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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 56, Number 1, March 1991

 WHERE DO SETS COME FROM?

 HAROLD T. HODES

 Many philosophers take set-theoretic discourse to be about objects' of a special
 sort, namely sets; correlatively, they regard truth in such discourse as quite like truth
 in discourse about nonmathematical objects. There is a thin "disquotational" way of
 construing this construal;2 but that may candy-coat a philosophically substantive
 semantic theory: the Mathematical-Object theory3 of the basis for the distribution
 of truth and falsehood to sentences containing set-theoretic expressions. This theory
 asserts that truth and falsity for sentences containing set-theoretic expressions are
 grounded in semantic facts (about the relation between language and the world) of
 the sort modelled by the usual model-theoretic semantics for an uninterpreted for-
 mal first-order language. For example, it would maintain that '{ } E {{ }}' is true in
 virtue of the set-theoretic fact that the empty set is a member of its singleton, and
 the semantic facts that '{ }' designates the empty set, '{{ }}' designates its singleton,
 and 'e' applies to an ordered pair of objects iff that pair's first component is a
 member of its second component.

 Now this theory may come so naturally as to seem trivial. My purpose here is to
 loosen its grip by "modelling" an alternative account of the alethic underpinnings
 of set-theoretic discourse. According to the Alternative theory,4 the point of having
 set-theoretic expressions ('set' and 'e' will do) in a language is not to permit its

 Received October 27, 1988; revised October 3, 1989, and January 23, 1990.

 'I use 'object' as Frege did: to be an object is to be capable of being designated by a closed singular term
 (what Frege called a proper name).

 2This is explained in detail in [H4, ?8].
 31 am reluctant to call this view 'Platonism': that label should be reserved for a view held by Plato at

 least at some point in his career. Whether Plato ever accepted the Mathematical-Object theory is a matter
 of controversy.

 4In [H1] I called the Alternative theory "Coding-Fictionalism", in part because of this analogy: there
 are statements with definite truth-values containing mathematical [fictional] singular terms, even though

 these terms do not designate. But I have found that this label led to confusion, largely because of an
 apparent disanalogy, one not sufficiently emphasized in [HI]: as naturally construed, 'Hamlet existed' is
 literally false; but 'The null set exists' is literally true. So I have replaced 'Coding-Fictionalism' by a less
 informative, but less misleading, label.

 ? 1991, Association for Symbolic Logic
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 WHERE DO SETS COME FROM? 151

 speakers to talk about some special objects under a special relation; rather it is to
 clothe a higher-order language in lower-order garments. A first-order language
 containing expressions for set-theoretic notions is an encoding of a sort of second-
 order language, one that is not about objects of a distinctively mathematical sort;

 furthermore, fundamental set-theoretic principles.are encodings of validities in an
 appropriate second-order logic. (Unfortunately, this encoding can be philosophi-
 cally misleading, creating the illusion of a distinctively philosophical subject-
 matter.)

 I suspect that those who accept the Mathematical-Object theory begin by sliding

 from attributions of existence to claims about designation, e.g. from the uncon-
 troversial mathematical claim that the empty set exists to the semantic claim that
 'the empty set' designates something. This slide involves a hasty generalization from
 a syntactic uniformity (between mathematical singular terms and our paradigmatic
 singular terms that designate people, places, events, etc.) to a semantic uniformity.

 This paper reports research in model-theory; its philosophical force is oblique. In
 ?2 1 shall present a model-theoretic semantics that reflects the Mathematical-Object

 theory; in ?3, ?5 and Appendix 3 I shall present several other such semantics, all
 reflecting the Alternative theory. I offer these semantics in part because they are
 intrinsically interesting, and in part because they may serve as instruments of
 philosophical therapy: once one understands them the above-mentioned slide will,
 I hope, seem more preventable than it did before.

 This paper is intended to be self-contained. I have made four sections into

 appendices because they are more technical than the rest, and of less philosophical
 interest. The rest overlaps with [H4], though the latter is somewhat less technical

 and more philosophical. [H3] presents a parallel discussion of arithmetic; for more
 motivational background, see also [Hi].

 Let me emphasize that my purpose is in no way to reform classical mathematical
 practice. Indeed the Alternative theory is intended (1) to show the metaphysical
 harmlessness of the "Mathematical-Object picture" which is embedded in the

 syntax of actual mathematical practice, and (2) to explicate the sense in which the

 ontological commitments of mathematical theories are, using a word from [H4],
 "thin".

 The exposition will be within familiar set theory with proper classes. Models are,
 of course, sets with a certain structure. The Axiom of Choice will not be assumed
 without warning. Cardinals are Scott-cardinals. For any set x, card(x) = the
 cardinality of x. An aleph is the cardinality of an infinite well-orderable set; so the
 Axiom of Choice is equivalent to: all infinite cardinals are alephs. You may assume
 AC if you wish, and identify cardinals with initial ordinals.

 Where Kc and p are cardinals, let "'< - Z4,c,. We adopt these definitions: p is
 v-acceptable iff k = kU<K, and Kc is acceptable iff c is c-acceptable.

 Note. v' is acceptable iff the continuum hypothesis holds for Kc; thus GCH
 implies that all infinite cardinals are acceptable.

 As I shall understand it, a model-theoretic semantics is: (i) a logical vocabulary
 and a set of types for variables, which determine a class of languages (one for each
 choice as to nonlogical vocabulary) involving those logical expressions, and (ii) a
 notion of a model for an arbitrary nonlogical vocabulary, together with (iii) a
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 152 HAROLD T. HODES

 definition of model-theoretic truth and falsity, these being two-place relations that
 may hold between a model for a given nonlogical vocabulary and sentences in the
 language based on that vocabulary. A model-theoretic semantics determines a logic,

 that is, logical notions of consequence, validity, equivalence, bivalence, etc. In this

 paper we shall consider several logics, of which I regard A1l as the most important.

 ?1. Background logics. The semantics with which we shall be most concerned

 with are three-valued: relative to a model for a language, a sentence in that language
 may be true, false, or neither. This makes it reasonable, though by no means
 necessary, to begin with a simple three-valued semantics.

 There are several logical lexica for a three-valued semantics. We shall use what in

 [H2] I called lex1l,. (Of course all the basic lexical classes to be introduced are
 disjoint from one another.) Fix the 0-place connective I, the 2-place connective D,
 the quantifier ], and the 2-place predicate =. Fix a countable set Var(O) of variables
 of type 0. Given any vocabulary-set Vcb of predicate-constants and function-
 constants (taking individual-constants to be 0-place function-constants) we define
 the language Lo = L0(Vcb), i.e. we define the set of terms based of Lo, the set of
 formulae of Lo, and the set Sent(L0) of sentences of Lo, as usual.

 We define what it is for s1 to be a model for Vcb as usual, with one change: where

 c E Vcb is an n-place function-constant:
 if n = 0, we allow that Aft;

 if n > 1, we allow that C' be a function into I I with dom(C') I sln
 Let sl be total iff, for every n-place function-constant C E Vcb, if n = 0 then Cfl, and
 if n ? 1 then dom(e1) = 1,ln. Of course Jl I is the universe of X, which we require
 to be nonempty.5 As usual, card(vl) = card(Id'I) and Power(sl) = Power(Id/I).

 For a model v for Vcb we define des' to be a perhaps partial function on the
 set of closed terms of Lo into IvI; this definition runs as usual; as usual we shall
 write desk(z) (the designatum of z relative to d) as He. Expand Lo to Lo by intro-
 ducing a new individual-constant a for each a E I I; expand sl to a model X by
 taking a' = a for each a as above. We define truth and falsity ([= and =1) relative to
 X for sentences of Lo by a simultaneous induction. Here are the clauses for atomic
 sentences, where 4 is any n-place predicate-constant:

 X I ;

 V-- l=;cT1** T) iff, for all 1 < i < n, arc and <o, ..,T> E ::

 ,V =1 ;:(_Ci * *Cn) iff, for all 1 < i < n, arc and <o, ..,T> ?;

 X -CO = z1 iff lA and z` = ok;
 =1 -o = z1 iff either do, z1 and z-0 - A, or, for some i < 2, All and z-t.

 Note. A nondesignating term in 4(z, .. ., zn) makes that sentence neither true nor
 false. = has a strong, though not quite bivalent, semantics; that accorded to =, in

 'Without much more effort we could have allowed a model to be partial in its action on predicate-
 constants: in the terminology of [H2], all the models we are considering here are extensionwise-total. We

 could also have allowed that 1,?1 be empty; see [H2].
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 WHERE DO SETS COME FROM? 153

 [H2]. We then use the following induction-clauses:

 X V1= i iff either = M y or 1= Vi;

 M =1 9D :i iff X I=9 and X =1 A;

 M 1= (3v)9 iff, for some a E 1I1, X = p9(a/v);

 X =1 (3v)9 iff, for each a E 1X1,, X=1 9(a/v).

 Note. D and have the strong Kleene semantics. Finally, for y E Sent(L0), let
 - 9iff M k , and /= 9iff =1 .
 Let v 1 ? abbreviate - # and 4' A
 We adopt the usual abbreviations, e.g. m? for p I , (Vv)9 for -i(3v)-i 9,

 etc. When v is a type-0 variable not occurring in a term z of Lo, E(z) abbreviates
 (3v)z = v; E expresses the bivalent notion of existence, which in [H2] was expressed
 as Es. For -c variable-free, Wright's principle (see [H4]) in model-theoretic form
 holds, as does its negative counterpart:

 sk V= E(T) iff z-cl; v/ =1 E(T) iff At.

 Fact 1.1. We can contextually define the truth-function T governed by the clauses:

 a, I= T9 if a, I= 9; otherwise / =1 T9.
 This is a consequence of our restriction to models that are extensionwise-total

 and our strong semantics for =; see Observation 2 of [H2] for a proof.
 We enrich Lo to L0'u by introducing the 0-place connective u into the logical

 lexicon; syntactically it is a formula; it is to be governed by the semantic rules v V u
 and 4 A u. Since T is already expressible in Lo, in L0'u all three-valued truth-
 functions are expressible.

 Digression. For our ultimate purposes in ?3 and beyond, we could at this stage
 have used the more familiar two-valued semantics, handling atomic sentences
 containing nondenoting terms with the falsehood convention, as is done in [B]. But
 the falsehood convention introduces an ad hoc asymmetry between truth and
 falsehood, and we face truth-value gaps down the road anyway; so I have allowed
 them here.6

 We now form an co-order language LO by enriching Lo as follows. For each
 1 < j < w introduce a countable set Var(j) of new variables of type j. We define
 being a formula of LO with these familiar formation rules:

 for any y E Var(1) and any term z, yT is a formula;
 for any y E Var(j + 1) and 6 E Var(j), y6 is a formula; and
 for any y E Var(j) and q a formula, (]y)9 is a formula.
 Given a model v for Vcb, a restriction-sequence for 4 is a function S on ow with

 S(O) = 1,1 and S(j + 1) c Power(S(j)) for j < w. We define truth and falsity
 relative to (d, S) by letting variables of type j range over S(j). In other words, after

 expanding LO to L' as above, we expand to L s by introducing a new constant A of
 type j for each A E S(j) and 1 < j < w. Relative to X formed as before and S, we

 6We could have adopted a weaker semantics for = and E; similarly for D and I Alternatively, we also

 could have adopted a stronger bivalent semantics for =, counting To = T, as true when aT j for both i < 2.
 See [H2] for details on all these alternatives.
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 154 HAROLD T. HODES

 define truth and falsity by adding the following clauses to the definition of truth

 relative to X for sentences of LO:

 for A E S(1):

 X S l=AT iff -ct and z- E A;

 ,S=l AT iff zlandz A;

 forAeS(j+ 1)andBeS(j):

 A ,Sk=AB iff BeA;

 g6,S =AB iff BOA;

 for 1 < j < w and y e Var(j):

 X, S 1= (]y)y iff for some A E S(j), 4, S - (A/y);

 X, S =1 (]y)y iff for each A E S(j), 4, S =1 (A/y).

 Again, for y E Sent(L') let

 sSk=- iff 4,S =y; AS=1y iff X,S=1 y.

 For 1 < j < w let Li be the fragment of LO formed by eliminating variables of type

 > j. According to standard misuse of Russell's word 'order', Li is a (j + 1)st-order
 language. Abbreviations introduced for Lo carry over straightforwardly for LO and
 Li. Everything said for LO carries over to LO' in the obvious ways.

 Two ways of choosing S deserve special mention. For a set x and a cardinal Kc, let

 Power<K(x) = {y: y c x and card(y) < Kc}.

 Let S be the weak restriction sequence for a model v iff, for all j < co, S(j + 1) =
 Power<card(.)(S(j)). For such S we shall write 'Tfi' and 'M' in place of 'S l=' and
 'S =1'. The resulting semantics and logic for L' will be called "weak monadic second-
 order", and for L@, "weak monadic w-order". ('Weak monadic second-order' has

 been used to indicate that the type-1 variables range over all finite subsets of IS;
 I have seen this in contexts in which all models might as well have been countable, so

 perhaps my usage will not cause confusion.) Let S be the null restriction sequence for

 d iff, for j < w, S(j + 1) = Power(S(j)). For such an S we shall simply drop the
 reference to S to the left of 'I=' and 'k= '; this yields the model-theoretic semantics for
 full monadic w-order, or full monadic jth order, logic.

 Fact 1.2. Over models of regular cardinality, in weak-monadic logic, LO collapses to
 LV. In other words, for each (p E Sent(L') there is a / E Sent(L3) so that, for any

 infinite model s1 of regular cardinality,

 aid- ( iff S/ ffi ; S/ ?J iff Ha a

 The proof of this is implicit in the proof of Fact A2 below.

 Weak monadic second-order logic is, I contend, the encoded logic behind the
 limitation-of-size conception of sethood; Fact 3.2 will make this contention precise.

 Our languages of the form Lj(Vcb) are, of course, uninterpreted. In fact, it is quite

 misleading to call models "interpretations": they do not assign senses to the non-
 logical constants, and so do not assign thoughts to sentences of their languages. A
 model is merely a set. Model-theoretic truth and falsity are two-place set-theoretic
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 WHERE DO SETS COME FROM? 155

 relations, and should not be confused with real, live truth and falsity, genuinely

 semantic properties that apply only to sentences or statements of interpreted, or, as I

 prefer to call them, sense-bearing, languages (which, of course, may be "artificial"

 and "formalized"). A model-theoretic semantics is philosophically interesting in so

 far as: (1) the formation-rules for an uninterpreted language L can represent or

 model (in the engineer's sense, and at some level of abstraction) those for a sense-
 bearing language (or fragment thereof) Y; (2) models for L (i.e. for the nonlogical
 vocabulary of L) can model the semantic facts underlying the distribution of truth

 and falsity to sentences or statements in Y; (3) the model-theory's assignment of

 truth and falsehood relative to models for L to sentences of L models the possible
 distributions of real truth and falsity to sentences or statements of Y; and (4) the
 logical notions defined model-theoretically coincide, or at least mesh plausibly, with

 the use, especially the deductive practices, animating Y.

 I construe higher-order quantification in sense-bearing languages as Frege did: as

 quantification over "unsaturated" entities;7 so, for example, type-1 variables would
 range over Fregean concepts of level one. This is a point of potential confusion.

 Over any model A, the values of the type-1 variables are subsets of Is/I, and thus
 (speaking "within the Mathematical-Object picture") are objects. But under the
 modelling, these objects represent Fregean concepts; so second-order quantifica-
 tion in an uninterpreted language relative to a model can represent second-order
 quantification in a sense-bearing language. Similarly for the values of variables of
 yet higher type. The syntax of natural languages permits, and sometimes requires,
 misleading constructions that "try" to make singular terms do the work of
 predicates; witness 'the concept horse' in Frege's well-known discussion. Thus, in

 much of the literature, type-1 variables in sense-bearing languages are said to range
 over classes. In this usage (or misusage) a class is what Russell in Principles of
 Mathematics, Chapter 6, called "a class as many"; I suggest that we construe this as
 an attempt to say that type-1 variables range over Fregean concepts.8

 More controversially, I think that quantification over proper classes is best taken
 as a misleading way of expressing second-order quantification, with 'e' followed by a
 type-1 variable expressing predication. A formal theory like GNB uses the first-
 order fragment of second-order logic: from a proof-theoretic point of view, the

 type-1 variables may just as well be a second sort of first-order variables; this is
 what encourages the benighted to take proper classes to be peculiar objects.9 Suffice
 to say: the Alternative theory takes higher-order logic to be ontologically more
 fundamental than set theory; in this respect it is in keeping with the tradition of
 Russell and Whitehead.

 Suppose that Lo represents a sense-bearing language that lacks expressions for
 set-theoretic notions; that is, it lacks predicates for sethood and membership, and an
 operator for set abstraction. In ?2 we shall model the Mathematical-Object theory's

 7See [H4], where I refer the reader to [Fu].
 8I take a Russellian "class as one" to be a set.
 9Peculiar in that they, unlike nonclasses and nonproper classes, belong to no classes. Why should they

 be so peculiar? To say "They are too big to be elements of classes" explains nothing. This explanatory

 vacuum should embarrass those who do not regard quantification over proper classes as a notation for

 quantification over Fregean concepts.
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 156 HAROLD T. HODES

 account of how such a language might be enriched with such vocabulary; in ?3 we

 shall model the Alternative theory's account.

 ?2. Mathematical-Object semantics. We now enrich L' by introducing new
 expressions Set, e, and A, forming the language L, A. We define the sets of terms and
 formulae of Lo A by simultaneous induction, with Set and e working like 1-place and
 2-place predicates respectively, and with this novel rule:

 if v is a variable of type 1 and y is a formula,

 then -v? is a term.

 For the moment, we leave open whether Set, e and A are new nonlogical expressions
 being added to Vcb or new logical expressions added to the logical lexicon.

 For a model s1 we adopt these definitions:'
 e is an extensor for 1 iff v is a one-to-one function into 'Is with dom(e) c

 Power(v4).

 e is an Is-extensor for 1 iff e is an extensor for s1 with dom(e)=
 Power < card(Gd)(, G)

 Note: 'Is' abbreviates 'limitation-of-size'. A model s1 is acceptable iff card(l) > 1
 and card(v4) is acceptable. Obviously all acceptable models are infinite.

 Fact 2.1. If card(l) > 1, then a? has an Is-extensor iff s is acceptable.
 Let an MO-model be a pair <S., e>, s1 a model and e an extensor for d. We define

 designation, truth and falsity relative to an MO-model as follows (z, a and v?
 contain no free-variables):

 #, e I= Set(T) iff z-fa and Zca e rng(e);

 Ad W =I Set(T) iff -car and vlr-e 0 rng(e);
 <, k-I T E i iff Ta-lJ, re'e and, for some A e dom(e), cabe = e(A) and z~ e A;
 ee:=l T E e iff zTYJ., Fe4e and for no A e dom(e) do we have able = e(A) and

 T e A;

 V9Pe = a if e({b: as, e 9(blv)# ) = a;
 vopw' if {b: a, e # p(b/v)} 0 dom(e).
 Note. T ae abbreviates des"f-e(z), etc. This semantics is mildly unusual in that

 designation is defined simultaneously with truth and falsity.
 Let L0 6 be the language obtained by eliminating A from Lo ^. Form Lo,',' by

 adding u to the lexicon of Lo e. All of the other definitions above extend to these
 languages in the obvious ways.

 According to Frege's conception of sethood, to each concept of level one there
 corresponds a set that is its extension-that is to say, an object to which all and only
 those objects falling under that concept bear the relation of membership. Suppose
 that s1 models the referential basis of non-set-theoretic discourse, with the members
 of I 1 I representing everything that exists (including, of course, all sets). If there were
 such a correspondence, it would be represented relative to a? by a minimal extensor

 for s1 with domain equal to Power(s). But by Russell's paradox, there is no such
 correspondence; the model-theoretic counterpart of this is the fact that no model
 has an extensor whose domain is its power-set, which is really just Cantor's theorem.
 (As Anil Nerode once put it, somewhat unfairly, "Russell's paradox is Cantor's

 theorem; the difference was that Cantor knew what to do with it.")
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 WHERE DO SETS COME FROM? 157

 Frege saw Russell's paradox as undoing not only his foundational project in the

 Grundgesetze, but also any sort of set-theory. (See [Fr, p. 269].) Fortunately others

 were not so hasty. Though we cannot allow that all Fregean concepts have

 extensions, we can allow that some do. The Mathematical-Object theory is

 committed to the existence of a "standard extensor" assigning extensions to those

 Fregean concepts fortunate enough to have them.'0 And which are so fortunate?
 Cantor had a suggestion here, based on distinguishing absolutely infinite

 collections from those collections which may be infinite but are not absolutely

 infinite. Following Cantor's lead, we can preserve some of Frege's approach in the

 face of Russell's paradox by accepting the limitation-of-size comprehension
 principle: any level-one concept under which there does not fall an absolute infinity

 of objects has an extension. We could then construe the paradoxes as merely

 showing that an absolute infinity of objects fall under the "paradoxical" concepts
 like non-self-membership.

 We could also take a further Cantorian step by accepting the limitation-of-size
 restriction principle: any level-one concept under which there falls an absolute

 infinity of objects lacks an extension. These two principles constitute what I shall

 call "the limitation of size conception of sethood" (using a phrase from [R]).
 If we accepted the Mathematical-Object theory about the semantics of set-

 theoretic discourse, given a model v and an extensor e for A, we could think of e as
 representing whatever is left of Frege's standard extensor after Russell's paradox:

 the members of dom(e) represent those Fregean concepts that have extensions, and

 their values under e represent those extensions. Thus for the Mathematical-Object
 theorist, Set, E and A are nonlogical expressions, and appropriate models for the
 nonlogical vocabulary formed by adding Set, E and A to Vcb are MO-models:
 they, rather than mere models for Vcb, can model the basic semantic facts underlying

 the distribution of truth-values to sentences in languages containing set-theoretic

 expressions. With <K, e> modelling these facts, desdfle models designation of closed
 terms, while A,, e = and A,, e = model truth and falsity for sentences.

 For C a class of models and K a class of extensors, let an MOc-model be an MO-
 model belonging to C x K. These determine the Mathematical-Object logic MOc
 as follows. For F C Sent(LOA') and a, / E Sent(L? A):

 F MOc-implies p iff, for every MOc-model <d4, e>, if <d4, e> k= F then

 <Kade> k= 9;
 y is MOc-valid iff, for every MOc-model <d, a>, Ae, d IA;
 y and / are positively MOc-equivalent iff, for every MOc-model <d4, a>,

 i~e1= iff S, = ;
 y and / are MOc-equivalent iff y and / are positively MOc-equivalent, and so

 are m? and H-itf.
 We shall construe absolute infinity as the "cardinality" of the universe, modelled

 relative to v by card(v4). Then according to the Mathematical-Object theory, the
 limitation-of-size conception is reflected by logics of the form MOc, for Is = the

 "0Any set is the extension of the Fregean concept: is a member of that set.
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 158 HAROLD T. HODES

 class of Is-extensors. For C = the class of all acceptable models, we omit the super-

 script; MO1s is the Mathematical-Object limitation-of-size logic. Similarly for other
 conceptions of sethood that might be reflected by other choices of K. For K = the
 class of all extensors, we omit the subscript.

 Fact 2.2. For any model -4 and any extensor / for -, desk's is not total on the
 closed terms of LO A; e.g. x(x 0 x)'T.

 This is why it was convenient to allow partial designation from the start.

 Proof. Let r = {b: k, # b ? b}, and suppose that r E dom(e); let a = (r). Thus:

 e, -aeaiffaer, bythedefinitionofl=;

 aeriff 1, e= a a, bychoiceof r;

 ,-a aiff -1, eaea because aw .

 This is a contradiction.

 Thus -, | x(x 0 x) e x(x 0 x).

 ?3. The Alternative limitation-of-size semantics. If we reject the Mathematical-

 Object theory, we cannot regard MO-models as modelling the basic semantic facts
 underlying the distribution of truth values to sense-bearing statements containing

 set-theoretic expressions. Instead we may model the semantic facts underlying our
 set-theoretic talk as follows.

 Let K be a class of extensors; a K-extensor is a member of K. For (p E Sent(L 0 A)
 and d an acceptable model, let:

 v F=K p iff, for each K-extensor f for A, -', (p;
 v1=AK (p iff, for each K-extensor for -, -, / A (p;
 desa(r) = a iff, for each K-extensor - for Aa = a;
 des'(z)T iff there is no a so that des'(r) = a;
 I IK (P iff v VK KP and vl 7K KP-
 Fact 3.1. These definitions extend those given in ?1: for (p E Sent(L0), v k (p if

 S I=K (p; similarly for v =AK; and, for any term z of Lo, if r a = a then des (z) = a.
 Notice that even if our definitions of Al, = and A, / A had been two-valued,

 v k=K and v AK would permit truth-value gaps.
 Where C is a class of acceptable models we now introduce the Alternative logic

 AK. For F c Sent(L A) and so, / E Sent(L0' A):

 F AK-entails (p iff, for each El e C, if v I=K F then v I=K (P;
 p is AK-valid iff, for each v E C, v F=K 9;
 P is AK-anti-valid iff, for each v E C, vl K

 P is Ac-bivalent iff, for each v E C, either v kK 9p or v A K 9;
 P is AK-truth-valueless iff, for each v E C, v |K (P;
 P and v are positively AK-equivalent iff, for each v E C, v I=K p iff v sK V;
 p and , are AK-equivalent iff p and , are positively Ac-equivalent and so are m

 and m A.
 Let Ac-Biv(L 0 A) be the set of Ac-bivalent sentences of L? A; similarly for Ac-

 Biv(LO? ). If C = the class of acceptable models, we shall drop the superscript on all
 these notions. Let tot = the class of total acceptable models.

 We shall devote most attention to the case K = Is; so we hereafter omit the sub-
 scripted 'Is' on '#ls', etc., and abbreviate desa(z) as oa. But do not confuse the
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 relations between MO-models and sentences represented by 'I=' and '=4' with the
 relations between acceptable models and sentences also represented (now homo-

 nymously) by those symbols!

 Let Als be the Alternative limitation-of-size logic; its semantics reflects the
 Alternative theory of the alethic underpinnings for set-theoretic discourse when that

 discourse employs the limitation-of-size conception; so logics of the form A' are
 appropriate for Alternative theorists who accept the limitation-of-size conception of

 sethood. According to the Alternative theory, there is no standard extensor. A mere

 model, rather than an MO-model, can model all the basic semantic facts underlying
 the distribution of truth values within a sense-bearing language which is parsed by
 LA,' or Lo,': taking v to model these facts, desf' models genuine designation, and
 d 1= and v A model truth and falsehood. Unlike an MO-model, an acceptable
 model does not "interpret" (i.e. assign values to) Set, E or A; so for the Alternative
 limitation-of-size semantics these are to be counted as logical expressions. Indeed,

 according to the Alternative theory, an MO-model <, e>, des e, -, / and
 Ae A all do no modelling; they are only "supervaluational" stepping-stones to the
 semantically significant definitions of designation, truth, and falsity relative to d.

 The model-theoretic versions of Wright's principle and its negative counterpart

 still hold for terms of Lo, but they fail for some abstraction-terms: for any such z,

 a't; but, for example, E(xI) is Als-valid.
 We can now give an example of how set-theoretic expressions may permit the

 encoding of a higher-order logic into a notationally and conceptually more
 tractable first-order syntax. For the limitation-of-size conception, weak co-order
 logic encodes into Lo,' as follows.

 Fact 3.2. There is a translation t: Sent(L?) A-t-Biv(L? c) such that, for any
 p E Sent(L?) and any acceptable model a,

 S/ A (p if vS F t(p); v/ (p if =1 t((p).

 Similarly for LC'? and Lo, A
 Proof. Suppose that v is a model, E is an extensor for A, and S is the weak

 restriction-sequence for d. Assume without loss of generality that U <j<to S(j) and
 1-'1 are disjoint. Define S' and e' as follows:

 S'(O) = 1-41;

 S'(j + 1) = {e(X): X c S'(j) and X E dom(e)};

 = (x) for x E S(1) = dom(e);

 '(x)= ({f'(y):yex}) forxeS(j+ 1),O< j<w.

 Though ,' is not one-to-one, it maps S(j) one-to-one onto S'(j) for 1 ? j < w c. For
 such a j we shall represent an x E S(j) by e'(x), and the typing of a variable of type j
 by restricting a corresponding type-O variable to S'(j).

 Let Setl(v) be Set(v). For 0 < j < co let Set + J(v) be

 Set(v) & (Vv')(v' E v D Seti(v')),

 where v' is a type-0 variable distinct from v. Note that, for 1 < j < co and any a E 1-v1
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 160 HAROLD T. HODES

 and x,ye Uj So)
 if a E S' then A, f I Setj(a);

 otherwise A, e =q Setj(a);
 if x E y then s I ?'(x) e e'(y);

 otherwise A, , /'(x) e _(y).

 Given (p E Sent(L0'), form t((p) as follows: replace each variable y of type > 0 by a

 distinct new type-0 variable vy, replacing subformulas of the form yT by z E vy and
 subformulas of the form (]y)O in which y is a type-] variable for j > 0 by
 (3vY)(Setj(vY) & 0'), where 0' is the result of doing all this within 0. By induction on
 the construction of (p we have

 -' I p iff eI t((p); v A (p iff -, t(q4).

 The desired biconditionals follow.

 If v is total, then either v v (p or d A (p. Thus t((p) is Atot-bivalent. For
 (p E Sent(L' u), proceed as above, but remember that in t((p) u abbreviates
 'x(x 0i X) E- x(x 0 X)'.

 In Appendix 2 we prove a further encoding result.

 Because the point of set-theoretic notions is to encode discourse that could be

 parsed in a fragment of L', our mathematical practice can be parsed within Alto
 Biv(L? A); so in effect this practice is based on two-valued logic. But beyond the

 fringe of actual mathematical practice lie statements, of interest only to philos-

 ophers, that are plausibly truth-valueless, e.g. 'Julius Caesar is a set' or 'Julius

 Caesar = the empty set'. Of course the Mathematical-Object theory requires that
 these statements have a truth value (provided if 'Julius Caesar' designates). The

 Alternative theory makes no such demand; and this is reflected in Als: for any term z
 of Lo, Set(S) is not Als-bivalent, and so has no mathematical content; similarly for
 -r = x . In fact both are Als-truth-valueless. This reflects a natural reaction to such
 statements: they sound peculiar precisely because they have no mathematical

 content, and thus no role in mathematical practice; I suspect that most people,
 unless they have already swallowed a philosophical theory, would be reluctant to
 even consider them false. But nonetheless they are not ill-formed or meaningless: a
 logically truth-valueless sentence is a sentence!

 Things may seem rather different with a statement like 'Everything is a set'.
 Though it too would play no role in actual mathematical practice, one might insist
 that it is straightforwardly false, as would be permitted by the Mathematical-Object
 theory. But (Vx)Set(x) is Als-truth-valueless. Still, such a statement has at most
 philosophical, rather than properly mathematical, content; its falsity is not built into

 our mathematical practice; so a theory of the alethic underpinnings of set-theoretic
 discourse is not obliged to reconstruct it as false. The Alternative theory maintains

 "As this suggests, the Mathematical-Object theory also takes set-theoretic statements to encode
 statements in weak co-order logic; but it does not take this to be the "raison d'8tre" of set-theoretic
 vocabulary.
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 that this statement lacks content because it lacks mathematical content: the doctrine
 that there are nonsets should be dismissed as an intrusion of the Mathematical-

 Object theory into philosophical thinking.

 We now compare A' to MO' for C any class of acceptable models.
 Fact 3.3. For any F c Sent(LOA') and (p E Sent(L? A):
 p is MOc-valid if (p is As-valid; and
 if F MOc-implies (p, then F As-implies (p.

 Fact 3.4. For F c Ac -Biv(L0' A) and (p E Ac -Biv(L ^ A): F MOc -implies (p if F Ac-
 implies (p.

 The Alternative theory construes mathematical principles as validities in
 appropriate logics. Applying that theory to set-theoretic discourse based on the

 limitation-of-size conception of sethood, the appropriate logic would be Als, or else
 a logic obtained from it by restriction to some special class of acceptable models.
 Fact 3.3 suggests that the Alternative theory and the Mathematical-Object theory

 do not disagree about any properly mathematical principles; and Fact 3.4 suggests
 that the actual mathematical practice of a Mathematical-Object theorist will be
 virtually indiscernible from that of an Alternative theorist. This is as it should be:
 these are semantic (or even philosophical), not mathematical, theories.

 Is there a translation s: Als-Biv(Loe') -+ Sent(L?) so that for any acceptable model
 v and any (p E dom(s):

 (1) v Pi s((p) iff d1=p; A s(p) iff v =1 (p?

 Conjecture. No. But Als is a fragment of full second-order logic, in the following
 sense.

 Enrich L' to L(?0') by introducing a countable set Var((0, 0)) of new type-(0, 0)
 variables, with the following formation rules: if y is a type-(0, 0) variable and z and

 a are terms of Lo then 7'za is a formula; and of course quantification of such
 variables. Define truth and falsity in v by letting type-1 variables range over

 Power(v4) and type-(0, 0) variables range over Power(Ils12). Enrich L(?0') to L(?00 "?
 by adding u as a primitive.

 Fact 3.5. There is a translation

 s: A`t-Biv(LO e) -+ Sent(L(0'0))

 [s: Sent(L 0 A) Sent(L(?0'0")]

 so that, for any acceptable model v and any (p E dom(s), (1) holds.
 Proof. Any extensor / codes as

 {<a, b>: for some A E dom(e) we have a E A and (A) = b}.

 It is not hard to construct formulae Ext(b) and (p'(3) of L(?0') in which 3 is the only
 free variable and is of type (0, 0), so that for any R c 1jU 1 2 and d' the expansion of
 v formed by setting R" = R:

 d'I ls-Ext(R) iff R codes an ls-extensor for d;

 and if R codes the ls-extensor E then

 4,et(p iff 1'#p'(R).
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 162 HAROLD T. HODES

 Then, for any acceptable model s,

 sl 1= (p iff d 1= (V6)(ls-Ext(6) D (p (6)),

 and, if (p E Atot-Biv(Lo? ) and v is total,

 (p iff v =q (V6)(ls-Ext(6) D (p'(6#

 More generally, for p e Sent(L' A), first translate into Lo,` as in Fact A1.2; then
 take s((p) to be

 [(V6)(ls-Ext(6) D Dp'())] v [(36)(Is-Ext(6) & m T m (p'(6)) & u].

 ?4. Axioms and the cardinality of the universe. We shall now consider the status
 of familiar axioms within A' for C = the class of acceptable models meeting these
 conditions:

 C = reg : regular cardinality;

 C = 0o : uncountable cardinality;

 C = 00, reg uncountable regular cardinality;

 C = s-lim strong-limit cardinality;

 C = inacc strongly inaccessible cardinality.

 Clearly all instances of the Axiom of Separation are Als-valid. Similarly for the
 Axiom of Replacement.

 The Union Axiom (also known as Sum),

 (Vx)(Set(x) D (3y)[Set(y) & (Vz)(z E y _ (3u)(z E u & u E x))]),

 is not Als-valid. For suppose card(v4) = N., E is an ls-extensor for A, and for j < co
 we take Aj II of cardinality Nj; then e(je(Aj): j ec })J, and <Ke> =q Union.
 In fact for any acceptable model -, v I= Union iff card(v4) is regular; so Union is
 A`r-valid.

 The Axiom of Infinity is not Als-valid, since it fails in all acceptable models of

 cardinality No. But for any v as above, v I= Infinity iff card(v4) is uncountable. So
 Infinity is A'-valid.

 The Power-set Axiom is not Als-valid; indeed, for any v as above, v - Power-
 set iff card(v4) is a strong limit. So Power-set is As-im-valid.

 Recall that a strongly inaccessible cardinal is an uncountable regular strong limit
 cardinal. The above remarks show the axioms of ZF, excluding Regularity, to be
 Ainacc valid

 Unlike the Sum, Infinity, and Power-set Axioms, the validity of the Axiom of
 Choice is not sensitive to relativization to a class of acceptable models; similarly for
 CH and V = L: appropriate sentences expressing these three propositions are valid
 iff they are true. In this sense their status is mathematically substantive, while that of
 the Sum, Infinity and Power-set Axioms merely reflects a view about "the size of the
 universe". This leads us to an important issue.

 Russell and Whitehead, in trying to substantiate their hunch that the truths of
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 pure mathematics were logical truths, ran into a significant embarassment: they had
 to assume that there are infinitely many urelements.
 I regard the Alternative theory as partly in the spirit of logicism. So it is not

 surprising that the Alternative theory, applied to arithmetic discourse, dictates that
 such discourse presuppose the existence of infinitely many objects; this is borne out
 by the need, in [H3], for a restriction to infinite models in specifying the Alternative
 logic for arithmetic.'2

 Straightforward logicism is compromised, but by very little: pure arithmetic
 truths are logical truths modulo the assumption "There are infinitely many objects."
 And that assumption is not intrinsically mathematical: it can be expressed by an
 infinite set of pure first-order sentences (using =, of course).

 The Alternative theory applied to set-theoretic discourse requires a similar, but
 stronger, caveat. Taking Als as the Alternative theorist's logic, that theory construes
 set-theoretic principles as logical truths modulo at least the assumption that may
 be loosely put as: "There are acceptably many objects." This is loose because
 acceptability is defined for cardinals, and the real universe is, at least on the
 limitation-of-size conception, absolutely infinite, and so literally without a cardi-
 nality. (An analogy: anyone who accepts second-order ZF thinks that, loosely
 speaking, there are inaccessibly many objects; but literally inaccessibility is defined
 only for cardinals.)

 The needed assumption can be precisely expressed without use of set-theoretic
 locutions. For example, using a weak second-order version of Henkin's branching
 quantifier, the "acceptability" of the size of the universe can be expressed as:

 (VX)(3x) [x = y (Vz)(X(z) Y(z))].

 Thus even on the Alternative theory, the limitation-of-size comprehension principle
 has "factual content", though of a very narrow sort: concerning the "cardinality" of
 the universe.

 Our previous discussion shows that familiar axioms have similar content. The
 Power-set Axiom requires that the universe have "strong limit size". This can be
 expressed without set-theoretic vocabulary by:

 (VX)(3 Y) (V V(3 x ((VX)(Ux D Xx) D [Yu & ((Vx)(Ux _ Vx) D u = v)]),

 again with type-1 variables understood weakly. The Infinity Axiom says that the
 universe is uncountable, and can be expressed in weak monadic second-order logic
 without branching quantifiers and without set-theoretic vocabulary. The "regu-
 larity" of the universe can be expressed in full second-order logic (that is, LP0'0 ), so
 without use of set-theoretic vocabulary. It seems unlikely that it can be expressed
 with branching quantifiers in weak monadic logic.

 "1In [H1] I said that the modal gambit there sketched could dodge the conclusion that arithmetic
 presupposes the existence of infinitely many objects. I have since come to my senses; see [H3].
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 164 HAROLD T. HODES

 ?5. The iterative conception of sethood, and others. We now consider the Axiom
 of Regularity and its motivation: the so-called iterative conception of sethood.
 Express "v = o" as usual; let E(wo) be (3x)x = co; so d 1= E(wo) iff No <
 card(v4). Let "f is a descending e-chain" mean "f is a function with dom(f) < co
 and f (n + 1) E f (n) for each n + 1 E dom(f)". For any model A, extensor - for A,
 and a E rng(e), let a be well-founded for / iff there is no f: o -+ IsI such that, for
 each n < co, , # f (n + 1) E f (n). Let e be well-founded iff every a E rng(e) is well-
 founded for a.

 The Axiom of Regularity is not Als-valid; in fact, it is Als-truth-valueless: clearly
 every acceptable model has a well-founded ls-extensor, relative to which Regularity
 is true; the compactness of first-order logic permits us to construct a non-well-
 founded ls-extensor, relative to which it is false.

 Under the Alternative limitation-of-size semantics we can express the well-
 foundedness of membership in Lo' , taking advantage of that semantics' second-
 order nature.

 For any type-O variable v, express "v = { }" as usual. Let Ord(v) be the obvious
 formula saying

 (v is a transitive set well-ordered by e) & (v = { } v { } E v).

 As usual, for ordinals v and v' we write v < v' for v E v', etc. This is an adequate
 definition of being an ordinal; easily (Vv)(Ord(v) D m v < v) is Als-valid, since a well-
 ordering is irreflexive. The second conjunct is needed to insure comparability of any
 two ordinals, since (Vx)Set(x) is not valid; comparability follows by the argument
 in [L] for Theorem 3.12. Let FinOrd(v) be

 Ord(v) & - (3v')(v' < v & LimOrd(v')),

 where LimOrd(v') says "v' is a limit ordinal" in the obvious way.

 For a cardinal K let It* = SK< ,, K. (Recall that K+ = Sup { : (3x)(card(x) < K & X
 has a well-ordering of order-type 4)}.) Clearly, for any model v and ls-extensorE for
 a, {a e II: a, e Ord(a)} is well-ordered by {<a, b> E 1v1I: a, e - a E b} with
 order-type card(v4)*. In particular, all finite ordinals are "available" over any
 acceptable model. Let Wfd(x) be

 [m E(wo) D (3y)(Ord(y) & (Vz)((z is a descending e-chain
 & z({ }) = x) D dom(z) < y))]

 & [E(wo) D (Vz)((z is a descending e-chain & z({ }) = x)
 D FiinOrd(dom(z))].

 Assume this much Choice: that for any cardinal K, if K is infinite then K ? No (i.e.
 finite sets are Dedekind-finite).

 Fact 5.1. For any model -, Is-extensor E for a, and a E rng(e), A, e - Wfd(a)
 if a is well-founded for i.

 Proof. If card(v4) > No this should be clear. If card(v4) = No, left to right should
 be clear; going from right to left requires care, since any f in virtue of which a was
 not well-founded for E would not be represented in dom(e).
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 Let a finite sequence be a function whose domain is a finite ordinal. Let Z be a

 tree in a set X iff Z is a set of nonempty finite sequences of members of X, Z is

 closed under initial segments and, for any a, /3 E Z, 40) = /3(0). An infinite branch
 of Z is a function on co every proper initial segment of which belongs to Z. We

 associate each a E rng(e) with a tree Za by induction as follows. Put {<0, a>} into Za
 Suppose that a with length n + 1 has been put into Za; for each b such that

 A, k-- b E c(n) put a u {<n + 1, b>} into Za. Clearly a is well-founded for W iff Za
 has no infinite branch. If W is an ls-extensor for v then Za is finite-branching;

 by Kdnig's lemma either Za has an infinite branch or there is an n E co so that

 dom(a) < n for each a E Za. So if a is well-founded for f and card(sl) = No, then
 e, e = Wfd(a).

 Fact 5.2. For v and E as above, , - (Vx)(Set(x) D Wfd(x)) if / is well-founded.
 This follows from Fact 5.1.

 Suppose we accept the limitation-of-size comprehension and restriction prin-
 ciples. According to the Mathematical-Object theory, whether or not all sets are
 well-founded is a question with a yes or no answer. On the Alternative theory the

 issue has no mathematical content; correspondingly (Vx)(Set(x) Z Wfd(x)) is Als-
 truth-valueless. Indeed, from the viewpoint of a Mathematical-Object theorist who

 employs the limitation-of-size conception, adopting the more restrictive iterative
 conception of sethood may seem merely to be putting "blinders" on quantification
 in Lo,': replacing Set(v) by (Set(v) & Wfd(v)) in all sentences we accept. Doing this to
 Regularity yields a trivial validity:

 (Vx)((Wfd(x) & Set(x))
 z (x =$ { } z x has a -minimal member)).

 An analogy: set-theorists frequently restrict their attention to pure sets. This
 notion can also be expressed under the Alternative limitation-of-size semantics. Let
 Pure(x) be:

 m (]y)(y is a descending e-chain

 & y({ }) = x & (3z)- Set(y(z))).

 No one thinks that all sets are pure. Nonetheless set-theorists frequently restrict
 their attention to pure sets, in effect replacing Set(v) by (Set(v) & Pure(v)). Of course
 the Alternative theory does not tell us that some sets are impure: (Vx)(Set(x) D

 Pure(x)) is Al,-truth-valueless.
 This analogy seems to count against the iterative concept of sethood. As I under-

 stand it, a conception of sethood is at least a view about which level-one Fregean

 concepts have extensions, and which do not. (The previous discussion shows, I hope,
 that this statement involves no commitment to the Mathematical-Object theory.)
 Model-theoretically, a conception of sethood is represented by a class K of ex-
 tensors, which determines both the Mathematical-Object logics MOc and the
 Alternative logics Ac appropriate to that conception. The iterative conception is a
 strengthening of the limitation-of-size conception: it yields the limitation-of-size
 comprehension and restriction principles, but it takes the latter not to be funda-
 mental, but rather to be a consquence of a stronger restriction: that membership
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 166 HAROLD T. HODES

 be well-founded.'3 This conception is represented by i = the class of well-founded

 extensors. So the logics appropriate for the Alternative theorist who adopts the
 iterative conception are those of the form AC.

 Clearly all Als-valid sentences of Lo, A are also Ai-valid; similarly for equivalences.
 In this sense Ai is a strengthening of Als. The Axiom of Regularity is Ai-valid; so
 all the axioms of ZF are Ai-valid with respect to models of inaccessible cardinality.
 Since Als-Biv(L 0 A) c Ai-Biv(L 0 A), for any acceptable model v and p eAls-
 Biv(L?0 A) we have

 I= p iff S/p=i ; '=1 Ap iff A= i~p;

 so the Alternative i-semantics is at least as expressive as the Alternative ls-semantics.

 PROBLEM. For each (p E Als-Biv(L 0 A) is there a (p' E Sent(L 0 A) so that, for any
 acceptable model s,

 d 1= (p' iff v #=i p; v =A (p' iff v =Ai(p?

 If not, the Ai-semantics is more expressive than the Als-semantics. For the Alter-
 native theorist, this would show that there is really a good reason for adopting the
 iterative conception, that doing so is not merely a matter of wearing blinders that
 hide non-well-founded sets from our quantifiers.

 It has been claimed that, unlike ZF and its cousins, set theories that posit a uni-

 versal set are mere formalisms, that they cannot purport to express a body of set-
 theoretic truths because they are not backed up by any notion of sethood. This
 "cannot" strikes me as too harsh.

 For example, we may adopt what I shall call the Boolean limitation-of-size notion
 of sethood, based on these principles. Add to the limitation-of-size comprehension
 principle its coprinciple: any level-one concept under whose complement there does
 not fall an absolute infinity of objects has an extension; weaken the limitation-
 of-size restriction principle to: any set either has fewer than absolutely infinitely

 many members or has fewer than absolutely infinitely many nonmembers. This
 conception is reflected in the following Alternative logic.

 Let e be a Bls-extensor for a model - iff e is an extensor for - and

 dom(e) = {A c 1s1: either card(A) < card(-4)

 or card(I-1I - A) < card(_4)}.

 Let - I=B (p iff, for every Bls-extensore for e, =, (p; define =I B analogously. With
 AB the resulting logic, (3x)(Vy)y e x is AB-valid. Of course the Axiom of Separation
 is not AB-valid. (Here 'B' is for 'Boolean'.)

 '3My slight acquaintance with Cantor's writings left me with the impression that Cantor held the
 limitation-of-size conception, but not the stronger iterative conception. Wang seems to disagree, e.g.
 "One feels vaguely that the iterative concept corresponds pretty well to Cantor's 1895 'genetic' definition

 of set" [W, p. 188; see also p. 187]. Is there a textual basis for Wang's vague feeling? Wang also thinks that
 the iterative conception is "quite different" from "the dichotomy concept which regards each set as

 obtained by dividing the totality of all things into two categories" [W, p. 187]; of course I also disagree
 with this: each set is in a sense "so obtained" see note 10 above; conceptions of sethood differ as to
 which such divisions yield sets.
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 PROBLEM. Is there a notion of sethood, i.e. a reasonable constraint on extensors,
 whose alternative logic incorporates NF or any of its relatives? Does the A-calculus
 offer a conception of sethood in the above sense?

 Appendix 1. On abstraction-terms.

 Fact A1.1. For any (p E Sent(Lo? ), any total model v and any extensor W for a,
 either a1, e# F p or a, e/=1 Ap.

 The point here is that a term z of Lo,' is a term of Lo, with azr" = dl.
 Thus under the MO semantics, u is not expressible in Lo,'. Form L? '6 from L0 c

 by adding u as a new primitive.

 Fact A1.2. For any (p E Sent(LO ^) there is a (p' E Sent(Lo? u ) MO-equivalent (and
 so MOls-equivalent) to (p.

 Proof (by example). If P is a 1-place predicate-constant, then , - P(xip) iff

 -, E t (3y)(P(y) & Set(y) & (Vx)(x E y _ T(p))

 v (-i(3y)[Set(y) & (Vx)(y E x _ T(p)] & u);

 and similarly with 'A' replacing 1='. Details (an induction on the construction of
 sentences of L 0A) are left to the reader.

 Facts 2.2 and A1.2 show that under the MO-semantics L 0 A and Lo, u have the
 same expressive power.'4

 Fact A 1.3. For every sentence of L' A [Lo,!,'] there is an Als-equivalent sentence of
 L0?' [L0 A^]

 This is a trivial consequence of Facts 2.2 and A2.2.
 By Fact 2.2, x(x ? x) E x(x ? x) is Als-truth-valueless. But we do not need A to form

 such a sentence; consider (Vx)Set(x). This suggests the following conjecture: For
 every sentence of LO? there is an Al,-equivalent sentence of Lo,'; i.e. Lo,' has the
 expressive strength of L0 A. One might try to prove this by replacing all occurrences

 of 'V' by (Vx)Set (x) in a sentence of Lu ". But this will not preserve Al,-equivalence;
 keep in mind that v - and v == are not defined inductively; e.g. consider u ::u.
 Lacking a proof of this conjecture, I shall prove something weaker.

 Fact A1.4. For every (p E Sent(Lo-`) there are (p+, (p- E Sent(Loe') so that (p is
 positively Al,-equivalent to (p+ and m (p is positively Al,-equivalent to m p.

 Given (p, form (p- [(p+] by replacing all positive occurrences of u in (p by m I [I]
 and all negative occurrences by I [-m I]. For any model v and extensor for d:

 1) if l, e 1= then Ae, e 1= (p and A9, e 1p -;
 2) if -, e p then , e p~ and -,e (p-;
 3) if -, e Ip then -, E A (p- and A, e V (p+.
 All this follows by induction on the construction of (p. If v I= kp, clearly d 1= kp'.

 If 4 k p, fix an / so that , k p; then , k p+; so k (p. Similarly for - p
 and m (p-.

 "1If we had handled nondesignating terms with the falsehood convention, rather than with truth-value

 gaps, we could eliminate A within LOGe. If we preserved the truth-value gap approach but changed things
 so as to render T unexpressible (by weakening semantics for = or allowing non-extensionwise-total
 models), A would not be eliminible in LO?u e.
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 168 HAROLD T. HODES

 Appendix 2. Further encoding. Set theory may seem "richer" than higher-order
 logic in that set-formation is cumulative, and so extends into the transfinite, while
 the abstraction of Fregean unsaturated entities is not cumulative, and so does not.
 However, over models of regular cardinality, the encoding described in Fact 3.2 can
 be pushed into the transfinite.
 Given a set A with card(A) = K, let

 VA = A; VA:+ 1 = Power K(V<:) u V<:; VA =U VA',

 where 4 is any ordinal and A is any limit ordinal. Then K * is the least ordinal 4 so that
 VA = V: + 1. Let VA = VA.

 Since according to the Alternative theory Set and E are logical constants, and
 we shall want to consider models in the usual sense for set-theoretic vocabulary, it
 will be convenient to have available different nonlogical predicates: Set and e. Let
 L* = L0(Vcb u {I, e}). Given a model -/, assume without loss of generality that
 As/I and UO<4<K* VI'l are disjoint. Form the model s/* for Vcb u {e e} by
 taking 19/*1 = VkI-4, Seth* - V'l' - WIE, and en* = E 4 VI-41.

 Fact A2. There is a translation t: Sent(L*) -+ Sent(LOe') such that, for 4 E Sent(L*)
 and any model v/ of regular cardinality,

 -4 * k=- iff -- s1t (0); s2 * A iff -4 At(o).

 Proof. Given an ls-extensor e for I/, define l: V -+l -1I as follows: Ma) = a
 for a e 1s1, and T(x) = e({w(y): y e x}) for x e Vf' - 1 .Let a tree on a set U be a
 set of finite sequences of members of U closed under initial segments. For a tree T
 on U, a E T, and length(a) = n + 1, let label(a) = a(n); let a be a leaf of T iff a E T
 and a is not a proper initial segment of any element of T. We associate with x E Vf
 a tree TX in V ' representing x, as follows. Put {KO, x>} into TX; if a E TX and
 dom(o) = n + 1, for each y E a(n) put a u {Kn + 1, y>} into TX. So the label of a
 leaf of TX is { } or an "urelement", i.e. a member of I Iv . We would like to code x
 by a tree Z in slsI isomorphic to TX so that a leaf of TX and one of Z that are
 matched have the same label. But there is a problem when a E TX has label { }:
 since { } E V', we have assumed that { } 1. Letting TrCl(x) = the transitive
 closure of x, for c E IsI - TrCl(x) and Z any tree on Is/I, let KZ, c> code x iff
 there is an isomorphism 7t: TX -+ Z such that, for any leaf a of TX, if label(a) E 1S1
 then label(n(tc)) = label(o), and if label(a) = { } then label(n(tc)) = c. For any well-
 founded tree Z with card(Z) < card(S4) and any c e 1-/1, KZ,c> codes a unique
 x E Va'. Assume that card(Sl) is regular. Then for any x as above card(TrCl(x)) <
 card(Sl), and so there is a KZ, c> coding x with card(Z) < card(v4).

 Handling finite ordinals as in ?5, we may construct a formula Code(v, v') in Lo,'
 so that, for any a, c E I sl, s/, e = Code(a,c) if, for some code KZ,c>, a = (Z);
 and -/, =1 Code(a,c) otherwise. With Code(v, v') we construct formulae
 Equal(vo, v', v1, v 1) and Element(vo, v', v1, v1) so that for a, c, a', c' E 1sI1:

 #, I= Equal(a, c, a', c') if for some Z, Z' and x E Vf,
 a = e(Z), a' = T(Z'), KZ,c> and KZ',c'> code x;

 I, e A Equal(a, c, a', c') otherwise;
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 A, e 1= Element(a,c,a',c') if for some Z, Z', x, y E V-4,

 a = l(Z), and a' = -(Z'), KZ, c> codes x, KZ', c'> codes y, and x E y;

 s, e =d Element(a, c, a', c') otherwise.

 Use Equal to construct Element. To form t(4) from 4, introduce a new variable v'
 for each v in 4; replace prefixes (3v)(. .) by (3v)(3v')(Code(v, v') & .), and replace

 vo e v1 by Element(vo, vt,, v1, vl). Verify that this works by induction on the con-
 struction of 4.

 Appendix 3. Weak alternative logics. We now consider some Alternative seman-

 tics significantly less expressive than the Alternative limitation-of-size semantics.

 These semantics are stronger in a sense to be explained, and they yield logics

 stronger than Al, in that all of their validities (and thus their equivalences) are
 validities (equivalences) of Als, but not conversely. But, taking expressive power as
 the criterion for strength, I shall call them weak Alternative logics.

 For any model -/ we adopt these definitions:

 e is a weak K-extensor [K-extensor] for s/ iff e is an extensor for v/ with

 PowerIK(SI) c dom(e) [Power<K(SI) = dom(e)].

 e is a weak Is-extensor for v/ iff e is a weak card(-4)-extensor for d.
 Note. For any model -/, - has a weak ls-extensor iff - is acceptable.
 Let wls [K-wls] = the class of weak extensors [weak K-extensors]. We shall take

 i* [k=* ] to be #wls [kK-wls], and similarly for d * [ K]. Let v I* p iff v/ $A* p and

 The semantics for Aw1s reflects the limitation-of-size comprehension principle
 without a corresponding restriction principle. I=* and = * are strong notions of
 truth and falsity in that the following holds.

 Fact A3.1. For any model s/ and p E Sent(L0' A): if / l p then s/ 1= p; if

 *p =l* then /- p;butWifsIthen/lI*p.
 Similarly for k=* and #K etc. It is easy to find counterexamples for the converses.

 Let Aw1s be the weak Alternative ls-logic.
 Fact A3.2. Als-validity entails Awls-validity; similarly for implication, equivalence

 and bivalence; but Als-truth-valuelessness entails Awls-truth-valuelessness.
 Fact A3.3. If p is Als-valid and Awls-bivalent, then p is Awls-valid; similarly with

 relativization to K.

 Here are some examples to illustrate the relationship between Als and Awls.
 (3x)(Set(x) & (Vy)y 0 x) is Awls-valid.
 (Vx)Px is Awls-bivalent.
 (Vx)((Vy)y E x v Px) is Als-valid, not Awls-bivalent, and not Awls-truth-valueless.
 (Vx)(fx v (Vy)y E x) is Als-bivalent, not Awls-bivalent, neither Als-valid nor Als-

 anti-valid, and not Awls-truth-valueless.
 - (3x)(Vy)y E x is Als-valid and Awls-truth-valueless.
 (Vx)(Px _ (Vy)y E x) is Als-bivalent, Awls-truth-valueless, and neither Als-valid

 nor Als-anti-valid.
 (3x)(P(x) & Set(x)) is not Als-bivalent and not Awls-truth-valueless.
 (3x)(Vy)y E x _ (3x)(P(x) & Set(x)) is Awls-truth-valueless and neither Als-

 bivalent nor Als-truth-valueless.
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 170 HAROLD T. HODES

 Fact A3.4. For any infinite cardinals K < K' and any p E Sent(L0' A):
 (i) if p is AK-WlS-valid, then p is AK wls-valid; and
 (ii) if (p is AK WlS-bivalent, then p is AK-wls-bivalent.
 The point here is just that for any model A/, any weak K'-extensor for v/ is also a

 weak K-extensor.

 Al, and its strengthenings are much stronger than first-order logic (as is shown by
 Fact 3.2); what follows shows that Aw1s is essentially first-order. In brief, this is
 because a model only slightly constrains the domains for its weak extensors, whereas
 a model determines the domain of its extensors.

 Let SETHOOD be the sentence (Vx)(Vy)(y E x D Set(x)). Let EXT(x, y) be
 (Vz)(z E x z E y) D x = y, and let EXT be

 (Vx)(Vy)((Set(x) & Set(y)) D EXT(x, y)).

 For n E co let CAn E Sent(L?e) say "Given any n objects, there is a set whose
 members are precisely those objects." Let minimal set theory, hereafter MST, be the
 first-order theory in the vocabulary Set and E axiomatized by SETHOOD, EXT,

 and CAn for all n < co.
 Note. In calling MST 'first-order', we are treating Set and E as nonlogical

 predicates. The arguments that follow create the danger of confusion between this
 treatment and their treatment as logical predicates in Alternative logics. When such

 confusion threatens, Set and E remain logical predicates, but we let Set and E be
 nonlogical predicates as in Appendix 2. For p E Sent(L' e), form p from p by
 replacing all occurrences of Set and E by Set and E respectively; similarly for sets of
 sentences.

 Fact A3.5. For any p E Sent(L' e) the following are equivalent:

 (i) p is Awls-valid.
 (ii) For every infinite cardinal K, p is AK-WlS-valid.
 (iii) MST H- p (this in first-order logic).

 Furthermore, if we assume that, for every infinite cardinal K, K > No (i.e. that all
 Dedekind-finite sets are finite), these are equivalent to:

 (iv) p is A0o wls-valid.
 By Fact A3.4, (iv) = (ii), under our assumption about K. Trivially (ii) = (i) and

 (iv). It is easy to see that the axioms of MST are Awls-valid, giving (iii) = (ii). We
 must show that (i) = (iii).

 Suppose p E Sent(Loe') and p is not a theorem of MST. Thus MST u {m (} is
 consistent (in two-valued first-order logic). Fix a countable total model / for
 Vcb u {I4e} so that v I= MST + m p. Define e by setting

 e({b 1IsI: s b E a}) = a, for each a E Set'.

 Let d' be the reduct of v/ to Vcb. The axioms of MST insure that v is a weak No-
 extensor, and thus a weak ls-extensor, for d'. Furthermore d/', e mp; thus p is
 not Awls-valid.

 Notice that (i) = (iii) for p E Sent(Loe') is a completeness result. Clearly MST is a
 subtheory of ZF. Perhaps the axioms of MST are analytic to any notion of sethood,
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 i.e. one who did not accept MST was not employing the notion of a set. Thus my use

 of 'minimal'.'5

 Fact A3.6. For any p E Sent(L' e) the following are equivalent:

 (i) p is Awls-bivalent.
 (ii) For each infinite cardinal K, p is AK-wls-bivalent.
 (iii) There is a p' e Sent(L0) so that, for any acceptable model -d, / 1= p ifJ
 v 9= '.

 Furthermore, assuming that, for every infinite K, K ? No, these are equivalent to:
 (iv) p is AeO WIS-bivalent.
 By Fact A3.4, (iv) -- (ii). Trivially (ii) => (i) and (iv). Trivially (iii) => (ii). Assume

 (i), to get (iii). Fix new 1-place function-constants e and e', new 1-place predicate-

 constants Set and Set', and new 2-place predicate-constants E and e'. Form p(e)
 from p by replacing occurrences of Set(z) in p by (3v)(Set(v) & T = e(v)) for a vari-
 able v not free in T, and occurrences of a E - in p by (3v)(Set(v) & - = e(v) & a E v))

 for v not free in - or a. Let 0(e) say "e is a one-to-one function from m Set onto Set".

 Let T be the theory consisting of CAO, EXT and

 (Vx)(Vy)((x e y) D (Set(y) & - Set(x))),

 (Vx)((-i Set(x1) &... & m Set(xn)) D (3y)y = {x}

 for n ? 1. Form p(e'), 0(e') and T' similarly using the primed expressions. For any
 mode -/ and weak ls-extensors E and e', form a model X = de for

 Vcb u {Set, Set', e, e', e, e'}

 by taking 1X1 = 1-s1 u dom(e) u dom(e'), assuming without loss of generality that
 IslI and Power(s/) are disjoint, Set' = dom(e), eg = {<a,A>: a e A E dom(e)},
 e =e, and similarly for the primed vocabulary. Thus

 #4., T u T' u { 0(e), 0(e')}.

 Also if X I= T u T' u {0(e), 0(e')} and X is countable, then X = -e e for some A,,
 and a'; the countability of X is needed to be sure that E and e' are weak ls-extensors
 for d/. Clearly:

 A4, e I=- ( iff Vde, e ' I (p (e );

 A,1 le I=- ( iff V.,, e' - (p fe).

 For any total countable model X, if

 -# k T + 0(e) + (p(e) + T' + 0(e'),

 thenX= /ee; thus A/, e # (p; by bivalence A/, e' A p; thus V k= (p(gj). Thus
 T + 0(e) + (p(e) + T' + 0(e') entails bp(e') in two-valued first-order logic. By

 "5MST is not finitely axiomatizable. There are models di for i e o so that di # MST but Hudi
 l= MST, for an ultrafilter U on w. If a is a conjunction of finite axiomatization of MST, then by

 Log' theorem HUdi l= m a, a contradiction.
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 compactness there are finite conjunctions 0 and 0' of elements of T and T' respec-
 tively so that 0 & 0(e) & (p(e) entails (Q' & 0(e')) v (p(e') in first-order logic. By
 Craig's interpolation theorem there is a sentence A' e L0(Vcb), i.e. not containing
 the six new expressions, so that 0 & 0(e) & p(e) entails A', and A' entails (0' &
 0(e')) D (e'), again in first-order logic. Thus I/, e p if 5e' - p'; since p' is
 based on Vcb, 5 # p' iff -/ 1 p'; so p' is as desired.

 Fact A3.7. For any infinite cardinal K and any p E Sent(L',e):
 (i) If (p is AK WlS-valid then p is A" -valid, for ? K = the class of acceptable models

 of cardinality ? K.

 (ii) Assuming the Axiom of Choice, the converse of (i) holds.

 (i) follows by the argument for Fact A3.4. Suppose that p is not AK WlS-valid; fix

 a total K-acceptable model -/ and a weak K-extensor so that I/, e p p; then
 card(sl) ? K (since by Choice, for any K-acceptable [1, K < u). Form the model sl

 for Vcb u {Set,e,e} with aI = Is/Il u dom(e), Set' = rng(e), te = {Ka,A>: a E
 A E dom(e)}, and ee = a; without loss of generality we assume IS/I and dom(e)
 to be disjoint. So sie (p. Using Choice, we may form an elementary submodel of

 i of the form d' for e' a weak K-extensor for d' with card(V') = K; the sole

 novelty here is that we must throw in every subset of lsl'l of cardinality less than
 K. Then dij' 1 p; so d/', e' # p; so p is not A*-valid with respect to models of
 cardinality ? K.

 One other weak Alternative logic deserves mention. For a model v/ let e be a
 weak Boolean (wB-) extensor for v/ iff e is a weak ls-extensor for v/ with dom(e) a
 Boolean algebra under c and I/I E dom(e). Setting wB = the class of wB-extensors
 we obtain the logic AWB, which is also essentially first-order. The AwB-validities
 are axiomatized by SETHOOD + EXT + CAo + CA1 + (3x)(Vy)x E y + sentences
 asserting the existence of a union, intersection and relative complement of any two
 sets; this follows by slight changes in the argument for Fact A3.5. The resulting
 Boolean set theory (BST)'6 is a finitely axiomatized strengthening of MST. Clearly
 AWB is to AB as Aw1s is to Als. BST is not a subtheory of ZF, though it is a subtheory
 of NF:

 (Vu)(Set(u) D (3y)(Vz)(z E y (z E u & z 0 z)))

 is AwB-anti-valid.

 Appendix 4. Second-order and infinitary axiomatizations of Als. Some of the
 results in Appendix 3 have analogs for Als. We shall let K-ls be the class of K-
 extensors, and write V=- for =K-1S, etc.

 Fact A4.1. For any p E Sent(LoE'):
 (i) If p is AK-lS-valid for each acceptable K, then p is Als-valid.
 (ii) If p is AK lS-bivalent for each acceptable K, then p is Als-bivalent.
 (iii) Assuming Choice, the converses of (i) and (ii) also hold.
 Proof. (i) and (ii) are obvious. Suppose that K is acceptable, v/ is a K-acceptable

 model, s is a K-extensor for I/, and I/, e # p. Using Choice, K < card(vl). Form Vi

 16[Fo] informed me that Boolean set theory has been discussed under the name 'NF2'.
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 and, using Choice, take an elementary submodel of it of the form ', with card(/')
 = K, as was done above. Since all members of dom(e) are of cardinality less than K,

 so are all members of domee'; so e' is an ls-extensor for d' and d/', a' V p; so (P is
 not A,,-valid, yielding the converse of (i). A similar argument, using 5 for K-
 extensors e and e', delivers the converse of (ii).

 Let 2CA (that is, the Second-Order Comprehension Axiom) and 2LA (the

 Second-Order Limitation Axiom) be the following sentences, respectively:

 (VX)(3y)(Set(y) & (Vz)(z E y Xy));

 (Vy)(Set(y) D (3X)(Vz)(z e y Xy)).

 Let W2ST (= Weak-Monadic Second-Order Set Theory) be the axioms
 SETHOOD, EXTENSIONALITY, 2CA, and 2LA, taken under weak-monadic
 second-order logic.

 Fact A4.2. For any 9p E Sent(L' e): p is Al,-valid if W2ST entails p in the sense of
 weak-monadic second-order logic.

 For any acceptable model -/ and any ls-extensor for v/ we have A, # I W2ST,
 yielding the fact from left to right. Suppose that p is not a weak-monadic second-
 order consequence of W2ST. There is a total model -/ for Vcb u {Set, e},

 v 1 W2ST + m p. Let d' be the reduct of v/ to Vcb. Let ({b: v I= b E a}) = a
 for each a l Set'. 2CA and 2LA insure that E is an ls-extensor for d'; clearly
 A,4, E- p= . Thus p is not Als-valid.

 This "soundness and completeness" result is too second-order to be particularly

 satisfying; we shall now consider a similar result for an infinitary language. We

 consider first-order infinitary languages L L = L2, (Vcb u {Set, e}) formed from
 p-many type-0 variables, allowing '3'-prefexes that bind K variables for any K < j,

 and allowing conjunctions and disjunctions of length < [. Let entailments,. be
 entailment in the sense of the usual logic for Ly.

 For any K < [, let CAK be the sentence of LILIL saying "given K objects, there is a set
 whose members are precisely those objects". Express "There are at least K many
 objects" and "there are at least K many z so that z e y" in the obvious ways. Form

 STA by adding to the axioms of MST the following infinitary axioms for each K < I:
 a) There are at least K+ many objects D CAK.
 b) Some set has at least K many objects D there are at least K+ many objects.

 If It is a limit cardinal, then all axioms of STA are sentences of LILa. If It is singular,
 fix an increasing sequence <4 > 4 <Cf(.U) and let Limit.I be the axiom:

 (Vy) Set(y) :D V n(there are at least [,1-many z such that z E y)

 If It is singular, then Limit.I is also a sentence of LIL .L*
 Fact A4.3. For any singular limit cardinal It and any 9p E Sent(L' e), if p is Als-valid

 then ST/, + Limit.I entails/,,I/ (P
 Suppose that the consequent fails. Fix a total model a/ for Vcb u {Set, E } so that

 a? I= STA + Limit.L and sa V p. STI + Limit.I insure that card(S) < p. Define Eby

 e({be-Isl: sbea})= a, foraeSet';
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 the axioms of STy insure that dom(e) = Power<card(.4)(s1); so e is an Is-extensor

 for d/. Clearly A/, V Ap.
 We now assume the Axiom of Choice. For each p E Sent(L? c) let:

 the least K such that, for some acceptable
 model v/ of cardinality K, a? S I ,

 149) = if there is such a K;

 0 otherwise.

 The Skolem-number of L' G = sup{u(9): p E Sent(L' G)}.
 By Choice the Skolem-number for L' G exists; let j be it. Since Sent(LO G) has No-

 many members, j has cofinality No. We show that j is a limit cardinal, in fact a
 strong limit cardinal.

 Fact A4.4. For each 9p E Sent(LOG'), there is a p' E Sent(LO? ) so that jl((p') = 2-(P).
 Without loss of generality suppose that (p() > 0. Take p' to be "(3x) (x is a model

 such that x l= 9)", spelled out in terms of e, taking l= to represent the notion of truth

 for sentences of Lo,' defined in ?2. Clearly there is a model -/ so that I1= Ap'; fix one.
 Fix any extensor s for /; fix /, e I= "a is a model and a l= (p"; then there is a model V
 so that (X) = a; for any extensor e' for X, e' e Va'; let e = a-e'); so

 A,e # I "e is an extensor for a & a, e l= (p".

 Thus, in fact, X, a' k (. So X 1= (; so [49) < card(X) < card(a1). But then since
 card(v) is acceptable, 2u(') < 2card(V) < card(a?). So 9' is as required.

 Fact A4.5. For any 9 E Sent(LoG'), if STj + Limit.U entails,,, 9 then 9 is Al,-valid.
 Proof. Suppose 9 is not Al,-valid; then there is an MO,,-model <d1, a> so that

 #, V 9; so -/, - Im Tp; so we may suppose that card(s1) = y(n 9) < u. Clearly

 a?, 1= STA. Form the model V for Vcb u {Set, e} with 1X1 = IsI, Set' = rng(e),
 and e ={Ka,b>:s1d,e1= acEb}. So XI= ST,, +Limit. + m 9. Thus STI+
 Limit. does not entail.U. 9.

 Facts A4.3 and A4.5 give a "sound and complete" infinitary first-order

 characterization of Al,-validity. But the "soundness" result is quite peculiar: Limit.
 is not itself Al,-valid (true in every MO,,-model)!

 Is there an infinitary but first-order theory, perhaps using the Chang quantifier,

 complete with respect to Al,-validity, but with Al,-valid axioms? This would be nice,
 but seems unlikely.
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