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The thesis that certain seniences or statements are neither true nor false has
been repeatedly proposed through the history of logic. According to some
commentators, Aristotle proposed this status for certain statements about the
future. Frege, and more recently Strawson and many others, have proposed this
status for certain statements containing non-designating singular terms. Others
have proposed this status for indicative conditionals with false antecedents,
troublesome counterfactual conditionals, some statements involving vague
predicates, category errors, or self-reference, and so on. These suggestions are
mutually independent and not of equal value. But if you think that there are
some cases in which statements are neither true nor false, then you have reason
to take seriously at least some logic which accommodates this phenomenon.

Such logics have been rather ignored by mathematical logicians. In part this is
because there is so much left to learn about two-valued logic; in part it’s because
mathematical logicians are most interested in mathematical applications of logic,
and most think that in mathematics truth-value gaps do not arise. Unlike
intuitionistic logic, three-vaiued lsgic is not a new ball-game: rather it’s a
“rounding off”” of classical logic. The classical logician wants his discourse to be
two-valued, and usually presupposes that it is; a three-valued logic is a default
logic to which the classical logician may fall back when that presupposition fails,
tecause of reference failure, an undetermined future, or whatever.

Another reason for avoidance of three-valued logics is the fear, illustrated by
the remark of Dana Scott quoted in [6], that no such logic is “pleasant to work
with” or even “really workable”. Of course three-valued logics will be somewhat
more complicated than classical two-valued logic. In fact, proof-theoretically they
are at least twice as complicated: the non-structural natural-deduction rules from
two-valued logic split into a weak and a strong version for three-valued logics
(and some of our logics require a further definedness rule for ‘>’ and ‘3’): see
Section 4. But model-theoretically t™y are only 50% more complicated, since we
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have three, rather than two, truth-values. When it comes to what’s “pleasant”™
and “workable”, it’s different strokes for different folks; but I hope that the
reader will find these additional complications interesting rather than off-putting.

The three-valued optior does, however, confronts us with some choices that we
wouldn’t otherwise face. The logical lexicon of two-vaued propositional logic
extends to the three-valued setting in several ways; similarly for predicate-logic.
Negation and the biconditional carry over uniquely; but conjunction and
disjunction can be extended to yield strong connectives (in this paper ‘&’, ‘v’} or
weak connectives (‘&’, ‘v’); similarly the existential quantifier yields ‘3’ and ‘3.
The material conditional extends in four ways: on the pattern of conjunction and
disjunction there is a strong (*>°) and a weak (*>’) conditional; and there is a
further strengthening (‘>,’) and weakening (‘>,,’) of the strong conditional. Use
of ‘=" extends in three ways. I'll continue to use ‘=" in our object-languages to
represent the identity relation. (In Butler’s words “the relation each object bears
to itself and to no other™.) In mathematical writing we find use of a sirong
bivalent notion of equality, to be represented ir our object-languages by ‘=y’.
And an intermediate sort of equality, to be represented by ‘=_, is also of interest.
These choices generate the logical lexica to be discussed in this paper.

After presenting basic model-theoretic definitions, I'll map out the inclusions
between these iexica, and then work towards an ““algebraic™ characterization of
their expressive power, guided by Keisler and Shelah’s characterization of the
elementary and basic elementary classes of models under the two-valued
semantics; the main result here is in Section 8. Some, e.g. Michael Dummett,
think that there is a distinction between allowing for truth-value gaps (i.e.
allowing statements to be neither true nor false) and introducing 2 third
truth-value. In the preceding remarks my use of the phrase ‘three-valued’ was
intended to apply in both situations. I try in Section 11 to give content to the
guestion: which of our lexica merely allow for truth-valuelessness?

I became interested in three-valued semantics because they ofier the non-ad-
hoc way to handle non-designating singular terms. After searching unsuccessfully
for a survey paper on such logics. I found myself writing Sections 1 to 4. The
material presented in Sections 3 and 4 is tangential to the main drift of this paper
and may already be in the literature.

In places I have ignored the distinction between use and mention, e.g. in use of
variables (always Greek letters) ranging over syntactic objects, in speaking of
subscripts for ‘lex’, and in what follows; my usage in these cases should be
sufficiently clear.

After a singular term, read ‘|’ as ‘is defined’ or ‘stands for someting’, ‘1" as ‘is

undefined’ or ‘doesn’t stand for anything’. Read - --=---"and - --€---"as
imply that - - - and - — - exist. A statment or definition cf the form - - =—--’
means that either - - - and — — - both exist and are identical, or else both don’t

exist. Throughout this paper I work in standard set-theory with proper classes and
assuming the Axiom of Choice.
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1. Basic definitions
Our logical lexica will be as follows:
lex°= {c =$, ‘_L’, ¢3’, s=1};
ICXO_x= {‘ = ’, 3 l ’, x, 637’ ¢=,};
lexo"r'u - {c - 7’ ‘T’, ‘u$, ‘3,, ‘=’};
lexl = {‘D,, ‘.L’, tas’ c=a};
lCX1.x= {63’, ¢ .L ’, x, ¢aa’ c=s};
lex"_r'u - {‘:’, ‘T,, cu!’ ca” ¢=,},

where X’ is replaced by ‘T’ or ‘v’. For lex__one of the above lexica, form lex__
by replacing ‘=" in lex__ by ‘=/’; form lex__, similarly with ‘=,’. Fix a countable
set Var of variables. For each n < o fix proper classes PRED(n) and FUNCT(n)
of n-place predicate-constants and function-constants respectively. Needless to
say these lexical classes are pairwise disjoint. For Pred =\ J, PRED(n) and
Funct U, FUNCT(n), let Pred(i:) = Pred NPRED(n), Funct(n)= Functn
FUNCT(n). Replacing ‘x> by one of the above subscripts on ‘lex’, let
- L(Pred, Funct) be first-order language based on lex, generated by the non-
logical vocabulary Pred U Funct; with the latter fixed we write this as L,.

The class of terms of L, is defined by the usual induction. The class Atfml{L,)
of atomic formulae of L, consists of whichever of the following contains logical
constants from lex,:

U 1, %=7, =T, To=eT»

together with strings of the form {(7o, ..., 7,) for { € Pred{(n) and any terms
Tos - - - » Tn Of L,. The class Fml(L,) of formulae of L, is formed by closing
Atfml(L,) under those among the following induction clauses that gc.vern logical
constants in lex,:

If @ and vy are formulae then so are Tg, (¢ = y) and (¢ > ¥);
if g is a formula and v € Var then (3v)gp and (3v)¢ are formulae.

As usual, the ciass Sent(L,) of sentences of L, consits of the formulae of L, in
which no variable occurs free. Obviously these are equivalent: Pred U Funct is a
set; Fml(L,) is a set; Sent(L,) is a set. L, is a fragment of a proper-class-size
language L,(U,PRED(n), U, FUNCT(n)), hereafter called L,. For Ac
Atfml(L.) let Fml(A) be the class of formulae of L, all of whose atomic
suoformulae belong to A; let Sent,(A) be the class of sentences in Fml,(A).

Let 1 [0] represent truth [falsehood], 2= {9, 1}. A partial model for L, (also
for Pred U Funct) shall be an ordered triple & = (4|, €, X), where:

|| is a set;
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N is a set-function with dom(WN)c Funct so that for each n<w and

& & Funct(n) N dom(N):
if n =0, then N(&) e |H|;
if n=1, then N(&) is a function with dom(WV(&)) c |«4|" and into |H|;

€ is a set-function with dom(&)c Pred so that for each n<w and e

Pred(n) N dom(&):
if n =0, then &({)e2;
if » =1, then &({) is a function with dom(&({)) < |#¢|" and into 2.

Let £¥=8§(), &% =W (&) for L e PRED, & e FUNCT.

Hereafter by ‘model’ we'll mean ‘partial model’. Notice that models are sets,
not proper classes. Let MOD be the class of all partial models. Note: in
two-valued model-theory, a model is a mcdel for uniquely determined sets Pred
and Funct. This is not the case here; indeed if & is a mode: for Pred U Funct,
Pred c Pred’ and Funct ¢ Funct', then & is a model for Pred’ U Funct'.

For a model & as above, we adopt threse definitions: € is total on Pred iff for
any n < @ and § € Pred(n):

fn=0, then &(&)!;
ii0<n, then dom(&())=|A|".

N is total on sunct iff for any »n < w and & € Funct(n):

ifn=0, then W(E)|;
if >0, then dom(N(&))={H|".

& is total on Pred U Funct iff € and A are: o is a total model for Pred U Funct iff
it is total on Pred U Funct, dom(&) = Pred and dom(W) = Func:. For a fixed
choice of Pred and Funct, let & be extensionwise total, hereafter et, iff € is total
on Pred and dom(&) = Pred. s is non-null, herafter nn, iff | /| is non-empty. Let
@ be a pariial s/-assignment iff a is a function with dom(a) < Var into ||;
hereafter we’ll drop the ‘partial’. Let a be a total of-assignment iff a is an
s-assigrsment with dom(a) = Var.

Fix 2 model o for L, and an &/-assignment . We define the partial denotation
function den(, a, -) on the terms of L, as usual:

if T € Funct(0), then

den( 4, a, 1) = N(7);
if v e Var, then

den(H, o, v) = a(v);
if & € Funct(n), then

den(¥, a, E(7;, ..., T,)) =N(E)(den(L, &, 1)), . . ., den(d, a, 7,))
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As usual, we'll frequently write den(#, a, 7) as T We define k (satisfaction)
and 3 (frustration) as follows.

Aery=1,[a] iff forbothie2, r7*| and 75" =5
AAty=7,[a] iff forbothie2, tf*| and t§"*# i
Ar=1[a] ff LETo=1[a];
Adtg=,7,[e] iff either £ 47,=r7,[a]or for some i €2, /"] and T{*|;
Aeto=p 7, [a] iff T&*=1{"
A=yt [a] ff A} To=p7i[a};
AL [a];
dApwla); ALAV][a];
AEL(r,.. )2l i B, )=1;
A4 (T, .. ) a] E B, )=0;
AeTola] if LE@la);
Ai1Tela] if Afopla);
Ae(poy)[a] iff either L d@[a]or LE@al;
Adi(p>oy)|a) if AFpla]and 4y [a];
Ae(poy)[a] iff either £ 4@ [a]and LEy[a]or 3y [a],

ordt@|a]and LEy [a];
di(goy)a] if Li(poy)[a);
AEe(Bv)p[a] iff forsomeae|d|, LE@ay];
A13Rv)p[a] if forallae|d|, A p[al];
AE(3v)pla] iff HE(3Bv)p|[a]and for every
a € || either Sk @ [af] or L 4@ [a}];

Ai(Fv)pia] if L1Q3v)ela)

For @ € Fmi(L,) let:
dlole] if Afela]and LAg(a];
A gla] iff dAgla];
Areg iff forall Sf-assignments o, Lk @ [a];
similarly for &/ 49, " @ and & | .

‘™ represents weak satisfaction or weak truth. Extend this notation to
I c Fml(L,) as usual, e.g:

AT [a] iff forevery yel, SEY ¢ [a]
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As usual, for a formula @ with free variables among those in a fixed list
Yo, ..., Uny and de|d|°, Lt @[d] if St p[a] for any (equivalently some)
f-assignment a with a(v;) = g; for all { <n. Similarly for 4, £¥ and |.

In the following, we takc the string on the left to abbreviate any of the strings

to its right:
P
vy
&y
Fo
=y
POy
(Ve
E(v)
E(7)

@g>lorg>l;

Co)oy; evy : (Cg;oy;

>0 &y : (e>(W));

TCo): Ug i T(e>@)orT(po@);
(po>9)&(yo@)or(poy)&(y > o)

(Te)oy; o>y : (Fp)v y;

~(Jv)e; Wv)e : vy e;

BFvv=ror(3viv=r1;

(3v)v =, 7 or (Fv)v = 7 or these with ‘=,’ replacing ‘=".

In the last two clauses v is any variable not occurring in .
Thus we have the following ‘truth-tables’ (Tables 1-3).
Note that ‘>’, ‘& and ‘v’ have the weak-Kleene (alias the Bochvar)

semantics;

% »

o’, ‘&’ and ‘v’ have the strong-Kleene semantics; ‘>,’ is a

weakening of ‘>’, since @ o, ¥ is more easily satisfed that is @ > P; ‘O, is a

Table 1

¢ TP Te¢ Fe Ueg

Ed E 3 el

P | | E

E| E b E =
Table ?

¢ Yy o9&y @&y pvy Pvy
E E E E E E
E | | i | E
E 3 | 3 £ E
{ E | | i E
| { | | | |
| 3 i 3 | |
i £ 4 i E E
3 } | 3 | |
3 e E| 3 3 3
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Taui= 3

oY 9=y [ A= A =y
E E E E E
| | | | |
E | k| q 3 = |
| E - E |
i | k | ]
| | F e |
E E E E |
1 E E E |
E E E E E

strengthening of ‘>’, since @ Oy is more easily frustrated than is @ > y. We'll
use this convention: ¢° is @; @' is —@. Note that ‘=" and ‘=, have the same
satisfaction conditions, and ‘=" and ‘=,’ the same frustration conditions. Finally,
note that the sentential connectives in lex, v, suffice to define all three-valued
truth-functions.

A sequence for L, is an ordered triple (I, A, @) for I'c AcFml(L,) and
@ € Fmi(L,). The most distinctive feature of three-valued logics are that (1) there
are two basic notions of validity: strong validity (hereafter validity) and weak
validity, and (2) these notions apply to sequents of the sort just defined. Both
features arise from the need to consider £ as well as E.

For a sequent (I, A, @) these are our fundamental logical concepts:

(T, A, @) is valid [nn-valid, et-valid, nn&et-valid] iff for any model [nn model,
et model, nn and et model] o and any #-assignment a:

if 4T [a] and SEY A[a] then kg [a];

(T, A, @) is weakly valid [weakly nn-valid, weakly et-valid, weakly nn&et
valid] iff for any model [nn model, et model, nn and et model] & and any
s-assignment a:

if 4T [a] and SEY Ala] then Y @ [«].

For y e Sent(L,) we’ll adopt these definitions. @ entails” [nn-entails™, etc.] ¥
iff ({@}, {@} ¥) is valid [nn-valid, etc.]. @ entails [nn-entails, etc.] y iff ¢
entails* [nn-entails™, etc.] ¥ and ' entails™ [nn-entails™, etc.] @ (i.e. for any
model [nn-model, etc.] o and f-assignment a; if & 3y then £ 4 @). @ is valid
[nn-valid, etc.] iff { } entails [nn-entails, etc.] @. @ is weakly valid [weakly
nn-valid, etc.] iff ({ }, { }, @) is weakly valid [weakly nn-valid, etc.]. ¢ and y
are equivalent* [nn-equivalent™, etc.] iff each entails* [nn-entails™] the other. ¢
and y are cquivalent [nn-equivalent, etc.] iff @ and vy are equivalent”
[nn-equivalen:*, etc.] and so are 7@ and 9 (i.e. for any o and & as above:
o 4 @[a] iff # 5y [a]). Example: for ‘P’ € PRED(0): ‘P > P’ is weakly valid * 1t
not valid; ‘P & Q’ entails* but doesn’t entail ‘P’; ‘P’ and ‘ TP’ are equivalent™ but
noi cquivalent, and similarly for ‘v’ and “7.L°.
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*o,” and ‘>, are introduced because of these deduction theorems:
(Fu{e}, AU{p}, p)isvalid iff ([, A, @>.y)isvdlid;
(T, AU {¢}, p)is weakly valid iff (I, A, ¢ o, ¥) is weakly valid.
In addition, the following are equivalent:

(Fu{e), AU {g)}, ¥) is weakly valid:
(T, A, @ > ) is weakly valid;
(I, A, p> ) is weakly valid.

Furthermore (I, AU {@}, ¥) is valid iff (I, A, @ > p) is valid.
For I'={@y, - - . » @-}, we adopt these abbreviations:

& : o &---&@,; &I : @o&---& @,;
vl i@V -v@,; VI :i@ev---v@,

Thus these are equivaleat: J kI [a]; A :&T [e]; S E&T [a). Also ™ &I [a)
iff SE° T [a]. Also if F* T[], then SF” &I [«]; but the converse fails.

Note that if %] and 7{%f|, then o |tp=1,[a), HA15=.7,[a], and
s dtp=p 7y [@]) Also v%*] iff & 4E(7)[a). Furthermore, if o is nn, these are
equivalent: t°f; o |E(7)[a); L¥E(?)[a). In fact, S HE(z)[a] iff |f] is
empty. One might argue that the first and third of these facts show ‘=" and ‘E’ to
be defective as parsings of ‘is identical to’ and ‘exists’ respectively. For example,
‘Ronald Reagan is identical to the Tooth Fairy’ and ‘The Tooth Fairy exists’
are, so one might insist, false, not truth-valueless. If this is accepted, ‘=/, or
perhaps ‘=, is a better parsing for ‘is identical tc’, and ‘E;’ is better for ‘exists’.
Of course "=, is bivalent; ‘=.’ is stronger than ‘=" and ‘E;’ is stronger than ‘E’,
since they’re easier to frustrate; thus the choice of subscripts.

The above argument “against™ ‘=" and ‘E’ is not conclusive. One might argue
that the only datum behind the previous argument was the incorrectness of
assertive use of ‘Ronald Reagan is identical to the Tooth Fairy’; and as semantic
theorists we are not required to count it as false. Indeed, there is reason not to so
count it. Sentences of the form E(7) [E(7)] can’t be false [true] in an an model;
so the only semantic contrast for such sentences is between truth [falsity] and
undefinedness. Thus i. would be natural for the distinction between assertoric
correctuess and incorrecuiess for statements of the form E(z) [HE(z)] to align
with the true/undefined [false/undefined] distinction, rather than with the
true/false distinction. If this story is accepted, ‘E’ is an adequate parsing for
‘exists’, and a similar story can be told for ‘=". I'll take no position on this matter,
but instead consider all ti.ree ways of handling identity.

One further enrichment deserves mention. Let lex _,=lex_ U {t’}. For L_,
terms and formulae are defined simultaneously with the new clause:

if @ is a formuia and v € Var then (tv)g is a term.
Also den, F and 3 are defined simultaneously with the new clause:
den{H, a, (tv)g)= the a e || so that Lk @ [a)].
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2. Some lemmas and facts about inclusions

First, some definitions. Suppose that for i €2, ;= {A, €, W;) is a model fc:

Pred U Funct. Let &, & iff for any n <w, § € Pred(n):

if n=0and &({)|, then &,(§)= (L)

ifn=1,de A" and &(£)(@)], then E(E)N@) = E(E)@).
Define NpE W, analogously. Let &4,C o, iff §C &, and NyEWNy; A,E, o, iff
&C &, and Ny=WN,. & and &, are compatible iff for any { € Pred(n):

if n=0, (E)| and ,(£)], then &(E)= & (%):

ifn=1, de A", €(L)@)| and &,(5)@)], then &(5)(@)= %(L)(@).
Define the compatibility of A, and W, analogously. &/, and &, are compatible,
abbreviated as sfy* H,, iff &, and &, are compatible and so are Ny and WN;. 4,
and ¢, are strongly compatible, abberviated as Ho* o4, iff & and &, are
compatible and Ny = W,.

Consider models &; = (||, &, N;) (perhaps with different universes, unlike as
above). Let & be an isomorphism from &, to of,, abbreviated n: Hy=o,, iff wisa
one-one function from || onto |#,| so that for any n < w: for any { € Pred(n),

if n=0, then &(C)=%&(L);
if 0<nand de|oo|", then &(L)(@)=&,({)(a);
for any & € Funct(n) the analogous condition holds.

Note: if &(&)(@)71 this can be because d ¢ dom(&; ()) or because { ¢ dom(&;).
Similarly for #;. This permits a slight anomaly: we can have || =|,| and
x =identity on |y though ,# ,. Of course &, is isomorphic to ,,
abbreviated o= #,, iff for some %, 7n: o= A, Let x: BC A. [x: BC A,] iff
for some A=A, [HEH,y], n:B=oAy; BEA, [BE A, iff for some =z,
T BC A, [T:BC A Let 7: B5 oA, [n: B o,] iff for some o, compatibie
[strongly compatible] with sf,, m: B = sfy; B2 o, iff for some 7, m: B> oA,

Lemma i. Letie€2, x=iori,uli,sori, u,s ori, bori, u,b). For models s,
and A, a and HAy-assignment and @ € Fml(L,):
(i) l:th:doE Sdl [Jt:-ﬂo ES &QI] then:

if dotpla), then o ,E@[n-al;

ifd.d@lal, then A 4 @[ncal;
(i) if n:AyD> oA, [n: o 5> oA,] then:

if dob@a), then A, E @[ne-al;

if dod@la), then &\ } @ [nca)

These follow by a straight forward induction on ¢.
Lemma 2. For any i€2 and ¢ e Fml(L; ) or Fml(L; ;) [Fmi(L; )], a total

[et-total] model 4 and a total [partial] sd-assignment «: either AF @ [a] or
o 4 @ [«]. Proof by induction of construction of @.
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Let an occurrence of a formula 6 within a formula @ be exposed ing iff it is not
in the scope of an occurrence of ‘T’ in @.

Lemma 3. Let ¢ e Fml{Lg ).

(1) For any exposed occurrence of a subformula 8 in @, suppose that ¥ is a list
without repetition of the variables occurring free in 0 that are bound in @; for any
model s, sd-assignment « and @ < ||, if 5§ | 6 [2f] then 2| @ [@); so if 0 is ‘W’
then @ is equivalent to ‘u’.

(2) If ¢ contains no exposed occurrence of ‘W’ then some formula of Lo y is
equivalent to @.

{1) follows fsom the semantics for ‘>’ and ‘3’. For (2): if Ty is a subformula
of @ and y conuains an exposed occurrence of ‘U’ then Ty is equivalent to ‘1’; so
replacing Ty by ‘L’ in @ preserves equivalence to @. Doing this for all such Ty
yields the desir: 4 formuic of Ly +.

In what follows, 'y’ is to be repiaced by blank, ‘nn’, ‘et’, or ‘nn&et’. For
languages L and L’ let L X< L’ iff for every @ e Fmi(L) there is a ¢’ € FmI(L’)
y-equivalent to @; let LY« L' iff for every @ ¢ Fml(L) there is a ¢’ € Fmi(L")
y-equivalent™ to ¢.

Let lex, Y« lex, iff for any Pred, Funct,

L.(Pred, Funct) Y« L. .(Pred, Funct);

define lex,Y<lex, analogously. We'll sav that a logical constant is
expressible¥ [expressible¥’] using lex, iff for any lex,. containing that constant
lex,. ~ lex, flex, Y<lex,].

in the following list, each entry on the right could be used for the entry on the left
preserving all semantic facts; thus we’ll freely treat the left entries as abbrevia-
tions of the right entries when the left entries are not in the lexi-on under discussion.

i : Tu;

u : ()l =0v)lor(tv)Ll = (tv)l;

2y : (9>9)&(9>9)&(y>9);

Bv)e : Ev)g&(V)(e>9);

HL=%  Lp=50&10=7&7=1;

=7 : Tp=1&(TE(%)=TE(r)),
or 7=y T & ([PE(70) & E(r))} o u);

H=pTy : (VW)v=t=v=,1)), or (TE(%) v TE(%))) > T(rs=1,),
or either of these with ‘Y, ‘v’, and ‘>’ replacing

¥, cv’, and ‘o’.
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Observation 1. Letie?2.
(i) lexo, . <lex,, ..
(ii) lex; < lex;,.
(iii) lex, < lex; r and lex, , s < lex up.
(iv) lex;, < lex; and lex;, ~ lex; .
(v) lex; , < lex;,; lex; s < lex; 4.
(Vi) Iext.T.u.l —~ lexl.‘r.u-

(i) through (v) all iollow using the above abbreviations.

(vi) For any term 7, variable v and formvia @, let (v)(g@, t) be (Vuv)(To=
v=71). Thus for an nn-model & and H-assignment &, oE(W)(@, 7)[a] iff
den(#, a, 7)| and is the unique a € {f] so that Sk ¢ [a?). For §(zy,..., 7)),
suppose t; is (tv)e. Picking a variable u not occuring in any of these terms,
&z, ..., 1,) is equivalent to:

Qu) ()@, ) & E(T1, - .-, By .- -5 7)) Vv ((3R)(W)(@, 1) & u).

it’s easy to ¢ the same sort of thing for equations containing (tv)@. By iterating
this procedure on atomic subformulae, a given formula of L, 1, transforms to
an equivalent formula of L, + .

Unlike the classic Russellian elimination of ‘t’, the above approach does not
produce scope ambiguities: E.g. for ‘P’, ‘Q’ € Pred(1), “~"P((tx)Qx)’ is equivalent
to both of these:

(@)(y)Qx, y) & Px] v ((3x)(ty)(Qx, y) & u));

@Ex)I(ly)(Qx, y) & 7Px] v (0(3x)(y)(Qx, y) & u)).
Observation 2. Letic?2.

() lex; ; Z<lex; ; lex; .o 2« lex; y -
(ii) lex; + =< lex; o lex; y —< lexX; p
(i) If feor n>0, Pred(n)+#{ } then ‘' is nn-equivalent to a sentence of
L_«(Pred, Funct).

Temporarily treat ‘F’ as primitive. Let ¢ e Fml(L; ). For i=1 we drive
cccurrences of ‘T’ and ‘F’ in ¢ inward preserving et-equivalence, using these
et-equivalences;

T(y20): CFy)=>2T6; Fy=6) : (Ty>0);
TTy Ty TFy : Fy;

FTy : T, FFy . Fe;
TEv)y : 3v)Ty; FRv)y : (Yu)Fy.
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Then T&/7, . - -, T,) and FL(%o, . . . , T,) may be reg.aced by:
&(tos- -+, T) &E(T) & - - - & E(z,) and
"C(to: s Ta)& Es(t(l) &--- & Es(tn)s

respectively. T(tp=1,) and F(To=T1,) can also be replaced using ‘=.; for
remaining occurrences of To= 7, use the above-given abbreviations. The second
inclusion follows analogously.

For i=0, we first associate each e Fml(Lo ) with a ' e Fmi(L,s) et-
equivalent to T(y> y):

for y atomic, Y'isy>oy; (y268)isy'&0';
(Ty)is—L; (Fv)y) is (Vu)(9)-

Then we drive ‘T’ and ‘F in @ inward using the previous et-equivalences for
T Ty, etc. and these:

T(y>20) : (FyoTO)&yY' &6,
Fly>20) : (TyoFO)&yp' &0,
TAv)y : @v)Ty&(Vu)(¥');
FGu)y : (Vo)Fy &(Vu)(y).

On atomic formulae we eliminate ‘T’ and ‘F as before. For ¢ € Fml(L, + ,) this
procedure vields an et-equivalent in Fml(L,,;). To get an et-equivalent in
Fmi(Ly, ), just use ‘=,’ in place of ‘=., together with the iact that ‘=’ is
expressible in L4, 4; notice that for @ € Fml(Ly ;) this procedure need not yield a
result in Ly, because ‘U’ is needed to handle “‘remaining occurrences of 7, = t,”.

(ii) Given @ e Fml(L, ;) fix distinct variables v, u not free in @; To is
nn-equivalent to (3v)E((tu)(¢p & v =pn)). For Ly use ‘&’ and ‘3’ in place of
‘&’ and ‘. This also holds with ‘=’ in place of ‘=.’.

(iii) Say ‘P’ € Pred(1); let @ be ‘(Vy)P((tx)x#,y) and @ be ‘(Vy)}(Vz)(y #»
z2oP((tr)(x#,y &x#py))). For any nn-model f: if card(f)#2, «|¢@;
otherwise <k @; if card(f)#3, A|y; otherwise s{ky; thus L |p&y.
Similarly with ‘S’ in place of ‘ °, eftc.

QObservation 3. Letic?.

(i) lex , <lex .
(ii) lex, +

(iii) lex;, ~<lex;,, and so lex; *<lex;;
(iv) lex; .o <lex; 1.

(i) For p e Fml{(L_,), we form ¢ and ¢~ e Fml(L_) so that (1) for any
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o e MOD and any #/-assignment a:
1) Argpla] if dEe[a);
Adipla] if 49 [a]

Let u™ be L, u™ be 1, (y>260)* be py~20% ((Av)0)* be (Iv)(6Y),
((Qv)(6)” be (Fv)(07), (y>0)" be (TY*&TO)v(FYy & TOY) v (Fy~
&F07), (y>0) be TYy*&F6~, (TO)" and (TH)™ be T(0*), with 6+ and 0~
being @ for other atomic 6. By an easy induction (1) holds

these changes in the precedmg (tp >0)" is (ﬁFap ) T6, (tp >0) i
(p*297), ((3v)0)* is (Fv)T(8Y), ((Fv)8) is (3v)(6).

(iii) For @ e Fml(L,,) form ¢@*, ¢~ € Fml(L,,) so that (1) holds. Let (7=,
T)* be o=, 7, &E(To) &E(71); (To=:T))” i To = T,; other atomic formulae
remain the same; other clauses as in (i). A similar construction applies for i = 1.

(iv) In ¢ e Fmi(L, +,) replace positive occurrences of (..., (w)6,...) by
@Aw)((Ww)(6, p) & E(. .., 1, ...)), neeative occurrences by (Vu)(('v)(6, u)>
&(...,m,...)); handle ‘=" similary. Similarly for i =0.

These inclusiona, and others followmg trivially from the, are summarized in
Fig. 1; there lex, > Y~ lex,. iff lex, < lex,. and lex,. Y<lex,.

Usually we’ll state failures of expressibility for only the strongest relevent
lexica; obviously what’s not expressible in it is also not expressible in equivalent
or weaker lexica.

+
LI I s ity >

AN

Ve
lexgy / lexp T4y [ge— N lexg 1t
A4
+
[ 14

AV
\
+
et etnn
AN AN
/ lexy, L texy,

< lexg,,

Fig. 1. >« represents ‘< & .
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Observation 4. In what follows, replace y’ as above.
(i) ‘T’ is not expressibie™” using lex, . (or lex, . s, lex, ,, etc.).
(ii) ‘u’ is not expressible¥ using lex; .
(iii) Neither ‘=, nor ‘=, is expressible’ using lex,.; furthermore, neither is
expressible™ using lexg .
(iv) Neither ‘=" nor ‘=’ is expressible" using lex, v ».
(v) ‘=, is not expressible¥ using lexo v ,.
(vi) ‘t’ is not expressibleY using lexg ¢ .
(vii) ‘t’ is not expressibleY using lex, 1 or lex, ,.

(i) For ‘P’ € Pred(0) and ‘¢’ € Funct{0) ‘UP’ and ““TE(c)’ have no y-
equivalents*, using Lemma 1(i) on appropriate models. (Similar constructions
apply for an n-place predicate- or function-constant if n > 1. But note that for

bothie2, L;+({ }, { PD=Lip({ },{ }).) What follows applies for any choice of
Pred and Funct.

(i) By Lemma 2, ‘u’ has no y-equivalent in L, ;.

(iii) By Lemma 1(i), E(v) has no y-equivalent in Fml(L, ,). Since ‘=; and
‘=, both generate E(v), they are not expressibleY. Suppose @ € Fml(L,,) is
equivalent™ to ‘a#,b’; without loss of generality @ € Sent(L,); for a model o
with ‘@*¥| and b’ “{, Sk @; so by Lemma 3, ‘b’ doesn’t occur in @; but then we
may surely get 4 =B, B1‘a#,b’, so B4 ¢, which violates Lemma 1(ij. Similarly
for ‘a#,b’.

(iv) v =v has no y-equivalent in Fml(L, 1), by Lemma 2 and the fact that if
a(v)| then o { v =v [«]; similarly with v=, v.

To prove (v) we show that for any @ e Fml(Ly ), @ is not equivalent to
Vo= V,. For i €2 let an occurrence of v; in @ be exposed in @ iff it’s within an
occurrence of an atomic formula that’s exposed in @. Fix a model & and
s-assignments ap and a, with a;(v;){. If there is an exposed occuirence of v; in
@, then o | @ [«;]: for any such occurrence would be in an exposed occurrence of
v; =7 or T=uv,; where 0 is that formula, o | 6 [¢;]; by Lemma 3, # | ¢ [@]; but
by taking a(v,-;)|, & 1v,=; v, [@]. We now show that if no occurrences of v, or
v, are exposed in @ and a(v)| for all variables v other than v, and v,, either
At @la] or #4@[a]. The easiest way to see that is to prenex @; the usual
prenexing rules with ‘3’ and ‘ V'’ preserve equivalence; then note that it holds for
the matrix, and then for the prenexed formula. By taking such an & with a(v,)]
and a(v,)] we have & | vo=, v, [a].

We can come rather close to expressing ‘=, with lex ¢ ;. Let:

L= {-F (o= 1), TE(%0) = TE(%), E(%o), E(z)};

L= {"T(r%=11), (TE(z) = TE(71)), E(%0), E(71)}.
Then for any & and « as usual:

Arro=,7,ja] f AEL[a];

A =1, [a] if A" [a];

similarly for vy # 7, and I.
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But neither &I nor &I, is equivalent’ to 7, =, 1,!

(vi) Let ¢ bLe ‘([y)t)x#y=,(tx)x#,y). By Lemma 3 any fe
Sent(Lo v ({ }, { })) is either equivalent to ‘W’ or to a sentence of
Lo+ s({ }»{ }), in which case by Lemma 2 for a model & of cardinality +2 either
S0 or o 46. Either way 0 isn’t y-equivalent to ¢.

(vii) Similarly ‘(3y)(y =(tx)x#y)’ has no equivalent in Fml(L, ). For
‘P’ € Pred(1) it’s easy to find models s, and &, with den(s4,, a, ‘(tx)Px’)| and
den(st,, @, ‘(tx)Px’)1; so ook ‘E((tx)Px)’ and o, | ‘E((tx)Px)’; by Lemma 1 no
formula of L,, is equivalent or even equivalent*, to ‘E((tx)Px). A similar
construction applies to ‘f’ € Funct(1), using ‘(tx)(x =fx)’. And similarly for
predicate- or function-constants with more places. If Pred = Pred(0) and Funct =
Funct(0), L, ,,~<L,,, by a normal form argument that’s tco tedious to consider
here.

3. Coliapsing to two-valued semantics

In order to avoid the terrors of a three-valued semantics, some logicians favor a
convention according to which those sentences (formulae) which we might
consider neither true nor false (neither satisfied nor frustrated) are arbitrarily
assigned one of these values, usuaily falsehood (frustration) being preferred. We
digress to consider the relationship between this approach and a three-valued
semantics.

Given Pred, form Pred™ {Pred~] by replacing each ¢ € Pred(n) with a new
n-place predicate-constant {* [{7]; let Pred* = Pred* U Pred~. Where ‘2’ is
replaced by ‘+’ [‘=’] [‘¥’] let L? be the language generated from Pred* and Funct
using the logical lexicon {‘L’, ‘=, ‘F’, ‘=", [‘=""] [both ‘="" and ‘=""]}. For a
model & for Pred”, Funct and {-assignment « (recall these are partial) we define
a two-valued satisaction relation F, with these base clauses added to the usual
induction clauses:

AE L) [a] iff ALEE(--)[e];
A 87 ) o] iff AEVE(C--)[al;
similarly for equations.

Thus &*(-- ) [§7(--+)] is in effect {(---) according to the familiar Falsehood
[unfamiliar Truth] convention: where the three-value approach says ‘neither’, say
‘false’ [‘true’].
We define translation functions ¢*, ¢~ from Fmi(L,) into Fml(L*) so that for all
A and a as above:
Akt (@)[o] if Ak@lal;
AEt7(p)[a] iff A" pla)

Let t*(E(--+)) be &*(--+), t7(&(--+)) be (- --); similarly for equations.
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Also:

(W), (L), (L) arcall ‘L7

T (w)is L’

t*(T@) and ¢ (T @) are *(9);

(o) ist(p)2"(y);

(oo 9)is ' (@)1 (¥);

t* and ¢~ commute with ‘3’;

(@29)is (@) (@) & (T (@) 21(9) & (" (W) 2" (¥));

t(@oy)is(t (@)= (¥) v (@) 27 ()) v (w) 217 (P);

£ ((Qv)e) is (3v)*(@) & (Vo) (9) 27 (9));

(@v)e is @A) (@) v (VW) (@) > (@)

The point of the last four clauses lies here:
d|pla] iff st (9)>r'(9)[al,
by a simuitaneous induction.

For the above iranslation we couldn’t get by with only L* or L™. For example,
for ‘P, ‘Q’ € PRED(0) there is no ¥ e Fml(L*) so that for all models </ for
(P, Q)

Ae'PoQ iff dke.

Suppose oy | ‘P, £, 1P, #o1Q’, &, 1'Q’; 0 4| ‘P> Q and o, E‘Po Q.
But for any p e Fml(L*), ok, ¢ iff ok, . For similar reasons there is no
y e Fml(L™) so that for all o and & as above: LY ‘P> Q' iff Lk, .

Using the Falshood (or Truth) convention in our model-theorets =cmantics for
partial models and assignments is objectionable on two grora..

(1) It destroys the symmetry of truth and falseho« 74 in two-valued
semantics for total models and assignments, and desto5. i :4 an ad-hoc way.

(2) Use of the Falsechood [Truth] convention wr » .=~ to use of L* [L™] under
k2, which as our last example shows, is lesz .z, 'cs=:ve¢ *hcn even our weakest
language L, considered under F or £*.

4. Nateral deduction for..alizations

I include the following section on formalization for the sake of the compactness

result it yields and because these calculi have nc*, as far as I know, appeared
elsewhere.
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Some of our logical lexica can’t express ‘>, or ‘>,’; so axiomatization of the
class of valid or weakly valid formulae will not capture all information about
the validity and weak validity of sequc ts. For a uniform approach to formalizing
the logics presented in Section 1 we need a direct inductive definition of the
classes of valid and/or weakly valid sequents, that is te say a sequent-calculus.
Abstractly, we may view a sequent-calculus ¥ as a class-size function that applies

to a language L to yield a simultaneous inductive definition of two sets of
sequents in L:

th¥ (L) = the set of theorems of ¥(L);
wkthH (L) = the set of weak thzorems of H(L).

The axioms [weak axioms] of #(L) are those sequents thrown into th¥(L)
[wkth#(L)] by the base-clauses of this inductive definition; the rules are the
induction-clauses.

For ‘x’ and ‘y’ replaced as before: ¥ is x, y-sound iff for any Pred, Funct,
letting L, = L,(Pred, Funct), all members of th¥(L,) are y-valid and all
members of wkth¥(L,) are weakly y-valid. ¥ is x, y-complete iff for any Pred,
Funct, all y-valid sequents of L, belong to th¥(L,) and all weakly y-valid such
sequents belong to wkth¥(L,). We’ll use these abbreviations when context fixes
K ang L,:

ILAvg : (T A, @)eth¥(L,);
LAY g : (T, A, ¢)ewkth¥(L,).

We introduce the calculus %,. First, for ‘y’ replaced by a blank. Given X, Pred,
Funct, the axioms of % (L,) are those of the following whose formulae belong to
Fml(L,).

M {o}. {9}t o

@ { b {eit'e.

@) { ) {11

(4) {u},{u}t+1 (but unnecessary for x=0, T,u,or1, T, u).

(5) {u}, {ulkl.

©®{}hL{}Hr=z

(6,) (6) with ‘=’ replacing ‘=".

(6,) (6) with ‘=’ replacing ‘=".

(7) {E(7o), E(71)}, {E(70), E(7)), @} @, with @ either 7= 7, Or To# 7.
(7) {Ef7))}, {E(7), @} @, with @ either To=,7,0r 7oF,7,and i =2.
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@) { }: {To=pT:} FHo=b T
8) {@}, {@}+E(z;), wheres one of these holds:
(i) @ is of the form &(7y, ..., T,) or (7, ... . 5,) and i <n;
(ii) @ and are as in (7);
(iii) @ is E(7) and 7; is a subterm of =.
8) {9}, {@} +E(z), where one of these holds:
(i) asin (8.i);
(i) pisp=sT,andi€2;
(iii) @ is Ei(t;) and t; is a subterm of =.
(8,-1) As in (8,) where either (8.1) or (8.iii) holds;
(8v-ii) {To=b71, E(7)}, {To=bT1, E(w)}FE(7iy)), fori<2.
%) {n#u} {n ‘fs Ty, "3(w)} FE(wiy) fori<2.
(9,) As in (9,) with ‘=;’ replacing ‘=’.
We need the following structural rules.

(Thinning) ¥ I'cI’, Ac A’ and I" c A":

I, At I, AtYg
r'Ave TI',A'VWg

(Weakening) I Are
IAF g

(Strengthening) I AF¥ 1
r,Ar1

Now Introduction and Elimination rules for ‘>’ and *T°.

{Strong ‘>’ Elirrination) rArgovy
ILAF ¢
L Ary
(Weak ‘>’ Elimination) I,AtYe>ovy
i, A @
[LAFy
(Strong ‘>’ Introduction) r,Au{e}try
r,A tpoy
(Weak ‘o’ Introduction) ru{e}, Au{g}t’y
r, A ooy
(‘ T° Elimination) I, AV Te
[, Are
(* T’ Introduction) I are
IAFT'
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The Strong and Weak ‘o™ Elimination rules and the Weak ‘>’ Introduction rules
are obtained from the corresponding rules for ‘>’ by replacing ‘>’ with ‘>’; in
addition we need the following.

(Strong ‘o’ Introduction) I, AU{@}t¢

LLAUu{gp}te
ILLAU{y}ty
r,A Feo vy
(‘>’ Definedness) I,A teoy T, A Loy
r Au{g}te ILAU{yp}ty

These rules will make our logic classical.

(Strong RAA) I, AU {n@}t+ 1
I,A 2

(Weak RAA) ru{ne}, AU {ne}tL
r A He

For ‘=’ e lex,, X(L,) handles ‘3’ as follows.

(Strong ‘3’ Elimination)

I, A F@v)e
rU{E(v), ¢}, AU{E(v), @} Ly
I, A Fy

provided v is not free in y or in any member of A

(Weak ‘3’ Elimination)

I, A H ()
FU{E(v)},AU{E(v), @}I*y
I, A Hy

provided v is as above.

(Strong ‘T’ Introduction) I, At @(v/7)
I, A+E(7)
r, Ar(Jv)yp
provided that 7 is substitutible tor v in @.
(Weak ‘2’ Introduction) I, AV @(v/7)
I, A+E(7)
I, A (Jv)e
provided that 7 is as above.
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The Si-ong and Weak ‘3’ Elimination rulcs and the Weak ‘2’ Introduction rules
are obtained from the corresponding rules for ‘3’ by replacing ‘3’ by ‘3°. We also
necd these further rules.

(Strong ‘I’ Introduction)
r, A +re(v/T)
I, A +E(z)
FU{E(v), }, AU{E(v), @}t @
L, A F@v)e

provided that  is substitutible for v in @.
(‘2 Definedness)

T, A FEv)e
ru{E(v)}, AU{E(v), g}t @

We also need these rules.

(Strong Congruence) I, A+ @(v/7)
I Alge=1,
I At g(v/T)

(Weak Congruence) I AW @(v/t)
I, Ar1y=1,

[_', Ar* @(v/T)

(Positive ‘t’ Elimination) I AlT=(tv)p
I, At @(v/7)

provided 7 is substitutible for v in ¢@.

(Negative ‘t’ Elimination) T, Atgo=(1")@

LA @(v/T)
I AbT=1,

provided t, is substiwtible for v in ¢@.

(‘" Introduction)
ru{e(v/u), E(n)}, AU {@p(v/p), E(u)}ru=1
I, A Fo(v/T)

r, A Fz=(tv)g
provided that p and 7 are substitutible for v in ¢.
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For ‘= € lex, replace ‘=" and ‘E’ by ‘=;’ and ‘E;’ in the preceding rules; similarly
for ‘=’ € lex,. This completes our specification of H(L,).
Form #,,(Ly) by adding the appropriate one of these axioms to ¥(L,):

(@) {}.4{ }F@uEQ);  { }, { }F@v)E(v);

or else with ‘E’ in place of ‘E’. Form ¥,,(L,) by adding these axioms or the result
of replacing ‘E’ in them by ‘E,":

(et) {E(tl)n seey E(tn)}’ {E(tl)’ ct E(tn)’ ‘P} F @

where @ is either {(7,, ..., t,) or &(%,, ..., T,).

Form ¥, g(L,) by adding both sorts of axioms to H(L,),

It’s easy to see that ¥, is x, y-sound.

For 'c AcFml(L,) let (I', A) be x,y-inconsistent iff I') Al 1; otherwise
(I, A) is y-consistent.

Henkin’s Lemma. If (I, A) is X, y-consistent, then there s a y-model s{ and an
-assignment « so that A €I [a] and ALY Aa).

This follows by an easy modification of well-known techniques. It yields the
y-completeness of ¥, again by a familiar argument. As usual, compactness
follows: if I', A+ @ [I, AH" @] then there are finite I'" c I' and A’ < A so that
Ir'A'vrelIl', A+ ¢l

Notice the inierplay between theorems and weak theorems in many of these
rules. This is unavcidable; with an eye toward natural deduction (which is to say,
with an eye toward logic rather than just algebra) we can’t consider validity
without weak validity, and vice versa. And therein lines the problem with the
traditional use of valuational systems for the semantics of three-valued logics.
One such system defines validity and another weak-validity, yielding two distinct
logics. (Valuational systems were first introduced as a technical device for
independence resuits concerning axiomatizations of logic. I suspect that an
unwerrented preocception with valuational systems contributed to some of
Michael Dummett’s views on t:uth-value gaps; see Seciion 11.)

S. Ultraproducts and centers

We'll apply the ultraproduct construction to partial models. Given an index set
I and for each i € I a model ;= (||, &, N)), let:

[11:1={f:f is a function on / and for each i € 1, (i) € | %1}

iel
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For D an ultrafilter on [ and f, g € [Lic; | i, let:
f=pg i {i:f()eg(®d}eD;
fo=1{8:f~o0g}:

([T st| = {fosf e T 1sti}.
D iel

For { e PRED(n) and j €2 let:

3'(§)(ﬁ).D’ s vfn—l.D) =i
iff {i: SO, - - -, /(D)) =j} € D;

otherwise €'(&)(fo.p, - - - » fa-1.0)]- For L€ FUNCT(n), if n=0, let ¥'(E)=/fp
iff {i: M(8)=Ff()} € D for any f €llic; |); if n =1, let

N'(E)fo.ps - - - » fa-1.D)=Jo
i (i N - - - » for@) =F @)} €D,

again for any fell;|s]. Note that & and W' are well-defined, with
dom(&’')=PRED and {U,<n<o, FUNCT(n) cdom(¥”). For any {e€PRED let
E&)=€'(&) if €(&)+{ }, and otherwise &({)]. For any & e FUNCT(n), if
n=0, let N(E)=WN"(§); if n=1 and dom(N'(E))# { }, let ¥(E)=N"(E), and
otherwise N(&)]. Thus dom(%) and dom(W) are sets. Let I, o be
(Il 4|, €, N). Suppose that for each iel, ¢; is an of;-assignment. For any
variable v and f € [, 1 ;] let (Tlp @;))(v) =fp iff {i: ai(v) =f(i)} € D. So Il «; is
a [1p A-assignment.

ros’ fundamental theorem on ultraproducts (Theorem 4.1.9 of [1]) easily
carries over to partial models as follows. If for each i € I, &; is a model for Pred,
Funct and @ € Fml(L,(Pred, Funct)):

| J AT [H a,-] iff {i:Ak@la;)}eD;
D D

r

H«vﬂ;itplﬂm] iff {i:o1@[a]}eD;

The ultraproduct compactness corollary to Los’ theorem (Corollary 4.1.11 of [1])
also carries over as follows. For any set X let S,(X) = {Y: Y ¢ X and Y is finite}.
Suppose 2, =, are sets of formulae, / =5,(Z,;) and for each i € f there is a
model ¢, with &/ i and &; ki N X,. Then there is an ultrapreduct D on I so that
[y o,£% 2, and [Ip, &, £ Z,. The usual D such that for each o€ X,, 6={i:iel
and o €i} € D does the trick, because

ifoel,, thenoc{iel: 4;t¥0};
ifoel;, thendc{iel: Ea}.
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Consider models o; =(A, &, ;) for i €2. For { e PRED(n) let &, {-widen
A, iff No= N, and:

forany §' € PREDif {' # £, then &(&') = &,($');
&0 &N

For § e FUNCT(n) let o, &-widen o, iff &,= &, and:
for any &' e FUNCT if &' # &, then Ny(&') = N(E');
NS Ml

For K ¢ MOD we adopt these definitions.

Pred(K) = {C € PRED: there are models &, 3 so that o
C-widens B and: e K iff B¢ K.

Define Funct(K) similarly. Center(K) = Pred(K) '+ Funct(K); K is bounded iff
Center(K) is a set (i.e. not a proper class); L,(Kk)= L,(Pred(K), Funct(K)).

For any class FcPREDUFUNCT and any model o let 4} F=
(4, &1 &, N | F).

Theorem 1. If KcMOD is closed under isomorphism, ultraporoducts and
MOD - K is closed under ultrapowers, then Center(K) is the minimal ¥ c
PRED U FUNCT so that for all e Mod: L eK iff 4 | FeKk.

Proof. Assume that K meets the stated closure conditions. Let of = (||, &, X)
be a model. For k a cardinal let (v,),-, be a listing of (dom(%) U dom(«)) —
Center{K).

Assume that o/ | Center(K) e K. Fort<kletsd, = | {y, 1 1<t <k};50 4,4,
y.-widens &f,. Claim: for each t<k, o, €K. If & €K but #,,,¢K, then
¥, € Center(K) contrary to choice of y,. If & is finite, we’re done. Otherwise
suppose A<k is a limit ordinal and for all ¢t <A, &, e K. E={A—1:1<A}isa
filter cn A with the finite intersection property; let D be an ultrafilter on A with
D cE; we have [Ip H,<,e K. But [Ip &, (=1lp B, taking B, = A, for each
t <A) is isomorphic to [1, o, ;. If &, ¢ K, then [I, o, ¢ K; so &, € K. Thus the
claim; in particular &, = o € K.

Assume that S e K. Let £, = | {1': ¢/ <1} for i<k. So o = ,. As above
we show that for all ¢ <k, &, € K. In particular, &, = # | Center(K) € K.

Finally, Suppose that ¥ c PRED UFUNCT and for all models &: & € K iff
A | Fe K. Suppose y € Center(K) as witnessed by models & and 3. If v ¢ %,
AV F=B| % Wehave: S eKiff 4 | FeK, Bl FeKiff Be K; so A e Kiff
B € K, contrary to choice of & and B. So y € %. So Center(K) c &.
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6. On x-clementary and weakly x-elementary classes

For the rest of this paper, replace ‘X’ by any of our subscripts for ‘lex’ so that
‘t* ¢ lex,. For & e MOD and K ¢ MOD let:

Th () = {@: @ € Sent(L,) and Sk @};
WkTh,() = {@: @ € Sent(L,) and " @};
Thy(K) =M {Th(«d): & e K};

WkTh(K) = M {WkTh,(s): & € K}.

Note that these classe: can be piope .

For x=i, T,..., Th(s)cTh(B) iff Th(A)=Th(B); for if ¢ ¢ Th, ()
then "T@e Th (), and so if the leftside holds " T¢@ e Th (%), yielding
@ ¢ Thy(3B). Furthermore, for S c Sent(L,) closed under 7’ and any &, Be
MOD:

Th(H)NScTh(B) iff WKkTh(B)NS c WkTh,(H).

Let K be S-upward, [S-downward,] closed iff for all &/, Be MOD if
Th(sf) NS c Th,(%B) then:

if ek, then BeK [if B €K, then o € K];

For § = Sent(L,) we delete mention of S.

For I' c Sent(L,): I' defines [weakly defines] K iff: for all & e MOD, ¥ € K iff
AET [E*T). K is x-clementary [weakly x-elementary] iff some I' < Sent(L,)
defines {weakly defines] K; K is basic x-elementary [weakly basic x-elementaiy]

iff for some @ € Sent(L,), { @} defines [weakly defines] K, in which case we’ll say
that @ defines [weakly defines] K.

Lemma 4. Let Pred and Funct be given. For any @ €Sent(L,) there is a
@" € Sent(L(Pred, Funct)) so tha: for c.:y 4 e MOD:

AV (PredU Funct)k @ iff oA |} (Pred U Funct)k @*.

Given @ form @' by replacing atomic subformulae of @ as follows: replace an
atomic formula of the form {(---) or rp=1t, containing a constant not in
Pred U Funct by ‘u’; replace 15 =, T, [7o=s 7,] such that 7, and 7, each contain a
function-constant not in Pred U Funct by ‘v’ [L1’]; if 7; contains a function-
constant not in Pred U Funct and t,_; does not, replace 7,=,1, [to=, 7] by
"Elt-) vu [DE(r,_;)] Easily o [(PredU Funct)k @ iff s [(Pred U Funct)
k@', and all constants in @’ belong to Pred U Funct; so if ‘U’ € lex, let ¢* be ¢'.

Otherwise we select @ € Sent(L (Pred, Funct)) equivalent™ to ¢’, using Obser-
vation 3(i).
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Theorem 2 (weak part). Suppose K cMOD is bounded. The foliowing are
equivalent:
(i¥) K is weakly x-elementary.
(ii") K is weakly defined by WkTh,(K) N Sent(L,(K)).
(iii") K is closed under isomorphism, ultraproducts and is downward, closed
and MOD - K is closed under ultrapowers.

Clearly (ii™), implies (i"). It’s easy to sec that (ii™) implies (iii%).

To show: (iii*) implies (ii"). Assume (iii"). Svppose %eMOD, Bt
WkTh,(K) N Sent(L.(K)). Letting B' = B|Center(K), B'eK iff BeK, by
Theorem 1. Let I=S,(Th, (%) N Sent(L,(K)); since K is bounded, 7 is a set.
Claim: for each i € I there is an &¢; € K so that s, ki. Otherwise fix an i so that for
every d e K: A¥i, so A" &i; so & € WkTh,(K) N Sent(L,{K)); so B:"
~&i; so BEi by choice of i, a contradiction. Let & = &; | Center(K); again
oA; € K. By the coroilary to Los’ theorem we select an ultrafilter D on I so that
Ip A ETh(B')NSent(L(K)). We have [IpHeK Claim: Th(®')c
Th,(Ilp ;). For ¢ € Th(®B') form @ as in Lemma 4, taking Pred = Pred(K),
Funct = Funct(K). So @™ € Th,(3') N Sent(L,(K)); since (II, ;) | Center(X) =
p &, llp A k@ iff [Ip o E@™. But D was selected to contain X = {i: ¢* €i};
so [Ip & E@™; so [Ip o] k@, establishing the claim. So by downward, closure
B' € K; so B € K, which suffices for (ii*).

The strong part of Theorem 2 requires further definitions. For & e MOD, « an
HA-assignment and 0 a formula, « is total for @ iff for every variable v occurring
free in 8 a(v)]. 0 is f-bivalent iff for every sf-assignment a, if « is total for 0
then ether £ 0 [a] or &/ 46 [a]. For a class A of formula, A is &/-bivalent iff
for eve 'y 0 € A, 0 is f-bivalent. The following definition will be of use only for
x=0,.... Let:

Core,(K) = {0: 0 € AtFml(L,) and for all & € K 0 is «-bivalent}.
C(K) = {@ € Fml(L,): every exposed subformula of ¢ belongs to Core,(K)}.

Clearly for any & € K, Core,(K) is #-bivalent. Also, if ‘T’ ¢ lex,, then C,(K)
is the class of formula of L, generated from Core,(K). Also, if K#{ }, then
‘u’ ¢ Core,(K); and so for ¢ € C,(K) no occurrence of ‘v’ in @ is exposed.

For ‘="elex, and K#{ }, Core(K)c AtFml(L,(K)). For suppose 0¢
Core,(K). For any function- or predicate-constant y occurring in @, pick any
o € K, any O-total -assignment a, and any B € MOD so that & y-widens %;
then B | 0[a]; so B¢ K; so y € Center(K); so 6 € AtFml(L(K)). For other x
this doesn’t hold, e.g. for ‘a’, 'b’e FUNCT(0) let ‘E,(a)’ define K; ‘a=.b’¢
Core, (K) though ‘b’ ¢ Center(K).

Lemma 5. If Core,(K) is s-bivalent and ¢ € C,(K), then @ is A-bivalent. Proof
by induction on the construction of .
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Lemma 6. For x=0, . .. Th(K) c C(K).

Suppose @ ¢ C(K). There is an exposed occurrence of some 6 ¢ Core(K) in ¢.
Pick 2 model & € K and an <f-assignment total for 0 so that & | 6 [«]. By Lemma
2, 4| @; so @ ¢ Th(K).

Note: for x=0, T,... K is C(K)-downward, closed iff K is downward,
closed. Left to right is trivial; from right to left it suffices to note that if
Th(f) N C(K) c Th(B), then Th(H)cTh(B): if ¢ eTh () then Tpe
Th, () N C(K).

Theorem 2.1 (strong part). For KcMOD and bounded, the jollowing are
equivalent.
(i) K is x-elementary.
(ii) K is defined by Th,(K) N Sent(L,(K)).
(iii) K is closed under isomorphism and ultraproducts, MOD — K is closed
under ultrapowers and
(i) if x=1,... then K is upward, closed;
(i) if x=0,... then K is C,(K)-upward, closed.

Clearly (ii) implies (i). First suppose that x=1, ... . Clearly (i) implies (iii).
Assume (iii). Suppose that 8 e MOD and 38t Th,(K) N Sent(L,(K)). Again let
B’ = B[Center (K). Let I =S,(WkTh,(B') N Sent(L,(K)); since K is bounded /
is a set. Claim: for each i € K there is an 4, € K so that &/;E¥i. Suppose not; fix
an i so that for all €K, S ¥¥i. Thea for o € K, o E&i; so & € Thy(K)N
Sent(L,(K)); so Bk &i; since BEYi, this is a contradiction. Let &=
5, [ Center(K); so #; € K. By the compactness corollary to Los’ theorem we find
an ultrafilter D on [ with [, &4 Y WKkTh,(®8') N Sent(L,(K)). Also I, & e K.
Claim: WkTh,(8') c WkTh,(Ilp #;). For @ €e WkTh,(%®’'), let @~ be (m¢)*
formed by applying Lemma 4 to —¢. Then ¢~ € WKkTh,(Il, &;), yielding
@ € WkTh,(Il, #;), arguing as in the proof that (iii") yields (ii*). So
Th(Ilp ;) = Th,(B'). By upward, closure, B’ € K, establishing (ii).

Now suppose that x=0,... . If I defines K, then I'c Th,(K), and so by
Lemma 6, I'c C,(K); with this, (i) implies (iii) as above. Now assume (iii).
Consider 3 as above. Let I = §_,(WkTh,(8') N C,(K) N Sent(L,(K))). Claim: for
each i € / there is an &; € K so that &;E"i. Suppose not; fix an i so that for all
HeK, A¢"i. Forany « € K and o € either £ E o or o 4 o, by Lemma 5. Thus
o E&i; so ~&i € Th(K) N Sent(L(K)); so BE&i; but BEi, for a contradic-
tion. Forming &, as above, we get WkTh,(#') N C(K) c WkTh,(Il, &), and
so Th(Ilp &) N C(K) = Th(RB'), as above. Since K is C,(K)-upward, closed
and [Ip A4 e K. B' K.

Note: K is upward, ; __[downward, ;] closed iff K is Cp ,_ (K)-upward,
[Co.1... (K)-downward, ] closed; this by Observations 1(i) and 3(ii).
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Corollary. If K is bounded and x-elementary [weakly x-elementary), then K is
defined [weakly defined] by a set of sentences.

Theorem 3. For K < MOD and bounded, the following are equivalent.
(i) K is basic x-elementary.
(ii) Some @ € Sent(L.(K)) defines K.
(iii) Some finite I' = Sent(L,(K)) defines K.
(iv) K and MOD - K are closed under isomorphism and ultraproducts, and
(i) ifx=1,... then K is upward,-closed;
(.ii) f x=0,... then K is C,(K)-upward, closed.
Forx=1,...0r0, T,... the following are also equivalent:
(i") K is basic weakly x-elementary.
(ii") Some @ € Sent(L,(K)) weakly defines K.
(iii") Some finite I' c Sent(L,(K)) weakly defines K.
(iv¥) K and MOD — K are closed under isomorphism and ultraproducts, and K
is downward, closed.
For x otherwise these are equivalent: (i*); (ii");
(v") K and MOD — K are closed under isomorphism and ultraproducts and K is
C,(MOD - K)-downward, closed.

Clearly (ii) implies (i) and (i) implies (i*). Taking @ to be &I' or &I, (ii) is
equivalent to (iii); taking @ to be &I'or &{—~Fo:0el'} forx=1,...0r0,T,...
(ii") is equivalent to (iii™). It’s not hard to see that: (i) implies (iv); for x=1, . ..
or0, T,... (i") implies (iv"); and for x otherwise (i*) implies (v*), using the fact
that if @ weakly defines K, then ¢ defines MOD — K.

To show: (iv) implies (iii). First note that Center(K) = Center(MOD — K), and
so L(K)= L, (MOD - K). Assume (iv). MOD — K is downward, closed because
K is upward, closed. By Theorem 2, Th,(K)N Sent(L.(K)) defines K and
WKTh,(MOD - K) N Sent(L,(K)) weakly defines MOD — K. Thus

(Th,(K) N Sent(L,(K)), WkTh,(MOD — K) N Sent(L,(K)))
is inconsistent. So by compactness there is a finite I ¢ Th,(K) N Sent(L,(K)) so
that (I, WkTh,(MOD — K) N Sent(L,(K))) is inconsistent. If & £I" then & €K,
for otherwise &/ E* WkTL, (MOD — K) N Sent(L.(K)). So I' defines K.

To show: for x=1,... or 0, T,... (ivY) implies (ii"). Assume (iv").
MOD - K is upward, closed because K is downward, closed. Then with K
and MOD - K switching places, (iv) holds; so by the preceding we obtain a ¢
defining MOD — K; so "¢ weakly defines K.

To show: for x otherwise (v*) implies (ii*). Because K is C,(MOD - K)-
downward, closed, it’s downward, closed; so the previous argument applies.

For ‘P’, ‘Q’ e PRED(0), let {‘P’, ‘Q’} weakly define K; then K is not weakly
basicy-elementary; in particular ‘P&Q’ doesn’t weakly define K. Notice that
Coreo(MOD — K)={*L’} U {v =v: v e Var}; so for any & e MOD, Thy() N
Co(MOD — K) c Thy(2B); so K is not Co(MOD — K)-downward, closed.
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7. On x-clementary class-pairs

For K,, K, c MOD, the ordered pair (Ko, K;) will not exist if K, or K, is
proper; since everything we’ll say in terms of such ordered pairs can be said
without mentioning them, we’ll permit ourselves to speak of such pairs in spite of
their non-existence. We adopt these definitions.

Pred(K,, K,) = Pred(Ko) U Pred(K,);
Funct(K,, K,;) = Funct(K,) U Funct(K,);
Center(K,, K,) = Center(Ky) U Cerier(K,);

L (Ko, K1) = L(Pred(Ko, K-}, runct(Ko, K,)).

(Ko, K,) is bounded iff Center(K,, K,) is a set, i.e. iff K, and K, are bounded.

(Kq, K,;) is center-bivalent [b-center-bivalent] iff K, — K, contains no model
total on Center(Ky, K,) [Pred(K,, K))]. (Ko, K,) is s-center-bivalent iff K, — K|,
contains no medei & both total on Pred(Kg, K,) and so that for every
variable-free term t based on Funct(K,, K,), T{1|. (K,, K,) is core,-bivalent iff
for any model o with Core,(K,) #-bivalent, « ¢ K; — K.

A class I of sentences defines (K, K,) iff I defines K, and weakly defines K.
(K,, K,) is x-clementary iff for some I' c Sent(L,) I' defines (Ko, K,). (K,, K,) is
basic x-elementary ‘& for some @ € Sent(L,), {@} defines (K, K,). (Ko, K,) is
u-defined iff {‘u’} ¢=%nes it, i.e. Ko={} and K, = MOD.

(K., K,) is C-ciossclosed iff for all o, BeMOD with Th(f)NSc
Wiih(B) if A € K, then B € K,; for S = Sent(".,) we omit mention of S. This
Jefinition will be convenient: (K, K,) has property 1, iff

if x=1,... then K, is upward, closed, K, is downward, closed and
(Ko, K,) is cross, closed;
if x=0,... then K, is C(K)-downward, closed.

Lemma 7. Let x=1,...; suppose that (K,, K,) is bounded and cross, clo:ed,
both K; and K, are closed under isomorphism and ultraproducts and totk
MOD - K, and MOD — K, are closed under ultrapowers. Then for any B e
MOD:

if BEYTh(Ko) N Sent(L, (Ko, K,)), then BeK,.

Assume that BE¥ Th,(K,) N Sent(L.(K,, K,)). Let B' = B[ Center(K,, K,).
Since B [ Center(K,) = %' | Center(K,), with two applications of Theorem 1 if
B' €K, then BeK.. Let I=5,(Th(%B')NSent(L (K, K,))); by boundedness
I is a set. Claim: for each i e K there is an &; € K, with &;E¥i. If this fails
for i, —&i e Th(K,) NSent(L(Ky, K,)), and so BEY&i; since B'Ei, BEi,
a contradiction. Letting o, = [ Center(K,, K,), ! | Center(X,)=
o; | Center(K,); so two more uses of Theorem 1 gives A; € K,. We select an



Three-valued logics 127

uitrafilter D on I so that [I, £ £ Th,(%') N Sent(L,(K,, K,)). Using Lemma 4
as we did in Section 6 we get Th(Ilp ;) c WkTh (B'). Since (Ko, K,) is
cross,-closed and [I, o € K,,, B’ € K,.

Finally let Thy(K,, K,)=Th.(Ko) N WkTh,(K,). For x=0,... Th(Ky)c
CK(KO)’ and so Thx(Ko, K]) c CX(KO)'

Theorem 4. Let (Ky, K,) be bounded. The following are equivalent:
(i) (Ko, K,) is x-elementary.

(ii) (Ko, K,) is defined by Th,(K,, K;) N Sent(L,(Ko, K,)).

(iii) Koc K,, Ko and K, are closed under isomorphism and ultraproducts,
MOD - K, and MOD — K, are closed under ultrapowers, (K,, K,) has property
1,, and:

(Q)if x=10r 1, T [=1,5] [=1,bor 1, T, b], then (Ko, K,) is center-
bivalent [s-center-bivalent] [b-center-bivalent];

(i) if x=00r0, Tor0,sor0,bor0, T, b, then (K;, X,) is core -bivalent;

(iii) if x=0, u or 0, T,u or O,u,s or 0,u, b, then (K, K,) is either
u-defined or core,-bivalent.

Clearly (ii) entails (i). To show: (i) entails (iii). Assume that I" c Sent(L,)
defines (K, K,). Clearly K, c K,; by Theorem 2, K, is closed under isomorphism
and ultraproducts, and MOD —K; is closed under ultrapowers for i € 2. For
x=1,... clearly K, is upward, closed and K, is downward, closed. Suppose
Th,(#) = WkTh,(RB). If # € K, then I' ¢ Th,(A); so I' € WkTh,(%8B); so B € K.
Thus (K, K,) is cross,-closed. For x=0, ... we have I'c C,(K,), and so K, is
C.(Ky)-downw: rd, closed. Thus (K,, K,) has property 1,.

Suppose x=1 or 1, T. Suppose that & € K; — K, is total on Center(K,, K,).
Since o ¢ K, we may select @ € I' so that o @; since o € K,, | ¢. Fix sets
Pred and Funct so that Pred(K,, K,) c Pred, Funct(K,, K,)< Funct and @€
Sent(L,(P: 2d, Funct)). Let 3B be any widening of & that is total on Pred U Funct.
Then either Bk [a] or B 4 y [«] for any y € Fml(L,(Pred, Funct)) and any
RB-assignment a, this by induction on the construction of . Thus either BF ¢ or
B4 ¢@. But o |Center(K,y, K,)=3B | Center(K,. K,). So by two uses of
Theorem 1, B e K, — K,, a contradiction. Thus (K, K,) i1s center-bivalent. A
similar argument when x=...,s [=...,b] shows that (K, K,) is s-center-
bivalent [b-center-bivalent].

Suppose x=0 or 0, T or 0,s or 0,b or 0, T, b. We have I'c Thy(Kj) c
C.(Ky). For any o e MOD, if Core,(K,) is s£-bivalent, then foreach p eI, # is
@-bivalent, by Lemma 4; so if o ¢ K, then o ¢ K,. So (Ko, K,) is core,-bivalent.

Suppose x=0,u or 0, T,u or 0,u,s or 0,u,b. By the above paragraph and
Lemma 2, either (K, K,) is u-defined or core,-bivalent.

To show: (iii) entails (ii). Assume (iii)). Let I =Th(K,, K\)N
Sent(L.(Ko, K;)). So if £ ¢ K, then kT, and if o € K, then " I'". We need
the converses.
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Suppose x=1,... . We'll show that if SF"I then «eK,. Suppose
not. By Lemma 7, ¥ Th,(Ko)NSent(L(Ko, K))); select @ e Th(Kg)N
Sent(L, (Ko, K,)) so that & 4¢. For ary y € WkTh,(K,) NSent(L(K},)), @ v
yerl; so A" @ v y; so AEV . Thus AE WiTh(K,) NSent(L(K,)). Since
K, is downward, closed, by Theorem 2, & € K, a contradiction.

To show: if kI then of € K. Suppose SET.

If ‘v’ € lex, then for any ¢ € Th,(K,) NSent(L,(K,)), p vuerl;so @ vu,
and so Sk @. Thus o ETh,(Ko) N Sent(L,(Ko)); -ince K, is upw: i, closed, by
‘vheorem 2, ¥ € K,.

Suppose ‘U’ ¢lex,. Claim: for any BeMOD so that BEWKTh(K;)N
Sent(L. (Ko, K;)): (@) if x=1 or 1, T then B is total on Center(K,, K;); (b) if
x=1,s then B is total on Pred(K,, K,) and for all closed ierms v based on
Funct(Ks, K,), den(B, { }, t)|; (c) if x=1,b then B is total on Pred(K,, K,).

For x=1 or 1, T. For any { e Pred(Ko, K,)(n) fix n distinct variables
Yo, ..., -n-1, abbreviating the list ¥; (VU)(E(V) v 1&(D)) is weakly valid, so
belongs to WKTh,(K,) N Sent(L,(K,, K;)), and so is true in %B. For any
& € Funct(K,, K,)(n) select ¥ as above and a further distinct v; (V3)(3v)v = §(V)
is weakly valid and so true in 3 as above. These facts establish (a). Since LT,
AeK, Suppose H¢K, since K, is upward, closed, by Theorem 2,
o Th,(Ko) N Sert(L,(Ko)); select @ € Th,(K,) N Sent(L(Ko)) so that LI @.
For any ¥ € WkTh,(K,) NSent(L (Ko, K,)), o v el;so dE@ v Y; So AEy.
Thus & E WkTh,(K,) N Sent(L, (Ko, K,)).- By (a) # is total on Center(K,, K;).
Since (iii.i) has (Ko, K;) center-bivalent, & € K,,. For x= 1, s: note that for 7 a
closed term based on Funct(K,, K,), 1=,7 € WKkTh,(K,) N Sent(L(K,, K;)) so
BET=,7;50 1!} |; thus (b). The argument for o € K, is like the preceding. For
x =1, b: the first part of the argument for (a) gives (c). For « € K, the argument
is like the preceding.

Suppose x=0,... . Assume that BE*TI. Let B’ = B | Center(K,, K,); so
BEVT. Let I=5,(Th(B') N C(Ky) N Sent(L, (Ko, K;)); as usual I is a set.
Claim: for any i € I there is an &, € K, so that &/, ki. Suppose this fails for i; then
—&i e WkTh,(K,) N Sent(L (Ko, K;)), since for any o, ¥ &i iff AVi
Furthermore, for any « e K,, &t &., since Core,(K,) is s-bivalent and
icC(Ko). So "&iel, and so B'F*~&i, contradicting B'Fi, yielding the
claim. Let o = ¥, [ Center(x,. K,); < A € K,. As usual we select an ultra-
filter D on I so that [lp o ETh,(B')N C,(Ko)NSent(L(Ky, K;)). Since
(Tlp &;) | Center(K,, K;) =Ilp 4] with Lemma 6 we may strengthen this to
Hp ] ETh(B')NC(Ko). But K, is C.(Ky)-downward, closed; so since
[Ipd/ekK,, B €K,, and su B € K,. Now assume BE I'; so by the above B € K.
For 6 ¢ Core,(K,) containing variables in the list ¥, (V7)(6 v —0) € Th(K) N
Sent{L,(Ky, K;)) by the definition of Core (K,). Since (V7)(@v8)e
WkTh,(K,) N Sent(L,(Kg)), (YO)(@v8)eI. Thus Core,(K,) is PB-bivalent;
since (K, K,) is core,-bivalent, B € K,. Thus (ii).

Note: suppose x=0,... . It’'s worth noticing that if Koc K, and K, is
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C,(K,)-downward, closed, then (Ko, K;) is C,(Ko)-cross, closed. For suppose
Th,(#) N C(Ko) = WKTh,(3B); using =" Th,(%) N C.(Ko) =« WkTh,(&); if A €
K, by Lemma 5, WkTh,(s) N C,(Ko) = Th,(#); so Th(B) N C,(Ko) = Th(A);
since H € K;, we get BeK,. Also, if ‘T’ elex, then K, is C,(K,)-downward,
closed iff K, is downward, closed.

Theorem 4 yields a slick proof of Observation 4(v). Let (K, K;) be definea by
‘a=,boc=,a. It’s not hard to see that Core, +(Kp) = {v=v":v, v’ € Var}; so
(Ko, K,) is not core, r-bivalent, and so not 0, T-elementary.

To analyze basic x-elementary pairs we need two more definitions. (K,, K,) is
core,-bivalent iff K, — K, contains no model that is Core,(K,) N Core,(MOD —
K,)-bivalent. (K,, K,) has property 2, iff:

if x=1,... then K, and K, are upward, and downwaid, closed
and (K, K,) is cross, closed;

if x=0,... then K, is C,(K,) N C,(MOD - K,)-downward,
closed and K, is C,(Ky) N C,(MOD — K,)-upward, closed.

Theorem 5. Let (Ko, K,) be bounded. For x=1,... or 0, T,. .. the following
are equivalent:
(i) (K,, K,) is basic x-elementary.
(ii) (Ko, K,) is defined by a @ € Sent(L,(K,, K,)).
(iii) (Ko, K,) is defined by a finite I" = Th(K,, K;) N Sent(L,(K,, K,).
(iv) Koc K,, K, and K, are closed under isomorphism, K,, K,, MOD — K,
and MOD — K, are closed under ultrapowers, (K,, K,) has property 2,, and:
(i) if x=10r 1, T [=1,5] [=1,b or 1, T, b}, then (Ko, K,) is center-
bivalent [s-center-bivalent] [b-center-bivalent];
(i) if x=0,... for ‘v’ ¢lex, then (K,, K,) is core,-bivalent;
(.iii) if x=0,... for ‘U’ elex, then (Ko, K,) is either u-defined or corey-
bivalen*.
Furthermore for x=0, . . . with ‘T’ ¢ lex, these are equivalent: {i); (ii); (iv).

Clearly (ii) implies (i); for x=1,...0r 0, T, ... (iii) is equivalent to (ii). It’s
easy to see that for x=1,... (Ko, K;) has property 2, iff (Ko, K;) and
(MOD — K;, MOD - Kj) have property 1,; - > (i) implies (iv). Also for x=0,...
(i) implies (iv); for if @ €Sent(L,) defines (Ko, K;), then @€ C(Kg)N
C(MOD —K,); this suffices to make (Ko, K;) have property 2, and be
core,-bivalent.

To show: for x=1,... (iv) implies (iii). First notice that Center(K,, K,) =
Center(MOD — K;, MOD — K,). Appiying Theorem 4 to (K,, K;) and (MOD —
K,, MOD — K,) we obtain I', A c Sent(L,(Ko, K,)) so that I' defines (Ko, K))
and A defines (MOD — K;, MOD-K,). So (I',TUA) and (A,T'UA) are
inconsistent. By compactness there is a finite I'" < I' so that (I'", " U A) and
(A, I U A) are inconsistent. Claim: I'" defines (Ko, K;). If L ET" but & ¢ K,
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then S/t~ A, contrary to the inconsistency of the first pair; so I'" defines K. If
AE¥ I but &f ¢ K, then S/ E A, contrary to the inconsistency of the second pair;
so I'" weakly defines K.

To show: for x=0, ... (iv; implies (ii). Assume (iv). Let I" be as in the proof
of Theorem 4, (iii) implies (ii). We show that I'* = '\ C(MOD — K,) defines
(Ko, K;). Assume that BE*I™*. Let B’ = B[Center(Ky, K;); so B'E" I'*. Let

1= 5,(Thy(B') N CKo) N € (MOD — K;) N Sent(L.(Ko, K1));

as usual / is a set. Claim: for any i e . there is an ¥; € K| so that &, Fi. Suppose
this fails for i; then —&ie WkTh,(K,)NSent(L, (Ko, K,)), since for any
oA, A" & if f§i Furthermore, for any L eK, ALE &, since A
is Core,(Kg)-bivalent and ic C,(Ko). So &ieI. Since ic C(MOD-K;)
we have ®B't“&i, contradicting ®'ki; yielding the claim. Let &=
s¥; | Center(Kq, K,); so &; € K,. As usual we select an ultrafilter D on [ so that

11 o ETh(B') N C(Ko) N CMOD — K,) N Sent(L (Ko, K,))-
D

Since (TIp ;) | Cenier(K,, K,) =[I, &; with Lemma 6 we may strengthen this
to [Ip H; ETh(B') N C(K) N C(MOD —K,). But K, is C(Kg)NC (MOD —
K,)-downward, closed; so since [I, #;cK,, B'€K,, and so BeK,. So I'*
weakly defines K,. For any 6 € Core,(Ky) N Core, (MOD —K,), (Vv)(~ v8)
erlr*. So if BkT then Core,(Ky) N Core (MOD — K,) is $B-bivalent; since
(Ko, K,) is core,-bivalent B e K,. So I'* defines (K,, K;). As in the case of
x=1,... we obtain a finite I'" c I'* defining (K,, K;). To see that &I"' defines
(Ko, K;) we need only show that if o ¢ K, then o 4&I"’; for this we need that
for every @ e I'" either S E@ or sf4¢. Since I'' c C,(MOD — K,) this is the
case.

The following deserves mention. For x=0 or 0,b anc ‘T’ ¢ lex, and (K,, K,)
basic x-elementary: if Xo#{}, then Core,(K,)<c Core,(MOD —K;); so if
Ko#{} and K,#MOD, then Core,(K,)= Core,(MOD — K,). For suppose
@ € Ly defines (K, K;) and « ¢ K,. Suppose 0 isn’t #-bivalent. Then 6 contains
some y, either a predicate- or a function-constant, so that for some a € |#|",
y#(@)]. Then y doesn’t occur in @, since &4, using Lemma 4. So in fact
y ¢ Center(Ky, K,). Now pick B € K,; then B’ = B | Center(K,, K,) € Ko; but
is not %B’-bivalent; so 6 e Corey(K,). This argument also works for x=0, b,
except that then y must be a predicate-constant.

For x=0,s this fact doesn’t hold. For ‘@’, ‘b’ € FUNCT(0) let ‘a=.b’ define
(Ko, K,); then ‘a = a’ € Core, ((K,) — Core, (MOD — K,).

8. An aigebraic classification of the x-elementary class-pairs

For K< MOD let K be upward monotonic [s-monotonic] iff for any £, Be
MOD so that A EB [ACB]: if LK then BeK. Let K be downward
monotonic [s-monotonic] iff for any such &/, B: if Be K then & € K.
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For Ky K, = MOD, let (Ko, K;) be monotonic [s-monotonic] iff K, is upward
monotonic [s-monotonic] and K, is downward monotonic [s-monotonic]. Let
(Ko, K;) be crosstonic [s-crosstonic] iff for any &/, 8eMOD so that o/*®
[ %, B), if A € K, then BeK,.

Let A be a class of terms closed under subterms (i.e. for any 7€ A and any
subterm o of z, o € A). Given a model £ = (||, €, N) we construct ¥, to be
the C-least A" so that ¥’ € X and for any term 7 € A and any s{-assignment a,
BN e gie Get Ny={}. Given N, let &, = (|, & N,); for Ee
FUNCT(n) and a € ||" let N,,,.1(8)(@) = a iff either N,,(&)(#)=a or there are
terms Tp,..., 7,—. and an Sf-assignment « so that &(zo,..., T,—1) €A has
depth<m +1, for all i <n, ¥ *=aq; and N(E)(d) = a; otherwise N,,.,(£)(@)].
Let Xo=U, N,; it is as desired.

For A a class of atomic formula let A be the class of terms occurring in
members of A; so A is closed under subterms. For £ e PRED(r) and é € |#|" let
8A(8)(@) = &(&)(a) if there are terms 7o, ..., T,—; SO that {(%g,..., T,—1)€A
and den((||, &, N3), @, t;) =a; for all i <n; otherwise E,(£)(@)]. Let L[ A=
(14, €4, N;3).

It’s easy to see that for ‘=" € lex, and Ac Fml(L,), &£ [ A is the E -least model
B so that B C o and for any 0 € A and «/-assignment a:

AEO[a] iff BEO[a];
A40[a] ff BA0[a]

Note that for SF {‘a#.b’, ‘E/(a)’, ‘Ei(b)’} there is no C-least BC & so that
BEa#k b

Let (K,, K;) be core,-closed iff for all o e MOD if & | Core,(K,) € K; then
Ae Kl.

What follows is the three-valued version of Corollary 6.1.16 of [1].

Theorem 6. Let (Ko, K,) be bounded. (K,, K,) is x-elementary iff Ko< K,;, Ky
and K, are closed under isomorphism and ultraproducts, MOD — K, and
MOD - K, are closed under ultrapowers, and these conditions are met:

(i) If x=0[=0,s or 0, b}, then K, is downward monotonic [s-monotonic] and
(Ko, K,) is core,-closed and core,-bivalent.

(ii) If x=0,u [=0,u,s or 0,u,b], then K, is downward monotonic [s-
monotonic) and (K, K,) is core,-closed and either core,-bivalent or u-defined.

(i) If x=0,T or 0, T, b, then (K,, K,) is core,-bivalent.

(iv) If x=0, T, u, then either (Ko, K,) is either core,-bivalent or u-defined.

W) If x=1 [=1,s] [1,b], then (Ko, K,) is monotonic [s-monotonic] [s-
monotonic}, crosstonic [s-crosstonic) [s-crosstonic] and center-bivalent [s-center-
bivalent) [b-center-bivalent).

(vi) If x=1,u [=1,u,s], then (Ko, K,) is monotonic [s-monotonic] and
crosstonic [s-crosstonic).

(vii) If x=1, T [=1, T, b], ther (Ko, K,) is center-bivalent [b-center-bivalent).
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Note: in cases (i) and (ii) (Ko, K,) is crosstonic [s-crosstonic] and monotonic
[s-monotonic]. Suppose & € Ko. For ‘="elex,, if #/*%B, since Core(Ky) is
sd-bivalent B [ Core,(Ky) E &; we have & € K,; since K, is downward monoto-
nic B | Core,(Ko) € K;; by core~closure BeK,. if 4T B, B is also Core(Ko)-
bivalent and o = B; soif o € K, then B € K, and so B € K. Similarly for *;and C,.

Proof from left to right. Assume the left-hand side; by Theorem 4 we may
suppose that I'c L,{Ko, K,) defines (Ko, K;). For ‘T’¢lex, and ‘=’elex,
[‘="¢lex,] it's easy to see that (Ko, K,) is monotonic [s-monotonic] and
crosstonic [s-crosstonic], using Lemma 1. If x#1,... and#0, T,... we may
suppose that I' c C,(K); thus for any % e MOD, S ETiff of | Core(Ko)E T, and
similarly for £¥; so (K, K;) is core,-closed. For the remaining conditions, use
Theorem 4.

The next two lemmas will get us from right to left.

Lemma 8. Let sf, B e MOD.
() forx=1,...0r0, T,... supppose that Th({} c Th(B):
(ii) f x=0,T or0, T,uor 1, T or 1, T, u: there is an ultrafilter D so that
=1, B;
(i.ii) if x=1 or 1, u there is an ultr=filter D so that II, LT[l B;
(iiii) if x=1,s or 1,u,s or 1,b there is ar ultrafilter D so that 11, o
gs HD B.
(ii) For x otherwise suppose that Th, () N C(K,) = Th(RB):
(ii.i) if x=0 or 0, u there is an ultrafilter D so that (I1p o) | Core,(K,) =
I B
(ii.ii) if x=0,s or O,u,s or 0,b or 0,u,b there is an ultrafilter D so that
(Il s#) | Core(Ko) E, Tlp B.

Lemma 9. For x=1 or 1,u [1,s or 1,u,s or 1,b] and o4, Be MOD: if
Th(sf) c WkTh.(B), then there is an ulirafilter D so that [Ip, £ X1, B
mbd‘tsnDQ]'

Assume the right-hand side of Theorem 5. We’ll use these lemmas to prove the
left-hand side. By Theorem 4 it suffices to show that (K, K,) has property 1,.

Suppose that Th () c Th,(9B). f x=1o0r 1,u[l,sor 1,u,s or 1,b], Lemma
8 gives an ultrafilter D with [[, S CIl, B [[Ip, LC 1, B). If BeK, then
[Ip BeK,; since K, is downward monotonic [s-monotonic] [I, & € K,; thus
A eK,. So K, is downward, closed. Reversing direction, K, being upward
monotonic [s-monotonic] yields that K, is upward, closed. If x= ,T,..
Lemma 8 yields a D so that [l o is isomorphic to [y B; so £ eK; iff BeK,,
making K; downward, closed and K, upward, closed.

Forx=1,T,..., if Th{#) N CAKo) < Th,(B) then Th,(#) < Th,(B); so the
argument used for x=1, T, ... shows that K, is C,(K,)-downward, closed. For
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x=0 or O,u [0,s or 0, u,s or 0,b or 0,u,b] suppose that Th,(#) N C,(Ko) <
Th(®B). Lemma 8 yields a D so that ([Ip )| Core,iky) =Ilp B
[(TIp ) | Core(Ko) E.1Ip B). If BeK,, IIp BeK,; since K, is townward
monotonic [s-monotonic] (I1p ) [ Core,(Ko) € K;; by core,-closure [i, # € K,,
and so & € K,. So K, is C,(Ko)-downward, closed.

For x=1or 1,u[1,sor 1,u,s or 1,b], suppose that Th,(sf) c WkTh(%). By
Lemma 9 there is an ultrafilter D so that [I, £ 211, B [[Ip # 2. 11, B). If
oA € Ky, Ilp o € Ko; by crosstonicity [s-crosstonicity] [I, # € K,, and so B K,.
So (Ko, K,) is cross, closed. For x=1,T,... (Ko, K,) is cross,-closed because
K, is upward, clcsed. The point is that if Th,(of) € WkTh,(3) then Th ()<
Th(B): if A E @ then LE T, so BE* T, so Bk ¢@.

Assuming GCH the technology of saturation and good ultrafilters as presented
in [1] can be modified to prove Lemmas 8 and 9. The need to deal with both E
and E¥ leads to snme revisions in the classical apparatus: we need two notions of
an n-type, and thus two notions of saturation. To avoid assuming GCH we’ll
modify Shelah’s technology as presented in [1] (avoiding some minor errors found
there).

For A and k infinite cardinals let u be the least cardinal so tha: A <A¥; thus
p <A and p is regular. Suppose that F is a set of functions f: — u, and G is a set
of functions g:A— P(g) for B(g) a cardinal less than u. Suppose D is a filter over
A. (F, G, D) is k-consistent iff:

(i) D is generated by some E c D with card(E)<k (i.e. E is closed under
finite intersection and for every X € D there is a Y € E with Y c X);

(i) for any cardinal B < u and sequences (f,),<p in F, (0,),<p in u, the first
without repetitions,

(i) {{i<A:f,(i)= o0, for all p<B}}UD =D’ generates a non-trivial filter
over 4;

(.ii) for any fe F and ge G, {{i:f({)=g(i)}} UD’' generates a non-trivial
filter over A.

(Note: in [1, p. 315], the authors try to collapse clauses (ii.i) and (ii.ii) into a
definition that is not as intended. Their definition makes their Lemma 6.1.10
vacuously true and their proof of Lemma 6.1.12 incorrect.)

The following lemmas are quoted directly from [1, p. 315-7].

Lemma [1, 6.1.10]. There is an F with card(F) =2*and (F, { }, {A}) u-consistent.

Lemma [1, 6.1.13(ii)]. Suppose that (F, {}, D) is x-consistent, u <k and for
t<k, A,cA. There are F' cF and D' with D c D' so that card(F — F') <k,
(F', { }, D') is x-consistent, and for each « <k either A, e A’ or A-- A, € D'. For
proofs see [1].

The following lemma replaces Lemma 6.1.14 of [1j}.
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Lemma 10. Suppose p and A are as above, A<x <2, o is a model of
cardinality < p for L, and (F, { }, D) is k-consistent. Let \@, )., be a sequence of
formulae of I which is closed under conjunction, @, = @.(v, vy, . .., U, ;). For
each 1 <k and j <n, suppose a, ;:A—> |sf|. Let

Cr={i<A: dE@v)p. [a. o), .- ., a1}
C; ={i<i: AE"(Fv)@, [a.oli), - - - » B a-1(D)]}-
For a: A— |4 let:

A ={i<Xt: sk [a@), a.oli), - -, 1]}
AZ =li<X: L @, [a(@), aold), - - -, @ a1 (D]}

If for each ¢ <k, C; € D [C; € D), then there are a: A\— ||, F' < F and D' with
Dc D’ so that (F',{},D') is K-consistent and for each ¢<A, A} eD’
[As.e D'}

This follows by straightforward modifications of the proof of Lemma 6.1.14 in
[1). (As formulated in [1}, Lemma 6.1.14 is too weak, and its proof involves a
fallacy on p. 319 line 15; the “notational difficulties™ the authors tried to avoid
can’t be avoided; when it is formulated sufficiently strongly, as in the observation
on the lower half of p. 319, the fallacy disappears.)

Suppose that & and B are given models for L,. Fix cardinals A and u so that
card(sf), card(®B) < p, p is the least so that A <A, and card(Fmi(L,)) < 4.

We now prove Lemma 8 for x=1, ... . Assume that Th,(f) c Th,(%8). We’ll
construct sequences (F,),<1, (D,)p<an, {(8,)p<zt, (B, )0<x s0 that:

©) a,: A—> ||, b,: A—|BY; for every e: A— || there is a p so that @ =a,;
similarly for every b: A— |%].

() Hp<so' thenF,, cF,and D,cD,.

(2) card(F,; =2% (&, { }, D,) is A+ card(p)-consistent; if 7 is a limit ordinal
E,=(\{F:p<n}, D,=U{D,:p<n}.

(3) For every B c A there is a p <2*so that either Be D, or A— B e D,.

{4) For every ¢(v,, ..., v,,_,).e Fmi(L,) and py, ..., p,-;<p either {i<
rdeglayi), ..., e, (D]} eD,or {i<i: Afgla,li),...,a, ()]} eD,.

(5) For every @(vo, - - ., V,_1) €eFml(L,) and p,, . .., p,_,<p if {i<A: AE
olay (&), - .., a,,_()]} € D, then {i <i: BE @[b, (i), .. ., b,. (D]} e D,.

We construct these sequences by a back-and-forth induction. Let D, = {4} and
select / as in Lemma 6.1.10. Notice that for each ¢ eSent(L,) either
{i<i: dE@} or {i<A: A} @} =A; similarly with B in place of s£. Thus for
p=0 (4) and (5) hold, relying on our hypothesis. Furthermore, if all these
conditions hold for all p <7 and 7 is a limit, then they also hold for 5, where E,
and D, are defined as required by (2).

Suppose that p = A5+ 2m, Ay a limit and m < . Let a, be the first member of
Y] - {a,: p’ <p}; let B be the first subset of A so that B, A— B¢ D; we'll
defire F,.,, D,,, and b,,,. For each ¢@(v, v, .. , 1) eFal(L,) and
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Pos -+« Pur<plet:

X+ =X+(¢’ Pos---» pn-l)
= {i<A: AEk[a, (@), a, i), . . . , a,,_ (D]}

There are A + card(p)-such sets. Sinc: (F,, { }, D,) is A + card(p)-consistent, by
Lemma 6.1.13(ji) there are F’ c F and D’ with D, c D' so that:

card(F, — F') <A+ card(o);
either BeD' or A—-BeD';
for each @, py, . . ., P,-; as above either X*e D' orA—X* e D’;
(F', {}, D') is A + card(p)-consistent.
Let:
r'={(,po---»Pn1): X" (@, Po, - - ., Pr-1) € D'};
Y*=Y"(@, po, - - - » Pa-1)
={i<A: E@v)p[ay(), ..., a, };
Z*=2Z(@,Po; - - - » Pa-1)
={i<A: BE(@v)@ b, (), ..., b,,_ (D]}

(@, Pos---»Pa-1)el” then Y e D', since X* c Y™ (using our choice of x).
Then Z* € D, for if otherwise then by (5), Y* ¢ D,; so by (4), A—-Y*€D,,
giving A — Y* € D', contrary to D’ being non-trivial. Applying Lemma 10 to $ we
get b,: A—|B), F,.,cF', and D, with D' € D, so that (F,.,, { }, D,,H) is
A+ card(p)-consnstent and:

for each (@, po, - - -, Pr-1) €T,
{i<A: BE@[bo(i), boyli), - - - » by, ()]} €Dy

(0) through (5) are now satisfied for p + 1 in place of p.
Now let b, be the first member of Y|B| — {b,: p' < p}. We define F,,5, Dy.»
and a,.,. For @ and p,, . . ., p,-; as above let:

X" =X(® pos - - - » Pn-1)
={i<A: BEY @ [6,(0), b, (@), - - ., by, ()]}
Form F"c F, ., and D" with D, , c D" so that:
card(F, ., — F") < A + card(p);
for each @, po, . . . , Pn—1 as above either X~ or A — X~ € D”;
(F", { }, D") is A + card(p)-consistent.
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F={{@. 00 Pa-1): X(@: Pos - - -, Pur) €D},
Y =Y (@ 0o, -- -+ Pn-1)

={i<Ad: " Fv)play i), ..., a, (]},
Z==Z7(@ Pos - - - » Pu-1)

={i<i: BE* Q)@ e, (i), . - ., a5, _ (D]}

K (@ 00s---»Pa1)€l then Z~ € D", since X" cZ™. Then Y™ €D,.,, for
otherwise

{i<i: deFv)pla i), ..., a8, (D]} € D,yus
since p + 1 satisfies (4); since p + 1 also satisfies (5):
{i<i: BeFQv)ele ). ..., ap (D1} €Dy
Since 2~ € D”, this contradicts the non-triviality of D". Applying Lemma 10 to ./
we get @, A—> ||, Fp.2c F", and Dy, with D" ¢ D,y sc that:
card(F" — F, ) <2 + card(p);
(Fps2 { }, Dpa2) is A + card(p)-consistent;
for each (@, Po, - - - » Pu-) €T
{i<A: A" @la,41(i), ap (i), - . . » a5, ()]} € Dpsre
Now (0) through (5) are satisfied with p + 2 for p.
Finally, we let D =\J {D,: p <2'} and n(a,) = b, for all p <2*. The construc-
tion insures that D is an ultrafilter on A and x maps || one-one onto {%B|. For

delllp " and @ € Fml(L,) with free variables among v, ..., v,_,, letting
nd =(n{ay), . . . , 7{a,_,)), we have:

=) if [ Zc@ld], then[] BEg[nd];
D D

if [[ #4@[a], then[] B4 ¢[xd]
D D

Say Mo A =(A, &, N), [Ip B=(B, &, ¥}). (*) insures that n: §C%,. If
‘=" lex, then (#) insures that z: NoEN; thus =~ [Ip CE]Ip B. I ‘=, elex,
then (=) insures that x: Ny=.V;; thus 7: [Ip A1) B. Finally, if ‘T’ e lex, we
can strengthen (%) to:

¢ [loareld if []Brelra);
D D
[l1#dg@ial it []B4ena);
D D

so x: [1p o =[1p B. This completes the proof for x=1,... .
For x=0,... we modify the previous construction as foliows. Restrict
conditions (4) and (5) to @ly,,...,v,)eC(Kp)NFmi(L,); for
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Por - s Pa1<p<2* and @, v, ...,V,_1)€C,(K)NFmI(L,} define
X+(‘p’ Pos - - - > pn—l) to be:

{i<A: AE@la,(i), a,(i), ..., a, ())and
AE(Vv)(eve)la,(),...,a, O]}

(*) then holds for @ e C(K,). Using our inductive characterizaticn of N; core k)
we have:

bR (l;[ d) [ Core(Ko) E l;[ RB;

and if ‘=" ¢ lex, we can strengthen this by replacing ‘C’ with ‘C,’. This gives us
the lemma for ‘T’ ¢ lex,. For x=0, T, ... we actually have (**) for all ¢, since
To e C(Ky); so as above x: [Ip =1, B.

The proof of Lemma 9 is a straightforward mecdification of the previous
construction and is left to the reader.

Let (Ko, K;) be corey-closed iff for any o e MOD if o [ Core, (K¢)N
Core,(MOD - K)) € K, then #£ € K,.

Theorem 7. Let (Ko, K,) be bounded. (K, K,) is basic x-elementary iff Koc K,,
Ko, K,, MOD-K, and MOD — K, are closed under isomorphism and
ultraproducts, and these conditions are met:

(i) If x=0[=0,s or 0, b)] then K, is downward monotonic [s-monotonic) and
(Ko, K,) is core;~closed and core;-bivalent.

(i) If x=0,u [=0,u,s or O,u,b] then K, is downward monotonic [s-
monotonic] and (K, K,) is core,-closed and either core,-bivalent or u-defined.

(iii) If x=0, T or 0, T, b then (K, K,) is core,-bivalent.
(iv) If x=0, T, u then either (K,, K,) is either core,-bivalent or u-defined.

) If x=1 [=1,s] [=1,b] then (Ko, K,) is monotonic [s-monotonic] [s-
monotonic), cross-closed [s-crosstonic) [s-crosstonic) and center-bivalent [s-center-
bivalent) [b-center-bivalent];

(vi) If x=1,u [=1,u,sj then (Ko, K,) is monotonic [s-monotonic] and
crosstonic [s-crosstonic].

(vil) If x=1, T [=1, T, b} then (Ko, K,) is center-bivalent [b-center-bivalent].

Only one new element is involved in this proof. For x =0 we need to show: if
Th,(#£) N C(Ky) N C,(MOD — K} = Th,(%) then there is an ultrafilter D so that
(Ip &) | Cx(Ko) N C(MOD ~ K,) C {1, B; analogously for x=0,s and C, etc.
The proof is a stra.ghtforward modification of that of Lemma 8.

9. Back to x-elementary and weakly x-elementary classes

For ‘T’ e lex, and any K < MOD the follewing are equivalent: (i); (i%); (ii).
(i) K is x-elementary.



138 H. Hodes

(i*) K is weakly x-elementary.

(ii) (K, K) is x-elementary.

If I' c Sent(L,) defines K, then {T@: ¢ € I'} weakly defines K; so (i) implies
{i*). i I weakiy defines K then {-F9: @ € I'} defines (K, K); so (i*) implies (ii).
Clearly (ii) implies (i).

Let K be closed under compatibility [s-computibility] iff (K, K) is crosstonic
[s-crosstonic]. Then for ‘="elex, [‘="¢lex,] by Theorem 5, if K is bounded,
then (i) is equivalent to:

(iii) K is closed under isomorphism, ultraprodects and compatibility [s-
compatibility] and MOD — K is closed under ultrapowers.

For x=1,u [1,u,s or 1,u,b] and K bounded, the following are equivalent:
@:; @); (v).

(iv) (K, MOD) is x-clementary.

(v) K is upward monotonic [s-monotonic] and closed under isomorphism,
ultraproducts, and MOD — X is closed under ultrapowers.

Furthermore these are equivalent: (i¥); (iv¥); (v¥).

@iv™) ({ }; K) is x-elementary.

(v*) K is downward monotonic [s-monotonic] and closed under isomorphism,
uitraproducts, and MOD — K is closed under ultrapowers.

Clearly (iv) implies (i) and (i) implies (v); by Theorem 6 (v) implies (iv).
Similarly for the weak versions of these.

For x=1 {1, s or 1, b}, by Observation 3(ii), (i) and (v) are equivalent, as are
(i) and (v"). For such x we can say more. For any K =« MOD let K be closed
under core,-restriction iff for any o €K, o | Core (K) € K. Let

K*={8BeMOD: for some ¥ € K, of + B};
K**={#B € MOD: for some A €K, o+ B}.

Let K™ be the intersection af all K’ ¢ MOD such that K*c K’ [K*cK’], K' is
downward monotonic [s-monotonic] and closed under isomorphism and ultrapro-
ducts and MOD — K"’ is closed under ultrapowers. Since MOD is such a class this
intersection is mom-vacucus. Since K*cK' [K*cK'*=K'"], (K,, K,) is
crosstonic [s-crosstonic]; furthermore X' [K'*l is downward monotonic [s-
monotonic] and closed under isomorphism and ultzaproducts and MOD — K*!
{MOD - K'*] is closed under ultrapowers. For x=0 [0,s or 0,b] form K* by
adding to the conditions on K' that for any &/ € MOD if & [ Core,(K) € K° then
€ K'. Then K™ meets all of the above conditions and furthermore (K, K*) is
core,-closed.

Forx=i[i, s ori, b], i €2, and any bounded K = MOD, these are equivalent:
(i}; (vi); (v').

(vi) (K, K™) is x-elementary.

(v'} (v) holds and if x =0 [0, s or 0, b] then K is closed under core,-restriction.

Clearly (vi) implies (i) and (i) implies (v'). Assume (v'). For x=1[1,s or 1, b}
vwe show that (K, K¥) is center-bivalent. Consider x = 1. For any y € Center(K)
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let
K,=K*U{s e MOD:  is not total on {y}}.

Suppose & €e MOD - K is total on Center(K). Then & ¢ K*; for otherwise fix
BeK so that B+ of; then B | Center(K)C o; since B | Center(K)e K, S K.
Thus o ¢ K,; since K, meets the conditions on the K’ in the definition of K’,
o ¢ K*. A similar argument applies for x=1,s or 1,b.

For x=0 [0, s or 0, b] we show that (K, K*) is core,-bivalent. Consider x =0.
For 0 € Corey(K) let:

Ko =K*U {o e MOD: @ is not s{-bivalent}.

Consider &f € MOD — K so that Corey(K) is #Z-bivalent. Since K is closed under
coreg-restriction we can argue as above to get of ¢ K,; so as above (K, K°) is
coreg-bivalent. A similar argument applies for x=0,s or 0,b. So the right
hand-side of Theorem 6 is satisfied; by Theorem 6, (vi) follows.

Note: for x as above, if K is x-elementary, then K* is the minimum K’ so that
(K, K') is x-elementary.

Problems: Is there a more constructive way to describe K*? For K satisfying
(v¥) is there a maximum K’ ¢ K so that (K', K) is x-elementary?

10. Partial continuous monadic quantifiers

In this section we’ll prove a quantificational analog of the fact that {‘>’,
‘u’,‘T’} is truth-functionally complete for three-valued logic. This involves
extending the notion of a continuous quantifier, as presented in [5], to partial
models. '

A signature z is a finite sequence (&, . . ., §,—,) of predicates, ; e PRED(n;)
for i<n. Set Pred={C,..., ,—1}. For KcMOD let K be closed under
Pred-restricted isomorphism iff for any o/, 8 € MOD with o | Pred = B | Pred, if
A €K then BeK.

Let (K, K,) be a partial quantifier with signature z iff K,c K, <MOD,
Center(Ko, K;)) = {&o,---» a1}, and K, and K, are closed under Pred-
restricted isomorphisms. (Ko, K;) is monadic iff for all i <n, n;=1.

A quantifier-expression y with signature z has the following formation-rule in
Ly,

if for each i<n, ¥; is a sequence of n; distinct variables and

@o, - - - » Py are formulae, then (x: U;...; Un1)(@Pos - - - » Pu1) is @
formula.
For #=(vg,...,V,_;) a sequence of distinct variables, ¢ a formula, & €

MOD and a an sf-assignment let:
exty = {d e|o|": Ak @[af]};
ext; = {d e |A|": o 4 g[a]}.
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Let s2(z, @o, - - - » Pn—1) be the model (||, &, { }) with dom(&) = Pred and for
ali<nm:

1 ifdeexti(sd, a, @),

&)= {0 if @ e ext; (A, @, @).

To let y represent the partial yuantifier (Ko, K,) is to add these clauses to our
inductive definition of k and 3:

AE(xX: Vo3« + 3 Va1 )(@os - - - » Pa-r) [@]
iff A(z, @o,-- ., Pa1) € Ko

A 3(x: o3 - - - 3 U1 Pos - - - » Pa) []
if (z, @os-.-., Pn-1) €K,

Suppose & = (||, €, ¥) and B c |d|. For n>0 let
gl 3(5)=¥¢&)NB"x2 for { e PRED(n);
N[ B(E)=N(E)NB"! for all { e PRED(n);
for n=0, €[B()=8¥() and N [B(§)=WN(§) for ¥(§)eB, N [B(

otherwise. Let 4 [|B=(®B, €| B, ¥ | B). Finally let Bc« iff for some
B, 8=+ |B. |

For K c MOD let # secure  into [out of] K iff B c o« and for every &', if
BcdA'cd, then A' e K [’ ¢ K]|. Let B secure o for (K, K,) iff for each i €2
either @ secures A into K; or secures & out of K;. A paitial quantifier (K,, K,) is
continuous [uniformly continuous with bound g € ] iff for every &f e MOD there
is a % ¢ MOD, 3 finite [card(B) < g] and B secures « for (K, K,).

Theorem 9. For (K, K;) a monadic partial quantifier with signature s=
(Eos - - - » Ea_y) the following are equivalent:
(i) (Ko, K,) is continuous.
(ii) (Ko, K,) is uniformly continuous.
(iii) A sentence of L = L,  ,(Pred, { }) defines (Ko, K;).

To show: (iii) implies (ii). For f: n—3= {0, 1, 2}, izt 6;(v) be:
&{TE(v): () =0} & &{FE(v): f()) =1}
& &{UE(v): f(i)=2}.
Let a basic sentence for f be one of the form
Aug) - - - Qv N&{Op(v;): i<q} & &;j<,v: F V)

for some r < . Let a pre-normal sentence be a conjunction of sentences that may
be basic, negated basic or ‘u’; let a normal sentence be a disjunction of
pre-normal sentences. Familiar transformations involving ‘Z’, together with some
obvious new ones for ‘T, yield the following: if @ € Sent(L), then there is a
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normal sentence @' equivalent to @. But then @ may be prenexed into each of
these forms:

3vo) - - - Qug-) (Vo) - - - (Vi) @;
(Vo) - - - (V1) (Avo) - - - (v, 1)@

Suppose @ defines (Ko, K,) and o is given. If of € K, then o E(30)(ViH);
select witnesses ao, . . . , a, € || so that S E(Vji)@ [@]; then o | {ao, ..., a,,}
secures & into K,. If o ¢ K, then S (f)(VT)@; a similar argument yields
bo, ..., b, €|sd| sothat o | {by, ..., b,_,} secures &£ out of Ko. An analogous
argument applies to K,. Thus (K,, K;) is uniformly continuous with bound
max(q, ?).

To show: (i) implies (iii). Assume (i). If o/ is a model for Pred and f :n— 3, let

s(4)(f) = card{a: st 6, (v)[al};

think of s(&f) as a 3"-tuple with components indexed by the f € 3" listed in
lexicographic order. For i €2 let s(K;) = {s(#): &£ € K;}. We then have & € K;
iff s() e s(K;), using the fact that K; is closed under Pred-restricted isomorph-
isms and that if s(f) =s(%) then & | Pred= % | Pred.

For K =(Kq,...,Km—1) and K'=(ky, ..., K,,_,) m-tuples of cardinals let
Kc k' iff for all i <m, k;<k|; let card(8) = X;-,, k;. For C, and C, classes of
such m-tuples, our definitions of continuity and uniform continuity with bound g
may be extended to (C,, C,), following the analogous definition in [5]. As in [5]
we may prove: if (Cyp, C;) is continuous, then (Cy, C;) is uniformly continuous.
This involves an induction on m; see the proof of Theorem 5 of [5] for details.
Finally, as in [S] we have:

(Ko, K,) is [uniformly] continuous
iff (s(Ko), s(K,)) is [uniformly] continuous.

Assuming (Ko, K;) to be continuous, we have (s(Kp), s(K,)) uniformly con-
tinuous. From that fact it’s not hard to produce a sentence of L, v (Pred, {})
defining (Ko, K,).

Alternatively, we could simply take the above to show that (i) implies (ii) and
get from (ii) to (iii) using Theorem 7. For suppose that (Ko, K,) is uniformly
continuous with tound q. It suffices to show that for j € 2, K; and MOD — K; are
closed under ultraproducts.

Suppose that for each i € I, %; € K;. Without loss of generality, suppose each
A; is a mode! for Pred. For each i el fix %B;c o, so that card(%B;)<gq and %,
secures &; into K;. Now let B sccure [Ip &; for (Ko, K1), card(%) <gq. Setting
B:={f(i):f €|B|}, card(B;)<q; se: 6;=4; [ (B;U|Bi|); so card($)=<2q.
Claim: for some iy € K, [Ip ;=€ . If I is finite, D is principal, so this is trivial.
Otherwise it suffices to note that \here are finitely many isomorphism-types for
models for Pred with cardinality < 2q; so for some X € D for all i, i' e X: 6, =€;;
any ip€ X is as desired. Since %;, secures &;, into K; and %, c €, €, € Kj; s0

in &
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I, € €K;. Since BcIlp 6 cllp & and B either secures [, #; into or out of
K;, it must secure [Ip &; into K;, as required. A simila argument shows that
MOD - K; is closed under ultraproducts. Since Center(Ko, K,) c Pred, (ii)
follows by Theorem 7.

1i. A truth-vaiue gap or a third truth-value?

According to Michael Dummett, the semantic component of a theory of
meaning might utilize more than two truth-values, but it would have no use for a
truth-value gap:

Given that, e.g., “King Arthur did not defeat the Saxons” is construed as the
negaticn of “King Arthur defeated the Saxons™”, we need a distinction
between . . . being false and teing neither true nor false; but nothing has
emerged to give any ground for regarding this latter state as one of having no
truth-value at all, rather than as one of having a second undesignated
truth-value, which we may call ‘the value X'. ([2], p. 425)

Of course, as Dummett acknowledges, “It might be thought that...the
difference beitween, saying that it has not truth-value and that it has the value X is
a mere indifferent matter of terminology.” In this section I'll try to make some
sense of this distinction.

The objection Dummett acknowledges is right to this extent: on philosophically
neutral semantic grounds, there is no distinction allowing for lack of a wruth-value
and allowing for a third truth-value. But some philosophical positions provide a
background against which one logical lexicon may be said to merely open a
truth-value gap, while another introduces a third truth-value.

In presenting the truth-tables in Section 1 it was convenient to use ‘|’ in
addition to ‘F’ and ‘4’; and this might suggest that we are using three truth-values.
But such tables are merely an alternative presentation of the inductive clauses in
a simuitaneous inductive defirition of F and 1; ‘I’ was introduced afterwards as a
convenicnt abbreviation for “the waste case”, one obviously parasitic on the
fundamental inductive definition. So at least in our order of exposition, truth and
falsity were fundamental in a way in which neither-true-nor-false was not. But we
can’t conclude that our semantics only involves two truth-values, and a truth-
value gap. Other orders of exposition were possible.

What we make of the question “A third truth-value or a truth-value gap?”
depends on what we make of talk about truth-values. After his quoted remark
about “the value X, Dummett goes on to point out that Frege’s philosophical

apparatus, rather than facts about linguistic practice, can make this question into
a genuine issue.
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Frege took talk of truth-values at face value: according to him they are
genuine objects, and sentences are really singular terms “designed” to stand for
them. This background lends some substance to the issue. A sense-bearing
language embodying a three-valued semantics would add a new object to the
ontological package carried by other two-valued languages. For Frege, °if ...
then . . .’ stands for a function from {True, False}? into {True, False}. If ¢ and ¢
are sentences that fail to stand for anything, then the concatenation of ‘if’, ¢,
‘then’ and vy (hereafter ‘if @ then y°) also doesn’t stand for anything; it’s on all
fours with ‘f(a)’ for ‘f° a function-constant when ‘a’ fails to designate. Thus the
Fregean “if ... then ...” is modelled by our ‘>’. If our semantic theory takes
our logic to be modelled by that of lex,, or lexy s, we have not introduced a third
truth-value, but only recognized a truth-value gap. But any step beyond lex,,,,
e.g. to lex, or lexy , would introduce a third truth-valie. And that Frege would
not want us to do: lex,, or perhaps lex, ,, is the Fregean lexicon.

If we reject Frege’s assimilation of sentences to singular terms, and thus reject
the doctrine that truth-values are genuine objects, our question seems to loose it’s
content. But we may reconstrue it as asking whether truth and falsehood, or
better the status of being true or being false, differ significantly from the status of
being neither true nor false. And the answer depends on the logical lexicon that
we take to be in place in our language. (Note: all our lexica express negation; so
all of them are symmetric with respect to truth and falsehood.)

Since {‘>’, ‘u’, ‘T’} is a definitional base for all three-valued functions of
finitely many arguments, for it, truth, falsehood and the third status are all on a
par, with no asymmetries: the imape of any expressible truth-function under any
permutation of three truth-values is itself expressible. Similarly it plausible to label
the first-order logic based on lex, +, ‘full three-valued elementary logic’; and it
too yields no asymmetries between truth and falsehood on one hand and the third
status on the other. More precisely, let (K,, K;) be any partial quantifier
expressible using lex, 1 ,; set Zy,=K,, Z,=K;— K, and Z, be MOD — K; for
any permutation 7 of {1,2,3}, (Z,9, Z0U Z,,) is a monadic partial quantifier
expressible using lex, 1 .

When we restrict ourselves to more narrow lexica, asymmetries emerge. For
example, using lex, ;, ‘u’ is not expressible; this may be viewed as a significant
difference between E and i on one hand and | on the other. Do these differences
in expressive power provide reasons for saying that one of these sub-lexica of
lex, + ., introduce no third truth-value” Cnly a philosophical background could
make such a metaphor apt. We’ll now consider two such backgrounds.

What picture of language could lead us to say that lex,, doesn’t introduce a
third truth-value? Suppose we replace ‘true’ and ‘false’ by ‘verified’ and ‘falsified’,
and think of inquiry as involving a computational process that either terminates in
verification or falsification (after a finite time), or which diverges, yielding no
answer at any time. So with ‘P’ representing a 1-piece total decidable predicate
and ‘@’ representing a name, ‘P(a)’ is associated with a computation that first
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locks for a designatum for ‘s’; if one is found, the decision-procedure associated
with ‘P’ is then applied to that object; if none is found, the computation diverges.

Initially we might want to follow Frege and represent ‘if ... then ...’ as ‘D’.
Given “If @ then ™, suppose our computation for @ [y] yields verification
[falsification]; we now know that if the computation for @ [y] converges, “If ¢
then y” will have been verified. We might then jump the gun and declare it
already verified, without waiting for the second convergence. In doing this, we
replace ‘>’ by ‘>’. Then lex, , wouild be the richest lexicon this picture could
accommodate. Use of ‘T’ would be impossible, since at no time is it established
that a computation diverges.

Though this picture does select a specific sub-lexicon of lex, 1, it’s not what
we want, since it replaced truth-conditions by knowledge-conditions. But there is
a picture of the sort we want that also selects lex, ,. Consider the neo-Fregean
who rejects Frege’s assimilation of sentences to singular terms, but who accepts
the more basic Fregean thesis underlying that assimilation: there are exactly two
semantic roles available for sentences, namely being true and being false.
(‘Semantic role’ is Dummett’s term for the way in which an expression
contributes to determining the truth-values of the sentences in which it occurs.)
Thus a sentence that is neither true nor false plays no semantic role; it makes no
contribution to determining whether a sentence of which it is a constitueat is true
or false. So if @ is a constituent of ¢’ and @ is neither true nor false, but ¢’ is
true [false], @ makes no contribution to the latter fact; thus if we were to change
the status of @, leaving as much else as possible the same (e.g. by assigning a
name a referent, or enlarging the domain of a function-expression or extension
or antiextension of a predicate) this would not effect the truth [falsity] of ¢’. This
amounts to imposing monotonicity on cur semantics; thus the neo-Fregean can
use lex; ,. But use of ‘T’ would not be allowed: it would require a third sort of
semantic roie for sentences; and that may be aptly described as introducing a
third truth-value. (By constraining the allowable changes envisioned above to
changes in the extensions of predicates, we’d impose s-monotonicity, thus
enriching the permissible lexicon to lex, , s (equivalently lex, , ). This of course is
for neo-Fregeans who think that ‘=" and ‘E’ don’t adequately model ‘is identical
to’ and ‘exists’.)

Up to now we've only considered sentences as bearers of truth-value. If
propositions are the fundamental bearers of truth-value, I take it that these
principles are axiomatic:

(1) If o expresses p then: o is true [false] iff p is true [false].

(2) If ois true [false] then there is a proposition expressed by o.

All this is compatible with orthodox Fregean doctrine and the neo-Fregean
position just sketched. Suppose we go on io assume propositional bivalence:

(3) Each proposition is either true or false.

Using (1), (3) implies that if o is neither true nor false, then o fails to express a
proposition. (Frege did say that some sentences express propositions (in his
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terminology, thoughts) without being true or false. But Evans has shown [3] that
this involves a tension in the Fregean notion of sense; he also finds some textual
suggestions that Frege was worried about allowing the existence of such
sentences. In [4] McDowell finds this half-way position rather Russellian: had
Russell abandoned his epistemological view that logically proper names couldn’t
fail to designate, he would have held this view.)

Now suppose we reject the neo-Fregean doctrine presented above, and allow
that sentences which are neither true nor false play a third semantic role. We may
still claim not to have, in effect, introduced a third truth-value by citing our
adherence to (3), provided we also accept the following principle:

(4) Whether a sentence expresses a proposition can’t depend on whether a
constituent sentence is true or false.

This principle then rules out use of ‘>’. For suppose o' is ¢ o ¥ and g is neither
true nor false. If y is true, then so is o; so by (2), o expresses a proposition. If ¥
is false, then o is neither true nor false, and so fails to express a proposition. So
whether or not o expres:es a proposition is sensitive to the truth-value of ,
violating (4). These principles don’t rule out use of ‘T’; so again the permissible
lexicon goes beyond that of the orthodox Fregean, this time to lex, 1, or perhaps
lexo,tu-

Note: (4) should not be confused with the content of 2.0211-2 of Wittgenstein’s
Tractatus; Wittgenstein’s claim is that whether one sentence expresses a proposi-
tion can’t depend on whether another sentence is true or false; that principle
would rule out use of ‘T’, ‘= or ‘=,’, since whether ‘P(a)’ expresses a
proposition would depend on whether ‘Ei(a)’ is true or false.

None of these attempts to clarify the difference between allowing for
truth-valuelessniess and introducing a third truth-value help vindicate Dummett’s
main claim. If the question of which of these holds for a given language is merely
one of which of our lexica model the logic of that language, I see no reason to be
sure that the favorcd lexica would not be of the former sort. In that case our
theory of meaning :or that language has use for a truth-value gap.
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