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The thesis that certain SemitXKeS Of statements are neither true N3i f&2 has 

been repeatedly proposed through the history of logic. According to some 
commentators, Aristotle proposed this status for certain statements about the 
future. Frege, and more recently Strawson and many others, have proposed this 
status for certain statements containing non-designating singular terms. Others 
have proposed this status for indicative conditionals with false antecedents, 
troublesome counterfactual conditionals, some statements involving vague 
predicates, category errors, or self-reference, and so on. These suggestions are 
mutually independent and not of equal value. But if you think that there are 
some cases in which statements are neither true nor false, then you have reason 
to take seriously at least some logic which accommodates this phenomenon. 

Such logics have been rather ignored by mathematical logicians. In part this is 
because there is so much left to learn about two-valued logic; in part it’s because 
mathematical logicians are most interested in mathematical applications of logic, 
and most think that in mathematics truth-value gaps do not arise. Unlike 
intuitionistic logic, three-vaiued logic is not a new ball-game: rather it’s a 
“rounding off’ of classical logic. The classical logician wants his discourse to be 
two-valued, and usually presupposes that it is; a three-valued logic is a default 
logic to which the classical logician may fall back when that presupposition fails, 
because of reference failure, an undetermined future, or whatever. 

Another reason for avoidance of three-valued logics is the fear, illustrated by 
the remark of Dana Scott quoted in [6], that no such logic is “pleasant to work 
with” or even “really workable”. Of course three-valued logics will be somewhat 
more complicated than classical two-valued logic. In fact, proof-theoretically they 
are at least twice as complicated: the non-structural natural-deduction rules from 
two-valued logic split into a weak and a strong version for three-valued logics 
(and some of our logics require a further definedness rule for ‘3’ and ‘ 

Section 4. But model-theoretically tYy are only 50% more complicated, since we 
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Our logical lexica will be as follows: 

1exQ = {’ 3 ‘, ‘I’, ‘3, ‘=‘}; 

lq,T,u = {’ 3 ‘, ‘T', 'U', ‘g’, ‘=‘} ; 

lex, = (‘3, ‘I’, 9, ‘=‘}; 

lex*,x = {‘a’, b I ‘, x, ‘3, ‘=‘}; 

lex f,T,U = { ‘9, ‘T’, ‘u’, ‘3’, ‘=‘}, 

where ‘x’ is replaced by ‘T’ or ‘u’. For lex.__ one of the above lexica, form lex___,S 
by replacing ‘=’ in lex_ by ‘=s); form lex___,, similarly with ‘=b’. Fii a countable 
set Var of variables. For each n < 4r) fix proper classes P D(n) and F?JNCP(n) 
of n-place predicate-constants and function-constants respectively. Needless to 
say these lexical classes are pairwise disjoint. For Pred s Un PRED(n) and 
Funct s Un FUNm@), let Pred(c) = Pred n PRED(n), Funct(n) = Funct n 
FUNCT(n). Replacing ‘x’ by one of the above subscripts on ‘lex’, let 

. L,(Pred, Funct) be f&-order language based on lex, generated by the non- 
logical vocabulary Pred U Fact; with the latter fixed we write this as L,. 

The class of terms of L, is defined by the usual induction. The class Atfml(L,) 
of atomic formulae of L, consists of whichever of the following contains logical 
constants from lexX: 

u, J-, to=q, to=Jl, q)=bq, 

together with strings of the form c(to, . . . , t,) for c E Pred(n) and any terms 
ro, l l l * z,, of L,. The class Fml(L,) of formulae oi L, is formed by closing 
Atfml(L,) under those among the following induction clauses that g~ern logical 
constants in lex,: 

If 43 and ly are formulae then so are Tcp, (q 3 q) and (QJ 3 7y); 

if q is a formula and tl E Var then (3v)q and (31~)~ are formulae. 

sual, the class Sent&) of sentences of L, consits of the formulae of L, in 
which no variable occurs free. Obviously these are equivalent: Pred U Funct is a 

set. L, is a fragment of a p 
NCT(n)), hereafter called 

of formulae of L, all of 
be the class of sentences i 

Eet 1 [0] represent truth [falsehood], 2 = (0, 1). A partial 
r Pred U Fimct) shall be an ordered tri le 4-4 = (IJ~, %, JQ, 
]Sa] is a set; 
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v)(p [cu] iff AI b (3v)p [cu] and for every 

for all &-assignments cu, 

similarly for sz& =I tp, ti kw q am 

satisfaction or weak truth. &ten is notation to 
1(&J as usual, e.g: 



: (3v)v = k or (3v)v = r; 

)v =s z or (3v)v =s z or these with ‘=< replacing ‘=H. 

variable not occurhg in T. 

following ‘truth-tables’ (Tables l-3). 
‘v’ have the weak-Kleene (alias the Bochvar) 

’ and ‘v’ have the strong-Kleene semantics; &’ is a 
W +p is more easily satis5ed that is q 3 +; ‘q’ is a 



valid] iff for any model [nn model, 
sP-assignment (Y: 

et model, nn and et model] r;8 and any 

if&=r[cw] and dl=“A[a] 

For QV E Sent(&) we’ll adopt these 

iff ({(PI* &X w) is valid [nn-valid, 
entails+ [nn-entails+, etc.] 11 and 111 

then G&” Q, [cu]. 

definitions. q entails+ [nn-entails+, etc.] 11 
etc.]. (p entails [nn-entails, etc.] * iff 43 
entails+ [nn-entails+, etc.] -1~3 (i.e. for any 

model [nn-model, etc.] & and &assignment a; if &! 2 w then d 4 q). cp is valid 
[nn-valid, etc.] iff { } entails [nn-entails, etc.] q. q is weakly valid [weakly 
nn-valid, etc.] iff ({ }, { }, 4p) is weakly valid [weakly nn-valid, etc.]. q and I/.J 
are equivalent+ inn-equivalent + , etc.] iff each entails+ [nn-entails+] the other. cp 

Q, [a] iff J& 4 I/.J [cu]). E 

d similarly for ‘u’ and ‘--UT 
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Tat:? 3 
-Q___ 

8”=JP cp=* ~=hfacI Vhoy v=v 

c= I= I= b- k 
I I I I I 
=I =I 4 4 =I 

I k I= I 
I I E- 1 I 
I I k =I I 

I= I= k I= 4 
i I= I= I 
I= k I= E I= 

strengthening of ‘9, since Q, =)s q is more easily frustrated than is cp =) 1~. e’ll 
use this convention: p” is q; p* is 1~). Note that ‘=’ and ‘=E’ have the same 
satisfaction conditions, and ‘=s) and ‘=b’ the same frustration conditions. Finally, 
note that the sentential connectives in lexIWT,” suffice to define all three-valued 
truth-functions. 

A sequence for LX is an ordered triple (r, A, q) for r E A E Fml(L,) and 
Q, E Fml(L,). The most distinctive feature of three-valued logics are that (1) there 
are two basic notions of validity: strong validity (hereafter validity) and weak 
validity, and (2) these notions apply to sequents of the sort just defined. Both 
features arise from the need to consider I=” as well as L 

For a sequent (r, A, p) these are our fundamental logical concepts: 
(r, A, q) is valid [nn-valid, et-valid, n&et-valid] iff for any model [nn model, 

et model, nn and et model] & and any &assignment QY: 

ifsPW[cu]and99k”A[a] then&l=g,[cu]; 

(I-‘., A, tp) is weakly valid [weakly nn-valid, weakly et-valid, weakly nn&et 
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above). Let 3r be an isomorphism from Ss, to 4&, abbreviated sr : iid0 = sill, :Sf iz is a 

one-one function from IJ&~ snto IJ&~ so that for any n < o: for any 5: E Pted(n), 

if n = 0, then %&(I;) = 3!&( I;); 

ifO<nandZEl&l”, then &I(s1)@) = $(W); 
for any E E Funct(n) the aalogous condition holds. 

Note: if $(f)(Z)f thi s can be because 0” $ dom(& (c)) or because f $ dom(&). 
Similarly for Nj. This permits a slight anomaly: we can have 19a,l= I.Sa,l and 
R = identity on IJZ&I though A&)# J&. Of course tiO is isomorphic to sp1, 
abbreviated J& =901, iff for some n, jrxZO= J&. Let #CJ%~sp* [RABQ&] iB 

[J&I G J&P* Jr = Sa,; 58 C_ 3f11 [SB &a&] iff for some 3r, 
&]. Let Jr:58 l [SC: 58 s dl] iff for some ~3~ compatible 

[strongly compatible] with & f~ : 5B = do; 98 z d1 iff for some IG, it : SB s do. 

Let i E 2, x = i or i, u [i, s or i, , r or i, b or i, u, b]. For models & 
and .aQ*, i and ~o-assignment and q~ E Fml(L,): 

(i) ifrc:sB,G sBI [A:&&&&] then: 

ifSa,bp[Lu], then94,1=q[nvx]; 

if sQc =I cp [a], then ,sB14 &roar]; 

n: &-,~S~l] then: 

then [noa]; 

if do 4 tp [a], then 

ese follow by a strai 



is a suhformula 
dent to ‘I’; so 

iag this for dl such T1(, 

repiad by bhk, ‘nn’, ‘et’, or ‘n&et’. For 
iff for every q~ E Fml(L) there is a QI’ E Fml(L’) 

gwFmI(L) there is a (p’ ~Frnl(L’) 

) Y, L#'red, Fmct); 

anabgouslyl. We’ll say that a logical constant is 
*J using lex, Sf for any lexX. containing that constant 

entry on the right could be used for the entq on the left 
us we’ll freely treat the left entries as abbrevia- 
left entries are not in the zon under discussioo. 

=b Tt : (vv)(v=,Tpv= 
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(i) through (v) all Wow using the above abbreviations. 
(vi) For any term t, variable v and forme*Ja q, let (!u)(q, t) be (VV)( ‘B9p = 

pi = t). Thus for an!’ nn-model & and &assignment a, SQ k (!u)(q, z) [cu] iff 
den@@, cu, r)i and is the unique (I E idI so that c= V lar”ul. For T(z, 9 l * l t t,), 

suppose tj is (tu)q. Picking a variable p not occuhing in any of these tems, 

5: (t, S***t t,) is equivalent to: 

it’s easy to C;+:, the same sort of thing for equations containing (tu)p. By iterating 
this procedwe on atomic subformulae, a given formula of L1,T,U,t trmsforms to 
an equivalent formula of &“. 

Unlike the classic Russellian elimination of ‘t’, the above approach does not 
produce scope ambiguities: E.g. for ‘P’, ‘Q’ E Pred(l), 4 ((tx)Qx)’ is equivalent 
to both of these: 

-((*)[(!Y )(Qx, Y) 8~ W v (-(3x)( !y )(Qx, y ) & u)); 

(*)!(!Y)(Qx, Y) & +‘x] v (l(*)(fy)(Qx, y) & u)). 

0 tion2. LetiE2. 

0 1 i eXj,T e’_l kXj,; kXj,Tsu “‘I leXj,“,b. 

(11 ii Ctj, i 3 leXj,,,$ 1exij.T ““_I leXj,b,. 

(iii) If for n > 0, Pred(n) # ( } then ‘u is m-equivalent to a sentence of 
L,,,t(Pred, Funct). 

Temporarily treat ‘F’ as primitive. Let QI E Fml(Lj,T). For i = 1 we drive 
occurrences of ‘T’ and ‘F’ in q inward preserving et-equivalence, using these 
et-equivalences; 

TW : Tq; Th#J : Flp; 

T(%)v, : (ih)T4y; 



H. Hod& 

%b . . . . g,,) and Ft&,, . . . , g,,) may be re@ced by: 

= tr) can also be replaced using ‘=:; for 
the above-given abbreviations. The second 

associate each 11 E Fml(&,) w&h a Oy’ E Fml&,) et- 

in q inward using the previous et-equivalences for 

ate ‘T’ and ‘I=’ as before. For cp E Fml(&,,,,) this 
Ids an et-equivalent in Fml&,,,). To get an et-equivalent in 

use i=b3 in place of ‘=& together with the kct that ‘=’ is 
(&,T) this procedure need not yield a 

3~’ is needed to handle “remaining occurrences cf zO = tI”* 
(L,,,) fix distinct variables V, JJ not free in (9; T tp is 

)(p Btv = p)). For & use ‘&’ and ’ 

and Q, h ‘~Y)@fz)(Y+b 

: if card(sQ)#2, JJQI q; 
A!kv; thus sO/Cp&ly. 

(IL_) so that (1) for any 
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OD and any &assignment cy: 

Let u’” be 1, u- be TL, (q 3 0)’ be W-3 8+, ((3u)8)+ be (3@(P), 
)- be (We-), 
(oy=, @- be W+ 

beiig 0 for other atomic 8. By an easy induction (1) holds. 
(ii) For 90 E FmH r,, T ,...) form Q)+, 9- E Fml(~o.l- . ...) satisfying (I), by making 

these changes ilr the preceding: (ly 3 0)’ is (~Fly-) = T 8+, (q 3 O)- is 
)T(e+), ((3v)ej- is (av)(e-1. 

QI+, q- E Fml(LO,b) so that (1) holds. Let (to =S 
S(r1); (rO=S t,)- is zo=b tI; other atomic formulae 

remain the same; other clauses as in (i). A similar construction applies for i = 1. 
(iv) In q E Fml(L,,,,) replace positive occurrences of E;(. . . , (zv)O, . . .) by 

(3co((!v)(e, CC) & 66 . . s P, . . 4h nepative occurrences by (Vp)((!v)(e, cc) => 

f( . . . , p, . . .)); handle ‘=’ similary. Similarly for i = 0. 
These inclusions, and others folloeg trivially from them, are summarized in 

Fig. 1; there lex, \Y lexXP iff lex, 3 lex,s and lexXS 3 lex,. 
Usually we’ll state faillures of expressibility for only the strongest relevent 

lexica; obviously what’s not expressible in it is also not expressible in equivalent 
or weaker lexica. 

Fig. 1. ‘X’ represents ‘4 & F’. 



and *TE(c)’ have no y- 
COIlStNCtiOIlS 

n-constant if n > 1. But note that for 
What follows applies for any choice of 

E&J) has no y-equivalent in Fml(Z&. Since ‘=,’ and 
v), they are not expressibley. Suppose ~JI E Fml&,J is 
without loss of generality Q, E Sent&); for a model & 

3, ‘b’ doesn’t occur in 43; but then we 
Lemma l(i). Similarly 

2 and the fact that if 

) we show that for any Q, E Fml(&), q is not equivalent to 
be exposed in q iff it’s within an 
sed in q. Fix a model & and 

nts a0 and arl with &#. If there is an exposed occurrence of vi in 
d be in an exposed occurrence of 

ere 8 is that formula, A! 18 [ai]; by Lemma 3, SrlI Q, [a]; but 
Q =* ~1~ [a]. We now show that if no occurrences of v. or 

v other than vo and vl, either 
that is to prenex q; the usual 

note that it holds for 
y taking such an (Y with (Y(v,-,)~ 

and M as usual: 



Three-valued logics 113 

is equivalenP to to =S tl ! 

(vi) Let ip Lz ‘ )(W #sY =&x)x %Y)‘- Lemma 3 any 0~ 

Sent(LO.T.s({ 1, { 1 s either equivalent to or to a sentence of 
&&{ }, { }), in which case by Lemma 2 for a model SB of cardinal&y #2 either 
58 k 8 or & =I 8. Either way 8 isn’t y-quivalent to q~. 

(vii) Similarly ‘(3y)(y = (tx).x # y)' has no equivalent in 
y to Rnd models and 991 with 
r; so J&k W(tx) ’ and ,ap, 1 ‘E((t 

formula of L1,, is or even equivalent’, to 
construction applies to Fzdnct(l), using ‘@x)(x 
predicate- or function-constants with more places. If Pred = Pred(0) and Funct = 
Funct(O), LI.,,~ -x L1,“, by a normal form argument that’s too tedious to consider 
here. 

In order to avoid the terrors of a three-valued semantics, some logicians favor a 
convention according to which those sentences (formulae) which we might 
consider neither true nor false (neither satisfied nor frustrated) are arbitrarily 
assigned one of these values, usually falsehood (frustration) being preferred. We 
digress to consider the relationship between this approach and a three-valued 
semantics. 

Given Pred, form Pred+ [Pred-] by replacing each 5 E Pred(n) with a new 
n-place predicate-constant 5+ [g-l; let Pred* = Pred+ U Pred-. Where ‘2’ is 
replaced by ‘+’ [‘-‘I [‘*‘I let L* be the language generated from Pred’ and Funct 
using the logical lexicon {‘P, ‘9, 9, ‘,f,, [‘=-‘I [both ‘=+’ and ‘=-‘I}. For a 
model d for Pred’, Funct and d-assignment cy (recall these are partial) we define 
a two-valued satisaction relation k2 with these base clauses added to the usual 
induction clauses: 

similarly for equations. 

Thus c+(* l 0) [<-(0 l l )] is in effect c(= l 0) according to the familiar Falsehood 
[unfamiliar Truth] convention: where the three-value approach says ‘neither’, say 
‘false’ [‘true’]. 

define translation functions t+, I- from Fml(L,) into Fml(L*) so that for all 
So and Q as above: 

et t’( & l 0)) be c+(* l l ), t-( 5;(* l 0)) be c-(= = 0); si 



ji L’ or L-. For example, 
9 E Fmi(L+) so that for all models d for 

reasons there is no 
4z as above: 

(or Trd) convention in our Abel-theoret>- ~mantics for 

etry of truth and 

section on formalization for the sake of the corn 
cause these calculi have net, as far as I know, 
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Some of our logical lexica can’t express ‘~3~’ or ‘3:; so axiomatization of the 
class of valid or weakly valid formulae will not capture all information about 
the validity and weak validity o or a uniform approach to formalizing 
the logics presented in Section 1 we need a direct inductive definition of the 
classes of valid and/or weakly valid sequents, that is to say a sequent-calculus. 
Abstractly, we may view a sequent-calculus a class-size function that applies 
to a language L to yield a simultaneous ve definition of two sets of 
sequents in L: 

thX(L) = the set of theorems of X(L 

wkthX(L) = the set of weak theorems of X(L). 

The axioms [weak axioms] of X(L) are those sequents thrown into thX(L) 
[wkthX(L)] by the base-clauses of this inductive definition; the rules are the 
induction-clauses. 

For ‘x’ and ‘y’ replaced as before: X is x, y-sound iff for any Pred, Funct, 
letting Lx= L,(Pred, Fwzt), all members of thX(L,) are y-valid and all 
members of wkthX(L,) are weakly y-valid. X is x, y-complete iff for any Pled, 
Funct, all y-valid sequents of L, bePong to thX(L,) and all weakly y-valid such 
sequents belong to wkthX(l,). We’ll use these abbreviations when context fixes 
X and L,: 

CAM : (r; A, tp) E thX(L,); 

r, Akwcp : (I-‘, A, rp) E wkthX(L,). 

We introduce the calculus Y&. First, for ‘y’ replaced by a blank. Given x, Pred, 
Funct, the axioms of X(LX) are those of the following whose formulae belong to 
Fml(L,). 

(but unnecessary for x = 0, T, u, or 1, T, u). 

(6J (6) with ‘=: replacing ‘=‘. 

(6,,) (6) with ‘=b) re 

with P either TO = ~1 or ZO+ ~1. 

with 43 either to =s z1 or 



ff. 

tion and Elimination rules for ‘3 and ‘T'. 

‘3’ ation) 
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The Strong and Weak ‘9 Elimination rules and the eak ‘~9 Introduction rules 
are obtained from the corresponding rules for ‘3’ by replacing ‘3’ with ‘5; in 
addition we need the following. 

(Strong ‘3 Introduction) r, A U {q) f- Q, 

CAUWW 

r, AUiWH-w 
r, A w=?#J 

These rules will make our logic classical. 

(Strong R4A) 

(Weak RAA) 

For ‘=’ E lex,, X(&J handles ‘3’ as follows. 

(Strong ‘3’ Elimination) 

r, A t- (WV 
ru W), VI, A lJ wo9 !d I- ?I 
c A w 
provided v is not free in $J or in any member of A 

(Weak ‘3’ Elimination) 

r, A ~"(Wv 

~~{E(~)),AU{E(V),~~}C-"~ 
r, A k"V 

provided v is as above. 

(Strong ‘3’ Introduction) r.Ak&d~) 

r, At- E(z) 

r, A c- (3v)r~ 

provided that r is substitutable for v in QJ. 

(Weak ‘3’ Introduction) T-‘, Ak"g+.~/t) 

r,At-w(3v)tp 

provided that z is as above. 



23 
W
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For 6=s E lex, replace ‘=’ and ‘E’ by ‘=S’ and ‘E,’ in the preceding rules; similarly 
for ‘=b’ E lex,. This completes our specification of SC@,). 

Form Y&,(&J by adding the appropriate one of these axioms to X(&J: 

or else with ‘E: in place of ‘E’. Form .3&&J by adding these axioms or the result 
of replacing ‘E’ in them by ‘ES’: 

( 0 e 

where Q, is either c( t, , . . . , 2,) or 33~ l . l 9 t,). 

Form 3&,,,,(&) by adding both sorts of axioms to X(&J, 
It’s easy ta see that 3&, is X, y-sound. 
For r~ A c Fml(L,) let (r, A) be x, y-inconsistent iff r, A f- I; otherwise 

(r, A) is y-consistent. 

&ak@ment cy sb 
If (r, A) is X, y-consistent, then there .s’ a y-model Sp and an 
that SQ b r [a] and SB t=” A [cu]. 

This follows by an easy modification of well-known techniques. It yields the 
y-coqpleteness of 3&, again by a familiar argument. As usual, compactness 
follows: if r, A k 43 [r, At-” cp] then there are finite r’ c r and A’ c_ A so that 
r’, A’ k Q, [I-‘, A’ b” 01. 

Notice the interplay between theorems and weak theorems in many of these 
rules. This is unavcllable; with an eye toward natural deduction (which is to say, 
with an eye toward logic rather than just algebra) we can’t consider validity 
without weak validity, and vice versa. And therein lines the problem with the 
traditional use of valuational systems for the semantics of three-valued lo&s. 
One such system defines validity and another weak-validity, yielding two distinct 
logics. (Valuational systems were first introduced as a technical device for 
independence results concerning axiomatizations of logic. I suspect that an 
unw?Tented preoccantion with valuational systems contributed to some of 

chael Dummett’s views on tl;uth-value gaps; see &c&ion 11.) 

‘11 apply the ultraproduct construction to partial models. Given an index set 
I and for each i E I a model ~4i = (js4il, %i, J&), let: 

i&ii = {f: f is a function On P an 
id 



CT(n), if n = 0, let r(g) = fD 

_*(i)) = f (i)} E D, 
w 

are well-defined, with 
For any f~ PRED let 

and otherwise any 5 E FLJNCT(n), if 
( 1, let WE) =J’(E), ad 

Thus dam(%) and are sets. Lzt &J& be 
that for each i E I, Ci’i is ~II .&-assignment. For any 

let <IIf3 e)(v) =fo ifIF ( i: a,(V) = f (i)} E I). SO n, Cui is 

ucts (Theorem 4.1.9 of [ 11) easily 
els as follows. If for each i E I, SQ, is a model for Pred, 

iff {i: b q [a;-]) E D; 

uct compactness corollary to Los’ theorem (Corollary 4.1.11 of 1111) 
tXletS,(X)={Y: YcXand Yisfinite}. 

c 2, are sets of formulae, I = S,(&) and for each i E I there is a 
&. Then there is an u traproduct D on I so that 
usual D such that fo each ciE& &=(i:iEI 



Consider models Sa, = (A, $, J&) for i E 2. For I; E PEED(n) let 
~&iffN~=N~ and: 

for any C’ e P D if c’ # 5, then &(t’) = $,(c’); 

For E E FUNCT(n) let 1 &widen .I&, iff and: 

for any 5’ E FUNCT if f’ # E, then &(e’) = J&(&j’); 

For Kc MOD we adopt these definitions. 

Pred(K) = (c E PRED: there are majdels &, 

Define Funct(K) similarly. Center(K) = Pred(K) 9 Funct(K); K is bounded iff 
Center(K) is a set (i.e. not a proper class); L,(h) = L,(Pwed(K), Funct(K)). 

For any class S=PIXED U CT and any model d let & I%= 
m4,w~,we- 

If K s MOD is closed under tiomorphikm, ultraporoducts and 
MOD - K closed under ultrapowers, then Center(K) is the minimal SC c 
PREDUFUNCI’sothatforall.&Mod: &EKiffti r%K. 

Assume that K meets the stated closure conditions. Let & = (I&l, %‘, JV’) 
be a model. For K a cardinal let ( yL ) l.=K be a listing of (dom( a) U do&V’)) - 
Center(K). 

Assumethat& fCenter(K)EK.ForhsKlets&=sP ~{~,.:vQ’cK);soJ&+~ 
y,widens ,pP,. Claim: for each c C K, & E K. If Sp, E K but &+* $ K, then 
y, E Center(K) contrary to choice of yL. If ti is finite, we’re done. Otherwise 
supposeA6Kisalimitordinalandforallc<A, .$&K. E={&~:~<Ajisa 
filter cn A with the finite intersection property; let D be an ultrafilter on A with 
D c E; we have I&, s& E K. But n, sa, (= taking Se, = J& for each 
I < A) is isomorphic to & J%!,<~. If ~8~ $ K, then ~&$K;sod~~K.Thusthe 
claim; in particular Ja, = ti E K. 

AssumethatsPEK.LetsB,=~r{t’:L’<I)fori<K.SosLI=~~.Asabove 
we show that for all i G K, sii& E K. In partic , Ja, = d I’ Center(K) E K. 

Finally, Suppose that 9 E PRED U FUN and for all models S& & E iff 

SQ 19 E K. Suppose y E Center(K) as witnessed by models & and 3. If y $9, 
&r9=9?r3EWehave:s4EKiffdr9EK,Sr9EKiff3EK;sotiEKiff 
58 E K, contrary to choice of JYZ and 98. So y E 9. So Center( 



ard,] closed iff for all d, OD if 

EK,thendEK]; 

defines] K i8F: for all .&MOD, skK iff 
y x-elementary] iff some r c Sent{ 

entary [weakly basic x-element 
ly defines] K, in which case we’ll say 

Fact be given. For any q E Sent( 
so that for my d E 

1 (Pred U Funct) b q?. 

subfomulal: of q as follows: replace an 
tl containing a constant not in 

that z. and z, each contain a 
[+I ‘1; if ti contains a function- 



(weak part), Sl~ppose 
equivalent: 

(i”) K is weakly x-ele 

is closed under ultrapowers. 
is downward, clos 

arly (iiw), implies (i” 

,(K) n !Sent(L,(K)). Letting 

+; so &, .pPi b 43, establishing the claim. So by downward, clos 

&assignment and 8 a formula, QI is total for 6 ig for every variable IJ occurring 
free in 8 O(V)& 0 is caP-bivalent iff for every &assignment cu, if (Y is total for 8 
then e’ther ~8 I= 8 [a] or & 39 [a]. For a class A of formula, A is Sbivalent iff 
for eve .y 8 E A, 6 is &bivalent. The following definition will be of use only for 
x=O,....Let: 

CorGfK) = { 8: 8 E AtFml( ) and for all s4 E K 8 is Sbivalent). 

cX(K) = {QI E Fml( every exposed subformula of Q, belongs to Core,(K)}. 

Clearly for any ti E K, Core,(K) is &bivalent. Also, if ‘T’ $ lex,, then C,(K) 
is the class of formula of X generated from Core,( ). Also, if Kf { }, then 
‘Q’ $ Core,(K); and so for 43 E C,(K) no occurrence of ‘u’ in 43 is exposed. 

For ‘=’ E lex, and K # { }, Core,(K) c_ AtFml(L,(K)). For suppose 0 E 
Core,(K). For any function- or predicate-constant y occurring in 6, pick any 

any O-total &assignment ar, and any % E MOD so t ~4 y-widens 53; 
I0[a]; so 93 $ K; so y E Center(K); so 8 E AtFml(L )). For other x 

’ E FUNCT(Q) let ‘E,( 

If Core,(K) is &bivalent and (p E C,(Kj, then 43 is &bivalent. 
by induction on the construction of W. 



OD and bounded, the following are 

and ralrtaproducts, MOD - K is closed 

LS C,(K)-upward, closed. 

Th,(K) ir Sent(L&K)). Again let 
since K is bounded I 

“i. Therl for 8&K, afk%!kii so+kiETh,(K)n 
C=“i, this is a contradiction. Let & = 

’ theorem we find 

’ E K, establishing (ii). 
If r defines K, then rc, ‘I%,(K), and so by 

‘) r) C,(K) n Sent(L,(K))). Claim: for 
not; fk an i SQ that for all 

or sQ =t a, by Lemma 5. Thus 
but B k” i, for a contradic- 
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If K is bounded and x-elementary [weakly x-elementary], then K is 
defined [deakly defined] by a set of sentences. 

. For K s MOD and bounded, the following are equivalent. 
(i) K is basic x-elementary. 

(ii1 Some go E Sent(L,(K)) defines K. 
(iii) Some finite r E Sent( L,(K)) de&es K. 

OD - K are closed under isomorphism and ultraproducts, and 
(.i) ifx= 1,. . . then K is upward,-closed; 
(A) ifx=o,. . . then K is C,(K)-upward, closed. 

Forx=l,... orO,T ,... the following are also equivalent: 
(i”) K is basic weakly x-elementary. 
(ii”) Some ip E Sent(L,(K)) weakly defines K. 
(iiiw) Some finite r c Sent( L,( K)) weakly defines K. 
(iv”) K and MOD - K are closed under isomorphism and ultraproducts, and K 

is downward, closed. 
For x otherwise these are equivalent: (i”); (iiw); 
(vw) K and MOD - K are closed under isomorphism and ultraproducts and K is 

CX(MOD - K)-downward, closed. 

Clearly (ii) implies (i) and (ii”) (i”). Taking 43 to be &ror 
equivalent to (iii); taking 43 to be {lFa:aEr}forx=l,... 
(ii”) is equivalent to (iii”). It’s not hard to see that: (i) implies (iv); for x = 1, . . . 

or&T,... (i”> implies (iv”); and for x otherwise (i”) implies (vw), using the fact 
that if (p weakly defines K, then ~QI, defines MOD - K. 

To show: (iv) implies (iii). First note that Center(K) = Center(MOD - K), and 
so L,(K) = L,(MOD - K). Assume (iv). MOD - K is downward, closed because 
K is upward, closed. By Theorem 2, Th,(K) n Sent(L,(K)) defines K and 

WkThJMOD - K) n Sent(L,(K)) weakly defines MOD - K. Thus 

(‘I&(K) n Sent( L,( K)), WkTh,(MOD - K) n Sent( L,( K))) 

is inconsistent. So by compactness there is a finite r s Th,( K) n Sent( L,( K)) so 
that (r, WkTh,(MOD - K) n Sent(L,(K))) is inconsistent. If & k r then Se E K, 
for otherwise SQ k” Wk’R,(MOD - K) n Sent(L,(K)). So r defines K. 

To show: for x = 1,. . . or 0, T, . . . ( ivw) implies (ii”). Assume (iv”). 
MOD - K is upward, closed because K is downward, closed. Then with K 

OD - K switching places j (iv) holds; so by the preceding we obtain a q 
defining MOD - K; so -Q, weakly defines K. 

To show: for x otherwise (v”) implies (ii”). ecause K is C,( 
sed, it’s downwar ed; so the previous argument applies. 

‘} weakly define K; then K is not we 
ry; in particular ‘ ’ doesn’t weakly defin K. Notice that 

(J@ n 
- K) ~Th,,(B); so K 
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red pair (K,, K,) will not exist if KO or K, is 
in terms of such ordered pairs can be said 

we’U permit ourselves to speak of such pairs in spite of 
pt these definitions. 

Center(KQ, K,) = Center(KO) U 03%er(KI); 

(dy,, K,!, rir?lct(KO, K,)). 

ded iff Center&, K,) is a set, i.e. iff KO and K1 are bounded. 
aleut [b-center-bivale contains no model 

is s-center-bivalent iff K1 - K,, 
th total on Pred(KO, K,) and so that for every 

A. (K,, K,) is car%-bivalent iff 
) &bivalent, A! $ K1 - KO. 

weakly defines K1. 

4ines it, i.e. KO = 

tii be couveuient: (K,, K,) has property 1, iff 

ifx=l,... then KO is upward, closed, Kl is downward, closed and 

(K 09 1) is cross, closed; 
ifx=O,... then K1 is C,(K&downward, closed. 

Let x=1,...; suppose that (KO, K,) is bounded and cross, clozed, 
and K, are closed under isomorphism and ultraproducts and both 

and D - K1 are closed under ultrapowers. Then for any $8 E 

k” II, n Sent(L,( , K,)), then 93 E KI. 

,(K,) n Sent(L,(KO, K,)). Let 3’ = 9 1 Center(&, 

I), with two applications of Theorem 1 if 
93’) n Sent(L,(K,-,, KI))); by boundedness 

: for each i E K there is an & E KO with &k” i. If this fails 
KO) n Sent(L,(KO, K,)), and so 5B Ew+ki; since 9’ k i, 58 ki, 
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Btrafi!ter on I so that D && b” Th,(B’) n Sent(L,(K(), 1)). Using Lemma 4 

as we did in Se kTh&B’) m Since ( 
cros%-closed and 

Finally let ThX(KO, ,(K,). For x = 0, . . . Thx(&) c 

C&G,), and so ‘-b(& 

, K,) be bounded. The following are equivalent: 

(ii) (KO, K,) is defined by Th,(K,, K,) n Sent(L,(KO, K,)). 
(iii) K0 E K1, K,-, and K1 are closed under isornorphism and ultraproducts, 
OD - K0 and MOD - K1 are closed under ultrapowers, (KO, K,) has property 
, and: 

(.i)‘if x= 1 or 1, T [ = 1, s] [= 1, b or 1, T, b], then (K,, 
bivalent [s-center-bivalent] [b-center-bivalent]; 

(.ii) ifx = 0 or 0, T or 0, s or 0, b or 0, T, b, then (!Q9 KI) is core,-bivalent; 
(.iii) if x = 0, u or 0, T , u or 0, L: , s or 0, u , b, then ( KO, MI) ik either 

u-defined or core,-bivalent. 

Clearly (ii) entails (i). To show: (i) entails (iii). Assume that r C_ Sent( 
defines (KO, K,). Clearly K0 E K,; by Theorem 2, K1 is closed under isomorphism 
and ultraproducts, and MOD - Ki is closed under ultrapowers for i E 2. For 
x=1,... clearly K0 is upward, closed and K1 is downward, closed. Suppose 
Th,(s4) E WkTh,@?). If & E KO, then r c Th,(&); so r c WkTh,(sB); so 58 E KI. 
Thus (KO, K,) is cros%-closed. For x = 0, . . . we have r c C,(KO), and so K1 is 
G,(K&downw; rd, closed. Thus (K,, K,) has property 1,. 

Suppose x = 1 or 1, T. Suppose that & E K1 - K0 is total on Center(M,, K,). 
Since & e K0 we may select Q, E r so that & # q; since Se E K1, d 1 tp. Fix sets 
Pred and Funct so that Pred(KO, K,)c Pred, Funct(&, K&g Funct and QJ E 
Sent(L,(Pfzd, Funct)). Let $33 be any widening of & that is total on Pred U Funct. 
Then either 93 k -QV [(u] or 9 =I I/J [ cu] for any q E Fml(L,(Pred, Funct)) and any 
$&assignment a, this by induction on the construction of v. Thus either 9 t= QJ or 
33 4 up. But SQ r Center(KO, K,) = 3 f Center(K”, K,). So by two uses of 
Theorem 1, 9 E K1 - K,, a contradiction. Thus (KO, K,) IS center-bivalent. A 

similar argument when x = . . . , s [= . . . , b] shows that ( KO, K,) is s-center- 

bivalent [b-center-bivalent]. 
Suppose x = 0 or 0, T or 0, s or 0, b or 0, T, b. V?e have r c_ Th,(K,) c 

Cx( KO). For any d E MOD, if Core,(K,J is &bivalent, the r each QJ E c d is 
q-bivalent, by Lemma 4; so if ~4 $ K0 then & $ K, . So (K,, is core,-bivalent . 

Suppose x = 0, u or 0, T, u or 0, u, s or 0, u, b. y the above paragraph and 
er (K,, K,) is u-defined or core,-biva 

To show: (iii) entails (ii). Assume (iii). Eet r= Th,(Ko, K,) n 

Sent( L,( *)). So if ~4 < 0 then J&X, and if .s&z e need 

the converses. 



: (a) ifx=l or 1,T then is total on Center(KO, K,); (b) if 
osed terms z based on 

tal on Pted(K*, K,). 
y 5 E pred(KO, Kl)(n) fix n distinct variables 

(K,) n Sent(LX(KO, K,)), and so is true in a. For any 

1) n !knt(L,(&,, K,)). By (a) is total on Center(KO, K,). 
Since @ii) has (ATo, &) center-bivalent, 31Q E KO. For x = 1, s: note that for t a 
closed te based on Fwcs(Ko, K,), z=~ t E WkThx(K1) fl Sent(LX(KO, K1) j: so 

s (b). The argument for J$ E KO is like the precediilg. For 
t part of the argument for (a) gives (c). For d E K. the argument 

Assume that B kw r. Let 93’ = 58 1 Center&, K,); so 
,,#I’) n C,(K,) n Sent(Lx(KO, K1)); as usual I is a set. 

y i E I there is an & E K1 so that &i k i. Suppose this 
,(K,) C Sent(L,(K,, K,)), for any &, &I=” 

Furthermore, for any JXI E Ko, dt=y since Core,(KO) is sQ-bivalent and 
contradicting 9%’ I= i, yielding the 

I E K,. As usual we select an ultra- 
b T&(98”) n C,(KO) n Sent(L,(K,, K,)). Since 

with Lemma 6 we may strengthen this to 
‘) n C,(K,). ?3ut K, is C,(K,)-downward, closed; so since 
kK1, ands&IEK1. Nowassume9BU;sobytheaboveSB~K1. 

t &e,(K,) containing variables in the list 5, (!I@(@ v 10) E Th,(K,) n 
1)) by the definition of Core,(&). Since (V3)(0 v Is) E 

,) n Sent(L,(K& (Vc)(@ v 10) E II Thus Core,(KO) is %bivalent; 

KO us (ii). 
wo noticing that if K. c K1 and l is 
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C,(K&downward, closed, then (KO, K,) is CX(K&cross, closed. For suppose 
Th,(Jq n G(K0) E WThX( ) n C,(K,,) c WkTh,&@); if & E 
K0 by Lemma 5, Wkm,(gQ) n C,(K,) E Th,(d); so Th,(B) n G(Ko) c ‘D&Q 
since &E K1, we get 9 E K,. Also, if ‘T’E lex, then Kr is C,(K&downward, 
closed iff K1 is downward, closed. 

elds a slick proof of Observation 4(v). Let (K,, K,) be definea by 
It’s not hard to see that Coreo,T(Ko) = {v = d: v, v’ E VW}; so 

(&, RI) is not core*,,-bivalent, and so not 0, T-elementary. 
To analyze basic x-elementary pairs we need two more definitions. 

core;-bivalent iff K1 - K0 contains no model that is Core,(KO) n Co 
K,)-bivalent. (Ko, K,) has property x iffz 

ifx=l,... then K. and K1 are upward, and downward, closed 
and (KO, K,) is cross, closed; 
if x=0,... then K1 is C,(KJ n C,(MOD - K&downward, 
closed and K0 is C,(K,-J n CJMOD - K&upward, closed. 

eorem 5. Let (K,, K1) be bounded. For x = 1, . . . or 0, T, . . . the following 
are equivalent: 

(i) (KO, K,) is bask x-elementary. 
(ii) (K,, K,) is defined by a B) E Sent(L,(KO, K,)). 
(iii) (KO, K,) is defined by a finite rrTh,(K,, K,) n Sent(L,(KO, K,). 
(iv) K. s K1, Ko and K1 are closed under isomorphism, KO, K1, MOD - K0 

and MOD - K1 are closed under ultrapowers, (K,, K,) has property &, and: 
(.i) if x = f or 1, T [ = 1, s] [ = 1, b or 1, T, b], then (K,, K,) is center- 

bivalent [s-center-bivalent] [b-center-bivalent]; 
(.ii) ifx=O,. . . for ‘u’ $ lex, then (KO, K,) is core:-bivalent; 
(.iii) if x=0,... for ‘u’ E lex, then (K,, K,) is either u-defined or core:- 

bivalent. 
Furthermore for x = 0, . . . with ‘T’ $ lex, these are equivalent: {i); (ii); (iv). 

Clearly (ii) implies (i); for x = 1, . . . or 0, T, . . . (iii) is eqv+alent to (ii). It’s 

easy to see that for x=1,. . . (K,, K,) has property & iff (KO, K1) and 
(MOD - K1, MOD - K,) have property 1,; * IP (i) implies (iv). Also for x = 0, . . . 

(i) implies (iv); for if q E Sent( ,) defines (K,, K,), then gp E C,(K,)n 
C,(MOD - K1); this suffices to make (K,, K,) have property 2, and be 
core:-bivalent . 

To show: for x-l,. . . (iv) implip,s (iii). First notice that Center( KO, K,) = 
D - K1, MOD - K,-J. Applying Theorem 4 to (K,, K,) and ( 

- KO) we obtain r, A c Sent(L,(K,, K,)) so that r defines (K,, K,) 
(MOD - K1, MOD - K,,). So (r, rU A) and (A, I% A) are 
compactness there is a finite r’ c r so that (r’, r’ U A) and 

(A, r’U A) are inconsistent. Claim: r’ defines ( f 5&&r’ but d$ 



(iv). Let Fbe as in the proof 

K1 SO that &i t= i. SUppoSe 
K,, K,)), since for any 

with Lemma 6 we may strengthen this 
- K,). But K1 is CX(KO) n CX(MOD - 

nce &,&:EK~, WEK,, and so BEK*. So P 

cork n Qu;(MOD - K,), ( 
n CoreJMOD - K,) is 9%bi 

defines (&, K,). As in 
defining (K,,, K,). To see that 

we need only show that if d Q K1 then SQ 4 &Y; for this we need that 
SE 4 q. Since r’ c C,(MOD - K,) this is the 

0 or 0, b and ‘T’ $ lex, and (Ko, K,) 
f { }, then CorG(KO) c CoreJMOD - K,); so if 

CoreJKO) = Core,(MOD - K,). For suppose 
K1. Suppose 8 isn’t sQ-bivalent. Then 0 contains 

either a predicate- or a function-constant, so that for some a’ E I&f”, 
q, using Lemma 4. So in fact 
SB 1 Center(KO, K,) E Ko; but 8 

argument also works for x = 0, b, 

s fact doesn’t hold. For ‘ E FLJNCT(0) let ’ ’ define 
D - K,). 

e 

iff for any J&BE 
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*) be monotonic [s-monotonic] iff 
is downward mon 
] iff for any .aQ, OD so that ~4 

if&E&then BE&. 
be a class of terms closed under subterms (i.e. for any t E A and any 

subterm (T of z, u E A). Given a model & = (I&& 25, JV) we construct N,, to be 
E-least N’ so that N’ & N and for any term z 

0%.x’),a, x9d,” Set N0 = ( }. Given Nm let 
FUNCT(n) and d E Id]” let Nm+l(Q(Z) = a iff e = a or there are 
terms Zo, . . . , Zn-: and an &assignment a! so that f(to, . . . , t,-1) E A has 
depthsm + 1, for all i <n, zpa= ai and N(~)(Z) = a; otherwise Jrm+l(g)(Z)‘j’. 
Let N’= Un Jr,; it is as desired. 

For A a class of atomic formula let A be the class of terms occurring in 
members of A; so d is closed under subterms. Foi c E PRED(n) and a’ E I&Z]” 1 
3$+(~)(Z) = 2!?( (;)(Z) if there are terms X0, . . . , tn-1 so that I;(q), . . . , &I) E 

and den((l&], 8, N’A), lo, Zi) =ai for ah i en; otietise %a(c)(Z)f. Let .d 1 A = 

WI, %, Jw- 
It’s easy to see that for ‘=’ E lex, and A c Fml( , & 1 A is the E -least model 
so that 9 L SQ and for any 8 E A and &-assignment QI: 

Note that for & k { ‘ )‘} there is no L-least 3 C ti so that 

, K,) be core&osed iff for all d E MO if J$ t Core,(Ko) E K1 then 
J&E&. 

what follows is the three-valued version of Corollary 6.1.16 of [ 11. 

Let (Ko, K,) be bounded. (Ko, K,) is x-elementary iff K. c_ K1, K. 
a;e closed under isomorphikm and ultraproducts, MOD-K0 and 

OD 1 K1 are closed under ultrapowers, and these conditions are met: 
= 0 [= 0, s or 0, b], then K1 is downward monotonic [s-monotonic] and 

is core,-closed and core,-bivalent. 
,u,s or O,u,b], th 

(iii) k’fx=O,T or0, T, b, th 
(iv) Ifx=O, T,u, th 
(v) If x=1 [=l,s] [I, 

is core,-bivalent. 
re,-bivalent or u-defined. 



e the left-hand 

) is cm+&sed. For the remaining conditions, use 

t us from right to left. 

sq!?ppo§e that 
y T or 8, T, u or 1, T or 1, T, u: there is an ukrajilter D so that 

is an ultr$lter D so that &, d G &, 9; 
or 1, b tkre k w ultrajilter D so that &giZ 

thQt Th,(Jq f-l C&G) c Th,(~): 
is an ultrajilter D so thut (n, 90) 1 Core&Q E 

or 0, b or 0, U, b there is an ultrajilter D so that 

=l or B,u [l,s or l,u,s or l,b] and J&SBEMOD: if 
), then there is an ultrajilter D so that &d s& SB 

‘ll use these lemmas to prove the 

ing direction, KO being upward 
s that KO is upw 
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x=0 or 0,~ [O,s or O,U,S or 0,b or O,u,b] suppose that 
Th,( 48). Lemma 8 yields a 
[(rI,AI) ] Core&K,) EJ&J a]. If 
monotonic [s-monotonic] (& A?) ] Core(&) E K,; by core,-a=lo~u+e 
and so & E &. So K1 is G,(K&downward, closed. 

For x = 1 or 1, u [l, s or 1, U, s or 1, b], suppose that Th&!) s 
Lemma 9 there is an ultrafilter D so that 
& E K,, nD & E &; by crosstonicity [s- 
So (&, K,) is cross, closed. For x = 1, T, . . . (&, ross,&osed because 
K0 is upward, closed. The point is that if Th,(sB) ,(W then Th,(Wc 
Th&B): if&qthen &&TV, so $Bk”Ttp, so SBlap. 

Assuming GCH the technology of saturation and good ultrafilters as presented 
in [l] can be modified to prove Lemmas 8 and 9. The need to deal with both b 
and bw leads to some revisions in the classical apparatus: we need two no 
an n-type, and tius two notions of saturation. To avoid assuming CC 
modify Shelah’s technology as presented in [1] (avoiding some minor errors found 
there). 

For A and K infinite cardinals let p be the least cardinal so th~na A < P; thus 
p s A and p is regular. Suppose that F is a set of functions f: + cc, and G is a set 
of functions g : A+ /3(g) for B(g) a cardinal less than cc. Suppose L) is a filter over 
A. (F, G, D) is K-consistent iE 

(i) D is generated by some Es D with card(E) s K (i.e. E is closed under 
finite intersection and for every X E D there is a Y E E with Y E X); 

(ii) for any cardinal p C p and sequences (fP)P<B in F, ( c+,)~<~ in cc, the first 
without repetitions, 

every) W < Wxi) = aP for all p C /3}} U I3 = D’ generates a non-trivial titer 
. 

(.i!$ for any f E F and g E 6, ((i:f(i) =g(i)}} U D’ generates a non-trivial 
titer over A. 

(Note: in [l, p. 3151, the authors try to collapse clauses (ii.i) and (ii-ii) into a 
definition that is not as intended. Their definition makes their Lemma 61.10 
vacuously true and their proof of Lemma 6.1.12 incorrect.) 

The following lemmas are quoted directly from [l, p. 315-71. 

[l, 6.1.10]. There is an F with card(F) = 2’” and (F, { }, {A}) ~-consistent. 

[ 1, 6.1.13(ii)]. Suppose that (F, { ), D) is K-consistent, ,U G K and for 
I < K, A, c_ 31. There are F’ E F and ’ with 
(F’, { }, D’) is K-consistent, and for each I <K 
proofs see [ 11. 

e following lemma replaces Lemma 6.1.14 of [l]. 



of Lemma 61.14 in 

authors tried to avoid 
, as in the observation 

lsforl&!%l~cardinalsRandpso~at 

) is A+card(p)-cm&tent; if q is a limit ordinal 

ateitherBED+orA-BEDp. 

tice that for each 
ace of ~4. Thus for 

tandm<m. Leta,bethekstme 
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p am(i), l l . , a,_,(i)]}. 

ere are A+ card(p)*such sets. S 
a 6.1.13(G) there are F’ s F 

A + card(p)-wnsistent, by 

card@, - F’) G is + card(p); 

either&D’ or A-BE 

for each q~, po, . . , , pm+ as above either X+ E ‘or&X+ED’; 

(F’, { }, D’) is A + card(p)-consistent. 

Let: 

r+ = {(Pp, POP l l l P PIP1): X’(q4 PO, l l l * Pn-1) E L3’); 

y+ = Y’(% PO, l l 9 B P*-1) 

= {i <A: d I= (3v)tp [a,(i), . . . , a,_,(i)]}; 

z+ = Z’(q, PO, l l l ? #h-l) 

= {i < A: 9 k (3v)cp [b,,(i), . . . , bp,_,(i)]}. 

((P9 POP l l l 
, pnW1) f F+ then Y+ ED’, since X+ z Y+ (using our choice of x). 

for if othetise then by (5), Y3 $ 
; D’, cmtmy to D’ being non-trivial. 

so by (4), A-Y+dp, 
. plying Lemma 10 to 58 we 

get bp: A+#3~, Fp+l cF’, and +1 with D’cL$+~ so that (&+I, { 1, &+,I is 
A + card(p)-consistent and: 

for each (q, po, . l . , pn+) E r+, 

{L‘ <A: 3 k Q, [b&), b&)r . . . 9 b,+,(i)]) E &+I- 

(0) through (5) are now satisfied for p + 1 in place of p. 
Now let bp+l lx the first member of “1 I- {bps: p’ < p}. 

and ap+* For Q, and po, . . . , pn_1 as above let: 
define Fp+z, Q,+2 

x-z -b PO, l l l P Pn-1) 

= {i < k 93 kw 43 [b,,(i), bpo(i), . . . , bpn_,(i)]). 

rm F”c_p;,+, and D” with DP+l c D” so that: 

card(F,+, - FM) 6 A + card(p); 

43, po, . . . , pnml as above eit 

“, { ) , D”) is A + card(p)-consistent. 





& if ‘=’ $ lex, we can strengthen this by replacing ‘G’ with ’ G:. This gives us 
the lemma for ‘T’elex,. For x=0, T,. . . we actually have (**) for all q, since 
Tq E &(&); SO as aboVe s: nQ d = 

The proof of Lemma 9 is a straightforward modificatio of the previous 
construction and is left to the reader. 

Let (&, K,) be co&closed i 
CoreJMOD - &) E K1 then &E E K,. 

QD if & ] Core,( 

7. Let (&, K,) be ded. (K,, K,) is basic x-elementary iff K0 E Kt, 
K,, K1, MOD - K0 and OD - KI are closed under isomorphism and 
titraproducts, and these conditions are met: 

(i) If x = 0 [= 0, s or 0, b] then K1 is downward monotonic [s-monotonic] and 
(KO, KI) is core$closed and coreL=bivaient. 

(ii) If x = 0, u [=0, U, s or 0, U, b] then K1 is downward monotonic [s- 
monotonic] and (Ko, K,) is core#osed and either core:-bivalent or u-dejked. 

(iii) Zfx=O,T 0, T, b then (KO, K,) is coreL=bivalent. 
(iv) Zf x=0, T, then either (K,, K,) is either core:-bivalent or u-defined. 
(v) Zf x = 1 [= 1, s] [= 1, b] then (K,, K1) is monotonic [s-monotonic] [s- 

monotonic], cross-closed [s-crosstonic] [s-crosstonic] and center-bivalent [s-center- 
bivalent] [b-center-bivalent] ; 

(ti) Zf x = 1, u [ = 1, U, s] then (K,, K,) is monotonic [s-monotonic] and 
crosstonic [s-crosstonic]. 

(vii) Zf x = 1, T [ = 1, T, b] then (K,-,, K,) is center-bivalent [b-center-bivalent]. 

Only one new element is involved in this proof. For x = 0 we need to show: if 

‘DU4 n C&G) n C, OD - K,) G Th,(sB) then there is an ultrafilter D so that 
D - K,) 5 nQ 9; analogously for x = 0, s and E,, etc. 

The proof is a strz&htforward modification of that of Lemma 8. 

‘T’ E lex, and any 
(i) K is x-elementary. 

the following are equivalent: (i); (i”); (ii). 
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following are equivalent: 

under isomorphism, 

[s-monotonic] and closed under isomorphism, 

et K be closed 
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let 
: & is not total on {y)). 

D - K is total on Center(K). Then J$ $ K*; for otherwise fix 
* &; then 5B f Cente (K) 5 d; since 58 1 Center(K) E 

Thus d $ K,,; since K, meets the conditions on the K’ in the definition of K1, 
d ‘. A similar argument applies for x = 1, s or 1, b. 

x = 0 [0, s or 0, b] we show that (K, K”) is core,-bivalent. Consider x = 0. 
For 8 E Core&K) let: 

&=lPU{J4k OD: 0 is not 990bivalent}. 

D - K so that Core,,(K) is &bivalent. Since K is closed under 
car%-restriction we can argue as above to get & $ K@; so as above (K, K”) is 
cora-bivalent. A similar argument applies for x = 0, s or 0, b. So the right 
hand-side of Theorem 6 is satisfied; by Theorem 6, (vi) follows. 

Note: for x as above, if K is x-elementary, then K” is the minimum K’ so that 
(K, K’) is x-elementary. 

Problems: Is there a more constructive way to describe K”? For K satisfying 
aximum K’ c K SQ that (K’, K) is x-elementary? 

In this section we’ll prove a quantificational analog of the fact that {‘D’, 
‘u’, ‘7) is truth-functionally complete for three-valued logic. This involves 
extending the notion of a continuous quantifier, as presented in [5], to partial 
models. 

A signature z is a finite sequence ( co, . . . , c,,-*) of predicates, ci E PRED(ni) 
for Xn. Set Pred={&,..., iJn-1}. For Kc MOD let K be closed under 
Pred-restricted isomorphism iff for any ,aQ, 56 E MOD with & ] Pred s 93 1 Pred, if 
&EKtheniBEK. 

Let (K,,, K,) be a partial quantifier with signature z iff K. c K1 c_ 
Genter(Ko, KI) s {CO, . . - 9 !A), and K. and K1 are closed under Pred- 
restricted isomorphisms. (Ko, K,) is monadic iff for all i < n, ni = 1. 

A quantifier-expression x with signature z has the following formation-rule in 
L X.X: 

if for each i <n, Ci is a sequence of ni distinct variables and 

4309 l l l P q&l-l are formulae, then (x: 5;. . . ; 5,_,)(cpo,. . . , qnwl) is a 
formula. 

of distinct variables, 
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QP,__~) be the model (l&j, 8, ( }) with dom( %?) = Pred and for 

1 if a’ E ext&(.<ss, a; q+), 
W&-(, if a’ E ext;(.s& a: vi). 

To let x represent the partial +umtifier (&, K,) is to add these clauses to our 
inductive definition of k and 4 : 

90 Ir (x: cl; l . * ; Ll)(%* - - * ,9&a-1) [ru] 

sf Jw, fP0, * - * , QDn-1) E Ko; 

sd 4 (x: %; * * * ; ii,-dqo, * * - , Q&-1) b] 

ift 4z,Qpo, - - * , %-I) $ G. 

SW = (I&l, %, NJ and B E 1~41. For n >O let 

(g) = 55’(c) n B” X 2 for c E PRED(n); 

N k B(E) = N(g) n Bn+l for all c E PRED(n); 

for n = 0, %!I 1 B(c) = g(f;) ad JV 1 B(5) -W) for N5) E & N 1 N3’l 
Let 1 rB=(SB, 8 t&NIB). Finally let 5BssQ iff for some 

OD let SQI secure d into [out of] K iff 9 c 99 and for every S, if 
, then z&V E K [&’ $ K]. Let SB secure Sp for (K,, K,) iff for each i E 2 

either 9 secures ~4 into Ki or secures ~4 out of Ki. A patial quantifier (K,, K,) is 
conti~ous [uniformly continuous with bound (I E o] iff for every d E MOD there 
. 
s & $5 2 MOD, 99 6nite [card(B) s q] and SB secures SQ for (K,, K,). 

For (Ko, K,) a monadic partial quantifier with signature s = 
(50, - - - , &_1) tk folbwing are equivalent: 

(i) (K,, K,) is continuc?us. 
(ii) (K,, K,) is uniformly continuous. 

(iii) A sentence of L = L1,,,,(Pred, { }) defines (K,, K,). 

To show: (iii) implies (ii). For f: n-*3 = (0, 1,2}, I;t 0,(v) be: 

&(TfT,(v):f(i)=O}&&(F$(v):f(i)=l} 

& &{U&(u): f (i) = 2). 

Let a basic sentence for f be one of the form 

for some r c 01). Let a pre-normal sentence be a conjunction of sentences that may 
be basic, negated basic or %J’; let a normal sentence be a disjunction of 
pre-normal sentences. Familiar transformations involving ‘9, together with some 
obvious new ones for ‘T’, yield the following: if 
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normal sentence q’ equivalent to 43. ut then QJ may be prenexed into each of 
these forms: 

Suppose ~1 defines (KO, K,) and Se is given. If SQ E KO then SQ t=@t)(!@)@; 
select witnesses ao, . . .,a,E]~]sothats&l= @ [Z]; then SB 1 {aO, . . . , a,+} 
secures & into KO. If ~4 $ KO then &* (3fi )1@; a similar argument yields 
b o, . . . , b,_* E IdI so that sl f {b,, . . . , b,_,) secures d out of KO. An analogous 
argument applies to K1. Thus (K,, K,) is uniformly continuous with bound 
max(q, 0. 

To show: (i) implies (iii). Assume (i). If ti is a model for Pred and f : n + 3, let 

s(&)(f) = card{a: & l= sf(v)[a]} ; 

think of s(d) as a 3”.tuple with components indexed by the f E 3” listed in 
lexicographic order. For i E 2 let S(Ki) = {s(d): d E Ki). We then have & E Ki 
iff s(d) E s(Ki), using the fact that Ki is closed under Pred-restricted isomorph- 
isms and that if s(d) = s(B) then s& 1 Pred = 58 1 Pred. 

For P = (K~, . . . , K,,,-*) and k’ = (K;, . . . , KL_l) m-tuples of cardinals let 
k E k’ iff for all i Cm, Ki S of; let card(t) = Ci<m Kia For Co and Cl classes of 
such m-tuples, our definitions of continuity and uniform continuity with bound 4 
may be extended to (CO, C,), following the analogous definition in [S]. As in [5] 
we may prove: if (CO, C,) is continuous, then (CO, C,) is unifolnly continuous. 
This involves an induction on m; see the proof of Theorem 5 of [S] for details. 
Finally, as in [S] we have: 

(KO, K,) is [uniformly] continuous 

iff (s&), s(K,)) is [uniformly] continuous. 

Assuming (K,, K,) to be continuous, we have (s&J, s(K,)) uniformly con- 
tinuous. From that fact it’s not hard to produce a sentence of L1,T,U(Pred, { )) 
defining (&,, K,). 

Alternatively, we could simply take the above to show that (i) implies (ii) and 
get from (ii) to (iii) using Theorem 7. For suppose that (K,, &) is uniformly 
continuous with bound q. It suffices to show that for j E 2, Ki and -K+re 
closed under ultraproducts. 

Suppose that for each i E I, di E K’. ithout loss of generality, suppose each 
tii is a model for Pred. For each i E 1 fix 59i c &i SO that card(5Bi) G q and 9Bi 
secures &i into Kj. NOW let 3 secure nD Sa, for (Ko, K,), card(B) s 4. Setting 

Bi = (f (i):f E IsI}, Ri) s 4; se: Ui = Ja, 1 (Bi U 1 Bil); SO card( %i) s Q. 
Claim: for some iO E D %i z %‘ ,. If I is finite, D is principal, So this is trivial. 
Otherwise it suffices to note that there are finitely many isomo 

els for Pred with cardinality G 2q; so for so 
I’0 E X is as desired. Since 98, secures &i, into 



and either 

e? 

the semantic component of a theory of 
truth-values, but it would have no use for a 

ur did not defeat the Saxons” is construed as the 
ur defeated the Saxons”, we need a distinction 

and king neither true nor false; but nothing has 
ground for regarding this latter state as one of having no 

than as one of having a second undesignated 
call ‘the value x’. ([2], p. 425) 

Dummett acknowledges, “It might be thought that.. . the 
n, saying that it has not truth-value and that it has the value X is 

nt matter of terminology.” In this section I’ll try to make some 

e objection Dummett acknowledges is right to this extent: on philosophically 
allowing for lack of a truth-value 

truth-value. But some philosophical positions provide a 
may be said to merely open a 

another introduces a third truth-value. 
it was convenient to use ‘1’ in 

we are using three truth-values. 
ation of the inductive clauses in 

r-true-nor-false was not. 
tics only involves two truth-values, and a truth- 
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Frege took talk of truth-values at face value: according to him they are 
genuine objects, and sentences are really singular terms “designed” to stand for 
them. This background lends some substance to the issue. A sense-bearing 

language embod.ying a three-valued semantics would add a new object to the 
ontological package carried by other two-valued languages. For Frege, ‘if . . . 

then. . .’ stands for a function from {True, False}* into {True, False}. If Q, 
are sentences that fail to stand for anything, then the concatenation of ‘if’, q, 
‘then’ and q (hereafter ‘if 9p then q’) also doesn’t stand for anything; it’s on all 

a function-constant when ’ fails to designate. Thus the 
is modelled by our ‘3’ If our semantic theory takes 

our logic to be modelled by that of le%, or le%,, we have not introduced a third 
truth-value, but only recognized a truth-value gap. But any step beyond le%,“, 
e.g. to lexl or le&,,, would introduce a third truth-value. And that Frege would 
not want us to do: lex,,, or perhaps le%,“, is the Fregean lexicon. 

If we reject Frege’s assimilation of sentences to singular terms, and thus reject 
the doctrine that truth-values are genuine objects, our question seems to ioose it’s 
content. But we may reconstrue it as asking whether truth and falsehood, or 
better the status of being true or being false, d;ffer significantly from the status of 
being neither true nor false. And the answer depends on the logical lexicon that 
we take to be in place in our language. (Note: all our lexica express negation; so 
all of them are symmetric with respect to truth and falsehood.) 

since (‘5, ‘u’, ‘T’} is a definitional base for all three-valued functions of 
Gnitely many arguments, for it, truth, falsehood and the third status are all on a 
par, with no asymmetries: the image of any expressible truth-function under any 
permutation of three truth-values is Itself expressible. Similarly it plausible to label 
the first-order logic based on lexl,,- ,” ‘full three-valued elementary logic’; and it 
too yields no asymmetries between truth and falsehood on one hand and the third 
status on the other. More precisely, let (K,, K,) be any partial quantifier 
expressible using lexl,,,“; set 2, = K,, Z1 = Kt - K0 and Z2 be MOD - K,; for 
any permutation n: of { 1,2,3}, (&,, Zrro U Z,,) is a monadic partial quantifier 
expressible using lexl,,,,. 

When we restrict ourselves to more narrow lexica, asymmetries emerge. For 
example, using lex l,T, ‘u’ is not expressible; this may be viewed as a Si@fiCxflt 
difference between R and i on one hand and 1 on the other. Do these differences 
in expressive power provide reasons for saying that one of these sub-lexica of 
lexl,,,” introduce no third truth-value7 Only a philosophical background could 

ch a metaphor apt. We’ll now consider two such backgrounds. 
icture of language could lead us to say that lex,,, doesn’t introduce a 
-value? Suppose we replace ‘true’ and ‘false’ by ‘verified’ and ‘falsified’, 
of inquiry as involving a computational process that either te 

verification or falsification (after a finite time), or which diver 
at time. So with ‘ 

re enting a name, 
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if one is found, the decision-procedure associated 
e computation diverges. 

Frege and represent ‘if . . . then . . .’ as ‘9. 

our computation for q [ty] yields verification 
if the computation for ~0 [q] converges, “If Q, 

ght then jump the gun and declare it 
nd convergence. In doing this, we 

11 this picture could 
ible, since at no time is it established 

c sub-lexicon of lex,,,,U, it’s not what 
tions. But there is 

antic role” is Dummett’s term for the way in which an expression 
e truth-values of the sentences in which it occurs.) 

g whether a sentence of which it is a constituent is true 

1,~ makes no contribution to the latter fact; thus if we were to change 

we’d impose s-monotonic@, thus 

and ‘E’ don’t adequately model ‘is identical 

considered sentences as bearers of truth-value. If 
mental bearers of truth-value, I take it that these 

are axiomatic: 
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terminology, thoughts) without being true or false. But Evans has shown [3] that 
this involves a tension in the Fregean notion of sense; he also finds some textual 
suggestions that Frege was worried about allowing the existence of such 
sentences. In [4] owell finds this half-way position rather Russellian: had 
Russell abandone s epistemological view that logically proper names couldn’t 
fail to designate, he would have held this view.) 

Now suppose we reject the neo-Fregean doctrine presented above, and allow 
that sentences which are neither true nor false play a third semantic role. We may 
still claim not to have, in effect, introduced a thiid t th-value by citing our 
adherence to (3), provided we also accept the following 

(4) Whether a sentence expresses a proposition can’t depend on whether a 
constituent sentence is true or false. 

This principle then rules out use of ‘9. For suppose o is q 3 v and QO is neither 
true nor false. If 9 is true, then so is a; so by (2), (J expresses a proposition. If q 
is false, then o is neither true nor false, and so fails to express a proposition. So 
whether or not o expres:es a proposition is sensitive to the truth-value of q, 
violating (4). These principles don’t rule out use of ‘T’; so again the permissible 
lexicon goes beyond that of the orthodox Fregean, this time to leG,T, or perhaps 
le%*l-,u= 

Note: (4) should not be confused with the content of 2.0211-2 of Wittgenstein’s 
T~UC~WUS; Wittgenstein’s claim is that whether one sentence expresses a proposi- 
tion can’t depend on whether another sentence is true or false; that principle 
would rule out use of ‘T’, ‘=z or ‘=,,‘, since whether ‘ (a)’ expresses a 
proposition would depend on whether ‘Es( ’ is true or false. 

None of these attempts to clarify the difference between allowing for 
truth-valuelessness and introducing a third truth-value help vindicate Dummett’s 
main claim. If the question of which of these holds for a given language is merely 
one of which of our lexica model the logic of that language, I see no reason to be 
sure that the favorc d lexica would not be of the former sort. In that case our 
theory of meaning ,‘or that language has use for a truth-value gap. 
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