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Abstract

A key challenge for probabilistic causal models is to distinguish non-causal proba-
bilistic dependencies from true causal relations. To accomplish this task, causal
models are usually required to satisfy several constraints. Two prominent con-
straints are the causal Markov condition and the faithfulness condition. However,
other constraints are also needed. One of these additional constraints is the causal
sufficiency condition, which states that models must not omit any direct common
causes of the variables they contain. In this paper, I argue that the causal suffi-
ciency condition is problematic: (1) it is incompatible with the requirement that the
variables in a model must not stand in non-causal necessary dependence relations,
such as mathematical or conceptual relations, or relations described in terms of
supervenience or grounding, (2) it presupposes more causal knowledge as primi-
tive than is actually needed to create adequate causal models, and (3) if models are
only required to be causally sufficient, they cannot deal with cases where variables
are probabilistically related by accident, such as Sober’s example of the relation-
ship between bread prices in England and the sea level in Venice. I show that these
problems can be avoided if causal models are required to be monotonic in the fol-
lowing sense: the causal relations occurring in a model M would not disappear if
further variables were added to M. I give a definition of this monotonicity condition
and conclude that causal models should be required to be monotonic rather than
causally sufficient.
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1 Introduction

Contact with a person who has a SARS-CoV-2 infection increases the probability
of acquiring such an infection oneself. Here, probabilistic dependence reflects an
underlying causal dependence relation: transmission of SARS-CoV-2 pathogens is a
causal process. However, it is well known that not all probabilistic or statistic depen-
dence relations are indicative of causal relations. In some cases, probabilistic depen-
dence relations occur because there are hidden common causes. Having a dry cough
increases the probability of having an elevated temperature. But neither does the
cough itself cause the fever, nor does the fever cause the cough. Dry cough and ele-
vated temperature are symptoms of an infection, which is a common cause of both.

In other cases, non-causal probabilistic dependence relations cannot even be
explained by latent common causes. There is a positive statistical correlation between
my age and the average global temperature, but this correlation is not indicative of a
hidden common-cause structure. One of the most famous cases of this type is Sober’s
example of the relationship between bread prices in England and the sea level in Ven-
ice. Both have increased steadily over the last two centuries, but there is no common
causal process to explain this correlation (Sober, 2001, p. 332).

Probabilistic causal models rely on the observation that many causal relations lead
to probabilistic dependencies. These dependencies can be described by a probabilis-
tic model, which consists of a set of variables and a set of directed edges connecting
these variables. The variables describe the (putative) causes and effects represented
by the model. Given that not all probabilistic dependencies represent causal relations,
a central challenge for this approach is to distinguish true causal relations from purely
probabilistic dependence relations.

Therefore, causal models are required to satisfy several constraints. The two most
prominent requirements are the causal Markov condition and the faithfulness condi-
tion (Spirtes et al., 2000, p. 29-31). However, other constraints are also important.
Another condition that is crucial for distinguishing between probabilistic dependen-
cies that indicate causal relevance relations and dependencies that occur for other
reasons is the causal sufficiency condition. The basic idea of this condition is that
causal structures should not overlook hidden common causes: if V is a set of vari-
ables constituting a causal model, then there must be no variable not included in V
that is a direct cause of two or more variables in V (Spirtes & Scheines, 2004, p. 836;
Spirtes, 2010, p. 1651; Zhang & Spirtes, 2011, p. 337). Accordingly, if the set of vari-
ables constituting a model includes the variables X and Y, then it should also include
all direct common causes of X and Y. The causal sufficiency condition is usually
regarded as a precondition for the application of the causal Markov condition, that is,
the causal Markov condition is only applied to causally sufficient models (Spirtes &
Scheines, 2004, p. 836; Spirtes, 2010, p. 1651; Zhang & Spirtes, 2011, p. 337).

In this paper, I argue that the causal sufficiency condition should be replaced by
a monotonicity condition. Monotonicity in this context means that the probabilistic
dependence relations in a causal model would not disappear if more variables were
added. I argue that there are three ways in which the causal sufficiency condition is
problematic: (1) A model can be adequate only if the variables it contains do not stand
in non-causal necessary dependence relations, such as mathematical or conceptual

@ Springer



Bread prices and sea levels: why probabilistic causal models need to...

relations, or relations described in terms of supervenience or grounding. However,
the causal sufficiency condition implies that variables standing in such relations must
be included in the same causal model. (2) The causal sufficiency condition, as usually
formulated, leads to an infinite regress. And if this regress is to be avoided, the con-
dition must presuppose more causal knowledge as primitive than is actually needed
to create adequate causal models. (3) The causal sufficiency condition (in combina-
tion with the causal Markov condition and the faithfulness condition) is too weak
to account for causal structures that involve accidental probabilistic relations, such
as the relation between my age and the average global temperature, or the relation
between bread prices in England and the sea level in Venice. I argue that if causal
models are required to be monotonic rather than being causally sufficient, they can
handle all three problems better.

The paper is organized as follows: I begin with an overview of the causal model-
ing framework and the causal sufficiency condition (Sect. 2). I discuss the causal
sufficiency condition in detail and show that it leads to the three problems mentioned
above (Sect. 3). I then define the monotonicity condition and argue that it is supe-
rior to the causal sufficiency condition (Sect. 4). Finally, I compare my approach to
Woodward’s interventionist solution to the problem of accidental probabilistic rela-
tions (Sect. 5).

2 Probabilistic causal models and the causal sufficiency condition

A probabilistic causal model describes cause-effect relations as dependence relations
between variables whose values can represent various things, such as ‘the occurrence
or non-occurrence of an event, a range of incompatible events, a property of an indi-
vidual or of a population of individuals, or a quantitative value’ (Hitchcock, 2023).
Causal structures are represented by directed acyclic causal graphs consisting of two
elements: (a) a set V of variables and (b) a set of directed edges connecting those vari-
ables. A sequence of variables {X, ... X} is called a ‘directed path from X, to X’
iff for any i1 with 1<i<n, there is a directed edge from X to X, ; and all edges point
in the same direction. If Y is a variable in V, such that there is a directed edge from Y
to X, then Y is called a ‘parent of X’. If there is a variable Y in V, such that there is a
directed path from X to Y (i.e., a chain of directed edges leading from X to Y), then
Y is called a ‘descendant of X’ (Spirtes et al., 2000, p. 8-10).

A probabilistic causal model M is a formal structure consisting of a directed acy-
clic graph and a probability distribution over the variables in that graph (Gebharter,
2017, p. 357). One of the standard conditions imposed on graphs constituting causal
models is the causal Markov condition:

Causal Markov condition: A causal model M satisfies the causal Markov con-
dition iff for each variable X in the set of variables V of M: conditional on its
parents in V, X is probabilistically independent of all other variables in V except
its descendants (see e.g. Pearl, 2000, p. 30; Spirtes et al., 2000, p. 29; Wood-
ward, 2003, p. 64).
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The causal Markov condition implies that if there is a probabilistic dependence rela-
tion between X and Y conditional on the parents of X in V, then Y must be a descen-
dant of X in the graph constituting M. However, the causal Markov condition can
also be satisfied by models in which X is a descendant of Y, but there is no proba-
bilistic dependence relation between X and Y. This is excluded if causal models are
additionally required to satisfy the faithfulness condition:

Faithfulness condition: A causal model M satisfies the faithfulness condition iff
all conditional independence relations between the variables in M are entailed
by the causal Markov condition applied to M (Spirtes et al., 2000, p. 31).

The purpose of introducing these two conditions is to be able to give a causal inter-
pretation to the directed edges that occur in a model. We will see below that the causal
Markov condition and the faithfulness condition alone are not sufficient to guarantee
that the probabilistic dependencies in a model can be mapped to causal dependencies.
However, if we assume that the set of variables constituting a model M is chosen in
a way that allows such a mapping, then the following relations hold: If X and Y are
variables in M, then X is a direct cause of Y according to M iff there is a directed edge
from X to Y with no intermediate variables in M’s graph.! Y is a direct or a contribut-
ing cause of X according to M iff X is a descendant of Y in M’s graph.? Given the
relationship between graphs and probabilities specified by the causal Markov condi-
tion, this in turn implies that if there is a probabilistic dependence relation between
X and Y conditional on the parents of X in a model M, then either X is a direct or
contributing cause of Y according to M, or Y is a direct or contributing cause of X
according to M.

The notions of direct and contributing cause are characterized relative to a set of
variables. The choice of the variables included in a causal model is key, since models
may misrepresent causal structures if the variables are not chosen in an inadequate
way. This is particularly relevant in cases where non-causal dependence relations
between variables are brought about by common causes. The relation between dry
cough and elevated temperature mentioned above is an example. Another paradig-
matic example is the covariation between the occurrence of storms in a certain region

! Strictly speaking, the variables themselves do not stand in causal relations, but only represent entities
standing in causal relations. However, as is common in the causal modeling literature, I will use expres-
sions such as ‘variable X is causally relevant to variable Y’ as shorthand for ‘the entities represented by the
values of X are causally relevant to the entities represented by the values of Y.

2 The last two conditions presuppose that causation is transitive, that is, that if X is causally relevant to
Y and Y is causally relevant to Z, then X is also causally relevant to Z. This is a standard assumption in
the causal modeling literature (see, e.g., Spirtes et al., 2000, p. 20). However, Hitchcock has argued that
there may be failures of transitivity, and that these should be captured by causal models (Hitchcock, 2001,
2007). In what follows, I will leave that complication aside. The failures of transitivity to which Hitchcock
refers are cases in which Y depends counterfactually/probabilistically on X, and Z depends counterfactu-
ally/probabilistically on Y, but Z does not depend counterfactually/probabilistically on X. In these cases,
there is no probabilistic dependence relation between X and Z, although there is a directed path from X
to Z. Such cases are not relevant to the present discussion, which focusses on how causal models can deal
with cases where there are probabilistic dependence relations, but these do not indicate causal relations.
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and the observation that the barometers in that region dropped quickly. Such sce-
narios can be described by the following three variables:

St: 1 if there is a storm in region R at time t2; 0 otherwise.
B: difference of barometer readings between times t1 and t2 in region R.
A difference of atmospheric pressure between times t1 and t2 in region R.

Barometer readings at different times are good predictors of storms: if barometers in
region R drop strongly between t1 and t2, this will increase the probability of a storm
in region R at t2. However, the probabilistic dependence relation between St and B is
not causal, but due to the presence of a common cause — differences of atmospheric
pressure in region R, described by variable A. Accordingly, if the set of variables
under consideration included only B and St, B might be misclassified as a cause of
St or vice versa.

Therefore, causal models are usually required to satisfy the causal sufficiency
condition in addition to satisfying the causal Markov and the faithfulness condition
(Baumgartner, 2013, p. 9; Spirtes & Scheines, 2004, p. 836-837; Zhang & Spirtes,
2011, p. 337):

Causal sufficiency: A set of variables V is causally sufficient iff for any two
variables X and Y contained in V and all variables Z: if Z is both a direct cause
of X and a direct cause of Y, then Z is in V, too (Spirtes & Scheines, 2004, p.
836; Spirtes, 2010, p. 1651; Zhang & Spirtes, 2011, p. 337).}

The causal sufficiency condition is usually applied to sets of variables, rather than to
causal models. However, I will also apply it to models and define a model as causally
sufficient iff its set of variables is causally sufficient.

In the barometer-storm example, a model including only B and St is not causally
sufficient, since it does not contain the common cause(s) of B and St. If we consider a
causally sufficient model including the variable A in addition to B and St, the putative
causal relation between B and St disappears: A screens off B from St, that is, p(St | B
& A)=p(St|A).

3 There are two possible alternative ways to define the causal sufficiency condition. The first is due to
Baumgartner, who defines a set of variables V as causally sufficient ‘iff any common cause C of two vari-
ables X and Y in V either belongs to V or has a cause that belongs to V or an effect that is located on all
directed paths from C to X and from C to Y and that belongs to V’ (Baumgartner, 2013, p. 9). The differ-
ence between this definition and the definition of causal sufficiency given above is that the common causes
that must be included in V need not be direct common causes of variables included in V but could also be
contributing causes.The second alternative definition of causal sufficiency is given by Spirtes, Glymour,
and Scheines, who define a set of variables V as causally sufficient iff, whenever a variable X is a direct
cause of two or more variables in V, then either X is in V or ‘the joint probability of all variables in V ...
[is] the same on each value of X that occurs in the population’ (Spirtes et al., 2000, p. 22, fn. 1). In what
follows, I will not consider these alternative formulations of causal sufficiency, since using them instead of
the definition given above would not change my argument in any substantial way.
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Prima facie, causal sufficiency is a powerful condition to impose on causal models.
At the very least, it seems to guarantee that common cause structures are adequately
captured and that there are no cases where non-causal relations are misrepresented as
causal because the model contains too few variables. In the next section, however, 1
raise three objections to causal sufficiency.

3 Three problems for causal sufficiency

The first problem for causal sufficiency arises from the requirement that a causally
sufficient model must include a// variables that are direct common causes of two or
more variables already included in the model. To see why this requirement is prob-
lematic, consider again the model that describes the relationship between barometer
readings, atmospheric pressure differences, and storms. The atmospheric pressure
differences could alternatively be described by the following two variables:

Al: atmospheric pressure in region R at time t1.
A2: atmospheric pressure in region R at time t2.

Al and A2 are common causes of B and St. Therefore, if the model included Al
and A2 instead of A, B would also be screened off from St, that is, p(St | B & Al &
A2)=p(St| Al & A2). The problem is, however, that if a// common causes of B and
St must be included in the model, then the model must include all three variables, A,
Al, and A2. But then, to determine whether B is screened off from St by their com-
mon causes, one must determine whether p(St | B & A & A1 & A2)=p(St | A & Al
& A2). Since A is just the difference of A1 and A2, some combinations of the values
of A, Al, and A2 are impossible, for instance, A=35.0 hPa, A1=1015.0 hPa, and
A2=990.0 hPa. This means that p(A=35.0 hPa & A1=1015.0 hPa & A2=990.0 hPa)
assumes the value zero, and the corresponding conditional probabilities, for instance,
p(St=1|A=35.0 hPa & A1=1015.0 hPa & A2=990.0 hPa), are not well defined.

This problem is usually avoided by requiring that the variables included in a
causal model must not stand in non-causal necessary dependence relations to each
other. Woodward formulates the so-called ‘independent fixability’ condition for his
interventionist framework, according to which the set V of variables constituting an
interventionist causal model must be such that every combination of the values of
the variables in V must be metaphysically possible and not be excluded for logical,
mathematical or conceptual reasons (Woodward, 2015, p. 316). This precludes vari-
ables such as A, A1, and A2 from occurring in the same causal model.

In probabilistic causal models, an even stronger condition is needed, because the
problem that the joint probability of the values of certain variables might be equal to
zero can also arise if the variables stand in deterministic dependence relations that
hold only with nomological necessity, but not with metaphysical, logical, mathemati-
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cal, or conceptual necessity.* Variables appearing together in fundamental physical
laws could be an example. It is therefore plausible to assume that the set of variables
constituting a probabilistic causal model must satisfy the following condition (which
is a slight adaptation of Woodward’s independent fixability condition):

Independent fixability+: A set of variables V satisfies the independent fixabil-
ity+condition iff every combination of the values of the variables in V is nomo-
logically (and thus metaphysically and logically) possible.’

The first problem with the causal sufficiency condition is that taken literally, it leads
to violations of independent fixability+. It requires that a// direct common causes of
tuples of variables already included in the model must also be included. However,
as the barometer-storm example illustrates, if X and Y are included in a model, then
there may be several variables which are all direct common causes of X and Y and
which stand in necessary dependence relations to each other. If all of these variables
are included, the set of variables that makes up the resulting model violates indepen-
dent fixability+.

One could try to refine the causal sufficiency condition to avoid this problem. If
causal sufficiency does not require that all common causes of tuples of variables in a
model M should be included in M, but only all common causes that can be included
without violating the independent fixability+condition, then the problem that the
resulting model might contain undefined conditional probabilities disappears. How-
ever, I will leave open whether and how exactly the causal sufficiency condition can
be reformulated, since it faces two other difficulties.

To see a second difficulty, reconsider the definition of causal sufficiency: a set of
variables V is causally sufficient iff for any two variables X and Y contained in V and
all variables Z: if Z is both a direct cause of X and a direct cause of Y, then Z is in V,
too. How should we understand the notion that Z is a direct cause of X and of Y? One
option is to understand the notion that Z is a direct cause of X and of Y relative to a
model consisting of a certain set of variables. Then, the crucial question is, what is
the set of variables relative to which Z is a direct cause of X and a direct cause of Y?

Suppose first that the relevant set of variables is V itself, that is, the set of variables
that make up the model that is supposed to be causally sufficient. Then the causal
sufficiency condition is trivially true. For a variable can be a direct cause of another
variable relative to a set S only if it is a member of S. Therefore, the assumption that
Z is a direct cause of X and Y relative to V directly implies that Z must be in V. It
follows that the condition that Z is a direct cause of X and a direct cause of Y must be

4 Another reason why the variables constituting a model must not stand in deterministic relations to each
other is that otherwise the model may violate the faithfulness condition (see Spirtes et al., 2000, p. 53-54).

5 There has been a debate in recent years about whether causal models can be hybrid or mixed in the sense
that they contain not only standard causal relations, but also dependence relations of other types, espe-
cially supervenience or grounding relations. A number of authors have attempted to adapt the formalism
of causal models to models which violate Woodward’s independent fixability condition (e.g., Gebharter,
2017; Kroedel & Schulz, 2016; Stern & Eva, 2023; for discussion see also Kistler, 2013; Shapiro, 2010;
Eronen & Brooks, 2014). In what follows, I will leave open whether and how my argument might apply to
these other versions of the formalism of causal models.
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understood as referring to a set of variables V* that is distinct from V (see also Peters
etal., 2017, p. 171-172, who assume V* to be a superset of V).

Now consider such a set V* # V. V* must satisfy the adequacy conditions for
causal models. Otherwise, the claim that Z is a direct cause of X and Y relative to
V* would not be justified. In particular, V* must be causally sufficient (Peters et
al., 2017, p. 172, also seem to assume this). But this leads to an infinite regress.
V* is causally sufficient iff for any two variables X and Y contained in V* and all
variables Z: if Z is both a direct cause of X and a direct cause of Y relative to some
set V¥* then Z is in V*. According to the argument given in the previous paragraph
V** must be distinct from V*. However, V** must also be causally sufficient. But
then, the argument can be reiterated: whether V** is causally sufficient can only be
determined relative to some set V*** which in turn must be distinct from V** and
causally sufficient, and so on. Therefore, if the notion that Z is a direct cause of X
and of Y is understood relative to a model consisting of a certain set of variables, the
causal sufficiency condition is either trivially satisfied, or leads to an infinite regress.

The remaining option is to understand the notion of direct common cause that
appears in the causal sufficiency condition as an undefined primitive. Such a move,
which would avoid both the triviality problem and the regress problem, could be jus-
tified by the observation that causal models must always presuppose certain notions,
including causal notions, as primitive, and that this is not per se problematic. The
causal modelling approach is usually not considered to be reductive, that is, its aim
is not to reduce the notion of causation completely to non-causal notions. As long as
the conclusion that X is causally relevant to Y is based only on assumptions about
causal relations other than the one between X and Y, the approach is not problemati-
cally circular (for a related consideration, applied to the interventionist framework
of causation, see Woodward, 2003, p. 104—16). Still, an approach that presupposes
fewer primitives is ceteris paribus superior to one that presupposes more. I will come
back to this point in the next section.

The third problem with the causal sufficiency condition is that it is too weak to
rule out a relevant type of problematic structure. As pointed out above, the reason
for requiring causal models to be causally sufficient is that there may be probabilistic
dependence relations that do not indicate causal relations but are due to common-
cause structures. This type of structure can be adequately covered by the causal suf-
ficiency condition. However, structures containing variables that are probabilistically
related by accident (Williamson, 2004, p. 52) cannot be adequately covered.

Consider the following two variables, which describe Sober’s famous example of
the relationship between the sea level in Venice and bread prices in England:

SV: sea level in Venice.

BE: bread prices in England.

6 1t should be noted that Peters, Janzing and Schélkopf also replace the causal sufficiency condition with a
condition they call ‘interventional sufficiency’, which does not rely on the notion of direct common causes
(Peters et al., 2017, p. 172).
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Since both bread prices in England and the sea level in Venice have risen (more or
less) steadily over the last two centuries, BE and SV are strongly positively corre-
lated. However, there is no common causal process to account for this dependence
relation. The two variables are correlated just because their values develop in parallel
over time (see Sober, 2001, p. 331-332; further cases of variables that are probabi-
listically related without standing in direct or indirect causal relations to each other
are discussed by Cartwright, 1989, p. 114-115; Spirtes et al., 2000, p. 32-38; Wil-
liamson, 2004, p. 52-57).

Now consider a model consisting of the set of variables {BE, SV}. This model
is causally sufficient because BE and SV have no common causes. BE and SV also
satisfy the independent fixability+condition, since they are not necessarily related.
Moreover, if the causal Markov condition holds, as we assume, the probabilistic
dependence between BE and SV entails that one must draw an edge between them.
This is because if there is no edge between BE and SV, then BE and SV have no par-
ents or descendants in the model. But then the causal Markov condition implies that
they have to be probabilistically independent, which is not the case. It follows that
the model constituted by {BE, SV} misrepresents the true causal structure, because
there must be an edge between BE and SV, even though the two variables are not
causally related. Thus, the three conditions we have considered so far — the causal
Markov condition, faithfulness, and causal sufficiency — are not sufficient to handle
structures that contain correlations that are not due to causal relevance relations or
common causes.’

An analogous problem occurs if we replace BE in the model with the following
variable, so that the new model is constituted by the set of variables {PE, SV}:

PE: number of households living below the poverty line in England.

It is plausible to suppose that bread prices in England (BE) are causally relevant to
PE, but the sea level in Venice (SV) is not. However, given the strong positive cor-
relation between SV and BE, there is a strong positive correlation between SV and
PE: the higher the sea level in Venice, the higher the number of households living
below the poverty line in England. Therefore, a model that includes only SV and PE
(but not BE) would also misrepresent the true causal structure, because it would have
to include a directed edge between SV and PE, even though the two variables are
causally unrelated.

7 One possible response is that causal models should satisfy the additional constraint that the error terms
of the variables that constitute them should be probabilistically independent (Papineau, 2022). If the model
constituted by {BE, SV} does not satisfy this condition, it is inadequate from the start, in which case it is
unproblematic if it misrepresents the true causal structure.

However, what the error terms of the variables in the model are depends on what the directed edges
between the variables are (and on the structural equations describing the functional relations represented
by these edges). If the model constituted by SV and BE contains a directed edge from BE to SV because
of the strong covariation between SV and BE, it is likely to satisfy this condition. The error terms of SV
relative to this model are variables describing influences on SV that are independent of the putative (that is,
statistical) influence of BE. However, these are likely to be independent of the error terms of BE (since SV
and BE do not have any common causes). At the very least, it cannot simply be taken for granted that the
model including only SV and BE with a directed edge between them violates the condition of independent
error terms.
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In the next section, I argue that such structures are better covered by requiring
causal models to be monotonic, and that if causal sufficiency is replaced by monoto-
nicity, the causal modelling approach also fares better with respect to the other two
problems described in this section.

4 Monotonicity

In a recent paper, Papineau mentions that the causal sufficiency condition may be
circular and hints at a solution to this problem:

A revised reductive suggestion would now be that causal relations are nothing
over and above those patterns of correlation that imply them ... in any causally
sufficient set of variables. (Would not the need to specify causal sufficiency
here render this suggestion inadmissibly circular as a reduction of causation?
But this specification can be finessed away. We can simply say causal relations
are nothing over and above the patterns of correlation that imply them in sets
of variables whose verdicts are not overturned by the inclusion of further vari-
ables.) (Papineau, 2022, p. 253).

Papineau’s point seems to be that a reductive analysis of causation should not rely on
the causal sufficiency condition, because causal sufficiency presupposes the notion of
causation, and this makes the analysis circular. As pointed out in the previous section,
probabilistic causal models are usually not intended to be reductive. Therefore, the
observation that causal sufficiencypresupposes causal notions does not per se render
this approach problematic. However, it was also pointed out in the previous section
that there are two other problems with causal sufficiency. According to Papineau, the
requirement that the (putative) causal relations in a model must not disappear when
common causes are added should be replaced by the requirement that the (putative)
causal relations in a model must not disappear when additional variables — causally
related to the variables already included in the model or not — are added. In the con-
text of probabilistic causal models, this idea can be used as the basis for the following
monotonicity condition, which, as I will argue, is superior to causal sufficiency with
respect to all three problems identified in the previous section:

Monotonicity: A model M consisting of a set of variables V is monotonic iff for
any X and Y in V: if X is a direct or a contributing cause of Y according to M,
then X would still be a direct or a contributing cause of Y according to any M’
consisting of a set of variables V’, such that (i) V C V’, and (ii) the variables in
V’ satisfy the independent fixability+condition.®

8 The monotonicity condition is similar to the expandability condition that Papineau introduces into his
formal system:

Let us say that a system S of equations with exogenous independence is expandable if, for any fur-
ther variables correlated with those in S, there is a larger system of equations covering those further
variables that also satisfies exogenous independence and which has S as a subsystem. (Papineau,
2022, p. 264)
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There are two things to note about this definition. The first is that it still presupposes
that both the causal Markov condition and the faithfulness condition hold. The sec-
ond thing to note is the function of the phrase ‘direct or contributing cause’, which
occurs twice. The notion of direct causation is clearly not monotonic (Woodward,
2008, p. 209; see also Parkkinen, 2022, p. 192—-194). Often it is a matter of conven-
tion or pragmatic considerations how many variables on a causal path are included
in a set of variables. For instance, there could be a model including a variable that
describes whether somebody throws a paper ball and another variable that describes
whether the ball lands in a basket. If no other variables are included in the model,
the first variable is a direct cause of the second. If one adds further variables lying on
the same causal path, for instance, variables describing the position and momentum
of the ball on its way to the basket, the throw is not a direct cause of the paper ball’s
landing in the basket, but still a contributing cause. Such cases are covered by the
monotonicity condition. The condition requires that if X is a direct cause of Y with
respect to a set of variables V, then X remains a direct or a contributing cause of Y
relative to any extended set of variables satisfying condition (ii) (for a very similar
consideration, see Woodward, 2008, p. 209). If X is a contributing cause of Y, then
X remains a contributing cause of Y under suitable extensions of the set of variables.
However, requiring that X remains a direct cause of Y under suitable extensions of
the set of variables would be too strong.

Condition (ii), that the variables hypothetically added to the model must be such
that the extended set of variables does not violate the independent fixability+ condi-
tion, guarantees that the monotonicity condition does not face the first problem for
causal sufficiency identified in the previous section. If the extended set of variables
V’ satisfies the independent fixability+condition, then there will be no cases where
the conditional probabilities over the variables in V’ are undefined because some
variables in V’ stand in necessary dependence relations to each other. Condition (ii)
thus ensures that the hypothetical extensions of the models under consideration can
be covered by the standard formalism of probabilistic causal models.

Moreover, the monotonicity condition avoids the other two problems. To see how
it avoids the third problem, consider again a model M consisting of the set of vari-
ables V = {SV, PE} (sea level in Venice, households living in poverty in England).
As pointed out in the previous section, SV and PE stand in a probabilistic dependence
relation to each other: a higher sea level in Venice increases the probability that there
will be more households living below the poverty line in England. Therefore, the
causal Markov condition implies that there must be a directed edge between SV and
PE, and the model misrepresents the true causal structure.

However, there is a crucial difference between the monotonicity condition and Papineau’s notion of
expandability. The latter requires that the complete causal structure of the system remains intact under
the addition of new variables (assuming independence of the exogenous variables is still given). This
condition implies that if variables X and Y are already included in S and if there is no causal relation
between X and Y according to S, then expanding S should not create a causal relation between X and Y.
However, several authors have argued that this condition is too strong (Spirtes et al., 2000, p. 21; Sta-
tham, 2018, Statham’s argument refers to the context of interventionist causal models, but could easily be
adapted to apply to probabilistic causal models as well). The monotonicity condition avoids this difficulty.
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However, M violates the monotonicity condition. Consider a model M’ which is
constituted by the set of variables V' = {SV, PE, BE} (where BE describes the bread
prices in England), and which contains a directed edge from BE to PE. V’ is a super-
set of V (condition (i)), and the values of the variables in V’ satisfy the independent
fixability+condition (condition (ii)). But BE, the variable added to V, is a parent of
PE and screens off SV from PE: p(PE | SV & BE)=p(PE | BE). Accordingly, the
faithfulness condition implies that there is no directed edge between SV and PE, and
the putative causal relation between SV and PE disappears. It follows that there is a
model M’ whose set of variables satisfies conditions (i) and (ii), but which does not
contain a directed edge from SV to PE. Therefore, the initial model M violates the
monotonicity condition.

Analogous reasoning applies to Sober’s original case, that is, models containing
only the variables SV and BE. SV and BE have no common causes, but they are cer-
tainly not uncaused. Suppose that X, ..., X, are the causes of SV, such as vertical
land movement and melting of the Arctic ice shield (Zanchettin et al., 2021), and that
SV depends probabilistically on each of the X;s. Suppose further that X, ..., X, are
unconditionally independent.

Now consider a model M consisting of the set of variables V = {SV, BE} and
containing a directed edge from SV to BE. To see that M is not monotonic, consider
an extended model M’ consisting of the set of variables V' = {SV, X|, ..., X, BE}
and containing directed edges from each of the X;s to SV, but not between the Xs
(because they are unconditionally independent). V’ is a superset of V (condition (i))
and satisfies the independent fixability+condition (condition (ii)). Furthermore, X,
..., X, screen off BE from SV: p(SV|BE & X, & ... & X ))=p(SV | X, & ... & X)).
Again, this shows that the original model M violates the monotonicity condition:
the set of variables constituting the extended model M’ satisfies conditions (i) and
(i1), but does not contain a directed edge from SV to BE (because of the faithfulness
condition). Analogous reasoning applies if the edge between SV and BE goes in the
opposite direction, that is, from SV to BE: in this case, the probabilistic dependence
relation that holds between SV and BE can be screened off by variables representing
the causes of BE.

An immediate objection here is that the extended models are not adequate either,
because they also violate the monotonicity condition. The model consisting of the set
of variables V = {SV, PE} is not monotonic, because in the model consisting of the
extended set of variables V’ = {SV, PE, BE}, the probabilistic dependence between
SV and PE is screened off by BE. However, the model consisting of V' = {SV, PE,
BE} does not satisfy the monotonicity condition either, since (as we saw above) the
probabilistic dependence relation between SV and BE would be screened off if the
variables X, ..., X,, describing the causes of SV, were added to it. And this extended
model is not monotonic either, because BE depends probabilistically on X, ..., X,
and this probabilistic dependence relation would be screened off if variables describ-
ing the causes of BE (such as higher flour prices and rising production costs) were
added. And arguably, even this extended model is not monotonic because there will
be statistical dependence relations between (some of) the causes of SV (i.e., X|, ...,
X,) and (some of) the causes of BE, which would disappear if further causes were
added to the model.
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In this case, however, what looks like a regress structure is not problematic. The
hypothetical model constituted by V’ used to show that the model constituted by V =
{SV, PE} is not monotonic must satisfy conditions (i) and (ii), but these conditions
do not involve monotonicity and do not require primitively given knowledge of the
true causal relations between the variables in V. It is possible that M’ misrepresents
the true causal structure, and in a further step, one might consider M’ and find that it
is not monotonic either. But this does not mean that M’ cannot be used to determine
whether the original model M is monotonic.

This consideration also shows that monotonicity is superior to causal sufficiency
with respect to the second problem described in the previous section. According to
the monotonicity condition, the variables hypothetically added to V need not satisfy
any constraints other than the independent fixability+condition, and the extended
model M’ need not be monotonic (let alone causally sufficient). Therefore, there is
no threat of regress. Moreover, as the monotonicity condition does not presuppose
that the variables hypothetically added to V are (direct or indirect) causes of variables
already contained in V, it assumes fewer causal relations as primitively given than the
causal sufficiency condition.

The monotonicity condition captures scientific practice in the following sense:
if observational data show that there is a correlation between variables, then one
should try to determine whether one of the variables is indeed causally dependent on
the other, or whether the dependence is due to other factors that can be described by
additional variables. These additional variables may represent common causes of the
correlated variables, but one should always be open to considering other potentially
relevant factors. Obviously, there are an infinite number of factors to consider, and
epistemically, one can never be completely sure that a model is monotonic. Mono-
tonicity should therefore be understood as an ideal that scientists developing causal
models should strive to approximate.

5 A note on interventionism

A possible objection to the argument of this paper is that the problem that is solved
by imposing monotonicity as an additional requirement on causal models has already
been solved by Woodward’s interventionist theory of causation. According to this
version of the causal modeling approach, a variable X included in a causal model
is causally relevant to a variable Y occurring in the same model iff there is an inter-
vention on the value of X that changes the value or the probability distribution of Y,
provided that the values of all other variables in the model that are not on the causal
path between X and Y are held fixed by interventions (Woodward, 2003; Hitchcock,
2001, 2007).

The crucial difference between Woodward’s approach and the framework dis-
cussed so far is that Woodward’s approach requires the notion of an intervention as
an additional component. Interventions are characterized by intervention variables,
which are defined as follows: ‘I is an intervention variable for X, with respect to Y, if
it meets the following conditions:
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(1) Iis causally relevant to X.

(2) 1is not causally relevant to Y through a route that excludes X.

(3) Iis not correlated with any variable Z that is causally relevant to Y through a
route that excludes X, be the correlation due to I’s being causally relevant to Z,
Z’s being causally relevant to I, I and Z sharing a common cause, or some other
reason.

(4) T acts as a switch for other variables that are causally relevant to X. That is,
certain values of I are such that when I attains those values, X ceases to depend
upon the values of other variables that are causally relevant to X.” (Woodward &
Hitchcock, 2003, p. 12—-13).

According to Woodward’s approach, the variable BE (representing bread prices in
England) is causally relevant to the variable SV (representing the sea level in Venice)
iff it is there is a possible intervention I on BE with respect to SV that changes the
probability distribution of SV. Since I must satisfy the conditions of an intervention
variable for BE, it must in particular be independent of all variables that are caus-
ally relevant to SV through a route that excludes BE (condition (3)). It is plausible
to assume that if [ satisfies this condition, the change in the value of BE will have no
impact on the probability distribution of SV. For example, the bread prices in Eng-
land could possibly be lowered by paying government subsidies to bakeries. How-
ever, such an intervention would not affect the sea level in Venice.

In general, since the causal chains leading to BE and SV do not overlap, interven-
tions on one of these variables that satisfy condition (3) will not affect the causes of
the other variable and thus will not change the probability distribution of the other
variable. Accordingly, Woodward’s interventionist criterion of causation correctly
implies that there is no causal relation between BE and SC.

Condition (3) of Woodward’s definition of an intervention can thus be seen as the
interventionist solution to the problem of coincidental probabilistic dependence rela-
tions. However, there are two significant differences between the monotonicity con-
dition and Woodward’s approach. The first is that Woodward’s solution only works if
one is willing to accept his interventionist framework, and in particular the notion of
hypothetical interventions. In a framework that relies only on observational probabi-
listic relations, such as the one described above, this solution is not available.’

The second difference is that Woodward’s solution requires more causal informa-
tion than the monotonicity condition. The definition of an intervention is not rela-
tivized to a set of variables. Thus, condition (3) requires that in order to determine
whether I is an intervention variable for X with respect to Y, one must know all the
causes of Z (not just those included in the model under consideration). The mono-
tonicity condition, on the other hand, does not require any knowledge of the causal
relations between the variables hypothetically added to the model and the variables
already included in the model.

° Baumgartner and Falk develop a formal regularity theory of causation (based on INUS conditions) and
require causal structures to satisfy a permanence condition that is structurally similar to the monotonicity
condition that I propose (Baumgartner & Falk, 2023). A detailed discussion of the connections between
their approach and the one defended in this paper would go beyond the scope of the present argument.
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Ultimately, the solution chosen to solve the problem of accidental probabilistic
relations depends on the underlying framework and the additional commitments one
is willing to make. However, the argument of this paper shows that, at least in the
context of probabilistic causal models, replacing the causal sufficiency condition with
the monotonicity condition has several advantages. Monotonicity avoids the conflict
with the requirement that the variables included in a causal model must not stand in
non-causal deterministic relations to each other. It requires fewer assumptions about
which causal relations are primitively given than causal sufficiency. Finally — and this
is perhaps the most systematically relevant consequence — it allows the causal model-
ling approach to deal better with the problem of accidental probabilistic relations.
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