

Jumping Through the Transfinite: The Master Code Hierarchy of Turing Degrees

Author(s): Harold T. Hodes

Source: The Journal of Symbolic Logic, Jun., 1980, Vol. 45, No. 2 (Jun., 1980), pp. 204-

220

Published by: Association for Symbolic Logic

Stable URL: https://www.jstor.org/stable/2273183

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to $\it The Journal of Symbolic Logic$

JUMPING THROUGH THE TRANSFINITE: THE MASTER CODE HIERARCHY OF TURING DEGREES¹

HAROLD T. HODES

Abstract. Where \underline{a} is a Turing degree and ξ is an ordinal $< (\aleph_1)^{L^{\xi}}$, the result of performing ξ jumps on \underline{a} , $\underline{a}^{(\xi)}$, is defined set-theoretically, using Jensen's fine-structure results. This operation appears to be the natural extension through $(\aleph_1)^{L^{\xi}}$ of the ordinary jump operations. We describe this operation in more degree-theoretic terms, examine how much of it could be defined in degree-theoretic terms and compare it to the single jump operation.

§1. Basic definitions and results. For $A \leq \omega$, let:

$$L_0[A] = M_0[A] = \{x \mid x \text{ is hereditarily finite}\};$$

$$L_{\alpha+1}[A] = \{x \mid x \text{ is first-order definable over } \langle L_{\alpha}[A]; \in \uparrow L_{\alpha}[A], A; L_{\alpha}[A] \rangle \};$$

$$L_{\lambda}[A] = \bigcup_{\substack{\alpha \in \lambda \\ \alpha < \lambda}} L_{\alpha}[A];$$

$$M_{\omega\alpha+n}[A] = \Delta_n(\langle L_{\alpha}[A]; \in \uparrow L_{\alpha}[A], A; L_{\alpha}[A] \rangle) \text{ for } n \geq 1;$$

$$M_{\omega\alpha}[A] = L_{\alpha}[A].$$

Clearly $M_{\omega(\alpha+1)}[A] - M_{\omega\alpha}[A] = L_{\alpha+1}[A] - L_{\alpha}[A]$. $\langle M_{\alpha}[A] \rangle_{\alpha}$ is introduced only for perspicacious statement of results. All proofs will use $\langle L_{\alpha}[A] \rangle_{\alpha}$. Note that if $A \equiv_{\top} B$ then $M_{\alpha}[A] = M_{\alpha}[B]$. Thus for a Turing degree a, we may define $M_{\alpha}^{a} = M_{\alpha}[A]$ and $L_{\alpha}^{a} = L_{\alpha}[A]$, for $A \in a$. We let $M_{\alpha}[\emptyset] = M_{\alpha}^{0} = M_{\alpha}$ and $L_{\alpha}[\emptyset] = L_{\alpha}^{0} = L_{\alpha}$. All of the following definitions are given for a = 0. They relativize to arbitrary a in the obvious way. As usual, $L_{\alpha}^{0} = L_{\alpha}$, $M_{\alpha}^{0} = M_{\alpha}$. Unless otherwise indicated, lower case Greek letters range over $(\aleph_{1})^{L}$; λ always ranges over limit ordinals.

Let Ind: $(\aleph_1)^L \to (\aleph_1)^L$ enumerate the *M*-indices in increasing order. Clearly

Received September 8, 1977.

¹Thanks to the referee for finding several major and many minor errors. Special thanks to F. Abramson for suggesting the use of modified Steel conditions in the proofs of Lemmas 1 and 2 under Case 3. Writing of this paper was in part supported by a Fellowship from the Mellon Foundation.

 $\alpha \leq \operatorname{Ind}(\alpha)$. If $\alpha < \operatorname{Ind}(\alpha)$, it is because Ind was temporarily "thrown off" by an M-gap. $A \subseteq \omega$ is a master code for α iff $M_{\alpha+1} \cap 2^{\omega} = \{B \subseteq \omega \mid B \leq_{\top} A\}$. Clearly this notion is invariant under Turing equivalence. Thus a Turing degree \underline{b} is a master code for ξ iff \underline{b} is the degree of a master code for ξ .

THE FUNDAMENTAL THEOREM. ξ is an M-index iff there is a master code for ξ ; furthermore, if \underline{b} is the master code for ξ then \underline{b}' is the master code for $\xi + 1$.

We are now ready to extend the jump operation through $(\aleph_1)^L$. Let $\underline{0}^{(\xi)} =$ the master code for Ind (ξ) . The previous definitions and the Fundamental Theorem relativize to an arbitrary degree \underline{a} . Thus we may define $\underline{a}^{(\xi)} =$ the \underline{a} -master code for Ind $\underline{a}^{(\xi)}$, for $\xi < (\aleph_1)^{La}$.

The central results of this paper characterize the function $\xi \mapsto \underline{0}^{(\xi)}$ in more degree-theoretic terms. We now introduce the machinery needed to state these results.

Ind $(\alpha) \neq \alpha$ iff $(\exists \beta)(\beta)$ starts an M-gap and $\beta \leq \alpha < \beta + F(\beta) \cdot \omega$). Let $J(\alpha) =$ the least strict upper-bound on $\{\operatorname{Ind}(\xi) \mid \xi < \alpha\}$. $\alpha \leq J(\alpha)$. In fact, $J(\alpha) > \alpha$ iff $\operatorname{Ind}(\alpha) > \alpha$ and α does not start an M-gap. $J(\alpha) \neq \operatorname{Ind}(\alpha)$ iff α starts an M-gap. Ind $(\alpha) = J(\alpha) + F(J(\alpha))$.

We divide limit ordinals below $(\aleph_1)^L$ into three cases.

Case 1. $J(\lambda)$ is not a limit of M-gaps.

Case 2. $J(\lambda)$ is a limit of M-gaps and $F(J(\lambda)) < \omega$.

Case 3. Otherwise.

Notice that $F(J(\lambda)) \ge \omega$ iff λ falls under Case 3.

In subsequent proofs, further subdivision is needed.

Case 1.1. λ falls under Case 1 and $J(\lambda)$ is an M-index.

Case 1.2. λ falls under Case 1 but not Case 1.1.

 $J(\lambda)$ is an M-gap ordinal iff $J(\lambda)$ is admissible iff λ is admissible and locally countable. Notice that if λ is not under Case 1.1, then $J(\lambda) = \lambda = \omega \lambda$. For λ under Case 1, λ falls under Case 1.1 iff $F(J(\lambda)) = 0$, and λ falls under Case 1.2 iff $F(J(\lambda)) = F(\lambda) = 1$. The least Case 1.1 ordinal is ω , and $Ind(\omega) = \omega$. The least Case 1.2 ordinal is $\omega_1^{CK} = \omega_1$ and $Ind(\omega_1) = \omega_1 + 1$. The least Case 2 ordinal is $\sup_{\alpha \in K} \{ \sigma_n^{CK} | n < \omega \} = \omega_{\omega}$, and $Ind(\omega_{\omega}) = \omega_{\omega}$. The least Case 3 ordinal is β_0 , and $Ind(\beta_0) = \beta_0 + \omega$.

Between terms denoting Turing degrees, " \leq " represents Turing reducibility. A set I of Turing degrees is an ideal iff it is closed under join and downward-closed under \leq . If I is an ideal, the pair $(\underline{b}, \underline{c})$ is I-exact iff for any $\underline{a}, \underline{a} \in I$ iff $\underline{a} \leq \underline{b}$ and $\underline{a} \leq \underline{c}$. If $(\underline{b}, \underline{c})$ is I-exact we shall also call $(\underline{b} \vee \underline{c})$ I-exact. Let I_{λ} be the minimal ideal containing $\{\underline{0}^{(\xi)} \mid \xi < \lambda\}$. By definitions, $\bigcup I_{\lambda} = M_{I(\lambda)} \cap \omega^{\omega} = L_{\gamma} \cap \omega^{\omega} = L_{\beta} \cap \omega^{\omega}$ where $\omega \cdot \gamma = J(\lambda)$ and $\mathrm{Ind}(\lambda) = \omega \cdot \beta + n$ for $n < \omega$.

The following results extend the characterization of $(\lambda \xi, \underline{0}^{(\xi)}) \upharpoonright \beta_0$ provided in [6]. Let μ_{λ} = the least μ such that $\{\underline{a}^{(\mu)} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}\}$ has a least member.

THEOREM 1. μ_{λ} exists. In fact,

$$\mu_{\lambda} = \begin{cases} 2 + F(J(\lambda)) & \text{for } \lambda \text{ under Case 1,} \\ 3 + F(J(\lambda)) & \text{for } \lambda \text{ under Case 2 or Case 3.} \end{cases}$$

Thus $\mu_{\lambda} = 3 + F(\lambda)$ for λ under Cases 2 or 3, and $\mu_{\lambda} = F(\lambda)$ in Case 3.

THEOREM 2. $Q^{(\lambda)}$ is the least member of $\{\underline{a}^{(\mu_{\lambda})} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}\}$. Moreover, it is the least member of $\{\underline{a}^{(\mu_{\lambda})} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact and Ind}(\lambda) \text{ is recursive in } \underline{a}\}$.

Where *U* is a predicate of Turing degrees, \underline{a} is a ξ -low *U* iff \underline{a} is a *U* and for any $\underline{b} \in U$, $\underline{a} \leq \underline{b}^{(\xi)}$.

THEOREM 3. For $\xi < \mu_{\lambda}$, there is no ξ -low I_{λ} -exact degree.

These theorems shall all be derived from the following lemmas. Let

$$G(\lambda) = \begin{cases} 2 + F(J(\lambda)) & \text{if } \lambda \text{ falls under Case 1,} \\ 3 + F(J(\lambda)) & \text{if } \lambda \text{ falls under Case 2 or Case 3.} \end{cases}$$

LEMMA 1. There is an I_{λ} -exact pair $(\underline{b},\underline{c})$ such that $(\underline{b}\vee\underline{c})^{(G(\lambda))}\leq\underline{0}^{(\lambda)}$ and $\mathrm{Ind}(\lambda)$ is recursive in \underline{b} and in \underline{c} .

LEMMA 2. For any $\underline{d} \notin I_{\lambda}$ there is an I_{λ} -exact pair $(\underline{b}, \underline{c})$ such that for any $\xi < G(\lambda)$, $\underline{d} \leq (\underline{b} \vee \underline{c})^{(\xi)}$ and $\operatorname{Ind}(\lambda)$ is recursive in \underline{b} and in \underline{c} .

LEMMA 3. If $(\underline{b}, \underline{c})$ is I_{λ} -exact, then $\underline{0}^{(\lambda)} \leq (\underline{b} \vee \underline{c})^{(G(\lambda))}$.

By Lemmas 1 and 3, $Q^{(\lambda)}$ is the least member of $\{\underline{a}^{(G(\lambda))} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}\}$ and of $\{\underline{a}^{(G(\lambda))} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact and } \operatorname{Ind}(\lambda) < \omega_1^{(b \vee c)}\}$. Thus μ_{λ} exists. By definition of μ_{λ} , $\{\underline{a}^{(\mu_{\lambda})} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}\}$ has a least member \underline{d} . Since $\underline{d} \notin I_{\lambda}$, by Lemma 2 if $\mu_{\lambda} < G(\lambda)$, \underline{d} is not least. Thus $\mu_{\lambda} = G(\lambda)$. Lemma 2 easily proves Theorem 3.

COROLLARY. $\underline{0}^{(\lambda)}$ is the least member of $\{\underline{a}^{(-1+\mu_{\lambda})} \mid \underline{a} \text{ is a u.u.b. on } I_{\lambda}\}$ and of $\{\underline{a}^{(\mu_{\lambda})} \mid \underline{a} \text{ is a weak u.u.b. on } I_{\lambda}\}$. For $\xi < (-1 + \mu_{\lambda})$ there is no ξ -low u.u.b. on I_{λ} ; for $\xi < \mu_{\lambda}$ there is no ξ -low weak u.u.b. on I_{λ} .

(See [4] for the definition of a u.u.b. and a weak u.u.b.) This corollary connects these results with the apparatus of [2].

We state, mostly without proof, some basic facts about gaps.

- 1. If α starts an M-gap or an L-gap, α is a limit ordinal and $\omega \alpha = \alpha$.
- 2. If α starts an L-gap, then α starts an M-gap.
- 3. If α is a supremum of L-indices, $L_{\alpha} \models V = HC$ (i.e. "everything is countable").
 - 4. If α starts an M-gap, α is the supremum of L-indices.

A Δ_n comprehension axiom is a sentence of the form:

$$(\forall x \in \omega) \ (\phi x \leftrightarrow \phi x) \to (\exists y) \ (y \subseteq \omega \ \& \ (\forall x) \ (x \in y \leftrightarrow \phi \ x)).$$

where ϕ is Σ_n and ψ is Π_n . Δ_n CA is the set of Δ_n comprehension axioms.

- 5. If $F(\omega \alpha) \geq n$ then $L_{\alpha} \models \Delta_n$ CA.
- 6. If α starts an M-gap then α starts an L-gap iff $F(\alpha) \geq \omega$.
- 7. If α starts an M-gap and $F(\alpha) \ge n$ then α is Σ_n -admissible.

PROOF. Use Jensen's result on the Σ_n uniformizability of L_{α} .

- 8. α starts an L-gap iff $L_{\alpha} \models ZF^- + V = HC$; if α starts an L-gap, $L_{\alpha} \cap \omega^{\omega}$ is a β -model of analysis. ($ZF^- = ZF \{Power Set\}$.) See [8].
- 9. λ is a limit of M-gaps iff M_{λ} is closed under hyperjump iff $M_{\lambda} \cap \omega^{\omega}$ is Π_{1}^{1} absolute.

We freely identify binary relations on ω with subsets of ω via the coding scheme $n = \langle (n)_0, (n_1) \rangle$. Thus for $X \subseteq \omega$, structures $\langle X, R, A \rangle$, $R \subseteq X^2$, $A \subseteq X$, may be

identified with reals. An arithmetic copy of $\langle L_{\alpha}[A]; \in \upharpoonright (L_{\alpha}[A^2]), A \rangle$ hereafter called an arithmetic copy of $L_{\alpha}[A]$, is a structure $\langle X, R, A \rangle, X \subseteq \omega$, isomorphic to $\langle L_{\alpha}[A]; \in \upharpoonright (L_{\alpha}[a])^2, A \rangle$, coded as single real. Hereafter $E_{\alpha}[A]$ ranges over arithmetic copies of $L_{\alpha}[A]$. Let $\operatorname{Th}_n(\langle X; R, A \rangle)$ be $\operatorname{Th}(\langle X; R, A; X \rangle) \cap (\Sigma_n \cup I_n)$, the n-quantifier theory of $\langle X; R, A; X \rangle$, with each member of X viewed as a name of itself. For $X \subseteq \omega$, $\operatorname{Th}_n(\langle X; R, A \rangle)$ may be viewed as a single real. The following standard facts about the arithmetic hierarchy provide motivation for this paper: if $E_0[A] \leq_{\top} A$, then $\operatorname{Th}_n(E_0[A]) \equiv_{\top} A^{(n)}$, and there is an $E_1[A]$ canonically constructed from $E_0[A]$ such that $\operatorname{Th}(E_0[A]) \equiv_{\top} \operatorname{Th}_0(E_1[A]) \equiv_{\top} A^{(\omega)}$.

The Fundamental Theorem is proved in [6]. The proof makes use of Jensen's Σ_n uniformization theorem, transferred from the J to the L hierarchy. The proof of that uses Jensen's notion of a Σ_n master code for an arbitrary L_α . It might seem more direct to imitate Jensen's proof, which proves Σ_n uniformization and the existence of Σ_n master codes simultaneously, with Δ_n uniformization and Δ_n master codes, thereby avoiding mention of Σ_n master codes. But this seems to be impossible.

The proof of the Fundamental Theorem proceeds by proving the following fact, which we shall misleadingly call a corollary.

If $L_{\alpha} \not\models \Delta_{n+1}$ CA then $\Delta_{n+1}(L_{\alpha})$ contains a real of the form $\operatorname{Th}_{n}(E_{\alpha})$. Thus the master code for $\omega \alpha + n$ is the least degree of the form $\operatorname{deg}(\operatorname{Th}_{n}(E_{\alpha}))$.

The ordinary jump on \mathscr{D} corresponds to a canonical jump function * on P_{ω} : $\deg(A)' = \deg(A^*)$. Unfortunately, an arbitrary transfinite jump on \mathscr{D} seems to be associated with no canonical such function on P_{ω} .

§2. Proofs of Lemmas 1, 2 and 3. Lemmas 1 and 2 for λ under Cases 1 or 2 are proved in [6]. For the sake of a complete presentation we sketch those proofs here.

Suppose λ falls under Cases 1 or 2. Let $n = F(J(\lambda))$; let $J(\lambda) = \omega \alpha$. Thus for some E_{α} , $Q^{(\lambda)} = \deg(\operatorname{Th}_{n}(E_{\alpha}))$. To prove Lemma 1 it suffices to construct B and $C \in 2^{\omega}$ such that

- (1) (B, C) is exact for $L_{\alpha} \cap \omega^{\omega}$;
- (2.1) if λ falls under Case 1 then

$$(B \oplus C)^{(2+n)} \in \Delta_{n+1}(L_{\alpha});$$

(2.2) if λ falls under Case 2 then

$$(B \oplus C)^{(3+n)} \in \Delta_{n+1}(L_{\alpha}).$$

To prove Lemma 2 it suffices, given $\underline{d} \notin I_{\lambda}$ and $f \in \underline{d}$, to construct B and $C \in 2^{\omega}$ such that (1) is true and

- (3.1) if λ falls under Case 1 then $f \leq_{\perp} (B \oplus C)^{(1+n)}$;
- (3.2) if λ falls under Case 2 then $f \not\leq_{\perp} (B \oplus C)^{(2+n)}$.

We now prove Lemmas 1 and 2, using forcing with uniformly recursively pointed perfect trees in an arithmetic setting. Fix a forcing language built from number variables, numerals, predicate constants for primitive recursive predicates on $2^{\omega} \times 2^{\omega} \times \omega$, and generic predicate constants \underline{B} and \underline{C} . Build prenex sentences from \underline{J} and \underline{J} , with the usual $\underline{\Pi}_i^0$, Σ_i^0 classification. Conditions are as in [6]: pairs (P, Q) where P and Q are uniformly recursively pointed perfect trees from $L_{\alpha} \cap \omega^{\omega}$ and

 $P \equiv_{\top} Q$. (P, Q) extends (R, S) iff P and Q are subtrees of R and S respectively. [P] is the set of characteristic functions, identified with members of $P\omega$, which lie along branches of P. $[P, Q] = [P] \times [Q]$. $(P, Q) \Vdash \emptyset$ iff for any $(B, C) \in [P, Q]$, $(B, C) \models \emptyset$, where $\emptyset \in \Pi_{1 \le 2}^0$. The other clauses are standard:

$$(P, Q) \Vdash (\exists x) \varnothing \text{ iff for some } n < \omega \ (P, Q) \vdash \varnothing \ (x/u);$$

 $(P, Q) \vdash \neg \varnothing \text{ iff for every } (R, S) \text{ extending } (P, Q),$
 $(R, S) \not\Vdash \varnothing, \text{ for } \varnothing \in \Sigma_{i>2}^{0}.$

By Lemma 3.5 of [6], some condition extending (P, Q) decides \emptyset .

We must compute the definitional complexity over L_{α} of forcing restricted to $(\Sigma_{G(\lambda)}^0 \cup II_{G(\lambda)}^0)$. The class of conditions and the extends relation are Σ_3^0 and II_2^0 respectively. By Lemma 3.8 of [6], forcing restricted to $(\Sigma_0^2 \cup II_2^0)$ is Σ_3^0 . So if λ falls under Case 1.1, forcing restricted to $(\Sigma_{G(\lambda)} \cup II_{G(\lambda)})$ is Δ_1 over L_{α} . Forcing restricted to $(\Sigma_3 \cup II_3)$ is II_1^1 over $L_{\alpha} \cap \omega^{\omega}$, so clearly Δ_2 over L_{α} . So for λ under Case 1, forcing for $(\Sigma_{G(\lambda)} \cup II_{G(\lambda)})$ is $\Delta_{F(I(\lambda))+1}$ over L_{α}).

Suppose λ falls under Case 2. $L_{\alpha} \cap \omega^{\omega}$ is Π_{1}^{1} absolute. So forcing restricted to $(\Sigma_{3}^{0} \cup \Pi_{3}^{0})$ is Π_{1} over L_{α} . But by the Kleene basis theorem we can show that it is also Σ_{1} over L_{α} ; suppose $(P,Q) \Vdash \emptyset$ if and only if $(\forall f \in \omega^{\omega}) R(f,P,Q,\emptyset)$, where $R \in \Sigma_{1}^{0}$, W^{X} is the hyperjump of X. Then $(\forall f \in \omega^{\omega}) R(f,P,Q,\emptyset)$ iff $(\forall f \leq_{\top} W^{(P \oplus Q)}) \cdot R(f,P,Q,\emptyset)$ iff $L_{\alpha} \Vdash (\exists \xi)$ (ξ admissible & $(P,Q) \in L_{\xi}$ & $(\forall f \in L_{\xi+1} \cap \omega^{\omega}) \cdot R(f,P,Q,\emptyset)$). So in Case 2, following up the definition of forcing, forcing for $(\Sigma_{i+3}^{0} \cup \Pi_{i+3}^{0})$ is Δ_{i+1} over L_{α} , thus for $(\Sigma_{G(\lambda)}^{0} \cup \Pi_{G(\lambda)}^{0})$ is $\Delta_{F(f(\lambda))+1}$ over L_{α} .

Let $\langle \emptyset_i \rangle_{i \in \omega}$ and $\langle A_i \rangle_{i \in \omega}$ be $\mathcal{L}_{n+1}(L_{\alpha})$ enumerations of $(\Sigma_{G(\lambda)} \cup I\!\!I_{G(\lambda)})$ and $L_{\alpha} \cap 2^{\omega}$ respectively. The latter exists by the corollary to the Fundamental Theorem. Let

$$P_0 = Q_0 = \mathrm{id},$$
 $(P_{2i+1}, Q_{2i+1}) = (P_{2i} * A_i, Q_{2i} * A_i);$
 $(P_{2i+2}, Q_{2i+2}) = \mathrm{the} <_L \text{ least extension of } (P_{2i+1}, Q_{2i+1}) \text{ deciding } \emptyset_i,$

where P*A is the canonical result of coding A into P; see [6, Lemma 3.3]. $\langle (P_i, Q_i) \rangle_{i \in \omega} \in \mathcal{A}_{n+1}(L_{\alpha})$. Let $(B, C) = \bigcap_{i < \omega} (P_i, Q_i)$. The usual forcing = truth lemma states that $(B, C) \Vdash \emptyset_i$ iff $(P_{2i+1}, Q_{2i+1}) \Vdash \emptyset_i$. (1) follows easily from the odd steps and Lemma 3.7 of [6]. Since $(B \oplus C)^{(G(\lambda))}$ is defined by a $\Sigma_{G(\lambda)}$ formula, (2.1) and (2.2) are satisfied.

To prove Lemma 2 it shall be necessary to prove the following.

Sublemma 1. For any i and any condition (P, Q) there is an m and a condition (R, S) extending (P, Q) such that either

$$(R, S) \Vdash \text{``} \neg \{\underline{i}\}^{(\underline{B} \oplus \underline{C})} \stackrel{(G(\lambda)-1)}{(\underline{m})} (\underline{m}) \text{ converges''}$$

or

$$(\exists k)(k \neq f(m) \& (R, S) \Vdash ``\{i\}^{(\underline{B} \oplus \underline{C})} (G(\lambda)-1)(\underline{m}) = \underline{k}").$$

Suppose (P, Q) and i are a counterexample, i.e. for any m and any (R, S) extending (P, Q):

- (4) $(\exists (R^*, S^*)$ extending (R, S)) $(R^*, S^*) \Vdash ``\{i\}^{(\underline{p} \oplus \underline{C}) \cdot (G(\lambda) 1)}(\underline{m})$ converges''; and
- (5) $(\forall k)$ (if $(R, S) \Vdash$ " $\{i\}^{(\underline{B} \oplus \underline{C})^{(G(\lambda)-1)}}(\underline{m}) = k$ " then $f(m) = \underline{k}$). Thus f(m) = k iff

$$L_{\alpha} \models (\exists (R, S)) (R, S) \text{ extends } (P, Q) \& (R, S) \models \text{``}\{i\}^{(\underline{B} \oplus \underline{C})^{(G(\lambda-1))}}(\underline{m}) = \underline{k}\text{''}.$$

By the previous results on the definitional complexity of forcing, the above definition is Σ_n . Thus, because f is a function, $f \in \Delta_n(L_\alpha)$. But $L_\alpha \models \Delta_n$ CA. So $f \in L_\alpha$, contrary to choice of f.

We now finish the proof of Lemma 2. Let $\langle \emptyset_i \rangle_{i \in \omega}$ and $\langle A_i \rangle_{i \in \omega}$ be enumerations of $(\Sigma_{G(\lambda)-1} \cup II_{G(\lambda)-1})$ and $L_{\alpha} \cap 2^{\omega}$ respectively; let

$$P_0 = Q_0 = \mathrm{id};$$

$$(P_{3i+1}, Q_{3i+1}) = (P_{3i} * A_i, Q_{3i} * A_i);$$

$$(P_{3i+2}, Q_{3i+2}) = \text{ an extension of } (P_{3i+1}, Q_{3i+1}) \text{ deciding } \emptyset;$$

$$(P_{3i+3}, Q_{3i+3}) = \text{ an extension of } (P_{3i+2}, Q_{3i+2}) \text{ such that for some } m,$$
either
$$(P_{3i+3}, Q_{3i+3}) \Vdash \text{``} \neg \{i\}^{(B \oplus \mathcal{Q})^{(G(\lambda-1))}} (\underline{m}) \text{ converges'' or}$$
for some $k \neq f(m)$,
$$(P_{3i+3}, Q_{3i+3}) \Vdash \text{``} \{i\}^{(B \oplus \mathcal{Q})^{(G(\lambda-1))}} (\underline{m}) = \underline{k}\text{''}.$$

Let $(B, C) = \bigcap_{i < \omega} [P_i, Q_i]$. (1) is immediate as in Lemma 1. Stages of the form 3*i* insure the truth of (3.1) and (3.2). Note that if $f \in \Delta_{n+1}(L_\alpha)$ the above construction can be made Δ_{n+1} over L_α . So for $\underline{d} \leq \underline{0}^{(\lambda)}$ we could choose $(\underline{b}, \underline{c})$ so that $\underline{d} \leq (\underline{b} \vee \underline{c})^{(G(\lambda)-1)}$ and $(\underline{b} \vee \underline{c})^{(G(\lambda))} \leq \underline{0}^{(\lambda)}$, so $(\underline{b} \vee \underline{c})^{(G(\lambda))} = \underline{0}^{(\lambda)}$ by Lemma 3.

Suppose that λ falls under Case 3. Recall that $J(\lambda) = \lambda = \omega \lambda$. Let $F(\lambda) = \omega \beta + n$. For some $E_{\lambda+\beta}$, $Q^{(\lambda)} = \deg(\operatorname{Th}_n(E_{\lambda+\beta}))$. To prove Lemma 1 it suffices to construct B and $C \in 2^{\omega}$ such that (1) is true and

- (8) For some $E_{\beta}[B \oplus C]$, $\operatorname{Th}_{n}(E_{\beta}[B \oplus C]) \in \mathcal{L}_{n+1}(L_{\lambda+\beta})$;
- (9) $\lambda + \beta < \omega_1^B$ and $\lambda + \beta < \omega_1^C$;
- (9) implies that $\operatorname{Ind}(\lambda) < \omega_1^{(B \oplus C)}$. Its purpose is more than decorative. Let $\underline{b} = \deg(B)$, $\underline{c} = \deg(C)$. $\operatorname{Ind}^{(\underline{b} \vee c)}(F(\lambda)) = \operatorname{Ind}^{(\underline{b} \vee c)}(\omega\beta) + n$. Suppose $\operatorname{Ind}^{(\underline{b} \vee c)}(\omega\beta) = \omega\gamma + m$. Then for some $E_{\tau}[B \oplus C]$, $(\underline{b} \vee \underline{c})^{(G(\lambda))} = \deg(\operatorname{Th}_{m+n}(E_{\tau}[B \oplus C]))$. If $\omega\beta + n < \omega\gamma + m$, we have no reason to expect that we can find B, C and $E_{\tau}[B \oplus C]$ such that $\operatorname{Th}_{m+n}(E_{\tau}[B \oplus C]) \in \Delta_{n+1}(L_{\lambda+\beta})$. However, (9) insures that $\operatorname{Ind}^{(\underline{b} \vee c)}(\omega\beta) = \omega\beta$. Thus (8) suffices for Lemma 1. For Lemma 2, suppose that $\underline{d} \notin I_{\lambda}$ and $\underline{f} \in \underline{d}$. If λ falls under Case 3 it suffices to construct B and $C \in 2^{\omega}$ such that (1) and (9) are true and
 - $(10)\,f\notin \varSigma_n(L_\beta[B\oplus C]).$

As before, (9) insures that $(\underline{b} \vee \underline{c})^{(F(\lambda))} = \deg(\operatorname{Th}_n(E_{\beta}[B \oplus C]))$ for some $E_{\beta}[B \oplus C]$. Furthermore, $\bigcup I_{B}^{(\underline{b} \vee \underline{c})} = L_{\beta}[B \oplus C] \cap \omega^{\omega}$.

For both Lemmas 1 and 2 we shall obtain $B = B_0 \oplus B_1$ and $C = C_0 \oplus C_1$, such that B_0 and C_0 are Turing upper-bounds on $L_{\lambda} \cap \omega^{\omega}$ and such that B_1 and C_1

are wellfounded trees of height high enough to insure that $\omega_1^{B_1}$ and $\omega_1^{C_1}$ are greater than $\lambda + \beta$.

In Case 3, the proofs of Lemmas 1 and 2 use forcing for a ramified language. Fix a set P of one-place predicate constants. Let the lexicon of $L^*_{\eta}[P]$ consist of members of P, \neg , &, \exists , parentheses, countably many unranked variables, and for each $\xi < \eta$, countably many variables of rank ξ . Let the formation rules be as usual, except that $\lceil P(v) \rceil$ for $P \in P$ is well-formed iff v has rank 0. Call a formula with no bound unranked variables "ranked". Let $C_0[P]$ be a set of standard names for members of L_0 . Let $C_{\xi+1}[P]$ be the set of terms $\hat{x}^{\xi}\phi(x_1/c_1, ..., x_k/c_k)$ such that ϕ is ranked with exactly the free variables x^{ξ} , x_1 , ..., x_k , no bound variables of rank $> \xi$, c_1 , ..., $c_k \in \bigcup_{\alpha \le \xi} C_{\alpha}[P]$. If ξ is a limit, let $C_{\xi}[P] = \bigcup_{\alpha < \xi} C_{\alpha}[P]$. Let $L_{\eta}[P]$ be the language which results by supplementing $L_{\eta}^*[P]$ by the constants in $C_{\eta}[P]$.

Identify terms and formulae of $L_{\eta}[P]$ with members of L_{η} in some fixed way. The rank of term $c, \rho(c)$, is the least ξ such that $c \in C_{\xi}[P]$. A formula ϕ of $L_{\eta}[P]$ is ranked iff it has no bound unranked variables. Its rank, $\rho(\phi)$, is the supremum of the ranks of its contained constants, predicate constants, and bound variables, where members of P have rank 1. Suppose $P = \{P_0, ..., P_k\}$. For $i \le k$, suppose P_i is assigned to $P_i \subseteq \omega$. $L_{\eta}[P_0, ..., P_k]$ is defined in the obvious way, and obviously equals $L_{\eta}[P_0 \oplus \cdots \oplus P_k]$. $\langle L_{\eta}[P_0, ..., P_k]; \in |L_{\eta}[P_0, ..., P_k], P_0, ..., P_k; L_{\eta}[P_0, ..., P_k] \rangle$ is the intended structure for $L_{\eta}[P]$. Note that for $\eta > 0$, the intended structure contains each P_i both as an extension of P_i and as an individual denoted by " $\hat{x}^0(P_i(x^0))$ ". Variables of rank $\xi < \eta$ range over $L_{\xi}[P_0, ..., P_k]$. $c \in C_{\eta}[P]$ denotes a member of $L_{\rho(c)}[P_0, ..., P_k]$. Thus if ϕ is ranked, ϕ is interpretable over $L_{\rho(\phi)}[P_0, ..., P_k]$.

Let $II_0 = \Sigma_0 = \{\phi \mid \phi \text{ is ranked formula of } L_{\eta}[P]\}$. Define Σ_n and II_n as usual. For the proofs to follow, let $P = \{B_0, B_1, C_0, C_1\}$ and let $L_{\beta}[P] = L$; let $C_{\xi}[P] = C_{\xi}$.

To insure the truth of (9) we need conditions more complicated than those used up to now. Let δ be the maximum ordinal $\leq \lambda + \beta$ which is either admissible or a limit of admissibles.

A modified Steel condition is a finite function z into δ such that $dom(z) \subseteq Seq - \{\langle \rangle \}$, dom(z) is closed under initial segments, and for σ , $\tau \in dom(z)$, if σ properly extends τ then $z(\sigma) < z(\tau)$. (Think of $\langle \rangle$ as belonging to dom(z) and $z(\langle \rangle) = \delta$.) If y and z are such conditions, z extends y iff $z \upharpoonright dom(y) = y$.

Let a condition be a quadruple (P, Q, y, z), where P and Q are Turing equivalent uniformly recursively pointed perfect trees in L_{λ} and y and z are modified Steel conditions. Understand "extends" componentwise. Hereafter, "K" etc. shall range over conditions. Let the height of K, ht(K), = max(range $(y) \cup \text{range}(z)$). Let K = the set of conditions; $K_{\xi} = \{K \mid \text{ht}(K) < \xi\}$, where ξ is a limit ordinal.

Let <* be the wellfounded relation on sentences of L introduced by Cohen in his definition of forcing [3, p. 115]. Forcing for sentences in L is defined by induction on <*. Let K = (P, Q, y, z).

 $K \Vdash \emptyset$ iff $\rho(\emptyset) = 0$ and \emptyset is true; $K \vdash B_0(\underline{k})$ iff for every $X \in [P], k \in X$; $K \vdash C_0(\underline{k})$ iff for every $X \in [Q], k \in X$;

$$K \Vdash \underline{B}_{1}(\underline{k}) \qquad \text{iff } k \in \text{dom}(y) \text{ or } k = \langle \ \rangle;$$

$$K \Vdash \underline{C}_{1}(\underline{k}) \qquad \text{iff } k \in \text{dom}(z) \text{ or } k = \langle \ \rangle;$$

$$K \Vdash -\emptyset \qquad \text{iff for every } K' \text{ extending } K, K' \not\Vdash \emptyset, \text{ for } \rho(-\emptyset) > 0;$$

$$K \Vdash \emptyset \& \psi \qquad \text{iff } K \Vdash \emptyset \text{ and } K \vdash \psi \text{ for } \rho(\emptyset \& \psi) > 0;$$

$$K \vdash (\exists x^{\xi}) \emptyset \qquad \text{iff for some } c \in C_{\xi}, K \vdash \emptyset(x^{\xi}/c), \text{ for } \rho((\exists x^{\xi}) \emptyset) > 0;$$

$$K \vdash (\exists x) \emptyset \qquad \text{iff for some } c \in C, K \vdash \emptyset(x/c);$$

$$K \vdash c_{1} \in c_{2} \qquad \text{iff either (i) } \rho(c_{1}) < \rho(c_{2}) \text{ and } c_{2} \text{ is } \hat{x}^{\xi} \emptyset \text{ and}$$

$$K \vdash \emptyset(x^{\xi}/c_{1}), \text{ or (ii) for some } c_{3}, \rho(c_{3}) < \rho(c_{2})$$

$$\text{and } K \vdash ((\forall x^{\xi})(x^{\xi} \in c_{1} \leftrightarrow x^{\xi} \in c_{3}) \& c_{3} \in c_{2})$$

$$\text{where } \rho(c_{1}) = \xi + 1, \text{ and in either case } \rho(c_{1} \in c_{2}) > 0.$$

Let $|\emptyset|$ be the ordinal for the position of \emptyset in $<* \upharpoonright \{\psi | \psi \in \Pi_0 \text{ and } \rho(\psi) > 0\}$. Thus $\sup |\emptyset| \le \omega \cdot (\lambda + \beta)$. In order to refer to $|\emptyset|$ in $L_{\lambda+\beta}$, code $\omega \cdot (\lambda + \beta)$ into $\omega \times (\lambda + \beta)$ in the canonical way; we shall freely identify $|\emptyset|$ with the appropriate member of $\omega \times (\lambda + \beta)$. For $\eta < \lambda + \beta$ and \emptyset such that $\rho(\emptyset) > 0$, $|\emptyset| < \omega \cdot \eta$ iff $\rho(\emptyset) < \eta$. From right to left this is clear; if $|\emptyset| < \omega \cdot \eta$, then for some $k < \omega$, $|\emptyset| = \omega \cdot \rho(\emptyset) + k$; so $\omega \cdot \rho(\emptyset) < \omega \eta$; so $\rho(\emptyset) < \eta$.

Sublemma 2. Forcing restricted to $(\Sigma_n \cup \Pi_n)$ sentences is Δ_{n+1} over $L_{\lambda+\beta}$.

Let \Vdash be the characteristic function for forcing. We shall prove that $\Vdash \upharpoonright (K \times II_0) \in \Sigma_1(L_{\lambda+\beta})$. Because it is a function, it then belongs to $\Delta_1(L_{\lambda+\beta})$.

For $\omega \eta \leq \delta$, let $\Vdash_{\omega \eta} = \Vdash \upharpoonright (\mathbf{K}_{\omega \eta} \times \{\emptyset | \rho(\emptyset) = 0 \text{ or } |\emptyset| < \eta\})$. For $\delta \leq \eta < \lambda + \beta$ and $k < \omega$, let $\Vdash^{\omega \eta + k} = \Vdash \upharpoonright (\mathbf{K} \times \{\emptyset | |\emptyset| < \omega \eta + k \text{ or } \rho(\emptyset) = 0\})$. We shall find Σ_1 formulas $\Phi_1(f)$ and $\Phi_2(f, K, \emptyset, i)$ such that for $\omega \xi \leq \delta$:

- (12) if $\eta < \xi$, $\Vdash_{\omega\eta} \in L_{\omega\xi}$;
- (13) $L_{\omega\xi} \models \Phi_1(f)$ iff for some $\eta < \xi, f = \Vdash_{\omega\eta}$;
- (14) if ξ is a successor, $\Vdash_{\omega\xi}(K,\emptyset) = i$ iff

$$L_{\omega\xi} \models (\exists f)(\Phi_1(f) \& \Phi_2(f, K, \emptyset, i));$$

(15) if ξ is a limit, $\biguplus_{\omega \xi}(K, \emptyset) = i$ iff

$$L_{\omega\xi} \models (\exists f)(\Phi_1(f) \& f(K, \emptyset) = i).$$

We shall find a Σ_1 formula $\Phi_3(f)$ and for each $k < \omega$ a formula $\chi_k(f, K, \emptyset, i)$ such that:

- (16) for $k < \omega \Vdash^{\delta+k} (K, \emptyset) = i$ iff $L_{\delta} \models (\exists f)(\Phi_1(f) \& \chi_k(f, K, \emptyset, i))$; and for ξ such that $\delta < \xi \le \lambda + \beta$;
 - (17) for $\delta \leq \eta < \xi$ and $k < \omega$, $\vdash\vdash^{\omega \eta + k} \in L_{\xi}$;
 - (18) $L_{\xi} \models \Phi_3(f)$ iff for some η and $k, \delta \leq \eta < \xi$ and $k < \omega, f = \Vdash^{\omega \eta + k}$;
 - (19) for ξ such that $\delta < \xi < \lambda + \beta$ and $k < \omega$,

$$\Vdash^{\omega\xi+k}(K,\emptyset)=i \quad \text{iff } L_{\xi}\models (\exists f)(\Phi_3(f) \& \chi_k(f,K,\emptyset,i));$$

and finally for $\emptyset \in \Pi_0$;

$$(20) \Vdash (K, \emptyset) = i \text{ iff } L_{\lambda+\beta} \models (\exists f)(\Phi_3(f) \& \chi(f, K, \emptyset, i)).$$

As a first approximation to $\Phi_1(f)$, consider

(21) f is a function into 2 & $(\exists \eta)$ ($\omega \eta$ exists & $dom(f) = \mathbf{K}_{\omega \eta} \times \{\emptyset | |\emptyset| < \eta\}$ & $(\forall \langle K, \emptyset \rangle \in dom f)$:

(1)
$$\rho(\emptyset) = 0 \Rightarrow (f(K, \emptyset) = 1 \text{ iff } \emptyset \text{ is true}),$$

(2)
$$(\forall k \in \omega)$$
 $(\emptyset = \lceil \underline{B}_0(\underline{k}) \rceil \Rightarrow (f(K, \emptyset) = 1 \text{ iff } ...)),$

(6)
$$(\forall \psi \in \{\emptyset \mid 0 < |\emptyset| < \eta\})(\emptyset = \lceil \neg \psi \rceil \Rightarrow (f(K, \emptyset) = 1 \text{ iff } (\forall K')(K' \text{ extends } K \Rightarrow f(K', \psi) = 0))),$$

(8)
$$(\forall \xi) \ (\forall \psi \in \{\emptyset \mid |\emptyset| < \eta\})(\emptyset) = \lceil (\exists x^{\xi})\psi \rceil \Rightarrow (f(K, \emptyset)) = 1 \text{ iff } (\exists c \in C_{\xi}) \ (f(K, \psi(X^{\xi}/c)) = 1))))$$

$$\vdots).$$

What are the failings of (1)? The ' $(\forall \xi)$ ' in clause (8) is unrestricted. But for $|\emptyset| < \eta$, if $\emptyset = (\exists^{\xi} x)\psi$, $\xi \le \rho(\emptyset) \le |\emptyset| < \eta$. Thus it may be replaced by ' $(\forall \xi < \eta)$ '. More seriously, the quantifier over conditions in clause (6) is not only unrestricted within $L_{\omega\xi}$ for $\omega \xi \le \delta$, but if $\omega \xi < \delta$, its intended range includes more than $L_{\omega\xi}$. We shall show that in fact it may be replaced by ' $(\forall K' \in K_{\omega\eta})$ '. This shall require several facts about modified Steel conditions due, essentially, to Steel [10].

If x and y are modified Steel conditions and η is a limit ordinal, then x is an η -retag of y iff: dom(x) = dom(y); if $x(\sigma) < \eta$ then $x(\sigma) = y(\sigma)$; if $x(\sigma) \ge \eta$ then $y(\sigma) \ge \eta$. Notice that 'is an η -retag of' is symmetric.

RETAGGING LEMMA. Suppose that x, x' and y are modified Steel conditions, x' extends x, and $\xi < \eta$ are two limit ordinals. If y is an η -retag of x then some modified Steel condition y' extends y, and is a ξ -retag of x'.

PROOF. Let

$$r(\sigma) = \begin{cases} 0 & \text{if } x'(\sigma) < \xi, \\ 1 + \max\{r(\sigma \hat{j}) | \sigma \hat{j} \in \text{dom } x'\} & \text{otherwise.} \end{cases}$$

Clearly dom(r) = dom(x'), since dom(x') is finite and wellfounded under \prec , where $\sigma \prec \tau$ iff τ properly extends σ . Let

$$y'(\sigma) = \begin{cases} x'(\sigma) & \text{if } r(\sigma) = 0, \\ 1 + \max\{y'(\sigma^{\hat{}}j) \mid \sigma^{\hat{}}j \in \text{dom } x'\} & \text{if } r(\sigma) \neq 0 \text{ and } \sigma \notin \text{dom } y, \\ y(\sigma) & \text{otherwise.} \end{cases}$$

Clearly dom(y') = dom(x').

Claim. If $\sigma < \tau \in \text{dom}(y')$ then $y'(\sigma) > y'(\tau)$.

This is straightforward unless $\sigma \in \text{dom}(y)$ and $\tau \notin \text{dom}(y)$. Then, by induction on $r(\tau)$, $y'(\tau) \le x'(\tau)$. But $x'(\tau) < x'(\sigma) = x(\sigma)$. If $x(\sigma) < \eta$, $x(\sigma) = y(\sigma) = y'(\sigma)$, yielding $y'(\tau) < y'(\sigma)$. If $x(\sigma) \ge \eta$, $y'(\sigma) \ge \eta$. But by induction on $r(\tau)$, $y'(\tau) < \xi + \omega \le \eta$. So again $y'(\tau) < y'(\sigma)$. Thus y' is a modified Steel condition. Clearly y' is a ξ -retag of x'. Suppose $\sigma \in \text{dom}(y)$. If $r(\sigma) \ne 0$, $y'(\sigma) = y(\sigma)$. If $r(\sigma) = 0$, $y'(\sigma) = x'(\sigma) = x(\sigma) = y(\sigma)$ because $x(\sigma) < \xi < \eta$ and y is an η -retag of x. Thus y' extends y. Note that if $\eta \le \text{ht } y$, ht(y') = ht(y); if $\text{ht}(y) < \eta$, $\text{ht}(y') < \xi + \omega$.

COROLLARY 1. If x' and x are modified Steel conditions, x' extending x, and ξ is a limit ordinal, then there is a modified Steel condition y extending x such that y is a ξ -retag of x and $ht(y) < \max(ht(x) + \omega, \xi + \omega)$.

PROOF. Because x is a $(\xi + \omega)$ -retag of itself, the desired y exists by the retagging lemma and the concluding remark in its proof.

Let condition $\langle P, Q, x, y \rangle$ be a ξ -retag of $\langle P, Q, x', y' \rangle$ iff x and y are ξ -retags of x and y' respectively. The previous lemma and corollary remain true when modified Steel conditions are replaced by conditions.

COROLLARY 2. For $\emptyset \in II_0$ such that $|\emptyset| \le \xi$ or $\rho(\emptyset) = 0$ and K' an $\omega \cdot \xi$ -retag of $K: K \Vdash \emptyset$ iff $K' \Vdash \emptyset$.

PROOF. If $\rho(\emptyset) = 0$, this is trivial. We now induce on $|\emptyset|$. Clearly $K \Vdash \underline{B}_0(\underline{k})$ iff $K' \Vdash \underline{B}_0(\underline{k})$.

COROLLARY 3. For $K \in K_{\omega\xi}$ and \emptyset such that $|\emptyset| < \xi$, $K \Vdash \neg \emptyset$ iff for any $K' \in K_{\omega\xi}$, if K' extends K, $K' \not\Vdash \emptyset$.

PROOF. (\Rightarrow) is clear. (\Leftarrow) Suppose K^* extends K, $K^* \Vdash \emptyset$. By Corollary 1 there is a K' extending K, K' an $\omega \cdot |\emptyset|$ -retag of K^* , and $\operatorname{ht}(K^*) < \max(\operatorname{ht}(K) + \omega, \omega \cdot |\emptyset| + \omega) \le \omega \xi$. Thus $K^* \Vdash \emptyset$ by Corollary 2 and $K^* \in K_{\omega \xi}$. So the quantifier restriction in (*) (6) may be introduced.

We now construct Φ_2 . Let t be a Σ_1 term such that for any η , $L_{\omega(\eta+1)} \models t = \eta$. As a first approximation let $\Phi_2(f, K, \emptyset, i)$ be:

$$(|\emptyset| < t \& f(K,\emptyset) = i) \lor (|\emptyset| = t \& dom(f) = (\mathbf{K}_{\omega \cdot t} \times \{\emptyset | |\emptyset| < t\} \&$$

(1) $\rho(\emptyset) = 0 \Rightarrow (i = 1 \text{ iff } \emptyset \text{ is true})$

(2)
$$(\forall k \in \omega)(\emptyset = \lceil \underline{B}_0(\underline{k}) \rceil \Rightarrow (i = 1 \text{ iff } ...))$$

∵. ⁄~./

(6)
$$(\forall \phi \in \{\emptyset \mid |\emptyset| < t\})(\emptyset = \lceil \neg \phi \rceil \Rightarrow (i = 1 \text{ iff } (\forall K' \in \mathbf{K}_{\omega t})(f(K', \phi) = 0)))$$

:).

The arguments used in revising (*) show that for $|\emptyset| = \eta$,

$$L_{\omega(\eta+1)} \models \Phi_1(f) \& \Phi_2(f, K, \emptyset, i) \quad \text{iff } f = \Vdash_{\omega\eta} \text{ and } \Vdash_{\omega(\eta+1)}(K, \emptyset) = i.$$

We now prove (12)–(15) by simultaneous induction. (12) is vacuously true for $\xi=0$. For any ξ such that $\omega \xi \leq \delta$, if (12) is true, so is (13). Then so are (14) and (15). Thus $\Vdash_{\omega\xi} \in L_{\omega\xi+1}$, implying (12) for $\xi+1$. If ξ is a limit, (12) holds for ξ induction. Thus (12)–(15) are all true. Consequently $\Vdash_{\delta} \in \Sigma_1(L_{\delta})$ and thus $\Vdash_{\delta} \in L_{\delta+1}$. If $\delta=\lambda+\beta$, this proves Sublemma 2.

If $\delta < \lambda + \beta$, notice that $K \in L_{\delta+1} \subseteq L_{\lambda+\beta}$. $\Phi_3(f)$ may be taken to have the form:

$$(f = \Vdash_{\delta}) \lor (\exists \eta)(\exists k < \omega)(\delta \le \eta \& \operatorname{dom}(f) = K \times \{\emptyset \mid |\emptyset| < \omega \eta + k\} \& \Phi'(f)),$$

where the construction of Φ' is easy. Notice that the quantifier $(\forall K)$ in clause (6)

may be restricted to **K**. Let $\chi_0(f, K, \emptyset, i)$ be $f(k, \emptyset) = i$. Suppose χ_k has been constructed. Let $\chi_{k+1}(f, K, \emptyset, i)$ be

 \vdots $(5) \ (\forall \psi)(\emptyset = \lceil -\psi \rceil \Rightarrow (i = 1 \text{ iff } (\forall K' \text{ extending } K)(X_k(F, K', \psi, 0)))) \&$ $(6) \ (\forall \psi)(\forall \psi')(\emptyset = \lceil \psi \land \psi' \rceil \Rightarrow (i = 1 \text{ iff } (X_k(F, K, \psi, 1) \& (X_k(F, K, \psi', 1)))),$ \vdots

(16) is clear, using (13), yielding (17) for $\xi = \delta + 1$. Assume (17) for arbitrary ξ . By construction, (18) and (19) are true for ξ . Thus (17) is true for $\xi + 1$. If ξ is a limit and (17) is true for all $\xi' < \xi$, (17) is true for ξ . Thus (17)–(19) are true for all ξ such that $\delta < \xi \le \lambda + \beta$. So (20) is also true, proving that $\# \upharpoonright (\mathbf{K} \times \Pi_0) \in \Sigma_1(L_{\lambda+\beta})$. Sublemma 2 is proven.

Suppose $\langle K_i \rangle_{i \in \omega}$ is a Σ_n generic sequence, i.e. for each $i \in \omega$, K_{i+1} extends K_i and for every $\emptyset \in \Sigma_n$ there is an i such that K_i decides \emptyset . Where $K_i = \langle P_i, Q_i, X_i, y_i \rangle$, let $T_0 = \bigcup X_i$, $T_1 = \bigcup Y_i$, $T_2 = \bigcup Y_i$, $T_2 = \bigcup Y_i$, $T_3 = \bigcup Y_i$, T

SUBLEMMA 3. If $\sigma \in B_1$, for any ξ , $|\sigma|_{B_1} = \xi$ iff for some $i, x_i(\sigma) = \xi$.

Furthermore, the order type of $\langle B_1, \prec \rangle = \delta$. Similarly for C_1 and y_i . Proof by induction on $|\sigma|_{B_1}$. Suppose $|\sigma|_{B_1} = \xi$. For some $i, \sigma \in \text{dom}(x_i)$ and $K_i \Vdash "|\underline{\sigma}|_{\underline{B}_1} = \underline{\xi}"$. By the induction hypothesis (\Leftarrow) , $|\sigma|_{B_1} \le x_i(\sigma)$. So $x_i(\sigma) \ge \xi$. If $x(\sigma) > \xi$, let K = $\langle P_i, Q_i, x_i \cup \{\langle \sigma^{\hat{}} j, \xi \rangle\}, y_i \rangle$, for some j such that $\sigma^{\hat{}} j \notin \text{dom}(x_i)$, and form another generic sequence extending K and yielding \hat{B}_1 in place of B_1 . By choice of i and forcing = truth, $|\sigma|_{\hat{B}_1} = \xi$. But by the induction hypothesis (\Leftarrow), $|\sigma^{\hat{}}_1|_{\hat{B}_1} = \xi$. Contradiction. Thus $x_i(\sigma) = \xi$. Now suppose that $x_i(\sigma) = \xi$. If $|\sigma|_{\hat{B}_1} > \xi$, for some $j, \ \sigma \hat{j} \in B_1 \text{ and } |\sigma \hat{j}|_{\hat{B}_1} \geq \xi.$ By the induction hypothesis (\Rightarrow) there is an $i' \geq i$ such that $x_{i'}(\sigma^{\hat{}}j) \geq \xi$, which is impossible. If $\eta = |\sigma|_{B_1} < \xi$, select $i' \geq i$ such that K_i , \Vdash " $|\underline{\sigma}|_{\underline{B}_1} = \eta$ ". Where $K = \langle P_{i'}, Q_{i'}, x_i \cup \{\langle \sigma \hat{j}, \eta \rangle\}, y_{i'} \rangle$ for j such that $\sigma^{\hat{}} j \notin \text{dom } x_i$, form another generic sequence extending K and yielding \hat{B}_1 in place of B. By choice of i and forcing = truth, $|\sigma|_{\hat{B}_1} = \eta$. By the induction hypothesis (\Leftarrow) , $|\sigma^{\hat{}}j|_{\hat{B}_1} = \eta$. Contradiction. Thus $|\sigma|_{B_1} = \xi$. Suppose $\sup\{|\sigma|_{B_1}|\sigma \in B_1\} = \xi < \delta$. For some i, $K_i \Vdash \text{"sup}\{|\sigma|_{\underline{B}_1}|B_1(\sigma)\} = \underline{\xi}$ ". Let $K = \langle P_i, Q_i, x_i \cup \{\langle \langle j \rangle, \xi + 1 \rangle\}$, y_i for $\langle j \rangle \in \text{dom}(x_i)$. Form a generic sequence extending K and yielding \hat{B}_1 in place of B_1 . By forcing = truth, $\sup\{|\sigma|_{\hat{B}_1}|\ \sigma\in\hat{B}_1\}=\xi$. But by previous parts of this sublemma, $|\langle j \rangle|_{\hat{B}_1} = \xi + 1$. Contradiction. A symmetric argument applies to C_1 .

We now construct B and C. Let $\langle A_i \rangle_{i \in \omega}$ and $\langle \emptyset_i \rangle_{i \in \omega}$ be enumerations of $L_{\lambda} \cap 2^{\omega}$ and the Σ_n sentences of L, both members of $\Delta_{n+1}(L_{\lambda+\beta})$. Such enumerations exist by the corollary to the Fundamental Theorem. Define $\langle K_i \rangle_{i \in \omega} \in \Delta_{n+1}(L_{\lambda+\beta})$ by:

$$K_0 = \langle \text{id, id, } \wedge, \wedge \rangle;$$

 $K_{2i+1} = \text{the } \langle_L\text{-least condition extending } K_{2i} \text{ and deciding } \emptyset_i;$
 $K_{2i+2} = \langle P * A_i, Q * A_i, x, y \rangle \text{ where } K_{2i+1} = \langle P, Q, x, y \rangle.$

Letting $K_i = \langle P_i, Q_i, x_i, y_i \rangle$, let $B_0 = \bigcap_{i < \omega} [P_i]$, $C_0 = \bigcap_{i < \omega} [Q_i]$ and B_1 , C_1 , T_0 and T_1 as above. Let $B = B_0 \oplus B_1$ and $C = C_0 \oplus C_1$. By the standard argument, if $f \leq_{\top} B$ and $f \leq_{\top} C$, $f \in L_{\lambda+\beta}$, and so $f \in L_{\lambda}$. By the even stages of the construction, for any $f \in L_{\lambda}$, $f \leq_{\top} B_0$ and $f \leq_{\top} C_0$. Thus (1) is true. Because $\delta < \omega_1^{B_1}$ and $\delta < \omega_1^{C_1}$, (9) is true. Because $\langle K_i \rangle_{i \in \omega} \in \mathcal{L}_{n+1}(L_{\lambda+\beta})$, there is an M, a term-model copy of $L_{\beta}[B, \oplus C]$, such that the $Th_n(M) \in \mathcal{L}_{n+1}(L_{\lambda+\beta})$. Because $\mathcal{L}_{n+1}(L_{\lambda+\beta})$ contains a counting of the set of terms C, the preimage of ε_M under this counting is the desired $E_{\beta}[B \oplus C]$, verifying (8).

We now prove Lemma 2 for Case 3. Recall that $f \in \omega^{\omega} - L_{\lambda}$. The language L is as before. We now extend Sublemma 1 to this setting.

SUBLEMMA 4. $\emptyset(x^0, y^0) \in \Sigma_n$, $K \in K$. There are $k < \omega$ and K' extending K such that either $K' \models \neg (\exists y^0) \emptyset(\underline{k}, y^0)$ or for some $m \neq f(k)$, $K' \models \emptyset(\underline{k}, \underline{m})$.

PROOF. Suppose not. Then for any $k \in \omega$ and any K' extending K there is a K^* extending K' s.t. $K^* \Vdash (\exists y^0) \varnothing(\underline{k}, y^0)$, and for any such K', if $K' \Vdash \varnothing(\underline{k}, \underline{m})$ then f(k) = m. This gives us a Σ_n definition of f over $L_{\lambda+\beta}$. Thus $f \in \Delta_n(L_{\lambda+\beta})$. But $L_{\lambda+\beta} \models \Delta_n \text{CA}$. So $f \in L_{\lambda+\beta}$. Contradiction. Select such a k and K' and call them $k(K, \varnothing)$ and $K'(K, \varnothing)$ respectively.

We may now construct B and C. Let $\langle A_i \rangle_{i \in \omega}$ and $\langle \emptyset_i \rangle_{i \in \omega}$ enumerate $L_{\lambda} \cap 2^{\omega}$ and the Σ_n sentences of L. Let $\langle K_i \rangle_{i \in \omega}$ be such that:

 $K_0 = \langle id, id, \wedge, \wedge \rangle;$

 K_{3i+1} decides \emptyset_i ;

 $K_{3i+2}(P * A_i, Q * A_i, x, y)$ where the $K_{3i+1} = (P, Q, x, y)$;

 $K_{3i+3} = K_{3i+2}$ if \emptyset_i does not contain exactly the free variables x^0 and y^0 , $K'(K_{3i+2}, \emptyset_i)$ otherwise.

Form B_0 , B_1 , C_0 , C_1 , B, C from $\langle K_i \rangle_{i \in \omega}$ as before. As with Lemma 1, (1) and (9) are true. Suppose $f \in \mathcal{L}_n(L_{\beta}[B \oplus C])$. Then f is defined over $L_{\beta}[B \oplus C]$ by some $\emptyset_i(x^0, y^0)$. For some j, $K_j \vdash \emptyset_i(\underline{k}, \underline{f}(\underline{k}))$ where $k = k(K_{3i+2}, \emptyset_i)$. But either $K_i \vdash \neg (\exists y^0) \emptyset_i(\underline{k}, y^0)$ or $K_i \vdash \emptyset_i(\underline{k}, \underline{m})$ for $m \neq f(k)$. Contradiction. Thus (10) is also true.

Again we note that if $\underline{d} \leq \underline{0}^{(\lambda)}$, $(\underline{b}, \underline{c})$ could be constructed so that $(\underline{b} \vee \underline{c})^{(G(\lambda))} \leq \underline{0}^{(\lambda)}$, thus $(\underline{b} \vee \underline{c})^{(G(\lambda))} = \underline{0}^{(\lambda)}$ by Lemma 3.

We now turn to Lemma 3. Suppose that (\underline{b}, c) is I_{λ} -exact, $B \in \underline{b}$ and $C \in \underline{c}$. Let $J(\lambda) = \omega \gamma$. In Cases 1 and 2 we want to construct a real $\operatorname{Th}_{F(J(\lambda))}(E_{\gamma})$ which is recursive in $(B \oplus C)^{(G(\lambda))}$. By an easy modification of Definition 8 from [1], there is an operator * on $2^{\omega} \times \omega$ such that (i) $(X, y)^* \leq_{\top} X^{(\omega)}$ uniformly in y, and (ii) for any E_{ξ} and $b \in \omega$ such that for no $x \in \operatorname{Fld}(E_{\xi})$, $(x)_1 = b$, $(\operatorname{Th}_0(E_{\xi}), b)^* = \operatorname{Th}_0(E_{\xi+1})$ for an $E_{\xi+1}$ extending E_{ξ} . We also note that the relation $X = Y^{(\omega)}$ is II_1^0 over II_2^0 over II

Case 1.1. $F(\lambda) = 0$ and $G(\lambda) = 2$. If $\gamma = \gamma' + 1$, γ' is an L-index for otherwise λ falls under Case 3. Applying the corollary to the Fundamental Theorem to γ' , there is a real $\operatorname{Th}_0(E_{\gamma'}) \in L_{\gamma}$. $E_{\gamma'}$ may be chosen so that for any $x \in \operatorname{Fld}(E_{\gamma'})$, $(x)_1 \neq 0$. Let $\operatorname{Th}_0(E_{\gamma}) = (\operatorname{Th}_0(E_{\gamma'}), 0)^* \leq_{\top} \operatorname{Th}_0(E_{\gamma'})^{(\omega)}$. By results in [4], $(B \oplus C)^{(2)}$ can compute a nice parametrization of $L_{\gamma} \cap \omega^{\omega}$. Thus $\operatorname{Th}_0(E_{\gamma'})^{(\omega)} \leq_{\top} (B \oplus C)^{(2)}$.

Now suppose that γ is a limit. Select a $\gamma' < \gamma$ such that $[\gamma', \gamma)$ contains no M-gaps. As before, select a real $Th_0(E_{\gamma'}) \in L_{\gamma'+1}$. By choice of γ' , there is a linear

system of notation $R \in L_{\gamma'+1}$ of height $(\gamma - \gamma')$. Working over L_{γ} we construct a sequence $\langle Th_0(E_x) \rangle_{x \in Fld(R)}$, each E_x is an $E_{|x|_R}$, as follows.

$$Th_{0}(E_{x}) = \begin{cases} Th_{0}(E_{\gamma'}) & \text{if } |x|_{R} = 0; \\ (Th_{0}(E_{y}), y)^{*} & \text{if } |x|_{R} = |y|_{R} + 1; \\ \bigcup_{y < R} Th_{0}(E_{y}) & \text{if } |x|_{R} \text{ is a limit.} \end{cases}$$

$$Th_{0}(E_{\gamma}) = \bigcup_{x \in Fld(R)} Th_{0}(E_{x}).$$

To show that $Th_0(E_r) \leq_T (B \oplus C)^{(2)}$, we introduce another such sequence.

$$H_{x}(R) = \begin{cases} \operatorname{Th}_{0}(E_{\gamma'}) & \text{if } |x|_{R} = 0, \\ H_{y}(R)^{(\omega)} & \text{if } |x|_{R} = |y|_{R} + 1, \\ \{\langle y, z \rangle \mid z \in H_{y}(R) \& y <_{R} x\}. \end{cases}$$

$$H(R) = \{\langle x, z \rangle \mid z \in H_{x}(R) \& x \in \operatorname{Fld}(R)\}.$$

By induction along R, $\operatorname{Th}_0(E_x) \leq_\top H_x(R)$ uniformly in x and $H_x(R) \in L_\gamma$ for each $x \in \operatorname{Fld}(R)$. Thus $\operatorname{Th}_0(E_\gamma) \leq_\top H(R)$ and $H(R) \in \Delta^1_{\operatorname{I}}(L_\gamma \cap \omega^\omega)$. Again because $(B \oplus C)^{(2)}$ computes a nice parametrization of $L_\gamma \cap \omega^\omega$, $H(R) \leq_\top (B \oplus C)^{(2)}$.

Case 1.2. $\lambda = \gamma$, $F(\lambda) = 1$ and $G(\lambda) = 3$. We use the previous argument with a twist. Let $\gamma' < \gamma$ be maximum such that γ' is admissible or a limit of admissibles. L_{λ} contains no system of notation for λ . But because $(B \oplus C)^{(2)}$ computes a nice parametrization of $L_{\lambda} \cap \omega^{\omega}$, there is a linear system of notation R of $\lambda = \lambda - \gamma'$ such that $H(R) \leq_{\top} (B \oplus C)^{(2)}$ and each initial segment of R belongs to L_{λ} . This follows from Theorem 2 of [4], replacing the ordinary jump by the ω -jump. Select $\text{Th}_0(E_{\gamma'}) \in L_{\gamma'+1}$ and construct $\langle \text{Th}_0(E_x) \rangle_{x \in \text{Fld}(R)}$ and $\text{Th}_0(E_{\lambda})$ as before, with E_x an $E_{\gamma'+|x|_R}$. Again $\text{Th}_0(E_{\lambda}) \leq_{\top} H(R) \leq_{\top} (B \oplus C)^{(2)}$. But then $\text{Th}_1(E_{\lambda}) \leq_{\top} \text{Th}_0(E_{\lambda})' \leq_{\top} (B \oplus C)^{(3)}$.

Case 2. $\lambda = \gamma$. Let $F(\lambda) = n$, $G(\lambda) = n + 3$. Again, by a slight revision of Theorem 3 of [4], we may select a linear system of notation R for λ , such that $H(R) \leq_{\top} (B \oplus C)^{(3)}$. Select $\text{Th}_0(E_0) \in L_1$. We construct $\langle \text{Th}_0(E_x) \rangle$, with E_x an $E_{|x|_R}$, and $\text{Th}_0(E_\lambda)$ as before. Again $\text{Th}_0(E_\lambda) \leq_{\top} H(R)$. Thus $\text{Th}_n(E_\lambda) \leq_{\top} \text{Th}_0(E_\lambda)^{(n)} \leq_{\top} (B \oplus C)^{(G(\lambda))}$.

Case 3. $\lambda = \gamma$, $F(\lambda) = G(\lambda) = \omega\beta + n$. The argument divides into two subcases. Suppose $\beta < \lambda + \beta$. Thus $\beta < \omega\lambda$, $\operatorname{Ind}^{(\underline{b}\vee c)}(G(\lambda)) = G(\lambda)$. We wish to find an $E_{\lambda+\beta}$ such that $\operatorname{Th}_n(E_{\lambda+\beta}) \in \mathcal{L}_{n+1}(L_{\beta}[B \oplus C])$. By the argument for Case 2, there is a real $\operatorname{Th}_0(E_{\lambda}) \leq_{\top} (B \oplus C)^{(3)}$, and so belonging to $L_1[B \oplus C]$. Let R be a linear system of notation for β such that $R \leq_{\top} (B \oplus C)^{(3)}$ and all initial segments of R belong to L_{λ} . Within $L_{\beta}[B \oplus C]$ we construct a sequence $\langle \operatorname{Th}_0(E_{\lambda}) \rangle_{x \in \operatorname{Fld}(R)}$ starting with $\operatorname{Th}_0(E_x)$ and such that E_x is an $E_{\lambda+|x|_R}$. $\operatorname{Th}_0(E_{\lambda+\beta}) = \bigcup_{x \in \operatorname{Fld}(R)} \operatorname{Th}_0(E_x)$ as before; so $\operatorname{Th}_0(E_{\lambda+\beta}) \leq_{\top} H(R)$. $H(R) \in \mathcal{L}_1(L_{\beta}[B \oplus C])$; so $H(R)^{(n)} \in \mathcal{L}_{n+1}(L_{\beta}[B \oplus C])$ and $\operatorname{Th}_n(E_{\lambda+\beta}) \leq_{\top} \operatorname{Th}_0(E_{\lambda+\beta})^{(n)} \leq_{\top} H(R)^{(n)}$.

Now suppose that $\beta = \lambda + \beta$. Let $\operatorname{Ind}^{(b \vee c)}(G(\lambda)) \omega \cdot \delta + m$. The strategy used up to now is no longer available, for we cannot count on there being a system of

notation for β belonging to $L_1[B \oplus C]$. Let $\hat{L} = \{\langle \xi, x \rangle \mid x \in L_{\xi+1} - L_{\xi} \text{ for } \xi < \lambda + \beta \}$ and let $\langle \xi, x \rangle \in \langle \eta, y \rangle$ iff $x \in y$. Thus $\langle \hat{L}, \hat{\epsilon} \upharpoonright (\hat{L} \times \hat{L}) \rangle$ is isomorphic to $\langle L_{\lambda+\beta}, \epsilon \rangle$ and $\hat{L} \in \mathcal{L}_1(L_{\beta}[B \oplus C])$. Select $\operatorname{Th}_m(E_{\delta}[B \oplus C]) \in (\underline{b} \vee \underline{c})^{(G(\lambda))}$. Let $E_{\lambda+\beta}$ be the copy within $E_{\delta}[B \oplus C]$ of $\langle \hat{L}, \hat{\epsilon} \upharpoonright (\hat{L} \times \hat{L}) \rangle$. Because $\omega \beta + n \leq \omega \delta + m$, $\operatorname{Th}_n(E_{\lambda+\beta}) \leq_{\top} \operatorname{Th}_m(E_{\delta}[B \oplus C])$.

§3. Defining $\lambda \xi . \underline{0}^{(\xi)}$ inductively. $\lambda \xi . \underline{0}^{(\xi)}$ has been defined set-theoretically. In [6] $(\lambda \xi . \underline{0}^{(\xi)}) \upharpoonright \beta_0$ is shown to have a sort of degree-theoretic inductive definition over $\langle \mathcal{D}; \leq , ' \rangle$; viz. there is a sequence of formulae $\langle \psi_i(x) \rangle_{i < \omega}$ in the language of $\langle \mathcal{D}; \leq , ', I \rangle$ such that for any $\lambda < \beta_0$ there is an i such that $\langle \mathcal{D}; \leq , ', I_{\lambda} \rangle \models (\exists x) \psi_i(x)$ and for the least such $i, \langle \mathcal{D}; \leq , ', I_{\lambda} \rangle \models \underline{0}^{(\lambda)} = (^{\jmath}x) \psi_i(x)$. Allowing the appearance of $\lambda \underline{a} . \underline{a}^{(\xi)}$ for $\xi < \beta_0$ in the structure, we can bootstrap up to a larger initial segment of $\lambda \xi . \underline{0}^{(\xi)}$. How far may this be iterated? We define a sequence of suchinitial segments $\langle d_i \rangle_{i \leq \omega}$ as follows.

Given any partial function d on ordinals, let $dom^*(d)$ be the maximal initial segment of the ordinals on which d is defined.

 $d_0(n) = Q^{(n)}$ for $n \in \omega$.

 $d_{i+1}(\lambda)$ = the least member of $\{d_i^a(\mu_\lambda) \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}\}\$ if for every $I_{\lambda}\text{-exact} \ \underline{a}, \ \mu_{\lambda} \in \text{dom}^*(d_i^a)$; undefined, otherwise;

$$d_{i+1}(\lambda + n) = d_{i+1}(\lambda)^{(n)}.$$

 $d_{\omega}(\lambda)$ = the least member of $\{d_i^a(\mu_{\lambda}) \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}, i \in \omega\}$ if there is an $i \in \omega$ such that for every $I_{\lambda}\text{-exact }\underline{a}, \mu_{\lambda} \in \text{dom}(d_i^{(\underline{a})})$;

$$d_{\omega}(\lambda + n) = d_{\omega}(\lambda)^{(n)}$$
.

Notice that $d_{i+1}(\lambda) = \max\{\underline{d} \mid \text{ for any } I_{\lambda}\text{-exact }\underline{a}, \underline{d} \leq d_i^{\underline{a}}(\mu_{\lambda})\}$, under the above conditions for definition. So the definition of d_1 in terms of d_0 coincides with the inductive degree-theoretic definition of $\lambda \xi < \beta_0.0^{(\xi)}$ provided in [6].

 α is a local \aleph_{ξ} iff $L_{\alpha+1} \models \alpha = \aleph_{\xi}$. Let δ_{ξ} be the least local \aleph_{ξ} . Let $\delta_{<\omega}$ be the least α such that $L_{\alpha} \models (\forall n \in \omega)$ (\aleph_n exists). Note that $\sup\{\delta_n \mid n \in \omega\} < \delta_{<\omega} < \delta_{\omega}$. For $n \geq 1$, let λ_n be that λ such that $L_{\delta_n+1} \models \lambda = \aleph_1$. Let λ_{ω} be that λ such that $L_{\delta_{<\omega}} \models \lambda = \aleph_1$. Again, $\lambda_{\omega} < \lambda$ for that λ such that $L_{\delta_{\omega}} \models \lambda = \aleph_1$.

THEOREM 4. For $\xi \leq \omega$, dom* $(d_{\xi}) = \lambda_{\xi}$.

This approach to defining $Q^{(\lambda)}$ in terms of I_{λ} stops at λ_{ω} . This follows from the following.

THEOREM 5. There is an $I_{\lambda_{\omega}}$ -exact \underline{a} such that $d_{\omega}^{a}(\mu_{\lambda_{\omega}})$ is undefined. Thus if $d_{\omega+1}$ is defined in terms of d_{ω} just as d_{i+1} is defined in terms of d_{i} , then $\mathrm{dom}^{*}(d_{\omega+1}) = \lambda_{\omega}$. We simultaneously prove Theorem 4 and the following lemma.

Lemma 4. Suppose that $[\lambda, \lambda + \alpha)$ is a maximal L-gap. $[\lambda, \lambda + \alpha)$ contains a local \mathbf{x}_{i+1} iff for the some I_{λ} -exact \underline{a} , $\mu_{\lambda} \notin \mathrm{dom}^*(d_i^a)$.

PROOF. $\lambda_0 = \omega$. Thus for $\xi = 0$, Theorem 4 is trivial. For i = 0, by results from §2, both sides of the biconditional in Lemma 4 are true. $\lambda_1 = \beta_0$. By results in §2, for $\xi = 1$, Theorem 4 follows. Suppose $1 < \xi < \omega$ and $\xi = i + 1$. We assume as our induction hypothesis that for any α , dom* $(d_i^{\alpha}) = \lambda_i^{\alpha}$. This is legitimate because this proof, though presented relative to α , may be relativized to any degree. In what follows, we write $\alpha = 1$.

We first prove Lemma 4 for i as above. (\Leftarrow). Let \underline{a} be I_{λ} -exact, $\mu_{\lambda} \notin \text{dom}^*(d_{i}^{\underline{a}})$. By induction hypothesis relativized to \underline{a} , dom* $(d_{i}^{\underline{a}}) = \lambda_{i}^{\underline{a}}$. So $\mu_{\lambda} \geq \lambda_{i}^{\underline{a}}$.

Claim. $\delta^{\alpha}_{i} \in [\lambda, \lambda + \alpha)$.

First we show that $\lambda_i^a \leq \lambda + \alpha$. If $\lambda + \alpha < \lambda_i^a$, then $\alpha < \lambda_i^a$; so $\omega \alpha < \omega \lambda_i^a = \lambda_i^a$. For some $n, \in \omega$, $\mu_{\lambda} = \omega \alpha + n$ and λ_i^a is a limit; so $\mu_{\lambda} < \lambda_i^a$. Now we show that $\delta_i^a < \lambda + \alpha$. Suppose $\lambda + \alpha \leq \delta_i^a$. $\lambda + \alpha$ is an L-index. But $(L^a, \delta_i^a) \models \mathbb{Z}F^-$; thus $(L, \delta_i^a) \models \mathbb{Z}F^-$. So δ_i^a is not an L-index. Thus $\lambda_i^a < \lambda + \beta < \delta_i^a$. $L_{\lambda + \alpha + 1}$ contains a wellordering of height $\lambda + \alpha$. So does $(L^a, \lambda + \alpha + 1)$. But $[\lambda_i^a, \delta_i^a + 1)$ is an L^a -gap. Contradiction. Therefore $\delta_i^a < \lambda + \alpha$.

Claim. $[\lambda, \delta_i^a + 1)$ contains a local \aleph_{i+1} . Let $\alpha_1, \ldots, \alpha_{i-1}$, be such that:

$$(L^a, \delta^a_i + 1) \models \alpha_1 = \aleph_1 \& \cdots \& \alpha_{i-1} = \aleph_{i-1} \& \delta^a_i = \aleph_i.$$

Thus

$$(L, \delta_i^a + 1) \models \lambda = \aleph_1 \& \alpha_1 \geq \aleph_2 \& \cdots \& \alpha_{i-1} \geq \aleph_i \& \delta_i^a \geq \aleph_{i+1}.$$

Thus $[\lambda, \lambda + \alpha)$ contains a local \aleph_{i+1} .

(⇒). Suppose that [λ, λ + α) contains a local $β_{i+1}$. Thus there are $α_1, ..., α_i ∈ [λ, λ + α)$ such that

$$L_{\alpha_i+1} \models \lambda = \aleph_1 \& \alpha_1 = \aleph_2 \& \cdots \& \alpha_i = \aleph_{i+1}.$$

Clearly $\lambda + \alpha_1 = \alpha_1$. We construct an I_{λ} -exact pair $(\underline{b}, \underline{c})$ such that $\lambda_i^{(\underline{b}\vee\underline{c})} \leq \mu_{\lambda}$. By the induction hypothesis, $\lambda_i^{(\underline{b}\vee\underline{c})} = \mathrm{dom}^*(d_i^{(\underline{b}\vee\underline{c})})$. So this suffices. We construct B and $C \in 2^{\omega}$ such that $\underline{b} = \mathrm{deg}(B)$ and $\underline{c} = \mathrm{deg}(C)$. Let conditions be as in the proof of Lemmas 1 and 2 under Cases 1 and 2. Let the forcing language L be $L_{\alpha_i+1}[\underline{B},C]$. Let $\langle (P_j,Q_j)\rangle_{j\in\omega}$ be a sequence of conditions such that

 $P_0 = Q_0 = \mathrm{id};$

 (P_{2i+1}, Q_{2i+1}) extends (P_{2i}, Q_{2i}) and decides \emptyset_i ;

 $(P_{2i+2}, Q_{2i+2}) = (P_{2i+1} * A_i, Q_{2i+1} * A_i);$

where $\langle \emptyset_i \rangle_{i \in \omega}$ and $\langle A_i \rangle_{i \in \omega}$ are enumerations of the sentences of L and of $L_{\lambda} \cap 2^{\omega}$ respectively. Let $(B, C) = \bigcap_{j} [P_j, Q_j]$. $\lambda \leq \omega_1^{(B \oplus C)}$. By the standard argument, all cardinals of L_{α_i+1} except for \aleph_1 are preserved.

$$L_{\alpha_i+1}[B \oplus C] \models \alpha_1 = \aleph_1 \& \cdots \& \alpha_i = \aleph_i.$$

Thus $\alpha_i \geq \delta_i^{(\underline{b}\vee c)}$. So $\lambda_i^{(\underline{b}\vee c)} \leq \alpha_1 < \alpha \leq \omega\alpha \leq \mu_{\lambda}$. Thus Lemma 4 is proved for this choice of *i*.

We now prove that $\text{dom}^*(d_{i+1}) = \lambda_{i+1}$. If $\lambda < \lambda_{i+1}$, λ does not start an L-gap containing a local \aleph_{i+1} . By Lemma 4, for any \underline{a} which is I_{λ} -exact, $\mu_{\lambda} \in \text{dom}^*(d_i^{\underline{a}})$. Thus $d_{i+1}(\lambda)$ is defined. λ_{i+1} starts an L-gap containing a local \aleph_{i+1} . By Lemma 4, $d_{i+1}(\lambda_{i+1})$ is undefined.

Finally, suppose $\xi = \omega$. If $\lambda < \lambda_{\omega}$, for some $i \in \omega$, λ does not start an L-gap containing a local \aleph_{i+1} . By Lemma 4, for any I_{λ} -exact \underline{a} , $\mu_{\lambda} \in \text{dom}^*(d_i^{\underline{a}})$. Thus $d_{\omega}(\lambda)$ is defined. λ_{ω} starts an L-gap containing a local \aleph_{i+1} for every $i \in \omega$. Thus for any $i \in \omega$ there is an $I_{\lambda_{\omega}}$ -exact \underline{a} such that $\mu_{\lambda_{\omega}} \notin \text{dom}^*(d_i^{\underline{a}})$. Thus $d_{\omega}(\lambda_{\omega})$ is undefined.

PROOF OF THEOREM 5. Let $\langle \alpha_i \rangle_{i \in \omega}$ be such that for all $i \in \omega$, $(L, \delta_{<\omega}) \models \alpha_i = \aleph_{i+1}$. It suffices to construct $(\underline{b}, \underline{c})$ $I_{\lambda_{\omega}}$ -exact such that $\alpha_1 = \lambda_{\omega}^{(\underline{b} \vee \underline{c})}$. Because $\mu_{\lambda_{\omega}} > \omega \alpha_1 = \alpha_1$, by Theorem 4, $\mu_{\lambda_{\omega}} \notin \text{dom}^*(d_{\omega}^{(\underline{b} \vee \underline{c})})$. Thus $d_{\omega+1}(\lambda_{\omega})$ is undefined. As in the proof of Lemma 4 (\Rightarrow) , we construct $(\underline{b}, \underline{c})$ such that for all $i \in \omega$, $(L^{(\underline{b} \vee \underline{c})}, \delta_{<\omega}) \models \alpha_i = \aleph_i$. Thus $\delta_{<\omega} = \delta_{<\omega}^{(\underline{b} \vee \underline{c})}$. So $\alpha_1 = \lambda_{\omega}^{(\underline{b} \vee \underline{c})}$.

Let A_n , for $n < \omega$, be *n*th-order number theory, i.e. Peano's axioms set in an *n*th order language, where variables of order i, $1 \le i \le n$, range over sets of type i-1. Let $A_\omega = \bigcup_n A_n$, in the language with variables of all finite orders. A_2 is analysis. For $\xi \le \omega$, we imitate the construction of the ramified analytical hierarchy. A structure for A_ξ has the form $\langle\langle U_i \rangle_{1 \le i < \xi}; +, \cdot, S; 0 \rangle$ where $U_0 = \omega$ and $U_{j+1} \subseteq P(U_j)$; variables of order j+1 range over U_j . Let M_0^ξ be the structure for A_ξ with all U_j 's, for $j \ne 0$, empty. Form the transfinite sequence $\langle M_{\eta/\eta}^\xi \rangle_{\eta}$ by iterating closure under definability in the language of A_ξ . This hierarchy stops. Let the final structure be M^ξ with domains $\langle U_i^\xi \rangle_{1 \le i < \eta}$; let the closure ordinal be γ_ξ . Then $M^\xi \models A_\xi$. Let A_ξ^ξ be A_ξ translated into the language of set theory. $L_{\delta_n} \cap P^n(\omega)$ and $L_{\delta_{<\omega}} \cap P^n(\omega)$ are, respectively, the minimal models for A_{n+1}^* and A_ω^* in which wellfoundedness is absolute. Thus $U_{i+1}^n = (L, \delta_n) \cap P^i(\omega)$; $U_i^\omega = (L, \delta_{<\omega}) \cap P^i(\omega)$ where U_i^{n+1} , U_i^ω are from M_i^{n+1} , M_i^ω respectively. Thus for any $n < \omega$, $\gamma_n = \delta_{n-1}$; furthermore, $\gamma_\omega = \delta_{<\omega}$. Let $I^\xi = \lambda_\xi$ for $\xi \le \omega$. By Theorem 4, $\bigcup I_\xi \cap 2^\omega = U_1^\xi$. Thus d_ξ classifies the degrees of reals in M^ξ .

§4. Comparison with the single jump operation. How similar is the single jump operation $a \mapsto a'$ to an arbitrary operation of the form $a \mapsto a^{(\xi)}$ for $\xi < (\aleph_1)^{La}$? In this section we examine an analogy and a striking disanalogy. As usual, all results are stated for a = 0, but easily generalize to arbitrary a.

The analogy: Friedberg's completeness theorem $((\forall \underline{a} \geq \underline{0}')(\exists \underline{c})(\underline{a} = \underline{c}'))$ generalizes to arbitrary transfinite jumps:

THEOREM 6. For any $\xi < (\aleph_1)^L$ and any a, if $a \ge 0^{(\xi)}$ then there is a c such that $a = c^{(\xi)}$.

The disanalogy: the trivial fact that $Q' \leq \underline{a}'$ does not generalize in the most straightforward way.

THEOREM 7. For any $\xi < (\aleph_1)^L$ and any \underline{a} , $\underline{0}^{(\xi)} \leq \underline{a}^{(\operatorname{Ind}(\xi))}$.

THEOREM 8. For any $\xi < (\aleph_1)^L$ there is a \underline{b} such that $\underline{0}^{(\xi)} = \underline{b}^{(\operatorname{Ind}(\xi))}$.

Before we present proofs, notice that if $\xi + \eta < (\aleph_1)^L$, $Q^{(\xi)(\eta)} = Q^{(\xi+\eta)}$. This follows by an easy induction on η .

PROOF OF THEOREM 6. Suppose $\underline{a} \geq \underline{0}^{(\xi)}$. If $\xi = \alpha + 1$, by the relativization of Friedberg's theorem to $\underline{0}^{(\alpha)}$, there is a $\underline{d} \geq \underline{0}^{(\alpha)}$, $\underline{d}' = \underline{a}$. By the induction hypothesis on α , there is a \underline{c} such that $\underline{d} = \underline{c}^{(\alpha)}$. Thus $\underline{d}' = \underline{c}^{(\alpha+1)} = \underline{a}$.

Suppose that ξ is a limit ordinal. By analogy with Friedberg's argument, we construct a c such that $c^{(\xi)} \leq a \leq c \vee 0^{(\xi)} \leq c^{(\xi)}$. Clearly such a c is as desired. Suppose $\operatorname{Ind}(\xi) = \omega \beta + n$ and $A \in a$. Let the forcing language L be $L_{\beta}[C]$. Let $\langle \phi_i \rangle_{i \in \omega}$ be a $\Delta_{n+1}(L_{\beta})$ enumeration of the $\Sigma_n \cup \Pi_n$ sentences of L. We shall force with Cohen condition, viewed as finite strings of 0 and 1. There is a sequence of Cohen conditions $\langle \sigma_i \rangle_{i \in \omega} \in \Delta_{n+1}(L_{\beta})$ such that for every i:

```
\sigma_{i+1} extends \sigma_i; \sigma_{2i} decides \phi_i;
```

 $\sigma_{2i+1} = \sigma_{2i} \hat{A}(i).$

Let $C = \lim_{i \to \omega} \sigma_i$; let $c = \deg(C)$. For any E_{β} , $\langle \sigma_i \rangle_{i \in \omega}$ is coded by a single real recursive in $\operatorname{Th}_n(E_{\beta}) \oplus A$. Select E_{β} such that $\operatorname{Th}_n(E_{\beta}) \in \mathbb{Q}^{(\xi)}$. Because $\operatorname{Th}_n(E_{\beta}) \leq_{\top} A$, $C \leq_{\top} A$. Because the even steps are determined only by $\operatorname{Th}_n(E_{\beta})$ and A is coded into C at the odd steps, $A \leq_{\top} C \oplus \operatorname{Th}_n(E_{\beta})$. Thus $c^{(\xi)} \leq a \leq c \vee \mathbb{Q}^{(\xi)}$. Finally

because all conditions belong to L_0 , for any $\eta \leq \beta$ and any m, $L_{\eta} \models \Delta_m$ CA iff $L_{\eta}[C] \models \Delta_m$ CA. Thus for any $\eta \leq \xi$, $Q^{(\eta)} \leq Q^{(\eta)}$. Therefore $Q \vee Q^{(\xi)} \leq Q^{(\xi)}$. Q.E.D.

PROOF OF THEOREM 7. Suppose $\xi = \gamma + 1$. By induction hypothesis, $\underline{0}^{(\gamma)} \leq \underline{a}^{(\operatorname{Ind}(\gamma))}$. Thus $\underline{0}^{(\gamma+1)} \leq \underline{a}^{(\operatorname{Ind}(\gamma)+1)}$. But $\operatorname{Ind}(\xi) = \operatorname{Ind}(\gamma) + 1$. Suppose ξ is a limit. Let $\operatorname{Ind}(\xi) = \omega\beta + n$; let $\operatorname{Ind}^a(\operatorname{Ind}(\xi)) = \omega\alpha + m \geq \omega\beta + n$. Let $A \in \underline{a}$. By the procedure used in the proof of Lemma 3, Case 3, in the final paragraph, there is a uniform way of obtaining an E_β from any $E_\alpha[A]$ such that $\operatorname{Th}_n(E_\beta) \leq^\top \operatorname{Th}_m(E_\alpha[A])$. This suffices.

PROOF OF THEOREM 8. If $\operatorname{Ind}(\xi) = \xi$, Theorem 8 is trivial. So suppose $\operatorname{Ind}(\xi) > \xi$. It suffices to construct a \underline{b} such that $\underline{b}^{(\operatorname{Ind}(\xi))} \leq \underline{0}^{(\xi)}$. Let $\operatorname{Ind}(\xi) = \omega \alpha + n$. Let L be $L_{\alpha}[B]$. Let δ be the maximum ordinal $\leq \alpha$ which is admissible or a limit of admissibles. We force with modified Steel conditions, with ordinal labels $<\delta$. Let $\langle \phi_i \rangle_{i \in \omega} \in \mathcal{L}_{n+1}(L_{\alpha})$ enumerate the $(\Sigma_n \cup II_n)$ sentences of L. Let $\langle z_i \rangle_{i \in \omega} \in \mathcal{L}_{n+1}(L_{\alpha})$ be a sequence of modified Steel conditions such that for any i, z_{i+1} extends z_i and z_i decides ϕ_i . By the standard construction, such a sequence exists. Let B be the extension of B determined by this sequence. Let $B = \deg(B)$. Because $\langle z_i \rangle_{i \in \omega} \in \mathcal{L}_{n+1}(L_{\alpha})$, for any E_{α} there is an $E_{\alpha}[B]$ such that $\operatorname{Th}_n(E_{\alpha}[B]) \leq_{\top} \operatorname{Th}_n(E_{\alpha})$. Select E_{α} such that $\operatorname{Th}_n(E_{\alpha}) \in \mathbb{Q}^{(\xi)}$; let $E_{\alpha}[B]$ be determined by E_{α} . As in the proof of Lemmas 1 and 2 under Case 3, B is a wellfounded tree of sequence numbers of height δ . Thus $\operatorname{Ind}(\xi) < \omega^B$. Thus $\operatorname{\underline{b}}^{(\omega \alpha + n)} \leq \operatorname{deg}(\operatorname{Th}_n(E_{\alpha}[B]))$.

We finish this section with an application of Theorem 6.

COROLLARY. For any λ , $\{\underline{d} \mid \underline{d} \geq \underline{0}^{(\lambda)}\} = \{\underline{a}^{(\mu_{\lambda})} \mid \underline{a} \text{ is } I_{\lambda}\text{-exact}\}.$

PROOF. Let $(\underline{b}, \underline{c})$ be an I_{λ} -exact pair such that $(\underline{b} \vee \underline{c})^{(\mu_{\lambda})} \geq \underline{0}^{(\lambda)}$. Suppose $\underline{d} \geq \underline{0}^{(\lambda)}$. By Theorem 6, for some $\underline{d}^* \geq (\underline{b} \vee \underline{c})^{(2)}$, $(\underline{d}^*)^{(-2+\mu_{\lambda})} = \underline{d}$. By (J) of [4, §2], for some I_{λ} -exact pair $(\underline{b}^*, \underline{c}^*)$, $(\underline{b}^* \vee \underline{c}^*)^{(2)} = d^*$. The other direction is just Lemma 3.

BIBLIOGRAPHY

- [1] G. Boolos and H. Putnam, Degrees of unsolvability of constructible sets of integers, this Journal, vol. 33 (1968), pp. 497-513.
- [2] R. BOYD, G. HENSEL and H. PUTNAM, A recursion-theoretic characterization of the ramified analytical hierarchy, Transactions of the American Mathematical Society, vol. 141 (1969), pp. 47-62.
 - [3] P. COHEN, Set theory and the continuum hypothesis, Benjamin, New York, 1966.
- [4] H. Hodes, Uniform upper bounds on ideals of Turing degrees, this Journal, vol. 43 (1978), pp. 601-612.
- [5] R. Jensen, The fine structure of the constructible universe, Annals of Mathematical Logic, vol. 8 (1972), pp. 1-32.
- [6] C. JOCKUSCH and S. SIMPSON, A degree-theoretic characterization of the ramified analytical hierarchy, Annals of Mathematical Logic, vol. 10 (1976).
- [7] S. LEEDS and H. PUTNAM, An intrinsic characterization of the hierarchy of the constructible sets of integers, Logic Colloquium '69, North-Holland, Amsterdam and London, 1971.
- [8] W. MARAK and M. SREBENY, Gaps in the constructible universe, Annals of Mathematical Logic, vol. 6 (1974), pp. 359-394.
- [9] G. SACKS, Forcing with perfect closed sets, Proceedings of Symposia in Pure Mathematics, vol. 13, American Mathematical Society, Providence, R. I., 1971.
 - [10] J. STEEL, Ph. D. Thesis, University of California, Berkeley, 1977.

CORNELL UNIVERSITY

ITHACA, NEW YORK 14853