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Introduction

Idealization is a central aspect of scientific knowledge formation, its expli-
cation is an important task of philosophy of science. Even if recently a lot
of work has been done in this field there is no unanimously accepted
account of idealization [cf. Niiniluoto 1986: 257]. However, as a rather
uncontroversial common point of departure one might take the assertion that
the idealizing character of science has something to do with its applicability.
Typically, scientific theories cannot be applied directly, rather their relation
to the actual world is mediated and indirect. For instance, the laws of
nature can hardly be interpreted as universal statements that involve a
material implication — rather they have to be conceived of as counterfactual
conditionals that apply to certain unrealized or even unrealizable situations.
One way to explain the idealized character and the indirect and mediated
applicability of scientific theories is provided by possible worlds semantics
[cf. Lewis 1986]: to explain in this framework that empirical theories such
as mechanics or thermodynamics are idealizing theories is to say that they
apply to some appropriate possible worlds where such entities as frictionless
planes, point masses, ideal gases, etc. exist. Thereby, the framework of
possible world semantics enables us to understand the counterfactual
character of scientific laws. However, it remains incomplete as long as the
relation between the actual and the “ideal” worlds is not elucidated.
Another approach that has contributed to a deeper understanding of the
probiem of applicability. of empirical theories is structuralism [cf. Balzer,
Moulines and Sneed 1987]. This has been done by developing a highly
sophisticated description of the structure of empirical theories. However,
until today, structuralism has bardly taken any notice of possible world
semantics: except for a side remark of Stegmiiller [1979: 12] on the modal



character of constraints and a paper of Miroiu that intended to relate the
structuralist concept of theoretical function to the modal concept of Kripke
frames [cf. Miroiu 1984] we know of no attempt to bring possible world
semantics and structuralism in closer contact to each other.

Finally, as the approach of philosophy of science that has most explicitly
dealt with the problem of idealization, the “Poznaf School” [cf. Nowak
1980, 1989, 1991 and Krajewski 1977] has to be mentioned, Although
Nowak repeatly emphasizes the counterfactual character of economic laws
[cf. Nowak 1980, 1991], he never refers to any Kind of possible world
semantics or to any other account of modal logic. Moreover, his approach
is rather syntactically minded and he makes no mention of the structuralist
approach.

Only very recently, did structuralism and the idealization approach of the
Poznan School come into closer relation. As far as we know, Kuokkanen
[1988] and Hamminga [1989] are the first who have explicitly attempt to
discuss the relationship between the structuralist approach and the Poznad
school. Without doubt the work of these authors provides important steps
for establishing a mutually fruitful relation between both strands of thought.
We think, however, that more can be done.

The outline of this paper is as follows: In part I we introduce counterfac-
tual (or idealizing) deformation procedures following some recent ideas
presented in Nowak {1989, 1991]. As a concrete example we consider the
various idealizing deformation procedures performed in the elementary
theory of the simple pendulum as they have been studied by Laymon in a
series of articles [cf. Laymon 1982, 1985, 1987]. In part II we study
counterfactual deformation operators in the structuralist approach. Part I1I
deals with the complementary concepts of idealization and concretization of
theories. In part IV we apply the framework of structuralism cum idealiza-
tion structure to the elucidation of the counterfactual character of empirical

laws.

|

Counterfactual Deformations

Nowak [1989, 1991] discusses the topic of idealization in the framework of
counterfactual deformations, The fundamentals of his approach can be
succintly described as follows. We start with a set O of possible objects and
a set U called the universe of properties. The state of affairs that an object
¢ has a property «€ U is denoted by <o,u,U>.

83

(1.1) Definition. Let U, U’ be universes of properties and o a possible
object. A potentialization or counterfactual deformation of <o,u,U> isa
triple <o,u’.U'>. 1t is called a soft counterfactual deformation iff U=U",
and a hard counterfactual deformation iff U+U".

Counterfactual deformations are not arbitrary, a few make sense, and the
huge majority does not. An all-important task of a theory of counterfactual
deformations that is worth its salt is to distinguish between “good” and
“bad” ones, For this purpose we have to take into account the structure of
the universes of properties that are involved. A universe of properties U
usually is not simply a set, i.e., a heap of unrelated properties, but a set
endowed with further structure. Moreover, in the case of hard counterfac-
tual deformations the universes U and U’ typically are structurally related.
We mention some important cases:

U has the structure of a Cartesian product U=U,; X U,: In this case we
write <o,u,u,, U, U, > instead of <o, <u;,u,>,U; XU,>., The product
structure of the universe of properties enables us fo define two important
cases of hard counterfactual deformation: reduction and transcendentaliza-
tion. Reduction consists in that a given object is counterfactually postulated
not to have some properties it actually has. Transcendentalization, as the
counterpart of reduction, is the counterfactual deformation that an object has
properties that it actually does not possess at all. The precise definition of
these counterfactual deformation procedures is the following:

(1.2) Definition. Let U=U| X U, be a universe of properties with projection
maps p;. Uy xU, - U, defined by p; (u),uy)=u;, i=1,2, A reduction of
<o,uy,uy, U, Uy > defined by p; is the counterfactual deformation defined
by:

<o,uy, iy, UL, Uy > = <o, U >, i=1,2,

A transcendentalization defined by p; is an “inverse” deformation defined
by <o,u,U> = <o,u,u,, U, Uy>, i=1,2.

Another important example of a structured universe of properties U is
the case if there is a distinguished extremal element uy& U. For instance, if
U has the structure of a vectorspace, the base point O is often chosen as an
extremal element:



or

(1.3) Definition. Let U be a universe of properties with distinguished
extremal element u,€ U. An ideation of <o,u,U> is a counterfactual
deformation <o,u,U> = <o,u,,U>.

The various kinds of counterfactual deformations described so far may
be combined with each other in various ways yielding a bunch of counter-
factual deformations. In the following we shall concentrate on one special
case of counterfactual deformation, to wit, idealization defined by:

(1.4) Definition. The counterfactual deformation of idealization is defined
as the combination of reduction and ideation.

To give a concrete example of idealization let us consider the idealiza-
tions involved in an elementary treatment of the simple pendulum [cf.
Laymon 1987: 204]. We can treat realistically the bob as being physically
extended, or we can perform a counterfactual idealization treating it as a
point mass. We can treat the sine of the angle w of displacement as exactly
sin{w), or we can perform a soft counterfactual deformation treating it as w.
Moreover, we can realistically treat the medium as having hydrostatic
effects on the pendulum, or we can perform the idealizing deformation as
if it were vacuum. We_may conceive these counterfactual deformations of
the physical system 6;? ple pendulum” P as caused by counterfactual
deformation operators b;w, and m applied to P in the following way:

b: P (extended bob) = P (point mass bob) (ideation)

m: P (hydrostatic) = P (vacuum) (reduction) hreas

w: P (sin(w)) = P(w) (soft deformatno;ﬁ) 04% ﬁmm J’Z‘M

The operators b,w, and m may be combined with each other. For
instance, bw(P) is to be read as: first the system P is subjected to the
counterfactual deformation that the sine of the angle w of displacement is
taken to be w, and then the system w(P) is subjected to the counterfactual
deformation of treating the pendulum’s bob as a point mass.

We observe that the combinations of the operators satisfy the following
properties:

() bb=b,ww=w mm=m (idempotence)
2) bw = wb, bn = mb, mw = wm (commutativity)
(3)  (bwym = b{wm) (associativity)

Thus, if we add the trivial deformation operator id that does not change
anything at all, the set (b,w,m,id) can be endowed with the structure of a
complete (semi)lattice [cf, Laymon 1987: 204] that can be displayed in the
following diagram:

(1.5) Lattice of deformation operators of the pendulum.

>

In the following we want to argue that this lattice structure of the set of
counterfactual deformation operators is typical for the role idealization plays
in the application of empirical theories to phenomena of the real world.

H

Counterfactual Deformations in the Structuralist Approach

We now want to reformulate the sketch of counterfactual deformations
given above in the framework of the structuralist philosophy of science.
This leads to a better understanding of how idealization works, or so we
want to argue. In reformulating the theory of counterfactual deformation in
the structuralist framework, we take the above operator approach seriously.
This means, we conceive counterfactual deformations as operators defined
on the class M, of possible models of a structuralist theory element.

Recall that the general format of a structuralist (partial, potential) model
is the following [cf. Balzer, Moulines and Sneed 1987]:

(2.1) x = <Apeeirhpfirenfy>
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where the A.’s are the base sets, i.e., sets of empirical entities like particles,
molecules, fields, genes, commodities, persons, the theory is about, and
possibly auxiliary mathematical entities e.g. the real numbers R ete. In the
following we’ll be somewhat more explicit about the relations [:» mentioning
explicitly their carriers Uj, i.e., instead of (2.1) we write

2.2) x = <AporsApfise Uty Up>

where each f is a subset of U,. When appropriate we abbreviate (2.2) by
xe= <A,f,U>. Then we may generalize Nowak’s counterfactual deforma-
tions for (partial) (potential) models of structuralist models as follows:

(2.3) Definition. Let x=<A,f,U> be a structuralist (partial) (potential)
modei,
(a) x'is a soft counterfactual deformation of x if and only if x’ is of
the form x'= <A,f,U>.
(b)  x'is a hard counterfactual deformation of x if and only if x' is of
the form x'= <A,f,U'> and U£U".

According to structuralism the application of an empirical theory is not
a monolithic all-or-nothing affair, a theory has not one single universal
application to the world as a whole, rather it possesses a variagated and
extended family 7 of intended applications. However, different applications
usually are not independent of each other but interrelated. This interrelation
can be explicated by the concept of structuralist constraints [cf. Balzer,
Moulines and Sneed 1987]. With respect to the problem of idealization this
means that we should define counterfactual deformations not for a single
isolated model x€M, but for all elements of M, simultaneously. This is
made precise in the following definition: "

(2.4) Definition. Let T=<K,I> be a structuralist theory element, K=
<M,M,,M,,,r,C>.A counterfactual deformation operator d of T is a map
d: M, = M, of the following form:

(1) d(<AfU>) = <A,fU'>

(2) dd=4d

Gy 4diM) € M.

In other words, d is a projection of M, onto itself that preserves the
subset M of M,. The first condition doesn’t need any further comment, it is
just Nowak’s definition applied to structuralist models. The second condi-
tion may be explained by the mass point idealization for the pendulum

already mentioned above. If we counterfactually assume that the bob of a
pendulum is a mass point, a second application of the same counterfactual
deformation procedure to that system does not yield anything new, i.e., we
have d(d(x))=d{x}. The third condition describes, so to speak, the direction
of the counterfactual deformation operators: Their raison d'étre is to
climinate certain factualities that hinder potential models from being actual
ones. The purpose of counterfactual deformation is to transform a “good”
potential model into an actual one. Of course, this cannot be done for any
potential model but we should require that the procedure of counterfactual
idealizing does not lead us astray, i.e., if x is already a model of T any
idealizing deformation d(x) of x should also be a model of T. As a reason-
able generalization of the lattice of counterfactual deformation operators of
the pendulum theory we now propose the following assumption concerning
the structure of the deformation operators of a structuralist theory element:

(2.5) Assumption. Let T=<K,I> be a structuralist theory element, and D
its set of counterfactual deformation operators. Then the set D is a (com-
plete) semilattice, i.e., the concatenation symbolized by & of counterfactual
deformations enjoys the following properties:

(1) ded=d (idempotence)
2 ded =d ed (commutativity)
3) ([ded)ed' =ded e dam (associativity).

These conditions are read off directly from Laymon’s example (1.5).
One could ask more specific questions about the specific structure of D,
e.g. is D a special kind of semilattice, e.g. a distributive or even Boolean
lattice? However, there is not the space here to pursue these kinds of
questions any further. We are content with the general observation that the
semilattice of counterfactual deformation adds a further element of conereti-
zation to the structuralist notion of a theory element:

(2.6) Definition. A theory element T with an idealization structure D is a
structuralist theory element <K,I> endowed with a semilattice D of
counterfactual deformation operators defined on M,. It is denoted by
<K,,D>.

The completion of a theory element by a semilattice of counterfactual
deformation operators leads to a refining of the empirical claim of a theory:

(2.7) Definition. Let T== <K,1,D> be a theory element with idealization
structure. Denote the fibre of potential models over x by i, e,
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1wy = {y / yEM, and r(y)=x}. Then the empirical claim of T (without
constraints) is the assertion that for all x€[ there is an appropriate d, €D
such that the following holds:

drle) N M+ 0.

Stated informally, this definition requires that all intended applications
of T can be extended to potential models of the theory in such a way that
appropriate counterfactual deformations of these potential models yield
actual models of T. Obviously, if D is trivial, i.e., D={id}, (2.7) boils
down to the familiar definition of the empirical claim of a theory element.
It might be useful to explain the steps of this counterfactual path from data
to theory {cf. Laymon 1982] in some detail. For a single intended applica-
tion x this runs as follows:

First Step: Embedding of the data into the theoretical framework.

In the structuralist framework this means to expand a partial model x to
the set 7 (x):={y/r(y)=x} of potential models that are projected by r onto
x. Usually, this set has more than one element, i.e. theoretical expansion in
the framework of T is not unique.

Second Step: Applying appropriate counterfactual deformation operators to
the set ri(x): ri(x) = dx(r“l(x)).

The application of d might result in a reduction of the number of ele-
ments, i.e., there might be y;, ¥, with d(y;)=d.(y,), but usually the set
dx(r“(x)) is not a singleton, i.e., theoretical expansion plus counterfactual
deformation of x does not yield a uniquely determined result. The most
important point, however, is whether the intersection dx(r"(x))r‘\M is non-
enmpty. If this set is non-empty the empirical claim of T is true for x.

An analogous 2-step-procedure has to be carried out if we take structur-
alist constraints into account thereby treating the whole set I of intended
applications instead of a single element x of I. Further modifications of
(2.7) are necessary when considerations of approximations come into play.

I
Idealization and Concretization
Counterfactual idealizing procedures might be useful to create exact laws

and theories that deal with idealized objects and relations like mass points
and economic men, however, these laws and theories do not describe the

-

actual world but tell how physical systems would behave under some
counterfactual conditions [ef. Niiniluoto 1986: 255). Thus, idealization is
not an end in itself. Rather, with some qualification, it might even be
characterized as a necessary evil or a makeshift sofution for the problem of
applying theories to the actual world which is definitively not solved by
idealization alone. Thus, since we hardly can get rid of idealization ceteris
paribus we may conclude: the less idealization the better. In order that such
a maxim makes sense we have to presuppose that idealization is not a yes-
or-no affair but comes in degrees. Hence, in this section we engage in the
task to define degrees of idealization.

Having described the set idealizing deformation operators as a semilat-
tice there is a canonical partial order on D defined as follows:

(3.1) Definition. Let D be a semilattice. A partial order between the
elements of D is defined as follows:
d<d"iff there is a d” such that 4" & d=d".

The partial order (D, <) defines in a natural way a partial order on M,
in the canonical way:

(3.2) Definition. Let T=<K,[,LD> be a theory element with idealization
structure. Then the order relation < defined on D by (3.1) induces an order
relation on M, in the following way:

x<y iff there is a dED with d(x}=y.

Hence, if d<d’, we get d(x)<d’(x) because there is a d" such that
d"(d(x)) =d'(x). This corresponds to the intuitive idea that d'(x) is a stronger
counterfactual deformation of x than d(x) since it amounts to the deforma-
tion d plus another deformation d".

Having at our disposal the notion of degrees of idealization we now
introduce the concept of concretization as the inverse of idealization, i.e.,
concretization = de-idealization, we can describe the order relation defined
in (3.2) informally in the following two complementary ways:

. x is a concretization of y.
<
r=y iff{ y is an idealization of x.
According to the general “holistic philosophy” of the structuralist
approach we should not be content with the definition of idealization and of
concretization for single potential models, rather we should strive to apply
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these concepts to theory elements as wholes. This leads to genuinely
structuralist versions of idealization and concretization:

(3.3) Definition. Let T=<K,J,.D> and T'=<K $1',D'> be structuralist
theory elements with idealization structures. T is called a concretization of
T" iff the following conditions hold:
() K=<MM, M, r'>,K'=<M M,M,r'>
@) DcD’ »*pp p>"pp
(3)  for all potential models x of M, for which there is a counterfactual
deformation operator d' D" such that d'(x)EM ! there is a coun-
terfactual deformation operator d€ED with d<d’ such that
dx)EM
@ I=I.

If T is a concretization of T' then T is called an idealization of T. This
is denoted by T'<T.

Conditions (1)—(4) are natural requirements for concretizations. They
ensure that the counterfactual deformations of a concretization T are not
stronger than the counterfactual deformations of the more idealized theory
T’. More vividly, this can be expressed by the statement that for a concreti-
zation T of a theory 7" the counterfactual paths from data (i.e. theoretically
expanded intended applications) fo theory (i.e. actual models of the theory)
[cf. Laymon 1982] are shorter than for the idealization T' of T, or, vice
versa, that for an idealization 7" of T those paths are longer. This is illus-
trated in the following diagram:

+A'EM
d.ﬂ'
X yo dxX)EM

Obviously, the relation =< between theory elements with idealization
structure is reflexive and transitive but not symmetric in general. Hence, the
“logic of idealization” is a S4-logic.

(3.4) Definition. Let Ny(To)={T; / Ty= <K,,1,D;>; I€L} be a set of theory
elements with idealization structures. N,(Ty) is an idealization net with base
T, if and only if the following conditions hold:

(1) there is a I,EL such that for all IEL: T;<T

Q) I T,<T,and T,<T, then T,=T;

A

In the next scction we’ll show that the idealization procedures that take
place in empirical science can be described with the help of idealization
nets. The example we’ll discuss is the paradigmatic example of the Poznaft
school, to wit, the Marxian law of value.

v
The Counterfactual Character of Empirical Laws

As has often been observed, most laws of most scientific theories are
counterfactual laws, i.e. they do not directly apply to any actual objects in
any actual situation, rather they tell us how physical or social systems
would behave under idealized counterfactual conditions [cf. Niiniluoto
1986: 255]. A famous case in question is Marx’s law of value that asserts
that under certain counterfactual conditions C; the price ratio of any two
commoditics equals the ratio of their values. These conditions have been
carefully explicated in Nowak [1980: 3—22]. Following Hamminga [1989]
we can state a highly idealized version of the law of value as follows:

(4.1) C&GC&..&Cy= (p)=w(x)),

where = is to be interpreted as a counterfactual conditional. To recast (4.1)
in the framework of possible world semantics let us first recall a piece of
jargon of possible world semantics. If x is a possible world where a propo-
sition p holds this x is called a p-world. Let us assume that there is a certain
“neighborhood” system [cf. Lewis 1986] for the actual world ag such that
it makes sense to speak about nearness. Then (4.1) is rendered as follows:

4.2) (The Ci&G&...&Cy)-world nearest to the actual world g is 2
(p(x) =w(x))-world.

However, as Nowak rightly emphasizes, (4.2) certainly is not the whole
story to be told about the counterfactual character of the law of value or any
other scientific law. Thus, even if one accepts Lewis’ explication of coun-
terfactuals in the framework of possible world semantics (or some similar
account) such an explication is seriously incomplete. What is missing might
be called the interplay of concretization and idealization. Science is not
content to state some counterfactual idealized laws about ideal objects but
rather strives to get rid of these idealizations, at least partially. This may
sound somewhat paradoxical from the view point of common sense, as
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Nowak has pointed out, but there are good reasons to consider this proce-
dure as the — or at least an important - method of science. Nowak de-
scribes this approach labelled as the Marxian or cven as the scientific
method [cf. Cartwright 1989: 204] of building theories more precisely as
follows [1980: 211]:

(1) Marx introduces some assumptions which he knows a priori to be
false in empirical reality.

(2) With the above assumptions in mind he proposes the formula re-
vealing what the phenomena in question depend on. The formuia is based,
then, on assumptions that do not hold in empirical conditions.

(3) These counterfactual assumptions are then removed, and the conse-
quent of the law in question is corrected correspondingly. Thus, we obtain
the “transformed forms” of the initial law which deal with conditions that
are less and less abstract (i.e., satisfy less and less counterfactual assump-
tions). At the same time, those conditions come closer and closer to the
empirical ones.

We now want to show that this Marxian procedure can be reconstructed
in the structuralist framework with the aid of idealization nets introduced in
the preceding section. More precisely, we reconstruct Marx's approach as
building up a rather special idealization net N(To) such that the assertion of
the law of value can be identified with the empirical claim of that net.

The base element Ty= < Ky,J,Dy> of the Marxian net can be described
as a theory element whose semilattice Dy of counterfactual deformation
operators is generated by operators dy,dy,...,dg that correspond to the
conditions C;,G,,...,Cy respectively. The class Mg of models of Ty, satisfies
the highly idealized faw of value (p(x) =w(x)). The net itself is a chain

<l <..sTh €T

The semilattices of counterfactual deformation operators D; of the T;=
<K,1,D;> are generated by the operators d,,...,d; respectively, and the
classes of models M; are characterized by the condition that their elements
satisfy concretized versions f(p(x),w(x)), the f; being certain functions of
p(x) and w(x). Then the “paradoxical” way of idealization and concretiza-
tion of Marxian science in the case of the law of value can be diagrammati-
cally described as follows:
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o do(x) €M,
\L () € M,

's dz(x) & M2

sew e

X o 3o dy(x) € My

Thus, as the upshot of our skefch of structuralism cum idealization we
can characterize a scientific law as a cascade of counterfactual propositions
defined in the framework of an idealization net of theory elements.
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ASSESSING THE STRUCTURALIST THEORY
OF VERISIMILITUDE

In a number of papers, including Kuipers [1982], [1987b] and [1992], Theo
A.F. Kuipers has developed a structuralist theory of truthlikeness. In his
most recent paper, he is concerned with the problem of theoretical truth-
likeness rather than with the one of descriptive truthlikeness; i.e. with the
truthlikeness of hypotheses characterizing the subset of empirical possibil-
ities, when the set of conceptual possibilities is given, rather than with that
of hypotheses about the actual possibility, or the possibility that has been
realized. However, the problem of theoretical truthlikeness reduces to the
descriptive one when there is just one empirically possible alternative, the
one that has been realized, and thus his formalism can be used for both pur-
poses. In what follows, I shall first prove a theorem which shows the
limited applicability of the Kuipers’s definition when dealing with the latter
problem, and then construct an example of the former problem in which the
definition leads to counterintuitive results,

I shall concentrate on a particularly important special case consisting of
coghitive problems which typically atise when predictions about physical
experiments and systems are made; namely, I shall discuss the case in
which the outcome of an experiment, or the state of a physical system about
which the two theories make predictions, can be characterized by » quanti-
tative variables or real numbers ry,7y,...,7,: In this case, the conceptually
possible states of the system can be thought of as elements of IR"

Examples of systems falling under both of these restrictive assumptions
would be, e.g., a gas characterized by its pressure, temperature and vol-
ume, and a set of n identifiable classical particles whose state can be
characterized by the their 3n position coordinates and 3n velocity com-
ponents provided that » is known. An example of a situation not satisfying
the restrictive assumptions is the case in which two theories about a system
of this kind give differing answers, not only to the question what the



