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Abstract: Some analogous higher-order versions of Skolem’s 

paradox will be introduced. The generalizability of two solutions 

for Skolem’s paradox will be assessed: the course-book approach 

and Bays’ one. Bays’ solution to Skolem’s paradox, unlike the 

course-book solution, can be generalized to solve the higher-order 

paradoxes without any implication about the possibility or order 

of a language in which mathematical practice is to be formalized. 

 

1. Skolem’s paradox 

Let S be one of the well-known first-order axiomatizations of set theory (e.g. ZFC). Skolem’s 

paradox (hereafter SP) is a seeming conflict between the Downward Löwenheim-Skolem 

Theorem about S and Cantor’s Theorem within S: 

Theorem (Downward Löwenheim-Skolem): Let Γ be a set of sentences in a language L 

of cardinality κ.1 For all λ > κ, if Γ has a model of cardinality λ, then Γ has a model of 

cardinality μ, for all μ, κ ≤ μ < λ. 

Theorem (Cantor): There are uncountable sets. 

Suppose that S has a model. Since the language of S in standard formulations is countable, by 

the Downward Löwenheim-Skolem Theorem, S has a countable model, M. Now, by Cantor’s 

Theorem, S proves that there is an uncountable set, hence there is an a in the universe of M 

such that a is uncountable; that is to say, a satisfies in M the open formula which defines 

uncountability in the language of S. Insofar as M is countable, there are only countably many 

o in the universe of M such that o  a. It seems then that within M, a is countable. Therefore, 

a is countable from one perspective (within the model), uncountable from another (within the 

theory). 

It is easily realizable that SP does not pose any logical contradiction. Nevertheless, it raises 

some philosophical issues. Is there any uncountable set in a real sense, that is to say, from no 

perspective? Does SP have anything to do with the practice of mathematics? The course-

book approach’s answer to these questions is affirmative. According to this approach, SP 

provides an evidence for the deficiency and semantical inadequacy of first-order theories for 

formalizing mathematical practice around countability and uncountability. Actually, SP is not 

alone. Firs-order languages has shortcomings in formalizing many other concepts of ordinary 

mathematics, too; for example, finitude, well-ordering, well-founded-ness, powerset, etc.2 In 

Shapiro’s words, “[t]hese concepts form an important part of general mathematical practice, 

but they cannot be formulated in first-order languages. These concepts are clear and 

unambiguous as for instance when a mathematician asserts some set is finite; his listeners 

                                                           

1 Including, as usual, a countable set of variables, κ is at least countable. 
2  The course-book approach is mentioned and suggested vastly in familiar course-books of 

introductory mathematical logic, such as Mendelson (2015) and van Dalen (2013) 
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understand what he means.” (1985, 722). He goes on “to suggest that nothing short of a 

language with second-order variables [with standard models] will do” (715).3 The reason is 

clear. SP is caused by Downward Löwenheim-Skolem Theorem which is not valid for second-

order languages (with standard models). 

In the next section, we will introduce some forms of higher-order Skolem paradox (hereafter 

HOSP) and then argue that the course-book approach has its inadequacies regarding these 

paradoxes; namely, it must concede that there can be no language in which the mathematical 

practice (especially, set theory) could be formalized. Then in section 3 we show how the 

solution for SP suggested by Bays (2000) can be generalized to HOSPs without such 

unwanted consequence. 

 

2. Higher-order Skolem paradoxes and the course-book approach 

Let L be a language containing the first-order language with identity. Consider the following 

definition and theorem, both reported by Shapiro (1991, 147-8): 

Definition. (Löwenheim number) The Löwenheim number for L is the smallest 

cardinal κ such that for every formula  of L, if  is satisfiable, then it has a model 

with the cardinality at most κ. 

Theorem. (Generalized Löwenheim) If the collection of formulas of L is a set, then L 

has a Löwenheim number and the smallest extendible cardinal is an upper bound of it. 

Now, an nth-order Skolem paradox can be formulated as follows.4 Let Sn be an nth-order 

axiomatization of set theory which can prove that there are extendible cardinals. And let κ be 

its Löwenheim number. For a cardinal larger than κ, we have a proof for a sentence φ which 

says that there exists a set whose cardinality is larger than κ. By the Generalized Löwenheim 

Theorem, this sentence has a model, M, with the cardinality of at most κ. M satisfies “there 

exists a set whose cardinality is larger than κ,” hence there is an a in the universe of M such 

that the size of a is larger than κ. While the cardinality of M is at most κ, there are at most κ 

objects o in the universe of M such that o  a. It seems then that within M, a’s size is at most 

κ. Therefore, a’s size is at most κ from one perspective (within the model), larger than κ from 

another (within the theory).5 

Reapplying the course-book approach to handle these nth-order paradoxes might seem to be 

appealing. Accordingly, the paradox could be solved by going to a higher-order language, but 

again an analogous higher-order paradox can be formulated for the higher-order language; 

and so on. Thus, the course-book approach to handle SP cannot be generalized to solve the 

parallel HOSPs, unless it is augmented by the claim that there is no unique language that the 

practice of mathematics (set theory, particularly) can be formalized within it. It might be so, 

                                                           

3 Actually, it is doubtful to be correct to categorize Shapiro within the defenders of course-book 

approach. His project is to find the appropriate language for mathematical practice. Nevertheless, the course-

book approach share something with Shapiro’s thesis: Skolem’s paradox is among evidences for going to 

higher-order languages. 
4 Our formulation of HOSPs appeals to the notion of Löwenheim number. Similarly, one can introduce 

other HOSPs by means of Hanf number, set-Löwenheim number and set-Hanf number, their definitions can be 

found in Shapiro (1991, 148). Here, we just focus on Löwenheim number, but the strategy can be reapplied for 

other numbers straightforwardly. 
5 Higher-order Skolem paradoxes is already mentioned by Hart (2000) based on considerations given 

by Hasenjaeger (1967). 
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but it seems to be superior if SP and its counterparts can be handled without conceding such 

radical claim about mathematical practice and its formalization. 

In defense of the course-book approach, one might suggest that these new paradoxes are not 

as philosophically valuable as the original Skolem’s paradox, for the large cardinals are not 

as much involved in mathematical practice as concepts like (un)countability. Second-order 

logic, though not apt for the whole practice of mathematics, is adequate for its ordinary part. 

This is a non-starter, however. Mathematical practice is not something stable and closed-end. 

It is extremely foreseeable that large cardinals will become more involved in mathematical 

practice than they are now. Furthermore, a valuable portion of the practice of set theory is 

already devoted to the study of large cardinals. An alternative approach seems to be 

attractive. 

In the next section we pursue a treatment of SP suggested by Bays (2000)6 and show how the 

strategy can be generalized to HOSPs. The virtue of this alternative approach is that it is 

neutral about the (im)possibility of axiomatization of mathematical practice. 

 

3. An alternative treatment of higher-order Skolem paradoxes 

Bays (2000) provides a solution for SP which appeals to an equivocation between model-

theoretic and plain English interpretations of “∃x (x is uncountable).” We first summarize, 

with a bit simplification, his solution and then present how Bays’ solution can be generalized 

to HOSPs. 

a. Bays on SP 

Let M be a countable model for a standard axiomatization of set theory (e.g. ZFC) and let 

Ω(x) be an articulation of “x is uncountable” in the language (of ZFC). Since M satisfies the 

axioms, there is an m* ∈ M such that M ⊨ Ω[m*/x]. Bays, then, formulates SP as below: 

(hereafter argument (A)) 

1. M is a countable model of ZFC. 

2. Ω(x) says that “x is uncountable.” 

3. M ⊨ Ω[m*/x]. 

∴ 4. {x | x ∈ m*} is uncountable. 

5. If M is countable and m ∈ M, so is {x | x ∈ m}. 

∴ 6. {x | x ∈ m*} is countable. (Bays, 2000, 11) 

Consider the ordinary English sentence “x is uncountable.” This sentence is about the lack of 

a bijection between x and the natural numbers which could to be extracted as a sentence of 

ordinary mathematical English that contains only “equals,” “is a member of,” “not,” “if. . . 

then,” and “there is a set y, such that”. By symbolizing these expressions with =, ∈, ¬, →, 

and ∃y, respectively, an ordinary English interpretation of Ω(x) arises. Bays denote this by 

ΩE(x). On the other hand, ΩM(x) gives Ω(x) a model-theoretic interpretation by means of M 

(Bays, 2000, 16). 

                                                           

6 These materials also can be found in more recent works by Bays, namely 2007 and 2014. Here all 

references are to the original work, however. 
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It is not very hard to realize that the truth of the following conditional is integrated with the 

validity of argument (A): 

∀m ∈ M [ΩM (m) ⇒ ΩE ({x | x ∈ m})]. 

The reason, roughly, is that the most plausible reading of line 3 is based on the interpretation 

of Ω(x) as ΩM(x) and the most plausible reading of line 4 is based on the interpretation of 

Ω(x) as ΩE(x). Going from line 3 to line 4, thus, is contingent on presupposing such a 

connection between ΩM(x) and ΩE(x). (Bays, 2000, 16-8) 

In order to block argument (A), all that is remained to be done is to show that the conditional 

is false. There are, as stated by Bays, at least two salient semantical differences between 

ΩE(x) and ΩM(x). Firstly, the semantics of ΩE(x) and those of ΩM(x) sometimes disagree 

about atomic formulas. For the semantics of ΩE(x) interpret the symbol “∈” as a simple 

membership; whereas the semantics of ΩM(x) interpret “∈” corresponding to the 

interpretation function for M. Secondly, for non-atomic formulas, there are other 

disagreements, too. While the semantics of ΩE(x) interpret “∃x” as “there is an x, such that”, 

the semantics of ΩM(x) interpret the expression “∃x” corresponding to “there is an x ∈ M, 

such that”. These asymmetries between ΩM(x) and ΩE(x) ensure that the conditional under 

consideration cannot be true. (Bays, 2000, 26-7) 

In sum, according to Bays’ formulation of SP, ΩE(x) and ΩM(x) are first-order formulas 

which neglecting their semantical difference leads to the paradox. The distinctive feature of 

Bays’ solution is that it is silent with respect to the mathematical practice and its possibility 

of being formalized. Particularly, unlike the course-book approach, SP is not resolved by 

moving to the second-order language; all that is said is done in a first-order language. 

b. Generalizing Bays’ solution for HOSPs 

Now, we generalize Bays’ solution for HOSPs. In the following, we just talk about the 

second-order Skolem paradox. Treating other HOSPs is straightforwardly similar. Let κ be 

the Löwenheim number of a standard second-order axiomatization of set theory, S2. And let 

M be a model for S2 of cardinality at most κ, its existence is ensured by the Generalized 

Löwenheim Theorem. Now consider Ψ(x) to be an articulation of “x is of cardinality larger 

than κ” in the language of S2. Since M satisfies S2, there is an m* ∈ M such that M ⊨ 

Ψ[m*/x]. We can now formulate the second-order Skolem paradox: (hereafter argument 

(A*)) 

1. M is a model of S2 of cardinality at most κ. 

2. Ψ(x) says that “x is of cardinality larger than κ”. 

3. M ⊨ Ψ [m*/x]. 

∴ 4. {x | x ∈ m*} is of cardinality larger than κ. 

5. If M is of a cardinality at most κ, and m ∈ M so is {x | x ∈ m}. 

∴ 6. {x | x ∈ m*} is of cardinality at most κ. 

Similar to ΩE(x), ΨE(x) can be introduced as a second-order ordinary English interpretation 

of Ψ(x) which represents the lack of a one to one function from x into the smallest ordinal 

with the cardinality κ. Furthermore, like ΩM(x), ΨM(x) can be put to give a model-theoretic 

semantics to Ψ(x). 
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Since the most natural justification of line 3 is to interpret Ψ(x) as ΨM(x) and the most natural 

justification of line 4 is to interpret Ψ(x) as ΨE(x), then the validity of argument (A*) will be 

dependent on the truth of the following conditional: 

∀m ∈ M [ΨM (m) ⇒ ΨE ({x | x ∈ m})]. 

It is left to argue that this conditional is false. Like Bays’ original solution, the semantics of 

ΨE(x) and ΨM(x) might differ at least in two ways. First, the semantics of ΨE(x) and those of 

ΨM(x) may differ for atomic formulas, because the semantics of ΨE(x) interpret the symbol 

“∈” as a simple membership. But, the semantics of ΨM(x) interpret “∈” regarding the 

interpretation function for M. Second, there are other disparities in more complicated 

formulas. For second-order quantifiers, the semantics of ΨE(x) interpret “∃x” as “there is a set 

x, such that”, whereas the semantics of ΨM(x) interpret the expression “∃x” corresponding to 

“there is a set x ∈ M, such that”. These asymmetries between ΨE(x) and ΨM(x) guarantee that 

the conditional under consideration is not true. 

Thus, we have seen how neglecting semantical disparities between ΨE(x) and ΨM(x) leads to 

the second-order paradox. So, as Bays did for SP we can conclude that the analogous second-

order paradox neither have any possible consequence about the suitable order for the 

language by which we may formulate mathematical practice nor imply that there is not a 

unique language in which we can formulate the practice. Namely, unlike the course-book 

approach, the second-order paradox is not resolved by moving to a higher-order language; all 

that is said is done in a second-order language. 

 

4. Conclusion 

Higher-order Skolem paradoxes, as introduced here, are puzzling as much as the original 

Skolem’s paradox. The course-book approach to solve the first-order paradox, however, is 

not generalizable to solve the higher-order paradoxes, unless one concedes that there is no 

language in which the practice of mathematics (especially set theory) can be formalized. This 

is not the end of the story, fortunately. Bays’ solution to the original paradox has the power 

to be generalized to solve the higher-order paradoxes. Like Bays’ original solution, the 

generalized one does not have any implication for the (im)possibility of a language in which 

the practice of mathematics may be formalized. This is a virtue for Bays’ solution, and in 

effect for our generalization of it, that makes them to be superior to the course-book 

approach. 
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