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1 | INTRODUCTION

Our interest here will be on relations among truth-values and relations holding among sentences
(or formulas) in virtue of their truth-values. In particular, the concern will be with such relations
as are systematically associated with truth functions. The setting will be bivalent, with the two
truth-values taken as 7" and F. A valuation for a language is any mapping assigning one of these
values to each formula of the language.'

'All object languages considered here are sentential, with their formulas constructed by suitable iterated application of primitive
connectives (varying from language to language) to a denumerable set, I1, of sentence letters (or propositional variables) p,p,.,...
(usually written as p,q,...). Lest the restriction to bivalent valuations be thought unduly restrictive, recall that every consequence relation
I on such a language — and not just those with a two-element (strongly) characteristic matrix — is determined by a class V of such
valuations, meaning by this that it is of the form F, defined thus: for any set I' U {4} of formulas, I'F A4 iff for no v€ V, do we have
v(C) =T for each C €T, while v(4) = F. We use the customary notational abbreviations in connection with consequence relations,
“A,BFC” for “{4,B}E,C”, “FyA for 0 FyA”, and so forth. When Fy, is being thought of as a relation of logical consequence — for
this or that logic — one typically expects it to respect substitutions, a property secured by requiring that for any I, CII there is some

v eV such that v(p;) = T iff p; € ITy. The informal use, here, of “respecting substitutions” is made precise in the definition of substitution-
invariance for consequence relations in note 22 below. This condition is satisfied whenever no constraint is imposed on the treatment of
sentence letters by the valuations in V, but only on compound formulas, as with the main choices of interest below, the most prominent
of which is the class of all Boolean valuations.

124 © 2023 Stiftelsen Theoria. wileyonlinelibrary.com/journal/theo Theoria. 2023;89:124-147.
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A Boolean connective is one for which there is a conventionally associated truth function
used to interpret it in the semantics of classical logic (A, V, =, —, etc.). A Boolean valuation v
for such a language is one for which that interpretation is in force; for example, if — is among
the language’s (binary) connectives, we require that for all formulas A, B of the language
v(4— B)=T except when v(4)=T and v(B)=F. Returning to the second sentence of the
opening paragraph above and its talk of relations associated with truth functions, the next point
to notice is that there is no single systematic way of associating such a relation with a given
truth function, but rather two such ways. This twofold contrast applies more generally than just
to the case of truth functions themselves, so the present section pauses to locate it in this more
general setting. Doing so will involve us in rehearsing some considerations that will be familiar
to most readers, but it is worth taking a moment to get the discussion off on the right foot.

Since we are concentrating on connections between functions and relations, and initially on
two ways, in particular, of associating a function with a relation, the cleanest way to proceed
will be to regard functions as sui generis rather than by identifying them with functional rela-
tions, where, as usual, an (n+ 1)-ary relation R on a set S is a subset of S and is functional
just in case for all x,...,x, € S there is exactly one y € S for which (xi,...,x,,y) € R.? In that case
the corresponding function, Fun(R), we may call it, is the function / mapping any xi,...,x, €S
to that unique y. Although the correspondence between functions and functional relations is a
bijection, distinguishing them allows us to respect the usual “arity” talk: applying Fun(-) turns an
(n+1)-ary relation into an n-ary function, when the relation is a functional relation (and is
undefined otherwise). Travelling in the reverse direction, we have the operation Rel(-), say, which
turns any n-ary (or n -place) function f* — this time without restriction — into an (n+ 1)-ary rela-
tion Rel(f) = {{x1,....xs,») | f(x1,...,x,) = ¥}. Rel, in other words, is the operation that trades in
a function for its graph. (On the corresponding linguistic move, see Longer Note A.)

Rel(Fun(R)) = R whenever Fun(R) is defined. (1.1)
Fun(Rel(f)) =/ forany function f whatever. (1.2)

Thus, to the extent that Fun’s being a partial operation — defined only on functional relations —
permits it, Fun and Rel are each other’s inverses. Rel is the first of the two ways to be distin-
guished here of associating a relation with a given function.’

The second way of effecting such an association will be arity-preserving rather than arity-
reducing.® To introduce it, we start with the corresponding reverse — relation-to-function — tran-
sition, recalling that for R C S”, the characteristic function of R, most familiar from the case in
which n=1,” y(R), often (as here) written as y, is defined by:

T if (x1, ..., xy) ER

){R(Xl,---axn): {F if <x1, cens xn>¢R

Since for current purposes it is most convenient to have a single underlying set S to supply argu-
ments and values for our functions and the relata for our relations, to accommodate y(-) we

>When convenient below we will, as usual, write “Rx;...x,” — or, when the R part of the label is cluttered with superscripts or subscripts,
“R(x1,...,x,)” — in place of “(xy,...,x,) € R”.

*0f course what we are calling the operation Rel is also a function (and Fun a partial function), but for convenience we are reserving the
term “function” in the main discussion — with one exception: in note 6 — for those mapping, for some n, n elements of our single basic
type S, to elements of S. Here, to minimize complications, we acquiesce in the customary representation of a function’s taking n
arguments with its taking a single argument, that being an ordered n-tuple of elements, despite the inadequacy of this as a general
account. The issue here is explained toward the end of footnote 13 in Humberstone (1993). — as well, no doubt, as elsewhere.

4Another commonly encountered arity-preserving way of associating relations with functions is described in Longer Note B.

Here we presume an account of ordered n-tuples which identifies (x) with x.
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make the presumption that this underlying set contains the truth values 7" and F. (In fact for
Section 2 and much that follows that, it won’t contain anything else — see the opening sentence
of the present section.) Again, in the interests of simplicity we may take n-ary functions under
discussion as having domain S§” and codomain S, and, concentrating on the case of n =1, recall
a familiar ambiguity of the notation /! (). As a temporary expedient we introduce two nota-
tions, /171(-) and /I=!/(-) to do the disambiguating.

Given f: 8 — S, /17! is the relation {(h,a) | f(a) =b} — not in general a functional relation
—and f H_lH(b) is the set of all a to which b stands in this relation, that is, the set of all € S
mapped by / to .° On the other hand, for the case in which f“_l” is a functional relation, then
F71() is instead Fun(f”’”‘), mapping b to the unique @ for which f(a) =5b.” From now on, the
inverse image notation “f ' will always be understood in the first of these two ways, as mean-
ing “f'”_”‘”. Note that this makes sense without further ado, by contrast with the “f/ =!I case —
when f is an n-ary function with n>1: =1 (b) = {(ay,....a,) |f(ai.....a,) =b}.

We are now in a position to undo the action of y, and trade in a characteristic function for
the relation whose characteristic function it was. Where f is the function concerned, its de-
characteristic relation, y (), is defined thus:

x()=/"1(T),

and one easily checks that we have the following, where, in (1.4), we call a function truth-valued
when it only takes values in the set {7, F}:*

7 (x(R)) =R for any relation R whatever (1.3)

x(x(f)) =1 forany truth-valued function f (1.4)

The cases in which f is not a truth-valued function are “don’t care” cases not arising in the way
x(R) (alias y ) was specified above. Even in the case in which the range of /" is completely dis-
joint from {7, F}, the “worst” that can happen is that /' (T') is empty; there is no need to insist
that  (f) should be other than () — for example that it should be undefined — in such cases.’

2 | TRUTH FUNCTIONS AND TRUTH-VALUE RELATIONS

To pick up again on the opening sentence of Section 1: we have now finished describing two
ways of associating a relation with a given function — as well as of making an association in the
converse direction. The first way, via Rel, passed from a function to its graph, and the second

®The notation here reminds us that an (14 1)-ary relation on S is also “informationally equivalent” to a function from S to go(S™),
though we will not explicitly dwell on the operations taking us to and from in this equivalence. Likewise with the transition between
functions from S" to S and functions from S to functions from S"~! to S (the iterated use of which is associated with Schonfinkel and
Curry).

A more general version of the introducing /! (-) would turn it into a partial function, defined only for those b for which /1~ (5) has a
unit set as value, with f° Ll (b) then being the sole element of that set. Issues in the vicinity of the ambiguity currently under discussion
are touched on in the text Makinson (2020)., in the paragraph spanning pp. 87 and 88, and in the final paragraph of the coloured box
onp.91.

8We are not saying that {T', F} is the range of the function — the constant true function would satisfy the current condition, for example
—nor that {7, F} is its codomain, since we are taking all 1-ary (total) functions to have the same domain and codomain: namely a single
fixed universe of discourse, S. Note also that truth-valued functions include truth functions, the latter arising when S is just {7, F}.

°In the original version of this material, all relations and functions were “sorted” in the sense of having prescribed basic types of their
relata, arguments, and values, and what is here called  was a partial operation (like Fun in (1.2)), defined only for truth-valued
functions as arguments. The present treatment was suggested to me by Katalin Bimbé as a simplifying improvement (one of several,

in fact).
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way, via y, from a function — at least, a characteristic function — to its de-characteristic relation.
Since every truth function can be viewed as the characteristic function of some relation, this
association of a relation with an antecedently given function will always be available now
that we turn our attention specifically to truth functions. And in this setting, it is the second
(“de-characteristic”) association, figuring in (1.3)—(1.4), that will be the focus of our attention. y
delivers, given an n-ary truth function — a function from {7, F}" to {T,F} — an n-ary truth-
value relation, as we shall put it: a subset of {7, F}". (A comment on this terminology will be
made in Longer Note C in the Appendix.)

Example 2.1. By way of example, consider the ternary “majority” truth function f,
mapping (T, T, T), (T, T,F), (T,F,T), (F,T,T) to T and the remaining triples to
F. Then y(f) is simply the set of triples just explicitly listed (the “mapped to T~
cases). <

As with the term truth function itself, which is sometimes used for linguistic expressions —
either for connectives interpreted via truth functions proper, or for formulas with such connec-
tives as their main connectives'® — so the phrase fruth-value relation may be given a secondary
usage for linguistic expressions interpreted via (esp. de-characteristic) truth-value relations, such
as the relations R? defined in Section 3 below. Indeed, historically, the latter use of the phrase
“truth-value relation” is historically the primary use, given its appearance in the title and the
body of the article by Welding (1976). The situation is complicated by the fact that Welding
focuses his attention on propositions — however, exactly, these are conceived!! — rather than lin-
guistic expressions (formulas or sentences) themselves, as with our R¥, and also by the undeni-
able murkiness of much of the discussion in Welding (1976). That discussion nevertheless
introduces the relational perspective by essentially considering at the level of propositions, the
(y-obtained) truth-value relation associated with any truth function. Welding contrasts this,
not, as above, with the truth-value relation obtained from the given truth function by the appli-
cation of Rel, but with the truth function itself, which he sees it as somehow usurping:

If, for instance, a conjunction is conceived to be a relation, it is not, logically
speaking, correct to say that the conjunction of A and B is true: we should rather
assume that the conjunction holds between the truth both of A and B. (...)
We should observe that the assumption that logical connectives are (non-functional)
truth-value relations does not involve any difference in logical operations on them.
It is not self-contradictory to say that sometimes logicians do precisely know how
to operate on something and yet fail to know what precisely it is they have been
operating on. 2

As we saw, though, there is no competition between giving a semantic description using
truth functions and giving one in terms of truth-value relations. After all, (1.3 and 1.4) make
the functional and relational perspectives intertranslatable and equally legitimate. Peter Simons
argues a version of this case for the incarnation of the relations concerned as relations among
statements, sentences or propositions — the differences among which, he remarks Simons (1982,
p. 209)., are not to the point here — very reasonably concluding (p. 211) as follows, after

19Sometimes leading to confusions, as is observed in Dale (1982); on which, see also Humberstone (2014, p. 22ff).

""Two candidate explications arise in passing in what follows: one treatment (alluded to in passing in Longer Note G) construes
propositions as certain equivalence classes of sentences or formulas; and a version of the propositions-as-sets-of-points in a model arises
in the discussion after Example 3.8; c.f. also the role of propositions as sets of verifying valuations in some antecedently given class of
valuations, implicit in the definition of R}(4, B) in Section 3. Welding does not have anything as clearly articulated as any of these
notions in mind, and is in any case working in a more informal setting than would make them available.

2Welding (1976, p. 160).

85U8017 SUOWLLIOD SAIER.ID) 3|dealdde ayy Aq pausenob afe Sape YO ‘8sn J0 Sa|ni oy Afeid1 8UIjUO 31 UO (SUOIIPUOD-PUR-SLLIBY IO A8 | 1M A g 1 BUIUO//SANY) SUORIPUOD pUe W | 84} 88S *[£202/20/20] Uo ARIq1T 8UliuO A8]1M Me'nps Useuowi@ Jequell-<ye 0qqius> Aq 0SyZT 0U)TTTT 0T/I0p/L0o A 1M ARIq1pUI|uo//SANY Wouy pepeojumoq ‘T ‘SZ0Z '295255.T



128 | HUMBERSTONE

mentioning the functional treatment and (what was called above) the Rel-obtained relational
treatment:

On the other hand it is possible also to consider the truth functions to correspond to
certain relations among propositions, or again, among truth-values. The latter alter-
native has been suggested by Dr Steen Olaf Welding, though provided we keep clear
as to the general priority of relations over functions, there seems to be no reason to
accepting Dr Welding’s criticisms of the functional view of truth functions, which
can, as we have demonstrated, be defended provided it is cleared of confusion. In the
case of truth functions, it so happens that we have arrived at the functional rather
than the relational view first, and have perhaps found it natural to proceed that way.
But the other way is equally acceptable: for instance we can define a relation between
propositions k such that p k q iff both p and q are true.”>

The theoretical interchangeability of the functional and the (“de-characteristic”) relational
perspective does not mean that both perspectives are always equally helpful in practice.

An illustration of how the latter perspective can sometimes make things more evident will
be given after Remark 3.6 below, for which we need some background earlier in Section 3. It
will involve the (y-obtained rather than Rel-obtained) truth-value relations associated with
two-place truth functions, which are especially pleasant to deal with because of their easy
visualisability, contrasting in this respect with Example 2.1above. We can represent the ordered
pairs of truth-values belonging to the relation in question by means of an arrow going from the
one to the other. Figure 1 contains such arrow diagrams for four binary truth-value relations,
identified in the figure caption by the truth functions with which they are associated. The third
diagram in that figure represents approximately what has been called the relation of “material

conjunction”:'*

(N

FIGURE 1 Truth-value relations for inclusive disjunction, exclusive disjunction, conjunction, material equivalence

13Simons chooses the letter “k” because of the use of a capital K in Welding’s own remarks which take off from material by Stefan
Korner using this letter (presumably inspired by Lukasiewicz-style Polish notation). The early reference, in the Simons passage quoted
here, to “the general priority of relations over functions” sounds like something set-theoretically and category-theoretically oriented
thinkers might disagree about. And formulations such as “criticisms of the functional view of truth functions” do not seem optimal, for
evident reasons.

“This phrase comes from the opening page of Woods (1967), in discussion of some publications by Everett Nelson from the 1930s.
(References to the Everett papers can be found in Woods’ critique: Woods (1967, 1969). The current application would only be
approximate, because, like Welding’s — as noted above after Example 2.1 — Woods’ discussion is conducted in terms of propositions. The
extensional or “material” relations between them would be those holding in virtue of the present truth-value relations holding between
their respective truth-values. On our more linguistically oriented treatment, as in the following section, of material conjunction relative
to a Boolean valuation v, would be as the binary relation y (A ) between the results of applying v(-) to the conjuncts — the sentences or
formulas themselves — just as, in the 1-ary case of =, for example, we have the 1-ary relation (alias property) of falsity, (relative to the
given v), y (—) as predicated of the formula filling the blank in v(-).
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Recall that the binary truth function indirectly represented in such relational diagrams
is the characteristic function of the relation explicitly depicted by the presence of an arrow from
x to y (x,y € {T, F}) when the function involved maps (x,y) to T. The cases in which a pair is
mapped to F are indicated by the absence of a corresponding arrow. So, because a truth-table
for the inclusive disjunction, exclusive disjunction and conjunction truth functions has
respectively three, two and one, occurrence of 7 in its main column, the first three diagrams in
Figure 1 have arrows appearing in them respectively three times, twice and once. The fact
that the second and fourth diagrams are complementary digraphs reflects the Boolean
complementation between exclusive disjunction and material equivalence. Figure 2 depicts four more
cases, so this leaves the reader to draw corresponding diagrams for the remaining eight binary truth
functions, to help get a feel for the (y -derived) relational perspective on truth functions.

3 | FROM TRUTH-VALUE RELATIONS TO LOGICAL RELATIONS

Truth-value relations in the sense of our discussion, as relations among truth-values, are not, as
was mentioned in the preceding section, the only things called by that name: relations among
linguistic expressions — and here our attention will be on the formulas of sentential languages —
as well as relations among propositions, have been called truth-value relations when they obtain
in virtue of the truth-value relations in the narrower sense among the truth-values of the expres-
sions or propositions concerned. Relations of this kind were introduced directly in 3.34 of
Humberstone (2011)., rather than via the truth-value relations proper, with the binary relations
between formulas of some language defined (p. 504) in terms of a class V of valuations and for
that language and a binary connective # of the language. The case of n-ary # for n in general is
clear enough, and we stick with the binary case for illustrative purposes, superscripting the #
and subscripting the references to valuations, so as to highlight the binary relations that emerge
when these parameters are fixed; we do not require in the general setting that # be interpreted
by a truth function over V:

1. R*(A,B)iff v(A# B)=T; and
2. R}(4,B)iff for all ve V: R¥(4, B).

Remarks 3.1. (i) The comment about there being no need for # to be interpreted by
a truth function over V means that we do not require there to be some
g:{T,F}>*—{T,F} such that for all veV and all formulas 4,B,
v(A# B) =g(v(A),v(B)). When, however, such a g does exist, as in the case of all
Boolean connectives # over any class of Boolean valuations, we denote the g in
question with the aid of boldface: #. In this case, one could, in turn, spell out the
right-hand side of the above definition of R”(A4, B) in familiar functional terms by
replacing it with v(A4) #v(B) =T, or alternatively, using the truth-value relational
form, spell it out instead by writing “¥ (v(4),v(B))”. (In some degenerate cases, there

oot

@) O @)

FIGURE 2 Relations for constant true, nand, second projection, material implication

)
T
[
F
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may be more than one g a given V provides, for which it is correct to say that # is
interpreted by g over V, in which case # can be taken indifferently as any one such
candidate.'®) Humberstone (2011). puts matters in terms of the association of a truth
function with a connective over V rather than the interpretation of a connective by a truth
function over V, but here that would be confusing in view of the talk of associating a
relation with a function, the two modes of doing which were contrasted in Section 1.'°

(i1) One might also be inclined to trade in valuations-as-functions for valuations-
as-relations, as in Priest (2008, §8.4a), for example, or, more elaborately, in Priest
(2014). But that would be a different kind of move, replacing a 1-place function with
a 2-place relation, rather than, as here, an n-ary function with an n-ary relation — as
with the Rel-invoking relational treatment of truth functions distinguished in
Section 2 from the present y-invoking version. <

Someone wanting to prioritize the relational perspective may prefer to have something less
roundabout than the current “y,” (or “y (#)”), along the lines of “#” for denoting the relevant
binary truth-value relation rather than the truth function from the start. Then in the inductive
definition of truth on a Boolean valuation, one would explain that for any 4, B: v(A# B)=T
iff #(v(4),v(B)), and the r.h.s. here could be used in place of the r.h.s. of the definition of R¥
above.!” We return to illustrating the occasional greater suggestiveness of the current (y -based)
relational perspective below — in the paragraph following Remark 3.6 — and for that illustration
we need to consider logical relations among formulas. For the case of binary logical relations —
equivalence, implication, contrariety, subcontrariety, and so forth (to invoke some very tradi-
tional terminology in these last two cases) — it is the definition of R}(4, B) above rather than
that of R” (4, B) that is relevant.

Lemmon’s account of the (binary) logical relations makes use of some of this terminology,
but produces a far from traditional list of what those relations are, when applied to the case of
classical logic, as it is in Lemmon (1965, pp. 69-71). Now reverting from the truth-relational
use of “#” mooted in the preceding paragraph to its originally proposed use for the binary truth
function interpreting a candidate truth-functional connective, over the class of all Boolean valu-
ations taken as V, the binary logical relations are precisely the 16 relations Rﬁ(-;) as # ranges
over pairwise non-equivalent connectives interpreted (over V) by the truth function #. Here it
does not matter whether we think of # as a primitive or as a defined connective of the language,
as long as the primitives are functionally complete. Thus the logical relation of equivalence is
the relation R;;, subcontrariety is the relation R/, and so on.'®

SFor example, suppose v is the unique Boolean valuation for the language with primitive connectives — and v(p;) =T for all sentence letters
pi- Then on v (or over V = {v}), — can equally correctly be said to be interpreted by —, A, V, and so forth. — any binary truth function
mapping (7.,T) to T.

'*This connection with the relations R¥(-,-) used in defining the basic binary Lemmon-style logical relations R¥(-,-) provided the present
author’s point of entry into the realm of truth-value relations, rather than encounters with Welding (1976). and Simons (1982)., and
similar idiosyncratic concerns have no doubt been operative in their re-discovery by others. I learned from Jean-Yves Béziau in mid-
2020, for example, that he had, again independently, noticed the one-to-one correspondence between (in particular, the binary) truth
functions and the associated (as it is put here, “de-characteristic” binary) truth-value relations, and was considering writing up an
account of such relations in terms of a hexagon of opposition in the style of Blanché (1969).

""Despite our talk of the relational perspective, there is an important respect in which these truth-value relations are intuitively “not
genuinely relational”: see Longer Note D in the Appendix.

18See Humberstone (2013)., in the terminology of which, the Lemmon logical relations are just the beginning of a classification of what
are there called the (binary) coercive logical relations from the perspective of classical logic, and see Humberstone (2020). (or, more
perfunctorily, Humberstone (2019, Appendix 2).) for a discussion attempting to transcend the specifically classical case. For more on
this, see Longer Note E. A referee asks to hear a bit more about the differences between Lemmon’s use of the terminology for various
logical relations and the more traditional usage, alluded to at the start of this paragraph; Longer Note F has been added to meet this
request in a way that keeps the present discussion self-contained, as well as supplying a somewhat different slant from what is offered in
the material just cited.
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As already mentioned, the local RY relations and the global R}, relations were introduced
into the discussion in Humberstone (2011, 3.34). in order to throw light on the curious fact that
many writers on logical matters mix up, even in the same breath, talk of a something like con-
junction as being symmetric, on the one hand, and being associative, on the other. Others may
say that A is commutative and that — is transitive, and so on."” Thus, they have not cleared
their thoughts as to whether it is the language of binary relations or the language of 2-place
functions (binary operations) that is appropriate. The suggestion made in that discussion is that,
with some definite class of valuations in mind, they pass from thinking of the connective #, a
function mapping (in the binary case) a pair of formulas to a formula, to thinking of the rela-
tion Rﬁ (where V is the class in question) or — less typically — to one of the local relations R?
(where v is an element of the class in question).

Now in general — that is, for arbitrary V — it is one thing to ask whether for every v €V the
relation Rf is, for example, transitive, and another to ask whether the relation Rl’f IS transitive.
Where Ey, is the consequence relation determined by V in the sense explained in note 1, the for-
mer asks whether

Forall A,B,C:A#B,B# CEyA#C (la)
whereas the latter asks whether
Forall A,B,C:1f FyA# B and F, B# C then F, A#C. (1b)

The former (local) transitivity claim is easily seen to imply the latter (global) transitivity
claim.

Remark 3.2. The implication just noted arises because the intersection of transitive
relations is transitive, and

Rfj:ﬂ R¥,

vevy

for any (not just binary) # of the language for which V is a set of valuations. A more
general version of the relevant point can be given using the notion of a universal
Horn sentence (defined below, though no doubt familiar to most readers): for any
condition on a relation expressed by such a sentence, if the condition is satisfied by a
family of relations, it is satisfied by their intersection. (Relatedly, R} (4,B) iff
u(A# B) =T, where u is what is called in Humberstone (2011)., e.g., p. 60, the “con-
junctive combination” of the valuations in V. Typically — e.g., if V=BV, the latter
defined in the following paragraph — u¢)V, a fact whose repercussions were
famously noted by Carnap; for bibliographical references, see the “Strong Claim
vs. Weak Claim” discussion in Humberstone (2011, p. 101); this comes up again at
note 37 below.) |

The converse of the implication (1a) = (1b) in question is in general not forthcoming, as
Example 3.3 (ii) below illustrates. But in the special case in which V is the class, BV, of all Bool-
ean valuations,”” and E ) is understood specifically as the consequence relation on a language

Numerous pertinent citations are given in the discussion in Humberstone (2011, 3.34). See further, Longer Note G below.
2Here “BV” is an unstructured symbol, as in Humberstone (2011). — though there, E sy is usually referred to as ¢, , to suggest classical
logic, as ki is used similarly for intuitionistic logic.
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with a functionally complete stock of Boolean connectives and no non-Boolean connectives —
so Epy is the familiar consequence relation of classical propositional logic — we do have the
converse ((1b) = (1a)) implication.?' This is due in part, as we shall see, to the structural com-
pleteness of this consequence relation.?

Similarly, but now picking up on the confusion between properties of binary operations and
properties of binary relations, the stronger valuation-by-valuation claim that # is commutative
over V made by saying that

Forall 4,B: A# BEyB# A (2a)
and the potentially weaker V-en-masse claim that
Forall A,B: if FyA# Bthen FyB# A (2b)

are equivalent for any choice of # in the case of V= BV.** Thus we can cite either the consider-
ation that for each v € BV, the relation R¥ — coinciding with the relation y (v(-),v(-)) if # is
truth-functional over V — is symmetric, or the consideration that Rf, is symmetric, to explain
how the commutativity of a connective gets to be referred to as symmetry. Example 3.3 (i)
shows how these two considerations can in other cases fail to amount to the same thing.

Example 3.3. (i) We illustrate the failure of the implication (2b) = (2a). Extend the
language of F pzp with the 1-ary non-Boolean connective [] and take BV to be the
class of valuations of the form v, where M is a model (for normal modal logic), w
a point in that model, and for all formulas A of the [J-expanded language,
vM(A4)=T iff 4 is true at w in M, under the usual Kripke semantics for modal
logic. (Here models are not taken to have a distinguished element, truth at which is
said to constitute truth in the model; the use of such “pointed models” would call for
some reformulation.) Note that Remark 3.1 (i) applies here in the case of [], since
there is no truth function to “de-characterize”, and similarly for the # about to be
defined in terms of [], there is no corresponding #. (This comes up again, with
intuitionistic implication, in the paragraph following Example 3.8 below.) Take
A# B as AN[]B. Whenever Fpy_ A# B, we have F gy B# A, but certainly we do
not have the stronger commutativity condition: (for all A4, B) A# BEgy B#A.
(Putting this in terms of the smallest normal modal logic K: the theorems of K are
closed under the rule taking us from [J4 A B to [JBA A. See, if required, the index
entries under “necessitation” and “denecessitation” in Humberstone (2011, 2016) —
either will do — but in general []JA4 A B does not provably imply [JBA 4 in K: for
instance, not if 4 and B are distinct sentence letters/propositional variables. Indeed,

2IThe functional completeness condition here is convenient but for the sake of the point just made, all we need is that the language of

F gy should contain at least one BV-valid formula — as it would, for example, if we considered the { A,V, T }-fragment of classical logic.
(Suppose that C is a BV-valid formula, and that A4,...,4, ¥ gy B. Exercise 1.25.12 in Humberstone (2011, p. 132). concerns structural
completeness in the sense of note 22 below. It describes a standard method for defining, on the basis of a Boolean valuation v with
v(41)=...v(4,) =T and v(B) = F, a substitution s, , which renders each of the formulas s (4;), where i =1,...,n, but not the formula
s (B), BY-valid. Varying the definition so as to replace the formula p — p in the proof suggested there, by the formula C, does not affect
this familiar argument for the structural completeness of the F gy for the fragment in question.)

22A consequence relation is structurally complete if whenever a formula C in its language is not a consequence of a set I" of formulas,
there is a substitution s (replacing propositional variables by arbitrary formulas in a uniform manner) with 3(A4) a consequence of ) (“is
a V-valid formula”), for each 4 € I" but 4(C) is not; whenever we describe a consequence relation as structurally complete, we shall also
assume that it is substitution-invariant, meaning that whenever C is a consequence (by that relation) of I" and 4 is a substitution, then
3(C) is a consequence of {4(A4) | A €T'}. There is also a related though distinct notion of structural completeness arising as a property of
proof systems (which may involve, as in the case of natural deduction and also sequent calculi, sequent-to-sequent rules rather than just
formula-to-formula rules). Further discussion and references may be found in the Digression on p. 882 f. of Humberstone (2011).
Z3Recall that when we write “F 3,7, the assumption is that only Boolean connectives are present in the language concerned.
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the only consistent normal modal logic containing ([(Jp Ag) — (CJg Ap) is the “triv-
ial” system in which []A4 is always provably equivalent to A4.)

(i1)) We can give a similar counterexample to the implication (1b) = (1a) by keep-
ing the language the same and now writing BV 4 for the subset of BV in which
the accessibility relations of the models M (for its induced valuations v) are transi-
tive. Thus we are working with the modal logic K4, though readers more comfort-
able with S4 (alias KT4) can safely have that in mind instead. Let 4# B be
[04 — B. It is easy to see that (1b) holds for this choice of # when V is taken as
BY 4, that is, that the K4 (or S4) provability of []4 — B and [[]B — C guarantees
that of [JA4 — C. To see the failure of (1a), take the case in which 4 is T (a truth/
verum constant — or any K4-provable formula), B is the sentence letter p, and C is
[p. This turns the relevant case of (1a) into:

OT7 —p,0Op—0Opksv, 0T — Op.

We can drop the [JT antecedent from the first and third formulas in view of its
truth at all points in any model, as well as deleting the second formula on the same
grounds. This leaves us with:

PEBvo, Up,

which is clearly an incorrect claim, since a model’s having a transitive accessibility
relation does not guarantee that [Jp is true at any p-verifying point in that model.
(Less semantically formulated: because p — []p is not K4-provable — or S4- or even
S5-provable.) <

In view of the heavy involvement of modal logic with Examples 3.3 (i) and (ii), it is worth
sounding a note of warning about the fact that the usual local/global consequence distinc-
tion in modal logic does not coincide exactly with the above use of this terminology for the
contrast between preserving, for each valuation in some class V, and preserving the property
of being true-on-every-valuation-in- V. The former contrast, between preserving truth at each
point in every model in some class, on the one hand, and preserving truth-throughout-the-
model for each model in the class is one case of the latter, but another case might take V as the
set of all valuations v, where v (4) = T iff for all w in the universe of M, vM(4)=T. Now
the “local” preservation characteristic is itself what from a modal point of view would be reg-
arded as global — preservation of truth-throughout-a-model — and the valuations v™ are admit-
tedly not Boolean valuations.”* For this choice of V we now have Necessitation in the strong
form: AEy[]A, while for Denecessitation we still have only the weaker form: if Ey[]A4
then EyA>

The discussion will now take an autobiographical turn as we approach the promised illustra-
tion of the suggestiveness of taking the truth-relational perspective. Bear with me. We return to
the issue of logical relations in the style of Lemmon: as relations Rf,,. (So only Boolean connec-
tives are in play here, and A4 and B are, for example, contraries, when we take —(4 A B) in the
A # B role and require that this formula be a classical tautology, contradictories if we trade in
this choice of # for exclusive disjunction, and so on.) After introducing these ideas to an

>*In the more refined terminology of Humberstone (2011, p. 65)., these valuations are A-Boolean but not, for instance V -Boolean or
—-Boolean.

ZMore on this and related matters can be found in Fagin et al. (1992). (erroneously listed in the bibliography of Humberstone (2011)
simply as Halpern and Vardi [1992]), as well as (Denec () on p. 853 of the same work, and other entries under “Denecessitation” in its
index.
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intermediate level logic class three years ago, I set as an exercise for the students — one among
several from which to choose — the following three-part question about these 16 “Lemmon rela-
tions”. In reproducing it and discussing it here, I will, and in the original exercise did, omit the
BY subscript:

1. For how many of the 16 binary truth functions # is the Lemmon relation R¥ transitive?

2. For how many of the 16 binary truth functions # is R¥ symmetric?

3. For exactly which of the 16 binary truth functions # is the relation R¥ an equivalence rela-
tion (i.e., transitive, symmetric and reflexive) 2*¢

We had a follow-up session going through the exercises in class, after the assignments had
been marked and returned, explaining the answers. The details on the first and second parts of
the current question can be relegated to a footnote here.?’

As for the final part of the question, I explained, the answer is that the truth functions # for
which R* is an equivalence relation are just the following two: when # is the material bicondi-
tional and when # is the constant true binary truth function. Going through the exercises in the
follow-up session, we noticed that the awkward part of checking the cases to answer this part of
the question, namely transitivity, actually played no role in filtering out candidate equivalence-
relational R¥ s: we get the same two if we ask instead about which of the 16 truth functions
induce Lemmon relations that are reflexive and symmetric: just those induced by the constant
true truth function and the commutative truth functions. Thus evidently transitivity follows, in
this setting, from reflexivity and symmetry.

After the class was over, I realised that in fact, for the current relations, transitivity followed
from reflexivity alone. The relations whose reflexivity and transitivity are at issue here, since we
are talking about the Lemmon logical relations, are the global relations RZV for varying choices
of #, rather than the local relations R for any such choice of # and (all the) v € BY. (Here, for
clarity, the subscripting on R* has been restored.) But from the transitivity of each such R¥, the
transitivity of Rgv follows: this was the (1a) = (1b) implication above. And in the case of reflex-
ivity, the distinction between the reflexivity of R}, and that of each R¥ for v € BV does not even
arise, since reflexivity is an unconditional condition.

Proposition 3.4. For any binary Boolean connective #, if R}, is reflexive then R, is
transitive.

Proof. Suppose that R” is reflexive: that for all formulas D: Egy D# D (i.e., D# D
is a classical tautology). Since it suffices to show that for all 4, B,C we have
A# B,B# CEgyA# C, let us suppose, for a contradiction, that we have formulas
A, B, C and Boolean valuation v assigning the value 7" to the two formulas on the
left and F to that on the right, and for brevity denote v(A),v(B),v(C) by a,b,c. We
have, then:

Qattb="T, @b#c=T, @attc=F.

From ® and ® we infer that b # ¢, and similarly from ® and ® we infer that a # b.
Since Fg. D # D for all D, we must have for x€ {T,F}, x# x=T, so ® tells us that

2%The students were asked to identify the truth functions in question by means of the alphabetical labels (a)~(p) given in Lemmon (1965,
p. 70). to refer to them.
?7A detailed examination of cases establishes that the answers to the first and second parts of the question are 13 and 8, respectively.
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a # c¢. But now we have got to the position of concluding that a,b,c¢ are pairwise dis-
tinct, contradicting the fact that they were drawn from the two-element set {7, F}. m

Proposition 3.4 is in general (i.e., if we vary the logic concerned — represented here by class
of valuations picked out by the subscript on “R”) potentially weaker than what the proof estab-
lishes, namely that for each v in the relevant class, the relation R? is transitive, given the
hypothesis of reflexivity. That in the classical (or BY) case these two conclusions are equivalent
is the result of the interplay of a formal feature — alluded to in Remark 3.2 — shared by condi-
tions like reflexivity, symmetry and transitivity, which is that they are all (metalinguistic) uni-
versal Horn conditions on the relations Rﬁv, with the structural completeness of the
consequence relation Fgy. The discussion that follows (from here to the end of Remark 3.6)
clarifies the role of these considerations, after which we return to Proposition 3.4 and its proof.

To avoid extraneous distractions, it is actually strict universal Horn conditions that we
are concerned with. This means those conditions on R expressed by statements of the form (3),
where the dotted A,V and — appear simply to reduce the risk of confusion with similarly notated
connectives of whatever object language is under consideration (the language, i.e., constituting the
domain of the functions v and from which the connectives # are drawn):

Var. Vxe (@1 Ao Ady) = Voo V) (3)

in which the variables xi,...,x, exhaust those occurring in the implication, and the ¢; and y; are
atomic formulas in the language with dyadic R as its sole predicate letter, and we require not
only that n<1 (“Horn”) but that n =1 (“strict Horn”); this is because of the correspondence arising
in this case with statements about consequence relations — or alternatively (to use terminology from
Humberstone (2011).) with sequents in the logical framework SET-FMLA, in which there is a single
formula “on the right”.?® Evidently reflexivity, symmetry and transitivity are universal strict Horn
conditions on the two-place R, with k=1, 2, 3 respectively, and m =0,1,2 respectively.

In our recent discussion we have been concerned with the case in which the individual vari-
ables range over the formulas of some propositional language among whose connectives is the
binary #, V being a class of valuations for that language, and R is taken either as R for ve V
or else as the global relation Rfﬁ. (1a) and (2a) are then special cases of (3a), and (1b) and (2b)
are special cases of (3b), where @ is of the form (3) with n=1:

Foreach ve V, R? satisfies ® (3a)

RY satisfies @ (3b)

Then the discussion of (1a,1b) and (2a,2b) above illustrates why (3a) always implies (3b), pro-
vided that @ is a (strict) Horn condition.?” The “Horn” part here is essential. Allowing 722 in
(3) would permit as a simple counterexample (with m = 0) classical implicational comparability

2L ater we broaden the focus and consider generalized (“multiple conclusion™) consequence relations — or sequents in the framework
SET-SET; cf. the distinction between rule-like and generalized rule-like conditions at p. 29 of Humberstone (1996). Returning to (3) itself,
when n =0 in the non-strict case, the conditional in there is identified with the negation of its antecedent, and when m =0, it is identified
with its consequent. (The n = 1 incarnation of (3) is a very special kind of rule-like condition, since the premises and conclusion of the
corresponding rule in a schematic formulation of the latter all result from applying the connective to suitably many schematic letters.
Thus a rule like that taking us from premise 4 A B to conclusion BA A is among those represented while a rule taking us from premises A4
and B to conclusion 4 A B is not.) Often a (strict) Horn sentence is taken to a conjunction of (strict) Horn sentences as defined here.
Information on Horn sentences and their distinctive logical properties can be found in Hodges (1993, Chapter 9)., or, for a more
computer science oriented overview, in Hodges (1993a); the case of particular interest here — universal Horn sentences — is the focus of
McNulty (1977)., g.v. also for historical information.

2This is a matter of distributing universal quantifiers (over v € V) across implications, and as already noted in connection with
reflexivity, not even this much is involved in the m =0 case.

85U8017 SUOWLIOD AIES1D 3|ealdde ayy Aq peusenob e 9 e YO ‘8Sn Jo $ojnu o Akeld18UljuQ AB{1M UO (SUOHIPUOD-PUR-SLLIBIALIOD A8 | 1M AfeIq 1 [BulUO//SANL) SUONIPUOD pUe SWIS | 8Y) 88S *[£202/20/20] Uo ARiq1T8uliuO A8]1M ‘Me'nps yseuow@eque-<ye oqqius> Aq 0SyZT 08U/ TTTT 0T/I0p/woo 8| 1M ARiq1puljuo//sdny wouy pspeojumod ‘T ‘€202 'L952SSLT



136 | HUMBERSTONE

(see Longer Note E), ® for this case being Vx;Vx>(Rx1x; V Rxyx1). With this choice of @, we
have the familiar fact that this instance of (3a) holds: for each ve BV, R satisfies @; that is,
for all Boolean formulas 4, B, and Boolean valuations v, v(4 — B)=T or v(B— A4)=T. By
contrast, the corresponding instance of (3b) for Ry, fails: it is not the case that for arbitrary
A, B, at least one of 4 — B or B— A is BV-valid (tautologous).

We turn now to the implication (3b) = (3a), and to give the general idea alluded to with the
implications from (1b) to (1a) and (2b) to (2a) for the case in which Ey is structurally complete,
we will go more slowly through a similar example, the Horn condition “R is Euclidean”, famil-
iar especially from the semantics of normal modal logic.

Example 3.5. The condition in question is as follows (and writing X, y,z rather
than xi, x, x3):

VxVyVz((Rxy A Rxz)->Ryz).

Now suppose that (instantiating (3b)) for V for which Ey; is (substitution-invariant
and) structurally complete, Ri satisfies this condition, so we have

Forall A,B,C: if FpA# Band FyA#C, then FyB# C (%)

but the corresponding instance of (3a) fails, so there are formulas 4, B, C' for
which we have

A#B A#CEB#C (%)

Since Fy is substitution-invariant, this must also be the case when A’,B’,C’ are taken
as three distinct propositional variables (sentence letters) in (**) — p,q, and r, say —
so by the assumed structural completeness of Ey, we can find formulas D, E, F to
substitute for these variables and for which FyD# E, FyD#F, and EyE#F: but
this would then be a counterexample to (*). |

Remark 3.6. At this point one might naturally inquire as to what happens to the (3b)
= (3a) direction in the structurally complete case, but when the (3)-style condition is not
“strict Horn” — and in particular with m > 1 and n>2. As no pertinent counterexample
comes to mind, however, we return to the matter of Proposition 3.4 and its proof. <

That proof itself involved a simple appeal to the pigeonhole principle: there is not enough
room in our two-pigeonhole loft (with holes 7" and F) to house the three pigeons v(4), v(B),
and v(C) without forcing two of them into the same hole.*® Still, to the extent that explanation
is a matter of reduction to the familiar, there is something more explanatory that might be said
here. Explanatory strength then comes to depend, perhaps not inappropriately, in part on what
exactly is familiar to the recipient of the explanation. But something anyone who has any expe-
rience at all with binary relations — such as drawing or pondering diagrams like those in
Figures land 2 in Section 2 — will be familiar with is this: a reflexive relation on a two-element
set cannot but be transitive.’' Proposition 3.4, reformulated as at the start of this paragraph to
address an arbitrary Rff (ve BY), simply records the upshot of this general fact for the truth-
value relation y,(v(-),v(-)). All that is being suggested here is that the truth-value relational

3'More carefully put, it is not v(4),v(B) and v(C) that are three in number, but rather the labels “v(4)”, “v(B)” and “v(C)” (or “a”, “b”,
and “c”, as it is put in the proof) that there are three of, two of which the argument observes must co-denote.

3 Elaborating somewhat: with only two elements on the scene, a case in which Rxy and Ryz but not Rxz, must be a case in which x =z,
and hence a counterexample to reflexivity.
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perspective makes matters more evident in directly invoking the fact that any reflexive relation
on a two-element set is transitive. If the latter fact is not itself directly evident and a proof is
demanded, it is not suggested that any further proof then offered would be very different from
the relevant part of the proof of Proposition 3.4itself.*?

Remark 3.7. That reflexivity implies transitivity when attention is restricted to rela-
tions on a two-element set, though not when arbitrary sets are considered, is analo-
gous to facts bearing similarly on the logical behaviour of binary connective facts
more conveniently expressed in functional/operational than relational language,
such as the fact that any associative binary operation on a two-element set is either
commutative or idempotent. One could verify that this is a fact by working through
the 16 such operations available and checking them case by case, though, as with a
similar strategy in the reflexivity-implies-transitivity case, as well as being time-con-
suming, this has about it the air of presenting a “brute fact”, not supplying any
graspable explanation as to why it must be so. For that, one might instead reason as
follows.™ Calling the two elements concerned a,b, and using juxtaposition to indi-
cate the action of some associative binary operation, supposing that the operation is
not commutative amounts to supposing that (1) ab # ba, and supposing that it is
not idempotent means that x # xx when x is @ or b, and we lose no generality in
supposing that x is a. So, on that supposition, (2) aa = b since b is the only available
value for aa left. Using (2), we can rewrite (1) as a(aa) # (aa)a. This contradicts the
assumed associativity of the operation, so it cannot be both non-commutative and
non-idempotent. Of course to complete the illustration, one should also show that in
general an associative operation on a set need not be either commutative or idempo-
tent. Since here a simple counterexample suffices, we can rest content with pointing
the interested reader in the direction of Budden (1970, p. 371): the operation there
denoted by * will do. Budden had set himself the task of finding an associative non-
commutative essentially binary operation on the real numbers, but the example he
comes up with — on the non-zero reals, as it happens — is also non-idempotent, so it
serves our present purposes equally well. Essential binarity — dependence on each of
its two argument positions — figures in another example of the present phenomenon:
any essentially binary operation on a two-element set satisfying the medial (also
called entropic) law, that is, (wx)(yz) = (wy)(xz), is commutative. (See Lemma 0.3.3
in Humberstone (1996, p. 26).) Note that properties — associativity, idempotence
and mediality — figuring in these examples do not lend themselves readily to repre-
sentation as simple conditions on the corresponding relations (in the case in which
they are predicated of truth functions). It would be interesting to attempt to precisify
that idea and to explore the extent of the phenomenon in question. 2 |

Let us turn now to a loose end left by one aspect of the foregoing discussion, showing how a
shift from classical propositional logic can lead to a situation in which the analogue of Proposi-
tion 3.4 fails. For variety, instead of venturing into modal logic again, as with Example 3.3, we
turn to intuitionistic (propositional) logic. To have a matching presentation of the case, just as
we call the classical consequence relation (F¢L) by the semantically based name F gy, so we here

*For example with R a reflexive relation on a two-element set, one might reason that given Rxy and Ryz we cannot but have Rxz, since
if not- Rxz, we would have x and y differing in respect of bearing R to z, so x # y, and y and z differing in respect of having x bear R to
them, so y # z. But x # y and y # z imply x =z, since we are in a two-element set, making not- Rxz contradict the supposed reflexivity
of R. But this is essentially a reorganized version of the proof of Proposition 3.4, with the present x # y & y # z = x =z step being an
application of the pigeonhole principle.

*Not quite as time-consuming as just intimated, in all honesty, since we really need concern ourselves with the 10 isomorphism-types of
2-element groupoids, since nothing about 7 beyond its distinctness from F matters for present purposes. Still, one would prefer to avoid
working through an enumeration of all possible cases.
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refer to k. as Fyy — “H” for Heyting — where, analogously to the case of BV, HV comprises
those valuations vA'(4) =T iff 4 is true at w in M, where this time we are using the Kripke

semantics for intuitionistic propositional logic.*

Example 3.8. For a case in which, by contrast with Proposition 3.4, Rgv is reflexive
without being transitive, we consider a binary “Peircean” connective # for which
A#B = ((A— B)— A) — A. Clearly FyA# A for all 4, making R}, reflexive. But
this relation is not transitive, as we see, for example, by taking p, ¢ as distinct sentence let-
ters and T as a truth constant (or as p — p, for example, if preferred); in this case
we have

Ewyp# T and By T #q  whereas Eyyptq.
The first two formulas involved here, in more familiar primitive notation, are
(p—T)—=p)—p and (T —¢g)—T)—=T,

while the third is (the commonest formulation of) Peirce’s Law. (This means, inci-
dentally, the smallest extension of intuitionistic logic in which the logical relation
induced by the current # is transitive is classical logic. Of additional interest is the
fact that in intuitionistic logic formulas 4 and B stand in this relation to each other
-~ A#B E EyyB# A — if and only if for some formula C, they are respectively
equivalent to 49 — C and By — C for some choice of 4, By; see Humberstone (2020,
pp. 167 & 209), where, as in Humberstone (2011, p. 1319ff))., A, B are said to be
“head-linked” when this condition is satisfied.) |

Those familiar with the fact that, in contrast to the case of classical propositional logic, the
consequence relation k4, of intuitionistic logic is not structurally complete, may suspect that
the demonstration in Example 3.8 of the failure of an intuitionistic analogue of Proposition 3.4
is somehow due to this structural incompleteness. This is not so, however, as the example could
have been given entirely with reference to the —-fragment of intuitionistic logic, where the con-
sequence relation concerned is structurally complete.>> The reason nothing like the proof of
Proposition 3.4 is available here is rather that unlike the cases of A and V, there is no truth
function interpreting (or “associated with” — see Remark 3.1 (i)) the connective — on the valua-
tions in HV, so the argument involving @, @, and ®, which proceeds in terms of the truth func-
tion # associated on Boolean valuations with the connective # under discussion (and notated
the same way for convenience), does not get started. Naturally, instead of talk of the truth func-
tion g (binary, say, for example) interpreting # on the valuation v, when for all A4, B,
v(A# B)=g(v(A4),v(B)), we could equally well be talking about the (“de-characteristic”) truth-
value relation ¥ (g), and write the corresponding condition (subscripting the “g”): for all 4, B,
v(A# B) =T iff ¥ ,(v(4),v(B)): there is in general no such truth-value relation for v e HV for #
as —. (It is not a matter of a g for which — cf. note 9 — ¥ (g) is undefined in the present case, but
that there is no g about which even to raise the question of whether or not x (g) is defined: no #
for the current #.)*° The closest we get to this would be a relation between the local

330, forget any associations the continued use of the variable “w” here may have with possible worlds.

3See §2 of Humberstone (2006). for discussion and historical references on these matters.

3%Not only does — fail to be truth-functional over HV: it is not even “variably” or pseudotruth-functional over HV, in the sense of
Humberstone (2011, p. 451)., which requires only that each v in this class associate a truth function with the connective — possibly a
different truth function as we pass from one v to another. We could equivalently put all this in relational terms, saying that (e.g., binary)
# is interpreted by RC {7, F} x {T, F} on a valuation v when for all formulas 4, B, v(4 # B) = T iff R(v(4),v(B)), and is truth-value
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propositions [[A]]f‘\,’1 and []B]]ff‘, recalling that each v € HV is v as explained before Example

3.8, w belongs to the universe U of the model M, and writing < for the latter’s accessibility
relation, for a formula C, [C]M is {w' € U|w<w’ and v¥(C)=T?}. For the connective —, of
course, the relevant relation is between the local propositions expressed by the antecedent and
consequent is the relation C.

Having now introduced the intuitionistic consequence relation k-, we are in a position to
make a couple of observations, both involving disjunction, and most conveniently made with
reference to intuitionistic logic. As was mentioned in note 17, while for each v € BV, the rela-
tions R are all monadically representable, this is by no means so for the relations Rf, (# a
Boolean connective in both cases). For instance, whereas Rj,, is monadically representable,
holding between A4 and B just in case each is BV-valid, Ry, is not monadically representable. If
we shift from BY to HV and from classically to intuitionistically definable #, both of these rela-
tions become monadically representable in view of the Disjunction Property of intuitionistic
logic: Ry),,(A, B) just in case A is HV-valid or B is. The second observation is that when non-
Horn conditions on the relations Rﬁ are at issue, more fine-grained information about V may
be needed than is provided by consideration of the consequence relation ky (let alone just infor-
mation as to which formulas are V-valid). This is because we can have Fy, = F)» even when
VY # V. Indeed, we are sitting on the doorstep of a famous illustration of this possibility, in the
shape of the contrast between the Kripke semantics and the Beth semantics for intuitionistic
propositional logic.*” HV was characterized in terms of the former, so let us denote by HV x
the set of valuations arising similarly from the points in Beth models.*® The key contrast is that
the truth of AV B at a point w in a Beth model M does not require that at least one of A4, B be
true at that point, as long as a certain condition is satisfied involving the Beth-semantical
analogues of the local propositions []A]]Q/l and [IB]]f:’t of the preceding paragraph. Since the con-
sequence relations determined by HY and HV = — and in particular the set of valid formulas —
coincide, the relations R;),, and Ry, also coincide and thus we have monadic representability
for the global disjunction relation in both cases. But now, contrasting with both the classical
and the Kripke-intuitionistic cases of 5V and HV, for the Beth-intuitionistic case we have: with
veHV =, R is not in general a monadically representable relation. (This shows how confusing
it might have been in (3), to be recalled presently, to write “V * rather than “V )

If one wants to do justice to the such issues as this second observation raises, one needs to pass
from the consequence relation to what is variously called the multiple-conclusion or generalized or
“Scott” consequence relation determined by a class of valuations V (as explained in the works cited
in note 38), which we may here denote by £y, defined to relate a set I of formulas to (not a for-
mula, but another) set of formulas A when every v €V verifying all formulas in I" verifies at
least one formula in A. (We write “4, B” on the right rather than the more explicit “{4, B}”
etc., extending the conventions mentioned in note 1.) Thus whereas AV BEpy A, B and
AV B Eyy A, B, we do not in general have AV B Eyy . A, B. When A = B, however, we are back
with a single formula on the right — recalling that A is a set, not a multiset, of formulas — and so
we do have AV A4 Exy . 4, as well as the converse, enabling us to exploit the idempotence of disjunc-
tion in this setting to re-express the fact that (in general) A V B Eyy . A, B in the following terms:

AV By, AVA, BV B

relational over V when there is some R such for all v €V # is interpreted by R on each v € V, with the weakened variable (“pseudo”)
version obtained by changing this 3V condition to the corresponding V3 formulation.

¥7A similar situation — mentioned in passing in the parenthetical comment at the end of Remark 3.2 above — arises for classical
propositional logic, as was first observed by Carnap; discussion and references can found in 1.14 and 6.46 of Humberstone (2011)., and
§15.3 of Humberstone (2019).

*See Gabbay (1981, Chapter 3). for an explanation of the Beth semantics, as well as Theorems 6 of §1 and 5 of §2 for the fact that what
we be calling =y and Eyyp. are the weakest generalized consequence relations that agree with F, when exactly one formula appears
on the right of the “[=". Subsection 6.43 of Humberstone (2011). provides a secondary exposition of the pertinent details.
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Thus we see that whereas the following condition on a binary relation, instantiating (3)
withm=1,n=2:

VxVy(Rxy—>(RxxV Ryy))

is not satisfied, for all ve HV* by the relation R, this condition is satisfied by the relation
Ry, — since that is just the Disjunction Property for intuitionistic logic again.’® Remark 3.6
mentioned the desirability of a counterexample to the (3b) = (3a) direction for a non-Horn con-
dition, which that case just given may look like. However, a further condition was in place,
namely that of structural completeness, which fails for the consequence relation determined by
HV*, as was already recalled for this consequence relation under its description as that deter-
mined by HV.

To close, let me address a thought the reader may be entertaining at this point: is this last
reference to consequence relations really relevant? We have, after all, just been discussing gener-
alized consequence relations rather than consequence relations proper, so as to match the possi-
bility than n>2 in (3) with the possibility that A should contain two or more formulas.*’ Taking
up this idea, let us note that the definition of structural completeness in note 22 has a natural
reformulation so as to apply to generalized consequence relations |=, namely: Whenever T A,
there is a substitution 3 for which for each C€TI' we have |=3(C), while for each D€ A,
3 (D).*" It is not hard to check that the classical generalized consequence relation — that deter-
mined by BV in a functionally complete language (or any of numerous fragments thereof) — is
structurally complete, and any counterexample to the structural completeness of the usual
intuitionistic consequence relation*” is already a counterexample to the structural completeness
of Exy.. So it does not seem that the envisaged line of thought is as promising as it may have
appeared.
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APPENDIX: Longer notes

Longer Note A. (On the “corresponding linguistic move” mentioned before (1.1)—(1.2) in
Section 1.) The move in question trades in function/operation symbols for predicate symbols.
By way of illustration, consider doing first-order theories in a language without function

*The inset condition is a specialization of the condition VxVuVyVz(Rxy—>(RxzV Ruy)), which is a first-order equivalent of the
characterization of or-representability (in terms of existential quantification over sets) given in note 17, as is easily verified — or
alternatively, can be checked by following up the references cited there. An intermediate condition is commonly encountered in the
literature on preference and social choice under the name negative transitivity (since it amounts to having a transitive

complement): VxVyVz(Rxy—>(RxzV Rzy)).

“0Since we also allow n =0 — one reason that generalized consequence relation is a better label than multiple-conclusion consequence
relation — this also subsumed the “non-strict” Horn condition case.

41T do not recall seeing this adaptation of the notion of structural completeness in the literature, but it is implicit in the definition of
admissibility for multiple-conclusion rules in Kracht (2007, §7).

“2For instance, Harrop’s example: ~p — (¢ V r) ¥ 3 (=p — ¢) V (=p — r). Discussion and references may be found in

Humberstone (2011, pp. 878-883).
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symbols — say, that of arithmetic, as in Hajek and Pudlak (2016, p. 87)., for instance. Instead of
writing x + y = z, with the two-place function symbol “+”, one uses a three-place predicate sym-
bol, 4, say, reading Axyz to say that x, y and z stand, in that order, in the addition relation.
(Of course one must also make explicit the functionality of this relation.)

Longer Note B. (A further arity-preserving way of associating a relation with a function,
alluded to in note 4.) As well as the example featured in Section 1, forming de-characteristic
relations, another (more commonly encountered) way of obtaining a relation from an n-ary
function which preserves arity in the sense that the relation it yields is again n-ary, is the follow-
ing. Where f is the function and 1 <m <n, we define

Rf,m,ﬂ = {<x1 ,...,Xn> |f(xl ,...,.Xn) :xm}

When n=2 and m=1 (or m=2), and f is the fundamental operation of a groupoid with uni-
verse S, some such notation as < may be used for the derived relation, living up to its usual
connotations in being reflexive (on S) when f is idempotent, and transitive when f is associa-
tive, and antisymmetric when f is commutative, so that Ry, (or equally well, Ry, 5) is a partial
ordering of S when the original groupoid is a semilattice. We shall not consider this further,
though, since one cannot recover the f from the derived relation in general (i.e., without special
Lu.b./g.l.b. conditions on the relation) — even from the set of such derived relations with
m=1,2,...n. For example, consider the functions f,g defined using multiplication and addition
on the positive integers by

f(x,y)=x+y and g(x,y)=x+2y.

Then Ry 15 = Re12 = 0 = Ry = Ren» although f # g (and nor are (Z7,f) and (Z*.g) even
isomorphic). A similar point holds for deriving an n-ary relation from an n-ary function by
means of quantification, illustrated in the n=2 case by the possibility of set-
ting Rxy:= 3z(f (x,z) =y).

Longer Note C. (Terminological remarks pertinent to Section 2.) The more delicate reader may
be upset by an asymmetry: if we are talking about truth functions shouldn’t we also be talking
about truth relations? On the other hand, if we want to use the phrase “truth-value relations,”
shouldn’t we, for parity, be saying “truth-value functions™? That phrase — mentioned in passing
in Kleene (1952, p. 125). as being occasionally seen in that era, and then used (in the title, even)
decades later in Segerberg (1983). — is surely too clunky and pedantic: the intended meaning of
“truth function” is clear enough to everyone. (Perhaps the intention is to avoid its secondary
use, mentioned in the second paragraph of the present section, for linguistic expressions;
Segerberg (1983). does not say.) Avoiding it leaves the other suggestion: “truth relations” rather
than “truth-value relations”. The trouble with this is that the latter phrase has been used already
for other things, such as in Humberstone (2004, p. 42). for example, for relations between
models, formulas and sometimes further parameters (worlds, or pairs of worlds, for instance),
sometimes also called verification or satisfaction relations. So this terminological asymmetry
will remain in place, though I am attempting to reduce some asymmetry by writing truth
Sfunction instead of truth-function except when quoting others, in view of the lack of a hyphen
immediately before “relation” in truth-value relation, restoring the hyphen only for the case of
the adjective truth-functional.

Longer Note D. (Elaboration of note 17 in Section 3.) The sense in which our truth-value rela-
tions are not “genuinely relational” is that they are all monadically representable relations. By
this is meant relations holding among individuals in virtue of those individuals being elements
of sets specifiable independently of other relata; as a special case, we have, for example, or-rep-
resentable binary relations R for which there are sets So,S; €S with (a,b) e R iff a€ Sy or
be S; (The interested reader is directed to Humberstone (2011); Humberstone (2016);
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Humberstone (2013)., and, therein, subsection 5.33, pp. 15 and 178, respectively, where further
references are also given. The topic comes up again briefly in the course of Longer Note E
below.) For any given Boolean valuation v and Boolean #, the derived relation R¥ inherits this
monadic representability property from the underlying truth-value relation involved — any
binary relation on a 2-element set being monadically representable — whereas this is far from
the case for the logical relations R}, where V is a set of Boolean valuations, and in particular for
the set (baptized after Remark 3.2) BV of all such valuations for the language under
consideration.

Longer Note E. (Elaboration of note 18.) The coercive relations are what one gets by closing the
Lemmon relations (or their analogues for non-classical logics) under union and intersection —
for which the “intersection” part is automatic in the presence of something behaving like a
familiar conjunction connective — and the permissive logical relations are their complements.
(As well as the purely coercive relation of subcontrariety just mentioned, there is also a “mixed”
coercive-permissive relation often going by that name: the intersection of R, with the comple-
ment of Rga”d. See Humberstone (2019, Appendix 1). for further discussion and pointers to the
literature.) Thus for instance R}, U Ry, is the coercive relation of implicational comparability
for the logic determined by V. (See note 1 for an explanation of “determined by”, and the para-
graph following Remark 3.2 for the notation “BY” about to be used.) This logical relation is
not among the “basic Lemmon relations” of classical logic; one can show, that is, that for no
definable binary Boolean #, do we have R, U R, = R,,.

Longer Note F. (Lemmon’s vs. traditional terminology — more from note 18.) The point just
made about unions shows that although the 16 binary Lemmon relation R, form a Boolean
algebra inheriting its structure from the Boolean algebra of the truth functions # themselves,
whereas its meets (glb’s) are the intersections of the relations concerned, their joins (lub’s) are
not the corresponding unions. There is a natural exhaustification or “exhaustivity” operation
we can apply to these relations (¢f. Fox (2007)., Spector (2016). and works there cited): letting
Rpgy be the set of these relations ng for R € Rpy we define its exhaustification exh (R) by say-
ing that for all 4, B:

exh(R)(A, B) iff R(4, B) and thereisno R’ € Ry, with R'Z R and R'(4, B),

where < is the partial ordering of the Boolean algebra above with universe Rpy, so = amounts
to the restriction of C to the relations in Rpgy. (Strictly, then, the “exh” notation should carry a
reference to this algebra, or to the poset concerned.) Thus, 4 and B stand in the relation exh
(R) when they stand in the relation R but in no stronger (= more restrictive) relation in Rpy.
The relations we get by exhaustifying those in Rz, will accordingly typically lie outside Rpy,
being of the mixed permissive-coercive kind. On Lemmon’s usage 4 and -4 are contraries,
since RpaM (4, B) and Rpe" is the Lemmon relation of contrariety. But 4 and —4 do not stand

in the relation exh (REM), since they stand in the more restrictive Lemmon “contradictories”

Vg —pV pVgq —pV g

PAgq “pA g P A g “pA g

FIGURE A1 The poset of essentially binary truth functions

85U8017 SUOWLLIOD SAIER.ID) 3|dealdde ayy Aq pausenob afe Sape YO ‘8sn J0 Sa|ni oy Afeid1 8UIjUO 31 UO (SUOIIPUOD-PUR-SLLIBY IO A8 | 1M A g 1 BUIUO//SANY) SUORIPUOD pUe W | 84} 88S *[£202/20/20] Uo ARIq1T 8UliuO A8]1M Me'nps Useuowi@ Jequell-<ye 0qqius> Aq 0SyZT 0U)TTTT 0T/I0p/L0o A 1M ARIq1pUI|uo//SANY Wouy pepeojumoq ‘T ‘SZ0Z '295255.T



TRUTH-VALUE RELATIONS AND LOGICAL RELATIONS | 143

relation R}5). Contraries that are not also contradictories (equivalently: that are not also sub-

contraries) are called “mere subcontraries” in, for example, Humberstone (2019)., in an attempt
to bring the traditional notion of contrariety into play: in the traditional taxonomy, no two
statements could stand in two distinct logical relations: the sets of contrary pairs, contradictory
pairs, and subcontrary pairs — and superordinate-subordinate pairs — were disjoint (see esp. §3
of Humberstone (2013); “traditional” here means essentially “Aristotle-inspired”). With respect
to the current operation of exhaustification; however, exh (R""?) does not quite coincide with
the relation of mere contrariety. For consider as a counterexample to the r.h.s. of the definition
inset above the which chooses as R’ € Rp) the inessentially binary relation holding between one
formula and another when the first formula is false. (The associated truth function thus
depends only its first argument and returns as value the negation of that argument.) Here we
have R’ < Rgﬁ‘)"d — since whenever =4 is a tautology, so is =(4 A B), though not in general con-
versely — so for example, writing # as a connective for this “negation of the first projection”
truth function p#q (equivalently: —p) and p A g stand in the relation R} but not in the rela-
tion exh(RIM). Although for that reason not being “exhaustified contraries”, these formulas
remain mere contraries, in the sense of contraries which are not contradictories: p# g are not
R -related (do not have a tautologous exclusive disjunction).

We would get closer if we exhaustified relative to a smaller class of truth functions.
Figure Al excerpts from the Boolean algebra of all binary truth functions (as in Figure 2 of
Humberstone (2013, p. 187).) the poset of essentially binary truth functions (depending on both
arguments, that is), in the form of a Hasse diagram of the two-variable formulas representing
such functions (“+” for xor), implications running upwards along sequences of edges as usual.
But even here, taking 4 = B= pA -p, we have Epp—(4 A B) making 4 and B contraries, and
indeed, since ¥ 5yA+ B, mere contraries. But they do not stand in the exhaustified contrariety

relation exh (RN relative to our reduced stock of Lemmon relations, as they do also stand in

the more restricted relation Ry}, substituting A4, B for p, ¢ in the formula —p A —g in the logi-
cally strongest (= lowest) level of Figure Al — in terms of which figure, the contrariety of 4, B,
itself is represented by the disjunction with negated disjuncts on the top row.

To align “mere” contrariety with an exhaustification of contrariety, we have to restrict the
range of relations w.r.t. the exhaustification is performed, lopping off the bottom row of (those
represented in) Figure A1, which amounts to removing all of the original 16 binary relations
which are monadically representable in the sense of Longer Note D above. The six remaining
relations are, when considered in their exhaustified forms, those in a popular inventory of the
“traditional” logical relations: contraries, contradictories, subcontraries, the superordinate—
subordinate relation and — typically not registered as an annotation in the square of opposition
because its vertices can already be regarded as representing equivalence classes of statements
when only one square is considered at a time.**Note that ex/ has no effect when applied in the
case of contradictories or equivalents, since they are now minimal elements.) Unlike their pre-
exhaustified namesakes, when attention is restricted to formulas not taking the same value on
all Boolean valuations, no pair of such formulas stand in more than one of these mixed
coercive—permissive relations, and if we throw in the maximally permissive relation of indepen-
dence (as do the writers discussed in Humberstone (2013).), every pair stand in at least one of
the (now) seven relations.

Although the concentration has been on contrariety, the same story applies to sub-
contrariety, mere subcontraries in the sense of “subcontraries which are not contradictories”,
coinciding with pairs in the exhaustified subcontrariety relation, exh (Ry),), exh understood rel-
ative to the reduced version of Figure Al. (Similarly with the remaining pair on the top row,

“3This qualification is included because one may, for instance, want to regard No Fis G and No G is F as having different “canonical”
contraries, their equivalence notwithstanding. (This could be done by means of non-logical axiom schemes for a propositional theory
without extending the logical resources beyond the Boolean connectives, or by extending classical propositional logic to incorporate the
syllogistic materials, in the style of Lukasiewicz.)
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though now unilateral would be the more appropriate modifier than mere.) Now, the sub-
contrariety case may ring a bell with readers following the literature on the role of
exhaustification in generating an exclusive implicature for inclusively disjunctive assertions.
There are many variations in the details of published proposals as to how this might work, but
the broad idea is that assuming the speaker to be following Gricean cooperative principles and
making the most relevantly informative contribution on the subject under discussion, says “A
or B”, then since “4 and B” may be presumed to bear on that subject and would have been
more informative, if the speaker is further presumed to be in an epistemic position to have made
the stronger claim, the hearer infers that the stronger claim would not be true, and thus, that
only one of 4, B is true. So exhaustifying w.r.t. the set {4 or B, Aand B} of alternatives — here
playing the role of R above — converts the initially inclusive or into its exclusive cousin with the
“and not both” supplied by the pragmatic enrichment effected by exhaustification. Similarly, at
least with the R of the reduced version of Figure Al, exhaustifying the Lemmon relation R,
turns it into the relation holding between 4 and B when their inclusive disjunction is BV-valid
into the relation holding between them when their exclusive disjunction is BV-valid. (Indeed in
Humberstone (2013, p. 200)., it is suggested that application of predicates like “contrary” —
though the worked example with that application in mind concerned shape predicates, such as
rectangular, was prone to induce a Gricean implicature — use the most restrictive predicate to
hand or you will be taken as implying that it does not apply; the term minimization was used
rather than exhaustification, though.)

Having seen how to modulate, using exhaustification, between a Lemmon-style taxonomy
of logical relations and the more traditional style, we should pause to note two respects in which
the analogy discussed in the preceding paragraph — though fine for the purpose it was put to
there — is not perfect. The first is that the “logical relations” side of the picture places consider-
able reliance on eliminating the intuitively “less relational” binary relations, in weeding out the
monadically representable (including not essentially binary) cases, which plays no role in the
use of exhaustification to calculate implicatures in the case of disjunction. (Fox (2007). is con-
cerned as much with explaining “free choice” or-constructions as with the strengthening of
inclusive to exclusive disjunction.) Thus we should restore the top and bottom elements of the
16-element Boolean algebra, as well as allowing the mid-level nodes that would be labelled
P,4,7p,—q to return to the fold, rejoining their companions p <+ ¢ and p +¢ when considering
the case of exhaustifying a statement of the form A4V B, prima facie extending the range of can-
didates strictly stronger than AV B from {4 A B} to {A A B, A, B, L }. This would not be a prob-
lem in the absence of the second of the two respects in which the analogy in question is
imperfect: for the pragmatic strengthening of 4V B what was relevant was not validity but
truth, or, to locate the issue more precisely in a formal setting, not BV-validity but truth on a
given v € BY.

We can keep the presentation of the issue as close as possible to the above discussion of logi-
cal relations by considering the situation with truth-value relations, or rather, to the relations
between formulas induced by such plugging in the values on a given valuation. In other words,
passing from R}, to RY for the various v € BV, in terms of the contrast drawn at the end of the
opening paragraph of Section 3, the latter amounting (Remark 3.1 (7)) in the present case to:
7 (v(A4),v(B)), where boldface indicates the corresponding truth function. Since we are consid-
ering # = V, the relevant y (-,-) is that depicted first in Figure 1. There is no justification for
whittling down the relations worthy of consideration to those that are not monadically repre-
sentable — the suggested explanation for their non-appearance in traditional discussions of /logi-
cal relations — in this case all of these truth-value relations are, since, as mentioned in note
17 all such relations are monadically representable. Indeed, they are all what we might call
monadically representable by means of a single set (instead of the — in general — distinct, Sy,S;),
in the sense that for some Sy and binary Boolean connective # (here used in the metalanguage,
whence the dot, as in (3) and Example 3.5 in Section 3) we have for all a, b iff (a, b) € R iff
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(a€Sy) # (be Sy). For several choices of #, Propositions 4, 6(ii), 7(i) and 7(ii) in Humberstone
(1995). give equivalent first order characterizations — that is, without the quantification over
sets. It would be interesting to see such a characterization of the general case without such
quantification: a first order filling for the blank in R is “l-monadically” representable if and
only if , and preferably one more informative than is obtained by treating the remaining candi-
dates for # and disjoining the characterizations for all 16 cases.

In fact, if we are thinking of truth-value relations proper, rather than the associated relations
R?, for a given valuation, among the formulas, then not only are monadic representations avail-
able using just one set Sy, but that set has only element — the truth-value 7. However, let us
return to the range of (in general) strictly stronger candidates that 4 V B switching from {4 A B}
to {AAB,A,B,L}. We can conjoin 4V B with with the negation of 4V B, as in the case of the
reduced range, obtaining exclusive disjunction by exhaustification straightforwardly, and nor
does negating L present a problem, since this gives us a vacuously satisfied condition.** The
case of adding the disjuncts A4, B into the range of candidates whose negations will collectively
give a plausible pragmatic enrichment now that we are considering truth (on a Boolean valua-
tion) rather than validity (over B)) is another matter, since, as Fox (2007, p. 96). points out,
throwing in both their negations together alongside the disjunction gives us a contradiction.
(Fox proposes a principle of “innocent exclusion” according to which exhaustification excludes
—1in the sense of adding the negation of — only stronger alternatives to what is being exhaustified
when trouble of this kind is not on the cards.*’)

For present purposes, the key point is that while a disjunction can be BV-valid without
either disjunct being BV-valid, it can be true on v € 5V without either disjunct being true on
v.%°As noted in the discussion after Example 3.8, in view of the Disjunction Property, despite
the difference between the individual valuations in the two determining classes H) and HV* in
respect of the issue raised in note 46 for intuitionistic logic there mentioned (Kripke and Beth
semantics, resp.), the validity of a disjunction over either class implies the validity of one of the
disjuncts over the other, raising a Fox-like issue for exhaustifying subcontrariety in this case: it
can never be the strongest thing to say about 4 and B that their disjunction is intuitionistically
valid, so if we wanted to use “mere subcontrariety” for that (relative to the Heyting algebra with
two free generators, without making the exclusions that led from the 2-generated free Boolean
algebra to the poset of Figure A1), we would be saying that no distinct formulas are mere sub-
contraries. If instead we meant, as above, by mere subcontraries, subcontraries that are not con-
tradictories, we would need to consider what contradictories are in an intuitionistic setting,
bearing in mind that A’s being equivalent to the negation of B does not in that setting amount
to B’s being equivalent to the negation of A. Indeed, even the subcontrariety has no (obvious)
uniquely natural intuitionistic incarnation, the disjunctive formulation just provisionally
employed is distinguished from the validity of =(-A4A-B) is cast in Humberstone (2019,
p. 332). as the contrast between Priest subcontrariety and Wansing subcontrariety, and there
are many further options; more on these issues can be found in Humberstone (2020). The par-
ticular case of contradictories is evidently closely related to the question of whether there is
some intuitionistically preferred notion of exclusive disjunction (see Exercises 6.12.6, 6.12.7,

“Indeed, natural language semanticists would not normally consider L as even being a provisional candidate in need of being
exhaustifying away. There has, on the other hand, been speculation in view of some empirical data on the use of or by young children as
to whether the relevant range of candidates in this case depends on whether we are considering adult or child language-users, notably in
Singh et al. (2016)., for example, p. 313.

#3See Fox (2007)., p. 97, the upshot of which, in the present case, is that exclusion of either disjunct, let along both, is not part of the
process. Historical references to earlier work on exhaustification, especially by Groenendijk and Stokhof, can also be found in

Fox (2007).

46This gives the predicate “is BY-valid” the logical properties — give or take the appropriate use/mention adjustments — of the an operator
satisfying the conditions on “O” in (47) on p. 93 Fox (2007, p. 93). We should recall, apropos of all this, that the consequence relation of
classical propositional logic is determined not only by BY but by other classes of (still bivalent) valuations, including by classes among
whose elements there are v for which v(A4V B) =T even though v(4) # T and v(B) # T. For further details, see, for example,
Humberstone (2019, p. 300); the issue is also raised in note 37 of the present paper.
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and the ambient discussion in Humberstone (2011, pp. 785-788).). Nor is the issue in any way
specific, among non-classical logics, to intuitionistic logic. For example, there is the well-known
contrast in FDE and Anderson—Belnap relevant logics which conservatively extend this
{A,V,m} Dbasis with principles governing —, between the (IL-equivalent) stronger
(=pA=q)V (p A —q) and weaker (pV g) A (-pV —gq) exclusive-like disjunctions, discussed in Dale
(1982). and Humberstone (2014, p. 22ff.). (both cited in Section 2, note 10).

Longer Note G. (Expanding on note 19.) Numerous pertinent citations are given in the discus-
sion in Humberstone (2011). referred to. I first became exercised over the confusions in the text
to which note 19 is appended, as a student at the University of York, subjecting my then super-
visor Martin (= J. M.) Bell to an essay on the topic airing my grievances on what may have
seemed to be this comparatively minor matter. The considerations involved are broadly similar
to those on show in Belnap (1975)., and, like them, raise the delicate question of whether what
is offered is, on the one hand, the diagnosis of a mistake, or, on the other, the explanation — in
the present case, via the de-characterizing transition — of a natural re-purposing of established
terminology, not reflecting any confusion at all. The former (adverse) verdict might after all be
passed on calling the conjunction connective (of classical logic, for definiteness) commutative.
After all, as an operation in the algebra of formulas A, mapping any pair of formulas to their
conjunction, is not commutative, A A B and BA A being different formulas whenever 4 and B
are. Rather, as, for example, Dunn (1975, p. 183). explains, what is actually commutative in
such cases is the corresponding operation in the Lindenbaum algebra — the quotient of the for-
mula algebra under the congruence relation of provable equivalence in the logic in question,
and this is what is meant when a connective is said to be commutative according to that logic.
(The elements of this algebra, as Dunn suggests, can be thought of as propositions, the proposi-
tion expressed by a formula being its equivalence class.) More generally one would need to say
complete interreplaceability for provable equivalence here, and take further steps to avoid the
identification of logics with (certain — e.g., substitution-closed) sets of formulas.
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