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ABSTRACT: ​Inductive logic would be the logic of arguments that are not valid, but nevertheless justify                
belief in something like the way in which valid arguments would. Maybe we could describe it as the logic                   
of “almost valid” arguments. There is a sort of transitivity to valid arguments. Valid arguments can be                 
chained together to form arguments and such arguments are themselves valid. One wants to distinguish               
the “almost valid” arguments by noting that chains of “almost valid” arguments are weaker than the                
links that form them. But it is not clear that this is so. I have an apparent counterexample the claim.                    
Though: as is typical in these sorts of situations, it is hard to tell where the problem lies.  
 
Introduction 
 
Let an argument consist in premises and a conclusion. An argument is valid if and only if it is impossible                    
that its premises be true and its conclusion false. A valid argument with no false premises provides a                  
guarantee of its conclusion. Presumably, this fact provides the basis of an explanation of how sound                
arguments justify belief in their conclusion. 

But there are arguments that justify belief in their conclusions without being valid - without being                
such that the truth of their premises would guarantee the truth of their conclusion. In such cases, if its                   
premises are true, then it is very improbable that its conclusion be false. The highest degree of                 
improbability is impossibility.  This suggests a generalization of the notion of validity - i.e. strength. 

The strength of an argument is the probability that its conclusion is true, given that its premises                 
are true. Consider any argument from a propositions φ​1 (the premises) to a proposition φ​2 (the                
conclusion). Consider, that is, the argument φ​1 → φ​2​. Let ‘STR(φ​1 → φ​2​)’ represent the strength of the                  
argument φ​1 → φ​2​. I assume that the semantic value of ‘STR’ is a function that assigns some number ​n                    
from the real interval [0,1] to arguments. For any argument, φ​1 → φ​2​: STR(φ​1 → φ​2​) = 1 if and only if φ​1                       
→ φ​2 is valid. For any argument, φ​1 → φ​2​: STR(φ​1 → φ​2​) = 0 if and only if it is impossible that φ​1 be true                          
and φ​2 false. For any argument, φ​1 → φ​2​: STR(φ​1 → φ​2​) = .5 if and only if it is equiprobable that φ​2 be                        
true and that φ​2​ be false, given that  φ​1​ is true.  1

 
Strengths and Probabilities 
 
All this probability talk suggests that STR is a probability distribution (an assignment of probabilities).               
Indeed, I have half-way accepted this idea insofar as I have assumed that STR assigns elements of the                  
interval [0,1] - with necessities represented by 1, equi-probabilities by .5, and impossibilities represented              
with 0.  

Still: one might wonder how far we can use the apparatus of probability theory to model the                 
strength of arguments. There is no reason to be confident that the use of terms like ‘probable’ and its                   

1 It is worth mentioning that strengths need not be grasped cognitively. They are not meant to model degrees of                    
confidence - though they might well have some interesting relationships to the degrees of confidence of ideal                 
thinkers. 
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cognates requires that we model this domain with probability distributions. The term has a life in English                 
outside of its use by mathematicians. 
 
“Transitivity” 
 
One of the nice things about valid arguments is that they can be assembled into chains. Valid entailment                  
is “transitive”.   Consider, for example: 2

 
STR( (P & Q) & R) → (P & Q) ) = 1 
STR( (P & Q) → Q ) = 1 
STR( (P & Q) & R) → Q) ) = 1 

 
Because of this, one can assemble increasingly long chains of valid inference without running an               
ever-increasing risk of error. 

But things are apparently different when it comes to arguments with less-than-maximal strengths.             
The strength of an argument is a measure of its riskiness - of the risk that its premises are true and its                      
conclusion is false. After all: if it is merely very probable that some conclusion is true (given the                  
premises), then it is a small probable that it is false (given the premises). It is in the nature of risk to                      
compound over “addition”. The more risks you run, the higher the probability of failure. Therefore,               
supposing that two arguments have a degree of strength less than that possessed by valid arguments.                
Then: the result of chaining them together is an argument with a degree of strength less than either of the                    
two.   Or so one might think. 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 The scare quotes reflect the fact that I am being a bit sloppy about what sorts of objects are members of the domain                        
of the inferential relation and which sorts of objects are members of the image of the inferential relation. The way I                     
am presenting it, both collections contain propositions. But we might do well to take the domain of the inferential                   
relation to contain sets of propositions (i.e. premise sets), whereas the image contains propositions (i.e. conclusions).                
If so: the inferential relation couldn’t be transitive as it is normally understood. Instead, however, it could have a                   
feature that might as well be transitivity. 
3 As long as they possess non-zero strengths! There is a least degree of strength. Accordingly, no argument have                   
less strength than that. 
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Maybe Not 
 
It is often mysterious which particular probabilities to assign to which outcomes - and so it can be                  
difficult to reason about whether strengths are probabilities. In a case at hand, that mystery is mitigated                 4

by the availability of an apparently reasonable probability distribution. 
Consider a fair 6-sided dice.  There are 6 equally probable rolls: {1, 2, 3, 4, 5, 6}.  The probability 

of each possible roll is the same - i.e. 1/6. Thus, for example, the probability of rolling a 3 is 1/6. The                      
probability of rolling an even number is 3/6 = 1/2.  Etc. 
 

Suppose the dice has been rolled. 
 

Let T​1​ = the roll was either a 1, 2, or 3. 
Let T​2​ = the roll was either a 2, 4, or 5. 
Let T​3​ = the roll was either a 1, 2. 
 
Then: 
 

PROB(T​2​ given T​1​) = 1/3 
PROB(T​3​ given T​2​) = 1/3 
PROB(T​3​ given T​1​) = 1 

 
Suppose that for any argument φ​1​ → φ​2​: STR(φ​1​ → φ​2​) = PROB(φ​2​ given φ​1​) 
 
Then: 

STR(T​1​ → T​2​) = PROB(T​2​ given T​1​) = 1/3 
STR(T​2​ → T​3​) = PROB(T​3​ given T​2​) = 1/3 
STR(T​1​ → T​3​) = PROB(T​3​ given T​1​) = 1 

 
So, in this case: STR(T​1​ → T​2​) < STR(T​1​ → T​3​)  

And: STR(T​2​ → T​3​) < STR(T​1​ → T​3​)  
 

Whereas the arguments T​1 → T​2 and T​2 → T​3 possess less than maximal strength, the argument                 
T​1 → T​3 possess maximal strength. Given that the roll was either a 1 or 2 it is necessarily the                    
case that the roll was either a 1, 2, or 3. So: it is impossible that T​1 should be true and T​3 should                       
be false. 
 

 
 

4 One anxiety about using the resources of probability theory to give an account of the strength of arguments is that                     
we often have very little idea which particular numbers from the real interval [0,1] ought to be assigned to which                    
arguments. I often have some (weak, imprecise) sense of how various arguments ought to be ranked by strength -                   
but very little idea what specific measure to assign. Which among the many possible probability distributions ought                 
we select when assigning measures to arguments? 
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What gives? 
 
Option 1: Strengths are probabilities, but they are not equivalent to these conditional probabilities.  

The strengths of the relevant arguments are a function of the probability distribution in              
which equal probabilities are assigned to each of the 6 rolls, but not equivalent to the                
conditional probabilities invoked above.  

 
Option 2: Strengths are not probabilities - as understood according to the standard axioms. 
 
Option 3: Strengths are probabilities, but which probabilities is not a function of the sort of  

probability distribution in which equal probabilities are assigned to each of the 6 rolls. 
 
Option 4: ? 
 
Way Forward? 
 
Which feature of probability distributions allows for the sorts of inequalities that might exist between               
“chains” of conditional probabilities and their component links? 
 
Are there other ways of chaining that get the right result - even assuming the identity of STR and PROB                    
from above? I have assumed that a chain is equal to the first component of the first link together with the                     
last component of the last link.  But maybe this is the wrong way to think about it. 
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