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proach that is novel and not present in Hertz. In describing a physical theory as a cox-

respondence between practical and symbolical facts he insists that
a symbolic formula ... can be translated into concrete facts in an infinity of different ways, becanse
all these disparate facis adwit the sane theoretical interpretation. (Ibid,, p. 150}

And, in an analogous vein:
The same practical fact may cortespond to an infinity of logically incompatible theoretical facts;
the same group of concrete facts may be made to correspond in general not with a single sym-
bolic judgment but with an infinity of judgments different from one another and logically in con-
tradiction with one another. {I&id., p. 152)

Duhem’s account is rather informal, and he is not very clear about what is to be
understood by ‘theoredcal fact’. In particular, one should not interpret him as conceiv-
ing a ‘theoretical fact’ as a fact ‘belonging’ to a specific theory. Rather, the most ap-
propriate interpretation of Duhemian theoretical facts is to take a theoretical fact as
one that asserts a physical state of affairs in precise mathematical terms, as is explained
by Dubem. A typical example of a theoretical fact (or statement) is the following: ‘An
increased pressure of 100 atmospheres causes the electromotive force of a given gas
battery to increase by 0.0844 volts.” (Ibid., p. 152) Other Togically incompatible’ theo-
retical statements would be obtained by replacing ‘0.0844° by “0.0845 or ’0.0846".
Hence, Duhem’s account of an empirical theory can be formulated in relational terms
as follows:

(2.2) Duthent’s Relational Acconnt of Empirical Theories. Denote the class of symbolic facts
by § and the class of practical or empirical facts by E. Then a theory T'is to be con-
ceived as a relation

TcExS.

If (¢, 5) € T then this is to be interpreted as the empirical fact that ¢ is related to 4, or,
to put it the other way round, that the symbolic fact 5 is related to the empirical fact .

It is important to note that Dubem insisted that this relation is multi-valued: to a
single ¢ there may correspond many symbolic facts s, and, vice versa, to a single s,
there may correspond many empitical facts e This double ambiguity of the relation
between empirical and symbolical facts is characteristic of Duhem’s account and has
no counterpart in Hertz’s approach. As we shall show in the next section, this feature
may be combined with the representational insights of Hertz to yield a complex repre-
sentational account of empirical theories.

3. Representational Combinatorics

v

Following Hertz and Duhem in conceiving the practice of science as engaged in pro-
ducing and manipulating representations of various kinds, the impression that comes
to mind is that scientific representations do not live in isolation, rather they may be
combined and concatenated in various ways (Ibarra, Mormann 2000). Heace, investi-
gating these combinatorial aspects of representations is a central task of a general
theory of representation (Ibarra, Mormann 1997 a, b).
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In a similar vein, one obtains that the non-existence of artifacts implies that the
Hestz diagram commutes for states s that are invariant under the perturbation p, ie.,
states for which s = p{s):

Proposition 2. If 5 is invariant under p AND there ate no artifacts, then HERTZ com-
mutes for s,

Progf Assume s = p(s). Then d(s) = d( p(5)). Assume that HERTZ does not commute
for s. That is to say p*(d() # 4 ( p(s). Then p*(d(s)) # 4(s). Since there are no artifacts
one infers ¢ # p(s). This is a contradiction. &

In sum, the diagrammatically natural requirement that Hertz diagrams commute is a
bit stronger than the claim that no artifacts exist. The existence of artifacts is, how-
ever, not the only problem that may arise when studying the relation between 220
and in vitro systems. It may well happen that the combination of i #ifre pérturbation

P 5% —3 5% and the intervening representation 4 § ~—> $* are jointly too inva-
sive and too coarse, such that a salient ## 20 perturbation p fails to be detected by
them, This is the case if it happens that s # p(s) but d(s) = p*(d(s)). This may be called
an artificial null effect. Artificial null effects and the commuting of the Hertz diagram
are related as follows:

Proposition 3. 1f the Hertz diagram commutes and the representation d §-——> 8% is
mono, i.e., &d) = d(b) implies @ = &, then no astificial null effects occur. &

In this implication, the second clause of the antecedent is clearly necessary. This may
be more conspicuously expressed by contraposition:

Proposition 4. If artificial null effects occar, then either the Hertz diagram does not

commute ot the IVIV representaton 4 §——> 5* is not mono. &

One may ask whether the converse holds: If no artificial null effects occur, does
the Hertz diagram commute and is 4 mono? As is easily checked by examples, this is
not the case. In other words, the conjunctive assumption that the Hertz diagram is
commutative and the IVIV representation 4 is mono is strictly stronger than the non-
existence of artificial null effects.

As has been pointed by Strand e 2/, the IVIV problem is not completely described
by a Hertz diagram connecting an iz #ipo systems S and an # wiro systems S*. Usually
these systems are accompanied by what may be called their model systems M and M*
respectively. ‘That is to say, for the # wvo system S there is a theoretical (or maybe
sometimes 2 computer) model M, and for the i witro systern §¥ there is a theoretical
{computer model) model M¥*. Then it is natural to assume that M is an appropriate
representation of S, and M* is an appropriate representation of $¥. These may be ex-
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words, (Y} is the most comprehensive theoretical fact for which Y provides a com-
plete empirical realization.

We hasten to add that this relatonal account of empisical theories as a relation
Tc E x S is seriously incomplete. Its essental flaw is that it does not allow us to
distinguish between approximately true theodes and false theoties, ie., theordes that
are completely off the mark. If a theory T'is just a relation T € E x § relating symbolic
and empirical facts, there is no room for asking if T is (approximately) correct or not.
This is cleatly not sufficient to model the way of how theosdes relate theoretical facts
to often recalcitrant empirical facts. To overcome this shortcoming, it is expedient to
rely once moze on the insights encapsulated in Hertz’s diagram. In other words, we
propose to combine the insights of Hertz and Duhem to obtain 2 better model of sci-
entific theorizing that comprises the advantages of both the Hertzian and the Dube-
mian accounts,

This is done as follows: Let us start over again from the domains PS and PE of

theoretical facts and symbolic facts, respectvely, endowed with maps & PS—— PE

and PE—X PS as before. That is to say, e and £ are to be interpreted as Duhemian
maps correlating symbolic facts and empirical facts as explained above. The new in-
gredient we are going to introduce in order to distinguish between (approximately)
true theories and those that are plainly false is provided by the replacement of the teiv-
ial set theoretical order relation s on § and G on E by appropriate non-trivial order
relations <y and <g on PS and PE, respectively, which reflect some theoretical or em-
pirical intervention and processes as explained in our discussion of the Hertz diagram

" in section 2. More precisely this is explained in the following definition:

(5.4) Definition. (2) Assume Y, Y* € PE. Assume that there is an empirical process P or
intervention such. that the empirical fact ¥ is the initial state P() of P, and Y* is the fi-
nal state P(f) of P. It is further assumed that processes ot interventions P, P', P can
be concatenated associatively. Define Y < Y* := there is a process P with initial state
Y and final state ¥*.

(by Assume X, X* € PS. Assume that there is a symbolic process P ot intervention
such that the symbolic fact X is the inital state P{) of P, and X* is the final state P(f)
of P. It is further assumed that processes ot interventions P, P, P" can be concate-
nated associatively. Define X < X* := there is a process P with initial state X and final
state X,

The class of processes or interventions defined for symbolic and empirical facts
render PS and PE oxder structures, to be denoted by (PS, =) and (PE, Zg), respec-
tively. From now o, P§ and PE are assumed to be endowed with these interventional
orders which differ from the set-theoretical orders C5 and Cg. In Hertz’s terms, then,
X < X is to read as ‘X is a necessary consequent of X, and analogously ¥ = ¥ is to
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The nomological machine ¢(x) brings about the empirical fact a
IFF

The theoretical law x implies an idealized version #4) of 4.

This vields another intetpretation of the formal apparatus of Galois connection that
renders plavsible the claim why theories which satisfy the Galois connection should
be considered as (approximately) true theories: such theories are approximately true
since they ensure a relation between the empirical and the theoretical that captures the
idea that an approximately true theory should approximately correspond to the facts.

6. Concluding Remarks

The leitmotif of this paper was the thesis that scientific theories are to be considered
as representations, and, more generally, that the practice of science may be conceptual-
1zed as a representational practice. This idea is not new, and many have put forward it
n many different ways. Philosopher-scientists such as Hertz and Duhem provide dis-
tinguished examples. Tapping some of their essential insights we hope to have ren-
dered plauvsible the following theses: (i) representation is a complex concept in need of
a theory, (i)} representations do not live in isolation. Rather, they may be #erwied and
combined in various ways, and (i) representations do not ‘speak for themselves’.
Rather, representations are in need of interpretation. A large part of scientific practice
consists in interpreting and reinterpretng representations.
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