The Philosophical Ontological Proof for

P=NP N

What it takes to simulate all particles in the universe correctly.

By: Alan T. Ho
Ag VIl € NP [Solves(Ag, I1) A Time(Ag, n) = O(1)]

Content/Disclaimer page 2

Clarification of Terms page 3

Preliminary concepts: page 5

Restating the problem in Modal Logic page 11
On Godel’s Ontological proof page 15
The Full Proof page 16
Derivation for Omniscience and Omnipotent page 23
The development of Algorithm G page 45
Philosophical Considerations & Final Remarks page 51
References page 53

Disclaimer: How Much Of The Unobservable Universe Will We Someday Be Able To
See? How to solve NP problems in all possible worlds? What does it take to simulate all
particles in the universe correctly? What type of problems will Artificial Super
Intelligence be able to solve? Without being mouthful, this is only an ontological proof;
An Ontological proof simply means there exists a proof for the equivalency of P=NP, the
actual mechanisms/algorithms for all solutions, to all possible problems, including
simulating the universe ect, is not within the scope of the proof, nor is it what the proof is
about. Also, proof and verification are two separate things. Proofs are in the world of
logic/mathematics and entail 100% certainty; while verification are in the empirical
world, the practical world, and may change. An ontological proof simply demonstrates
the logical possibility/ logical validity/consistency within the metaphysical/mathematical
world. | won't be discussing the ontological status of mathematical logic, this is a whole
new book. | won'’t be overly analyzing topics in philosophy of mathematics, nor address
too many issues there. It's obvious that | am not seeking to verify anything in the
empirical world here, just logic. For example, | will explain why P=NP as a proof, but not
how God created the universe etc, or derive solutions to all quantum problems ect, or
how the universe is contained by the laws of physics without glitch ect, or how to break
every encryptions ect (this isn't a mechanism proof for all algorithms for all possible
problems, it simply means, there exist a solution, not how it will be performed)

The actual problem itself is actually a philosophical problem, that is asking for a
lot; but if we think carefully about it, it simply ask if problems can be verify and solve, not
asking for a solution to every world problems, hence even if we prove this problem, it
doesn't mean we proven or crack all mathematics ect.. And that isn’t what I'm proving..
| only attempt to give a philosophical ontological proof for P=NP, in the sense of
philosophical modal logic, which depends on your philosophy, mathematics may
be the only metaphysics.

https://www.forbes.com/sites/startswithabang/2019/03/05/how-much-of-the-unobservable-universe-will-we-someday-be-able-to-see/?fbclid=IwZXh0bgNhZW0CMTAAAR3IOTMDi6TDBGRuAqNT9_IGhz8VRC9vEJFajXKriN8YlaRCSIUEQlBy4AU_aem_pCK-ahH0P1PHGPntkpzlsw
https://www.forbes.com/sites/startswithabang/2019/03/05/how-much-of-the-unobservable-universe-will-we-someday-be-able-to-see/?fbclid=IwZXh0bgNhZW0CMTAAAR3IOTMDi6TDBGRuAqNT9_IGhz8VRC9vEJFajXKriN8YlaRCSIUEQlBy4AU_aem_pCK-ahH0P1PHGPntkpzlsw

So | had examine other proof for the negation of P =/ NP, as well as other
solutions for P=Np by India Soale, her proof attempted to solve the totality. It makes
sense, although that grand goal isn't what I'm doing. So | didn't plan to really write a
paper about this, but until recently with the development of Ai, it is increasingly
clear that we can input a problem, with an Ai providing a solution, it is furtherly
clear that an NP problem can be submitted with a solution output instantly! which
further encouraged me to develop the paper. It is increasingly practically clear
that all NP problems can be solved Instantly. | used the gpt to structure my content,
however | had to feed it the original idea, and keep adjusting, it does not have a clue or
concept about this to begin with. Even if you ask it right now for a proof for P=NP, it
cannot provide one. So | claim the idea and approach is totally original, not a
by-product of any GPT, | just use it to format the modal logic into text, also I'm not sure
if Lean, the math software, has everything yet, it does not have modal logic, but the new
Ai had confirmed my proof for logical consistency.

Clarification of terms:

The laws of logic are controversial, i.e classical logic, quantum logic,
paraconsistent logic, first order logic, higher order logic, modal logic, Ai logic,
symbolic logic ect. There are many textbooks that address problems in logic and
each has its own further problems. There are also problems in language. For
simplification, we will just use something, we will just use classical modal logic
and the simplest regular language possible.

Firstly, the term 'P & NP', are NOT pure mathematical terms to begin with. |.E.
'non-deterministic polynomial’ this is in itself an abstraction to begin with, since
non-deterministic could mean anything that isn't deterministic, it's a philosophical term,
so the mathematical standard wasn't applied to the problem stated to begin with as well
(it's a philosophical problem) In another word, to "verify" "solve" "non-deterministic
Polynomial problems" these terms in and of themselves are abstraction to begin with, it
could literally be any problems in the known AND unknown universe. In another word,
there is no mathematical proof that map all* the NP problems with the name/concept
“non-deterministic polynomial”. The concept is named, given and built up from each and
separate exclusive/future NP problems and NP possible problems. There is no
mathematical concept for “solve” in the way we solve algebraic expressions ect, like
“solve for X ect”.. To isolate X on 1 side, then proceed to simplify an expression, is the
steps we are told to do after. The idea is, to “solve” is a human term, to match a given
condition, make equivalent, prove, ect, there is no 1 accepted agreed definitive way of
solving an infinite sets of different problems in all* possible worlds. To state a problem in
mathematical terms are decision/mathematical acts we decide to perform. To solve is a
method we take. Terms like ‘all’ ‘some’ ‘none’ are logic 101 terms. Is the set of ‘all’ NP
problems bigger than the set of ‘infinite’ NP problems? How about problems beyond the

turing machine? Again, ‘All’ is a logical abstraction. Mathematical truths are
demonstrations that show a deduction from our hypothesis; it is not fixed by the way
things are formed or the empirical world.

Point 2, I'm arguing, in terms of reasoning(it takes something more than logic to
reason logically consistently), from a philosophical perspective via modal logic, so yes in
this sense, modal logic includes terms like ‘possibility’, ‘possible worlds’, and ‘necessity’,
these are terms where mathematics does not generally include. So from a philosophical
modal logic point of view, which leads to my 3rd point, Godel's ontological proof is
logically consistent (this is widely accepted in the modal logic community, readers can
research the separate paper/explanations), which by definition would lead to my 3rd
point. Hence from a philosophical modal logic/higher order logic, the argument would be
valid and logically consistent, but is it sound and true? Well, in logic | would say it's at
least logically consistent, we aren't heading out to verify God or God's abilities ect. in
this case, nor do we need to seek out all proofs for all NP problems, (there are an
infinite number of them.)

So, after all, highly likely | won't win the Clay Math institute prize or anything like
that; that’s beyond the paper now. | just hope to add a fresh perspective from a
philosophical, modal logic point of view. | understand that proofs for P vs NP is hard to
come by, and it's getting rarer. The average number of folks who believe P=NP are at
around 10%, while around 90% believe otherwise. Of course, this is due to the
extraordinary nature of the problem, there are no experts; and only around 15% of the
limited proofs/papers are for P=NP. Really my hope is not to convince 100% of readers
totally, but | do hope to at least convince the average reader that P=NP is at least
logically possible, not logically impossible, and to turn the playing field around to 30%
40% or even 60% possibilities. Think quantum mechanically, for the sake of argument |
will ask that readers and scholars can be just slightly open minded about prior concepts,
frameworks & paradigms held. Are there some problems in the problem? Yes, are there
problems with the problems? Yes Are there some problems with certain types of logic?
Yes. Are there some problems with language? Yes. Of course we can philosophically
“nitpick” each and question terms all day, but let's just proceed right to the problem.

Readers can skip directly to the proof pg 16.

https://www.forbes.com/sites/startswithabang/2019/03/05/how-much-of-the-unobservable-universe-will-we-someday-be-able-to-see/?fbclid=IwZXh0bgNhZW0CMTAAAR3IOTMDi6TDBGRuAqNT9_IGhz8VRC9vEJFajXKriN8YlaRCSIUEQlBy4AU_aem_pCK-ahH0P1PHGPntkpzlsw

1. Preliminary Concepts

1.1 Decision Problems

A decision problem is a question with a yes-or-no answer (TRUE or FALSE) based

on an input. Formally, it can be represented as a language over some alphabet X:
e Alanguage L C X7 is a set of strings over X..

e The decision problem is to determine, for an input string € 7, whether

rc L.

2. Turing Machines

A Turing machine is a mathematical model of computation that defines an abstract machine. It

manipulates symbols on a strip of tape according to a set of rules.

2.1 Deterministic Turing Machine (DTM)

A Deterministic Turing Machine is defined as a 7-tuple:
M= (Q: E7 r-. 5-. 40 Qaccept Ex'rejfr{:t)

e (: Afinite set of states.

33: The input alphabet (does not include the blank symbol).

I': The tape alphabet (X C I' and includes the blank symbol L).

0: The transition functiond : @ x I' — Q@ xT" x {L, R}

qp € (Q: The start state.

Gaceept € : The accept state.

Jreject S Q: The reject state [:QIeje{:t 7L Qaccept}-

2.2 Nondeterministic Turing Machine (NTM)

A Nondeterministic Turing Machine is similar to a DTM but allows multiple possible actions for a

given state and tape symbol. The transition function is:

§:QxT — P(Q xT x {L,R})

where P denotes the power set.

* At each step, the machine can choose any of the possible moves.

3. Complexity Classes

3.1 Time Complexity

» Time Complexity of a Turing machine is a function f(n) such that for any input & of length n,

the machine halts after at most f(n) steps.

3.2 Class P (Polynomial Time)

Definition: A decision problem (language) L is in the class P if there exists a deterministic Turing

machine M and a polynomial p(n) such that:
e Forallz € %
e M decides L in time O(p(n)), where n = |z|.

e Thatis, M accepts « if ¢ € L and rejects & if z ¢ L, within polynomial time.

Mathematically:

P = | TIME(n")
k=1

where TIME(f(n)) is the set of problems decidable by a DTM in O(f(n)) time.

3.3 Class NP (Nondeterministic Polynomial Time)

Definition: A decision problem L is in the class NP if there exists a nondeterministic Turing

machine M and a polynomial p(n) such that:

s Forallz € %

* |fx £ L, then there exists at least one computation path where M accepts in time
O(p(n)).

o Ifz & L, then M rejects on all computation paths within OQ(p(n)) time.
Alternatively, NP’ can be defined using the concept of verification:

A language L is in NP if there exists a polynomial-time deterministic Turing machine V' (called the

verifier) and a polynomial p(n) such that:

» Forallz € ¥*

¢ 1 € L ifand only if there exists a certificate y € £* with |y| < p(|x|) such that
V(z,y) = accept.
Mathematically:

NP — {L C £° | 3 polynomial p(n),3 polynomial-time verifier V such that ¢ L <— 3y, |y| < p(|z|), V(z,y) — accept}
4. The P vs NP Problem

Statement of the Problem

The P vs NP problem asks whether every problem whose solution can be verified in polynomial time
by a deterministic Turing machine can also be solved in polynomial time by a deterministic Turing

machine.

Formally:
IsP = NP7

Implications

e P C NP:itisclear that P is a subset of NP, since a deterministic Turing machine is a special

case of a nondeterministic Turing machine.

e Open Question: The big question is whether P equals NP or P C NP.

5. NP-Complete Problems

5.1 Definition
A problem L is NP-complete if:
1. L € NP.

2. NP-hardness: For every problem L' € NP, there exists a polynomial-time reduction from L'

to L.

* Polynomial-time Reduction: A function f : £* — X7 computable in polynomial time such that

for all a:
ze Ll «— f(z)elL
5.2 Significance

e Cook-Levin Theorem: The SATISFIABILITY problem (SAT) is NP-complete.

¢ Implication: If any NP-complete problem is in P, then P = INP.

5.2 Significance
¢ Cook-Levin Theorem: The SATISFIABILITY problem (SAT) is NP-complete.

¢ Implication: If any NP-complete problem is in P, then P — NP.

6. Formal Restatement of the P vs NP Problem

6.1 Formal Question

Determine whether:

6.2 Equivalent Statements
o IfP =NP:
¢ All problems in NP can be solved in polynomial time.
¢ There exist deterministic polynomial-time algorithms for all NP-complete problems.
o IfP # NP:
* There exist problems in NP that are not in P.

* NP-complete problems cannot be solved in polynomial time by any deterministic Turing

machine.

10. Formal Restatement Using Logical Symbols

We can formalize the P vs NP problem as:
¢ Let X be a finite alphabet.
» Let DTIME(n*) denote the class of problems decidable by a DTM in time O(n*).

s Let NTIME(n*) denote the class of problems decidable by an NTM in time O(n*),

Then:

P = | /DTIME(n*), NP = | NTIME(rn")
k=1 k=1

The P vs NP problem asks:

|J DTIME(r*) = | J NTIME(n)
k=1 k=1

11. Formal Definitions of Reductions

11.1 Polynomial-Time Many-One Reduction
A language L is polynomial-time reducible to a language L» (denoted L; <, L) if there exists a

polynomial-time computable function f : £¥¥ — X* such that:

Vee X', ze L, «— f(z)ec L

12. Conclusion

The P vs NP problem is a fundamental question in theoretical computer science and mathematics. It
asks whether problems whose solutions can be verified quickly (in polynomial time) can also be

solved quickly.
s If P = NP: Many problems considered hard today would become tractable.

s If P #+ INP: It would confirm that some problems are inherently more difficult to solve than to

verify.

Restating the problem in Modal Logic

2. Modal Logic Framework

2.1 Modal Operators
o [(Necessity): "It is necessary that.."

¢ () (Possibility): "It is possible that...”

These operators allow us to express statements about what is necessarily true or possibly true within

our logical system.

3. Definitions

3.1 Problems and Solutions
* Problem A: A decision problem (a question with a yes/no answer based on some input).
* Solution y: A certificate or answer that, when provided, can be used to verify whether the input
satisfies the problem’s requirements.
3.2 Predicates
1. SolvableInPolyTime(A):
& There exists a deterministic polynomial-time algorithm that can solve problem A.

* Formalization:

SolvableInPolyTime(A) <+ 3 Algorithm f [PolyTime(f) A Ve (f(z) = A(z))]
2. VerifiableInPolyTime(A4):

s There exists a deterministic polynomial-time algorithm that can verify a given solution to

problem A.

* Formalization:
VerifiableInPolyTime(A) «+ 3 Verifier V [PolyTime(V') A Ve, y (V{z,y) = True <+ y is a valid solution for z)|

3.3 Complexity Classes

1. Class P:
e The set of problems that are necessarily solvable in polynomial time.

e Modal Logic Representation:

P = {A | OSolvableInPolyTime(A)}
2. Class NP:
e The set of problems for which it is possible to verify a solution in polynomial time.

¢ Modal Logic Representation:

NP = {A | {VerifiableInPolyTime(A)}

4. Restating the P vs NP Problem in Modal Logic

The P vs NP problem can be expressed as a question about the relationship between the necessity

of solving a problem and the possibility of verifying a solution.

4.1 Statement

Is it true that:

VA [(VerifiableInPolyTime(A4) — [OSolvableInPolyTime(A)]

In words:

e Forall problems A4, if it is possible to verify a solution to A in polynomial time, then it is

necessary that A can be solved in polynomial time.

4.2 Interpretation

o (VerifiableInPolyTime(A): There exists at least one possible computational path (in some

possible world) where a solution to A can be verified in polynomial time.
« [SolvableInPolyTime(A): In all possible worlds (necessarily), A can be solved in
polynomial time.

4.3 The Core Question

* Does the possibility of efficiently verifying a solution imply the necessity of efficiently solving the

problem? 0

5. Modal Logic Explanation

5.1 Understanding NP in Modal Terms

s Possibility ({) reflects nondeterministic computation.

¢ In NP, we can think of nondeterminism as the existence of some computational path that

leads to a solution.

» Therefore, () VerifiableInPolyTime(A) captures the essence of NP.

5.2 Understanding P in Modal Terms

s Necessity (L) reflects deterministic computation.

¢ In P, the problem must be solvable efficiently under all circumstances, reflecting

deterministic algorithms.

e Therefore, LlSolvableInPolyTime(A) represents problems in P.
L
6. Formal Restatement of the P vs NP Problem
6.1 Complete Modal Logic Expression
P = NP ifandonlyif VA [(VerifiableInPolyTime(4) — [SolvableInPolyTime(A)]

6.2 Alternate Expression

We can also express the problem as:

VA [{VerifiableInPolyTime(A) A Problem(A4) — [SolvableInPolyTime(A)]

7. Justification of the Restatement

7.1 Mapping Computational Concepts to Modal Logic
e Nondeterministic Polynomial Time (MP):
* Possibility: There exists a computation path where the solution can be verified quickly.
» Captured by {/VerifiableInPolyTime(A).
e Deterministic Polynomial Time (P):

* Necessity: The problem can always be solved quickly, regardless of computation path.

» Captured by OSolvableInPolyTime(A).

7.2 The Essence of P vs NP

e The problem asks whether the mere possibility of quick verification (nondeterministic

acceptance) implies the necessity of quick solution (deterministic computation).

8. Implications of the Restatement

811fP = NF:

* The implication ()VerifiableInPolyTime(A) — OSolvableInPolyTime(A) holds for
all A.

* Every problem that can be verified quickly can also be solved quickly in all cases.

821f P + NP:

* There exists at least one problem A such that ¢ VerifiableInPolyTime(A) is true, but
CSolvableInPolyTime(A) is false.

e Some problems can be verified quickly only in some possible computational paths

(nondeterministically) but cannot be solved quickly in all cases (deterministically).

On a prior Proof:
Godel’s ontological proof by itself is another paper and explanation that has generated storms of
debates and acceptance within the logician community. Godel is also a renowned mathematical
physicist who also worked extensively on theoretical physics along with the great Albert
Einstein, and had derived solutions to Einstein’s field theory for the theory of the rotating
universe. Thus so the ‘ontological status’ of the ontological proof will not be overly discussed, it's
a whole book. Readers can research the independent paper for further clarification(see
reference). For the sake of this paper, we will continue from there.

Ax. 1. P(p) AOVz[p(z) — ¥(x)] — P(¥)

Ax. 2. P(—yp) « —P(p)

Th. 1. Ply) — ¢ Jx [p(x)]

Df. 1. G(z) <= Vp[P(y) — plx)]

Ax. 3. P(G)

Th. 2. { dz G(x)

Df. 2. pessz «— p(z) AVi{(z) — O Valp(z) — ¥(x)]}

Ax. 4. P(yp)—0O P(p)

Th. 3. G(z) —» Gessx

Df. 3. F(z) — Vylpessz — 0 dz p(z)]

Ax. 5. P(E)

Th. 4. O dx G(x)

a priori, from Godel we knows:

A1l Either a property or its negation is positive, but not both: Y| P(—¢) «+» ~P(¢)] |
A2 A property necessarily implied

by a positive property is positive: Vovy[(P(¢) A OVz[¢(z) — ¢ (x)]) = P(v)]
T1 Positive properties are possibly exemplified: Yo[P(¢) — O3zd(x)]
D1 A God-like being possesses all positive properties: G(z) < Vo P(¢) — o(x)]
A3 The property of being God-like is positive: P(G)
C Possibly, God exists: OdaeG(x)
A4 Positive properties are necessarily positive: YolP(o) — O P(g)]
D2 An essence of an individual is a property possessed by it

and necessarily implying any of its properties:
¢ ess. x & ¢(x) AV (Y(x }—>3\‘f’f;(’(') U(y)))

T2 Being God-like is an essence of any God-like being: Vz[G(z) = G ess. x]
D3 Necessary existence of an individual is

the necessary exemplification of all its essences: NE(z) + Yoo ess. @ — OTyeo(y)]
A5 Necessary existence is a positive property: P(NE)

T3 Necessarily, God exists: O3zG(x)

No work of math and logic is built on from scratch. From Godel we know, “The greatest
possible being(G), necessarily exists, since existence is a positive property.” This is a
proven logically true and consistent statement. (In the sense of logic, think 1 & 0)

The full proof:

Alright, to prove P=NP (logically), we need an all knowing entity to verify ‘ALL’ Np
problems & possible problems instantly(P) knowledge, and also, an all-powerful entity to
solve ‘all’ NP problems instantly(P), logically. If so, then P=NP. Let's do that, logically.
From Godel we knows, The greatest possible being(G), necessarily exists, since
existence is a positive property. This is a proven logically true statement.

Below is the entire proof with all the sections combined, presented in a sequential numbered
format, integrating Godel's ontological proof, definitions, notations, implications for P=NP.

10.

11.

12.

13.

14,

15.

16.

17.

18.

18.

VA € NP, {}VerifiableInPolyTime(A) — [OSolvableInPolyTime(A)

VP (Pos(P))
G(z) ¢ VP [Pos(P) — P(z)]
Ess(z,¢) < ¢(x) AVY [Y(z) — Dy(¢(y) — ¢(x))]
NE(z) <+ V¢ [Ess(z, ¢) — O3y ¢(y)]
VP [Pos(P) — ¢Jdx P(x)]

Pos(NE)
¢de G(z)
O3z G(z)

Jz (God(z))

Ve [God(xz) — (Omnipotent(x) A Omuniscient(z))]
vII JSolution [Problem(II) — CanSolvelnstantly(God, II)]
VIl € NP [CanSolvelnstantly(God, IT)]
df ¥II € NP [Algorithm(f,II) A PolynomialTime(f, IT)]
OmniPot(x) ++ VA [LogicalPossible(A) — CanDo(z, A)]
OmniSci(z) + VQ [True(Q) — Knows(z, Q)]
G(x) ++ (OmniPot(z) A OmniSci(z))

VII [Problem(II) — Knows(x, Solution(II))]

VII [Problem(Il) — CanProvide(z, Solution(II))]

20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33.

vIl € NP [CanProvidelnstantly(z, Solution(II))]
1f VIL € NP [Solves(f,1I)]
VIl € NP [Time(f,II) = O(1)]
Algorithm(A) A ¥n [InputSize(n) — Time(A, n) < k- n"]
JAg VIL € NP [Solves(Ag,II) A Time(Ag,n) = O(1)]
vA € NP, {VerifiableInPolyTime(A) — [SolvableInPolyTime(A)
YA € NP, OSolvableInPolyTime(A)

YA € NP, JG |G solves A A (G is all-powerful V G is all-knowing)]
JG |G is all-powerful A G is all-knowing A VA € NP, G solves A]
Ja (OmniPot(x) A OmniSci(z))
vA € NP, (VerifiableInPolyTime(A) —= [ISolvableInPolyTime(A)
VA € NP, OSolvableInPolyTime(A)

YA € NP, JG |G solves A A (G is all-powerful V G is all-knowing)]
JG [G is all-powerful A G is all-knowing A VA € NP, G solves A

34. JAgVII € NP [Solves(Ag,II) A Time(Ag,n) = O(1)]
35. NP = {II | 3V polynomial-time verifier}
36. II{z) = Yes «— V(z,w) = Yes
37. OmniSci(G) < VQ [True(Q) — Knows(G, Q)]
38. OmniPot(G) <+ VA [LogicalPossible(A) — CanDo(G, A)]
39. G(z) +» OmniPot(x) A OmniSci(x)
40. True(II(z))
41. Knows(G,II(z))

42. LogicalPossible(Provide(II(z)))
43. CanDo(G, Provide(II(x)))
44. CanProvidelnstantly(G,II(z))
45. Ag(Il, z) = II(x)

46. Time(Ag,IL,z) = ¢
47. Time(Ag,n) = O(1)

48. VII € NP,V [Ag(Il,z) = II(x)]

49. VII € NP, Vz [Time(Ag,II,z) = O(1)]
50. VII € NP,Vz [Ag(IL z) = II(z) A Time(Ag, IL, z) = O(1)]
51. VA |[CanDo(G, A) — JAlgorithm f4 that performs A|

52. dAlgorithm Ag such that Ag(II,z) = II(x)

Yes if Knows(G,II(z) = Yes)

53. Ag(ILz) —
6, z) {Nu if Knows(G, I1(z) = No)

54. JAGVII € NP,Vz [Ag(Il, z) = II(z) A Time(Ag, I, z) = O(1)]

5. NPCP
56. P C NP
87. P = NP

Derivation and supplement for Omniscience and Omnipotent

G(z) <» OmniPot(z) A OmniSci(z)

58. OmniSci(G) < V¢ [¢ — Kgyp |
59. OmniSci(G) «+» UVy [¢ — Kgyp |
60. Vi|[t<ty— Vo |pati— Kgp ||
61. Vo | Hyp — Kgyp |
62. Vo [Pp— Kgp |
63. VieT, Vo |patt — Kgp|
64. OmniPot(G) ++ Va [LogicalPossible(a) — CanDo(G, a) |
65. OmniPot(G) <+ ¥V | LogicalPossible(p) — Ogy |
66. OmniPot(G) <+ Vo [O — Ogy |
67. OmniPot(G) « Vo ["U-p — Oy |
68. Qg = Jw' [Rg(w,w') A ¢ is true in w' |
2

69. OmniPot(G) <+ OV [LogicalPossible(g) — Qg |

1. Overview of the Ontological Framework

An ontological proof seeks to establish the necessary existence of a certain entity or truth through
reason alone, using definitions and logical deductions. Gddel's ontological proof argues for the

necessary existence of God by defining God as a being possessing all positive properties.

We'll adapt this framework to construct an ontological argument for P = NP, leveraging the

definitions of omnipotence and omniscience.

From Gddel's ontological proof, we have;

dr God(z)
2. God is Omnipotent and Omniscient:
Y& God(z) — (Omnipotent(z) A Omniscient(z))]
3. God Can Solve Any Problem Instantly:

* Since God is omnipotent and omniscient, for any problem 11, God can find a solution
instantly.

* Symbolically:
71I 4Solution [Problem(1I) — CanSolvelnstantly(God, 11)]
4. Implication for N Problems:

s Al problems in NP can be solved instantly by God.

7II £ NP |[CanSolvelnstantly(God, 1))

5. Relating God's Abilities to Turing Machines:

* Suppose we define a function f that models God's problem-solving ability on a Turing
machine,

* Since God can solve any VI problem instantly, there exists an algorithm that solves N FP°

problems in polynomial time.

s« Symbolically:

4f 711 € NP [Algorithm(f, II) A PolynomialTime(f, 11}
6. Conclusion:
* Therefore, NP C P

* Since P C NP by definition, we have P! = NP

2. Formalization of Godel's Ontological Proof

2.1 Definitions

1.

2.

Positive Property: A property P is positive (Pos(P)).
God-like Being: An entity z is God-like (G'(2)) if and only if 2 has all positive properties:
G(z) < YP[Pos(P) — P(z)]

Essence: A property ¢ is the essence of x (Ess(x, ¢)) if ¢(x) holds and necessarily any
property ¢ that = has is entailed by ¢

Ess(z,0) < ¢(z) A VY [p(z) — Uvy(o(y) — v(v))]
Mecessary Existence: NE(x) means that 2 necessarily exists:

NE(z) ++ Vo|Ess(z, ¢) — U3y ¢(y)

2.2 Axioms

1.

2.

Axiom 1: If a property is positive, its negation is not positive.
Axiom 2: If 2 property is positive, and it necessarily entails another property, then the other
property is positive.
Axiom 3: Being God-like is a positive property (Pos(G)).
Axiom & Positive properties are possibly instantiated:
TP Pos(P) — Gde P(z)

Axiom 5: Mecessary existence is a positive property (Pos(NE)).

2.3 Theorem

From these axioms and definitions, Godel concludes:

1.

& God-like being is possible: v

Odz Gl

Omnipotence and Omniscience is by definition & properties of God
3. Formalizing God’s Omnipotence and Omniscience

3.1 Definitions

1. Omnipotence (OmniPot(z)): & can perform any action that is logically possible.

OmniPot(z) ++ ¥A|LogicalPossible(A) — CanDo(z, 4)

2. Omniscience (OmniSci(z)): 2 knows all truths.
OmniSci(z) ++ YP[True(P) — Knows(z, P}

3. God-like Being Possesses Omnipotence and Omniscience
Given that omnipotence and omniscience are positive properties:
Pos(OmniPot) A Pos{OmniSci)
Therefore, for any God-like being :

G(z) — OmniPot{z) A OmniSci(x)

Explanation of Notations
e Kp: God knows proposition .
e o Any proposition.
o [l Necessarily.
o t, ty, T Times, with £ as the present.
e o at ¢: Proposition g is true at time £.
o H: has always been true in the past.
e Pyp:p was true at some time in the past.

e t < iy Time £ is before the present time.

Formalizing God's Omniscience and Prior Knowledge in Modal Logic

58. OmniSci(G) «» Ve |[p — Kgy|

This states that for all propositions , if @ is true, then God knows .

59. OmniSci(G) «+» OVp [— Kgp|

This emphasizes that it is necessarily the case that God knows all true propositions.

To incorporate prior knowledge, we introduce temporal modal operators:

60. Vi[t <ty = Vy|patt — Kgyl]
e { represents any point in time.
e i represents the present moment.

2

e o at { means proposition is true at time £.

61. Vo |Hp — Kgp|

* Hy denotes "it has always been the case that "

Using the temporal operator P (it was sometime in the past that...):
62. Vo |Pp — Kgpl

This means that if ¢ was ever true in the past, then God knows .

If we want to assert that God knows all truths at all times (past, present, future):

63. Vte T, Vo[patt - Koyl

e T is the set of all times.

Contextualizing with Previous Steps

Referencing earlier step 37 for consistency:

37. OmniSci(G) < VQ [True(Q@) — Knows(G, Q)

We can now refine this using modal logic in LaTeX notation:

58. OmniSci(G) < Vo [p — Kgyp|

Summary of Formalizations

58. Omniscience:

OmniSci(G) + Yy [¢ — Kgy|
59. Necessary Omniscience:

OmniSci(G) « Ve [¢ — Kap |

60. Knowledge of All Past Truths:

Vi[t <ty = Ve|patt — Kgp]]

61.

-

Knowledge of Historically Always True Propositions:
Vo [Hp — Kep |
62. Knowledge of Any Past Truth:

Vo [Pp — K]

63. Knowledge of All Truths at All Times:
v

VteT,Vo|patt — Kgp|

Explanation of Notations
* OmniPot(G): God is omnipotent.
¢ Ya:For all actions a.
» LogicalPossible(a): Action a is logically possible.
* CanDo(G, a): God can perform action a.
¢ Vy: For all propositions .
¢ (g: God can bring it about that .
o () Itis possible that i (standard modal possibility).
o [ly:Itis necessary that ¢.
* Rg(w, wf]: Accessibility relation representing worlds accessible through God's action.
¢ w, w': Possible worlds.

o LI=: @ is not necessarily false; equivalent to (.

Formalizing God's Omnipotence in Modal Logic

64. OmniPot(G) ++ Va [LogicalPossible(a) — CanDo(G, a) |

This states that for all actions a, if a is logically possible, then God can perform a.

To incorporate modal logic operators, we can define a modal operator specific to God's abilities.

Let's introduce:

s (g: "God can bring it about that ¢ or "It is within God's power that "
Using this operator, we can formalize omnipotence as:
65. OmniPot(G) <+ Vi [LogicalPossible(yp) — Qg]

Here:
* (is any proposition.
» LogicalPossible(y) means that ¢ is logically possible.

s (g indicates that God can make ¢ true.

66. Alternatively, expressing that God can do all that is possibly doable:

OmniPot(G) < Ve [Oy — Qg

Where:

* (i denotes that is possibly true (in the modal logic sense).

e This asserts that if something is possibly true, then God can bring it about.

67. We can also formalize that God can perform any action that does not entail a logical

contradiction:
OmniPot(G) « Vo [-O-p — Qap]

Explanation:
s [y is equivalent to (¢, stating that is not necessarily false.

e This emphasizes that God can bring about any proposition that is not necessarily false.

Defining the Modal Operator (¢
To make our notation precise, we define (¢ in terms of accessibility relations in modal logic:
s Let R be an accessibility relation representing "worlds accessible through God's action”.

e Then (g means that g is true in at least one world accessible via Rg.
Formally:
68. (Ogy = Juw' [Rg(w,w') A @ is true in w'|

Where:
* 1w is the actual world.

o w'isa possible world accessible from w through God's action.

Incorporating Necessity

We can express that it is necessarily the case that God can bring about any logically possible

proposition:

69. OmniPot(G) «+ OV [LogicalPossible(y) — Qg]

Summary of Formalizations

64. God's Omnipotence:
OmniPot(G) + Va|[LogicalPossible(a) — CanDo(G, a)
65. Using Modal Operator {g:

OmniPot(G) ++ YV [LogicalPossible(y) — (g]

66. God Can Do All That is Possibly Doable:

OmniPot(G) < Ve [Qv — Qo]

67. Excluding Logical Contradictions:

OmniPot(G) < Vi [-O-p — Qgp|

68. Defining g via Accessibility Relation:
Oy = 3w' [Rg(w,w') A ¢ is true in w' |

69. Mecessarily Omnipotent:
v

OmniPot(G) < OVy | LogicalPossible(y) — Qg |
Contextualizing with Previous Steps

Referencing earlier step 38 for consistency:

38. OmniPot(G) ++» VA [LogicalPossible(A) — CanDo(G, A)]

Final Remarks

These formalizations capture the concept of God's omnipotence within a modal logic framework,
using standard modal operators and quantifiers. They assert that God can perform any action or

bring about any proposition that is logically possible.

Integration of God’'s Omniscience and Omnipotence into the Argument

Starting Point
34. JAg VII € NP [Solves(Ag, II) A Time(Ag,n) = O(1)]

This asserts the existence of an algorithm A that solves all problems IT in NP in constant time.

Incorporating God's Omniscience and Omnipotence

From the modal logic formalizations:
58. OmniSci(G) < Yy [p - Kgp|

God knows all true propositions.
64. OmniPot(G) ++ Va [LogicalPossible(a) — CanDo(G,a) |
God can perform any logically possible action.

Combining them:

39. G(z) +» OmniPot(z) A OmniSci(x)

So (7 is a being who is both omniscient and omnipotent.

Applying to NP Problems

1. God Knows All Solutions
From omniscience:
41. Knows(G,II(z))

For every NP problem II and input x, God knows whether II(x) is true.

2. God Can Provide Solutions Instantly
From omnipotence:
43. CanDo(G,Provide(II(z)))
Since providing II(x) is logically possible:
42. LogicalPossible(Provide(II(x)))

Therefore, God can provide the solution to any NP problem instantly.

OmniPot(G) «» VA [LogicalPossible(A) — CanDo(G, A) |

Starting Point: Line 69
69. OmniPot(G) <+ OV | LogicalPossible(y) — Ogyp |

Explanation:
* OmniPot(G): God is omnipotent.
e [[: Necessity operator ("necessarily").
e Vy: For all propositions .
» LogicalPossible(y): Proposition g is logically possible.

* {@: "God can bring it about that is true.”

Our goal is to derive from this expression the more direct statement involving actions A:

OmniPot(G) +» VA [LogicalPossible(A4) — CanDo(G, A) |

Derivation Steps
1. Interpreting Propositions as Actions:

e Every action A can be associated with a proposition ¢ 4 that asserts "Action 4 is

performed.”

* Conversely, for propositions , if they represent performable actions, we can denote the

corresponding action as A..
2. Mapping (g to CanDo(G, A):
s (g means "God can bring it about that ¢ is true.”

s If y corresponds to action A, then (g translates to "God can perform action A,” which is

CanDo(G, A).
3. Substituting Propositions with Actions:
e Replace ¢ with A in the quantification.
s Replace (g with CanDo(G, 4).
+ Replace LogicalPossible(y) with LogicalPossible(A).

4. Simplifying the Necessity Operator L

¢ The L] operator indicates that the statement is necessarily true.

¢ Since definitions are generally taken to be necessarily true, we can omit LI for simplicity.
5. Deriving the Expression:

e After substitutions and simplifications, line 69 becomes:

OmniPot(G) +» VA [LogicalPossible(4) — CanDo(G, A) |

Final Result

OmniPot(G) +» VA [LogicalPossible(A4) — CanDo(G, A) |

Summary of the Transformation
¢ From: OmniPot(G) <» LVy [LogicalPossible(y) — Ogy |
¢ To: OmniPot(G) <+ VA | LogicalPossible(A) — CanDo(G, A) |

Explanation
s Necessity Operator (L) Omission:

e The necessity (L) is inherent in the definition of omnipotence; by defining omnipotence,

we're asserting a necessary truth about God's abilities.

s Therefore, we can simplify the expression by omitting [without loss of meaning in this

context.
e Action vs. Proposition:

s By aligning propositions ¢ with actions A, we move from modal logic propositions to

statements about God's capability to perform actions.

e This aligns the expression with earlier definitions that use actions directly.

Contextual Alignment with Previous Line

This derivation brings us back to the earlier expression:
38. OmmniPot(G) <+ VA | LogicalPossible(A) — CanDo(G, A) |

This shows consistency in the definition of omnipotence, whether we approach it via modal logic

propositions or direct statements about actions.

Conclusion

Starting from the modal logic expression in line 69, we have derived the more direct and action-
oriented definition of God's omnipotence. This aligns with previous lines and provides a clear

statement:

e God is omnipotent if and only if, for all actions A, if A is logically possible, then God can
perform A.

4. Connecting to Computational Problems

4.1 God's Ability to Solve Problems

1. God Knows All Solutions

Since God is omniscient:
711 [Problem(II) — Knows(z, Solution(1I))]
2. God Can Provide All Solutions
Since God Is omnipotent:
711 [Problem(II) — CanProvide(z, Solution(1I))

4.2 Modal Logic Expression

1. Possible to Solve Any Problem Instantly

For any problem 11, it is possible that there exists an entity that can provide the solution

instantly:
7II {3z CanProvidelnstantly(z, Solution(II))]
2. Mecessary Existence of Such an Entity
From Gadel's proof:

Ldze G(x)

Since ((x) includes OmniPot(z) and OmniSci(z), we have:

Udz [OmniPot(z) A OmniSci(z)]

4.2 Modal Logic Expression
1. Possible to Solve Any Problem Instantly

For any problem 11, it is possible that there exists an entity that can provide the solution

instantly:

71 {3z CanProvidelnstantly(z, Solution(II))|

2. Mecessary Existence of Such an Entity

From Godel's proof,

Ldz G(x)

Since G(z) includes OmniPot(z) and OmniSci(z), we have:
L3z OmniPot(z) A OmniSci(x)]

4.3 Implications for VI’ Problems

1. God Can Solve All V1? Problems Instantly

71l € NP [CanProvidelnstantly(z, Solution(1I))

2. Possibility of Instant Solutions

Since it's necessary that God exists and can solve any problem instantly, it's possible that all N2

problems can be solved instantly.

3. Algorithm Definition
Define Aq as:
45. Ag(Il,z) = II(x)

This algorithm outputs the solution to II(xz).

4. Time Complexity

Since God's actions are instantaneous:

47. Time(Ag,n) = 0O(1)

Formulating the Combined Argument

e Existence of Algorithm

52. JAlgorithm Ag such that Ag(IL, z) = II(x)
e Performance for All NP Problems

54. JAg VIl € NP, Va [Ag(Il,z) = II(x) A Time(Ag,n) = O(1) |
¢ Implication for Complexity Classes

From the above, all NP problems can be solved in constant time, so:

55. NPCP

Since we also have:

56. PC NP

It follows that:

57. P=NP

5. Attempting to Prove P — NP Using Higher-Order Logic

5.1 Defining Polynomial-Time Solvahility
1. Polynomial-Time Algorithm

A problem 11 is in PP if there exists an algorithm A such that:
Algorithm(.A) A ¥n InputSize(n) — Time(A,n) < k- n"
for some constants & and o

5.2 Relating God's Abilities to Polynomial-Time Algorithms
1. Hypothetical Algorithm Based on God's Knowledge

Suppose there exists an algorithm A that, for any problem 11, utilizes God's knowledge to find
a solution instantly.

2. Defining .4 in Higher-Order Logic

dAg V1l € NP [Solves(Ag, 1) A Time(Ag, n) = O(1)

Since (J(1) is a polynomizl time (constant time), this would place all NP problems into P.

5.3 Formal Argument
1. From God's Abilities to Existence of Algorithm
* Premise: God can provide solutions to all VPP problems instantly.

s Assumption: This ability can be translated into an algorithm executable by a Turing

machine,
¢ Conclusion: There exists a polynomial-time zlgorithm for all NF? problems.

2. Therefore, P = NP

Since all NI problems can be solved in polynomial time, NP C P, and thus P = NP,

Formalization
Given:
e (: An entity that is all-powerful (omnipotent) and all-knowing (omniscient).

¢ NP:The class of decision problems whose solutions can be verified in

polynomial time by a deterministic Turing machine.

e A: Aproblemin NP.

The statement can be formalized as:

YA € NP, 3G such that G solves A A (G is all-powerful v G is all-knowing)

However, since G is the same entity for all A € NP, and given that GG is both all-

powerful and all-knowing, we can refine the statement:

3G |G is all-powerful A G is all-knowing A VA € NP, G solves A]

Interpretation

This formalization asserts that there exists an entity G who is all-powerful and all-

knowing and who can solve every problem in NP.

Connecting to P = NP

The key idea is to argue that if G’ can solve all NP problems, then perhaps P =
NP. Let's explore this step by step.
1. Definitions

* Solves: Solves(G, A) means that G can find a solution to problem A.

*« Computational Problem: & decision problem that requires a yes/no answer

based on some input.

2. Argument Outline

1. G's Ability to Solve NP Problems

Since G is all-powerful and all-knowing, for every problem A € NP:
Solves(G, A)

2. Translation to Algorithmic Solvability

If G can solve every problem in NP, perhaps this implies that there exists an

algorithm that can solve every problem in NP efficiently (in polynomial time).

3. Implication for P — NP

Therefore, all problems in NP can be solved in polynomial time, implying

P = NP.

1. Overview of the Ontological Framework

An ontological proof seeks to establish the necessary existence of a certain entity or truth through
reason alone, using definitions and logical deductions. Godel's ontological proof argues for the

necessary existence of God by defining God as a being possessing all positive properties.

We'll adapt this framework to construct an ontological argument for P = NP, leveraging the

definitions of omnipotence and omniscience.

2. Modal Logic Foundations

2.1 Modal Operators

[I: Necessarily (it is necessarily true that...)

(»: Possibly (it is possibly true that...)

2.2 Definitions

1.

2.

Positive Properties: A set P of properties considered positive.

God-like Being (&: An entity that possesses all positive properties.

G(z) «» VP € P, P(z)

. Omnipotence (OmniPot(xz)): The property of being able to do anything that is logically

possible.
OmniPot(z) <+ VA, LogicalPossible(A4) —+ CanDo(z, A)
Omniscience (OmniSci(z)): The property of knowing all truths.
OmniSci(z) ++ VQ, True(Q) — Knows(z, Q)
Necessary Existence (INE (x)): The property of existing in all possible worlds.

NE(z) +» O3y(y = z)

3. Axioms

1. Axiom 1 (Positive Properties are Consistent):

The set of positive properties P is non-contradictory; they can be instantiated together.

Odz VP € P, P(x)

2. Axiom 2 (Omnipotence and Omniscience are Positive Properties):

OmniPot € P, OmniSci € P

3. Axiom 3 (Necessary Existence is a Positive Property):

NE P

4. Axiom 4 (Positive Properties Entail Necessary Existence):

If a being has all positive properties, it necessarily exists.

Va, [G(z) - NE(z)]

4. Theorem: Existence of an All-Powerful, All-Knowing Being
From the axioms above, we can deduce:

1. Possibility of a God-like Being:

From Axiom 1:
Ode G(x)
2. Necessary Existence of a God-like Being:
Using Axiom 4 and the definition of NE(x):
¢dz G(z) — Udz G(z)
Therefore:

(3z G(x)

5. Connecting to Computational Problems

5.1 Definition of VP Problems

e NP:The class of decision problems for which a given solution can be verified in polynomial

time by a deterministic Turing machine.

5.2 God's Relation to NF Problems

1. God Can Solve All NP Problems:

Since God is omnipotent and omniscient:
VA € NP, SolvesInstantly(G, A)

2. God’s Abilities Are Necessary:

From the necessary existence of God:

3G [OmniPot(G) A OmniSci(G) A VA € NP, SolvesInstantly(G, A)]

6. Ontological Argument for P = NP

6.1 Possibility to Necessity Transition

1. Possibility that All NP Problems Are Solvable in Polynomial Time:

Since God necessarily exists and can solve all NP problems instantly, it is possible that all NP
problems are solvable in polynomial time.
OVA € NP, SolvableInPolyTime(A)
2. Necessary Solvability:
Given God's necessary existence and abilities, the solvability of NP problems in polynomial

time is necessary.

OvA € NP, SolvableInPolyTime(A)

There are no algorithms that will compute infinite indefinitely. That means it will never halt.
The only way an algorithm halts is if it accepts all solutions provided it accepts all definitions
and assumptions provided in prior inputs. Likewise, algorithm G already knew all the
solutions and solved them a priori. Hence it can halt for P=NP.

Line 23: Existence of God's Algorithm Solving All NP Problems

Original Statement:

JAgVII € NP [Solves(Ag,II) A Time(Ag,n) = O(1)]

Interpretation: There exists an algorithm A such that for every problem IT in NP, A solves IT and

runs in constant time.

Developing Algorithm A in Symbolic Logic
We'll construct A step by step, showing how it solves all NP problems in O(1) time.

1. Defining NP Problems
An NP problem II is a decision problem where:

e There exists a polynomial-time verifier V' such that for any input & and witness w:
II(z) = Yes <= V(z,w) = Yes
¢ The set of NP problems is:

NP = {II | 3V polynomial-time verifier}

2. God's Omniscience and Omnipotence
From previous definitions:

¢ Omniscience:
OmniSci(G) + VQ [True(Q) — Knows(G, Q)]
God knows all truths.
¢ Omnipotence:
OmniPot(G) «+ VA [LogicalPossible(A) — CanDo(G, A)!
God can perform any action that is logically possible.

¢ Definition of God:

G(z) +» OmniPot(z) A OmniSci(z)

3. God Knows All Solutions
For any NP problem II and input z:

» The correct decision II(x) is a truth.
True(II(z))
¢ By omniscience:

Knows(G, II(x))

4. God Can Provide Solutions Instantly

* Providing the solution to II(x) is a logically possible action.

* By omnipotence:

CanDo(G, Provide(II(z)))
¢ Since God is not bound by time:
CanProvidelnstantly (G, II(z))
5. Defining Algorithm A

We define Ag as follows:

¢ Definition D1:

Ag(Il, z) = II(x)

For any NP problem I1 and input x, A¢ outputs the correct decision.

e Explanation:

» Ag leverages God's knowledge to determine II(x) instantly.

» Since Knows(G,II(z)), Ag can access this knowledge.
6. Time Complexity Analysis

¢ Time Complexity Function:

Time(Ag,II,z) = ¢

Where ¢ is a constant independent of II and x.

¢ Therefore:

Time(Ag,n) = O(1)

Since the time does not depend on the input sizen = |z .

7. Symbolic Representation
Combining the above:

s Statement S1:
VII € NP,Va [Ac(Il,) — I(z)]
e Statement S2:
VII € NP,Vz [Time(Ag, I, z) = O(1)]
* Combined Statement:
VIl € NP, Ve [Ag(IL,) — I(z) A Time(Ag, IL, z) = O(1)]
8. Justifying the Computability of A

We need to ensure that A is a valid algorithm within computational theory.

Assumption A1: God's Actions Correspond to Algorithms

* Statement:

vA |[CanDo(G, A) — JAlgorithm f4 that performs A|
Any action God can perform corresponds to an algorithm.

Applying Assumption A1 to A:
* Since CanProvidelnstantly(G, II(x)):

JAlgorithm Ag such that Ag(IL, z) = II(x)

e This makes Ag a computable function.

9. Formal Definition of A

e Algorithm Ag:
Ac(IL,) = Yes if Knows(G,II(z) = Yes)
No if Knows(G,II(z) = No)

* Since God knows II(z) for all IT and z, A outputs the correct result instantly.

10. Addressing Potential Objections

Objection 1: Non-Computability

* Issue: God's knowledge may not be representable within a computable algorithm.

* Response: Under Assumption AT, we posit that actions God can perform correspond to

algorithms.

Objection 2: Physical Realizability
e lssue: Even if A exists theoretically, it may not be implementable.

* Response: Within modal logic, we are concerned with logical possibility rather than physical

realizability.

11. Final Symbolic Logic Representation

e Existence of Ag:
JAg VIl € NP, Vx [Ag(Il,z) = II(z) A Time(Ag,II,z) = O(1)]

This confirms that A solves all NP problems in constant time within our logical framework.

Conclusion

By developing algorithm Ag using symbolic logic, we've shown:
» Algorithm Ag Definition:
» Ag takes any NP problem II and input and outputs II(z) instantly.
* Time Complexity:
o Time(Ag,II,x) = O(1), since it relies on God's instant knowledge.
e Justification:

e Based on God's omniscience and omnipotence, and Assumption A1 that God's actions

correspond to computable algorithms.

e All NP problems can be solved in constant time by Ag;.

* Therefore, within this logical framework:

NPCP

¢ Giventhat P C NP, it follows that:

7. Conclusion: P = NP

From the above reasoning, we deduce:

1. All NP Problems Are in P:
VAe NP, Ac P
2. Therefore, P — NP:
Since P C NP by definition, and we've shown NP C P, it follows that:

P = NP

9. Philosophical Justification

Meodal Logic Validity: The use of modal logic allows us to move from the possibility of God's
existence to the necessity of God's existence and, consequently, to the necessity of certain truth:

about the world.

Ontological Nature: This proof is ontological because it relies on the nature of being and

existence, rather than empirical or mechanical methods.

Dependence on Definitions: The proof hinges on the definitions of omnipotence, omniscience,

and the nature of NP problems. NP

10. Considerations

Abstract Reasoning: The proof is abstract and operates at a philosophical level, using logical

deductions from given definitions and axioms.

Acceptance of Axioms: The validity of the proof depends on the acceptance of the initial

axioms, especially regarding the nature and existence of God.

Ontological Commitment: By accepting that certain properties necessarily exist due to the

nature of a God-like being, we accept the implications derived from those properties.

11. Final Remarks

This ontological proof for P = NP demonstrates that, within a modal logical framework and given
certain definitions and axioms, one can argue for the necessary equivalence of P and NP based on

the necessary existence of an all-powerful, all-knowing being.

e The development of Algorithm G is theoretical and relies on metaphysical

assumptions. Within modal logic, this demonstrates the logical possibility
and necessity of P=NP under the given premises.

To prove P=NP (logically), we need an all knowing entity to verify ‘ALL’ Np problems &
possible problems instantly(P) knowledge, and also, an all-powerful entity to solve ‘all’

NP problems instantly(P), logically. If so, then P=NP. In the logical world.

The problem asks if all NP complete problems can be verified in polynomial time, can
also be solved in polynomial time, then P=NP. The answer is yes, with enough

intelligence and energy, an Ai can already check the prompt/problems and solve many
NP problems instantly. With an all knowing all powerful God, he checks all the problems
and solves all instantly in all possible worlds.

An Ontological proof simply means there exists a proof for the equivalency of
P=NP, logically, metaphysically; different from the mechanisms for all solutions,
including simulating the universe, in the empirical etc, is the work of our good God, or
the rotating universe worked out by Godel, which is beyond the aim of this proof. Also,
proof and verification are 2 separate things. Proofs are in the world of
logic/mathematics, while verification are in the empirical world, the practical world. An
ontological proof simply demonstrates the logical possibility/ logical validity, within the
metaphysical/mathematical world. It's obvious that | am not seeking to verify anything in
the empirical world here. Will | convince 100% of readers totally, maybe not, but | hope
to at least convince the average reader that P=NP is at least logically possible, not
logically impossible, and that P=NP is not 10%, more nearer to 100%.

Readers are encouraged to discuss, debate and disagree. There are many
perspectives in philosophy of logic etc. Yet I'm sticking with this for now to not lose the
original essence of the concepts and ideas presented in the paper. I'm in the P=NP
camp. It is exactly these philosophical concepts that makes the paper original from all
other proofs and future writings, given the extraordinary nature of P vs Np. So do we
need to see God provide infinite solutions to universally All and every possible NP
problems, to prove P=NP? Do we need to see God simulate all particles in the universe
correctly, to believe P=NP? Is that too much to ask of God, or is it not enough? Do we
need to know all primes to know there are infinite primes? The last one was over 41
million digits .

Put another way, do we need to see God provide infinite solutions, to solve all
NP problems? No we do not. Euclid didn't know all primes, yet he knew they are infinite.
Likewise, we don't have to know infinite solutions. We know he's omniscient and
omnipotent by definitions. How do we know all NP problems are in the class ‘non
deterministic polynomial' ? It's an abstraction, how do we know? We also know this by
definition. Notice all proofs regarding the infinites requires some sort of abstractions and
assumptions to an infinite level and are done based on properties and definitions,
simply because there are no such thing as a direct 1 to 1 mapping infinitely, without
some sort of arrows.. to the end, there is no the end. Likewise, P=NP is just another
philosophical problem with an accepted solution. People accepted the proof that there
are infinitely many primes, yet no one had seen the very last prime. Likewise, there are
no algorithms that will compute infinite indefinitely. That means it will never halt. The
only way an algorithm halts is if it accepts all solutions provided it accepts all definitions
and assumptions provided in prior inputs. Likewise, algorithm G already knew all the
solutions and solved a priori. Hence it can halt for P=NP.

References:

Modal Logic

The omniscience & omnipotence of God, by definition
Godel’s Ontological proof by Kurt Godel

Cook, S. (2000). The P vs NP Problem. Clay Mathematics Institute. Retrieved from
https.//www.claymath.org/millennium/p-vs-np

https://www.claymath.org/millennium/p-vs-np
https://www.claymath.org/millennium/p-vs-np

