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1 Hempel’s Conditions of Adequacy
In his “Studies in the Logic of Confirmation” (1945) Carl G. Hempel presented
the following conditions of adequacy for any relation of confirmation |∼ ⊆ L×L
on some language (set of well formed formulas) L (names for 3.1 and 3.2 added).
For any (observation report) E ∈ L and any (hypothesis or theory) H ∈ L:

1. Entailment Condition: E ` H ⇒ E |∼ H

2. Consequence Condition: {H : E |∼ H} ` H ′ ⇒ E |∼ H ′

2.1 Special Consequence Cond.: E |∼ H, H ` H ′ ⇒ E |∼ H ′

2.2 Equivalence Condition: E |∼ H, H a` H ′ ⇒ E |∼ H ′

3. Consistency Condition: {E} ∪ {H : E |∼ H} 6` ⊥

3.1 Special C. C.: E 6` ⊥, E |∼ H, H ` ¬H ′ ⇒ E 6|∼ H ′

3.2 Consistent Selectivity: E 6` ⊥, E |∼ H ⇒ E 6` ¬H

4. Converse Consequence Cond.: E |∼ H, H ′ ` H ⇒ E |∼ H ′

(` ⊆ ℘ (L) × L is the classical deducibility relation, and singletons of wffs are
identified with the wff they contain.) 2 entails 2.1 which in turn entails 2.2; sim-
ilarly for 3. Hempel (1945, 104) then showed that the conjunction of 1, 2, and
4 entails his triviality result that every sentence (observation report) E confirms
every sentence (hypothesis or theory) H , i.e. for all E,H ∈ L: E |∼ H . This is
clear since the conjunction of 1 and 4 already implies this: By the Entailment Con-
dition, E confirms E ∨H; as H ` E ∨H , the Converse Consequence Condition
yields that E confirms H .

Since Hempel’s negative result, there has hardly been any progress in devel-
oping a logic of confirmation.1 One reason for this seems to be that up to now
the predominant view on Hempel’s conditions is the analysis Carnap gave in his
Logical Foundations of Probability (1962), §87.

1The exceptions I know of are Flach (2000), Milne (2000), and Zwirn & Zwirn (1996).
Roughly, Zwirn & Zwirn (1996) argue that there is no unified logic of confirmation (taking into
account all of the partly conflicting aspects of confirmation); Flach (2000) argues that there are
two logics of “induction”, as he calls it, viz. confirmatory and explicatory induction (correspond-
ing to Hempel’s conditions 1-3 and 4, respectively); and Milne (2000) argues that there is a logic
of confirmation (namely the logic of positive relevance), but that it does not deserve to be called a
logic.
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2 Carnap’s Analyis of Hempel’s Conditions
In analyzing the Consequence Condition, Carnap argues that

Hempel has in mind as explicandum the following relation: ‘the de-
gree of confirmation of H by E is greater than r’, where r is a fixed
value, perhaps 0 or 1/2. (Carnap 1962, 475; notation adapted)

In discussing the Consistency Condition, Carnap mentions that

Hempel himself shows that a set of physical measurements may con-
firm several quantitative hypotheses which are incompatible with each
other (p. 106). This seems to me a clear refutation of [3.1]. ... What
may be the reasons that have led Hempel to the consistency conditions
[3.1] and [3]? He regards it as a great advantage of any explicatum
satisfying [3] “that is sets a limit, so to speak, to the strength of the
hypotheses which can be confirmed by given evidence” ... This ar-
gument does not seem to have any plausibility for our explicandum,
(Carnap 1962, 476-7; emphasis in original)

which is the concept of positive probabilistic relevance, or “initially confirming
evidence” as Carnap says in §86 of his (1962);

[b]ut it is plausible for the second explicandum mentioned earlier: the
degree of confirmation exceeding a fixed value r. Therefore we may
perhaps assume that Hempel’s acceptance of the consistency condi-
tion is due again to an inadvertant shift to the second explicandum.
(Carnap 1962, 477-8)

Carnap’s analysis can be summarized as follows: In presenting his first three con-
ditions of adequacy Hempel was mixing up two distinct concepts of confirmation,
two distinct explicanda in Carnap’s terminology, viz.

1. the concept of incremental confirmation (positive probabilistic relevance,
initially confirming evidence) according to which E confirms H iff E (has
non-zero probability and) increases the probability of H , Pr (H | E) >
Pr (H), and

2. the concept of absolute confirmation according to which E confirms H iff
the probability of H given E is greater than some value r, Pr (H | E) > r.
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The special versions of Hempel’s second and third condition, 2.1 and 3.1, respec-
tively, hold true for the second explicandum (for r ≥ 1/2), but they do not hold
true for the first explicandum. On the other hand, Hempel’s first condition holds
true for the first explicandum, but it does so only in a qualified form (cf. Carnap
1962, 473) – namely only if E is not assigned probability 0, and H is not already
assigned probability 1.

This, however, means that Hempel first had in mind the explicandum of in-
cremental confirmation for the Entailment Condition; then he had in mind the
explicandum of absolute confirmation for the Consequence and the Consistency
Conditions 2.1 and 3.1, respectively; and then, when Hempel presented the Con-
verse Consequence Condition, he got completely confused, and had in mind still
another explicandum or concept of confirmation.2 Apart from not being very char-
itable, Carnap’s reading of Hempel also leaves open the question what the third
explicandum might have been.

3 Conflicting Concepts of Confirmation
The following two notions are central to the plausibility-informativeness theory of
theory assessment first presented in Huber (2002) and further developed in Huber
(to appear):

Definition 1 A relation |∼ ⊆ L × L on a language L is an informativeness rela-
tion iff for all E,H,H ′ ∈ L:

E |∼ H, H ′ ` H ⇒ E |∼ H ′.

|∼ ⊆ L × L is a plausibility relation on L iff for all E,H,H ′ ∈ L:

E |∼ H, H ` H ′ ⇒ E |∼ H ′.

The idea is that a sentence or proposition is the more informative, the more possi-
bilities it excludes. Hence, the logically stronger a sentence, the more informative
it is. On the other hand, a sentence is more plausible the fewer possibilities it
excludes. Hence, the logically weaker a sentence, the more plausible it is. The
qualitative counterparts of these two principles are the defining clauses above: If
H is informative relative to E, then so is any logically stronger H ′. Similarly, if
E is plausible relative to E, then so is any logically weaker H ′.

2Neither the first nor the second explicandum satisfies the Converse Consequence Condition.
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The two main approaches to confirmation that have been put forth in the last
century are qualitative Hypothetico-Deductivism HD and quantitative probabilis-
tic Inductive Logic IL. According to HD, E HD-confirms H iff H logically im-
plies E (in some suitable way that depends on the version of HD under con-
sideration). According to IL, the degree of absolute confirmation of H by E
equals the (logical) probability of H given E, Pr (H | E). The natural qualita-
tive counterpart of this quantitative notion is that E absolutely IL-confirms H iff
Pr (H | E) > r, for some r ∈ [.5, 1) (this is Carnap’s second explicandum).

As noted above, this is not the way Carnap defined qualitative IL-confirmation
in chapter VII of his (1962). There he required that E raises the probability of H ,
Pr (H | E) > Pr (H), in order for E to qualitatively IL-confirm H . Nevertheless,
the above seems to be the natural qualitative counterpart of the degree of absolute
confirmation. The reason is that later on, the difference between Pr (H | E) and
Pr (H) – however it is measured (cf. Fitelson 2001) – was taken as the degree of
incremental confirmation, and Carnap’s proposal is the natural qualitative coun-
terpart of this notion of incremental confirmation. In order to separate these two
notions, let us say that E incrementally confirms H iff Pr (H | E) > Pr (H).

HD and IL are based on two conflicting concepts of confirmation. HD-con-
firmation increases, whereas absolute IL-confirmation decreases with the logical
strength of the theory to be assessed. More precisely, if E HD-confirms H and
H ′ ` H , then E HD-confirms H ′. So, as a matter of fact, HD-confirmation aims
at logically strong theories – HD-confirmation is an informativeness relation. On
the other hand, if E absolutely IL-confirms H (to some degree r) and H ` H ′,
then E absolutely IL-confirms H ′ (to at least the same degree s ≥ r). So absolute
IL-confirmation aims at logically weak theories – absolute IL-confirmation is a
plausibility relation.

The epistemic virtues behind these two notions are informativeness on the one
hand and truth on the other hand. First, we want to know what is going on “out
there”, and hence we aim at true theories – more precisely, at theories that are true
in the world we are in. Second, we want to know as much as possible about what
is going on out there, and so we aim at informative theories – more precisely, at
theories that inform us about the world we are in. But usually we do not know
which world we are in. All we have are some data or truth conditions, so we
base our evaluation of the theory we are concerned with on the plausibility that
the theory is true in the actual world given that the actual world makes the data
true and on how much the theory informs us about the actual world given that the
actual world makes the data true.
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If one of two theories logically implies the other, the logically stronger theory
excludes all the possibilities excluded by the logically weaker theory. The logi-
cally stronger theory is thus at least as informative as the logically weaker one. On
the other hand, the logically weaker theory is at least as plausible as the logically
stronger theory, because all possibilities making the logically stronger theory true
also make the logically weaker theory true. This is the sense in which the two
concepts underlying HD and IL, respectively, are conflicting.

4 Hempel Vindicated
Turning back to Hempel’s conditions, note first that Carnap’s second explicandum
satisfies the Entailment Condition without the second qualification: If E ` H ,
then Pr (H | E) = 1 > r, for any value r < 1, provided E does not have proba-
bility 0.

So the following more charitable reading of Hempel seems plausible: When
presenting his first three conditions, Hempel had in mind Carnap’s second expli-
candum, the concept of absolute confirmation, or more generally, a plausibility re-
lation. But then, when discussing the Converse Consequence Condition, Hempel
also felt the need for a second concept of confirmation aiming at informative the-
ories.

Given that it was the Converse Consequence Condition which Hempel gave
up in his “Studies”, the present analysis makes perfect sense of his argumentation:
Though he felt the need for two concepts of confirmation, Hempel also realized
that these two concepts are conflicting (this is the content of his triviality result),
and so he abandoned informativeness in favour of plausibility.

5 The Logic of Theory Assessment
However, in a sense, one can have Hempel’s cake and eat it, too: There is a logic
of confirmation – or rather, theory assessment – that takes into account both of
these two conflicting concepts. Roughly speaking, HD says that a good theory is
informative, whereas IL says that a good theory is plausible or true. The driving
force behind Hempel’s conditions is the insight that a good theory is both true and
informative. Hence, in assessing a given theory by the available data, one should
account for these two conflicting aspects.

According to this logic, a sentence or proposition H is an acceptable theory
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or in the pool of reasonable theories for evidence E iff H is at least as plausible
as and more informative than its negation relative to E, or H is more plausible
than and at least as informative as its negation relative to E. This is spelt out more
precisely in terms ranking functions (Spohn 1988, 1990).

5.1 Assessment Models
Let us first fix some terminology. A languageL is a countable set of (propositional
or first order) wffs that is closed under the propositional connectives ¬ and ∧
(∨,→,↔ are defined as usual). A language is not required to be closed under the
quantifiers. ModL = Mod is the set of all models for L. |= ⊆Mod × L is the
classical satisfaction relation, and, for α ∈ L, Mod (α) = {ω ∈Mod : ω |= α}.
|= is compact – a set of wffs is satisfiable iff all its finite subsets are – and such
that ω |= α iff ω 6|= ¬α and Mod (α ∧ β) =Mod (α) ∩Mod (β).

Let W be a non-empty set of possibilities, and let A be a field over W , i.e. a
set of subsets of W containing the empty set and closed under complementation
anf finite intersections. A function κ from W into the set of natural numbers N
extended by∞ is a pointwise ranking function iff at least one ω ∈ W is assigned
κ-rank 0, i.e. κ−1 (0) 6= ∅. κ : A → N ∪ {∞} is a general ranking function iff
for all A,B ∈ A:

1. κ (W ) = 0

2. κ (∅) =∞

3. κ (A ∪B) = min {κ (A) , κ (B)}

The conditional rank of B given A, κ (B | A), is defined as

4. κ (B | A) =
{
κ (A ∩B)− κ (A) , if κ (A) <∞,
0, if κ (A) =∞.

(Goldszmidt & Pearl 1996, 63, stipulate κ (B | A) = ∞ for κ (A) = ∞.) κ
is regular iff κ (A) < κ (∅) for each non-empty A ∈ A. A pointwise ranking
function κ : W → N ∪ {∞} is uniquely extended to a general ranking function
κmin : A → N ∪ {∞} by defining, for each A ∈ A:

κmin (A) =

{
min {κ (ω) : ω ∈ A} , if A 6= ∅,
∞, if A = ∅.
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“Ranks represent degrees” – or rather, grades – “of disbelief” (Spohn 1999, 6).
Whereas a high probability indicates a high degree of belief, a high rank indicates
a high grade of disbelief.

A ranking space 〈W,A, κ〉 is a (rank-theoretic) assessment model for the lan-
guage L iff W = ModL, Mod (α) ∈ A for each α ∈ L, and κ is a regular
general ranking function on A. In general there are many different fields A for a
particular set W . So there are many different assessment models for a particular
language L, but the set W is the same for all of them. The “consequence relation”
|∼κ ⊆ L×L defined by an assessment model 〈W,A, κ〉 for L is given as follows:

α |∼κ β ⇔
[
κ (Mod (β) |Mod (α)) < κ

(
Mod (β) |Mod (α)

)
&

κ
(
Mod (β) |Mod (α)

)
≤ κ

(
Mod (β) |Mod (α)

)]
or[
κ (Mod (β) |Mod (α)) ≤ κ

(
Mod (β) |Mod (α)

)
&

κ
(
Mod (β) |Mod (α)

)
< κ

(
Mod (β) |Mod (α)

)]
⇔ [κ (Mod (β ∧ α)) < κ (Mod (¬β ∧ α)) &

κ (Mod (¬β ∧ ¬α)) ≤ κ (Mod (β ∧ ¬α))]
or
[κ (Mod (β ∧ α)) ≤ κ (Mod (¬β ∧ α)) &

κ (Mod (¬β ∧ ¬α)) < κ (Mod (β ∧ ¬α))] .

This reads as follows: β is an acceptable theory for α (in the sense of 〈W,A, κ〉)
iff β is at least as plausible (in the sense of 〈W,A, κ〉) given α as ¬β given α is,
and β informs us more about α (in the sense of 〈W,A, κ〉) than does ¬β; or β
is more plausible given α than ¬β given α is, and β informs us at least as much
about α as does ¬β.

In the following we employ the Gabbay-Makinson-KLM framework (Gab-
bay 1985; Makinson 1988; Kraus, Lehmann, & Magidor 1990) and present a list
of properties such that the consequence relation |∼κ defined by any assessment
model for any language L satisfies these properties (soundness). Then we show
that the converse is also true: For each relation |∼ ⊆ L × L on some language L
satisfying these properties there is an assessment model 〈W,A, κ〉 for L such that
|∼ = |∼κ (completeness).
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5.2 Assessment Relations
A relation |∼ ⊆ L × L is a (rank-theoretic) assessment relation on the language
L iff |∼ satisfies the following principles:

1. α |∼ α Reflexivity∗

2. α |∼ β, α a` γ ⇒ γ |∼ β Left Logical Equivalence∗

3. α |∼ β, β a` γ ⇒ α |∼ γ Right Logical Equivalence∗

4. α |∼ β ⇒ α |∼ α ∧ β Weak Composition∗

5. α |∼ β ⇒ ¬α |∼ ¬β Loveliness and Likeliness

6. 6` α ∨ β ⇒ α ∨ β |∼ α or α ∨ β |∼ β Either-Or

7. α ∨ β 6|∼ α, 6` α ∨ β ⇒ α ∨ ¬α |∼ ¬α Negation

8. α ∧ ¬α |∼ α, α ∨ β |∼ α ⇒ α ∧ ¬α |∼ β Down

9. α |∼ α ∧ β, α |∼ α ∨ β ⇒ α 6|∼ ¬β TBA I

10. α 6|∼ α ∧ ¬β, α |∼ α ∨ β, 6` α ⇒ α |∼ β TBA II

11. α ∨ β |∼ α, β ∨ γ |∼ β, 6` α ∨ γ ⇒ α ∨ γ |∼ α quasi Nr 21

12. α ∨ β |∼ α, β ∨ γ |∼ β, ` α ∨ γ ⇒ α ∨ γ 6|∼ ¬α

supplementary Nr 21

13. αi ∨ αi+1 |∼ αi+1, 6` αi ∨ αj ⇒ ∃n∀m ≥ n : αm ∨ αm+1 |∼ αm

Minimum (no strictly ≺-decreasing sequence – see below)

The ∗-starred principles are among the core principles in Zwirn & Zwirn (1996).
Loveliness and Likeliness is not the same as Negation Symmetry in Milne (2000).
quasi Nr 21 without the restriction 6` α ∨ γ is the derived rule (21) of the system
P in Kraus, Lehmann, & Magidor (1990) (cf. their lemma 22). Together with
supplementary Nr 21 it expresses the transitivity of the≤-relation between natural
numbers. In general, for non-tautological α∨β, α∨β |∼ α means that the rank of
α is not greater than the rank of β, or equivalently, that the rank of α is not greater
than, and hence equal to, the rank of α ∨ β. For tautological α ∨ β, α ∨ β |∼ α
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means that the rank of α is strictly smaller than that of its negation ¬α, which
holds iff ¬α has a rank greater than 0.

Here are some derived rules:

14. α |∼ β ⇒ α |∼ α ∨ β Weak ∨-Composition

15. α |∼ β ⇒ α 6|∼ ¬β Selectivity∗

16. α ` β ⇒ α ∨ β |∼ β TBA III

17. α ∨ ¬α |∼ α, α ` β ⇒ α ∨ ¬α |∼ β Up

Note that Selectivity allows there to be two logically incompatible theories β1 and
β2 such that both are acceptable given α (cf. Carnap’s discussion of Hempel’s
consistency condition quoted in section 2).

5.3 A Representation Result
Theorem 1 The consequence relation |∼κ induced by any (rank-theoretic) as-
sessment model 〈ModL,A, κ〉 for any language L is a (rank-theoretic) assess-
ment relation on L. Conversely, for each assessment relation |∼ on any language
L there is a (rank-theoretic) assessment model 〈ModL,A, κ〉 such that |∼ = |∼κ.

Sketch of Proof:
One starts with the given assessment relation |∼ on the language L and considers
the field A = {Mod (α) : α ∈ L} on the set of possibilities W = ModL. Using
|∼, one defines a weak order �|∼=:� on A, where A � B is intended to mean
κ (A) ≤ κ (B), for the general ranking function κ to be defined onA. � gives rise
to a well order on the set of '-equivalence classes A/' = {[A] : A ∈ A}, where
A ' B iffA � B andB � A, and [A] = {B ∈ A : A ' B}. This implies that the
elements ofA/' can be written as a sequence. The rank ofA ∈ A is defined as the
index of its equivalence class [A] ∈ A/' in this sequence. κ so defined is regular
and represents �, i.e. A � B iff κ (A) ≤ κ (B), for A,B ∈ A. Furthermore,
α |∼ β iff κ (Mod (β ∧ α)) ≤ κ (Mod (¬β ∧ α)) and κ (Mod (¬β ∧ α)) ≤
κ (Mod (β ∧ ¬α)), where at least one of these inequalities is strict. The proof is
finished by applying the extension theorem for rankings on languages. The latter
implies that for κ on A there exists a unique minimal pointwise ranking function
κ∗ on W = ModL such that κ (A) = min {κ∗ (ω) : ω ∈ W} for all non-empty
A ∈ A, i.e. κ = κ∗min. 2
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6 Comparisions and Further (Non-) Principles
Assessment relation satisfy the following principles.

18. 6` ¬α ⇒ α 6|∼ α ∧ ¬α Consistency∗

19. 6` α ⇒ α 6|∼ α ∨ ¬α Informativeness

20. α |∼ α→ β ⇒ α |∼ β Ampliativity I

21. α ∨ ¬α |∼ α ⇒ α ∨ β |∼ α Negation 2

22. α |∼ β, α |∼ γ ⇒ α |∼ β ∧ γ or α |∼ β ∨ γ

quasi-Composition

23. α∨β∨γ |∼ β∨γ, 6` α∨β, 6` α∨γ ⇒ α∨β |∼ β or α∨γ |∼ γ

Ranks

The following three principles from Zwirn & Zwirn (1996) are not admissible.

i. α |∼ α ∧ β ⇒ α |∼ β Weak Consequence

ii. α |∼ β ⇒ α |∼ α→ β Ampliativity II

Ampliativity II is a special case of

iii. α |∼ β, α ` β ↔ γ ⇒ α |∼ γ Levi Principle

The Levi Principle requires, among other things, that refuted theories and verified
theories, respectively, are all treated the same. It is clear that this does not hold for
assessment, because not all verified theories are as uninformative as tautological
theories. Given Carnap’s discussion of Hempel’s consistency condition (quoted
in section 2), it is particularly interesting to observe that

iv. α |∼ β, β ` ¬γ ⇒ α 6|∼ γ Strong Selectivity

is not admissible.
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6.1 Assessment Relations Versus Explanatory and Confirma-
tory Consequence Relations

According to Flach (Flach 2000, 167ff), any inductive consequence relation sat-
isfies Left Logical Equivalence, Right Logical Equivalence, Verification, Left Re-
flexivity, Right Reflexivity, Right Extension, and Falsification. F-Consistency
(called Consistency by Flach 2000, 168) is equivalent to Falsification, given Left
Logical Equivalence (Flach 2000, Lemma 1). Hence it is also satisfied by any
inductive consequence relation.

24. α |∼ β, α ∧ β ` γ ⇒ α ∧ γ |∼ β Verification

25. α |∼ β ⇒ α |∼ α Left Reflexivity

26. α |∼ β ⇒ β |∼ β Right Reflexivity

27. α |∼ β, α ∧ β ` γ ⇒ α |∼ β ∧ γ Right Extension

v. α |∼ β, α ∧ β ` γ ⇒ α ∧ ¬γ 6|∼ β Falsification

vi. β ` ¬α ⇒ α 6|∼ β F-Consistency

These principles are satisfied by assessment relations, if Falsification (F-Consistency)
is weakended to quasi-Falsification (quasi-F-Consistency).

28. α |∼ β, α ∧ β ` γ, α 6` γ ⇒ α ∧ ¬γ 6|∼ β quasi-Falsification

29. β ` ¬α, 6` ¬α ⇒ α 6|∼ β quasi-F-Consistency

Left Reflexivity and Right Reflexivity are unconditionally satisfied in the present
system. In Flach (2000), the antecedents ensure that α and β, respectively, are
consistent.

Among inductive consequence relations, Flach distinguishes between conse-
quence relations for explanatory induction and for confirmatory induction. Ex-
planatory induction |∼ is semantically characterised by defining α |∼W β iff (i)
there is an ω ∈ W such that ω |= β, and (ii) for all ω ∈ W : ω |= β → α, where
W ⊆ ModL and ModL is the set of all models for the propositional language L
(|= ⊆ModL × L is a compact satisfaction relation).

Explanatory induction thus focuses more or less exclusively (apart from de-
manding β to be W -consistent) on the logical strength of β. It satisfies all prin-
ciples for inductive consequence relations and is syntactically characterised by
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Explanatory Reflexivity, Left Consistency, Admissible Right Strengthening, Cau-
tious Monotonicity (called Incrementality by Flach 2000, 172), Predictive Con-
vergence, and Conditionalisation.

30. α |∼ α, ¬β 6|∼ α ⇒ β |∼ β Explanatory Reflexivity

31. α |∼ β ⇒ ¬α 6|∼ β Left Consistency

vii. α |∼ β, γ |∼ γ, γ ` β ⇒ α |∼ γAdmissible Right Strengthening

viii. α |∼ γ, β |∼ γ ⇒ α ∧ β |∼ γ Cautious Monotonicity

ix. α ∧ γ ` β, α |∼ γ ⇒ β |∼ γ Predictive Convergence

x. α |∼ β ∧ γ ⇒ β → α |∼ γ Conditionalisation

Assessment relations satisfy Explanatory Reflexivity and Left Consistency, but
they violate Admissible Right Strengthening, Cautious Monotonicity, Predictive
Convergence, and Conditionalisation.

Another class of inductive consequence relations is given by what Flach calls
confirmatory induction. These are semantically characterised with the help of
confirmatory structures W = 〈S, [·] , ‖·‖〉, where S is a set of semantic objects,
and [·] and ‖·‖ are functions from the propositional language L into the powerset
of S. W = 〈S, [·] , ‖·‖〉 is simple just in case for all α, β ∈ L: [α] ⊆ ‖α‖,
‖α ∧ β‖ = ‖α‖ ∩ ‖β‖, ‖¬α‖ = S \ ‖α‖, and ‖α‖ = S iff |= α. Given such
a confirmatory structure W , the closed confirmatory consequence relation |∼W
defined by W simply is the usual KLM consequence relation with the additional
requirement that α be consistent (in the sense of [·]), i.e. α |∼W β iff ∅ 6= [α] ⊆
‖β‖.

Closed confirmatory induction thus focuses more or less exclusively (apart
from demanding α to be [·]-consistent) on the logical weakness of β. Simple
confirmatory consequence relations are syntactically characterised by Selectivity
(called Right Consistency by Flach 2000, 179), Right And (called And in Kraus,
Lehmann, & Magidor 1990, 179, and called Composition in Zwirn & Zwirn 1996,
201), and Cut (called Predictive Right Weakening by Flach 2000, 178).

xi. α |∼ β, α |∼ γ ⇒ α |∼ β ∧ γ Right And

xii. α |∼ β, α ∧ β ` γ ⇒ α |∼ γ Cut
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As simple confirmatory consequence relations violate Left Logical Equivalence,
Verification, and Right Reflexivity, they are no inductive consequence relations
(though they do satisfy Right Logical Equivalence, Falsification, Left Reflexivity,
Right Extension, and F-Consistency).

W = 〈S, l,≺〉 is a preferential structure (cf. Kraus, Lehmann, & Magidor
1990) iff l is a function from the set of states S into the set of all models ModL,
and ≺ is a strict partial order on S such that for all α ∈ L and all t ∈ α̂ =
{s ∈ S : l (s) |= α}: t is minimal w.r.t. ≺ or there is an s ≺ t which is minimal
in α̂. A preferential structure W = 〈S, l,≺〉 induces a preferential confirmatory
structure by defining:

‖α‖ = {s ∈ S : l (s) |= α} , [α] = {s ∈ ‖α‖ : ∀s′ ∈ S : s′ < s→ s′ 6∈ ‖α‖} .

Every preferential confirmatory structure is a simple confirmatory structure. Pref-
erential confirmatory consequence relations, i.e. consequence relations |∼W with
W a preferential confirmatory structure, satisfy all principles for inductive conse-
quence relations. They are syntactically characterised by Selectivity, Right And,
Cut, and, in addition, Left Logical Equivalence, Confirmatory Reflexivity, Left Or
(called Or in Kraus, Lehmann, & Magidor 1990, 190), and Strong Verification.

32. α |∼ α, α 6|∼ ¬β ⇒ β |∼ β Confirmatory Reflexivity

xiii. α |∼ γ, β |∼ γ ⇒ α ∨ β |∼ γ Left Or

xiv. α |∼ γ, α |∼ β ⇒ α ∧ γ |∼ β Strong Verification

Assessment relations satisfy Selectivity, Left Logical Equivalence, and Confirma-
tory Reflexivity, but they violate Right And, Cut, Right Weakening, Admissible
Entailment, Left Or, and Strong Verification.

In contrast to closed confirmatory consequence relations, open confirmatory
consequence relations |∼W , where W is a confirmatory structure, are given by:
α |∼W β iff [α]∩‖β‖ 6= ∅. Classical confirmatory structures are simple confirma-
tory structures with [·] = ‖·‖. So open classical confirmatory consequence is just
classical consistency. It satisfies all principles for inductive consequence relations
and is syntactically characterised by Predictive Convergence, Cut, F-Consistency,
and Disjunctive Rationality, none of which are satisfied by assessment relations.

xv. α ∨ β |∼ γ, β 6|∼ γ ⇒ α |∼ γ Disjunctive Rationality

As open classical confirmatory induction satisfies both Predictive Convergence
and Cut, it somehow combines aspects of explanatory induction on the one hand
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and confirmatory induction on the other hand. However, the resulting system
is so weak that just about anything goes. After all, only logically incompatible
statements do not confirm each other. In contrast to this, the combination of the
plausibility and informativeness aspects achieved by assessment relations is much
more stringent: In order for β to be a possible inductive consequence of α, β must
be at least as plausible as and more informative than its negation ¬β, or more
plausible than and at least as plausible as its negation ¬β (relative in each case to
α).

6.2 Assessment Relations versus Nonmonotonic Consequence
Relations

The following principles are not satisfied by assessment relations (v-vii are from
Zwirn & Zwirn 1996; viii-xi are from Kraus, Lehmann, & Magidor 1990).

xvi. α ` β ⇒ α |∼ β Entailment, Supraclassicality∗

xvii. β ` α ⇒ α |∼ β Conversion

xviii. α |∼ β ⇒ ¬β |∼ ¬α Contraposition

xix. α |∼ β → γ ⇒ α ∧ β |∼ γ EHD

xx. α |∼ β, β |∼ γ ⇒ α |∼ γ Transitivity

xxi. α |∼ β, β |∼ α, α |∼ γ ⇒ β |∼ γ Equivalence

xxii. α ∧ β |∼ γ ⇒ α |∼ β → γ S

However, assessment relations do satisfy the following three KLM-principles.

33. α |∼ β → γ, α |∼ β ⇒ α |∼ γ MPC

34. α0 |∼ α1, . . . , αk−1 |∼ αk, αk |∼ α0 ⇒ α0 |∼ αk Loop

35. α ∧ β |∼ γ, α ∧ ¬β |∼ γ ⇒ α |∼ γ Proof by Cases, D

The violation of the following principle (called Monotonicity in Kraus, Lehmann,
& Magidor 1990, 180) means that assessment relations are not monotonic.

xxiii. β |∼ γ, α ` β ⇒ α |∼ γ Left Monotonicity
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However, assessment relations are genuinely nonmonotonic in the sense that not
only Left, but also Right Monotonicity is not admissible.

xxiv. α |∼ β, β ` γ ⇒ α |∼ γ Right Monotonicity, Right Weakening

So not only arbitrary strengthening of the premises, but also arbitrary weakening
of the conclusion is not allowed. The reason is this: By arbitrary weakening of the
conclusion, information is lost – and the less informative conclusion might not be
worth taking the risk being of led to a false conclusion.

Furthermore, the assessment approach can answer the question of why every-
day reasoning is satisfied with a standard that is weaker than truth preservation in
all possible worlds (e.g. truth preservation in all normal worlds), and thus runs the
risk of being led to a false conclusion: We are willing to take this risk, because we
want to arrive at informative conclusions that go beyond the premises. However,
like relevance relations, assessment relations are no proper consequence relations
in the sense that their semantics is not in terms of the preservation of a particular
property.

7 Carnap’s Analysis Revisited
In conclusion, let us turn back to Carnap’s analysis of Hempel’s conditions and
his claim that Hempel was mixing up absolute and incremental confirmation. As
argued in sections 2-4, Carnap’s analysis is neither charitable nor illuminating,
and there is a more charitable interpretation that is illuminating by accounting for
Hempel’s triviality result and his rejection of the Converse Consequence Condi-
tion. Still, one might be interested in the relation between Carnap’s favoured con-
cept of qualitative confirmation – viz. positive probabilistic relevance in the sense
of a regular probability Pr – and our assessment relations leading to sufficiently
plausible and informative conclusions.

As presented in section 7, assessment relations are unconditionally reflexive,
whence any tautology is an acceptable theory for tautological data, and any con-
tradiction is an acceptable theory for contradictory data. This is a consequence
of stipulating κ (A | B) = 0 whenever κ (B) = ∞ and could have been avoided
(as in Flach’s approach). In contrast, positive (probabilistic or rank-theoretic) rel-
evance on a field A over a non-empty set of possibilities W is reflexive except
for tautological or contradictory propositions. The gap can be closed by extend-
ing the notion of positive relevance to include the pairs 〈∅, ∅〉 and 〈W,W 〉 so that
tautologies are positively relevant for tautologies and contradictions are positively
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relevant for contradictions. Let us call this broadened notion extended positive
relevance.

The relation between assessment and extended positive relevance is still slightly
obscured by the fact that assessment relations so far have been characterised in
terms of ranking functions, whereas Carnap’s positive relevance account is proba-
bilistic. Given the same framework, it is clear that extended positive relevance of
α for β is a necessary condition for β to be an acceptable theory for α. More pre-
cisely, we have for any regular probability space 〈W,A,Pr〉, any regular ranking
space 〈W,A, κ〉, and any contingent A,B ∈ A: Pr (B | A) > Pr

(
B | A

)
&

Pr
(
B | A

)
≥ Pr

(
B | A

)


or Pr (B | A) ≥ Pr
(
B | A

)
&

Pr
(
B | A

)
> Pr

(
B | A

)

⇒ Pr (A ∩B) > Pr (A) · Pr (B)

 κ (B | A) < κ
(
B | A

)
&

κ
(
B | A

)
≤ κ

(
B | A

)


or κ (B | A) ≤ κ
(
B | A

)
&

κ
(
B | A

)
< κ

(
B | A

)

⇒ κ (A ∩B) + κ

(
A ∩B

)
<

< κ
(
A ∩B

)
+ κ

(
A ∩B

)
,

where the last clause is the definition of positive κ-relevance of A for B (Spohn
1999, 6). However, as

xxv. α |∼ β ⇒ β |∼ α Symmetry

is not satisfied by assessment relations, the converse is not true. Both probabilistic
and rank-theoretic (extended or unextended) positive relevance are symmetric,
whereas assessment relations are not – which, as noted by Christensen (1999,
437f), is as it should be.
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