MORE ABOUT UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES1

HAROLD T. HODES

Abstract. Let I be a countable jump ideal in $\mathcal{P} = \langle \text{The Turing degrees}, \leq \rangle$. The central theorem of this paper is:

a is a uniform upper bound on I iff a computes the join of an I-exact pair whose double jump $a'^{(2)}$ computes.

We may replace "the join of an I-exact pair" in the above theorem by "a weak uniform upper bound on I".

We also answer two minimality questions: the class of uniform upper bounds on I never has a minimal member; if $\bigcup I = L_\alpha[A] \cap \omega_1$ for α admissible or a limit of admissibles, the same holds for nice uniform upper bounds.

The central technique used in proving these theorems consists in this: by trial and error construct a generic sequence approximating the desired object; simultaneously settle definitely on finite pieces of that object; make sure that the guessing settles down to the object determined by the limit of these finite pieces.

Fix recursive pairing and unpairing functions on ω, such that $x = \langle (x)_0, (x)_1 \rangle$. For $f: \omega \rightarrow \omega$, let $(f)_x(y) = f(\langle x, y \rangle)$. If $\mathcal{F} \subseteq \omega_1$, f parametrizes \mathcal{F} iff $\mathcal{F} = \{(f)_x|x \in \omega \}$. We depart from standard practice and view Turing degrees as equivalence classes on ω_1, not $\mathcal{P}(\omega)$, under \equiv_T. This has no importance; the following definitions could be rephrased to apply to Turing degrees as usually defined. All degrees in this paper are Turing degrees.

A degree a is a uniform upper bound (u.u.b.) on a class I of degrees iff some $f \in a$ parametrizes $\bigcup I$; a is a weak u.u.b. iff some $f \in a$ parametrizes $\bigcup I \cap \omega_2$. I is an ideal iff I is downward closed under \leq and closed under join. I is a jump ideal iff I is an ideal closed under jump. Where I is an ideal, the pair (b, c) is I-exact iff $I = \{d|d < b \land d < c\}$. Recent results of Shore imply that there is a degree-theoretic definition of the relation: a is a u.u.b. on I, where I is a countable jump ideal; it is obtained by encoding the analytic definition of a u.u.b. into degree-theoretic terms. The central result of this paper provides a more natural degree-theoretic definition of this relation.

Theorem 1. Where I is a countable jump ideal: a is a u.u.b. on I iff there is an I-exact pair (b, c), $b \vee c \leq a$ and $(b \vee c)^{(2)} \leq a^{(1)}$.

The technique used in proving the hard direction (\Rightarrow) is then extended to answer further questions about u.u.b.s, some of which were raised in [2].

For $\mathcal{F} \subseteq \{(f)_x|x \in \omega \}$, f is a subparametrization of \mathcal{F}. Let $f = f_0 \oplus \cdots \oplus f_{n-1}$ iff for all x, $f(x) = f_i((x)_1)$ if $(x)_0 = i < n$, $f(x) = 0$ otherwise.

Received May 10, 1981.

1I wish to thank David Posner for an illuminating discussion which led to all these theorems.

© 1983, Association for Symbolic Logic

0022-4812/83/4802-0021/$02.70
GUESSING LEMMA. Let I be an ideal of degrees, f subparametrizes $\bigcup I$. There are two and three-place partial f-recursive functions G and H such that:

1. if $(f)(x_0 \oplus \cdots \oplus (f)(x_{m-1}) \in \bigcup I$ then $\lim n H(m, \langle x_0, \ldots, x_{m-1} \rangle, n)$ exists and if it is z, $(f)(x) = (f)(x_0 \oplus \cdots \oplus (f)(x_{m-1})$;
2. if $(f)(x) \in \bigcup I$, then $\lim n G(x, n)$ exists and if it is z, $(f)(x) = (f)(x)$.

(Here $\langle x_0, \ldots, x_{m-1} \rangle$ is a recursive coding of finite sequences from ω_0 into ω.)

PROOF. We construct G.

Let $g(x, u) = \begin{cases}
\text{the least } t & \text{such that } \{u\}(f)(x(u)) \text{ converges in } t \text{ steps} \\
0 & \text{otherwise.}
\end{cases}$

$\lambda u. g(x, u) \equiv_T (f)(x)$. Thus if $(f)(x) \in \bigcup I$, $\lambda u. g(x, u) \in \bigcup I$. Let h be a non-decreasing function which eventually dominates each member of $\bigcup I$, $h \leq_T f$: for example, $h(z) = \max_{u \leq z} (f)(u)$. We shall say that z is a candidate for x at step n iff for every $u < n$:

- if $\{u\}(f)(x(u))$ converges in $h(u) + n$ steps,
- $\{u\}(f)(x(u))$ if not.

Given x, select u_0 such that for all $u \geq u_0$, $h(u) \geq g(x, u)$. Let $n_0 = \max\{g(x, u) : u < u_0\}$. For $n \geq n_0$, if z is a candidate for x at step n, $(f)(x) \uparrow n = (f)(x)$, since for all u, $g(x, u) < h(u) + n$. Let $G(x, n) = \lambda z. \{x\}(f)(x) = (f)(x)$ is a candidate for x at step n. Suppose that $(f)(x) \in \bigcup I$, z_0 is the least z such that $(f)(x) = (f)(x)$, and n_1 is the least n such that for each $z < z_0$, $(f)(x)(n) \neq (f)(x)(n)$ for some $n < n_1$. Then for $n \geq \max(n_0, n_1)$ and any $z < z_0$, z is not a candidate for x at step n. But z_0 is one as of step n. So $G(x, n) = z_0$ for such n. The construction of H is easier and we omit it. Q.E.D.

We note the following. Suppose f parametrizes $\bigcup I \cap \omega_2$ and $0 \in I$. $\deg(f)$ is a u.u.b. on I iff there is a $G \leq_T f$ as above which guesses at the location of jumps. This is easy to prove.

LEMMA 1. If I is a set of degrees and f is a function such that for every $g \in \bigcup I$ there is an e such that $g = \ast (f)(e)$, and for every e, $(f)(e) \in \bigcup I$, then $\deg(f)$ is a u.u.b. on I.

PROOF. Let Seq be the set of sequence numbers, letting $s = \langle (s)_0, \ldots, (s)_{h(s)-1} \rangle$.

Let

$$(f)(s)_x = \begin{cases}
(f)(x) & \text{if } s \notin \text{Seq}, \\
(s)_x & \text{if } s \notin \text{Seq} \& x < h(s), \\
(f)(x) & \text{if otherwise.}
\end{cases}$$

$\hat{f} \leq_T f$ and \hat{f} parametrizes $\bigcup I$. Since the class of u.u.b.’s on I is closed upwards, $\deg(f)$ is a u.u.b. on I. Q.E.D.

PROOF OF THEOREM 1 (‘). Suppose (b, c) is I-exact, $b \lor c \leq a$ and $(b \lor c)(2) \leq a$, $A \in a$, $B \in b$, $C \in c$. Since $(B \oplus C)(2) \leq_T A$ (1), recursively in A we may guess
at the truth of $\forall \exists$ sentences about B and C so that in the limit these guesses are correct. Let f be such that

$$f(x) = \begin{cases} 0 & \text{if for some } t \geq \max(x, n), \text{ the } t\text{th guess is} \\ \{e_1\}_{B}(y) \text{ is undefined} \\ \{e_2\}_{B}(y) \text{ is undefined} \\ \{e_1\}_{B}(y) \neq \{e_2\}_{B}(y) \text{, and either } t = \\ \max(x, n) \text{ or } \{e_1\}_{B}(x) \text{ is undefined}; \\ \{e_1\}_{B}(x) \text{ otherwise.} \\
\end{cases}$$

$f \leq_{f} A$. In the otherwise case, $\{e_1\}_{B}(x)$ is defined, since in the limit our guesses at whether $\forall (\forall y)(\forall z) \{e_1\}_{B}(y)$ is defined $\& \{e_1\}_{B}(y) = \{e_2\}_{B}(y)$ are right. If $\{e_1\}_{B}$ is total and $\{e_1\}_{B} = \{e_2\}_{B}$, then $f_{\langle e_1, e_2 \rangle, n} = * \{e_1\}_{B}$; otherwise $f_{\langle e_1, e_2 \rangle, n} = * \lambda x. 0$.

By Lemma 1, a is a u.u.b. on $L (\equiv)$. Let Str be the set of finite strings of 0’s and 1’s, coded into ω. For $\sigma, \tau \in Str,$ $\sigma \tau$ is the concatenation of σ and τ; $\sigma \leq \tau$ iff σ extends τ; $\sigma < \tau$ iff $\sigma \leq \tau$ and $\sigma \neq \tau$. P is a tree iff $P : Str \rightarrow Str$ and for all $\sigma, \tau \in Str$, if $\tau \leq \sigma$ then $P(\sigma) \leq P(\sigma)$. A tree P is perfect iff for all $\sigma \in Str$, $P(\sigma - 1)$ is strictly left of $P(\sigma - 1)$ in the lexicographic ordering of Str. For $C \in \omega^2$, $C \leq \sigma$ if σ codes an initial segment of C. Let $B \in [P]$ iff B is a branch of P iff for some $C \in \omega^2$, $B = \lim\{P(\sigma) \mid C \leq \sigma\}$. P is uniformly recursively pointed iff for some e: for all $B \in [P]$, $P = \{e\}_{B}$. We code $B \in \omega^2$ into a tree P, yielding a tree $Code(P, B)$, as follows:

$Code(P, B)(\langle \rangle) = P(\langle \rangle),$$\quad Code(P, B)(\sigma) = P(\langle B(0), (\sigma)_0, \ldots, (\sigma)_{lh(\sigma) - 1} \rangle)$ for $lh(\sigma) \geq 1$.

Abusing notation, we write $Code(P, f)$ for $Code(P, graph(f))$.

A condition is a pair $\langle P, Q \rangle$ of uniformly recursively pointed perfect trees belonging to $\bigcup I$ such that $P \equiv_{f} Q$. P is a subtree of Q iff for all $\sigma \in Str$, $P(\sigma) \leq Q(\sigma)$. Where $\langle P, Q \rangle$ and $\langle R, S \rangle$ are conditions, $\langle P, Q \rangle$ extends $\langle R, S \rangle$ iff P and Q are subtrees of R and S, respectively. $Code(\langle P, Q \rangle, f) = \langle Code(P, f), Code(Q, f) \rangle$.

For $f \in \bigcup I$, this is a condition.

Let $Str(l) = \{\sigma \mid \sigma \in Str \& lh(\sigma) \leq l\}$. A function $P : Str(l) \rightarrow Str$ is a pretree iff P fulfills the definition of a perfect tree, except with domain restricted to $Str(l)$; l is the height of $P = ht(P)$. If P is a perfect tree, $P \upharpoonright Str(l)$ is a pretree of height l. If for each $l < \omega$, P_l is a pretree of height l and $P_l \subseteq P_{l + 1}$, $\bigcup P_l$ is a perfect tree. A precondition of height l is a pair of pretrees of height l. Since pretrees and preconditions are finite objects, we code them into ω. A pretree P is a subpretree of a tree or pretree R iff for each $\sigma \in dom(P)$ there is a $\tau \in dom(R)$, $\tau \leq \sigma$ and $P(\sigma) = R(\tau)$. If P is a subpretree of R and $\sigma \in dom(P)$, $\sigma \in dom(R)$ and $P(\sigma) \leq R(\sigma)$; if, furthermore, R is a pretree, $ht(P) \leq ht(R)$. $\langle P, Q \rangle$ is a subprecondition of a condition or precondition $\langle R, S \rangle$ iff P and Q are subtrees of R and S, respectively. Suppose that for each $l < \omega$, $\langle P_l, Q_l \rangle$ is a subprecondition of a condition or precondition $\langle R, S \rangle$, $l = ht(\langle P_l, Q_l \rangle)$, $\langle P_{l + 1}, Q_{l + 1} \rangle$ is a subprecondition of $\langle P_l, Q_l \rangle$, and $\langle P_l, Q_l \rangle_{\upsilon < \omega}$ is recursive in $R \uplus S$; then $lim P_l, Q_l \rangle = \bigcup P_l, Q_l \rangle$ is a condition extending $\langle R, S \rangle$.

For P a pretree and $B \in \omega^2$, we may code as much of B as possible into P, letting:

$Code(P, B)(\langle \rangle) = P(\langle \rangle),$$\quad Code(P, B)(\sigma) = P(\langle B(0), (\sigma)_0, \ldots, (\sigma)_{lh(\sigma) - 1} \rangle)$, for $lh(\sigma) \geq 1$.

Note that if $ht(P) = 2l$ or $2l + 1$, $Code(P, B)$ has height l. We define
"Code(P, f)" and Code(⟨P, Q⟩, f) where ⟨P, Q⟩ is a precondition, as one would expect.

For P a tree or pretree and σ ∈ Str, we shall say that σ is on P iff for some τ ∈ dom(P), P(τ) ⊑ σ. Full is the tree id ↑ Str. Where P is a tree or pretree, Full(P, σ) is the tree or pretree determined by Full(P, σ)(τ) = P(σ−τ). Note that if P is a pretree of height l, Full(P, σ) is totally undefined, and so technically not a pretree, if l < lh(σ).

Fix a listing ⟨ψj⟩j<ω of all primitive recursive relations on w2 × w2 × w × w. Introducing "B" and "C" as uninterpreted predicate constants, let ϕj be "(∃x)¬(∃y)ψj(B, C, x, y)." We now define forcing, for ⟨P, Q⟩ a condition.

⟨P, Q⟩ ⊩ ¬ϕj iff for all ⟨B, C⟩ ∈ [P] × [Q], ⟨B, C⟩ ⊨ ¬ϕj;
⟨P, Q⟩ ⊩ ϕj iff for some n for all ⟨B, C⟩ ∈ [P] × [Q],
⟨B, C⟩ ⊩ ¬(∃y)ϕj(B, C, n, y).

[3] contains a proof of the crucial density theorem: any condition extends to a condition deciding ϕj. Implicit in that proof is the construction of a function force(j, ⟨P, Q⟩) with domain ≤ ω such that, letting force(j, ⟨P, Q⟩)(l) = ⟨Pl⟩ ⊩ QYD):

(1) force(j, ⟨P, Q⟩)(l) is, if defined, a subprecondition of ⟨P, Q⟩ of height l;
(2) if l + 1 ∈ dom(force(j, ⟨P, Q⟩)),
force(j, ⟨P, Q⟩)(l) = ⟨Pl⟩ ⊩ Str(l), Q(l + 1) ⊩ Str(l);
(3) for l ∈ dom(force(j, ⟨P, Q⟩)), σ, τ strings of length l, there is a yσ,τ such that
ϕj(Pl)(σ), Q(l)(τ, l, yσ,τ). (Following a standard convention, "ϕj(σ, τ, x, y)" means "For all B ⊑ σ, C ⊑ τ, ϕj(B, C, x, y).") To compute force(j, ⟨P, Q⟩)(0), we search for strings σ and τ of the same length and for a yσ,τ so that ϕj(P(σ), Q(τ), 0, yσ,τ), and let P(0)(⟨ ⟩) = P(σ), Q(0)(⟨ ⟩) = Q(τ). Call these chosen σ and τ, if they exist, ⟨ ⟨ ⟩ and ⟨ ⟩, respectively. Now suppose that force(j, ⟨P, Q⟩)(l) = ⟨Pl⟩ ⊩ Q(l) has been computed; for ρ ∈ Str(l), we suppose that ρ’ and ρ” have been defined, P(l)(ρ) = P(ρ’), Q(l)(ρ) = Q(ρ”). We now try to compute P(l + 1) and Q(l + 1) on all of Str(l + 1). By our computation of P(l) and Q(l) (2), it suffices to do this for strings of length l + 1. Let σ1, ..., σ2l+1, τ1, ..., τ2l+1 be two lists of all strings of length l + 1. We search for strings σ’1, ..., σ’2l+1, τ’1, ..., τ’2l+1 all of the same length, and for witnesses yσ’i,τ’k, i, k ∈ {1, ..., 2l+1}, such that for σi = σ̄−⟨m⟩ and τk = τ̄−⟨n⟩, σi ≤ σ̄−⟨m⟩ and τk ≤ τ̄−⟨n⟩, and ϕj(P(σi), Q(τk), l + 1, yσ’i,τ’k); we let P(l + 1)(σi) = P(σi), Q(l + 1)(τk) = Q(τk). For details on this search, see [3]. This search is recursive in P ⊗ Q. So force(j, ⟨P, Q⟩) is partial recursive in P ⊗ Q, uniformly in j and ⟨P, Q⟩, by the procedure outlined. "Force(j, ⟨P, Q⟩)(l) is defined in q steps" means that according to the procedure just outlined, that computation converges in q steps. If force(j, ⟨P, Q⟩) is total, limjforce(j, ⟨P, Q⟩)(l) = ⟨Pl⟩ ⊩ Q(l), l ∈ dom(force(j, ⟨P, Q⟩)) is a condition forcing ¬ϕj.

On the other hand, suppose force(j, ⟨P, Q⟩) is not total. Call ⟨l, σ, τ⟩ a j-witness for ⟨P, Q⟩ iff σ, τ ∈ Str, lh(σ) = lh(τ), and ⟨Full(P, σ), Full(Q, τ)⟩ ⊩ ¬(∃y)ψj(B, C, l, y). We now find a j-witness for ⟨P, Q⟩. Let l be the least l ∈ dom(force(j, ⟨P, Q⟩)). If l = 0, let σ = τ = ⟨ ⟩. If l = x + 1, let ⟨σi, τk⟩ be the least pair selected from the lists σi, ..., σ2i, τ1, ..., τ2k, for which we cannot find
appropriate σ_i', τ_k' and ν_{z_i} and ν_{x_i}. Letting $\sigma_i = \sigma^{0\sim} <n>$, $\tau_k = \tau^{0\sim} <m>$, let $\sigma = \sigma^{0\sim} <n>$, $\tau = \tau^{0\sim} <m>$. $\langle l, \sigma, \tau \rangle$ is easily seen to be a j-witness for $\langle P, Q \rangle$. Notice that $lh(\sigma) = lh(\tau)$, since in defining $P(x)$ and $Q(x)$ we required that $lh((\sigma^0)^\sim) = lh((\tau^0)^\sim)$. We have just described a procedure recursive in $(P \oplus Q)^{(1)}$ which halts iff $force(j, \langle P, Q \rangle)$ is partial, and, if it halts, delivers a j-witness for $\langle P, Q \rangle$. Call this procedure $Wit(j, \langle P, Q \rangle)$.

The construction of $force(j, \langle P, Q \rangle)(0)$, and then of $force(j, \langle P, Q \rangle)(l + 1)$ given $force(j, \langle P, Q \rangle)(l)$, proceeds by working down P and Q, thinking of trees as growing downwards. Thus we may extend our definition of $force(j, \langle P, Q \rangle)$ to apply to the case in which $\langle P, Q \rangle$ is a precondition. In this case, $\text{dom}(force(j, \langle P, Q \rangle))$ is finite, and in fact, $\leq \text{ht}(\langle P, Q \rangle)$.

Fix $f \in a$, parametrizing $\bigcup I$. We wish to construct $B, C \in \omega^2$, $\langle \text{deg}(B), \text{deg}(C) \rangle$ I-exact, $(B \oplus C)^{(2)} \leq_T f^{(1)}$ and $B \oplus C \leq_T f$.

A natural strategy suggests that we try to construct a sequence of conditions $\{\langle P_j, Q_j \rangle\}_{j < \omega}$ and an auxiliary sequence $\{\langle x_j, \sigma_j, \tau_j \rangle\}_{j < \omega}$ such that:

1. $P_0 = Q_0 = \text{Full}$;
2. for all j:
 a. if $x_j \geq 0$ then $\langle x_j, \sigma_j, \tau_j \rangle = Wit(j, \langle P_{2j}, Q_{2j} \rangle)$ and $\langle P_{2j+1}, Q_{2j+1} \rangle = \langle \text{Full}(P_{2j}, \sigma_j), \text{Full}(Q_{2j}, \tau_j) \rangle$;
 b. if $x_j = -1$, $\sigma_j = \tau_j = \langle \rangle$ and $force(j, \langle P_{2j}, Q_{2j} \rangle)$ is total and $\langle P_{2j+1}, Q_{2j+1} \rangle = \lim_I force(j, \langle P_{2j}, Q_{2j} \rangle)(l)$;
3. for all j, $\langle P_{2j+2}, Q_{2j+2} \rangle = \text{Code}(\langle P_{2j+1}, Q_{2j+1} \rangle, (f)_j)$.

Then we shall let $\{B\} = \bigcap_I P_j$, $\{C\} = \bigcap_I Q_j$. Choice of $\langle P_{2j+2}, Q_{2j+2} \rangle$ insures that $(f)_j \leq_T B$ and $(f)_j \leq_T C$. The genericity of the sequence of conditions insures that if $g \leq_T B$ and $g \leq_T C$, $g \in \bigcup I$.

We also want our construction to be recursive in f. But choice of $\langle P_{2j+1}, Q_{2j+1} \rangle$ or, equivalently, of $\langle x_j, \sigma_j, \tau_j \rangle$, depends on facts about $\langle P_{2j} \oplus Q_{2j} \rangle^{(2)}$ which cannot be decided uniformly in j and recursively in f. A further difficulty appears when we specify the sense in which we would like $\{\langle P_j, Q_j \rangle\}_{j < \omega}$ to be recursive in f. We want an f-recursive function $j \mapsto \langle n_j, m_j \rangle$ such that $P_j = (f)_n$, $Q_j = (f)_m$, and such a function may not exist. Instead we proceed by guessing, recursively in f at the previously described construction.

For $x \geq 1$, let $d(x) = y$ iff $x = 2y + 1$ or $x = 2y + 2$. At stage i of our construction we will have a number $z_i \geq 1$ and, for each $j \leq z_i$, a guess $\langle P_j, Q_j \rangle$ at $\langle P_j, Q_j \rangle$, and, for each $j \leq d(z_i)$, guesses x_j, σ_j and τ_j at x_j, σ_j and τ_j. P_j and Q_j are functions, $\text{dom}(P_j) = \text{dom}(Q_j) \leq \omega$ such that, letting $\langle P_j, Q_j \rangle(l) = \langle P_j(l), Q_j(l) \rangle$, $\langle P_j, Q_j \rangle(l)$ is, if defined, a precondition of $\text{ht} l$ such that:

1. $\langle P_0, Q_0 \rangle(l) = \langle \text{Full} \uparrow \text{Str}(l), \text{Full} \uparrow \text{Str}(l) \rangle$;
2. for all $j \leq d(z_i)$, if $x_j \geq 0$,

This content downloaded from 132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC
All use subject to https://about.jstor.org/terms
\[\langle P_{2j+1}, Q_{2j+1} \rangle \approx \langle \text{Full}(P_{2j}(k + l), \sigma_j), \text{Full}(Q_{2j}(k + l), \tau_j) \rangle, \]

where \(\text{lh}(\sigma_j) = \text{lh}(\tau_j) = k; \)

if \(x_j^1 = -1, \sigma_j^1 = \tau_j^1 = \varnothing \) and

\[\langle P_{2j+1}, Q_{2j+1} \rangle \approx \text{force}(j, \langle P_{2j}, Q_{2j} \rangle(1'))(l) \]

for an \(l' \in \text{dom}(\langle P_{2j}, Q_{2j} \rangle), \) but large enough for the right-hand side to be defined, if such there be;

\((3') \) for all \(2j + 2 \leq z_i, \)

\[\langle P_{2j+2}, Q_{2j+2} \rangle(l) \approx \text{Code}(\langle P_{2j+1}, Q_{2j+1} \rangle(2l), (f)_j). \]

For reasons to appear shortly, we need to modify this outline in one respect.

In the sequence described by (1)–(3) we shall add, between consecutive conditions \(\langle P_j, Q_j \rangle \) and \(\langle P_j+1, Q_j+1 \rangle, \) an intermediate condition \(\langle P^*_j, Q^*_j \rangle, \) determined by strings \(\delta_j \) and \(\varepsilon_j \) of equal length, so that:

\((4^*) \) for all \(j, \)

\[\langle P^*_j, Q^*_j \rangle = \langle \text{Full}(P_j, \delta_j), \text{Full}(Q_j, \varepsilon_j) \rangle, \]

with (2) and (3) revised to (2*) and (3*), (2*) saying that \(\langle P_{2j+1}, Q_{2j+1} \rangle \) is formed from \(\langle P^*_j, Q^*_j \rangle \) in the way in which (2) says it is formed from \(\langle P_{2j}, Q_{2j} \rangle, \) and

(3*) saying that \(\langle P_{2j+2}, Q_{2j+2} \rangle \) is formed from \(\langle P^*_j, Q^*_j \rangle \) in the way in which (3) says it is formed from \(\langle P_{2j}, Q_{2j} \rangle. \)

In our guessing construction, at stage \(i \) for all \(j < z_i, \) we shall have guesses \(\delta_j^i \) and \(\varepsilon_j^i \) at \(\delta_j \) and \(\varepsilon_j \) and guesses \(\langle P^*_j, Q^*_j \rangle \) at \(\langle P^*_j, Q^*_j \rangle \) given by:

\((4^*) \) for \(j < z_i, \)

\[\langle P^*_j, Q^*_j \rangle(l) \approx \langle \text{Full}(P_j(k + l), \delta_j^i), \text{Full}(Q_j(k + l), \varepsilon_j^i) \rangle, \]

for \(k = \text{lh}(\delta_j^i) = \text{lh}(\varepsilon_j^i). \)

(2') and (3') are now revised to (2*) and (3*), following the obvious analogy with (2*) and (3*).

If our guess converges appropriately, we shall have \((B \oplus C)^{(2)} \leq_T f^{(1)}. \)

To insure that \(B \oplus C \leq_T f, \) we must supplement the guessing procedure just described with a nonguessing process such that for each \(n \) we can \(f \)-recursively find a stage \(i \) which definitely settles the questions "\(n \in B?\)" and "\(n \in C?\)".

To this end we construct sequences \(\{\beta_i\}_{i=\omega} \) and \(\{\gamma_i\}_{i=\omega} \) of strings \(\beta_{i+1} \leq \beta_i, \gamma_{i+1} \leq \gamma_i, \) and we make sure that \(B = \lim \beta_i, \) \(C = \lim \gamma_i. \) \(\beta_i \) and \(\gamma_i \) will be fixed at stage \(i \) on the basis of our guesses as of stage \(i. \) But thereafter any further guesses, including revisions of guesses on the basis of which \(\beta_i \) and \(\gamma_i \) were fixed, must honor the commitments that \(B < \beta_i \) and \(C < \gamma_i. \) This is where \(\delta_j^i \) and \(\varepsilon_j^i \) come in; when we make a decision at stage \(i \) about what \(\langle P_{j+1}, Q_{j+1} \rangle \) looks like, we shall choose \(\delta_j^i, \varepsilon_j^i \) to "protect" \(\beta_i \) and \(\gamma_i; \) that is, we shall try to make sure that \(\beta_{j+1} \leq P^j(< >) \leq P_j(1)(< >) \leq P_{j+1}(1)(< >) \leq Q_{j+1}(1)(< >) \leq \gamma_i. \) To carry all this out, at stage \(i \) we shall actually have to compute, for each \(j = z_i, \)

\[\langle P_j, Q_j \rangle(k_j^i) \]

for a certain \(k_j^i. \)

To this end, we introduce functions \(l_j^i \) defined by \(l_j^i \leq z_i \) and \(l_j^i < z_r. \) Intuitively, \(l_j^i(q) \) is the largest \(l \) such that we can compute \(\langle P_j, Q_j \rangle(l) \) in \(\leq q \) steps; \(l_j^i* \) is the largest \(l \) such that we can compute \(\langle P_j, Q_j* \rangle(l) \) in \(\leq q \) steps. \(l_j^i \) or \(l_j^i* \) may be undefined on
an initial segment of ω, since it can take a while even to compute \(<P_j^*, Q_j^*> (0)\) or \(<P_j^*, Q_j^*> (0)\). But if defined, \(l_j^q(q)\) is defined and \(\leq l_j^q(q)\); similarly for \(l_j^q(q)\). If \(l_j^q(q)\) is defined, \(<P_j^*, Q_j^*> (l_j^q(q))\) is a subprecondition of \(<P_j^*, Q_j^*> (l_j^q(q))\) with \(l_j^q(q)\) defined; if \(l_j^q(q)\) is defined, \(<P_j^*, Q_j^*> (l_j^q(q))\) is a subprecondition of \(<P_j^*, Q_j^*> (l_j^q(q))\), with \(l_j^q(q)\) defined. Furthermore, for \(j < z_i\), if \(\lim_{q \to \omega} l_j^q(q) = \omega\) then \(\lim_{q \to \omega} l_j^q(q) = \omega\); for \(2j + 1 < z_i\), if \(\lim_{q \to \omega} l_j^q(q) = \omega\) then \(\lim_{q \to \omega} l_j^q(q) = \omega\); for \(2j < z_i\), if \(\lim_{q \to \omega} l_j^q(q) = \omega\) then: if \(x_j^q < 0\), \(\lim_{q \to \omega} l_j^q(q) = \omega\); if \(x_j^q = -1\), \(\lim_{q \to \omega} l_j^q(q) = \omega\) iff force\((j, <P, Q>)\) is total, for \(<P, Q> = \lim_{q \to \omega} <P_{j*}, Q_{j*}> (l_j^q(q))\).

Our informal description of \(l_j^q\) and \(l_j^q\) could serve as a definition of these functions, but we offer definitions anyway:

\[l_j^q(q) = q; \]
\[l_j^q(q) \approx l_j^q(q) - \gamma(l_j^q(q)); \]
if \(x_j^q = -1\), \(l_j^q(q) = \omega\) if \(x_j^q = -1\), \(l_j^q(q) = \omega\).

We shall arrange our construction so that at each stage \(i:\)

(1.ii) \(l_j^q(q)\) is defined, with \(\beta_i\) on \(P_j^*(l_j^q(q))\) and \(\gamma_i\) on \(Q_j^*(l_j^q(q))\).

In addition to the sequences so far described, we also need a sequence \(\{<nj, mj>\}_{j<\omega}\) such that:

\[\text{(5) for all } j, \quad <P_j, Q_j> = <(f)_{nj}, (f)_{mj}>. \]

We shall also need guess \(<nj, mj>\) at \(<nj, mj>\) for \(j \leq z\). Let \([n, m, \delta, \varepsilon]\) abbreviate \(<\text{Full}(f)_n, \delta, \text{Full}(f)_m, \varepsilon>\). For \(2j + 1 \leq z\), let \(2j + 1\) have property 1 at stage \(i\) iff \([nj, mj, \delta_j, \varepsilon_j]\) is a condition, and: if \(x_j^q > 0\),

\[<x_j^q, \delta_j^q, \varepsilon_j^q> = \text{Wit}(j, [nj, mj, \delta_j, \varepsilon_j]); \]
if \(x_j^q = -1\), \(\text{Wit}(j, [nj, mj, \delta_j, \varepsilon_j])\) is undefined. Note that “\(2j + 1\) has property 1 at stage \(i\)” is \(\Sigma_3^0\) in \((f_{nj}, \delta_j^q, (f)_{mj})\). It would be nice at stage \(i\) to have all \(2j + 1 \leq z\), with property 1. But to keep the construction recursive in \(f\) we can only guess at whether a given \(2j + 1\) has property 1. We do this by asking the question of our \(g(i)\)th guess at \((f)_{nj} \oplus (f)_{mj} (3)\) namely

\[(f)_{G(\text{G}(\text{H}(m_{nj}^q, m_{mj}^q, g(i)), g(i)), g(i)), g(i))}. \]

We content ourselves with insuring that at each stage \(i:\)

(2.1) for each \(2j + 1 \leq z\) our \(g(i)\)th guess at \((f)_{nj} \oplus (f)_{mj} (3)\) says that \(2j + 1\) has property 1 at stage \(i\).

This can be checked recursively in \(f\).

For \(j \leq z\), let \(j\) have property 2 at stage \(i\) iff \(\lim_{q \to \omega} <P_j^*, Q_j> (l) = <(f)_{nj}, (f)_{mj}>\), which is a condition. Again, “\(j\) has property 2 at stage \(i\)” is \(\Sigma_3^0\) in \((f)_{nj} \oplus (f)_{mj})\).
It would be nice to have all \(j \leq z_i \) with property 2 at stage \(i \), so that our guesses at \(\langle n_j, m_j \rangle \) accurately reflect our guesses at \(\langle P_j, Q_j \rangle \). But, to keep the construction recursive in \(f \), the best we can do is to insure that at each stage \(i \):

\[(3.i) \text{ for each } j \leq z_i,
\]

\[\langle P_j, Q_j \rangle (l(j(g(i)))) = \langle (f)n_j \uparrow \text{Str}(l(j(g(i)))), (f)m_j \uparrow \text{Str}(l(j(g(i)))) \rangle.\]

Checking this will be recursive in \(f \).

After such extensive previewing, the presentation of the construction may, at least, be brief.

Stage 0. \(z_0 = 0, g(0) = 0, \beta_0 = \gamma_0 = \langle \rangle; \) for all \(l, P_0(l) = Q_0(l) = \text{Full} \uparrow \text{Str}(l); \)

select \(\langle n_0, m_0 \rangle \) so that \(\langle f \rangle n_0 = \langle f \rangle m_0 = \text{Full}. \)

Stage \(i + 1 \). Suppose we already have \(z_i, g(i), \{\langle P_j, Q_j \rangle\}_{j < z_i}, \{\langle \delta_j, \varepsilon_j \rangle\}_{j < d(z_i)}, \{\langle x_j, \sigma_j, \tau_j \rangle\}_{j < d(z_i)} \), \(\beta_i \) and \(\gamma_i \), with \((1.i)-(3.i) \) all true. For \(2j + 1 \leq z_i \), let \(2j + 1 \) be 1-bad at \((i, q) \) iff our \((g(i) + q + 1) \)st guess at \(\langle (f)n_{2j}, (f)m_{2j} \rangle \) says that \(2j + 1 \) lacks property 1 at stage \(i \). For \(j < z_i \), \(j \) is 2-bad at \((i, q) \) iff

\[\langle P_j, Q_j \rangle (l_1(g(i) + q + 1)) \neq \langle (f)n_j \uparrow \text{Str}(l(j(g(i) + q + 1))), (f)m_j \uparrow \text{Str}(l(j(g(i) + q + 1))) \rangle.\]

Let \(\langle \delta, \varepsilon \rangle \) be a \(q \)-combination for \(2j \leq z_i \) iff \(\text{lh}(\delta) = \text{lh}(\varepsilon) \leq l_{2j} (g(i) + q + 1) = l \)

and

(6) either:

(a) our \((g(i) + q + 1) \)st guess at \(\langle (f)n_{2j}, (f)m_{2j} \rangle \) says that

\[\text{Wit}(j, [n_{2j}, m_{2j}] \delta, \varepsilon) = \langle x, \sigma, \tau \rangle \]

in \(l \leq g(i) + q + 1 \) steps for some \(\langle x, \sigma, \tau \rangle \) with \(\text{lh}(\delta) + \text{lh}(\sigma) \leq l \); or

(b) our \((g(i) + q + 1) \)st guess at \(\langle (f)n_{2j}, (f)m_{2j} \rangle \) is undefined, and force \((j, \langle P, Q \rangle)(0) \) is defined in \(l \leq g(i) + q + 1 \) steps for

\[\langle P, Q \rangle = \langle \text{Full}(P_{2j}(l), \delta), \text{Full}(Q_{2j}(l), \varepsilon) \rangle.\]

Whether \(\langle \delta, \varepsilon \rangle \) is a \(q \)-combination, in fact whether there is a \(q \)-combination for a given \(2j \), is decidable recursively in \(f \). We shall say that \(q \) changes the primary guess at \(2j + 1 \leq z_i \) iff: for \(k < 2j + 1 \), \(k \) is neither 1-bad nor 2-bad at \((i, q) \); \(2j + 1 \) is 1-bad at \((i, q) \); and

(7) there is a \(q \)-combination \(\langle \delta, \varepsilon \rangle \) such that

\[P_{2j}(l_{2j}(g(i) + q + 1)) \delta \leq \beta_i\]

and

\[Q_{2j}(l_{2j}(g(i) + q + 1)) \varepsilon \leq \gamma_i.\]

We shall say that \(q \) changes the secondary guess at \(j \leq z_i \) iff: for all \(k < j, k \) is neither 1-bad nor 2-bad at \((i, q) \); \(j \) is 2-bad but not 1-bad at \((i, q) \); and

(8) there are strings \(\beta \) and \(\gamma \) on \(P_j(l_j(g(i) + q + 1)) \) and \(Q_j(l_j(g(i) + q + 1)) \), respectively, \(\beta \leq \beta_i \) and \(\gamma \leq \gamma_i \). We shall say that \(q \) creates a guess at \(z_i + 1 = z \) iff for all \(j \leq z_i, j \) is neither 1-bad nor 2-bad at \((i, q) \), and

This content downloaded from 132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC
All use subject to https://about.jstor.org/terms
(9) there are strings δ and ε such that

\begin{equation}
 P_{\delta}(l_{\varepsilon}(g(i) + q + 1))(\delta) \leq \beta_i
\end{equation}

and

\begin{equation}
 Q_{\delta}(l_{\varepsilon}(g(i) + q + 1))(\varepsilon) \leq \gamma_i;
\end{equation}

(9.2) if $z = 2j + 1$, (δ, ε) is a q-combination for $2j$.

Lemma 2. There is a q which either changes or creates a guess.

Proof. Let $j = \text{the least } j \leq z_i \text{ which lacks either property 1 or 2, if there is one}; j = z_i + 1 \text{ otherwise}. \text{ If } j \text{ lacks property 1, we find a } q \text{ changing the primary guess at } j; \text{ if } j \text{ has property 1 but not property 2, we find a } q \text{ changing the secondary guess at } j; \text{ if } j = z_i + 1, \text{ we find a } q \text{ creating a guess at } j. \text{ Consider the first situation. Suppose that for } q \geq q_0, \text{ our } (g(i) + q + 1)\text{st guess at } (f_{m_{2j}}(g(i) + q + 1))^{(3)} \text{ is correct for all } 2j \leq j. \text{ So for } q \geq q_0, \text{ all } k < j \text{ are neither 1-bad nor 2-bad at } (i, q), \text{ and } j \text{ is 1-bad at } (i, q). \text{ For } j < j, \text{ } \lim_{i \to j} f_i(l_i) = \omega. \text{ If not, let } j \text{ be the least counterexample; by remarks preceding the definition of } l_j, \text{ } j = 2j' + 1, \text{ and } force(j', \lim_{i < j} (f_{m_{2j'}}(g(i)))) \text{ is partial; so } \text{ Wit}(j', [n_{2j}, m_{2j}/\delta_{2j'}, \varepsilon_{2j}]) \text{ is defined, and } j \text{ lacks property 1}; \text{ contradiction with } j < j. \text{ Now let } j = 2j + 1. \text{ For sufficiently large } q \text{ we may increase } l = l_{2j}(g(i) + q + 1) \text{ large enough to find } (\delta, \varepsilon), \text{ } P_{2j}(l)(\delta) \leq \beta_i \text{ and } Q_{2j}(l)(\varepsilon) \leq \gamma_i, \text{ } lh(\delta) = lh(\varepsilon) = l. \text{ Note that}

\[[n_{2j}, m_{2j}/\delta_{2j}, \varepsilon] = \lim_{i \to \infty} \langle \text{Full}(P_{2j}(l), \delta), \text{Full}(Q_{2j}(l), \varepsilon) \rangle. \]

If \text{ Wit}(j, [n_{2j}, m_{2j}/\delta, \varepsilon]) \text{ is defined, then for } q \geq q_0 \text{ our } (g(i) + q + 1)\text{st guess at } (f_{m_{2j}}(g(i) + q + 1))^{(3)} \text{ says it is}; \text{ so for sufficiently large } q \geq q_0, \text{ it truthfully says that } \text{ Wit}(j, [n_{2j}, m_{2j}/\delta, \varepsilon]) = \langle x, \sigma, \tau \rangle \text{ in } \leq g(i) + q + 1 \text{ steps, and } lh(\sigma) + lh(\delta) \leq l_{2j}(g(i) + q + 1). \text{ On the other hand, if } \text{ Wit}(j, [n_{2j}, m_{2j}/\delta, \varepsilon]) \text{ is undefined, our } (g(i) + q + 1)\text{st guess at } (f_{m_{2j}}(g(i) + q + 1))^{(3)} \text{ says so. For sufficiently large } q, \text{ force}(j, \langle P, Q \rangle)(0) \text{ is defined in } \leq g(i) + q + 1 \text{ steps, for}

\[\langle P, Q \rangle = \langle \text{Full}(P_{2j}(l_{2j}(g(i) + q + 1)), \delta), \text{Full}(Q_{2j}(l_{2j}(g(i) + q + 1)), \varepsilon) \rangle. \]

So a sufficiently large $q \geq q_0$ is as desired. Similar arguments apply in the other two situations. Q.E.D.

Notice that we can f-recursively decide whether q is as described in Lemma 2. We proceed as follows, recursively in f. Search for the least q as described in Lemma 2. Let $g(i + 1) = g(i) + q + 1$. If q changes the primary or secondary guess at j, let $j = z_{i+1} = z$. Otherwise let $z_{i+1} = z_i + 1$. Now we preserve some earlier guesses: for $j < z$, let

\[\langle P_{j+1}, Q_{j+1} \rangle = \langle P_j, Q_j \rangle, \quad \langle n_{j+1}^{(1)}, m_{j+1}^{(1)} \rangle = \langle n_j, m_j \rangle; \]

for $2j + 1 < z$, let

\[x_{j+1} = x_j, \quad \sigma_{j+1} = \sigma_j, \quad \tau_{j+1} = \tau_j; \]

for $j < z - 1$, let

\[\delta_{j+1} = \delta_j, \quad \varepsilon_{j+1} = \varepsilon_j. \]

The situation in which q changes the secondary guess at z is easiest to handle.
Here our guesses $\langle n'_i, m'_i \rangle$ have been found to be wrong relative for $\langle P'_i, Q'_i \rangle$. We let $\delta'_{i-1} = \delta'_{i-1}, e'_{i-1} = e'_{i-1}, \langle P'^{i+1}, Q'^{i+1} \rangle = \langle P'_i, Q'_i \rangle$ and, if $z = 2j + 1, x'_i = x_j, \sigma'_{i+1} = \sigma_j, \tau'_{i+1} = \tau_j$. Select β and γ as in (8) and let $\beta_{i+1} = \beta, \gamma_{i+1} = \gamma$. Note that $l'_z = l'^{i+1}$. Now find the least $\langle n, m \rangle$ such that

$$\langle P'^{i+1}, Q'^{i+1} \rangle (l'^{i+1}(g(i + 1))) = \langle (f)_n \uparrow \text{Str}(l'^{i+1}(g(i + 1))), (f)_m \uparrow \text{Str}(l'^{i+1}(g(i + 1))) \rangle,$$

and let $\langle n'^{i+1}, m'^{i+1} \rangle = \langle n, m \rangle$.

Next easiest is the case in which q creates a new guess at $z = 2j + 2$. Select strings δ and ϵ as described in (9.1) to be δ'_{i-1} and e'_{i-1}, respectively. Let $P_{i-1} = P^{i-1}(l_{i-1}(g(i + 1)))(\delta)$ and $\gamma_i = Q_{i-1}(l_{i-1}(g(i + 1)))(\epsilon)$. So $\langle P^{i-1}, Q^{i-1} \rangle$ and $\langle P'_i, Q'_i \rangle$ are defined as described before the construction began. Now select $\langle n^{i-1}, m^{i-1} \rangle$ as in the previous case.

The cases in which q changes the primary guess at z and in which q creates a new condition at $z = 2j + 1$ are similar. Select a and e as described in (7) or in (9), and let $P^{i+1}_j = P^{i+1}_j(l^{i+1}_j(g(i + 1)))(\delta)$ and $\gamma_{i+1} = Q^{i+1}_j(l^{i+1}_j(g(i + 1)))(\epsilon)$. Our $\langle P'_i, Q'_i \rangle$ is now determined. If $\langle \delta, \epsilon \rangle$ is a q-combination by virtue of (6)(a), let $\langle x'_i, \sigma'_i, \tau'_i \rangle = \langle x, \sigma, \tau \rangle$ described in (6)(a). If $\langle \delta, \epsilon \rangle$ is a q-combination by (6)(b), let $x'_i = -1, \sigma'_i = \tau'_i = \langle . \rangle$. Form $\langle P'_i, Q'_i \rangle$ as indicated in the preparatory remarks. We now select $\langle n'^{i-1}, m'^{i-1} \rangle$ as in the previous two cases.

Notice that $\langle \delta'_{i-1}, e'_{i-1} \rangle$ is changed from $\langle \delta'_{i-1}, e'_{i-1} \rangle$ only if we changed a primary guess; $\langle \delta'_{i-1}, e'_{i-1} \rangle$ is defined while $\langle \delta'_{i-1}, e'_{i-1} \rangle$ was undefined iff we created a new guess at z. It is easy to verify that (1.1 + 1), (2.1 + 1) and (3.i + 1) are true. We now show that all our guesses settle down to sequences as described in (1), (2*), (3*), and (4*) and (5).

Lemma 3. There are sequences $\{\langle P_j, Q_j \rangle\}_{j<\omega}, \{\langle \delta_j, \epsilon_j \rangle\}_{j<\omega}, \{\langle x_j, \sigma_j, \tau_j \rangle\}_{j<\omega}, \{\langle n_j, m_j \rangle\}_{j<\omega}$ making (1), (2*), (3*), (4*), and (5) true; and for any k there is an i_k such that for all $i \geq i_k$

1. for $j \leq k, j$ has properties 1 and 2 at $i; k < z_i$;
2. for $j \leq k, \langle n_j, m_j \rangle = \langle n_j, m_j \rangle$;
3. for $j < k, \lim_{j \rightarrow \omega} P'_j = P_j_Q_j$;
4. for $j < k, \langle \delta_j, \epsilon_j \rangle = \langle \delta_j, \epsilon_j \rangle$;
5. for $2j + 1 < k, \langle x_j, \sigma_j, \tau_j \rangle = \langle x_j, \sigma_j, \tau_j \rangle$.

Proof. The crucial fact here is that g is increasing. For $k = 0, i_k = 0$. Assume for k. Select $i \geq i_k$ such that for all $q \geq g(l)$ and all $2j \leq k, w$ our qth guess at $(q)_n \uparrow (q)_m$ is correct. For all $i \geq i$, if k is even, $k + 1$ has property 1 at i, is not 1-bad at any (i, q'), and is not selected for a primary change. We may let $\langle P_{k+1}, Q_{k+1} \rangle$ be least $\langle n, m \rangle$ such that $\langle (f)_n, (f)_m \rangle = \langle P_{k+1}, Q_{k+1} \rangle$. For each $\langle n', m' \rangle < \langle n_{k+1}, m_{k+1} \rangle$ there is an $l_{(n', m')} \uparrow l$ such that

$$\langle (f)_n \uparrow \text{Str}(l), (f)_m \uparrow \text{Str}(l) \rangle \neq \langle P_{k+1} \uparrow \text{Str}(l), Q_{k+1} \uparrow \text{Str}(l) \rangle.$$

Let i_{k+1} be an $i \geq i$ such that $l_{i_{k+1}}(g(i)) \geq l_{(n', m')}$, for all such $\langle n', m' \rangle$. For $i \geq i_{k+1}$, we have $\langle n_{i_{k+1}}, m_{i_{k+1}} \rangle = \langle n_{k+1}, m_{k+1} \rangle$. $k + 1$ has property 2 at such a stage i, so is not 1-bad at any (i, q'), and is not selected for a secondary change. So
Unifom Upper Bounds on Ideals of Turing Degrees

$k + 1 < z_i$. (13) and (14) are obviously true, letting $\delta_k = \delta_k^{j+1}$, $\varepsilon_k = \varepsilon_k^{j+1}$, and $x_j = x_j^{j+1}$, $\delta_j = \delta_j^{j+1}$, $\tau_j = \tau_j^{j+1}$ if $k + 1 = 2j + 1$. Q.E.D.

We finally must check that $B = \lim_{i \to \infty} B_i$, $C = \lim_{i \to \infty} C_i$. For any j at which either we create a new guess at i or make a primary change at i. For such an i, we have arranged that $P(i)(g(i)) \leq \beta_i$, $Q_i(i)(g(i)) \leq \tau_i$. But for sufficiently large j, these $P(i)(g(i))$ and $Q(i)(g(i))$ may be made arbitrarily long. This insures the desired limits. Q.E.D.

Corollary. Where I is a countable jump ideal and a is an u.u.b. on I then there is an I exact (b, e) with $(b \lor c) < a$.

Proof. With a, b, c as above, if $b \lor c = a$, $(b \lor c)^{(2)} \leq a^{(1)} = (b \lor c)^{(1)}$, a contradiction. Thus $(b \lor c) < a$.

The construction of Theorem 1 may be altered, using Sacks’ technique for constructing minimal upper bounds, to insure that b and c are both minimal.

Recall that a is high over b iff $b \leq a \leq b^{(1)} \leq b^{(2)} \leq a^{(1)}$. Can Theorem 1 be improved to: a is an u.u.b. on I iff a is high over the join of an I-exact pair? Perhaps. But we see no way to modify the previous construction to make $f \leq \tau(B \oplus C)^{(1)}$.

Furthermore, for all we know now Theorem 1 may be strengthened to: a is an u.u.b. on I iff for some I-exact (b, e), $(b \lor c)^{(1)} = a$; this is equivalent to: if a is an u.u.b. on I, for some I-exact (b, e), $(b \lor c)^{(1)} \leq a$.

We now characterize u.u.b.s in terms of weak u.u.b.s.

Theorem 2. For a countable jump ideal I, a is an u.u.b. on I iff for some $b \leq a$, b is a weak u.u.b. on I and $b^{(2)} \leq a^{(1)}$.

Proof. (\Rightarrow). Let $B \in b$ parametrize $\bigcup I \cap o2$. Fix $A \in a$. $X \subseteq \omega$ is total iff for every x there is a y such that $\langle x, y \rangle \in X$. Since $B^{(2)} \leq \tau A^{(1)}$, we may guess recursively in A at whether $(B)_e$ is total and in the limit we are correct. Fix such a guessing procedure. Let $h(x, e, n) = \langle (B)_e \rangle$ be the least y such that either $\langle x, y \rangle \in (B)_e$ or the $(n + y)$th guess is that $(B)_e$ is not total. Define f by:

$$(f)_{g(x, e, n)} = \begin{cases} 0 & \text{if the } (n + h(x, e, n))\text{th guess is that } (B)_e \text{ is not total;} \\ h(x, e, n) & \text{otherwise.} \end{cases}$$

If $(B)_e$ is total, $(B)_e = * \text{ graph } (f)_{g(x, e, n)}$; if $(B)_e$ is not total, $(f)_{g(x, e, n)} = * \land x. 0$. By Lemma 1, $\deg(f)$ is an u.u.b. on I. Since $f \leq \tau A$, so is a.

(\Rightarrow) Let $f \in a$ parametrize $\bigcup I \cap \omega 2$. Let $\langle \psi_j \rangle_{j \in \omega}$ be a recursive enumeration of primitive recursive relations on $\omega 2 \times \omega \times \omega$. Introducing “$B$” as an uninterpreted one place predicate constant, let ϕ_j be “$(\exists x) \neg (\exists y) \psi_j(B, x, y)$.” Let a condition be a finite sequence of members of $\bigcup I \cap \omega 2$. Where $\langle f_0, \ldots, f_{k-1} \rangle = K$ is a condition, let

$$K \models B(m) \text{ iff } (m)_0 < k \text{ and } f_{(m)_0}(m)_1 = 1.$$

Other clauses in the definition of forcing run as usual. Note that

$$K \models \neg B(m) \text{ iff } (m)_0 < k \text{ and } f_{(m)_0}(m)_1 = 0.$$

Conditions may be coded as sequence numbers:

$$\langle n_0, \ldots, n_{k-1} \rangle \text{ codes } \langle \text{sg}((f)_0), \ldots, \text{sg}((f)_n) \rangle.$$
where for any \(x \in \omega \) and \(h \in \omega^\omega \),

\[
\text{sg}(h)(x) = \begin{cases} 0 & \text{if } h(x) = 0, \\ 1 & \text{otherwise.} \end{cases}
\]

We abuse terminology and call sequence numbers conditions.

For \(X \subseteq \omega \), \(X^{(<\omega)} = \{ \langle x, y \rangle \in X | x < k \} \). For a condition \(K = \langle f_0, \ldots, f_{k-1} \rangle \), \(\hat{K} = f_0 \oplus \cdots \oplus f_{k-1} \). If \(B \) is generic and extends \(K \), we shall have \(B^{(<\omega)} = \hat{K} \). For \(\sigma \in \text{Str} \), \(\sigma \) is consistent with \(\hat{K} \) iff for all \(x < \text{lh}(\sigma) \), if \((x)_0 < k \), \((\sigma)_x = f_{(x)_0} ((\sigma)_1) \); \(K \) includes \(\sigma \) iff \(\sigma \) is consistent with \(K \) and for all \(x < \text{lh}(\sigma) \), \((x)_0 < k \). All these definitions carry over to where \(K \) is a sequence number via the encoding previously described. From now on, conditions are sequence numbers.

The use of \(\text{sg} \) in this encoding leads to another abuse of terminology. For \(K = \langle n_0, \ldots, n_{k-1} \rangle \), our \(q \)th guess at \(X = (f_0 \oplus \cdots \oplus f_{k-1})^{(2)} \) is \(Y = (f)_G(G(H(k, K, q), q), q) \). Since \(\hat{K}^{(2)} \) is clearly \(1 \)-reducible to \(X \), we shall call \(Y \) our \(q \)th guess at \(\hat{K}^{(2)} \).

Lemma 4. \("K \vdash \varphi_j" \) and \("K \vdash \neg \varphi_j" \) are \(\Sigma_2^0 \) and \(\Pi_0^0 \) in \(\hat{K} \), respectively.

Proof. \(K \vdash (\langle y \rangle) \psi_h(n, y) \) iff for any \(\sigma \in \text{Str} \) and any \(y \), if \(\sigma \) is consistent with \(K \), \("\neg \psi_h(\sigma, n, y)" \) is true. Thus \("K \vdash \varphi_j" \) is \(\Sigma_2^0 \) in \(\hat{K} \). For \(X \subseteq \omega \) and \(\text{lh}(K) = k \), let \(\Phi(K, X, m) = \hat{K} \cup \{ \langle x + k, y \rangle \mid \langle x, y \rangle \in X^{(<m)} \} \). Notice that \(K' \) extends \(K \) iff for some \(X \subseteq \text{U}(\text{U}) \) and some \(m \), \(K' = \Phi(K, X, m) \). Using this fact we can show that \(K \vdash \neg \varphi_j \) iff for every \(x, m \in \omega \) and \(X \subseteq \text{U}(\text{U}) \):

(\(\dagger \)) there are \(\sigma \in \text{Str} \) and \(y \) such that \(\sigma \) is consistent with \(\Phi(K, X, m) \) and \(\psi_h(\sigma, x, y) \).

(\(\dagger \)) has the form \("(\exists \sigma)(\exists y)P(\hat{K}, X, m, \sigma, x, y)" \), with \(P \) recursive. So \(K \vdash \neg \varphi_j \) iff for all \(x \) and \(m \):

(\(\dagger \dagger \)) for all \(X \subseteq \text{U}(\text{U}) \), \(\langle y \rangle P(\hat{K}, X, m, \sigma, x, y) \).

\(\dagger \dagger \) is equivalent to a \(\Sigma_2^0 \) in \(\hat{K} \) formula by the Kreisel basis theorem and the fact that \(\hat{K}^{(1)} \subseteq \text{U} \). Notice that here is where the difference between \(\text{U} \) and \(\text{U}(\text{U}) \) appears. We now have \("K \vdash \neg \varphi_j" \) in a \(\Pi_0^0 \) in \(\hat{K} \) form. Q.E.D.

Our goal is to construct sequences \(\{K_j\}_{j<\omega} \), \(\{x_j\}_{j<\omega} \) and \(\{\beta_i\}_{i<\omega} \) such that:

(1) for all \(j \), \(K_j \) is a condition and \(K_{j+1} \) extends \(K_j \);

(2) for all \(j \),

\[
\begin{align*}
\text{if } x_j & \geq 0, \quad K_{2j+1} \vdash \neg (\exists y) \psi_h(x_j, y); \\
\text{if } x_j & = -1, \quad K_{2j+1} \vdash \neg \varphi_j;
\end{align*}
\]

(3) for all \(j \), \(K_{2j+2} = K_{2j+1} \cap \langle f_j \rangle \);

(4) for all \(i \) and \(j \), \(\beta_i \in \text{Str} \), \(\beta_{i+1} \leq \beta_i \) and \(\beta_i \) is consistent with \(K_j \).

Notice that (2) implies \(\lim \text{lh}(K_j) = \omega \), which with (4) implies that \(\lim \beta_i = \bigcup K_j \).

Of course, such a construction cannot be carried out recursively in \(f \). We resort to guessing at the sequences \(\langle K_j \rangle_{j<\omega} \) and \(\langle x_j \rangle_{j<\omega} \). At stage \(i \) we shall have \(z_i \), for \(j \leq 2z_i \) guesses \(K_j \) at \(K_j \), and for \(j < z_i \) guesses \(x_j \) at \(x_j \). Revising previous terminology, let \((K', x) \) be a \(j \)-witness for \(K \) iff \(K' \) extends \(K \) and forces \("(\exists y) \psi_h(B, x, y)" \). \((K', x) \) is a \(j \)-witness for \("K" \) and \("K has a j\)-witness" are \(\Pi_0^0 \) and \(\Sigma_2^0 \) in \(\hat{K} \), respectively. Clearly if \(\hat{K}' \) extends \(K' \) and \((K', x) \) is a \(j \)-witness for \(K' \), \((K', x) \) is also a \(j \)-witness for \(K \). We shall say that \((K, x) \) is consistent with a string \(\beta \) iff \(K \) is...
consistent with \(\beta \). Notice that if \(K \) has no \(j \)-witness consistent with \(\beta \), any condition extending \(K \) and including \(\beta \) forces \(\varphi_j \). Fix an \(f \)-recursive function \(\text{Incl} \) such that: for \(\beta \) consistent with \(K \), \(\text{Incl}(K, \beta) \) extends \(K \) and includes \(\beta \). For example, where \(\text{lh}(K) = k \), and \(\beta \) is consistent with \(K \), let

\[
\text{Incl}(K, \beta) = \begin{cases}
K & \text{if } K \text{ includes } \beta, \\
K \prec \langle n_h, \ldots, n_i \rangle & \text{otherwise},
\end{cases}
\]

where for \(k \leq i \leq l \), \(n_i \) is the least \(n \) such that for all \(x < \text{lh}(\beta) \) with \((x)_0 = i \), \((\beta)_x = \text{sg}((f)_n)((x)_0)\). For \(j < z_i \), we shall say that \(2j + 1 \) has property 1 at stage \(i \) iff:

- if \(x_j > 0 \) then \((K_{i+1}, x_j) \) is a \(j \)-witness for \(K_{i+1} \);
- if \(x_j = -1 \), then there is no \(j \)-witness for \(K_{i+1} \) consistent with \(\beta_i \).

We would like to have all \(2j + 1 \) with property 1 at stage \(i \) for \(j < z_i \). But to keep our construction recursive in \(f \), we cannot be so straightforward. Instead we insure that for all stages \(i \):

1. For all \(j < z_i \), our \(g(i) \)-th guess at \((K_{i+1})^{(2)} \) says that \(2j + 1 \) has property 1.
2. If \(z_i > 0 \), \(\beta_i \) is included in \(K_{i+1} \). (This permits us to have \(K_{i+1} = K_{i+1} \prec z_i \) without fear of destroying consistency with \(\beta_i \).)

We now sketch the construction.

Stage 0. \(z_0 = 0 \), \(K_0^0 = \langle \rangle \); \(\beta_0 = \langle \rangle \); \(g(0) = 0 \). (1.0) and (2.0) are vacuously true.

Stage \(i + 1 \). Assume that \(z_i \), \(g(i) \), \(\beta_i \prec \langle K_i^j \rangle_{j \leq z_i} \) and \(\langle x_i^j \rangle_{j < z_i} \) are defined with (1.0) and (2.0) true. For \(j < z_i \), \(2j + 1 \) is bad at \((i, q) \) iff our \((g(i) + q + 1) \)-th guess at \((K_i^j)^{(2)} \) says that \(2j + 1 \) lacks property 1. Call \(\beta \) a \(q \)-combination for \(2j \) at stage \(i \), where \(j \leq z_i \) iff \(\beta \leq \beta_i \), \(\beta \leq g(i) + q + 1 \), \(\beta \) is consistent with \(K_i^j \), and: if our \((g(i) + q + 1) \)-th guess at \((K_{i+1}^j)^{(2)} \) says that \(K_{i+1}^j \) has a \(j \)-witness consistent with \(\beta \), it identifies one in \(\leq g(i) + q + 1 \) steps. This property is decidable in \(f \). We shall say that \(q \) changes the guess at \(2j + 1 \), for \(j \leq z_i \), iff for all \(k < j \), \(2k + 1 \) is not bad at \((i, q) \), \(2j + 1 \) is bad at \((i, q) \), and there is a \(q \)-combination for \(2j \). We shall say that \(q \) creates a guess at \(2z_i + 1 \) iff for all \(k \leq z_i \), \(2k + 1 \) is not bad at \((i, q) \) and there is a \(q \)-combination for \(2z_i \).

Lemma 5. There is a \(q \) such that for some \(j \leq z_i \), \(q \) either changes or creates a guess at \(2j + 1 \).

Proof. Fix \(j^* = \text{the least } j < z_i \) for which \(2j + 1 \) lacks property 1, if there is one; \(j^* = z_i \) otherwise. Suppose that for all \(q \geq q_0 \), our \((g(i) + q + 1) \)-th guess at \((K_i^j)^{(2)} \) for any \(k \leq j^* \) is correct. Thus for \(q \geq q_0 \) if \(k < j^* \) \(2k + 1 \) is not bad at \((i, q) \); if \(j^* < z_i \), \(2j^* + 1 \) is bad at \((i, q) \). Select a \(\beta \leq \beta_i \) which is consistent with \(K_i^j \). Thus for \(k \leq 2j^* \), \(\beta \) is consistent with \(K_i^j \). If there is a \(j^*-\)witness for \(K_i^j \) consistent with \(\beta \), let \(q \geq q_0 \) be large enough so that \((K_i^j)^{(2)} \) identifies one in \(\leq g(i) + q + 1 \) steps. \(\beta \) is a \(q \)-combination for \(2j^* \). If \(j^* < z_i \), \(q \) indicates a change at \(2j^* + 1 \); if \(j^* = z_i \), \(q \) creates a guess at \(2j^* + 1 \). Q.E.D.

Notice that whether \(q \) is as described in Lemma 5 is decidable in \(f \). So we may search, recursively in \(f \), for the least such \(q \). Let \(g(i + 1) = g(i) + q + 1 \); where \(j \) corresponds to \(q \) as required by Lemma 5, let \(z_{i+1} = j + 1 \). We abbreviate \("z_{i+1}" \) as \("z" \). Select \(\beta_{i+1} \) to be a \(q \)-combination for \(2z - 2 \). We preserve previous guesses
as follows: $K_{i+1}^j = K_i^j$ for $k \leq 2z - 2$; $x_{k+1}^j = x_k^j$ for $k < z - 1$. We now define x_{i+1}^{i+1} and K_{i+1}^{i+1}.

If our $g(i + 1)$st guess at $(K_{2z}^{(2)})$ says that K_{i+1}^{i+1} has a $(z - 1)$-witness consistent with β_{i+1}, it actually identifies some (K, x) as such a witness in $\leq g(i + 1)$ steps. Select the least such $\langle K, x \rangle$ and let $x_{i+1}^{i+1} = x$, $K_{i+1}^{i+1} = \text{Incl}(K_{i+1}^{i+1}, \beta_{i+1})$. Otherwise our guess says that $K_{2z}^{(2)}$ has no $(z - 1)$-witness consistent with β_{i+1}. Let $x_{i+1}^{i+1} = -1$ and $K_{i+1}^{i+1} = \text{Incl}(K_{i+1}^{i+1}, \beta_{i+1})$. Notice that $(1.i + 1)$ and $(2.i + 1)$ are true. Let $K_{i+1}^{i+1} = K_{i+1}^{i+1} \cup \{z\}$. This construction settles down.

Lemma 6. There are sequences $\{K_j\}_{j<\omega}$ and $\{x_j\}_{j<\omega}$ with $\{\beta_j\}_{j<\omega}$ as just constructed, such that (1)-(4) are true; furthermore for any k there is an i_k such that for all $i \geq i_k$:

1. $z_i > k$;
2. for all $j \leq 2k$, $K_j = K_j$;
3. for all $j < k$, $x_j = x_j$.

The proof is very much like that of Lemma 3, except easier, so we omit it.

Letting $B = \bigcup_j K_j$, B is a parametrization of $\bigcup \exists^o$. Since $B = \lim_i \beta_i$, $B \leq_T f$. Since $f^{(1)}$ can tell us when our guesses at $(K_{2z}^{(2)})$ are correct, $B^{(2)} \leq_T f^{(1)}$.

Q.E.D.

We do not know whether this theorem may be improved to: a is an u.u.b. on I iff for some weak u.u.b. b on I, $a = b^{(1)}$.

Combining this construction with the exact-pair construction we may obtain b and c in Theorem 1 which are both weak u.u.b.s on I.

Clearly the b constructed in Theorem 2 (\Rightarrow) is strictly below a. This observation is strengthened by the following.

Theorem 3. For a countable jump ideal I, $\{a \mid a$ is an u.u.b. on $I\}$ has no minimal member.

Proof. Let $f \in a$ parametrize $\bigcup I$. We construct $h <_T f$, h parametrizing $\bigcup I$. Let $\langle \phi_f \rangle_{f<\omega}$ be as in the previous proof; we introduce an uninterpreted binary predicate letter “H” intended to denote the graph of a generic function. Let a condition be a sequence $K = \langle f_0, \ldots, f_{k-1} \rangle$ of members of $\bigcup I$. Let

$$K \models H(n, m) \iff (n)_0 < k \text{ and } f((n)_1)((n)_1) = m.$$

The other clauses in the definition of forcing are as usual. Again we note that

$$K \models \neg H(n, m) \iff (n)_0 < k \text{ and } f((n)_1)((n)_1) \neq m.$$

Let K be the partial function with domain $\omega^{<\omega}$ such that $K(\langle i, x \rangle) = f_i(x)$. Since K is partial, $K^{(1)}$ is undefined; therefore we shall abuse notation and write “$K^{(1)}$” for “$(f_0 \oplus \cdots \oplus f_{k-1})^{(1)}$”.

Notice that Lemma 1 provides a fixed f-recursive way of guessing at an f-index for that set, uniformly in a code for K. A finite function shall be one from a member of ω into ω. A finite function h is consistent with K iff for all $x \in \text{dom}(h)$ with $(x)_0 < k$, $K(x) = h(x)$; K includes h iff $\text{dom}(h) \subseteq \omega^{<\omega}$ and h is consistent with K. R_j is the requirement $\{j\}^H \neq f$. K meets R_j with x in t steps iff for some y, $K \models \{j\}^H(y)$ converges to y in t steps” and $f(x) \neq y$. Where h is a partial function, we understand a computation in $\text{graph}(h)$ to halt as soon as the oracle for $\text{graph}(h)$ is asked: “Is $\langle x, y \rangle \in \text{graph}(h)$?” for $x \notin \text{dom}(h)$. With this understanding, observe
that K has an extension meeting R_j with x in t steps iff there is a finite function consistent with K and a $y \neq f(x)$ such that $\{j\}_{\text{graph}(h)}(x)$ converges to y in t steps; we may search for such an h recursively in K, since finite functions code as sequence numbers.

Let sequence numbers encode conditions by $\langle n_0, \ldots, n_{k-1} \rangle \leftrightarrow \langle (f)_{n_0}, \ldots, (f)_{n_{k-1}} \rangle$. So we freely abuse our terminology and treat sequence numbers as conditions.

Fix an f-recursive function Incl such that for a finite h consistent with K, Incl(K, h) extends K and includes h. (For example, vary the corresponding definition in the previous proof.)

Let (K', x) be a j-witness for K iff K' extends K and meets R_j with $(x)_{0}$ in $\leq (x)_{1}$ steps. Call h consistent with (K, x) iff consistent with K. Suppose K has no j-witness consistent with a finite function h', K' extends K and includes h. Then for some x, $K \vdash \{j\}_{\text{graph}(h')(x)}$ is undefined. Suppose not. We may define f by $f(x) = y$ iff

\[(\ast)\text{ some finite function } h' \text{ is consistent with } K' \text{ and } \{j\}_{\text{graph}(h')(x)} = y.\]

Here is why. By our assumption, for any x, K' has an extension K'' forcing $\{j\}_{\text{graph}(h')(x)}$ is defined." Since K'' includes h, (K'', x) is not a j-witness for K. So if $K'' \vdash \{j\}_{\text{graph}(h')(x)} = y'$, $y = f(x)$. The existence of such a K'' is equivalent with (\ast). We would like to define sequences $\{K_x\}_{x < \omega}$, $\{x_j\}_{j < \omega}$ and $\{h_j\}_{j < \omega}$ such that:

1. for each j, K_j is a condition;
2. for each j,

 if $x_j \geq 0$, (K_{2j+1}, x_j) is a j-witness for K_{2j}; if $x_j = -1$, $K_{2j+1} \vdash \{j\}_{\text{graph}(h_j)(x)}$ is undefined" for some x;
3. for each j, $K_{2j+2} = K_{2j+1} < j$;
4. for each i and j, h_i is a finite function, h_{i+1} properly extends h_i, and h_i is consistent with K_i.

(3) implies that $h = \lim_j K_j$ is total;
(4) implies that $h = \lim_j h_i$. By (3), h parametrizes $\bigcup I$. By (2) $f \neq T \upharpoonright h$.

To make this construction recursive in f, we resort to guessing. At stage i, we shall have z_i, h_i, $g(i)$, for $j \leq 2z$, a guess K_j at K_j, and for $j \leq z_i$ a guess x_j at x_j.

We make sure that at each stage i:

1. for $j < z_i$, if $x_j \geq 0$, (K_{2j+1}, x_j) is a j-witness for K_{2j};
2. for $j < z_i$, if $x_j = -1$, our $g(i)$th guess at (K_{2j+1}, x_j) says (\ast, i, j) is false.

We now describe the construction.

\textit{Stage 0.} $z_0 = 0$, $h_0 = \text{the null function}$, $K_0 = \langle \rangle$, $g(0) = 0$.

\textit{Stage} $i + 1$. Suppose we have t_i, h_i, $g(i)$, $(K_j)_{j \leq 2z_i}$, $\langle x_j \rangle_{j \leq z_i}$, with (1.1)–(3.1) true. For $j < z_i$, $2j + 1$ is bad at (i, q) iff $x_j = -1$ and our $(g(i) + q + 1)$st guess at $(K_{2j+1})_{(i, q)}$ says (\ast, i, j) is false. For a finite function h, (h, x) is a q-combination for $2j$ at i iff h properly extends h_i, $\langle h, x \rangle \leq g(i) + q + 1$, and $\{j\}_{\text{graph}(h)(x)}$ is defined in $(x)_{1}$ steps and has value $\neq f((x)_{0})$.\]
We shall say that \(q \) changes the guess for \(2j + 1 \) at stage \(i \) iff: for all \(k < j \), \(2k + 1 \) is not bad at \((i, q)\), \(2j + 1 \) is, and there is a \(q \)-combination for \(2j \). We shall say that \(q \) creates a guess for \(2z_i = 1 \) iff: for all \(k < z_i \), \(2k + 1 \) is not bad at \((i, q)\), and either there is a \(q \)-combination for \(2z_i \) or else \(q = 0 \) and our \((g(i) + 1)\)st guess at \((K_i^{(1)}, i, z_i)\) is true.

Lemma 7. Some \(q \) either changes or creates a guess.

Proof is very much like that of Lemma 5.

Whether \(q \) changes or creates a guess is decidable in \(f \). So recursively in \(f \) we search for the least such \(q \). Let \(g(i + 1) = g(i) + q + 1 \). If \(q \) changes or creates a guess at \(2j + 1 \), let \(j + 1 = z_{i+1} \). Letting \(z = z_{i+1} \), we preserve earlier guesses:

\[
\text{for } j \leq 2z - 2, \ K_j^{i+1} = K_j; \quad \text{for } j < z - 1, \ x_j^{i+1} = x_j.
\]

If there is a \(q \)-combination for \(2z - 2 \), let \((h_{i+1}, x_{i+1}^{+1}) \) be the least such. Otherwise let \(x_{i+1}^{ji-1} = -1 \) and \(h_{i+1} = h_i \cup \{\langle \text{dom}(h_i), 0\rangle\} \). Let \(K_{zi+1}^{1} = \text{Incl}(K_{zi+1}^{ji-2}, h_{i+1}) \).

Notice that \((1.i + 1)-(3.i + 1)\) are true. Now let \(K_{zi+1} = K_{zi+1}^{-}\cdot \langle z\rangle \).

Lemma 8. With \(\langle h_i \rangle_{i<\omega} \) as just constructed, there are sequences \(\langle K_j \rangle_{j<\omega} \) and \(\langle x_j \rangle_{j<\omega} \) of which (1)-(4) are true; furthermore for each \(k \) there is an \(i_k \) such that for all \(i \geq i_k \):

1. for \(j \leq 2k \), \(K_j = K_j^i \);
2. for \(j < k \), \(x_j = x_j^i \).

The proof of this lemma should now be routine. Because this entire construction is recursive in \(f \), and \(h = \lim_i h_i \), \(h \leq_T f \). So by preliminary remarks, we are done.

Q.E.D.

Where \(I \) is a countable jump ideal \(a \) is a nice u.u.b. on \(I \) iff \(a \) is the degree of a nice parametrization of \(\bigcup f \); a parametrization \(f \) of \(\bigcup f \) is nice iff for some \(G \leq_T f \), \(H \leq_T f \), for all \(x \) and \(y \): \((f)_x \cdot (f)_y = (f)_x \oplus (f)_y \). This notion is introduced in [1]; in [2] it is shown that \(a \) is a nice u.u.b. on \(I \) iff for some u.u.b. \(b \) on \(I \), \(a = b^{(1)} \). In [2] the following notions are defined. \(I \) is a hierarchy ideal iff for some \(A \subseteq \omega \) and some \(\alpha \), \(\bigcup f = L_{\alpha}[A] \inter \omega_\alpha \). \(I \) is a case 1 hierarchy ideal iff for some \(B \in L_{\alpha}[A] \), \(\alpha < \omega_\beta \) and \(\bigcup f = L_{\alpha}[A] \inter \omega_\omega \); \(I \) is a case 2 hierarchy ideal iff for some \(B \in L_{\alpha}[A] \), \(\alpha = \omega_\beta \) and \(\bigcup f = L_{\alpha}[A] \inter \omega_\omega \); \(I \) is a case 3 hierarchy ideal if it is a hierarchy ideal not falling under cases 1 or 2. Any case 1 hierarchy ideal has a least nice u.u.b.; for example, if \(\bigcup f = \{\text{f is arithmetic}\} \), that nice u.u.b. is \(0^{(\omega)} \). In [2] it is asked whether any case 2 or case 3 hierarchy ideals have a minimal nice u.u.b. The technique of Theorem 3 may be modified to provide a negative answer.

Theorem 4. For \(I \) a case 2 or case 3 hierarchy ideal, \(\{a \mid a \text{ is a nice u.u.b. on } I\} \) has no minimal member.

Proof. Let \(f \in a \) be a nice parametrization of \(\bigcup f \). It suffices to construct a parametrization \(h \) of \(\bigcup f \) with \(h^{(1)} \leq_T f \). Let conditions and forcing be as in the previous proofs except that “\(H \)” is monadic, and:

\[
K \Vdash H(x) \iff \langle m, n_0 \rangle < k \text{ and } K = \langle f_0, \ldots, f_{k-1} \rangle, f_{(\omega_\alpha)}(n_0) = m.
\]

This way “\(x \in H^{(1)} \)” makes sense. Let \(R_f \) be the requirement \(\{j \mid f^{(1)}_j \neq f \} \). \(K \) meets \(R_f \) with \(x \) iff for some \(y \neq f(x), K \Vdash \langle j \mid f^{(1)}_j(x) = y \rangle \). Because \(f \) is nice, whether...
LEMMA 9. Suppose K is consistent with a finite function h. If there is no j-witness for K consistent with h, and K' extends K and includes h, then for some x, $K' \not\models \{j\}^{U(1)}(x)$ is undefined.

PROOF. If not, we may define f by $f(x) = y$ iff some extension of K' forces $\{j\}^{U(1)}(x) = y$. Let $f_0, \ldots, f_{k-1} \models \{j\}^{U(1)}(x) = y$ is Σ^0_2 in f_kuture. So f is Σ^1_1 over $\bigcup I$ with graph(K') as a parameter. Since f is a function, f is even Δ^1_1 over $\bigcup I$ in that parameter.

By familiar facts about hyperarithmeticity, in case 2, $f \leq_{\text{HYP}} \text{graph}(K')$; in case 3, f is recursive in the hyperjump of graph(K') which belongs to $\bigcup I$. Either way, $f \in \bigcup I$, contradiction. Q.E.D.

The construction of h is much like that used for Theorem 3, with $\{j\}^{U(1)}$ replacing $\{j\}^{U}$. But (2.i) must be changed to: if $j < z_i$, if $x^j_i = -1$ then there is no j-witness for K^j which is consistent with h_i and $\leq g(i)$.

The notion of being bad at (i, q) is correspondingly changed. (We are forcing Σ^0_2 and Π^0_2 sentences; so K^j_{2j+1} cannot tell us how to select K^j_{2j+1}. Since f is nice, "K has a j-witness consistent with h_i" is Σ^0_1 in f; thus guessing at K^j_{2j+1} is replaced by a search recursive in f.) The rest is routine. Q.E.D.

In conclusion, we note that weak u.u.b.s remain shrouded in mystery. For example: are any weak u.u.b.s also minimal u.b.s? The technique of Theorem 3 does not yield a negative answer, for it cannot construct objects recursive in weak u.u.b.s which are not also u.u.b.s. It essentially involves guessing at jumps as described in the guessing lemma; thus by the remark immediately following the proof of the guessing lemma, the previous claim follows. Hopefully the techniques involved in answering questions like the one just posed will suggest a degree-theoretic definition of a weak u.u.b. in some way analogous to that of Theorem 1.

BIBLIOGRAPHY

DEPARTMENT OF PHILOSOPHY
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853