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 HAROLD T. HODES

 WHERE DO THE NATURAL NUMBERS
 COME FROM?1

 In memory of Geoffrey Joseph

 This paper offers a model-theoretic development of the ideas presented
 in (Hodes 1984). In Section 1, Section 5 and Section 10.1 will discuss
 the philosophical motivation for this project. For more, see (Hodes
 1984) and (Hodes 1990). More information about some of the higher
 order logics that will be introduced below may be found in (Hodes
 1988a and 1988b).2

 1.

 Throughout his philosophical career, Frege maintained that numbers
 were objects.3 In part,4 this thesis reflects facts about the syntactic form
 of sentences containing arithmetical expressions, the sorts of sentences
 uttered by infants learning to count things, children learning sums and
 simple algebra, and mathematicians teaching or advancing their science.

 With respect to their syntactic roles in the formation of sentences,
 expressions like '2', '2 + 3', 'the number of moons of Jupiter' and 'the
 least prime greater than 10' closely resemble paradigmatic singular
 terms, expressions like 'is prime' and 'is greater than' are much like
 paradigmatic predicate-phrases, and expressions like 'some number'
 and 'all numbers' resemble first-order quantifier-phrases from the other
 corners of our language. Why fight our inclination for generalization?
 Let's classify expressions of the first sort as singular terms, those of the
 second sort as predicate-phrases, and those of the third sort as first
 order quantifier-phrases.5

 This classification of lexical items doesn't merely help us understand
 the formation of individual sentences; it supports a characterization of
 what Quine called "the interanimation of sentences", especially within
 chunks of discourse containing inferences. This characterization permits
 our reasoning "about" numbers to be adequately regimented within
 any complete formalization of first-order logic. Mathematical predicate
 phrases play a proof-theoretic role like that played by paradigmatic
 level-one predicates; mathematical quantifier-phrases behave proof
 theoretically like paradigmatic first-order quantifier-expressions. In

 Synthese 84: 347-407, 1990.
 ? 1990 Kluwer Academic Publishers. Printed in the Netherlands.
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 348  HAROLD T. HODES

 deed, this fit made use of the phrase 'our reasoning "about" numbers'
 virtually irresistible, though scare-quotes are needed to prevent this
 logico-syntactic point from collapsing to the semantic point about to be
 considered. The former point may be put into this slogan: mathematical
 discourse, as we know it, conforms to the Mathematical-Object Picture.
 Frege's doctrine draws its motivation from that picture but goes

 beyond the broadly syntactic facts just considered to make a claim
 about the semantics for arithmetic discourse. In the paradigm cases,
 the logico-syntactic status of singular-termhood goes with a particular
 sort of semantic role - that of designating what Frege called "objects"
 (and others sometimes call "individuals"). Similarly, paradigmatic pred
 icate-phrases play the semantic role of applying or failing to apply to
 objects. (Frege says that they stand for certain level-one functions. In
 (Furth 1968) the author argues, persuasively I think, that this is not to
 accord to them a role beyond the preceding.) And similarly, first-order
 quantifier phrases usually do the familiar job of "ranging over" objects.
 The full force of Frege's thesis is this: to specify logico-syntactic status
 is to specify semantic role. So arithmetic singular terms designate num
 bers; arithmetic predicates apply or fail to apply to numbers (or to
 tuples of numbers); arithmetic quantifier-phrases range over numbers.
 'Number theory is "about" numbers' may be a truism for everybody.
 But for Frege, it is a truism to be construed literally; scare-quotes on
 'about' may be dropped. Thus the Mathematical-Object Picture be
 comes the Mathematical-Object Theory: a semantic doctrine, a chapter
 in the theory of truth, one that takes mathematical discourse to carry
 thick ontological commitments to specifically mathematical objects.
 Frege, of course, didn't walk this primrose path alone. But he did

 develop it in a direction not favored by all who accepted the Mathema
 tical-Object theory. Frege did not draw distinctions of type between
 objects;6 in his formalism predication (or more generally, function
 application) was the only source of typing. Frege really invented the
 theory of types; but he only looked at levels zero, one, and two. Russell
 and Whitehead got the credit for the theory of types because they
 considered all finite levels. Of course their type-theory primarily typed
 proposition functions (rather than Fregean entities), and secondarily
 typed sets. Their primary type-structure, like the Fregean type-struc
 ture, was a matter of saturation versus varieties of unsaturation. Their
 secondary typing was distinctively anti-Fregean in spirit: it introduced
 distinctions of type between objects.7 Frege did not treat even very
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 NATURAL NUMBERS  349

 basic sortal concepts that figure importantly in logic, of which being a
 natural number was one, as logical categories in the sense in which type
 theoretic categories are logical. Sentences like '1 = Julius Caesar' or
 '1 is located on the surface of the Earth' may be peculiar; but for
 Frege this peculiarity is obvious falsity, not ill-formedness. Russell and
 Whitehead parted company with Frege on this point, as did Carnap,
 some devotees of ordinary language in the 1950s, and those linguists
 who emphasized selectional restrictions in generative syntax.

 The slide from the Mathematical-Object picture to the Mathematical
 Object theory is so natural that most would not even see it as a move.
 Firstly, truths "about" natural numbers entail that they exist. Secondly,
 the following principle may seem self-evident:

 After all, what we say metalinguistically by "a' has a reference' is just the object-language,
 '(3x)x = g'. . . (Wright 1983, p. 83)

 Misguided Meingongians have denied that in all cases this principle
 holds from left to right. I shall reject it in the other direction; the
 model-theoretic semantics to be presented in Section 5 show how the
 left side may fail while the right side holds.
 The above Supposedly Self-Evident Principle is an ingredient in

 Dummett's interpretation of Frege's context principle. Dummett writes:

 But what the context principle, interpreted as a thesis about reference, and applied to
 proper names, tells most immediately against is the conception that an expression can
 behave exactly like a singular term and yet be denied a reference. ... to say that an
 expression behaves exactly like a singular term is to say that it has just the connections
 with the use of predicates, general terms and quantifiers that will render the denial of a
 reference to it incoherent. [1981, p. 384]8

 I won't address the question of whether this was Frege's view. My claim
 is this: one who uses this view to defend the Mathematical-Object
 Theory is taking an overly narrow view of both the synthetic facts and
 the semantic possibilities concerning arithmetic discourse.
 On the syntactic side: in addition to the syntactic facts that encour

 aged us to classify certain numerical expressions as singular terms,
 further syntactic facts show them to be rather special singular terms.
 Unlike our paradigmatic singular terms, a word like 'four' leads a
 double life, appearing adjectively in quantifier-phrases, e.g. 'There are
 exactly four moons of Jupiter', as well as in contexts like 'The number
 of moons of Jupiter equals four'. The behavior of 'the number four'
 suggests that the adjectival use of 'four' is more basic than its use as a
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 350  HAROLD T. HODES

 singular term. 'There are exactly the number four moons of Jupiter' is
 ungrammatical; but it may be argued that in contexts like 'The number
 of moons of Jupiter equals four', 'four' abbreviates 'the number four'.9
 One might conclude that 'four' by itself is not a genuine singular term.
 All in all, both conclusions go too far.9a Indeed number-words make
 unusual adjectives: they don't enter into comparative or grading con
 structions; they form further adjectives (the ordinal-words), and only
 the latter transform into adverbs; they're mildly archaic as predicate
 adjectives, a use that requires plural subjects. (In 'She is four', 'years
 old' was deleted.)
 These slight syntactic peculiarities of numerical singular terms are at

 best clues to their semantic peculiarity, as well as to the semantic
 peculiarity of arithmetic predicates. Even if we conclude that such a
 term leads the syntactic life of a singular term as fully as do our favorite
 paradigms of singular-termhood, we are not forced to apply to them
 the Supposedly Self-Evident Principle going from right to left.
 For the reason sketched in my 1984 article, I want to resist the

 slide from the Mathematical-Object Picture to the Mathematical-Object
 Theory. Natural numbers are, loosely speaking, fictions created to
 encode cardinality-quantifiers, thereby clothing a certain higher-order
 logic in the attractive garments of lower-order logic. More precisely:
 arithmetic singular terms that appear to do the semantic job of designat
 ing numbers really do the different job of encoding cardinality-quantifi
 ers; quantifier-phrases that appear to quantify over numbers really
 encode higher-order quantification over cardinality-quantifiers; predi
 cate-phrases, whose logico-syntactic behavior make them of level one,
 really do the semantic work of expressions of higher levels.
 Assimilation of quantification to singular predication, e.g. of the

 logical form of 'Socrates was bald' to that of 'Some Greek was bald',
 was a major barrier to an adequate understanding of logical syntax. By
 clarifying the difference between singular terms and quantifier-phrases,
 thus subdividing a category that was previously thought homogeneous,
 Frege took a giant step for logic. I'm proposing a somewhat analogous
 step: that within the category of singular terms we further distinguish
 between designators and encoders of, for example, quantifiers.

 In this paper, I'll present a model-theoretic "picture" of the Mathe
 matical-Object Theory, and one of my Alternative Theory. This exer
 cise is intended to help us grasp what these theories amount to, and
 the reasons favoring the latter.
 To give a model-theoretic semantics is to specify a class of uninterpre

This content downloaded from 
������������132.174.252.179 on Thu, 23 Mar 2023 00:32:00 UTC������������ 

All use subject to https://about.jstor.org/terms



 NATURAL NUMBERS  351

 ted languages, a class of models for appropriate such languages, and a
 definition of truth and falsity (or, more generally, of satisfaction and
 frustration) "in" (i.e., relative to) models in that class for sentences
 (or, more generally, formulae) of the appropriate languages. A model
 theoretic semantics permits set-theoretic definitions of logical relations,
 like entailment and equivalence, and logical properties, like validity,
 definitions that apply primarily to sentences of uninterpreted languages.

 Why think that such definitions explicate prior logical notions? When
 will the entailments, equivalences, etc., so defined on uninterpreted
 languages parse (i.e., reflect under appropriate parsing) the entail

 ments, equivalences, etc., implicit in the practice that animates dis
 course in the sense-bearing languages being modeled? This will happen
 insofar as (1) the models in question can model (in the engineering
 sense) the basic referential relations between the world (including both
 what there is and how it is) and languages - "real live" sense-bearing
 (sometimes called interpreted) languages. It will also happen insofar as
 (2) the relations of truth and falsity in-a-model model (again in the
 engineering sense) "real live" truth and falsity for statements in such
 languages. Thus much of the philosophical value of a definition of truth
 in-a model lies in the way it could guide us in constructing a definition,
 or perhaps a theory, of real live truth for interpreted languages, or at
 least for fragments thereof.

 2.

 The semantics that will interest us most, to be presented in Section 5,
 will be three-valued. This suggests that we work with a three-valued
 semantics from the beginning. But doing so would require attention to
 some side-issues peculiar to three-valued semantics, distracting from
 the main themes of this paper. Therefore discussion of a thoroughly
 three-valued approach is relegated to Appendix 2. By Section 4 we'll
 have to deal with non-designating terms; so we'll allow them from the
 start, handling them under the Falsehood Convention as in (B?rge
 1980).

 Let our basic logical lexicon consist of the expressions '1', 'D', '3',
 '='. Fix disjoint countable sets of variables of types 0, 1 and (0, 0). (As
 usual, as a type-symbol T abbreviates '(0)', '2' abbreviates '((0)', etc.)
 Let S be a set of predicate-constants and function-constants, each as
 sociated with a member of co giving its number of places.10 (As usual,
 0-place function-constants will be called "individual constants".) S de
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 352  HAROLD T. HODES

 termines the language L( \S); usually we'll omit mention of S. The
 class of type-0 terms based on S is defined by the usual induction:

 all type-0 variables and all 0-place members of S are type-0
 terms;
 for any type-0 terms t0, . . . , rn and any n + 1-place func
 tion-constant ? E S, ?(t0, . . . , rn) is a type-0 term.

 We define Fml(L(00)), the set of formulae of L(00), by the usual induc
 tion; perhaps these clauses deserve mention:

 '_!_' is a formula;

 if r and a are terms of type 0, a is a variable of type 1 and
 y is a variable of type (0, 0) then r = a, a(r) and y(r, a)
 are formulae;
 if cp is a formula and v is a variable of type 0, 1, or (0, 0)
 then (3v)(p is a formula.

 Sometimes parentheses will be dropped to decrease clutter. Let
 Sent(L(00)) be the set of sentences, i.e. formulae containing no occur
 rences of free variables, of L(0,0). Introduce '~i', '&', ' v ', ' = ' and
 'V by the usual abbreviations. For a formula <p, a type-0 variable v
 and type-0 term r, <p(rlv) is the result of substituting r for all occurrences
 of v free in cp; when a formula is indicated as <p(v, . . .), instead of
 (p(r/v) we'll write cp(r, . . .). Similarly for variables and corresponding
 constants of other types.
 A model si for 5 consists of a set \s?\ and a partial function on S

 such that:

 for a 0-place predicate-constant ?, ?^ G {0,1};
 for an n + 1-place predicate-constant ?, ?"**: |^|"+1 ?> {0,1};
 for an individual-constant r, either t*5^ f or r^ E.\s?\;
 for ann + 1-place function-constant ?, ?^ is a function from
 a subset of |^|"+1 into \s4\.

 s? is total iff

 for each individual-constant r, r^ i ;
 for each n + 1-place function constant ?, dom(?^) = |^|"+1.

 We'll frequently identify a subset of \s?\ with its characteristic function.
 Enrich L(00) to LS,0) by introducing an individual-constant a for each
 aE\s?\, a 1-place predicate-constant A for each A C |*s#|, and a 2-place
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 predicate-constant B for each B ? \sd\2. We define a partial function
 des^ on closed type-0 terms of LS,0) as usual:

 des^(r)-T^;
 desvia) = a for a <E\s4\;
 des^(r0,. . . , t?)) - ^^(des^(ro),. . . ,des^(T?)),

 for any individual-constant r from S, any n + 1-place function-constant
 ? from S, and any terms r0, . . . , rn?? based on S. We'll frequently
 write des^(r) as r^. Of course if for some i^n rf], then
 ?(r0, . . . , rn)M t - We define j?\= <p for cp G Sent(LS,0)) as usual, with
 these clauses deserving mention:

 ^'_]_';
 ^h r = o-iff t^-o-";
 ^ H ?(To, . . , rn) iff for all j ^ n rf i and
 C^i^o, . . . , r^) = 1, for ? an n + 1-place predicate con
 stant;
 s?\= (3a)cp iff for some B C \s4\ s?\= <p(B/a) for a variable
 a of type 1;
 st\= (3y)cp iff for some B C \s?\2 s?^ <p(Bly), for a variable
 y of type (0,0).

 Notice: we are counting an equation as true when both terms flanking
 ' = ' are "non-designating"; we count an atomic predication as false

 when at least one term following the predicate-constant is "non-designa
 ting" (the Falsehood Convention). Let E(t) abbreviate (3v)v=r,

 where v is any type-0 variable not free in t. If r is closed, s?\= E(r)
 iff tm i ; so '?" parses 'exists' in its "predicative" use. We are interested
 in sentences of L(0,0); the detour through LS,0) was used to simplify
 our definitions, i.e., to avoid defining truth-in-^in terms of satisfaction
 in-sd.

 We could enrich L(0,0) with the definite-description operator 'r', and
 the clause:

 des^((i^)<p) ? the unique a G \s?\ so that s?\= <p{alv).

 But use of T can be avoided by the usual Russellian transformation,
 always giving '/' "smallest scope".

 Form L1 from L(00) by eliminating variables of type (0,0). Form L?
 from L1 by eliminating variables of type 1. In what follows, 'x' may be
 replaced by '0', '1' or '(0,0)'. For any possible sense-bearing language
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 354  HAROLD T. HODES

 ?E modeled by the uninterpreted language Lx, a model si for S can
 model =2"s alethic underpinnings, in which case si\= , i.e., bearing the
 converse of |= to si, models truth for statements in i?.

 3.

 We now consider some third- and fifth-order enrichments of Lx. For

 'jc' replaced by T or '(0, 0)' enrich Lx to LxA by introducing countably
 infinite sets of variables of type 2 and of type 4, and adding these to
 the formation-rules of Lx, for / G {0,1}:

 if ix is a variable of type 2/ + 2, p a variable of type 2i, and
 <p a formula, then {?xp)tp is a formula;
 if /x is a variable of type 2 or type 4 and ^ is a formula then
 (3/x)(,p is a formula.

 In (fJip)(p, the prefix (?ip) binds all occurrences of p free in <?, but the
 indicated occurrence of ?x is free in the {ixv)?.
 Let i be a model for S. Suppose 3)2 Q Power2(|^|) and

 % C Power2(S2). Form L^;^'4^ as in Section 2, with the addition of
 a type-2 [type-4] constant ? for each Q G 2)2 [Q G %]. For <p G Sent
 (?S,'i>2'i4) we define si, 3)2, 3)4 f= 9 by taking type-2 [type-4] variables
 to range over 2)2 [?4] and adding this clause:

 si, ?2, ?4 H (?^)<P if Ap*'3?&< G ?.
 Here we have:

 . sa,a>2,a>4 = {ae\si\:si, 3)2, % \= <p(alv)} if v is type 0;
 9 {? G 2>2: j?, 3)2, % (= ^( ?/*>)} if v is type 2.

 For nG co, let:

 2?(rt) - {A Q \si\: card(^) - n};
 2EXACTLY = {2Q(n): n < co};
 4Q(n) = {AC 2EXACTLY: card(,4) = n};
 4EXACTLY = {4?(rc): n < co}.

 (Here members of co are used merely as indexes; we could do without
 them.) We'll be most concerned with the case in which 3)2i =
 ^EXACTLY, for / G {1, 2}. In that situation, we won't mention 3)2 and
 3)4. To indicate we're in this case, we'll write (/?p)<p as (exactly ixp)?
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 and 2Q(n) and 4Q(n) as n, and call LxA "La,4(exactly)'\ as in (Hodes
 1988a and 1988b).
 Where p, and p/ are variables of type 2, we adopt the following

 abbreviation:

 p,^ p/: (3a)(3a')((EXACTLY \xa)av & (exactly p'v)a'v
 & (Vi/)(aiO a'!>));

 here a and a' are any distinct variables of type 1, and i> is of type 0.
 Thus for any n, m < co, if n, m ^ card(^f):

 si (= 2Q(n) ^ 2?(m) iff n ^ m.

 Let p, < p/ be p, ^ p/ & ?ip/ ^ p/, let p, = p/ be p, ^ p! & p/ ^ p,.
 Notice that the range of the type-2 variables of Lx,4(exactly) is

 disjoint from the range of the type-4 variables. Nonetheless, we can
 express "cross-type identity", as follows. For variables p and p of types
 4 and 2 respectively, adopt this abbreviation:

 p= p, : (exactly puv)v< p,

 where v is any variable of type 2 distinct from p.11 So for any si and
 n, m as above: si \= 2Q(n) = 4Q(m) iff n = m. Let p, = p be p = p.. With
 our "cross-type equality" we can define p^ p' where the types of p
 and p,' are 2 or 4 and at least one is of type 4.

 Because cross-type equality can be expressed, we gain no further
 expressive power by adding variables of type 6 to form Z/,6(exactly).
 A sentence <p of such a language is equivalent to a sentence of
 Lx'6(exactly) formed as follows: for each type-6 variable p in <p intro
 duce a distinct new variable p' of type 4; replace each subformula of
 the form (exactly p,p)d by

 (exactly pu'v)(Bv)(v = p & 0),

 where v is a new type-2 variable, and replace all other occurrences of
 p, in (p by p/. This is a special case of the more general Collapsing
 Theorem of (Hodes 1988a).

 Our definition of p, ^ p' involved variables of type 1 in an essential
 way; see Observation 3.5 of (Hodes 1988a). So if we were to form L0A
 merely by enriching L? with variables of types 2 and 4, subject to the
 formation and semantic rules used with L1,4 and L(0,0)4, we could not
 then define '^'. Since we will want it, we form L0,4 by also adding '^'
 as a primitive logical constant, subject to these formation and semantic
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 356  HAROLD T. HODES

 rules, for / G {1, 2} and n,mG co:

 for variables p,, p/ of type 2/, p, ^ p/ is a formula;
 d^Qjn)^ 2iQ(m) iff n ^ m.

 Again, when 3)2i is taken to be 2/EXACTLY for /G{1,2}, we write
 (pip)<p as (exactly pip)(p, call L0A "L0,4(exactly)", etc. Warning: this
 is not how 'L?'4(exactly)' is used in my (1988a and 1988b).
 We'll be most interested in infinite models. For

 AUW? Sent(L*'4(EXACTLY)), let A oo-entail <p iff:

 for any infinite model si, if si [= k then si \= cp.

 We define oo-validity, oo-equi valence and other -logical notations as
 usual, with the above restriction to infinite models.
 We adopt these abbreviations:

 (exactly Qp)(p : ?\(3v)<p;
 (exactly n + lv)(p : (3p)((p(p/v) & (exactly nv)(ip &

 where p is any variable distinct from v, and both are either of type 0
 or type 2. So (exactly nv)cp and (exactly nv)(p are equivalent. The
 syntactic distinction between such a pair of sentences is not meant to
 model any real difference between sense-bearing statements. The for
 mer notation, e.g., (exactly n + lv)cp, shows how a quantifier can be
 carved out of (3p)((p(p/v) & (exactly nv)((p & v?^ p)). Rewriting the
 prefix as (exactly n + lv) makes it plain that this quantifier is itself
 in the range of quantifiers of higher type. Within, for example,
 (exactly \v)(p, '1' is not a term of type 0; it doesn't represent a singular
 term, not even one occurring syncategoromatically. It indicates that the
 entire prefix (exactly \v), which abbreviates (exactly 2'?(l)), stands
 for the quantifier also represented by (exactly lv) namely 2'?(l). The
 thesis "Numbers are quantifiers", urged in (Grossman 1973), is not
 false; it's incoherent on grounds of logical syntax alone.
 By Observation 2.2 of my (1988a), assuming a little Choice (all we

 need is that all Dedekind-finite sets are finite, which we assume from
 now on), L(00)'4(exactly) and L(00) are expressively equivalent; i.e.,
 every sentence of the former can be translated into an equivalent
 sentence of the latter. So the entire discussion in this section (as well
 as that in Section 5) concerns fragments of L(0,0).
 For 'x' replaceable by '0', T or '(0,0)', form Z/'2(exactly) from
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 Z/,4(exactly) by eliminating use of variables of type 4. By theorem
 3.1 of my (1988a), L?'2(exactly) is expressively weaker than
 L0,4(exactly). Problem: is L1,2(exactly) expressively weaker than
 L1,4(exactly)? See Conjecture C of the same article.

 For variables po, p,i5 p,2 of type-2, let Add(p,0, P\, p>2) abbreviate:

 (Va)(Va')([(EXACTLY p^v)av & (exactly pxv)a'v &
 ?i (3v){av & a'v)]D (exactly p^y){av v a 'v))\

 here a and a ' are any distinct variables of type 1. Thus for any infinite
 model si and n,m,p < co:

 (*) si\= Add(n,m,p) iff n + m = p.

 So if po, pa and pa are distinct, this formula defines addition of finite
 cardinalities. If po, p>i, Pa are of type 2 or 4, and at least one is of type
 4, then Add(p<>, p,l5 p,2) can be defined using "cross-type equality" to
 the same effect.

 This definition of addition may be plausibly called "analytic" in that
 it provides an analysis of our understanding of addition. In the following
 argument-form the premises may be shown to entail the conclusion by
 very simple and obvious moves (V-elimination, ??-introduction, then
 modus ponens):

 Add(po, p,!, m2)
 (EXACTLY pLoV)(p
 (EXACTLY pL\V)<p
 -i(3v)(cp&<p)

 (exactly p^v^tpv <p)

 The proof-theoretic simplicity of such an argument is, perhaps, part of
 the content of the claim that this definition of addition is analytical.
 The restriction to infinite models was needed in (*); if

 card(^) < n + m then for any p < co we have si \= Add(n, m, p). This
 feature of our definition would be avoided if to Add(. . .) we conjoined:

 (3a)(3a')((EXACTLY p?v)av & (exactly pbiv)a'v &
 ?\(3v)(av & ol'v)).

 Doing so would not seriously decrease the simplicity of the above
 inference-form.

 For variables p<>, p>i,Pa of type 2, let Mult(p,0, Pa, p>2) abbreviate:
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 (Va)(V'y)([(EXACTLY puiV)OLV &
 (V^)(ajO (exactly pb0p)yvp) &
 (Vv)(Vvf)([ap&av']) D -i(3p)[yv7T & yv'p])}
 D (exactly pL2p)(3v)[av & yvp\),

 where a is of type 1, y is of type (0, 0), and v, v' and p are distinct
 variables of type 0. Again, if po, p<i and p,2 are distinct, Mult(p,0, p^, p<2)
 defines multiplication of finite cardinalities. In spite of its complexity,
 this definition of multiplication has a claim to being counted as analyti
 cal. In my (1988b) it is shown that multiplication is not definable in
 L14(exactly); so the use of a type-(0, 0) variable above was unavoid
 able.

 A variation of the preceding semantics deserves mention. Let:

 2Q~ = {A?\si\:A is infinite};
 2EXACTLYoc = 2EXACTLY U {2?4;
 4Q(n)~ = {A? 2EXACTLY : card(A) = n} for n < co;
 4Q~ = {AQ EXACTLY?: A is infinite};

 EXACTLY. = {4Q(n)x: n<oo}U {4?4
 When we take 3)2i to be 2zEXACTLYoc for / G {1, 2}, we'll omit mention
 of 3)2i, write (p^p)(f as (exactly30 mp)<p, and call LxA
 "//^(exactly00)". All abbreviations carry over from Z/,4(exactly).
 These semantics are, in the following sense, equivalent.

 Observation 1: there are transitions sx and s,

 sx: Sent(Z/'4(EXACTLY)) -* SentiZ/^EXACTLY00)),
 s: Sent?L^^?EXACTLY00)) -> Sent(L*'4(EXACTLY)),

 so that for any infinite model si, <p G Sent(LxA(exactly)),
 i//GSent(LxA(EXACTLYx)):

 si^ cp iff si\= sx((p); si^ ij; iff si^ s(ifj).

 For convenient notation, we'll apply sx and s to formulae. Let sx be
 homomorphic, except that for p, a variable of type 2 or 4: sx((3p)6) is
 (3p,)(?i(exactlyoc p,v) ~i _L & sx(6)), for v any variable of type 2 or 0.
 To define s, we use '<?' as a constant of types 2 and 4. Define sf on
 Fml(Lx,4(EXACTLYac)) to replace 'exactly00' by 'exactly' and to re
 place (3pu)6, where p, is of type-2 or type-4, by (3p,)0 v 6(^1 p). Form
 s(<p) from s'(?>) by replacing each subformula of the form (exactly oo
 v)d by -i(3p)(exactly piv)d, thereby eliminating all uses of 'o?\ It's
 easy to see that these translations are as claimed.

 Ordinal uses of natural numbers can also be expressed in these
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 languages. We could have introduced the logical constant 'th' with the
 following formation and designation rules:

 if ? is a formula and v and p are distinct variables of type
 2/ and p is a variable of type 2i + 2, for / G {0,1}, then (pth
 vp)cp is a term of type-2/;
 des^((pth vp)cp) ? the nth element in {(a, b) : si\=
 <p(a, blv, p)}, provided that set has a unique linearly ordered
 inition segment of length n.

 In fact, such an enrichment can be definitional: use of 'th' can be
 eliminated in favor of the definite description operator 'i', which then
 in turn can be eliminated.

 4.

 For 'jc' replaceable as before, we'll now enrich Lx to a language whose
 syntax approximates mathematical practice more closely than did the
 syntax of the languages presented in Section 3. These languages model
 arithmetic discourse "within" the Mathematical-Object picture.

 Given a model si, members of \si\ represent objects, and members
 of ^EXACTLY (and 2'EXACTLYoc) represent, in Fregean terms, con
 cepts of level 2i, for i G {1,2}. Taking / = 1, Frege wrote:

 These second level concepts form a series and there is a rule in accordance with which,
 if one of these concepts is given, we can specify the next.

 Similarly for the corresponding concepts of level four, which Frege
 doesn't explicitly consider. He continues:

 But still we do not have the numbers of arithmetic; we do not have objects, but concepts.
 How can we get from these concepts to the numbers of arithmetic in a way that cannot
 be faulted? Or are there simply no numbers in arithmetic? Could the numerals help to
 form signs for these second-level concepts, and yet not be signs in their own right? (Frege
 1979), p. 256-7.

 Frege's point can be clarified by looking at our notation. In
 (exactly \v), for v a variable of type 0, we have a numeral helping
 to form a sign for a second-level concept. More generally, our definition
 ?f (exactly n + Iv) exhibits the rule "in accordance with which, if one
 of these concepts is given, we can specify the next". In claiming that
 numbers are objects, Frege answered his last two questions negatively.
 Rather, he thought that for each such concept there is, or at least we
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 should make sure that there is,12 a corresponding object, a natural
 number (i.e., a finite cardinal) that represents that concept. He believed
 in what in my (1984) I called "the standard representor", assigning
 each concept represented by the phrase 'there are exactly ri to the
 number n. His question "How can we get from these concepts to the
 numbers of arithmetic in a way that cannot be faulted?" may be read
 as a call for a more informative specification of the standard repre
 sentor. On the other hand, the Alternative theory, reflected in the
 semantics to be presented in Section 5, rejects the existence, and even
 the need for, a standard representor.
 For V replaceable as above, we enrich Lx to L*'* by adding to the

 logical lexicon the expressions '#', W' and '^', governed by formation
 rules that treat W' as a 1-place predicate-constant and '^' as a 2-place
 predicate-constant of type (0, 0); furthermore:

 if cp is a formula of L*'# and v is a variable of type 0 then
 (# v)? is a term of type 0.

 (Of course the terms and formulae of Lx* are defined by a simul
 taneous induction.)
 Let ^ be a representor for a model si iff ^ is a one-one function from

 2EXACTLY into \si\. si has a representor iff \si\ is infinite; we'll restrict
 our attention to such models. Let a Frege-model have the form (si, v)
 where ^ is a representor for si.13 We now consider a semantics that
 models the Mathematical-Object theory of arithmetic discourse, in its
 Fregean version.

 Expand Z/,# to LXJ* as usual. We define des*5^ and A, v \= by relativ
 izing the usual clauses to v and adding these:

 des^'((# v)?) - r(Q), if vqj**" G Q for ? G 2EXACTLY;

 si, * | N(t) iff des^'(r)G Rng(*);
 si, v \= r ^ a iff for some n,m< co, des^^r) = ^(2?(^)),
 des^(o-) = v(2Q(m)), and n^m.

 Notice that even if si is total there are type-0 terms of Lv,# that don't
 designate relative to si, e.g. '(#*) ~i -L\

 In (si, r), r represents the Mathematical-Object theorist's purported
 "standard representor". Thus members of Rng(^) represent the natural
 numbers, W' parses 'is a natural number', and '^' parses 'is less than
 or equal to' (standing for the ordering of the natural numbers induced
 by the "rule" that generates Frege's sequence of cardinality-quantifi
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 ers). The relation between phrases like 'there are exactly four' and 'the
 number four' is modeled in (si, v) by that between 2?(4) and v(2Q(4)).
 The distinctively Fregean aspect of a Frege-model is that numbers are,
 along with all other objects, in the range of variables of type 0. W'
 represents an ordinary predicate: relative to (si, r) it definitely applies,
 or fails to apply, to any a G \si\. Similarly, the semantic-role of '^'
 consists in its applying or not applying to pairs of objects.
 With a variation on this model-theoretic semantics, we can avoid

 introducing non-designating terms, provided of course that si is total.
 Let / be a representor00 for si iff r is a one-one function from
 ^XACTLY^ into \si\. Let a Frege^-model be have the form (si, ^) for
 w a repr?senter00 for si. We extend our previous semantics with this
 further clause:

 des^((#^)9) = *(2Q~)iff V" is infinite.

 This reconstructs a pre-Cantorian version of the Mathematical Object
 Theory, according to which infinity is a single object, which we may
 even call a number, and which is the cardinality of all infinite collec
 tions.14 Thus in the Frege^-model (si, v), ^(2Qoc) represents this infinity.
 The rest of the definition of truth in such models runs as usual.

 We may introduce numerals by following Frege's original defini
 tions:

 '0' abbreviates (#i>)?;
 n + 1 abbreviates (#v)v^n;
 '??' abbreviates (#^) ~i _L,

 where v is any type-0 variable. We may define successor by letting s(r)
 abbreviate (#p)(p^ r v ~iN(r)), where r is any term and p any vari
 able of type-0. Note that if v is a representor [representor00] for si and
 a ? Rng(^), des^ "(s_(a)) | [de^'(s(a)) = K2Q*)].
 Where A U {<?} C Sent(?/#), let A Frege-entail [Frege^-entail] <p iff:

 for every Frege-model [Frege^-model] (si,w), if si, ^|=A
 then si, v |= cp.

 Define Frege-validity [Frege^-validity] and other logical notions as
 usual. For each nG co,

 E(n) is Frege-valid and Frege^-valid;
 ?\E(??) is Frege-valid;
 E(??) is Frege^-valid.
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 We may now make precise the sense in which Lx# under the
 first [second] of the above semantics encodes L*,4(exactly)
 [//^(EXACTLY00)].
 Observation 2: there is a translation t0 [to],

 t0: Sent(Z/'4(EXACTLY)) -> Sent(Z/'#)
 [to : Sent?L'^?EXACTLYl) -* Sent(L*'*)]

 so that for any Frege-model (si, v) and <p G Sent(L*,4(EXACTLY)) [any
 Frege'-model (si,v) and ^G Sent(Z/'4(EXACTLYoc))]:

 ^ <? iff ??. ^ to(cp) [to(<p)l
 To form t0((p), to each variable p, of type-2 or type-4 in cp associate a
 distinct new type-0 variable p! not occurring in <p; replace subformulae
 of cp of the form (exactly ixv)6 by p! = (^v)d(p'lp)); replace subfor
 mulae of the form (3p,)i^by (3p/)(?V(p/) & i//(p//p,)); replace any terms
 of the form (#p<)0 for pu of type 2 that we may have created by (#p/)0;
 thus we eliminate all variables of types 2 and 4. The result is both t0(<p)
 and to((p).

 There are no translations in the opposite direction. For example, if
 r is an individual-constant, there is no cp G Sent(L(0 0),4(exactly)) so
 that for any Frege-model (si, v):

 Si f= <p iff Si, V p T = ?.

 Similarly for L(0,0)^(exactly") and Frege^-models.
 Notice that for any term r of L? of type 0 and any nG co, both ? =

 r and ??"T are not Frege-valid [nor Frege^-valid], though they are
 well-formed and, of course, bivalent. Is this in keeping with the spirit
 of Frege's writings? Although he wanted '1 # Julius Caesar' to come
 out true within his reconstruction of arithmetic, his permutation argu
 ment in Section 10 of The Basic Laws in effect (applied to numbers
 rather than to sets) showed that it was not a logical truth, at least as
 he had originally conceived of logic, and would have to be added as a
 separate stipulation.15 Suffice to say: the model-theoretic reconstruction
 of arithmetic just presented shows why such identities should be sources
 of discomfort for Frege: his refusal to make type distinctions between
 objects makes such sentences well-formed; but they are not encodings
 of sentences of L(0,0),4(exactly). If our sole grasp of numbers is as
 encodings of finite-cardinality quantifiers (as claimed in my 1984a arti
 cle, p. 136), then we have no justification for regarding '1 = Julius
 Caesar' as true or as false.
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 Observation 3. There is a translation sx,

 sx: Sent(L*'*) -* Sent(Z/#),

 so that for any Frege^-model (si, w) and any ? G Sent(?/,#):

 si, r \ 2EXACTLY f <p iff si, r f sx(<p).

 For any term r of Lx#, let DT be the disjunction of all formula of the
 form a = for all #-terms a that are subterms of t. So
 des"" r 2EXACTLY(T) j iff M, vf 3T v -i?(t). Given cp G Sent(Z/#),
 form sx(<p) by replacing all subformulae of ? of the form r = a by:

 [(DT v -iE(t)) & (D,, v -iE(a))] v [-iDT
 & -iD^ & r = cr],

 and replacing all subformulae of the form ?(t0, . . . , tw_i) by:

 ?(to, . . . , t?_x) ? -iDT0 ? & ^DTn_x,

 where ? is either a predicate-constant, W', ' ^ ', or a variable of type
 lor (0,0).

 If 5 is non-empty then sx cannot be reversed: there is a
 ?>G Sent(L0,#) and a Frege^-model (si,v) so that for any
 ? G Sent(L(0'0)#) we do not have:

 si, * f cp iff si, * \ 2EXACTLY f i/j.

 For example, for a one-place predicate-constant ? G S, take ? to be
 ?( ). Fix si, a0 and ax so that si\= ?(a0) and sd\h ?(?h); let ^ be a
 representor for ^ with a0, ?i ? Rng(^); let ^ = ^ U {(2?oc, fl?)} for / G 2.
 If there is a i)j as above,

 contrary to the construction.

 5.

 The remarks of Section 1 may now be made more precise. To adopt
 the Mathematical-Object Picure of "the numbers of arithmetic" is to
 speak, think and reason (1) in a sense-bearing language if whose logical
 syntax is modeled (in the engineering sense) by non-sense-bearing lan
 guages of the form Z/*, and (2) with a logic whose entailment relation
 is at least partially modeled by Frege-entailment [or Frege'-entailment].
 The last condition amounts to this: if a valid inference in ?? can be
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 regimented by A/cp in Lx,# then A Frege-entails [or Frege^-entails,
 depending on how infinity is handled in !?] cp.
 To accept the Fregean version of the Mathematical-Object Theory

 is, at least in part, to think that (3) Frege-models [or Frege^-models]
 model the basic referential facts the distribution of truth and falsity for
 statements in ??, and so that (3.1) designation relative to a Frege-model
 [or a Frege^-model] models "real live" designation for singular terms
 of !?, and (3.2) truth relative to a Frege-model [Frege^-model] models
 "real live" truth for statements in ?5?. Perhaps that theory should also
 maintain that (4) entailment in ?? is completely modeled by Frege
 entailment [or Frege^-entailment]; that is, if a non-entailment in ifcan
 be parsed in Lx* as A/cp then A doesn't Frege-entail [Frege^-entail] cp.
 The Mathematical-Object theory is committed to the existence of a

 standard representor. For the reasons given in (Hodes 1984a), this is
 an unreasonable doctrine. (That it makes the question of whether 1 is
 identical to Julius Caesar well-defined is a hint that it's unreasonable.)
 According to the Alternative theory, the numbers of finite arithmetic
 "are" merely devices for encoding higher-order statements, statements
 that could be parsed in a language of the form Lv,4(exactly) [or
 //^(exactly00)], into a lower-order syntactic form, namely statements
 that could be parsed in a language of the form Lv,#. For that task any
 one-one assignment of cardinality-quantifiers to objects will do. This
 thought suggests a model-theoretic semantics that represents the Fre
 gean version of the Mathematical-Object picture under its Alternative
 construal.
 We restrict attention to infinite models. For an infinite model si, a

 type-0 term r of Lv#, and cp G Sent(Lx#), let:

 si ft cp iff for every representor v for si si, v ft cp;

 si =\(p iff for every representor ^ for si si, & ft cp;
 des^(r) = a iff for every representor v for si des^"(r) = a;
 des^(r) t iff there is no a so that des^"(T) = a.

 This model-theoretic semantics is three-valued: si\= represents truth,
 si=\ represents falsity. Let:

 si\cp iff sift cp and si =f\ cp.

 It also extends the semantics given in Section 2: for cp G Sent(L(0,0))
 and a term r based on S:

 siftcp [si =| cp] under the semantics of Section 2 iff si f= cp
 [A ft 9] under this definition;
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 des^(r) = a under the semantics of Section 2 iff des^(r)
 under this definition.

 For AU{<p}? Sent(L*'#), let A oo-entail cp iff:

 for every infinite model si, if si ft A then siftcp.

 We adopt these definitions:

 cp is oo-valid iff { } oo-entails cp;
 cp is oo-invalid iff { } oo-entails ~i cp;

 cp is oo-truth-valueless iff for any infinite total model si, si | cp;
 cp is -bivalent iff for any infinite total model si, either
 si ft cp or si =\ cp;
 cp is positively ^-equivalent to *A iff for any infinite model si,
 sift ^p iff sift i//;
 cp is ^-equivalent to i// iff cp is positively ^-equivalent to \?j
 and ~icp is ^-positively ^-equivalent to ~ii//.

 Let oo-Biv(Lv,#) be the set of so-bivalent sentences of Lv #.
 Analogously, where si is infinite, let:

 si ft cp iff for every representor00 ^ for si si, w ft cp;
 ?? =) <p iff for every representor ^ for si si, v ft cp.

 Define des00^ analogously. oo-Entailment00, o?-validity00, etc. are to be
 defined in the obvious way.

 For the Alternative theorist, infinite models, rather than Frege
 models [or Frege^-models] model the basic semantic facts underlying
 the distribution of truth and falsity to statements in arithmetic discourse.

 Given an infinite model si, sift and sd=\, defined as above, represent
 real live truth and falsity, and des6^ represents designation. Notice:
 under this semantics, a #-term does not contribute to determining
 the truth-value-in-^ of a sentence in which it occurs by designating
 something! For a #-term t, des^(T) is undefined; r makes its contribu
 tion in the more roundabout way implicit in the above definitions of
 truth and falsity in si. Rather than designating objects, we may say that
 #-terms encode quantifiers; for example, for every nG co, ? encodes
 2?(n)and4?(n).16

 Of course E(n) is oo-valid, even though ? does not designate. Further
 more '?i?(s>)' is so-valid and '?(00)' is oo-valid00. Keep in mind that
 under this semantics 'The number one exists' and 'The Eiffel Tower
 exists' would both be parsed with '?'; there is no basis for saying that
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 'exists' bears two different senses in these two truths. The obvious
 parsing of 'There are natural numbers', (3v)N(v) [(3v)(N(v) & <x> 9^ v)],
 is trivially o?-Valid [ -valid00].
 Similarly, W' ['^'] does not stand for a level one concept or property

 [a relation], or even have an extension in any model. Rather it encodes
 a concept [relation] of type 3 [type (2, 2)] (and thereby also one of type
 5 [type (4,4)]). And the quantificational context (3v)(N(v) & . . .)
 doesn't express quantification over a restricted class of objects. It's best
 thought of as encoding quantification over cardinality-quantifiers of
 type 2 (and thereby also of type 4).
 Our definitions of ft and =) relative to si use ft relative to Frege

 models of the form (si, 9^), and thereby also using des***"". This might
 lead one to object to the contention that the above model-theoretic
 semantics gives the Alternative theorist a suitable picture of the seman
 tics of real arithmetic discourse. Must there be something wrong with
 the claim that sd ft, rather than si,vft, represents truth? Or the claim
 that des^, rather than des^", represents designation? If so, we have
 not captured the semantic thesis central to the Alternative theory -
 that singular terms may contribute to determining the truth-value of
 sentences without having to be designators: after all, functions of the
 form des^x are defined on some #-terms.
 This worry rests on a misunderstanding. It is up to whoever offers a

 model (in the engineering sense) for some purported phenomenon or
 range of facts to decide which features of that model are to represent
 features of what is being modeled, and which features are mere arti
 facts. The Alternative theorist rules truth in Frege-models and design
 ation in Frege-models to be, varying David Kaplan's phrase, artifacts
 of his model-theory.17 Artifacts of a model can do essential work in
 enabling that model to do its modeling thing, but be artifacts nonethe
 less. (Think of a model of a molecule constructed from sticks and
 styrofoam balls; the balls and the spatial relations between them repre
 sent atoms and the spatial relations between the atoms; the sticks play
 an important role in permitting this model to serve that function, though
 they need not represent any aspect of the molecules.) For each infinite
 si, such work is done by si, v ft and by des^?', for each representor /
 on si. For the Mathematical-Object theorist, they represent truth and
 designation. But according to the Alternative theory, they are superva
 luational artifacts, stepping-stones to the definition of what really mat
 ters: sift and si=\. This difference is reflected in differences between
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 the logic of the Fregean and of the Alternative theorist: the latter's
 logic allows non-oo-bivalent and even ^o-truth-valueless sentences; fur
 thermore, the Alternative theory's notion of ^-entailment [?o-entail

 ment00] properly includes that of Frege-entailment [Frege-entailment00].
 Our translation t0 [to] still encodes Z/4(exactly) into Lx,#; but the

 Alternative theorist does not think of this encoding as involving any
 special sort of objects.
 Observation 4: for any cp G Sent(Lx,4(EXACTLY)) [Sent(Lr 4

 (exactly00))] and any infinite model si:

 sift cpiff sift t0(cp) [sift to(cp)];

 furthermore t0 [to] maps into o?-Biv(L*#).18
 Thus the switch from ft to ft doesn't lose what we most want: the

 encoding power of Z/*. But some of what we don't want is lost. For
 example, for any individual constant t, ? = t is oo-truth-valueless.
 (Notice that if des^(j) f then si =\ ? = r; this phenomenon suggested
 putting the restriction to total models into the definitions of o?-truth
 valueless and o?-bivalence.) We now can say exactly what is peculiar
 about a sentence like '1 = Julius Caesar': on grounds of logic alone it
 lacks truth-value. More generally, if a is a closed #-term and t is a
 closed type-0 term based on S, a = r is -truth-valueless; but if a and
 t are either both closed #-terms or both closed type-0 terms based on
 S, a = r is not, and in the latter case it's o?-bivalent. The o?-truth
 valuelessness of equations between closed #-terms and closed terms
 based on S explains at least some of the motivation for the doctrine
 that numbers constitute a separate logicaltype. But this semantics

 makes that doctrine false: for r based on S, ? = r is a sentence of L0#;
 correspondingly '1 = Julius Caesar' should be considered a sentence of
 English, though one lacking a truth-value for logical reasons. Note: if
 r is not a #-term then N(r) is oo-truth-valueless; so under this semantics

 W' does not represent an ordinary predicate. Indeed, under this seman
 tics the semantic role of W ['^'] does not consist in applying or not
 applying to [tuples of] objects. Similar remarks apply to the semantics
 based on ft and =).

 In fact, in a sense made precise by the following, all of what we don't
 want (viz., the baggage carried by the Mathematical-Object theory and
 mentioned in the paragraph after Observation 3) is lost.

 Observation 5: there is a translation tx [t?[] with

This content downloaded from 
������������132.174.252.179 on Thu, 23 Mar 2023 00:32:00 UTC������������ 

All use subject to https://about.jstor.org/terms



 368 HAROLD T. HODES

 h [t7]: Sent(L(0'0)'#)-^Sent(L(00)),

 so that for any cp G Sent(L(00),#) and any infinite model si:

 (*) sift cp iff sift ti(cp)
 [sift cp iff sift t (<p)];

 in particular, for cpG -Biv(L(0'0)'#) [^Biwx(L(00h*)], we also have:

 (**) si =\cp iff sift h(cp)
 [si^cp iff sift tr(cp)].

 Proof. For iff, 6 G Fml(L^,0)) in which at most the type-0 variable v
 is free, let (^v)(\\?, 6) be a sentence of LS,0) that is true in si iff
 card(z?t/^) ^ card(z?0^). Where r is a representor for si and nG co,
 let an = v(2Q(n)). Let R code w iff R = {(an, am) : n < m < co}. For
 y G Var((0, 0)) there is a formula Std(y) of L(00) so that for any model
 si and R?\si\2:

 si ft Std(R) iff R codes a representor for si.

 Given cpG Sent(L(0'0)'#), fix y G Var((0, 0)) not occurring in cp. We'll
 construct a formula cp'(y) with y free so that for any Frege-model (si, r)
 and any R coding w:

 si,*ft cp iff sift cp'(R).

 We may then let t2(cp) be (Vy)(Std(y) D cp'(y)).
 Construct cp' as follows. First transform cp so that for every atomic

 subformula ?(r0, . . . , rn-i), none of the 77s are #-terms; e.g. replace
 a- . . , (#p)0, . . ) by

 (3^=(#p)???(...,^,...)),
 where ^ is a type-0 variable not occurring in cp. Make sure that if r is
 a #-term in cp then r only occurs in the contexts r= p where p is a
 type-0 variable, or t= aor a= r where or is a #-term. Also make sure
 that each variable is bound at most once. Make these replacements in
 the resulting sentence:

 N(r) by (3^)yr^;
 r ^ a by (3v)yrv & (3^)yo-^ & (^v)(yvr, yva);
 (%v)S = pby (3v)ypv& (^v)(0, yvp) & (^v)(yvy, 0);
 (#i/)0 = (#p)0' by (^8)(0(8/v), 6'(8lp)) & (^8)(6r(8/p),
 0(81v)).
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 Here v is a type-0 variable not occurring in t, a or p, and 8 is a type
 0 variable not occurring in 6 or 6'. The construction of i7(<p) is similar.

 Obviously we cannot add in Observation 5 the further requirement
 that both (*) and (**) hold for all infinite si and all <p G Sent(L(0'0)'*).
 Our semantics for L(0,0), is two-valued; but cp may lack a truth-value
 in si, in which case (*) and (**) don't both hold.

 Suppose we were to adopt a three-valued semantics for L(0,0), giving
 'D' (and hence '&' and 'v') the so-called "strong Kleene" truth-table
 and including V as a primitive formula governed by the clauses

 for any model si, si ft V and sii\'u\

 (Keep in mind that in a three-valued semantics, truth and falsity (=|)
 are defined together in one simultaneous induction; see Appendix 2.)
 Then letting h(?) be:

 (Vy)(Std(y) D cpf(y)) v (u & (3y)(Std(y) & cp'(y)))

 we have (*) and also:

 si =\ cp iff si ^h(cp).

 Further facets of Observation 5 are discussed in Section 6.

 Observations 4 and 5 are important for the Alternative theory. The
 Alternative theory maintains that the sole point of discourse within the
 Mathematical-Object picture is to conveniently encode higher-order
 statements, statements that could be parsed by sentences in a language
 that is really a fragment of L(0,0). By Observation 4, bivalent statements
 do the encoding, even though the syntax of the encoding language will
 generate non-bivalent statements. The failure of Observations 5 would
 have suggested that our mathematical practice, which uses bivalent
 statements that may be parsed in Lx,#, involved more than such en
 coding.
 We now must look at an apparent difficulty. According to the Alter

 native theory, to accept of the Mathematical-Object Picture amounts
 to using a language modeled by Z/,# under the three-valued semantics
 just given, instead of one of the form Z/'4(exactly). But is our rea
 soning even approximated by the logic our semantics imposes on Z/,#?
 For example, our mathematical practice apparently sanctions use of
 'D'-introduction and ' v '-elimination. But these rules are not sound with

 respect to o?-entailment [oo-entailment00]! That is to say, the following
 principles do not hold for all A U {cp, i/>, 6} ? Sent(L*'*):
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 370  HAROLD T. HODES

 If A U {cp} oo-entails 6 then A oo-entails (cpD 0);
 If A ^-entails (cpvif/), A U {cp} oo-entails 0, and AUjif}
 oo-entails 0 then A oo-entails 0.

 [Similarly for oo-entailment00.] For example, let \P' be a one-place predi
 cate-constant. Then '(P(?)) v ~i ?(0))' is oo-valjd; furthermore: 'P(?)'
 oo-entails '(Vx)?(x)', and 'nP(O)' oo-entails '(Vx) -i P(x)'. (In fact
 'P(O)' is positively oo-equivalent to '(Vx)P(jc)', and similarly for the
 second pair.) So ' v '-elimination would require that '(Vx)P(x) v (Vx) ~i
 P(xy be oo-valid; and it isn't. Similarly, '3'-elimination is not sound.

 Can the Alternative theorist simply reject these rules? No: the Alter
 native theory is offered as an account of the semantic underpinnings of
 mathematical practice within the Mathematical-Object picture, not a
 program to change it. If our reasoning in a language modeled by L*,#
 uses these rules, the Alternative theory should revise its account of the
 basis for the use of such rules, not tell people to abandon them.
 But does mathematical practice within the Mathematical-Object Pic

 ture involve acceptance of these rules in full generality? As mentioned
 above, our actual mathematical reasoning makes no use of sentences
 parsed by non-oo-bivalent sentences of Lx*. On the Alternative theory,
 that is no surprise: such sentences do not encode sentences repre
 sentable in L*'4(exactly). That encoding provides the rationale for
 the Mathematical Object Picture; so such sentences should be expected
 to do no work in mathematical practice within that picture. (This is
 why, when first faced with such sentences, e.g., '0 is green', we're likely
 not to know what to make of them.) Thus our mathematical practice
 should, and does, involve only limited use of ' v '-elimination, use confi
 ned to cases in which cp and \\t parse bivalent sentences; use of 'D'
 introduction and '3-elimination are also appropriately restricted. I can
 see no reason to insist that our practice involves acceptance of these
 rules in unrestricted forms. And when we restrict to oo-bivalent sen
 tences, our semantics reconstructs makes these rules sound. The Alter
 native theory need claim only that oo-entailments involving oo-bivalent
 sentences of LXj* parse the inferences sanctioned by our mathematical
 practice; other oo-entailments needn't reflect our inferential practices.
 Although 'P(?)' oo-entails '(Vx)P(x)', we don't sanction the inference
 from '0 is green' to 'Everything is green'.
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 Let <p be a number-theoretic sentence of L( ' )# iff:

 cp containing no occurences of members of S;
 all occurrences of (3v) for v of type-0 in cp are restricted by
 #(");
 all occurrences of (ly) for y of type-1 in <p are restricted by

 and similarly for y of type-(0, 0).

 For such a cp and any infinite model si, sift cp iff cp is oo-valid. So our
 model-theory might be thought to reconstruct one central thesis of
 logicism: for number-theoretic sentences, truth is a sort of logical valid
 ity (or better, a sort of logical consequence of the assumption that there
 are infinitely many objects)! The significance of this will, of course,
 depend on how we understand the 'logic' in 'logicism', an issue which
 shall not be addressed here.

 6.

 In this section we'll take a more careful look at Observation 5; then
 we'll look at some technical questions about the logic introduced in
 Section 5. This section is primarily for logicians, and may be skipped
 by readers whose interest is "purely philosophical".

 (1) The construction used in Observation 5 used a variable of type
 (0, 0), even when cp contains no such variables. Is that required? In the
 presence of type-1 variables, the answer is "Yes". We'll construct
 cp G oo-Biv(L1,#) so that there is no if/ G Sent(L1,4(EXACTLY)) with cp oo
 equivalent to \\j. Let S = {'?', '?', '?'}; we construct cp so that for any
 infinite si:

 si ft cp iff card(P^) card(?^) = card(f?^) < X0.

 Let cp'(a) be:

 (Vv)(avDNv) & a((#v)Pv) & (Vp)(apD (#v)Pv^ p) &
 a((#v)Rv) & (Vp)(apDp^(#v)Rv) & (*v)av= (*v)Qv
 & (Vi^o)(V^i)[(a^o & olvx & ^o<^i & ~^(3v)(vo<v &
 v< v1))D(^v)(v0^ v&v< vl) = (*v)Pv],
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 where a is a type-1 variable and all other indicated variables are of
 type-0 and are distinct from one another; let cp be

 ((#v)Qv = ? & (#v)Rv=?) v (3a)cp'(a).

 It's easy to see that cp is as desired. The key idea is that if si' is
 an expansion of si to a model for {'P\ '?', 'R\ '5'}, si,vft cp'(Sla),
 and neither Q^ nor RM is empty then S64' represents
 {/ card(P^): 1 ^7 ^ card(?^)}.
 Suppose that i?j were oo-equivalent to cp. For distinct type-1 variables

 a0, ol\, a2 form i//' from ipby replacing '?', '?', 'P' by a0, ax, a2 respec
 tively. Then

 (3a0)(3ai)(3a2)(il/' & (exactly pLov)a0v &
 (EXACTLY PLiV)cTiV & (EXACTLY pL2v)OL2v)

 defines (K0-defines, in the terminology of (Hodes 1988b)) multiplication
 on the finite cardinals within L1,4(exactly), where po, p,1? p,2 are dis
 tinct type-2 variables; but no such formula exists by Theorem 2 of
 (Hodes 1988b). The essential point here is that the coding-down of
 type-2 to type-0 permits quantification of type-1 variables to act like
 quantification of type-3 variables; but nothing like quantification of
 type-3 variables is available in L1,4(exactly).

 Conjecture 1: for each cp G oo-Biv(L0#) there is a *A G Sent(L0'4
 (exactly)) oo-equivalent to cp. In two cases this conjecture may be
 easily seen to hold, (i) Let (Omega vovi)0 be the obvious formula
 saying that, in the variables v0 and vx, 0 defines an ordering of type co.
 Suppose that there is a finite sequence 0O,. . . , 0?-i of formulae of
 L?'# in each of which exactly the distinct variables v0 and vx are free,
 and such that cp[~~\cp] entails v/<?(Omega vov^Oi. Then

 v/<?((Omega*>o*'i)0/ & <?(#/))
 [&i<n((Omega i^i)0; 3 <?(#,))]

 is as desired, (ii) If all members of 5 are at most 1-place, such a i?/ may
 be constructed. The proof of this sheds no light on the general conjec
 ture, and is left to the reader.

 (2) We had to restrict Conjecture 1 to cp G oo-Biv(Z/,#). To see why,
 introduce a further one-place predicate '5'. Suppose that for
 i//G Sent(L?'4(EXACTLY)) we have for every infinite model si for {'P',
 '?', 'R\ '?'}: ?4 ft -icp'(Sla) iff sift i/s, where cp' is as in (1). Then:
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 sift if/& -i((#i/)?i/=0& (#v)Rv=0)
 iff card(P^) card(?^) # card(P^);

 by existential quantifying-out the predicate-constants as done in (1),
 this can be turned into a N0-definition of multiplication in
 L14(exactly), violating Theorem 2 of (Hodes 1988b). Notice that if
 card(P^) card(?^) = card(P^) # 0 then there are representors w0 and
 ^i for si so that si, v0 ft <p'(S/a) and si,rx ft cp'(Sla); thus -i<p(S/a)
 isn't oo-bivalent.

 (3) For <pGFml(L*'#) with free variables among v0, . . . , vn-u all
 of type-0, let cp(v) define V C con iff for every infinite model si and
 every m = (m0, . . . , m?_i) G con:

 if m G V then sift cp(m0,. . . , mn-i);
 if m? F then ^ =( <p(m0, . . . , r??-i).

 It's easy to see that if V is definable in L*,# then F is defined by a pure
 formula of Lx,#, that is, one based on S = { }; see (Hodes 1988b),
 Section 1. Using the construction from (1) it's easy to see that relations
 on co definable in L1,# are exactly those definable in second-order
 arithmetic. In fact the relations on co definable in L0,# are exactly those
 definable in Presburger arithmetic. Addition is defined by

 p,! = (#v)(v< po v (po^v & v< pa)).

 Suppose a formula cp of L0#({ }) defines RQcok. Consider the model
 M2(So) from (Hodes 1988b), Section 2, and let *(2Q(n)) = n for all
 finite n. By treating W(v)' as '~i J_' we can translate cp to a formula <p'
 of L2(exactly) (see (Hodes 1988b, start of Section 2) so that

 M2(No), * ft <p(w0, . . - , m?-i) iff
 M2(No) ft <p'(mo, > mn-\)\
 M2(X0), * |$ <p(m0, . . , m?_i) iff
 ^2(^0)^ <p'(mD, - ,2Li-i).

 Then apply Lemma 4 of (Hodes 1988b).
 (4) The Skolem-number for Lx'* is the least aleph k so that for any

 <pGSent(Z/'#):

 if cp is satisfiable then cp is true in some infinite model of
 cardinality ^k.
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 If all predicate-constants in S are at most 1-place and all function
 constants in S are at most 0-place then the Skolem-number of L1# is
 Xx. It's at least N\, since for any infinite model si, si ft (3v) ~iN(p) iff
 card(si) ^ S\. Suppose ?0,. , Cn-i are the predicate-constants in 5.
 Where si is a model for S and a G "2, let a** = n/<w/f(/), where P? -
 ?* and P1 = |^| - ?^ Where ^0 and ^ are such models let ^0 ? ^i
 iff (i) for each <7G"2:

 for each individual-constant ^G 5, f^? G cr^ iff f^1 G o-*1;
 either card(cr^) = card(o-^) ^ N\ or card(<7^?), cardia"*1)
 >xi;

 and (ii) for any individual-constants ?, ?' G 5: ?^? = ?'^? iff

 To show that the Skolem-number of L1* is at most N\ it suffices to
 show that if sio ? sii then

 for any cp G Sent(L1,#): si0ftcp iff six ft cp.

 This can be shown using Ehrenfeucht games. Conjecture 2: if all predi
 cate- and function-constants in 5 are at most 1-place then the Skolem
 number of L1# is Xi.

 (5) If 5 contains a 2-place element then the Skolem-number of L1#
 is that of full second-order logic. It's obvious that the first is at least
 the second. Suppose that 'G' 5, cp G Sent(L1,#), siftcp. Let 0 be the
 conjunction of the axioms of extensionality, pairing, infinity sums, and
 the second-order sentence saying that co is standard. Expand si to a
 model si' for S U {'G'} so that si' ft 0. Translate cp to
 cp' G Sent(L\S U {'G'})) by treating N(r) as "tGco"; then si'ft cp'.

 There is a model ?8' for S U {'G'} of cardinality less than or equal to
 the Skolem-number of full second-order logic, so that 39' ft O&cp';
 then contract 3i' to S3, a model for S; we have ?S ft cp.
 We'll now consider some questions of recursion-theoretic complexity.

 Let T be the truth-set for second-order arithmetic.

 (6) It's easy to see that for any choice of S, T is 1-reducible to oo
 Val(L1#).

 (7) If S = { } then -Biv(L*'*) = Sent(?/*). If S contains a non
 zero place predicate-constant then oo-Val(L*,#) is 1-reducible to o?
 Biv(Lv,#). The first claim requires an easy symmetry argument. For
 the second claim, use this fact. If ? is a 1-place predicate-constant, for
 any cpG Sent(LA#):

 cp is oo-valid iff cp v ?'(do) is oo-bivalent.
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 (8) Suppose that all predicate-constants in S are at most 1-place and
 all function-constants in S are at most 0-place. Both oc-Val(L1,#) and
 oo-Biv(L1#) are 1-reducible to T.
 Without loss of generality, suppose that all predicate-constants in S

 are 1-place and all function-constants are 0-place. Let S0 = {W\ '<',
 i?9- 'i\ 'S.\ 'O'}, disjoint from S. Let si be an co-model for S U S0 iff
 (?V*; <**; ?jrf, ^,'Sf", &*) is an co-model of arithmetic. Let co-Val =
 the set of second-order sentences based on S U S0 true in all co-models.
 Lemma 1: co-Val is 1-reducible to T. For this we'll need the follow

 ing.
 Lemma 2 ("splitting a formula into a N-part and a non-N-part"): Fix

 a copy S' of the set of predicate-constants in S, disjoint from S and S0.
 Given a model si for S U S0, let ?f be the expansion of ^ to a model
 for 5 U S' U So such that for any predicate-constant f G 5 to which
 ?' G 5" corresponds:

 ?-**' = ^ nN^; ?'^' = ?^ - A^.

 Suppose cp(?>, a) is a formula of L1^ U 50), ?' is *>0> , *^-i, includ
 ing all the type-0 variables free in cp, 5 is a0,. . . , am-u including all
 type-1 variables free in cp, and zQn. Let vz be the list of the vt for
 i G z, in order; let vz be the list of the vt for /?z, in order. Fix new
 distinct type-1 variables oto, ... , alm-i for / G {0,1}. There is an lz =
 l G co and formulae $z?vz, ?*?) G Fm^L1^ U 5o)) and
 6ZJ(V,a?) G Fmll(Ll(S'U So)), with free variables among those
 listed, meeting these conditions: (i) each quantifier-prefix of the form
 (3v) for v of type-0 occurring in i//zj [6zj] is restricted by Nv [~^Nv];
 (ii) each quantifier-prefix of the form (3a) for a of type-1 occurring in
 ^zj [OzA is restricted by (Vv)(av D Nv) [(Vv)(av D iNv)]; (iii) for any
 co-model si with a G \si\n, if

 for each / <n a?G N^ iff / G z,

 and ?GPower(|^|)m, then sift cp(a,A) iff for some iGl

 si' ft il*zJ(?z, Ao n N*J, ..., Am_! n N*) &
 OzJ(az,Ao- iV-V..,Am-i-#"*).

 Lemma 2 follows by induction on the construction of cp; details are left
 to the reader.

 To prove Lemma 1, suppose cpG Sent(Z/(S U So)). By Lemma 2
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 there is an / and fa, 6? for / < /, meeting restrictions (i) and (ii) from
 Lemma 1, with (cp = vi</(i^i <? 0J) true in all co-models for S U S' U S0.
 (Since cp is a sentence, n = 0.) We may effectively find an k G co and
 for each / < / a set *,- ? ? + 1 such that for any co-model si:

 if card(|.stf| - NM) < k, card(\si\ - NfJ) G x? iff si ft 0, ;
 if card(\si\ - N**) ^ k then k G x? iff si ft 0,,

 If \Ji<iXi # k + 1 then v /</(t/>/ & 0/) is false in some co-model; thus so
 is cp. Suppose that U , </*; = k + 1. For each / < k let 6) be a first-order
 sentence saying that there are exactly /-many non-iVs; let 6'k by one
 saying that there are at least k many non-Ns. For each /^^we may
 find a sentence ty) meeting conditions like those (i) and (ii) impose on
 the \?jzJ, so that

 (V/</(0/ & ifji)) = ((Vj^k(0'j & *A/)) is true in all co-models for
 S U 5' U S0.

 But by the "splitting" the left-hand side of this biconditional is co-valid
 iff &j^k if/'j is. The latter may be viewed as a sentence of second-order
 arithmetic, proving Lemma 1.
 For a a type-1 variable, form M(a) G Fml(LL(S0)) saying

 (\/v)(avD Nv) & a codes an co-model & (V^)('VE |a|" D
 Nv).

 (Keep in mind that we can express pairing of numbers in the vocabulary
 of arithmetic.) Given cpG Sent(L1,#) with a not occurring in cp, form
 cp'(a) by "translating" cp into L1(SUS0), treating a as coding an co

 model of arithmetic; e.g., replace N(v) by "*>E |a|"; replace (#^)0 by
 a specification of the corresponding "member of |a|". Then cp is oo
 bivalent iff:

 (Va)(Va')([M(a) &M(a')] D [cp'(a) ^ cp'(a')]) G co-Val;

 by Lemma 1 that question is 1-reducible to T. A similar reduction
 works for the oo-validity of cp.

 (8) continues to hold even if we allow 1-place function-constants into
 S; this is left to the reader.

 (9) If there is at least one 2-place element of S then oo-Val(L1,#),
 oo-Biv(L1#) and the set of validities of full second-order logic are
 1-equivalent. This is left to the reader.

 (10) If there is a 2-place predicate- or function-constant in S then
 oo-Val(L0,#) is nl-complete. In this paragraph, let {e} = {n G co: the <?'th
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 partial recursive function applied to n yields 1}. Let u = {e G co : {e} is
 well-founded}. To show that W is 1-reducible to oc-Val(L?'#), the key
 idea is that {e} is well-founded iff

 (3v)(v G {e} & Nv) D (3v)(v is {c?}-least so that Nv)

 is true in all co-models of a suitable finite fragment of set-theory.
 To show that oo-Val(L0#) and oo-Biv(L0#) are II? we don't need the

 assumption about S. Let S0 be as in (8). For cp G Sent(L0,#), "translate"
 cp to cp' G Sent(Lx(S U S0)) so that cp = cp' is true in any co-model for
 S U S0; whether cp' is co-valid is a 11} question (using the co-completeness
 of co-logic). Thus oo-Val(L0,#) is a Il{-set. Using ideas from (8), ??
 Biv(L0,#) can also be shown to be 11}.

 (11) If all members of S are individual constants then oo-Val(L0,#)
 is recursive. Use Lemma 4 of (Hodes 1988b); details are left to the
 reader. Conjecture 2: if members of S are 0- or 1-place predicate
 constants or individual-constants then oc-Val(L0,#) remains recursive.

 7.

 Why did we restrict our attention to finite models? The difficulties faced
 in finite models by our analytic definitions of addition and multiplication
 have been mentioned already. More seriously, a finite model has no
 representors: if si is finite, although 2EXACTLY is also finite, card(ji)
 <card(2EXACTLY).

 The Mathematical-Object picture of arithmetic, even if it is not
 inflated into a semantic theory, seems committed to the existence of
 infinitely many objects; for each natural number n, "There are at least
 n objects", though it can be expressed without use of mathematical
 vocabulary, is a consequence of some simple arithmetic truths, e.g.,
 that there is no greatest number. So our restriction to infinite models
 appears to mirror a genuine presupposition of mathematical practice.

 The Far-out response would be that arithmetic doesn't really presup
 pose an infinitude of objects, and it is coherent to suppose that there
 is a last natural number. We would consider fragments of representors,

 mapping each 2Q(n) into \si\ for n < card(si) or for 1 ^ n ^ cavd(si).
 Of course relative to a finite model

 (Vv)(N(v) D (3p)(N(p) &v^p&-ip^ v))
 is not true.

 Since it involves a deep revision of mathematical practice, I shall
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 not pursue the Far-out response. But unlike those who accept the
 Mathematical-Object Theory, proponents of the Alternative theory
 cannot base their acceptance of an infinitude of objects on mathematics
 itself, e.g., on the infinitude of the natural numbers. Perhaps physics
 can assure us that, for example, there are infinitely many spatial
 volumes and temporal intervals. Or perhaps metaphysics can assure us
 that there are infinitely many non-actual possible objects.
 The last suggestion is available only to the Individual-Possibilist; it

 doesn't help the Indi vidual-Actualist, one who doesn't think that there
 are non-actual possible objects. But it does suggest a reconstrual of the
 commitment to the existence of infinitely many objects apparently
 carried by our mathematical practice. Perhaps some of the uses of
 existential quantification within the Mathematical-Object picture, e.g.,
 in the assertion that there are at least n objects, should be construed
 as governed by a possibility operator. In particular, perhaps that picture
 is not committed to an actual, but merely to a potential, infinitude of
 objects: that for every natural number n there could be (or could have
 been) at least n objects. This would be compatible with there being a
 finite bound on the number of objects that actually exist. (Of course
 only for Individual-Actualists is this is a reconstrual of mathematics'
 apparent commitment to an infinitude of objects; the Individual-Possi
 bilist would not construe the prima facie commitment to an infinitude
 of objects as a commitment to an infinitude of actual objects.)
 Can the Individual-Actualist who also embraces the Alternative

 theory accept both arithmetic as we practice it and also the existence
 of only finitely many objects? Assuming only a potential infinitude of
 objects, can she make sense of the Mathematical-Object theory? The
 answer is sensitive to what we make of Individual-Actualism, a matter
 to which we shall return after presenting a modal version of the material
 from Section 2. (As in Section 2, we might do well to offer a three
 valued semantics, not merely because our encoding semantics will be
 three-valued, but also because a three-valued model theory is parti
 cularly helpful for representing the concerns of the Individual-Actualist;
 see (Hodes 1986, 1987) for a detailed discussion. In the interest of
 simplicity, we will stick to a two-valued semantics.)
 Form LD'? by adding 'D' to the logical lexicon of Lu, functioning as

 a formula-forming operator on single formulae. To make life easier,
 we'll suppose that individual constants are our only function-constants
 in our vocabulary set S.

This content downloaded from 
������������132.174.252.179 on Thu, 23 Mar 2023 00:32:00 UTC������������ 

All use subject to https://about.jstor.org/terms



 NATURAL NUMBERS  379

 A skeleton has the form (W, R,A,A), where:

 W and A are non-empty sets;
 R Q W2; ?: W^Power(A);
 A = Uw?EWA(xv).

 As usual R is the accessibility relation of this skeleton. A normal modal
 logic is determined by a class of skeletons. Of course the simplest non
 trivial such logic is S5, determined by the class of all skeletons of the
 form (W, W2,A,?). K is the logic determined by the class of all
 skeletons; T is determined by the class of skeletons with reflexive
 accessibility relations. If we use 'D' to represent necessity, we want our
 logic to be at least as strong as T; if we use 'D' to represent real
 ("metaphysical") necessity, some think that our logic should be S51_
 A modal structure si for S consists of a skeleton (W, R, \si\, \si\)

 together with an assignment to elements of S as follows:

 for any predicate-constant CG S,
 ifn>0, (*:Wx \si\" ^{0,1};
 ifn-0, f*: W-*{0,1};

 for any individual-constant CG S,
 either ^ ] or^G|^|.

 Hereafter we write si for \si\. Let si be total iff for all ? as above,
 ^ | . Let si be e-actualistic ('e' for 'extensionwise') iff for every n
 place predicate-constant ?GS with n > 0, if (au . . . , an) ? si(w)" then
 ?^(w, a{, . . . , an) = 0. A modal model (hereafter just called 'a model')
 for S has the form (si, w) where si is a modal structure for S and
 w G W; we call w "the actual world" for (si, w). Let si(w) = UwRusi (u).
 Relative to (si, w), members of si(w) represent actual objects, and the
 Individual-Possibilist would say that the members of s4(w) represent
 possible objects. Let \(si, w)\ = \si\. A model is total [e-actualistic] iff
 its structure is total [e-actualistic].
 Let a skeleton (W, R,A,?) be potentially infinite iff for every na

 tural number n and every w GW there is a u so that wRu and
 card(^(w)) ^ n. Let a modal structure (model) be potentially infinite
 iff its skeleton (its structure) is so. Notice that an S5-skeleton is poten
 tially infinite iff for every n there is a w G W with card(^(w)) ^ n.

 Where L is a normal modal logic (identified with a class of skeletons),
 let poo-L be the logic formed by restricting L to potentially-infinite
 skeletons.
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 Given a model (si, w), for each a G \si\ introduce the new individual
 constant a, forming the language La'0. We define des^ on type-0 terms
 as usual. We define si,wft for sentences of La'0 in the usual way, e.g.
 let:

 si,wft ?(r0, . . . , rn-t) iff
 ^(w,des^(r0),...,des^(TAZ_1)) = l;
 si,w ft t = a iff des^(r) - des^(cr).

 Where v is a type-0 variable, let:

 si, w ft (3^)cpiff for some? G si(w), si,w ft cp(a/v);
 si,w ft Dcp iff for every u with wRu, si, u ft cp.

 Individual-Actualism is reflected in the actualistic clause just given
 for '3', which takes bound variables to range over objects that are
 "actual relative to" (si, w), i.e., over si(w), and 'E' still parses 'exists',
 construed actualistically:

 si, w ft 3(t) & (3v)E(v) iff des^(r) GsJ(w);

 the second conjunct is needed only to handle the case in which si (w)
 is empty and des^(T) f . We could enrich LD,? by introducing a new
 quantifier-expression '3', binding variables of type-0, and letting:

 si,wft (3 v)cp iff for some? G si(w) si,wft q>(a/v).

 A moderate Indi vidual-Actualist maintains that, when it comes to
 first-order quantification, we can only quantify over actual objects, i.e.,
 that bound variables of type-0 can range only over actual objects. On
 this view '3' cannot represent a construction in any genuine language.

 This position is reflected in our model-theoretic semantics for LD,?. But
 it is a somewhat unstable position, since it allows that free variables

 may range over, and that designators may designate, non-actual objects.
 A strict Individual-Actualist would reject even this as too possibilistic.
 / three-valued model-theoretic semantics reflecting this more strict
 position is presented and investigated in (Hodes 1986, 1987).

 A lax Individual-Actualist might maintain merely that the central and
 most fundamental sort of first-order quantification is actualistic, i.e.,
 over actual objects; so our "primary" notion of existence, represented
 by '3' under the model-theoretic semantics just presented, is actualistic.
 But he'd go on to claim that the possibilistic existential quantifier,
 represented by '3', is legitimate, admitting it does not represent most
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 uses of quantifier-phrases, and it certainly is in no sense more basic
 than its actualistic cousin. This view rejects a only very strong sort of
 possibilism: that statements of the apparent form (3^)cp are really of
 the form (3^)(Actual(^) & cp), where 'Actual' represents a primitive
 predicate. Thus 'There is a non-actual object' is ambiguous: false under
 its most likely construal, though true under a less common construal
 of 'there is'.

 I once thought that this lax view didn't merit the label Tndividual
 Actualism'. Now I'm not so sure. Notice, for example, that as long as
 '3' is not used within the scope of 'D', the actuality operator '@' buys
 us '3': we can take (3v) to abbreviate 0(3i>)@ within such contexts.
 Indeed, with the "world-travelling" operator introduced in (Hodes
 1984), '3' can be defined from '3'. It appears that even the moderate
 Individual-Actualist must deny that '@' can represent a construction in
 any genuine language.

 In what way could an Individual-Actualist claim that a model (si, w)
 could represent the alethic underpinnings for a genuine language?

 Relative to a model (si, w) based on the skeleton (W, R,\si\,si),
 members of si (w) represent objects, members of W represent "possible
 worlds", i.e., ways in which things could be or could have been, and
 of course si,wft represents truth. But for an Individual-Actualist,
 relative to (si, w) members of si(u) - si(w) don't represent anything.
 Rather they contribute to determining to what (si, w) bears |= by virtue
 of the fact that relative to (si, u) they represent objects.

 Our notion of an e-actualistic structure reflects Predicate-Actualism,
 a doctrine frequently associated with Individual-Actualism: that no
 predicate can apply to what doesn't exist. This is not a self-evident
 corollary of Indi vidual-Actualism, unless the latter is construed in the
 strict way mentioned above. Suppose that necessarily all human beings
 are essential human; I can't see why an Individual-Actualist who "buys"
 the actuality operator couldn't also accept 'Necessarily every human
 being is actually human'. If we do not posit non-actual possible objects,
 we should not recognize "atomic facts" of which such objects are con
 stituents. But an Individual-Actualist might not want to rest much
 weight on a metaphysics of facts; and even if she is quite happy with
 facts, determining what facts one is committed to can be a controversial
 matter. It's far from clear that the above sentence entails 'Necessarily
 for every human being there is an actual fact that he or she is human'.
 In any case, Predicate-Actualism is worth keeping in mind. Since our
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 semantics is to be kept two-valued, we've used the Falsehood Conven
 tion in our notion of being e-actualistic: we don't allow an n-place
 predicate ? to apply to (a0, . . . , fl?-i) relative to (si, w) if that n-tuple
 does not belong to si (w)n.
 Form LD1 and LD'(00) by enriching L1 and L(00) respectively by 'D'.

 There are various kinds of second-order quantification available in the
 modal setting. Predicate-Actualists would likely want second-order
 quantification to be "actualistic". For A ? W x \si\ [A?Wx \si\2] let
 A be actualistic iff:

 for any (w, a) G A, a G si(w)
 [for any (w, a, b)GA,a,bG si(w)].

 But we'll do best not to restrict the range of variables of types 1
 and (0, 0) to actualistic values. For uniformity, we'll sometimes write
 'A(w, a) = Y for i(w,a)GAJ; similarly for 'A(w, a, b) = 1'. For each
 ACWx\si\ [A?Wx \si\2] introduce a new 1-place [2-place] predi
 cate-constant A. If p is a type-1 [type-(0, 0)] variable:

 si, w ft (3p)cp iff for some A?Wx si(w) [A?Wx si(w)2]
 si,wft cpiAJp).

 8.

 This section is a modal analog of Section 3. For 'x' replaceable by '0',
 T or '2', enrich LxA to form La,xA by adding ' '. Our actualistic
 treatment of (3^), for v a variable of type 0, requires that cardinality
 quantifiers, expressed by prefexes of the form (exactly nv), be equally
 actualistic. For any n G co, any structure si with set W of worlds, and
 wGW, let:

 2Q(n, w) = {A ? si(w): czrd(A) = n};
 2Q(n) = Uw W2Q(n,w);
 2EXACTLY = {2Q(n): n G co}.

 Notice how we have made sure that 2Q(n) is actualistic. We define
 si,wft for sentences of Ln'*'2 in the obvious way, with ?cp^'" defined
 actualistically for v of type 0:

 vcp^w = {aG sl(w): si,wft <p(a/v)}.
 So:

 si,wft (exactly ^)cp iff cavd(vcp(s?w)) = n.
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 Since quantifiers do not exist (or fail to exist) at worlds, there is no
 sense in which prefexes of the form (exactly np), for p, of type-2,
 could be actualistic. So let 4Q(n) and 4EXACTLY be defined as in
 Section 3.
 As in Section 3, taking 3)2i = ^EXACTLY for /G{1,2}, we call

 LP,xA " LD,xA (exactly)'\ adding '^' as a primitive when V is replaced
 by '0'. With 'jc' replaced by T or '(0, 0)' for variables p, and pu' of type
 2 take p, ^ p! to abbreviate

 0(3?;)(3?:/)((exactly pv)av &
 (exactly pJ)a'v & (\fv)(avD a'v)).

 For any potentially infinite model M and any n0, nx,n2Gco:

 M ft DAdd(2?(n0), 2Q(n,), 2Q(n2)) iff n0 + n, = n2;
 M ft DMult(2?(tt0), 2Q(n1), 2Q(n2)) iff n0 > nx = n2.

 Nonetheless we may also have M ft (3p,)(exactly piv)E(v), i.e., M
 may satisfy "There are finitely many objects". We may now claim
 that DAdd(po, p^i, p,2) and DMult(po, p,1? p,2) (for p,0, p*uPa distinct
 variables of type 2) rather than Add(. . .) and Mult(. . .), provide "ana
 lytical" definitions of addition and multiplication.
 Where cp G Fml(LD,x,4(EXACTLY)) has free variables among

 Po, . . . , pk-i, all of type 2, let cp define V Ccok iff for all potentially
 infinite models M and all n G cok: ?GV iff M ft cp(n0, . . . , nk~\)

 Theorem 2 of (Hodes 1988b) extends to the modal setting as follows.
 For any V ? cok. V is definable in Ld,1,4(exactly) iff V is definable in
 Presburger arithmetic.

 From right to left use DAdd(. . .). From left to right it suffices,
 by Theorem 2 of (Hodes 1988b), to show that if V is definable in
 Ld,1,4(exactly) then it's definable in L1,4(exactly); to show this,
 code any infinite non-modal model S? by the obvious modal model
 (si, w) with W = M and \si\ = si(w) = |S8|.

 Curiously, if in our definition of "cp defines V" we had required that
 M be based on a skeleton (W, R, si, si) with W infinite, then the re
 lations on co definable in Ld,1,4(exactly) would be those definable in
 second-order arithmetic; in fact this holds even with variables of types
 1 and (0, 0) restricted to actualistic values! For A?Wx \si\ and w GW
 let Aw = {a: (w, a) G A}. The idea is that A encodes

 {n G co: for some w GW n = card(AH, Pi si(w))};
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 furthermore any B Ceo can be so encoded (by an actualistic A). We
 can then define multiplication as in Section 6, (1).
 Observation 6: Every cp G Sent(LD,(0,0),4(EXACTLY)) is poc-S5-equiva

 lent to some i/jG Sent(Ln'(0'0)).
 Note the argument from Observation 2.2 of (Hodes 1988a) would

 carry over quite directly if we were to add '3'; without it we face extra
 work.

 Fix a /?oo-S5-structure si, with set W of "worlds". For A?Wx \si\
 let A be rigid iff for any w, u G W Aw = Au. For a rigid A, let A' =
 Aw for any w G W. For R ? W x \si\2 let Rw = {(a, b): (w, a, b) G R],
 and let R be rigid iff for any w, uGW Rn = Ru. Let R be a standard
 for si iff R is rigid and Rf is a strict well-ordering of type co. With such
 an P fixed, for n < co let an be the n'th member of Fld(P) under R.
 For a G \si\ let a* = {(h>, ?): w G W} be ??'s individual essence. For each
 subformula 0(pa, . . , ?k) with type-2 variables among those listed,
 we want to construct a formula 0'(ai, ... , ak), with type-1 variables
 al, . . . , ak, so that for any /?oc-S5-model (si, w), any standard R for si,
 any ?l5 . . . , nk < co and any assignment of values for the unindicated
 free variables in 0:

 si, w ft d(nu . . . , nk) iff si, w ft 0'(?*, . . . , g*k).

 (Without '3' we can't directly quantify over {an: n < co}, the members
 of which are meant to code the values for variables of types 2 and 4;
 so instead we quantify over their individual essences.)

 For type 1 variables a and ?, type-(0, 0) variable y, and type-0
 variable v0 there are formulae Rgd(a), Rgd(y), Fin(a), ^(a, ?) and
 Std(y) so that for any S5-model (si, w), A, B ? W x \si\, R?Wx \si\2:

 si,wft Rgd(d) iff A is rigid;
 si, w ft Rgd(R) iff R is rigid;
 if A is rigid, then si,wft Fin(A) iff A' is finite;
 if A and B are rigid, then si,wft ^(A,B) iff card(A') ^
 card(P');
 si,wft Std(P) iff R is a standard for (si, w).

 Rgd(a) is n(Vv)D(avDnav); Rgd(y) is \3(V v)0(V p)\3(y vp D
 \Jyvp). Form Fin(a) and ^(a, ?) from their familiar non-modal ver
 sions by inserting 'D' before each occurrence of 'V and 'O' before each
 occurrence of '3', and restricting the initial existential quantification of
 a type-(0, 0) variable by 'Rgd'. From these we may construct Std(y).
 Let Eqnum(a, ?) be ^(a, ?) & ^(?, a).
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 Given 0 G Fml(L3(?,0)4) with at most the type-0 variable v free, and
 given a type-1 variable ?, we want a formula (Ext v)(?, 0) so that for
 any S5-model (si, w) and B ? W x \si\:

 si,w ft (Ext *0(P, #) iff P is rigid and B' = ^0 Au ;

 For /3' a distinct type-1 variable let (Ext v)(?, 0) be:

 Rgd(j?) & (Vi>)(0 s ?i/) &
 (V?')([Rgd(?') & -i(3i/)j8V] D U(\fv)(?'vD-n?v)).

 For a a type-1 variable we want a formula Numb(y, a) so that for an
 S5-model (si, w) and P a code for ?#, for any A ? W x |^|:

 ?#, w (= Numb(P, A) iff for some ?*? G Fld(P), A = a*.

 Let it be:

 Rgd(a) & 0(3v)(av & D(Vi>')[ai/ D v' = v] &
 0(3v')yv'v]).

 We also want a formula Section(y, ^, a), for v a type-0 variable, so
 that for (^, w) and P as above and any a G \si\ and A?W x \si\:

 si,wft Section(P, a, A) iff A = {b: (b, a) G PH).

 Suppose we're given cpG Sent(LD,(0,0),4(EXACTLY)). To each type-2
 or type-4 variable p we associate a new type-1 variable aM. For each
 subformula 0(pa, . . . , p*) of cp with free type-2 variables shown we
 want to construct B'(y, aM1, . . . , a^k) so that (with other free variables
 replaced by parameters in any type-appropriate way) for any (si, w)
 and P as above and any n{, . . . , nk < co:

 si,wft 6(nY, . . . , nk) iff si, w ft 6'(R, ?*, . . . , a*k).

 For p of type 2 or 4, take ((3p)0)' to be (3a/x)(Numb(y, aj ? 0');
 for variables p,, p/, both of type 2 or both of type 4, take (p, ^ p/)' to
 be:

 (3j8)(3jB')(Rgd(jB) A Rgd(jS') & <(?, ?') &
 0(3p)[aM(p) & Section(y, p, j8)] &
 0(3p)[cv(p) & Section^, p,j8')]),

 for distinct type-1 variables ? and ?'. For p of type 2 and v of type 0
 take ((exactly plv)0)' to be
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 (3a)(3?)((Ext v)(a, 0) & Rgd(/3) & Eqnum(a, ?) &
 <0>(3p)[a? & Section(y, p, ?)]),

 for distinct new variables a and ? of type 1 and p of type 0. For p, of
 type 4 and p of type 2, take ((exactly pip)6)' to be:

 (3a)(3/3)(Rgd(a)&Rgd(i?)&
 (Vap)[(0' & Numb(y, ap)) s 0(3^)(ap(^) & ai/)] &
 O^^a^) ? Section(y, v, ?)]),

 with a, ? as above. Details are left to the reader. Take ijj to be
 (Vy)(Std(y)Dcp'(y)).
 Conjecture: if variables of type 1 and (0, 0) are restricted to actualistic

 values, this observation fails. Question: does this observation carry over
 to other familiar modal logics, e.g., S4?

 9.

 For 'x' replaceable as before, form LD'X,# by enriching Z/,# with 'D'.
 We'd like to find a way of encoding of LP,x2 (exactly) into LDvX#.
 What shall a representor for a model (si, w) be? The most straightfor
 ward way to make our model-theoretic semantics model a modal Fre
 gean version of the Mathematical-Object Theory would be to make sure
 that bound type-0 variables range over the range of representors. This
 suggests that we restrict our attention to structures si such that
 nw Wsi(w) is infinite, and take representors to be into that set. If we
 agree that the natural numbers are necessary existents, restricting our
 attention to such models would be completely reasonable.

 If we want to accommodate the possibility of there being finitely
 many objects, such a restriction is unreasonable. But if (lwGWsi(w) is
 finite we'll have to encode some members of 2EXACTLY by members
 of \si\ - si(w); relative to (si, w) such objects are not in the range of
 bound type-0 variables. This fact alone will block an encoding of
 LDx'2(exactly) into LDx#.

 Consider a structure si based on skeleton ?f= (W, R, \si\, si). For
 aG\si\, let a be safe in ?P (and in si) iff for every wGW
 a G si(w) U si(w). Soif ^ is an S5-structure all members of \si\ are safe.
 Let ?f, si, and any model based on si, support encoding iff there are
 infinitely many ?G|^| safe in if. Let ^ be a representor for iP (and si)
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 be a one-to-one function from 2EXACTLY into {a: a is safe in 5^}. So
 a skeleton, or a structure, has a representor iff it supports encoding.
 Let a Frege-structure (Frege-model) have the form (si, r) [(si, *, w)]
 where ^ is a representor for si [and w G W].

 For 'jc' replaceable by '0', ' ', '1', or '(0,0)' form Ln'x# by adding
 W', '^' and '#' to the logical lexicon of LD,A under the usual formation
 rules. The definition of des^' and A,r,wft involves relativizing the
 definition in Section 4 to w. In particular,

 des^'^??* v)cp) - a iff for some n<co card(?cp^',vv) and a =
 K2Q(n));

 recall that vcp^^^ is the actualistic extension of cp for v; thus '#' is
 actualistical as well.

 For a model M ? (si, w) that supports encoding and cp G
 Sent(L?^#), let:

 M ft cp iff for every representor w for si si, r, w ft cp;
 M =\ cp iff for every representor ^ for si si, r, w ft cp.

 For A U {cp} ? Sent(Ln **) and a model logic L let:

 A *L-entails cp iff for every poo-L-model M that supports
 encoding, if M ft A then M ft cp.

 The definitions of *L-bivalence, *L-truthvaluelessness, etc., carry over
 from Section 5 in the obvious ways. By restricting attention to e
 actualistic models for a model logic L we define e-actualistic *L-entail
 ment, etc., in the obvious ways. Let:

 *L-Biv(LD'x'#) = the set of *L-bivalent sentences of LD v#;
 *L-Bivefl(Ln'*'#) = the set of e-actualistic *L-bivalent sen
 tences of LD^#.

 Note the following. For each nG co, E(?) is not *K-valid or even
 *S5-valid; nor is (3v)N(v). But E(?) v OE(?), and (3v)N(v) v 0(?v)
 N(v) are *K-valid; so OE(?) and 0(3v)N(v) are *T-valid. This is in
 keeping with the suggestion that many existential constructions within
 the Mathematical-Object picture should be understood as prefexed by
 the possibility operator. Hereafter, let's restrict our attention to T
 structures and T-models; this restriction could be dropped at the cost
 of some notational complexity.

 Even though our semantics does not treat #-terms as designators, it
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 permits us to reconstruct the non-semantic content of the doctrine that
 numerals are rigid designators: for any nG co,

 D(Vjc)(jc = ? D U(x = ?)) is *?-valid.

 The suggestion initiating the modal gambit was that certain existential
 statements to which the Mathematical-Object picture is committed
 (e.g., that there are at least n objects, for each n < S0), be understood
 as within the scope of an implicit possibility operator. Our seman
 tics partly bears out that idea. For example, although
 (Vv)(N(v)D(3p)(N(p) & v^p & -ipss v)) is not even *S5-valid,
 n(Vv)(N(v)DO(3p)(N(p) & v^p & -ip^v)) is *T-valid, and ex
 presses the "modal unboundedness" of the natural numbers.
 But this idea does not lead to an encoding of Ld,*,2(exactly) into

 Lu,*'#. The problem is simple: relative to (si, &, w) for a type-0 variable
 v, 0(3v)(N(v) & . . .) "moves us" to other worlds u and then has us
 seek a witnessing member of Rng(^) in si(u); we may find one, but
 then have no way "back" to w to see what hold for it there. For
 example, (3p,)(exactly plv)P(v), parsing 'There are finitely many Ps',
 appears not to be expressible in Lni#, even if we restrict ourselves to
 e-actualistic S5-models.

 Some of LDx,2(exactly) can be encoded into LDvr'#. For
 cp G Sent(Ln,x,2(EXACTLY)), let cp be special iff each prefix of the form
 (3p,) occurring in cp, for p, of type 2, has scope of the form Dif/ & O0X
 & . . . &O0n& ?j, and ? contains no occurrences of prefexes (exactly
 puv) or of any predicate-constant.
 Observation 7: There is a translation t from special sentences of

 Ld'*'2(exactly) into Sent(LDv*'#) so that for any special sentence cp
 of Ld,x,2(exactly) and any S5-model M that supports encoding: M ft
 cp iff M ft t(cp).

 Form /(cp) from cp by replacing each type-2 variable p, in cp with a
 new distinct type-0 variable v^ and replacing subformulae (3p,)(D^ &
 O0! & . . . & O0? & ?) by 0(3iv)(jV(iv) & D^ & O0X & . . . O0? &
 ?). Over an S5-model, this preserves truth and falsity.

 If we want more encoding, we're forced to compromise with Possibil
 ism. I'll describe two ways to do this.

 (1) We could form L x* by enriching La,*,# with '3'. Then we can
 translate from Sent(LnvX,2(EXACTLY)) by replacing (3p,) ... by (3*v)
 (M*v) ? . . .). Only a lax Individual-Actualist could be happy with
 this approach. But even this will not permit us to encode Ld,x,4(ex
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 actly) into L ,x,#. This is because '#' is actualistic. To handle variables
 of type 4 we'd need to further enrich L ,v,#, for example, by '# under
 the clause:

 des^'A"((#^)cp) - *(2Q(n)), where n = card({? G si(w):
 si, w, w ft cp(a/v)}).

 So the compromise with Possibilism is substantial.
 (2) We could enrich LD,jr,# with the quantifier '3*' binding variables

 of type 1 and ranging over individual-essences. First we generalize the
 notion of an individual essence introduces in Section 8 to non-S5 struc

 tures. Fix a structure si with set Wof "worlds" and accessibility relation
 P. For a G \si\, let a* = {(w, a): a G si(w)}. (For S5-structures, this defi
 nition coincides that given in Section 8. By sticking with the latter,
 we'd spare ourselves some complication, but we would not have modal
 logics weaker than S5 validate the principle that any individual essence
 is or could be (could have been) instanced.) For V replaceable as
 usual, we enrich LD,X to Ln,A* by introducing the type-1 variables and
 '3*' binding them and ranging over individual-essences, as follows: for
 a such a variable:

 si,wft (3*a)cp iff for some a G si(w) si,wft cp(a*la).

 Note: in S5 we may regard LnA* [LD'((X0) *] as a fragment of LDA
 [LD,(0,0)], since over S5-structures we can express "a is an individual
 constant", for a type-1 variable a, by

 U(Mv)(avD D(Vp)(apD v = p)) & 0(3v)av.
 For variables a, ? of type-1, we adopt these abbreviations:

 N(a) for 0(3v)(av & N(v));
 a^?for 0(3v)0(3p)(av & ?p & v^p).

 Though (Vv)(N(v) D (3p)(N(p)& v^p&^p^v)) isn't even e-actual
 istically *S5-valid, (Va)(N(a) D (3?)N(?) & a ^ ? & ~i?^a)) is
 *T-valid.

 Observation 8. There is a translation t3,

 t3: Sent(LD "^(exactly))-^ *K-Biv(LDx * *),

 so that for any model M that supports encoding and any
 cp G Sent(LD'*'2(EXACTLY)): M ft cp iff M ft t3(cp).
 Given cp G Sent(LD,*,2(EXACTLY)), for each variable p, of type 2 in cp
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 introduce a distinct new variable a^ of type 1. Form cp' by replacing
 subformulae of cp as follows:

 (3p,)0 by (3aJ(N(aJ & 0');
 pu ^ fi' by aM^<v;
 (exactly piv)d by ?^((#^)0').

 cp' is as desired.
 Observation 9. There is a translation t4,

 U: Sent(LD^0)'#0 -+Sent(LD'(0'0)),

 so that for any cp G *K-Bivefl(Ln'(0'0)'*), cp is e-actualistically *S5-equiva
 lent to t4(cp).
 Given cp as above, since we're working in S5 we may eliminate '3*'

 in favor of '3'. Reletter to make sure every variable is bound at most
 once. As we did in proving Observation 5, transform cp into an e~
 actualistically K-equivalent sentence cp' in which #-terms only occur in
 equations; our restriction to e-actualistic models insures that for a predi
 cate-constant f and #-term t, ?(. . . , t, . . .) and (3p)(p = r &
 ?(..., p, .. .)) have the same truth-value (for a new variable p of type
 0). The rest of the construction combines the arguments for Obser
 vations 5 and 6, and is left to the reader. The restriction to e-actualistic
 models in this previous observation is annoying; but I cannot see how
 to avoid it.

 By (Hodes 1984c) Section 5 (14), even if we restrict ourselves to S5
 models '3*' does not give us '3'; so one might argue that allowing
 quantification over individual essences is not as possibilistic as allowing
 a quantifier over possible objects. But, by p. 453, within S5, if we
 restrict ourselves to e-actualistic S5-models, '3*' does give '3'. So it's
 unclear that (2) has an actualistic advantage over (1).
 Approach (2) also faces a "pre-metaphysical" problem. lu**** per

 mits two sorts what might be called quantification over numbers:
 (3v)(N(v) & . . .) and (3*a)(N(a) &...). Granted, it seems that the
 latter does all the work; so perhaps the former should be set aside as
 not representing a construction used in mathematical practice. Still, if
 ?a,*,*,* mocjejs languages in which mathematics is practiced, it gives a
 surprising logico-syntactic analysis of such languages: it requires that
 apparently first-order quantification (binding variables of type 0) really
 be second-order (binding variables of type 1). Nothing in our inferential
 practice suggests this. The very idea is an ad hoc device to save the
 modal gambit from the laxest sort of Actualism. In conclusion: my view
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 of the modal gambit as expressed in my (1984a) article was too sangu
 ine. It seems that only a lax Individual-Actualist can even get an Alter
 native model-theoretic semantics for LD,0,# off the ground. Finally, it
 seems that even a lax Individual-Actualist can't encode Ld,0,4(exactly)
 without allowing a non-actualistic "number-of'-operator. I tentatively
 conclude that an Individual-Actualist who accepts the Alternative the
 ory does best to accept an actual infinitude.19

 10.

 I offer the model-theoretic semantics of Section 5 as philosophical
 therapy for those who, "gripped" by the Mathematical-Object picture,
 have gone on to swallow the Mathematical-Object Theory.20 The point
 of an exercise in modelling is not always self-evident. So in this section
 I'll try to summarize the philosophical point of model-theoretic seman
 tics.

 Are there natural numbers? For example, does the number one
 "really" exist? Construed within the Mathematical-Object Picture (i.e.,
 without reinterpretation) the answers to both questions are trivially
 "Yes". Indeed, our model-theory suggests "Yes, as a logical conse
 quence of the existence of infinitely many objects". Provided we avoid
 the modal gambit, this does not violate Quine's plausible strictures,
 echoed by Dummett, against allowing that numbers exist, but only in
 a funny sense of 'exist'21:

 The only sense we have for 'exists' is that given by the existential quantifier in the
 sentences we ordinarily use ... (3, p. 497)

 Dummett goes on to say, however:

 if we have provided determinate truth-conditions for a certain existential statement, and,
 under those truth-conditions, the statement proves to be true, then there exists something
 satisfying the condition given in the statement, and that is an end of the matter.

 Whether this is right depends on what the matter in question is. For
 one may reinterpret the question "Do numbers, e.g., the number one,
 exist?" metalinguistically, as "Do number-terms, e.g. T, designate?"
 To somebody who accepts the Supposedly Self-Evident Principle from
 Section 1, this construal will seem no different from the preceding one.
 The model-theoretic semantics presented in Section 5 shows that it is
 at least formally coherent to reject that principle from right to left. In
 particular it is coherent to accept the literal truth of 'The number one
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 392  HAROLD T. HODES

 exists', but not of the semantic thesis that "the number one" designates
 something. In this case, the semantic and the existential questions are
 distinct.

 Of course it is a mistake to formulate a semantic question as an
 existential one - though the mistake comes naturally if one's philosoph
 ical reflexes have been shaped by the principle just rejected. I think
 that in many cases it is a concern with the semantic question that

 motivates people to ask the otherwise trivial existential question, and
 that inclines those who do so to insert the scare-quoted 'really' as if to
 acknoweldge the infelicity of their formulation of the question.

 To avoid such infelicity, let me put my point like this. There are two
 construals of Quine's slogan 'To be is to be the value of a variable'.
 Under the thin construal, Quine's point is Dummett's: the ontological
 commitments of a body of discourse are simply a matter of what existen
 tially-quantified statements are asserted in that discourse under an opti

 mal parsing. Under the thick construal, Quine's slogan tells us to read
 ontological commitments off of an optimal theory (or definition) of
 truth, or better, of satisfaction, for the language in which the discourse
 occurs; the values of variables are literally the values that variable
 assignments, as relata of the satisfaction relation, assign to the variables.
 (Of course in this paper I formulated the model-theoretic definitions
 so as to avoid use of satisfaction and variable-assignments, in favor of
 truth plus the introduction of new constants. This was an expository
 convenience which I hope will not produce confusion: under the model
 theoretic semantics presented here, the values of the type-0 variables
 are the designata of the terms of type-0.)

 Now the contrast between existential and semantic questions may be
 described as "external" versus "internal"; but I can see no reason to
 rule out the "external" semantic question as illegitimate. In particular,
 asking it does not involve trying to speak and think "outside of all
 language". It does involve semantic ascent. Indeed, how we answer it
 depends on whether or not in so ascending we also extricate ourselves
 from the Mathematical-Object Picture. This is what the Alternative
 theorist prefers to do; the denial that, e.g., 'the number one' designates
 something, is made within a metalanguage represent able as an
 Z/,4(exactly) rather than as Lx,#.
 What advantage is there in this extrication from the Mathematical

 Object Picture? Can we limn reality better within a language of the
 former form than within one of the latter form? In a limited way, yes.
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 A sense-bearing language whose alethic underpinnings were modeled
 by LxA(exactly) would be semantically uniform: lexical items of the
 same basic syntactic category would all do the same kind of semantic
 work. Our mathematical discourse is not semantically uniform; it can
 be modeled by uninterpreted languages of the form LX,*(S), languages
 whose type-0 terms include #-terms as well as terms based on S. If we
 think within a semantically uniform metalanguage, we're not liable to
 certain metaphysical puzzlements and illusions, those which have
 fuelled philosophical controversy about mathematical objects.

 But we cannot go beyond this to say, e.g., that the number one
 doesn't "really" exist: within a language representable as
 LxA(exactly) a question like 'Does the number one exist?' can't even
 be formulated!22 Furthermore, if suitably understood, the Mathema
 tical-Object Picure can be semantically innocuous, as it is mathema
 tically innocuous. The Alternative theorist can introduce a non-robust
 disquotational sense of 'designates', allow that under it sentences like
 "1' designates 1' are literally true, and thereby imitate the Mathema
 tical-Object Theorist. If not understood correctly, this move nicely
 disguises the distinction between thick and thin ontological com
 mitment. Notice: if we want to conceive this model-theoretically, say
 by enriching Lx,# with meta-linguistic terms and a 2-place predicate
 'D' to represent 'designates', then relative to a model si 'D\ like W'
 and '^', would not have an extension. ('D' would have one relative to
 each representor for si; but these would be artifacts of the model.) See
 (Hodes 1990, section 8) for a detailed exposition. In non-model-theor
 etic terms: 'designates', in the extended use it is accorded by this move,
 doesn't stand for a relation. Does the availability of such an ersatz
 semantics lend weight to the Carnapian attitude that our external sem
 antic question is merely a call for the establishment of a convention?
 Only in the trivial sense in which the meaning of our semantic vocabul
 ary, like that of all vocabulary, is conventional. Whether or not we
 speak a semantically uniform metalanguage is, in a sense, a matter of
 convention. The important point then is that some conventions are less
 misleading than others.

 The impression that the mere truth of 'The number one exists' insures
 that 'the number one' designated something dies hard. Certainly one
 needn't accept Frege's Context Principle under the Dummett and

 Wright reading (that all there is to the fact that a singular term desig
 nates is that it contribute uniformly to determine the truth-value of
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 sentences in which it occurs) to feel its pull. Dummett is quite aware
 of the strain put on the notion of reference when this principle is used
 to support the Fregean doctrine that numbers are objects designated
 by singular numerical expressions. He seems to defend the latter view,
 but only by qualifying it to the point of surrender:

 . . . reference may be ascribed to them only as a fa?on de parler. . . . their meaning cannot
 be construed after the realistic model, as determined by a relation of reference between
 them and external objects. (1973, p. 508)

 I find the phrase 'after the realistic model' quite obscure; and talk of
 discerning "numbers as constituents of the external world" (1973, p.
 505) doesn't help me. Perhaps by 'reference . . . ascribed only as a
 fa?on de parler', Dummett alludes to the sort of disquotational semantic
 ascent within a metalanguage of the form Lv* described in the previous
 paragraph.

 It would be somewhat in the spirit of Dummett's construal of the
 context principle to urge that an assignment of truth-values to sentences
 of L*'# by the model-theoretic semantics from Section 5 would suffice
 to make #-terms designators. (This is not completely in that spirit,
 since such an assignment would not be total.) Let's try to picture this

 model-theoretically.
 Let a Frege-model (si, w) be special iff

 for every cp G Sent(L(0'0)'#) si, *f cp iff siftcp.
 Of course our semantics in Section 4 was two-valued; so the existence
 of oo-truth-valueless sentences, in even L0,#, prevent there from being
 special Frege-models. But by using a non-bivalent semantics from the
 start, as sketched in Appendix 2, we at least avoid this trivialization.

 We may then allow si to be a partial model, and we'd want to add a
 second clause to the definition of specialness:

 for every cp G Sent(L(0'0)'#) si,v^cpiff si=icp.

 Dummett says:

 Frege takes the possibility of giving an incontestably legitimate explanation ... of the
 senses of sentences containing terms of a given kind that behave like proper names as a
 justification for regarding those terms as standing for objects.

 In what seems to be a partial defense of this, he adds:

 If the stipulation is carried out in a logically unobjectionable manner, then no absurdity
 can arise from crediting those names with the property of standing for objects. . . . Numer
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 ical terms, if explained in such a way, would, as it were, be said to have reference only
 by courtesy. (1981, p. 425-26)

 For a special Frege-model (si, v), w would be such a "courtesy" to si.
 Under the semantics from Appendix 2, there are special Frege-models
 (total ones if S has no function-constants). But the condition that a
 given partial model have such a "courtesy" representor is very restric
 tive. For example, if v is the only variable free in cp G Fml(L(0,0)), we
 can't have (V^)(cp v (~icp)), (3^)cp and (3i^)(-icp) all true in such a
 model. (Proof is left to the reader.) The moral: Dummett's courtesy
 can only be extended to the Alternative semantics for languages much
 weaker than those we speak, or under the assumption that the world
 is as uniform as such a model.

 One way to stick to the Mathematical-Object Theory would be to
 maintain that numbers are literally products of linguistic practice, or
 its mental analog. A few pages before the fa?on-de-parler passage we
 find one in which Dummett might be advocating this position (though
 it is hard to be sure):

 Pure abstract objects are no more than the reflections of certain linguistic expressions,
 expressions which behave, by simple formal criteria, in a manner analogous to proper
 names of objects. (1973, p. 505)

 (Does 'reflection' carry the implication that pure abstract objects would
 not exist without such linguistic expressions that so behaved?) And
 numerous philosophers have said that numbers are produced by mental
 construction. (George Boolos has pointed out to me the analogy be
 tween the semantics offered in Section 5 and Dedekind's assertion
 that the mind constructs the natural numbers by abstracting away the
 differences between all co-sequences. But the disanalogy is more salient:
 according to the Alternative theory, #-terms don't designate anything,
 including mental constructs.23)

 This sort of view is not absurd. Certain mildly abstract entities, e.g.,
 clubs or nations, are products of complex social practices. Others, e.g.,
 mathematical proofs under one construal of the phrase, are the products
 of mental activity. And it seems plausible to maintain that fictional
 characters in literature and legend are products of the mental activity
 and linguistic practices involved in the creation and persistence of litera
 ture and legend.

 I'm disinclined to extend this thesis to the natural numbers; 'The
 number one did not exist one million years ago' seems literally untrue.
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 (For what it's worth, the model-theoretic semantics of Section 5 suggests
 that it's not true: there are things that did exist one million years ago;
 let T' parse 'existed one million years ago'; note that for any infinite
 model si, if sift i(3x)Px' then sift '-i??'.) One could then retreat to
 possibilism, identifying numbers with permanently possible products of
 mathematical practice. Perhaps the only argument against both of these
 views is based on Ockham's razor: once we accept quantification over
 cardinality-quantifiers as legitimate, why posit objects that intrinsically
 encode them, especially when we can enjoy the comforts of the Mathe
 matical-Object Picture without them? That we can has, I hope, also
 been demonstrated by this paper. Of course the Alternative theory
 doesn't really close the question of the ontological commitments of
 arithmetic; rather it refocuses the question where, I submit, it belongs
 - on the ontological commitments of higher-order languages.

 APPENDIX 1

 We'll consider a model-theoretic semantics that represents a non
 Fregean Mathematical-Object theory, one that draws type-distinctions
 between objects. Introduce a countable set of new variables of type-n
 ('n' for 'numbers'). Where V is replaceable by '0', '1', or '(0, 0)', form
 Lx,n from Lx by adding '^' and '#' to the logical lexicon, with the
 formation rules:

 if v is a variable of type 0 or type n and cp is a formula then
 (#^)cp is a term of type n;
 if v and p, are variables of type n then v ^ p, is a formula.

 For v and p, of type n let v = p, be v^ p, & p, ^ v.
 Let an n-model be of the form (si, R), where si is a model and R is

 a reflexive well-ordering of order-type co. Form L^nR as before, except
 also introducing a type n constant e for each eG?\d(R). We define
 des^,/? and si,Rft. The definitions are as usual, with these additional
 clauses:

 des^((#^)cp) - nR, ifn = card(zV**);
 si, Rftd^e iff dRe;

 here nR is the n + 1st element of Fld(i?) under R, and if v is a variable
 of type n then vcp^R = {e G Fld(R): si, R ft cp(e/v)}.

 Relative to an n-model (si, R), members of Fld(/?) represent natural
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 numbers; R itself may be thought of as coding the function assigning
 2Q(n) to nR, which represents the standard representor. Notice that
 |?41 and Fld(fi) do not "interact"; they might as well be taken to be

 disjoint.24
 As in Section 4, there are non-designating terms of type n. This may

 be avoided by using n^-models rather than n-models, i.e., by taking R
 to be a well-ordering of order-type co + 1 and adding the clause:

 des^'^+^cp) = coR if vcp^R is infinite;

 here coR is the last element of Fld(7?) under R.
 We now make precise the sense in which Lx,n encodes LxA(exactly)

 [//^(exactly00)].
 Observation 10: There is a translation function u [it],

 u: Sent(Z/'4(EXACTLY)) -* Sent(Z/n)
 [ux: Sent(Z/^(exactly30)) -> Sent(Z/n)].

 so that for any n-model [n'-model] (si, R) and any cp G Sent(Z/4
 (exactly)) [Sent(Lx,4(EXACTLY))]:

 si ft cp iff si, R ft u(cp) [u~(cp)].

 This construction is like that from Section 4. However we now can
 reverse our translation.

 Observation 11: There is a translation u*,

 w*: Sent(Lxn) -^Sent(Lx'4(EXACTLY)),

 so that for any n-model (si, R) and any cp G Sent(Z/,n):

 si,Rft cp iff sift u*(cp).25

 Given cp G Sent(L*n), find an n-equivalent cp' in which each occurrence
 of a #-term t occurs only in the context r = p,, for a type-n variable p,.
 For example, replace r = a or a = r by (Vp)(r = p= a = p), where p
 doesn't occur in r or a. In cp' replace each subformula p, = (#p)0 by
 (exactly p,p)6, now making all type-n variables into type-2 variables.

 We may now have subformula of the form (exactly p,p)S in which p
 is of type-2; for each such, introduce a type-4 variable p! corresponding
 to p and replace that subformula by (3p/)((exactly p'p)0 & p = p').
 It's easy to see that this produces the required w*(cp). An analogous
 w??* may be constructed for n^-models and //^(exactly30).

 Observation 12. Where R is the reflexive closure of a well-ordering
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 of order-type co + 1, let R' be obtained by deleting coR from Fld(i?).
 There is a translation s [sx] with

 s [s~]: Sent(Z/'n) -?Sent(Z/n),

 so that for every n^-model (si, R) and every cp G Sent(LA,n):

 si,Rft cp iff si, R'ft s(cp)
 [si,R'ft cp iff si, R ft s~(cp)].

 The construction of sx is straightforward; the construction of s follows
 that used for Observation 1.

 I am inclined to regard versions of the Mathematical-Object theory
 that draw type-distinctions between objects as prima facie unmotivated.
 Frege's type-distinctions, e.g., between objects and level-one concepts,
 rely on the uncontroversial fact that certain combinations of symbols,
 e.g., 'Frege Church' or 'is a philosopher is bald', are not sentences,
 and indeed can't even be construed as ungrammatical attempts at con
 structing sentences. One can't claim that it's equally obvious that '1 =
 Julius Caesar' is not a sentence. The thesis that the terms flanking the
 occurrence of '=' are designators only make such a claim less self
 evident: if I can refer to two objects, why couldn't I say that they
 are identical? Those who accept such a type-distinction owe us some
 explanation of why they accept them; by itself, an appeal to "linguistic
 intuition" tells us nothing. (The model-theoretic semantics presented
 in Section 5 reconstructs some motivation for such a type-distinction,
 in so far as it characterizes what is anomalous about sentences like '1 =

 Julius Caesar'; but it also rejects such a distinction.)
 Indeed Observations 10 and 11 together show that the picture of

 arithmetic discourse presented by the non-Fregean version of the
 Mathematical-Object picture (according to which the natural numbers
 constitute a logical type) can easily be reconstrued by the Alternative
 theory, translating from Z/,n to Z/,4(exactly) or //^(exactly30), and
 back again. These facts justify the natural inclination to think that there
 is no mathematical reason for preferring Z/,# to Lxn, or vice versa. Of
 course such a cavalier attitude towards this choice is not available to

 those who accept the Mathematical-Object Theory.

 appendix 2

 A partial model ^for S consists of a set \si\ and assignments as follows:

 for an n-place predicate-constant ? G S:
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 ifn>0, ?st:Q\si\n->'{0,1};
 if n = 0, either ^ f or ?M E {0,1};

 for an n-place function-constant pE5:

 ifn<0,p^:C|^r-^|^|;
 if n = 0, either p^ f or p^ ? |^|.

 Where j?is a partial model for 5, extend L(00) to LS'0> as in Section
 2. We define the partial designation function des** on closed terms of
 lS'0) as in Section 2. We simultaneously define M\= and si=\ for
 sentences of LS'0) as follows:

 .sH'-L';
 j? |= t = o- iff des^(r) = des^o-);

 d =\ t = a iff either des^r) | , des^o-) | , and
 desrf(T)*desJV),ordesJ*(T)? and des^w) i or
 des^(T) | and des^cr) ? ;

 M\= i(T0,. . . , t?_0 iff ndes^(ro),. . . , des^r^,)) = 1;
 M =\ ?(to, . . . , t?-!) iff ^(des^(To),. . . , des^T?-!? = 0;
 for A ? |^|, let A5* = the characteristic function for A on
 \d\;
 for 2? ? \si\2, let #** = the characteristic function for B on
 NI2;
 ?#|= i/r D i/f iff either si=\? or sift ifr
 si^cpD ij? ffi sift cp and si =\ ifc
 sift (3v)cp iff for some a G \si\ sift cp(alv);
 si =\ (3v)cp iff for every a G \si\ si =) cpfe/v);
 where y is a type-1 [type-(0, 0)] variable:
 sift (3y)cp iff for some A ? \si\ [A ? \si\2] sift cp0Vy);
 si =\ (3y)cp iff for every A ? \si\ [A ? \si\2] si H <P0Vy).

 We adopt these further abbreviations:

 A | cp : sift cp and si4\cp;
 siftwcp:siJ\cp;

 read the latter as "cp is weakly true in si".
 The semantics given above is, in (Hodes 1989), accorded to the

 logical lexicon lexi^; notice that 'D' is given the strong-Kleene truth
 table. We introduce '?1\ '&', 'v', '=' and 'V by the standard abbrevi
 ations; thus '&' and 'v' also have strong-Kleene truth-tables. Letting
 cp D if/ abbreviate

 (cpDcp) & (i/O ?A) & O 3 i/0,
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 we introduce the weak-Kleene conditional 'D'. Note that '3' is the
 quantifier that generalizes our truth-table for 'v'. For a type-0 term r,
 E(t) still says "t exists"; for any model si:

 si ft E(t) iff des^(r) j ; si =\ E(t) iff des^(r) f .

 Let (3v)cp abbreviate (V^)(cp D cp) & (3v)cp. For v a variable of type-0,
 let cp be ^-bivalent in si iff:

 for every a G \si\, either si ft cp(v/a) or si =\ cp(v/a).

 We then have the following:

 ?& ft (Rv)cp iff cp is ^-bivalent in si and for some a G \si\,
 sift cp(vla);
 ?i =\ (3^)cp iff for every a G \si\, si =\ cp(v/a).

 Thus '3' is the "weak" analog of the "strong" quantifier '3'.
 Suppose that we have:

 S>2 ? Power({(A0, Al): A0 ? A, ? \si\});
 % ? Power({<A0, Ax): A0 ? Ax ? 3)2}).

 Then we may expand L(00)4 to L?%%A and define truth in si, 3)2, %
 with these new clauses; where v is a type-0 variable and Q G 3)2:

 vcpM^^ = {aG\si\:si, Q)2, ?4ftw cp(a/v)};
 si, 3)2, % ft (Qv)cp iff (vcp^^\ iV^^4) e q.

 similar clauses apply for v a type-2 variables and Q G 3)4. The basic
 point here is that we must attend to the "weak extension" of a formula
 at v, as well as to its "strong extension".
 We now face two possible choices for 2'EXACTLY, between "weak"

 and "strong" quantifiers. For nG co, the "strong" choice would be:

 2Q(n) = {(Ao,Ai): for some Ac|??| with card(A) = n,
 Ao?A?A,};

 the "weak" choice would be:

 2Q(n) = {(A, A): AC\si\ and card(A) = n}.

 The corresponding choice must also be made for 4Q(n). We gain gen
 erality with the strong choice, but this would make our life much harder
 when we come to the three-valued analog of Section 4. As in Section
 3, we'll replace 'L*'4' by 'Z/,4(exactly)', with the corresponding other
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 notational changes. Suffice to say that the discussion in Section 3 may
 be extended in the natural way to these three-valued semantics. We
 may also develop a three-valued version of the material in Section 8;
 in so doing, we could introduce the notion of an e-actualist model

 without relying on the Falsehood Convention; see (Hodes 1987) for
 elaboration.
 When si is a partial model, the definition of a representor for si

 carries over from Section 4 in the obvious way; similarly for the defini
 tion of a Frege-model. For a Frege-model (si, r), we might try defining
 des"" with this clause:

 dt^((*v)cp) - K?)> where (vcp^, vcp^') G q

 If we adopt the semantics for Z/,4(exactly) under which variables
 of types 2 and 4 ranged over weak cardinality-quantifiers, the above
 definition would raise no problems; notice that it would make the
 following hold:

 if des"'((=Mcp) | then cp is ^-bivalent in (si, r).

 However if we adopt the semantics under which variables of types 2
 and 4 ranged over strong cardinality-quantifiers, the above definition
 would fact this difficulty: there could be several Q G 2'EXACTLY so
 that(vcp^,vcp^)GQ.
 This problem is not insurmountable. It would require that des"''

 accommodate multiple designation. One way would be to take its values
 be sets; where before we had des"'Xr) = a, now we'd have des"'(r) =
 {a}; where before we had des^(r) ? ? now we'd have des"'(t) = { }
 Then our clause for '#' would be:

 des"'"((# v)cp) = Mo): (imp**", vcp^) G Q for some
 Q G ^EXACTLY}.

 We'd then have to change the definitions of |= and =) for atomic
 sentences. For example, we'd need:

 si, Tt: |= r = a iff des^(r) = des^(cr), which is a singleton;
 si, ft ^ r = a iff des^'?T) H des"" (ct) = { }.

 In our final definition of truth and falsity in an infinite model si, the
 clause for truth would be as in Section 5, but the clause for falsity
 would be:

 si =\ cp iff for every representor ^ for si si, v- =| cp.
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 NOTES

 1 I read an ancestor of this paper at the December 1983 meeting of the Eastern Division
 of the American Philosophical Association. I'd like to thank the commentator Glen
 Helman for helpful comments; similar thanks go to John G. Bennett.
 2 The Alternative Theory presented in this paper was in my (1984a) called 'Coding
 Fictionalism'. I've changed labels because the root 'fiction' has led to more misunder
 standing than understanding. The narrowly philosophical content of this paper is pre
 sented from a slightly different angle, with focus on set theory rather than on arithmetic,
 in (Hodes 1990). There's more on set theory in my forthcoming article in The Journal
 for Symbolic Logic. This project has similarities to work of David Bostock; see his (1974)
 and my (1976).
 3 In a manuscript from the Nachlass, dated by the editors as from the last year of Frege's
 life, he wrote:

 I, for my part, never had any doubt that numerals must designate something in
 arithmetic, if such a discipline is to exist at all, and that it does is surely hard to
 deny. (5, p. 275)

 Nonetheless, in a diary entry from the same period, Frege wrote:

 Indeed, when one has been occupied with these questions for a long time one comes
 to suspect that our way of using language is misleading, that number-words are not
 proper names of objects at all and words like 'number', 'square number' and the
 rest are not concept-words; and that consequently a sentence like 'Four is a square
 number' simply does not express that an object is subsumed under a concept and so
 just cannot be construed like the sentence 'Sirius is a fixed star'. But how then is it
 to be construed? (Frege 1979, p. 263)

 The model-theory presented in Section 5 reflects an alternate construal.
 4 Dummett, and following him Wright, would delete this 'in part'. According to Wright,
 if we accept Frege's "arguments" for that thesis, arguments which consist in pointing out
 the syntactic "analogies between numerical expressions and paradigmatic singular terms
 elsewhere", then we must

 find the content of Frege's claim that numbers are objects in those very arguments.
 According to the latter course, the substance of the claim that the numbers are, if
 anything, Fregean objects, must then be simply that there are substantial analogies
 between the behavior of numerical expressions and that of paradigmatic singular
 terms in general; the existence of numbers as Fregean objects will be guaranteed by
 the presence of those analogies and the fact that certain appropriate contexts involv
 ing numerical expressions are true. (20, p. 12)

 Keep in mind that the 'substantial analogies' to which Wright alludes are syntactic.
 5 I am not here endorsing the doctrine of "syntactic priority" that Dummett (1973) and

 Wright (1983, p. 57) attribute to Frege, according to which we may demarcate the class
 of singular terms of a language on purely syntactic grounds. I make no commitments as
 to how an initial class of paradigmatic singular terms (proper names of persons, places
 and events, pronouns used demonstratively or indexically, certain definite descriptions
 used referentially) in a logically imperfect language is to be demarcated. Of course in a
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 logically perfect language, type (indeed all of logical form) could be read off from
 superficial syntactic form; it's just in this that logical perfection would consist. Suffice it
 to say that such a class is expanded to include numerical singular terms only on the basis
 of broadly syntactic analogies with the paradigmatic singular terms. I say 'broadly' so as
 to include considerations of interanimation between sentences, as well as those concerning
 the construction of individual sentences.

 6 Dummett says that in The Foundations "The only absolute demand that Frege makes
 is that a sense should be provided for every identity-statement connecting any two proper
 names" (1981, p. 382), and in particular kkit is allowed that . . . only certain predicates
 might be defined over directions, and the same would, by parity, apply to terms for
 numbers" (1981, p. 385). But by the time he wrote The Basic Laws, Frege clearly had
 adopted the principle that "every logical difference . . . must reflect a difference of logical
 type" (1981, p. 385), with the understanding that every difference of type is a difference
 within Frege's hierarchy of objects and functions.
 ; Of course their further typing in terms of what they called 'order' also had no counter
 part in Frege's theory. I'll conform to contemporary misuse of 'order', using it to charac
 terize Fregean typing into levels: so first-order quantifiers range over level zero, etc. As
 usual numerals are used as type-symbols according to this rule:

 '0' represents the type of objects;
 (o-!,. . . , an) represents the type of /i-place relations between entities of
 type ct\ in the first place and . . . and type crn in the ?-th place;
 n + 1 abbreviates (n).

 Note: for situations in which strict respect for the use-mention distinction would demand
 Quine's corner-quotes, I shall simply omit such quotes.
 8 Here Dummett has omitted mentioning the condition that sentences containing such
 an expression have truth-value; Wright puts it more carefully:

 When it has been established, by the sort of syntactic criteria sketched, that a given
 class of terms are functioning as singular terms, and when it has been verified that
 certain appropriate sentences containing them are, by ordinary criteria, true, then
 it follows that those terms do genuinely refer. (1983, p. 14)

 9 The suggestion that adjectival and singular-termlike occurrences of, e.g., 'four' are
 strictly homonymous is quite implausible. It asks us to ignore salient "interanimative"
 logico-syntactic facts, e.g., that 'The number of moons of Jupiter equals four' may be
 immediately inferred from 'There are exactly four moons of Jupiter', and vice-versa. The
 suggestion I seek to accommodate would make the use of 'four' as a singular term rather
 like use of adjectives as common nouns, e.g., in the transformation of 'John is black' to
 'John is a black', where the latter could been seen as derived from 'John is a black man'
 by deletion. This issue is avoided in the model-theoretic semantics to be introduced in
 Sections 3 and 4, since languages of the form Z/,4(exactly) represent only adjectival
 occurrences and those of the form Z/,# represent only singular-term-like occurrences.
 The full range of constructions available in English would have to be represented by the
 union of a language of each of the above forms, endowed with a model-theoretic semantics
 that is the union of the one given in Section 3 with either that given in Section 4 or in
 Section 5.

 9a Sally McConnell-Ginet pointed out the first two of these peculiarities, and that 'The
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 number four' is best viewed as an appositional construction, like 'the philosopher John
 Dewey', rather than as of the form [Det + NP + Adj]. Some English idioms do have the
 latter form (e.g. 'the attorney general'), with the adjective modifying the preceding noun
 phrase. That is not the case in 'the number four', as pluralization shows: 'The numbers
 four' may be a cute archaisism applied, for example, to the perfect numbers known in
 antiquity; but it wouldn't do even if used to refer to inscriptions of '4' by someone who
 took them to be numbers.

 10 ' | ' means 'is defined', ' ? ' means 'is undefined'. A sentence of the form ... ?
 is true iff either . . . j and-1 and . . . =-is true or both . . . f and-? ;
 otherwise it is false. We work in standard set-theory; co is the set of finite Von Neuman
 ordinals. For a set x, card(x) is x's cardinality, which may be taken as an initial ordinal
 or as a Scott-cardinal; where x is finite, we'll identify it with a member of co.
 11 Here '??' is an expression of type (2, 2), and so it strictly speaking binds type-1
 variables; thus where /jl and yJ are variables of type-2, ?i ?s ?x' abbreviates:

 (=??yy')((EXACTLY fiv)yv, (exactly ii'v)y'v),

 where y and y' are distinct type-1 variables and v is a type-0 variable. So understood,
 our notation honors the Fregean requirement that type-2 expressions, here jjl, and /x\ be
 "unsaturated".
 12 Insofar as Frege thought that arithmetic statements made in the context of the mathe

 matical practice of his time had truth-values, he was committed to the existence of a
 standard representor. But in places he suggests that the mathematical practice of his time

 was defective in that it was not underpinned by a standard representor, and that part
 of his purpose was to fix one by stipulation.
 13 The use of 'Frege-model', and later of 'Frege-structure', in this paper should not be
 confused with the use of these phrases by Peter Aczel and others who work on extensions
 of the A-calculus as a foundation for mathematics.

 14 Even after the mathematical community had assimilated Cantor's work, mathemati
 cians used 'infinity' as if it were a univocal singular term. What can we make of this
 practice? This question should, I think, be an embarassment to the Mathematical-Object
 theory, which must, I think, accord it a referent. As we'll see, it's easily assimilated by
 the Alternative approach.
 15 Ostensibly, his desire to secure such non-identities motivated Frege in The Foundations
 of Arithmetic to identify numbers with certain extensions; but that move merely transfers
 the problem to extensions. When the question appeared in that form, in Section 10 of
 the The Basic Laws of Arithmetic, Frege says that he has introduced "only truth-values
 and courses-of-value as objects" (p. 47 of [6]), and stipulating that the former are to be,
 in effect, their own singletons. See p. 136-37 of (Hodes 1984a).
 16 Notice: I say 'encodes', not 'stands for'; it would be syntactically incoherent for a
 singular term to stand for a quantifier. Our classification of #-terms as singular is not
 compromised, since that is based on syntactic considerations. The inclination to think
 otherwise reflects an inability to imagine a singular term playing any semantic role other
 than that of designating an object. This is apparent in (Wright 1983); for example see

 Wright's initial characterization of what he calls 'reductionism' on p. 29 and p. 67.
 17 Here I speak of artifacts of our definition of truth and falsity in a model. Kaplan spoke
 of artifacts of models themselves: "When we construct a model of something, we must
 distinguish those features of the model which represent features of that which we model,
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 from those features which are intrinsic to the model and play no representational role"
 (Kaplan 1979), p. 216. My usage is connected with Kaplan's, since a definition of truth
 and falsity in a model is itself a model (in the engineering sense) for a definition of "real
 live" truth and falsity.
 18 Had we not directly defined (= and =| for Z/*, but instead offered t0 [to] as a rewrite
 rule, then #-terms would have been introduced by contextual definitions in what Wright
 (his 1983, p. 68) calls the "the austere manner". Since this is not what we're doing,
 Wright's complaint, that such stipulations would fail to confer as semantic role on #
 terms, do not apply. (In any case, I am dubious of Wright's distinction between conferring
 a mere use and conferring a semantic role on linguistic expressions.) I'm not sure that
 the model-theory offered here represents what Wright calls 'ontological reduction by
 analysis'; but if it is, it should answer his argument against it on p. 68-69: that any non
 austere reading of equivalences like those between <p and t0((f) for (p E Sent(Z/'4(Ex
 actly)) would require us to construe the role of #-terms "as referential". (I'm inclined
 to think that remarks in my (1984a) would answer his argument from p. 31-36; but this
 issue evades model-theoretic representation.)
 19 Our approach to quantified modal model-theory has been, in essence, the one pione
 ered by S. Kripke, rather than that taken by A. Bressan. It's far from clear how a
 Bressanian model-theory bears on actual modal discourse. I think that a model-theory
 along Bressanian lines does have such application; but this would require a long story,
 some of whose details I have not worked out. Perhaps from this perspective, either
 Individual-Possibilism or the Actualist's modal gambit will appear more attractive than
 it has here.

 20 Of course a model-theoretic therapy can carry the risk of further philosophical illness.
 The standard model-theory for modal languages is particularly dangerous in this regard.
 21 Once again, the model-theoretic semantics of Section 9, unlike that of Section 5,
 violate this prima facie plausible thesis.
 22 In particular, the slogan 'Numbers are fictions' is misleading, for it asks us to simulta
 neously think within and without the Mathematical-object Picture. A similar difficulty
 might afflict uncontroversial attributions of fictionality to characters in literature, e.g.,
 'Hamlet is fictitious'. But it should be noted that the analogy between fictional characters
 and numbers, between a piece of fiction and the Mathematical-Object Picture, is far from
 perfect. Construed within the Mathematical-Object Picture (the only way it is intelligible),
 'The number one exists' is true. Under one construal, 'Hamlet existed' is literally false,
 though it is fictionally true (i.e., true in Shakespeare's play). (That construal takes
 'Hamlet' to designate a person, a Prince of Denmark; if it is construed as designating a
 fictional character, created by Shakespeare about four hundred years ago, 'Hamlet exis
 ted' is true, as is 'Hamlet exists'.)
 23 We can give a model-theoretic "picture" of Dedekind's view as follows. We'll use a
 three-valued semantics in place of that from Section 4; see the Appendix. Where M is a
 partial model, let a Frege-model (?, ?) be a Dedekind-extention of d iff \d\ and Rng(^)
 are disjoint, \% = \s?\ U Rng(*), and for every <pE Sent(L(0"0)-*):

 ?,*P (pffis&\= w &'* =1 <p iff ^H <?

 24 Following the lead from Section 5, we could adopt these definitions, for tp G Sent(Lv n):

 si \= cp iff for every R of order-type co, s4,R\= cp;
 si=\<pift for every R of order-type co, s?,R\t <p.
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 Problem: give an informative characterization of those models with Dedekind-extensions.
 This is not a three-valued semantics, because for any R and R', both of order-type co,
 any model s? and any <pG Sent(LA%n): s?, R\= cp iff sd.R' \= cp. It's not hard to see that
 Lxn, under this semantics, is a notational variant of the language Lx'2 (exactly) under
 (=K(), presented in my (1988a) and (1988b). In his (1974) Bostock appears to be considering
 a language of the latter form; but since he offers no model-theoretic semantics, it's hard
 to be sure.

 25 In effect, this observation is the collapsing theorem of my (1988a) applied to X0.
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