and c < b,if X < XO or b <I bo, =Cc. So
 suppose q' = c. By induction on 4' such that q + 4' < 40: for all r e Y,
 La = r E (0,y)4' iff X' # rA E (00f y)b for b-(?'); we use the facts that
 ac+ 4= (+ 0 , oy c La+4,+ 1 and X b (.O4 yaes LaC+;+ 1). Where q = j + 4'
 and b = c + Xb', La # , = I' and I t IP p- Yr a = b', which is to say:

 p E 0o'y(4') - GRange 0o4y and X/ 1= (ps' E O`,'XyA(b') - URange 0`,4,,y*).

 If 4 < 40, X # ((0y) = 0.,y*), and thus b' = b and b = is; similarly if b < bo.
 Now suppose that q = qA <x, y>, length (q') = 2i; assume as an induction

 hypothesis that if g(q', q') < 40 or -(q`A, qua) < ' bo, then 4(q', q )=g(q', q')
 and Xh 1= Z(q')A = Z(qA). If 4 < 40 or b < A bo the antecedent of the induction
 hypothesis obtains. Suppose it does. By induction on d' so that g(q', q') + 4' <

 40, we show that for all r E Y and b = (4'), La # r E (Pi + 1,Z(q'))4' iff X1 I
 r E (AP+1 ,z(q)4l)b. Where g = g(q',q') + 4' and b = g(q/Aq') +Ab, we have

 P e 0O;+l ,Z(q')W) -U Range(O;1+ l,Z(q'))

 and

 X P EV O+ l Z(q )(b) -U Range(O+ 1,Z~q'));

 if 4 < 40, then X 1 (0+ lZ(q'))A = Of'+1Az(qs); so b' = b and b A similar
 argument applies if b < A bo. Furthermore,

 X t (Z(q'), i + 1, p)* = (Z(qv*), i + 1, pa)*,
 preserving our induction hypothesis.

 Now suppose -(qA, pA) = bo. If g(q, p) is defined, g(q, p) > 40. Suppose q = < >.
 If g(< >, p) is undefined or defined and # 40, for 4' so that q + t = 40 and for
 0 = o0,y, p ? 04'. Suppose d is a witness to the 11 fact that p 0 P(i< 4'). By the
 preceding part of the lemma,

 X ((0Q<4) = O<br'.,forb= (l)

 Thus dA witnesses in X-4 the fact that

 X=, (PA 0 i0Ay(U Range 0Oy)).*

 This contradicts our supposition that 4(< >, p) = bo, since X F c + b' = bo. For
 q = q A <x, y>, q' of length 2i, the argument is similar.

 At last we are prepared for the construction which proves Lemma 11. As in
 our proof of Lemma 10, we describe a procedure for selecting a nonstandard
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 BOREL GAMES AND THE JUMP HIERARCHY 1311

 a E On(X/); we require that / 1 a is nonprojectible. This will enable us to iterate
 the process with /a in place of X.

 If Xf 1 (there is a greatest nonprojectible ordinal), output that a E On(X) such

 that XI= a is the greatest nonprojectible ordinal. By Lemma 13, a is nonstandard.

 Now assume that Xk' # (V4)(3q < 4)(q is nonprojectible). If (and only if) X , (there
 is a winning strategy in G), we engage in a variant of Search 1 from Lemma 10.

 Search 1'. Search for q,pe Y, 4 < ox and be B so that Lol=g(q,p) =

 # - q(qw, pIa) = b and ab + X 1 # (oc: + 1<). The last clause is "checked" as in the
 proof of Lemma 10. If this search succeeds, output an a e On(d/) such that

 # I (a+I 1 < a and a is nonprojectible).
 If X 1 (there is a winning strategy in G), find an a E On(X) so that X # (a is

 nonprojectible and there is a winning strategy in G belonging to La). Such an a must

 be nonstandard, for if s E L. and , I# (s' is a winning strategy in G), then La l= (s is
 a winning strategy in G), contrary to our assumptions.

 We now show that if we engage in Search 1', we succeed. It suffices that there be

 q, p E Yso that g(q', pa) = bo; for then g(q, p) = TO and bo and 40 are as required.
 Suppose not. Then X I (if -(q', p') is defined, then 4(q', p') < bo). By Lemma 5,
 X 1 (II has a winning strategy in G), contrary to our case assumption.

 Since our output a is such that A = - Projectibility, this process may be
 iterated. This construction is effective in A G) Fm, and thus in A(m). QED.

 Lemmas 9, 10 and 11 permitted us to shave two jumps off of Corollary 2. We now
 consider ways to shave a single jump off of Corollary 2. Generalize the notion of //-

 stability from Z1 to Zk as follows: a is Zk-A/-stable iff a -k it. So xc-stability is just
 Z1-Lx-stability. As usual, / 1 (-i Zk-Projectibility) iff the Zk-A-stables are un-
 bounded in X.

 LEMMA 15. If for some k, a is Zk-projectible, then there is an infinite descending 8W-
 chain recursive in A(m+ 1).

 PROOF. By Lemma 9 we may assume that a is not Z1-projectible. Let k be least
 so that a is Zk+1-projectible; again by Lemma 9 we may assume that for no
 nonstandard a is X '<k ota; thus k ? 1. Let k' be least such that either for all
 nonstandard b, a' -K + 1 J/b, or such that there is a nonstandard a E On(,') so that
 for all nonstandard b <m'a, a' -K+1 Jb. Then k' + 1 < k. Without loss of
 generality we may suppose that for all nonstandard b e On(,), ' <'+ 1 ? ;
 otherwise replace Xf by an appropriate A.

 Suppose a E On(X/) is nonstandard, ,' -<VA a. We describe a procedure, which
 is sufficiently independent of a to be iterated recursively in A(m+ '), for choosing a

 b <a a, b nonstandard. If A/ I (there is a maximum La,-k'-stable ordinal), find b so
 that If I (b is the maximum La,-k'-stable ordinal). Since a is not Zk-projectible, X is
 a limit of L,-Zk-stables; furthermore .-1' _<k'"/; thus b is nonstandard. Since
 Ab <k' 'a X <k' -b, and we may iterate with b in place of a.

 Suppose I V (there is a maximum L,-Zk-stable ordinal).
 Claim. There are arbitrarily low (in < ') nonstandard b E On(i(4) that are A/a:k'-

 stable. Since a is not Zk-projectible and A' <'df'ka, the standard a-k -stables are
 unbounded in <X. If for c < a, c nonstandard, there are no nonstandard Xa2k'

 stables below c, then {d Id <a' c and (bVe) (if d < q < c then q is not A-dk'-stable} is
 represented in If but has no e'-least member; contradiction. Thus the', - -V-

This content downloaded from 132.174.252.179 on Tue, 08 Feb 2022 02:04:32 UTC
All use subject to https://about.jstor.org/terms



 1312 HAROLD T. HODES

 stables are unbounded below a under <X. We will apply a technique hereafter
 called :kt + 1-witnessing." For some Hk, formula (p and some p E Lx, A i=
 (3x)(p(x, F(p)) and La V (3x) p(x,p); the search for p and p is recursive in A(m+ 1).

 Then we find b <I a so that A l= (3x E Lb)p(x, F(p)) and b is 'at-Zk -stable; output
 b. This b must be nonstandard; since '.1b <k' /a, A' <k #; thus this process may
 be iterated with b in place of a. QED.

 CONJECTURE 3. Even if for all k a is not Zk-projectible (i.e. a is a local Nm+ 1), the
 consequent of Lemma 15 is true.

 A proof of Conjecture 3 would yield proofs of Conjectures 1 and 2. Unfortu-
 nately, the technique used in Lemma 15 does not generalize to a proof of

 Conjecture 3 in any straightforward way. Suppose that for any k E W there are

 arbitrarily low (in <X) nonstandard b so that .' <k Ab. For example, suppose
 t <'2 dia and 1A # (a is not Z2-projectible). If the Z3, or even the Z4, witnessing
 technique yields an output, that will yield a nonstandard b < X a. But if ,' <3 -A
 (and A' <4 A), then they will not yield an output; there seems to be no way
 effective in A(m+ 1) to decide this; if we also apply Z5 witnessing and it yields an out-

 put before Z3 or Z4 witnessing does so, that output is nonstandard if ,A' -<3 a;
 but otherwise it might be standard.

 What follows is a case of making the best of a bad situation.

 Let a be the least ordinal such that Li # Li + : i + 1. Then a = i' + 1 for L' of the
 form a + 4. Suppose that 4 <Li. Recall that & is an arithmetic copy of La. Where

 a E On(X,) and 4 < a we define Fa 4: L +< - Mb for b = a + X 4X. Recall that for any
 4' < X, p eL.+< ,+1 - L,+ may be defined over L,+ : by a formula in which
 all parameters are ordinals. F'a4 ' La = F; Fa 4(4t) = a + X 4'; where p E
 La + E + 1-La + E and 9(x, q) is the <L-least formula defining p over La + , so that qf
 consists of ordinals, let Fa4(p) = p' e Mb, b = a + (4' + 1)' so that SF
 (Vx)(x e p' iff La+< F sp(x, Fa 4'(q))). We call a E On(X.,) (4, n)-reflecting iff for every
 Zn formula (p and every j- from L,,+ <

 La+4 p(p) if Xb lbp(F(P-))

 for b = a+X' Note: where - = ( ...,p1,...), Fa4(-) = ...,Fa4(pi),.. .). Since
 F a4 [ On(L.+ ) is recursive in F [ 4 it is recursive in A(m).

 Suppose n is least so that a projection f of L' into y < L (where L, , = Nm) is In,
 over a'. Clearly such ii and f exist.

 LEMMA 16. If there is a (4, n- + l)-reflecting a E On(X.,), then there is an infinite
 descending ?'-chain recursive in A (m+ ).

 PROOF. Suppose a is (d, n- + 1) reflecting, b = a + X 4, and f is defined over La +
 by p(x, y, p). Then

 #Ab l (Vx)(p(x, F' 4(f(q)), Fa (p)) if x = Fa4))

 for q < ax'. For c E On(,X), ce A' iff for some q < a and - < a, 4b1=
 (p(c, q Fa4(p)) and La # (p(,5 i, p). Since F Ky and F a, are recursive in A(m),
 On(I') is RE in A(m); the lemma follows easily. QED.

 We now assume that no a E On(,X) is (d, n- + 1)-reflecting. Where W is any well-
 ordering, f and h are functions on w)2, Range(h) c Fld(W), we will say that h and W
 bound the convergence of f iff for all x, to <. < t1 -:
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 for all i < 1, if f(x, ti) # f(x, ti + 1), then
 h(x, ti + 1) < W h(x, ti).

 Let (d', n') < (E, n) iff 4' < 4 or (4' = 4 and n' = n). Fix

 W = {(a, b) I a = (', n')' and b = (;,n)' for (4', n') < (;, n)}.

 The following lemma is the source of the restrictions in Theorems 1 and 2 to A
 which are n-well-behaved. The natural strategy for proving Conjectures 1 and 2,
 short of proving Conjecture 3, would be to improve Lemma 17, e.g. by replacing W
 with a well-ordering of type 0).

 LEMMA 17. There are functions f and h recursive in A(m+ ')such that h and W bound
 the convergence of f and f converges to an infinite descending s'-chain.

 PROOF. We describe a procedure which, given a nonstandard a e On(,J(), guesses
 at a nonstandard c < X a; to each guess we associate a pair (4, n) <(E, n- + 1); each
 time we change our guess we pick a new pair below the previous one. Note: if (ti, m)

 is least such that a is (i, m) reflecting, p is Hm and - e L, + n: if La+,,n = (3x)p(x,p)
 then 1b - (3x)p(x, Fa,,( -)) for b = oc +,W By assumption there is such an
 (ij, m) <(4, n- + 1). We search for a 17n formula (p, < e, ft E L+< and c e On(,X) so
 that:

 'Ab K= (3x e LJ)y(x, Fa( 4()) and L<,+<: 1=m (3x)9(x, Fa, 4(f))

 for b = a +1 X. By the remark about (q, m), eventually we find these. We output
 guess c associated with the pair (4, n). If we later find a HInt formula p', d' ? 4 with
 (,n') < (,, n), f E Le + and c' E On(X./) so that

 ,&4b K (]x e L,)q,'(x, Fa 4'( `)) and L K -i(]x)p'(xf')

 for b' = a + X 4 we change our guess to c' and associate it with (4', n')-for we
 know that a was not (4, n)-reflecting. Eventually we reach a guess c associated with

 (q, m); this c must be nonstandard. We iterate guessing in the usual manner to define
 the desired f and h. QED.

 ?4. Proof of Theorem 1.

 LEMMA 18. Consider any n e co. If n > 0, suppose A is (n - 1)-well-behaved; suppose

 that L1 + Det(In + 3) and A co is a Turing upper bound on LA n 9(co). Then there is
 an arithmetic copy &A of LA so that Sato(&6) is recursive in A~+3). (Sat0(&f) is the Zo
 satisfaction relation for &f.)

 PROOF. If n = 0, let /0 < A bound {4 1 is a local N1} below A. (If no such /5
 existed, by Theorem 4 and the Hi absoluteness of A and of any local
 N1, LA K Det(1E), contrary to our supposition.) If n > 0, using the fact that A
 is (n - 1)-well-behaved, fix /O and yo so that: for any ai which is a local Ens
 if f0 < a < A, then L,+, K ci :n. We might as well take yo < fO. Thus for
 fOt < C < A, La V Nn+ 1 exists. Fix ft1 < A so that for any limit of admissibles a, if
 ft1 <cis <2i, then La + Det(In +3). If no such ft1 exists, where G is a Zn +3 game on
 co" defined in LA, select a < A, c a limit of admissibles sufficiently large for G to be
 defined in La, so that La K= Det(Xn?+ 3); by the H' absoluteness of a and 2, LA K G is
 determined; thus L, K Det(?1?+ 3), contrary to our supposition. Let ft be admissible

 and locally countable, where max Ift, ft1} ?< f < A. Fix an arithmetic copy & of LP,
 Sat(8) E Lo+; fix eo E w so that Sat(g) = {eo}A. Let W* = {(a, b) I a = (n), b
 (Ells) no) for (4, n) < (S', n') and 4 < y0j.
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 Let C0 = {e Ec wI {e}A is total and codes some Sat(J() where J( is an co-model
 for T}. CO is Ho in A. For e E Co, let At&(e) be such that {e}A codes Sat(,/'(e)). If
 for some e E CO, o(,'(e)) > A, Lemma 18 follows immediately. Since o(,k(e)) is ad-
 missible and A is not, o(,4(e)) : A. We assume that for all e E CO, o(-M(e)) <

 A. Let C1 = {e E CoIfor some a E M(e), a codes {eo}A in X(e)}; since "a codes
 {eo}A in X(e)" is Ho in A, C1 is Az in A. For e E C1, o(,4(e)) <j3.

 If n = 0, let C2 = {e E C1 I for every x E co, if {x}A is total then {x}A is not an
 infinite descending e'(e)_chain}. If n > 0, let C2 = {e E C1 I for every x and y E co, if
 {x}JA'n and {y}A(n) are total and {y}A(n) and W* bound the convergence of {x}A(n)
 then {x}A(n) does not converge to an infinite descending e4(e)-chain}. C2 is HI 3 in A.
 We now use the results of ?3.

 LEMMA 19. If e E C2, then 4(e) is well-founded.
 PROOF. Suppose e E C2, X,# = 4(e) is nonstandard, ac = o(Je). Let La l (Nm is the

 greatest cardinal). Since #B < L, m < n. Select &,,, an arithmetic copy of La, where
 Sat(&a) E LA; Sat(X/) ? Sat(&a) is recursive in A.

 Case 1. m = n. If a is Z1-projectible, by Lemma 9, there is an infinite descending
 gUn-chain recursive in A('). If a is not Z1-projectible, a is a limit of admissibles; since

 fi <xa, La + Det(Zn+ 3); so by Lemmas 10 and 1 1 there is an infinite descending s-
 chain recursive in A(n). All this contradicts e E C2a. If n = 0, we are done. Suppose
 n > 0.

 Case 2. m = n - 1. If a is not a local N, by Lemma 15 there is an infinite
 descending U'-chain recursive in A(n). If a is a local Nn , we cannot be so

 straightforward. Fix 6, an arithmetic copy of Li so that Sat(4f) E LA, for &, 4 and n-
 as in Lemma 16. By choice of flo and yo, 4 < yo and so 4 < f < x. By Lemma 16,
 if some a e On(,/) is (d, n- + 1)-reflecting, then there is an infinite descending
 chain recursive in An. Otherwise, fix W as in Lemma 17. Let f and h be the

 functions recursive in (Sat(.-/) 3 Sat(&j))(n) delivered by Lemma 17; they are also
 recursive in A(n). The function F such that for 4 ? 4, FQ<) = 4 is recursive in

 finitely many jumps of (Sat(X/) A Sat(&j)) E LA, and so in A; thus via F, h may be
 "translated" to an h into W* so that h and W* bound the convergence of f; this
 contradicts e E C2. If n = 1, we are done. Suppose n > 1.

 Case 3. m < n - 2. Use Corollary 2 for a contradiction with e E C2. QED.

 Let C3 = {e E C2 I -(e) # KP and (Vx)(x is countable)}. C3 is no+ 3 in A. Since A is
 locally countable, for every a < 2 there is e E C3 with o(,4(e)) > 0C. For e, e' E C3 and
 o(i'(e)) < o(-A(e')), let hee': M(e) -+ M(e') be the isomorphic embedding of k(e)
 onto an initial segment of 4(e'). Recall the coding of hereditarily countable sets by
 trees on co; see [8] for details. For x E L, x hereditarily countable, let c(x) be the <L-
 least tree on w coding x; if a is admissible and locally countable, for x E La, c(x) E La.
 Thus hee'(X) = y iff for all n E co, J((e) I none) c- c(x) iff A(e') I n'(e) E c(y); so he,e'
 is Ho is A, uniformly in e and e'. Furthermore, o(J1(e)) < o(J(e')) iff for some
 y E M(e') there is no x E M(e) so that hee'(X) = y. This question is 10 in A. We define

 a sequence {ei}I<i, for ei E C3. Fix eo E C3. Let ei+1 be the least e E C3 so that e > ei
 and o(d/(e)) > o(-M(ei)). Since C3 is recursive in A(n+3), so is {ei}l<i, We now
 construct our desired &f recursively in A~+

 Let E = {i, x> I x E M(ei) and if i > 0 then x 0 Range(hei let)}. Let
 8 {K< ii X1 >5 Ki2, x2 > > I 4(ei) Yi ye E Y2, where i = max{il,i2}

 and yj = heij ei(Xj) for j = 1, 2}.
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 For a %o formula 9(v1,.. .,vk) and values <ilx1>,.. .,<ikXk> e E, let
 i = max{i1, . ik , yj = heij ei(xj) for 1 < j < k, and let

 (<i, xi 1 >, . . ., <ik, xk>) E SatO(&A) iff .04(ei) F O(y1,., Yk)J

 For & - (E, aft), SatO(&A) is recursive in A('). QED.
 The following argument, when combined with Lemma 18, proves Theorem 1.
 LEMMA 20. Let & be an arithmetic copy of LA.
 (i) There is an A c w, a Turing upper bound on LA r) A(Wo), with A(3) recursive in

 Sato(&).
 (ii) If LA 1 Det(2;+ 3), then there is an A c co, a Turing upper bound on

 LA n Y(w), with A (n+4) recursive in Sato(e).
 PROOF. We force with uniformly recursive pointed perfect trees in LA. A perfect

 tree is a function P: 2 ' -+ 2 '< such that P(a A <0>) and P(oa' < K >) are incompatible
 extensions of P(cr) for a E 2 'a. P is uniformly recursively pointed iff for some c E co for
 all A E [P], P = {e}A; Q extends P iff for all a E 2' o, P(a) c Q(a). We refer to such
 trees in LA as conditions. Let Y be an arithmetic forcing language with primitives
 '3 'm', '&', '=', a predicate for each primitive recursive relation, and 'A', an
 uninterpreted one-place predicate. We suppose that all sentences are prenex. If p is a
 Ho u Z? sentence of A, let P It? iff for all A E [P], A # p. For a proof of the
 density lemma, that for every such o and every condition P there is a condition Q
 which extends P and either Q F- p or Q h --i A, see [12]. To prove (i), we extend the
 definition of forcing to Ho u Z? sentences as follows:

 P -(3x)q(x) iff for some k E w, P hf-p(k);

 P f--i (3x)p iff for every condition Q extending P, Q f- (3x)p,

 where p is H?. Density under this definition is trivial; forcing for sentences in
 ?E? u Ho is Il and so z1l over LA.

 To prove (ii) we extend the defining of forcing for Z? u 17IH sentences to
 n+4 U Hln+4 sentences in the simplest possible way:

 P ht f iff for every A E [P], Al.

 Again forcing is A1l over LA. I owe the key idea in the following lemma to Leo
 Harrington.

 LEMMA 21. Suppose LA l= Det(2;+3), 5(X) is a H?+3 formula of ? with only x
 free, and P is a condition. There is a condition Q extending P such that either
 Q h-(3x)(p(x) or Q h-(3x)(p(x).

 PROOF. Let G(P, p) be the following game. I selects k E co; hereafter both players
 proceed in 2 <'. Where <k> Afi is I's play and f2 is II's play, I wins iff fi e [P],
 A # (p(k) and f2 = {e, }<k> Afi, where el is a specific number in W; we will postpone
 specifying it for a moment. G(P, P) is clearly a Fn + 3 game which is defined over LA.
 Thus LA contains a winning strategy s for G(P, (p). Let s = the characteristic function

 of {<x,s(x)>Ixe2`0)}.
 Case I. s is a winning strategy for I. We construct a condition Q so that Q -

 (3x)?(x). Suppose s tells I to first select k. Consider the tree To of initial segments of
 plays by II which encode s at even places, i.e. To = { <K^(O), io,... , s(x), ix> I x e w}. Let
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 T1 be the set of I's responses under s to II's moves in To, with I's initial move
 deleted. Since s wins for I, T1 c Range(P). Claim: [T1 ] is a perfect set. If not, then for

 some a E T1 there is a unique1 e [T1], ftl length(a) = a. Suppose a is I's response
 to E- To. For any f.2 E [To] such that f2 [ length(z) = T, <k> Afi is I's play against
 II's play of f1. But we may choose f2 so that2 is not recursive in <k> A f1, contrary to

 -2 = {e,}<k>Afl; this establishes the claim. Therefore there is a perfect tree Q
 extending P so that [Q] = [T1]. Claim: for any A E [Q], A # *p(k). It suffices to

 show that for any A = fe E [Q] there is an f2 E [To] so that <k> A ft is I's response to
 II's play of f2 under s. Suppose Q(c) = fl [ z and D, = {I e To K <k> (f z) is I's
 response to T under s}. D, is nonempty and if Q(i A Ki>) = f1 z', then z' > z, DaA<i>
 is nonempty, and any T' e DA ^ <i> extends some T E D,; by Kdnig's lemma the desired

 f2 exists.

 We finally show that Q is uniformly recursively pointed. For f1 E [Q],
 {e1 }<k> ^Af lE [T2] and so encodes s and thus s; so ft computes s by a single procedure
 independent of fl; but Q is recursive in P ? s; since ft E [P], P is recursive in ft by a
 procedure independent of f1; putting these together, Q is recursive in f1 by a
 procedure independent of f1.

 Case II. s is a winning strategy for II. Let Q be the result of coding s into P at the
 odd places, i.e. Q(c) = P(<(c)0, s(0),...,(a)z, s(z)>) where z = length(c) - 1. By a

 familiar argument (see e.g. [12]), Q is uniformly recursively pointed; since s E LA,
 Q E LA. For A = el E [Q] we show that A # -i(3x)p(x). We first complete our
 description of G(P, p) by specifying el: let e2 be a procedure which, given a play
 <k> A f by I, computes the real encoded at the odd places in ft; let e3 be the
 procedure which, given a strategy for II and a play by I, computes the play of II

 under that strategy in response to that play by I; e1 is the procedure which first

 applies e2 to <k> A f1, regards the result as the characteristic function of a strategy
 for II, and applies e3 to that strategy and <k> A fl. Now suppose I plays <k> A fl,
 fe E [Q]; let f2 be II's response under s. Since {e2 }<k>f - s and {e3}s<k>fl =2,

 -= {el }<k>Afi

 But f1 E [P] and I loses this play of G(P, (p); so A # m *p(k). Since k was arbitrary,
 A # - (3x)spx. QED.

 The rest of the construction for Lemma 20 is routine. We fix a listing <Pi>i<J of
 all ZE4 sentences of Y, and a i over LA listing {Ai} < of LA n ?(w). We form a A
 (over LA) sequence <Pi >i< of conditions, Pi,+ extending Pi, so that:

 either P2j j- (pi or P2i Fi--i (pi;

 P2i, 1 is the result of coding Ai into P21 at the odd places. Then ni<co [Pi] = {A} for
 some A c co. The odd steps ensure that A computes Ai for all i < co; the even steps

 ensure that A = (pi iff P2i F- Pi; since <PiK>E< and the forcing relation are z11 over LA,
 A(n+4) is recursive in Sato(SA). QED.

 ?5. Failure of determinacy. The results of ?3, together with techniques developed

 by H. Friedman [3] and Martin [10], enable us to show that certain initial segments

 of L do not satisfy certain determinacy conditions. Clearly La # Det(24?+3) iff
 L # Det(?+3), where y - (8 )L. Thus we confine our attention to locally
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 countable initial segments of L. We now suspend the assumption that A is not

 admissible; the following theorem clearly implies Theorem 2 if A is not admissible.
 THEOREM 5. Let A be a locally countable limit of admissibles. Suppose that A is not a

 limit of o < A such that L,, # Det(Z?+ ). If n > 0 suppose that A is (n - 1)-well-
 behaved. Furthermore, suppose that if A is not projectible, then the order-type of the A-

 stable ordinals is less than A. Then LA V Det(Z?'? 3).
 PROOF. Suppose not; let a be the least counterexample. Fix 3o, yo, fll, /3, & = At

 and W* as in the proof of Lemma 18. Let T' be the result of adding to T these further
 sentences:

 (Vx) x is countable;

 if Projectibility fails then the stable ordinals have the

 order-type of some ordinal;

 (Va) a satisfies Theorem 5.

 By our choice of a, La # T'.
 We associate with each formula p in which Sat(g) is the sole parameter a game

 G(po) on 2 <'O. Where fi and f2 are the plays produced by I and II, respectively, I wins
 G(5o) iff:

 (i) ft encodes Sat(X#), where X is an co-model of T' u {y} in which Sat(g) is
 represented;

 (ii.1) if n = 0, for every x E o such that {X}f' If2 is total, {x}'f "f2 is not an infinite
 descending e'-chain; and

 (ii.2) if n > 0, for every x, y E wo such that {X}( f1 2)(n) and {y}(f IFf2)(") are total
 and {y}(f1if2)(n' and W* bound the convergence of {x}(f18f2)(n), then {x}(f1 I2)(")
 does not converge to an infinite descending 9'-chain.

 We note that G((p) is a MI 3 (in Sat(g)) game. By hypothesis there is an s E LA so
 that L. # (s is a winning strategy for G(p)). Since A is a limit of admissibles, s is a
 winning strategy for G(p). We show: s is winning strategy for I iff LA # p. This
 implies that truth in the structure <LA;e L.; Sat(g)> is definable over that
 structure, contrary to Tarski's well-known result.

 IIf LA # (p, then I has this winning strategy: encode Sat(^f) for f an arithmetic
 copy of LA.

 Claim. If LA # m p, then II has this winning strategy: encode Sat(^9A) for of an
 arithmetic copy of L.. Suppose II plays f2 encoding Sat(^A) and I plays fi, encod-
 ing an J/ which satisfies condition (i). Clearly o/ is nonstandard. We show that
 condition (ii) fails. Where a = o(,&), /3 < a since Sat(g) is represented in S#. We
 cannot have A < a, by the third new sentence of T'. Let La # (h,, is the greatest
 cardinal). If A = a, then m = 0; by the assumptions on A either Lemma 9 or

 Lemma 10 provides an infinite descending E?-chain recursive in fi G3f2
 and violating (ii). Suppose ac < A. If n = 0, since flo < , < a we have m = 0; since
 /31 < / < a, La V Det(Z2?); by Lemma 9 or 10 or 11 there is an infinite descending

 EX-chain recursive in ft 0) f2, violating (ii). If n > 0, then m < n, since To < flo <
 / < a and if y were a local sN l and flo < (Nn)LY + 3 = y we would have 3 < yo,
 which is impossible. We now argue by cases as in the proof of Lemma 19. If m = n,
 Lemmas 9, 10 or 11 apply; if m = n - 1, Lemmas 15, 16 or 17 apply; if n ? 2 and

 m < n - 2, Corollary 2 applies; so in all cases (ii) fails and II wins G(q). QED.
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