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Abstract


Thomas Kuhn suggested that symbolic generalizations are applied to concrete systems by a process involving exemplars and analogical reasoning. Using the related concepts of theoretical and formal templates, I argue that the process of applying templates can in some cases be made explicit and that we do not need to rely on similarity relations and tacit knowledge. In so doing I show how some formal models can be transferred from one scientific field to another. Examples include scale-free networks, the Lotka-Volterra model from biology, and the Goodwin model in economics. I also argue that this explicit approach has advantages over the more psychologically oriented approach of Kuhn and explain the sense in which templates do and do not produce unification.
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One thematic question raised at the conference at which this paper originated was ‘How can knowledge be transferred across disciplines?’.
 Because what counts as knowledge is controversial, I shall initially address the following question: How can a single formal representation be successfully applied to multiple scientific domains that prima facie have very different subject matters? Given the answer to this question, we shall have the basis for a partial explanation of the transfer of knowledge in science.


In what follows, I shall try to develop the arguments in a way that is as philosophically neutral as possible. Although my own preference is for a realist perspective within which representations can be mapped on to objects, intrinsic and relational properties, processes, and other things that have domain-specific characteristics, anti-realist readers can, in their own preferred way, take the representations to be only puzzle solving devices, so that a representation that has been successfully used for prediction and control in one sociologically identified domain can be successfully used for the same purposes in another. The two approaches are not mutually exclusive. Selective realists, of which I am one, allow that some representational apparatuses should be interpreted in an instrumental fashion and other apparatuses should be interpreted realistically. 

1. Preliminaries

To be intelligible, the question of how representations are transferred from one domain to another must presuppose that there are different domains. We might try to provide distinguishing features for domains; we could take domains to be distinguished by differences in the intrinsic properties of objects. Other organizational principles could be used, such as the conventional division of the sciences into physics, chemistry, biology, psychology, and various fields of the social sciences, together with whatever finer-grained classification into subfields of those areas is currently accepted. However, trying to determine where the boundaries of the domains lie is likely to engage us in controversies that are not central to the task at hand and so I shall simply take as given that distinct domains exist and correspond at least roughly to standard theoretical divisions in science. There are enough examples of knowledge transfer between clearly distinct domains that these rough demarcation criteria will suffice.


Domain specific representation is to be contrasted with transdomain representation, which involves representations that apply to at least two distinct scientific domains. When discussing transdomain representations I shall set aside issues about relations between domains that are based on theory reduction. There will be reductive relations between some of the scientific domains we shall consider, but the transfer of a representational apparatus from one domain to another is not, at least in the sense considered here, a reductive procedure. The transfer can be from a ‘higher’ level science to a ‘lower’ level science, such as from economics to biology, from a ‘lower’ to a ‘higher’ such as from physics to chemistry, or between two fields at the same reductive level, such as from anthropology to sociology.

2. Kuhn’s Account of Symbolic Generalizations

Thomas Kuhn had many insightful things to say about how science is learnt and applied

 but to my mind one of the most interesting was this:

. . .symbolic generalisations [like f = ma . . .] are not so much generalisations as generalisation-sketches, schematic forms whose detailed symbolic expression varies from one application to the next. For the problem of free fall, f = ma becomes mg = md2s/dt2. For the simple pendulum, it becomes mg sinh = md2s/dt2. For coupled harmonic oscillators it becomes two equations, the first of which may be written md2s/dt2 +k1s1 = k2(d + s2 - s1). More interesting mechanical problems, for example, the motion of a gyroscope, would display still greater disparity between f = ma and the actual symbolic generalisation to which logic and mathematics are applied; but the point should already be clear. (Kuhn, 1974, p. 465)

Symbolic generalizations such as the examples that Kuhn cites in the quote above are one

of the central components of Kuhn’s sharpened formulation of a paradigm both in the 

 Postscript to the second edition of his Structure of Scientific Revolutions (Kuhn, 1970) and in his

‘Second Thoughts on Paradigms’ (Kuhn, 1974). The general idea is that one starts with a
schematic form and uses a substitution instance consisting of a specific syntactic form, usually in 
the form of a mathematical representation. The substitution instance could be a function, a matrix, a graph, some other type of geometrical or topological representation, or whatever is suitable to the original schema. These schematic forms play a central role in the application and 
pedagogy of many sciences that use formal representations.


There are some key features of Kuhn’s approach to applying symbolic generalizations that are relevant to the question of how we reapply representations. Kuhn, in my reading of his published work, discussed symbolic generalizations and their applications only with respect to a given disciplinary matrix; and all of the examples that Kuhn gives for the role of symbolic generalizations occur within specific scientific fields.
 Was this an accident of the choice of examples, or can the same symbolic generalization be used in more than one scientific discipline? Of the three further components of a disciplinary matrix, values and exemplars could transcend a single type of subject matter. Complexity theory has from the start had such ambitions and it uses symbolic generalizations, values, and exemplars. What might seem to tie a disciplinary matrix to a single subject matter are the ‘metaphysical parts of a paradigm’, but these are described in terms of models including what Kuhn calls ‘heuristic models’ and one of the examples that Kuhn gives is suggestive: “...the electric circuit may be regarded as a steady-state hydrodynamic system” (Kuhn, 1970, p. 184). So although Kuhn himself appears to have restricted himself to subject matter specific examples, and the very term ‘disciplinary matrix’ strongly suggests that this restriction was not accidental, one can make a case that his symbolic generalizations could be used for transdisciplinary applications. One example is the case of coupled oscillators that Kuhn mentions in the passage quoted above.
 There are examples of such oscillators in physics, such as pairs of simple pendula that synchronize their motions, but also examples in other disciplines such as models of the sinoatrial node in the heart (Strogatz et al., 1993) and cascades of buying and selling in financial markets (Wray et al., 2014).


There is reason to think that Kuhn would not have endorsed a generalization of his approach to transdisciplinary applications. As a referee pointed out, the tight attachment to insular research communities in Kuhn’s approach to scientific research and applications, together with the fact that most scientific work continues to be conducted within specific scientific disciplines would make transdisciplinary transfer by social processes unusual. Kuhn also placed great emphasis on the role of exemplars as scientists learn to apply symbolic generalizations, and in such uses the exemplars tend to be discipline specific. The more abstract approaches that I employ later in this paper, the fact that an individual scientist can persuade practitioners in disciplines other than his or her own to adopt new representational devices, and the fact that an individual scientist can recognize that a representational device in another field can be successfully imported all suggest that it was not accidental that Kuhn’s approach was discipline specific.


In the passage quoted earlier, Kuhn was discussing two types of learning: acquiring the initial knowledge of how to apply a given symbolic generalization and subsequently developing the skills to know that the particular symbolic generalization can be applied to other systems. The first kind of knowledge can be gained by students entirely through the use of exemplars but the second requires additional skills including, in Kuhn’s view, the ability to use analogical reasoning. For example, having first learned the phase space representation of the motion of a simple pendulum, the student subsequently learns to see the motion of a weight oscillating on a spring as similar enough to be represented by the same substitution instance of Newton’s Second Law. The student now knows how to represent the motion of the weight and to solve the relevant equation.


Kuhn’s views contain rich insights. What his approach does not do is provide an analysis of how the second kind of skill, that of knowledge transfer, is learned and employed beyond an appeal to resemblance and similarity relations. This appeal to a criterion of multi-dimensional similarity makes the process of coming to know that a particular model applies to a system overly psychological.


Kuhn denied that these similarity criteria could be made explicit. In section IV of

Kuhn (1974), he wrote: 
To the man who speaks of similarity or of analogy, we therefore at once 
pose the question: similar with respect to what? In this case, however, that is just the question 
that must not be asked, for an answer would at once provide us with correspondence rules...[the 
science student’s] basic criterion is a perception of similarity that is both logically and 
psychologically prior to any of the numerous criteria by which that same identification of 
similarity might have been made. (Kuhn 1974, p. 472) 
Importantly, this knowledge transfer for Kuhn falls into the area of tacit knowledge; but I shall argue that in many cases the tacit knowledge can be replaced by explicit knowledge, with an accompanying sharper analysis of knowledge transfer.
 In many cases there are precise and explicit criteria for both the initial application of a formal representation and for the application of that representation within a different domain.


Kuhn argued that in many cases the substitution instances of a symbolic generalization are off-the-shelf models – exemplars – stock representations taught to students as they learn their trade, adopted because the current system is perceived as similar to systems to which that model has already been successfully applied. There is no doubt that some applications are made by judiciously guessing that a new system seems to have a similar structure to an existing application, but we can often do better than that. Even when those substitution instances are well-established stock models, they are usually constructed from identifiable formal assumptions, those assumptions can be stated explicitly, and the assumptions are in many cases satisfied in more than one domain of application. I am not questioning the fact that historically, some successful models have been introduced, perhaps conjecturally, as unanalyzed representations and that subsequent applications can be and are made by analogical reasoning from previous applications. The claim made here is that this is neither the only nor the best mode of introduction and application and that in many cases the justification for the use of a specific model can be made explicit. We can directly determine in many cases whether or not the assumptions used in the model are satisfied for a given system rather than having to rely on a combination of analogical reasoning and statistical goodness of fit criteria applied to the output of the model. Such procedures can be used both within and across domains and this versatility of representations is of great importance in science. The aim in the rest of the paper is to clarify the ways in which using representational models within a domain aids the acquisition of explicit knowledge and understanding, and to explore similar questions when they are applied across domains.
3. Templates Revisited

In earlier publications (Humphreys, 2002, 2004) I used what I called computational templates to capture how computer simulations are linked with more traditional modeling techniques. Also discussed in those earlier publications was the category of theoretical templates. This latter idea provides the starting point for an account of transdomain knowledge but because the original presentation is in need of clarification, I shall provide some details about the concepts that were omitted in the original accounts. These details will enable me later in the paper to highlight some important differences between Kuhn’s symbolic generalizations and theoretical templates. 


A theoretical template is a general representational device occurring within a theory, containing at least one schematic, second order, property variable (where a second order variable is one that has n-ary predicates as substitution instances) and is such that, when all of the schematic variables have been substituted for, can be successfully used to represent a variety of different phenomena within the domain of that theory. A well-known example of a theoretical template is Newton’s Second Law in its simplest form F = m d2x/dt2 , where F is a variable having as instances functions that represent specific forces such as a gravitational force, an electrostatic force, a linear mechanical restoring force for a spring, and so on. As a referee pointed out, any substitution instance of F = ma must specify the total force acting on the body and within the mathematical representation of the Second Law, that force must be represented by the vector sum of the separate forces. This additional constraint restricts the application of the template to systems for which vector addition is meaningful.
 Another well-known example of a theoretical template is Schrodinger’s equation HΨ = EΨ, where the Hamiltonian operator H and the state function Ψ are the schematic variables. 


Because a theoretical template originates within an interpreted theory that is about a specific type of subject matter, however general, what can be a substitution instance of the variables is constrained by the intended interpretation of the theory. Despite its enormous domain of application, Newton’s Second Law still required some fundamental commitment to the concept of physical forces. A theoretical template is not a purely formal or mathematical object and many of the alternative interpretations that are possible when the mathematical features of the theory are considered only as formal objects fall outside the domain of the theory. Within the axiomatic tradition, these theoretical templates are often considered to be part of the fundamental principles of the theory in question and an axiomatized theory has traditionally been a theory of some subject matter.


The two examples I have given have been fundamental to their respective theories and, qua nonredundant fundamental principle, have no explanation within the theory. However, theoretical templates can be of another type. This second type can be derived from more fundamental principles of the domain and can be explained entirely in terms of the subject matter of that field. Two important components of such derived templates are the construction assumptions, those explicitly formulated assumptions from which the template is derived, and the correction set, which is a set of not always explicitly formulated suggestions for how to improve idealizations, abstractions, approximations, and other assumptions that are known or suspected to be false at the time of construction.


Different from theoretical templates are formal templates. The latter differ from the former in having no interpretations beyond a mathematical interpretation.
 Furthermore, the construction assumptions have only mathematical content.
 As an example of a derivable formal template, consider the Barabási-Albert preferential attachment template of network formation. We start with a network containing n nodes. We assume that initially the network is sparsely and randomly connected. New nodes are added to the network and each new node is such that, if ki is the degree of existing node I, then the probability of the new node being connected to node I is ki /∑n i=1 ki. (This is the linear attachment assumption). This growth process leads to a power law distribution on the number of connections to any given node.
 Such networks can, when further interpreted, represent a wide variety of systems, although which actual systems are correctly covered by preferential attachment templates is currently in dispute. 


An early development of the preferential attachment formal template, albeit with a specific interpretation, due to Derek de Solla Price (1976), modeled the number of citations for journal articles, where the nodes represent individual articles and a directed edge represents a citation of the in-node by the out-node. Redner (2005) directly tested the preferential attachment assumption for over a million citations in the journal Physical Review and found that it is confirmed for papers that are cited not more than one hundred times. It is unfortunate that many systems that are said to be examples of this template make no effort to justify the linear attachment assumption but rely on an informal judgment that some preferential attachment, linear or not, takes place.
 In some applications of the preferential attachment template the representational correctness of the construction assumptions is open to doubt. One widely cited example is when the growth of the World Wide Web is represented by a preferential attachment model, with the nodes representing computer servers and an edge representing a link from one server to another, even though there is currently no conclusive evidence that the preferential attachment template is the right model underlying the generation of that network. Because power law distributions can be generated by processes other than preferential attachment, if all you have is the power law template that has been adopted by analogical transfer, knowledge of the data generating process will be limited. In contrast, it is often possible to directly confirm or disconfirm the construction assumptions that lead to the template.



Kuhn presents symbolic generalizations as fundamental to a disciplinary matrix, at least in the sense that one way of abandoning a disciplinary matrix is to reject a symbolic generalization because it is no longer effective in the relevant puzzle solving activities.
 This attention to fundamentals is appropriate, but not all schema that are applied via substitution instances are fundamental to a disciplinary matrix. In contrast to Kuhn, I suggest that it is constructed, rather than fundamental, formal templates that a) can be applied to different systems that fall within the domain of a given theory, b) lend themselves to an explicit set of conditions for applications within that theory, and c) suggest how intertheoretic or, more generally, transdomain applications of a single representational device are possible. One could adopt the view that, suitably interpreted, these formal templates can act as the symbolic generalizations of smaller scale disciplinary matrices, but even if we do that, these constructed templates will have explicit conditions for application assuming that we are allowed to appeal to the apparatus of the broader underlying disciplinary matrix to justify the assumptions.
 The psychological aspects of template construction are often important in motivating the process of construction but they are irrelevant when considering the structure of the template itself. They may be brought into play when considering whether a given template can usefully be redeployed in another domain, but this is a heuristic feature of the process, and the empirical justification for transferring a formal template ultimately rests on the satisfaction of the construction assumptions in the new domain.


What I have just described is not the only way that transdomain applications of a formal representation can occur. The repeated success of a given theoretical template can result in abstraction to a stylized formal template, separated from its original theoretical context and available to model other, often different, types of phenomena. Such devices are off the shelf representations that can be opportunistically justified at the system level by analogical reasoning from their previous successful applications to systems that are recognized as similar. These general equation forms – Laplace’s equation, Poisson’s equation, the diffusion equation, and many other well-known general equation types, or the familiar Gaussian, Poisson, binomial, and other statistical distributions, to mention only two well-known kinds – now transcend specific theories and their subject matter. In the better kind of Methods textbooks the constructions of these formal templates are provided and the conditions for application are laid out explicitly, but it can be tempting to use these stock templates for applications in which it is not known that the 

construction assumptions are satisfied. There are also cases in which the application is based not on construction assumptions but on approximation arguments that are based on explicit conditions. One example is the use of the Central Limit Theorem to justify the use of a Gaussian distribution and to give sufficient conditions for when the theorem can be applied.


Kuhn had important insights into how students learn science and I have no doubts that his account in terms of exemplars and resemblance relations is descriptively correct of many pedagogical methods. However, as I have argued, in some cases explicit criteria can be given for not only intradomain applications but also for interdomain transfer of representations. Because the construction assumptions are explicit, there is no need to use analogical reasoning in applying the template – we can check directly whether the assumptions are satisfied for the system at hand. As a choice criterion, it is reasonable to prefer explicit criteria over implicit judgments of resemblance. 

4. Examples of Transdomain Templates

In Knuuttila et al. (2012), Tarja Knuuttila and Andrea Loettgers describe how

Alfred Lotka and Vito Volterra used different approaches to arrive at the same set of non-linear

coupled differential equations that are now generically known as the Lotka-Volterra equations.

Volterra began with a specific problem about the increase in predatory fish species in the Upper 
Adriatic sea towards the end of World War I when fishing had been curtailed by the war. Using
 simple assumptions about the rate of population increases and decreases in isolated populations 
of prey species and predator species, and then adding terms to reflect the interaction between the
 two species, he derived the now familiar equations that represent fluctuations in the population
 levels. Some of Volterra’s assumptions, such as that reproduction takes place in all seasons, were motivated by the specific application at hand. In contrast, Lotka started from an abstract perspective and considered very general principles that covered chemical processes as 
well as biological processes, and arrived at the same equation forms produced by Volterra’s later more specific work.


As Knuuttila and Loettgers showed, the same template can be arrived at through different

construction processes, one of which is domain specific and the other of which is more general. 

In modern formulations, the Lotka-Volterra equations can be constructed from these four assumptions:

1. When no other effects are present, quantity x increases at a rate directly proportional to the current value of x.

2. When no other effects are present, quantity y decreases at a rate directly proportional to the current value of y.

3. When x and y interact, the constant coefficient of increase in x is decreased in direct proportion to the current value of y.

4. When x and y interact, the constant coefficient of decrease in y is increased in direct proportion to the current value of x.

From these four assumptions we obtain the simplest form of the coupled Lotka-Volterra equations

(1) dx/dt = (a - by)x

(2) dy/dt = (-c + dx)y


These two equations have also been widely used in economics to model endogenous fluctuations in an economy due to the competing factors of employment rate and the share of labor in national income.
 These two factors are opposing influences on the economic growth rate. As the employment rate increases, available labor becomes scarcer and wages increase, thus increasing the share of labor’s wages in the national income. These wage increases in turn reduce profits and investments in production, which leads to lower demand for labor. The employment rate decreases, lowering the rate of wage inflation, and thus decreasing the share of labor’s wages in the national income. Because there are lags between the changes in the two variables, their fluctuations are out of step and are not simply predictable. The model is usually attributed to Richard Goodwin (1967), and Gandolfo (2008) notes that Goodwin saw an analogy between Volterra’s predator-prey model and cycles in the growth rate in economies.
 Gandolfo supports his claim using this lengthy quote from Goodwin: 

To some extent the similarity is purely formal, but not entirely so. It has long seemed to me that Volterra’s problem of the symbiosis of two populations – partly complementary, partly hostile – is helpful in the understanding of the dynamical contradictions of capitalism, especially when stated in a more or less Marxian form. (Goodwin, 1967, p. 55) ... This is, I believe, essentially what Marx meant by the contradiction of capitalism and its transitory resolution in booms and slumps. It is, however, unMarxian in asserting that profitability is restored not (necessarily) by a fall in real wages but rather by their failing to rise with productivity. Real wages must fall in relation to productivity; they may fall in absolute value as well, depending on the severity of the cycle. The improved profitability carries the seed of its own destruction by engendering a too vigorous expansion of output and employment, thus destroying the reserve army of labour and strengthening labour’s bargaining power. This inherent conflict and complementarity of workers and capitalists is typical of symbiosis. (Goodwin, 1967, p. 57)

In Goodwin’s case we have an example of how Kuhnian analogies can assist in the transfer of a representation from one domain to another but that this analogical transfer can also be made explicit by means of a set of formal assumptions.
 This example illustrates something else that is important. Goodwin’s formal template does have the same mathematical form as the Lotka-Volterra equations but in the Lotka-Volterra equations, the coefficients a, b, c, and d are constants, whereas in Goodwin’s model the coefficients are a function of additional economic variables. Because Goodwin constructed his equations ab initio from explicit assumptions within economics rather than simply adopting the Lotka-Volterra model wholesale, this case is not an example of the transfer of a template from one domain to another, but there is knowledge transfer of a different kind. This is knowledge of solution techniques, approximation methods, and other formal procedures that can be used as a starting point for developing methods of applying the more complex template.


In situations where a transfer does occur, the refinement and adaptation of the formal template when reemployed in a new domain is not unusual. There are cases where the transfer will maintain the exact syntactic form of the representation but special features of the new domain will often result in modifications to the template.
 This is common with applications of a template within a single discipline too; the changes and corrections to the linear harmonic oscillator template when applied to a pendulum the amplitude of which makes the θ = sin θ approximation untenable will be different from those made when the template is applied to a spring for which the restoring force has become nonlinear. One might argue that such cases indicate the need for a finer grained set of domains between which there is no transfer of a template, but to do so one would need to account for the fact that the simple harmonic oscillator is taught to physics students as a canonical representation that has approximate applications in many different subfields of physics.

5. The Interpretation of Formal Templates

A formal template has a mathematical or computational interpretation but no empirical content. When the template is a differential equation it is neither true nor false, neither empirically nor mathematically. Consider, for example, Laplace’s equation, ∇2φ = 0. As a purely mathematical object, it is not empirically true. There is no existential quantifier prefixed to the equation, so this is not a disguised form of an existence result, nor is it a disguised universal generalization. ∇2φ = 0 has no mathematical truth value until both appropriate boundary conditions (here Neumann conditions) and a specific function φ that serves as a solution to the equation under those boundary conditions is specified.
 If it is solvable for φ under those boundary conditions, then the solution is a particular harmonic function that makes the equation mathematically true. Kuhn also took symbolic generalizations to be neither empirically true nor empirically false. As he says, “For us at this point in the discussion, though not for the scientists who use them, these symbols and the expressions formed by compounding them are uninterpreted, still empty of empirical meaning or application...symbolic generalizations function as yet like expressions in a pure mathematical system” (Kuhn, 1974, p. 464).


How are applications of these formal objects possible? It is because all of the empirical content that is involved in an application of a formal template is contained in the mapping from the formal template or a formal substitution instance of the template to a target system. These mappings can be very complex and often consist of multiple embedded mappings employing idealizations and approximations. However, a simple example will illustrate the basic method. When a Barabási-Albert network is mapped on to a dynamic network of journal citations, each node is mapped on to a distinct journal article, an edge is mapped to a citation link between two articles, and the probability value for a given node is mapped to the finite relative frequency of the node degree at that stage of the network generation process. Exactly the same formal network can represent a social contact network but a different empirical mapping is needed. In that application, each node is mapped to a single individual, each edge between nodes is mapped to a contact between two individuals that occurs on a day common to the entire network, and the probability of a new edge for a given individual is mapped on to a relative frequency count that is proportional to the number of unique contacts already made that day by the individual.
 

Why do I say that the empirical content of an application is entirely contained in such mappings? Here is an argument to support that view. If we remove the mapping from a formal template to a system, what is left is the formal template, a purely mathematical object. There is no ‘residual’ empirical content left over from the former application; any thought that there is would stem from the use of an overly familiar formal template. In addition, exactly the same template token can simultaneously have two different mappings attached to it. When explaining to an audience that this token of the preferential attachment template can be used to represent both the generative process of journal citations and the development of social contacts on a given day, I can simultaneously display the mappings that are used in each application.
 If the empirical content were a feature of the formal template itself, we should have parts of the template that simultaneously had journal article content and human agent content. If the empirical content brings with it semantic content, by the use theory of meaning for example, then the interpreted template is semantically inconsistent or, at best, semantically and referentially ambiguous. 


If there is only empirical and no semantic content, let T be a formal template, and M1 and M2 mappings onto systems S1 and S2, respectively, where S1 and S2 belong to different domains. I take the following four premises to be reasonable for cases in which the same formal template is applied to two or more such systems: 

1. T is a formal object that can be successfully applied to more than one system.

2. T retains its identity when mapped on to an empirical system S, whatever S may be.

3. T + M1 and T + M2 are representations.

4. A sufficient condition for a representation X to have different empirical content than a representation Y is that X makes at least one empirical prediction that Y does not, or vice versa.


From 3 and 4, together with the fact that S1 and S2 belong to domains with different subject matters, it follows that T + M1 has a different empirical content than T + M2. From this and 2, the difference in empirical content must be due to differences in the mappings M1 and M2. This holds whatever M1 and M2 are and whatever differences in empirical content are present. Thus all of the differences in the empirical content of the applications result from M1 and M2. If there is constant empirical content across T + M1 and T + M2, none of that constant empirical content is part of T. This is because from 2, T has the same empirical content whether in isolation or when mapped on to an empirical system, and from 1, that empirical content is zero. So T contains neither differences in empirical content nor has a constant empirical content. I do not claim that the conclusion that all of the empirical content is contained in the mapping is the only position that one can take towards how formal templates are applied, but I believe that all of the premises are plausible and hence that the conclusion is tenable.

6. Knowledge and Unification Across the Domains

We can now see why these formal templates allow for transdomain implementation.

Because the empirical content of these formal templates is entirely restricted to the mappings

onto the world, the same purely formal template can be carried over wholesale from domain to domain. The practitioners of the field to which the template is currently applied do not need to know the details of how it is applied in other domains and the application does not require a relation of analogy between systems in different fields. For example, one does not need to know any exemplars within evolutionary biology in order to apply formal templates using fitness landscapes in economics, although an association of ‘fitness’ with ‘utility’ can be heuristically helpful if one has the required expertise.


When constructing a formal template that is not domain specific, rather than starting with pieces of a subject matter dependent theory, we start with general assumptions that represent abstract features of the system that can be true across a variety of intrinsic properties that are peculiar to a particular domain. This type of construction introduces a level of generality and unification into the representations that runs counter to claims about the increasing disunity of science. It might therefore be thought that in these cases we have an increased degree of explanation and understanding by way of the unificationist account of explanation. This does not

follow because the same template can be constructed from different sets of assumptions. One set of assumptions may correctly apply to the origin system and a different set to the transfer system and so no explanatory unification has been achieved even though there is descriptive unification. In cases where we do have explanatory unification and can explain at a very abstract level why, for example, a social network has a power law distribution, this abstract explanation will often be supplemented by a more specific sociological explanation about why the social processes lead to that kind of attachment process, thereby making the more detailed explanation domain specific. The unification is thus a unification of representation and not necessarily of explanation. Finally, the transdomain applications of a single formal template partially explain how the effectiveness of mathematics can be understood. Pace Wigner’s famous claim (Wigner, 1960) these formal templates are less unreasonably effective once we understand why many of them are constructed in a way that makes them applicable to multiple domains of application.

7. Knowledge and Representation

We have the familiar distinction between knowledge that, which we can take as

propositional knowledge and in which truth is a primary concern, and knowledge how, which we

can take as procedural knowledge in which success is the central goal. Realists will be concerned

primarily with propositional knowledge and instrumentalists with procedural knowledge. There are important connections between the two types of knowledge within the context we are discussing. To know how to correctly represent a particular system is to know that a particular model can successfully represent the system and to know that two systems are structurally identical is to know how to represent the second once we know how to represent the first.


We also have explicit knowledge and tacit knowledge. An item of knowledge is explicit when the representation consists in an explicitly formulated theory or a set of explicitly formulated rules, or is based on a set of explicitly formulated assumptions. With tacit knowledge there is no such explicitly formulated representation. What I have shown in section 3 is that tacit knowledge can, in favorable circumstances, be upgraded to explicit knowledge.


Collins (2010) argues that an important type of tacit knowledge acquisition involves the embedding of a human agent in a social context, a view that aligns well with Kuhn’s account of how trainee scientists are apprenticed to a research community. He also notes that there is an ambiguity in the use of the term ‘tacit knowledge’. In one use, tacit knowledge cannot be made explicit; in another, weaker, use tacit knowledge is knowledge that could be explicitly described but happens not to be. Kuhn appears to be using the term in its weaker sense (Kuhn, 1974, pp. 477-482). I am not disputing that tacit knowledge in that sense exists and is employed both within domains and across domains. It is likely that when learning experimental techniques, rule based learning will always be less than fully adequate. But I am not here concerned with experimental knowledge. With formal templates it is likely that their effective application is often helped by guidance from an experienced user, but scientists can be autodidacts when learning a new field in which the representations are primarily formal. The initial identification of the construction assumptions takes considerable creativity, but, once developed, one of the primary advantages of their explicit nature is their intersubjective accessibility. There is the question, though, of whether tacit knowledge in the weaker sense should, when possible, be made explicit, and Kuhn denies that this conversion from tacit to explicit knowledge should always be made, on the grounds that by doing so the “community’s cognition will be changed” (Kuhn, 1974, 478). That may well be true but changes can also be improvements. Here are two reasons why the construction and use of formal templates is superior to the use of analogical reasoning. Either Kuhn’s symbolic generalizations are restricted to applications within a disciplinary matrix or they can be applied to more than one such matrix. In the former case, the template approach is more general because it applies to interdomain cases as well as to intradomain cases and this is a mark in its favor. In the latter case, the transfer of formal templates has an advantage over the appeal to analogy because the user of the template in a new domain does not need to also use the language of the domain in which the template originates. There is therefore no need for vocabulary translations or for interdisciplinary knowledge. If we were to use Kuhn’s approach for the transfer of representations across domains, a scientist would need to understand an exemplar in the originating domain, a field that was different from his own. Yet one does not need to know any exemplars within evolutionary biology in order to apply formal templates using fitness landscapes in economics, although a heuristic association of ‘fitness’ with ‘utility’ can be helpful if one has the required expertise. With an appeal to general application conditions, a scientist needs to have knowledge only of his own domain.

8. Conclusion

The account given here could be extended to apply to fields other than those I have examined, such as computer packages that can be applied to different subject matters. In textual analysis, topic modeling software can be applied to texts ranging in subject matter from nineteenth century romantic poetry to state of the union addresses by American presidents. Although it would be premature to speculate too much about the future prospects of such techniques, there is some reason to believe that such methods extract tacit knowledge possessed by readers and display it in an explicit representation. It is an open question what kinds of expert knowledge possessed by scholars cannot be extracted by such methods.


I conclude by noting that experimental knowledge, in the sense of knowing how to effectively carry out experiments or observations, does not seem to be a domain-transferable skill in the modern era. Early members of the Royal Society, such as Isaac Newton or Robert Hooke, could move back and forth between physics and alchemy, or physics and biology, and this kind of transfer persisted even towards the end of the nineteenth century, as Louis Pasteur was able to make important discoveries in both chemistry and microbiology. But becoming a first rate experimental biologist after becoming a first rate experimental physicist, or vice versa, is now extremely difficult, and what examples there are of transdisciplinary expertise tend to be found at the boundaries between two fields, such as molecular biochemistry. The knowledge required to perform original experiments is too field-specific and theoretically dependent to allow a short-term transfer of abilities from one area to another. One reason is that intrinsic properties differ across fields. For example, even though the basal metabolic rate of an individual human is an intrinsic biological property that happens also to be a physical property (it is the minimal quantity of energy consumed per unit time), an accurate measurement of the rate requires considerable knowledge of biology. Thus knowledge that rests upon abstract structures can be transferred across disciplines but knowledge that rests on intrinsic properties often cannot and it is here, perhaps, that Kuhn’s insights about knowledge transfer are most directly relevant.


There is one last, and deep, question raised by a referee that bears on a fundamental difference between the approach suggested here and Kuhn’s approach. Within Kuhn’s approach, it seems that a user of a symbolic generalization must ‘directly’ apprehend that the same symbolic generalization can be applied to different systems, at least when more than rote use of the generalization is employed. By contrast, in the approach that I have suggested, one understands that a formal template is multiply applicable by seeing that it is derivable from simpler or more fundamental assumptions. This, I claim, is an epistemological advantage. But perhaps this simply pushes back the direct apprehension and the user must directly understand that the formal assumptions apply to this system and to that system. There is thus a fundamental epistemological problem that must be addressed, one that is familiar from older discussions of axiomatically formulated theories and explanatory regresses. A satisfactory answer to this question requires a paper to itself, but here I note that the present project is to argue that the transfer of representations and knowledge can be based on a transparent understanding of those representations that can be explained to others without an appeal to similarity relations. If a formal template is constructed using an assumption of linearity between two variables, the apprehension that linearity is present in a given system can be gained through experimental means in some cases together with an a priori understanding of the definition of a linear relation. No resemblance relations are needed to know that variables X and Y are linearly related in system S and that variables Z and W are linearly related in system S’. The linear relations in the two systems are, abstractly, identical, and not just similar.

Acknowledgments: I am indebted to Catherine Herfeld and two anonymous referees for their insightful comments on previous versions of this paper. The suggestions of one in particular were remarkably detailed and led to significant improvements.
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� `‘Knowledge Transfer and Its Contexts’ held at the Center for Advanced Studies at LMU Munich, September 10-11 2015.


� Although I shall not discuss it here, there is also transfer of representations from non-scientific domains to scientific domains. Before the arrival of computer visualization techniques, artists were employed to illustrate medical texts because their knowledge of perspective and of representing objects from unusual angles allowed for a better representation of salient features of anatomy than did photographs. In more recent times, there has been a transfer of representations from computer graphics to chemistry, astronomy, and many other fields. 


� See the examples in Kuhn (1970), pp. 188-191; in Kuhn (1974), pp. 464  - 471; and the remarks about the role of textbooks in Kuhn (1959). 


� See also Kuhn (1974), p. 465. 


� Kuhn refers to family resemblances on pp. 44-45 of Kuhn (1970) in conjunction with his discussion of how models are not applied by formulating a set of rules for application but elsewhere mostly appeals simply to resemblances.


� “Michael Polyani has brilliantly developed a very similar theme, arguing that much of the scientist’s success depends upon `‘tacit knowledge,’ i.e. upon knowledge that is acquired through practice and that cannot be articulated explicitly”. (Kuhn (1970), f.n.1, p. 44). See also Kuhn (1970), p. 196.


� In order to avoid a commitment to the existence of the general property of being a force, I adopt the position that only instances of F are referring terms and not F itself, although other positions are possible here and nothing essential to the position advocated here turns on that choice. 


� For details of these two features see Humphreys (2004), section 3.7.


� I take `‘mathematical’ in a broad sense here to include representations from mathematical logic and some programming languages. 


� Because the correction set is driven by concerns about empirical falsity, there is no correction set in the sense of one that accompanies a theoretical template. But there can be a formal analog, as when approximation errors in moving from a continuous model to a discrete model are provided.


� I note here that in Barabási et al. (1999) the scale free network demonstration was generated by a simulation rather than analytically by a proof.


� For another direct test of the preferential attachment process, see House et al. (2015).


� McMullin (1993) argues that disciplinary matrices can be abandoned in the piecemeal fashion. Pincock (2012), pp. 126-131 notes that Kuhn’s account of the role of exemplars in disciplinary matrices gives them a constitutive role in paradigms.





� If the smaller scope matrix is abandoned, this does not entail that the broader scope matrix has to be rejected. The success of the latter could override the pull of the anomalies that led to the replacement of the narrower matrix and suitable adjustments within the wider matrix could lead to the derivation of the symbolic generalizations within the replacement narrower matrix. Or the replacement matrix could become a stand-alone research tool. 


� Analyses of those conditions and how they can fail are given in Lyon (2014) and Humphreys (2014).


� See also Knuuttila and Loettgers (2017).


� One underlying assumption is that the national income monotonically increases although at different rates in different periods. 


� Gandolfo also argues that Goodwin’s model was first discovered in 1939 by the Italian economist Giuseppe Palomba.


� Goodwin used seven assumptions which are given in his paper.


� One of the core meanings of `‘template’ is of a pattern that can serve as a common starting point for the development of a product but that can be adapted for the purpose at hand.


� In her presentation at an  IHPST workshop in June 2008, Anouk Barberousse stressed the importance of mathematical interpretations as well as empirical interpretations for formalized models.


� If more than one contact occurs between two individuals, only the first is considered.


� This situation can be construed, mutatis mutandis, either as a situation in which the mappings are concrete, formalist, objects or as one in which they are abstract entities, in which case the `‘simultaneously’ can be interpreted as `‘atemporally’. 






