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THEORIES AS REPRESENTATIONS*

ABSTRACT
Tn this paper we argue for the thesis that theories are to be considered as representations. The term
“representation” is used in a sense inspired by its mathematical meaning. Our main thesis asserts that
theosies of empitical science can be conceived of as geometrical representations. This idea may be
traced back to the very beginmings of Western science, fo wit, Galileo. The geometric format of
empirical theories cannot be sitaply considered as a clever device for displaying & theory. Rather, the
geometric tepresentation deeply influences the theory’s ontology. Embedding the representational
approach in the framework of a Peircean semiotics enables to take into account explicifly the role of
the cognizing subject for the representational constitution and development of empirical theories,
Finally, we address the recently nauch debated problem of whether the concept of representation is a
philosophically respectable notion or not. We argue that it would be disastrous for philosophy if it
foltowed Rorty’s “neo-pragmatic” proposal fo discard the concept of representation from
philosophical discourse.

L Entroduction
A central question of the philosophy of science, arguably the most central
onel, is “What is the structure of scientific theories?” (cf. Duhem 1906). In
the history of the philosophy of science this question has been answered in
many different ways.? Probably, the theory question will never get a unique
and ynanimously accepted answer., Nevertheless, we firmly believe that it has
good and not-so-good answers,

*Research for this work has been partially supported by the Research Project PI95/83 of the
Basque Government.

'In the light of some contemporary cuzrents of phitosophical thought the centrality of the “theory
question” has been challenged. Some philosophers have argued that the most imaportant problem of the
philosophy of science is to get an adequate wnderstanding of the practice of scientific inquiry, in
particular experimental practice, of. Hacking (1983), Kitcher (1993), Rouse (1996). Be this as it may,
we think there is sufficient importance still remains to justify the further pursuit of the theory question.

2CE Duhem (1906), Kuln (1962), Suppe (1974), Hung (1981}, Balzer, Moulines and Sneed
(1987), Giere (1988), da Costa and French (1990).
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In this paper we argue for the thesis that theories are to be considered as
representations, This idea is not new, and it has been put forward by many
authors in many different ways.> A representational account of empirical
theories crucially depends on the underlying concept of represemtation.
Within philosophy, the concept of representation may be considered as
controversial and obscure. Its long and involved philosophical history can be
traced back at least to Descartes and Locke.* On the other hand, it bas a long,
uncon-troversial and clear use within mathematics. In this paper, we use the
term in 2 sense inspired by its mathematical meaning (Mundy 1986, Swoyer
1991). Thereby we hope to avoid unnecessary philosophical quarrels. In
particular we would like to point out at the very beginning of our endeavour
that the representational account is not necessarily committed to a thorough-
going realism, according to which, the aim of science is to give the one and
only #rue representation of the world. Nor, as will become clear in what
follows, must the representational account lead to an austere empiricism or
positivism according to which the aim of science is solely fo save the
phenomeng (Duhem 1908).

The outline of the paper is as follows: in section 2, our point of departure
is a classical account of the represeniational approach, namely, Margenau’s
Methodology of Modern Physics developed some 60 years ago. It may be
comsidered as one of the earliest attempts to conceptualize empirical theories
as representations. It will provide us with a general idea of how theorizing in
empirical science is based on representationally constituted theoretical
concepts. In section 3 we specify our main thesis about the representational
character of empirical theories by pointing out that the theories of empirical
science can be conceived of as geometrical representations in a generalized
sense. (Gecmetric representations may be traced back to the very beginnings of
modern Western science, i.e., to the Two New Sciences of Galileo (Drake
1974) and cven to some currents of medieval natural philosophy such as
Oresme’s configurational doctrine of the 14th century. As can be shown from
a detailed study of the “law of uniform acceleration” the geometric format of
empirical theories cannot be considered simply as a clever device for
presenting a theory. Rather, the geometric representation deeply influences
the theory’s ontology as is shown by contrasting the onfology of Galilean
mechanics (and Oresme’s configurational doctrine) with the ontological
framework of Aristotelian natural philosophy. In section 4 the role of
geometric representations for the ontology and the epistemology of modein

% See Churchland (1992), Mundy (1986), Swoyer (1991).
*A very interesting new version of the history of representational ideas in Westem philosophy
since antiquity has been recently given by Watson (1995). ™
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empirical theoties is pursued forther by dealing with some crucial conc';epts
such as state spaces, processes, and laws. In section 5 the ;epresegltaﬂonal
approach is embedded in the framework of a Peircean S&?n?iohcs. "I'.Ens allows
us to explicitly take into account the role of the cognizing subzlect fpr the
representational constitution and development of empirical theories. Finally,
in section 6 we address the recently much debated problem of whethf:r the
concept of representation is indeed a philosophically resgectablc notion (’n:
not. We argue that it would be disastrous for philosophy it followefi Rotty’s
“neo-pragmatic” proposal to discard the concept of represgntauon from
philosophical discourse.’ Rather, philosophers shoyld engage in t‘%le task of
explicating and developing this complex and difficult but indispensable

notion,

L, Daita and Symbolic Constructs

For explicating the thesis of the representational structure of empirical
theoties let us stast from an approach proposed by the philosopher and
scientist Margenau some sixty years ago (Margenau 1935). Ma_rgenau’s
account has the virtue of being a vivid, scientifically ?vell'—mfom%ed
description of how physical theorics are conceptualized by splentists which
tries to make its points without unnecessary “phﬂosopmcﬂ"’ fus:s. Ee
distinguishes two levels of physical conceptualization as explained in his
paradigmatic example: _ '
.. we observe a falling body, or many different falling bodies; we then take the typical body into
menta] custody and endow it with fhe abstract properties expressed in the law of gravitation. .It is
no longer the body we originally perceived, for we bave added properties which are neither
immediately evident nor empirically necessary. if it be doubted that these properties are in a sense
arbitrary we need merely recall the fact that there is an altemate, equally or even more successful
physical theory - that of general relativity - which ascribes fo the typical bodies ﬂ'le power of
influencing the metric of space, i.c. entitely different properties from those expressed in Newton's
law of gravitation (Margenau 1935, p. 57).
Thus, according to Margenan, for any physical theory we have the Ievel of
data, e.g. the falling body or the deflections of an ammeter, and the level of
what Margenau calls symbolic constructs, ¢.g. forces, space cun_ramre or
electric currents. This two-level structure pervades all realms of p]3ys;cs. Even
if the realm of symbolic constructs in physics is not determined in the same

SOne may wonder how Rorty comes to comceive of his anﬁrepresmtalion%alism as being
compatible with pragmatism, After all, e founding fafher of pragmatism Pe.uce thought of
representation, ie. the category of thindness, as the backbone of pragmatism (Pv.auoe 1905). ,'I'he
explanation is that Rorty”s neo-pragmatism may be considered as an updated version of James’s or
Dewey’s pragmatism that has not ouch to do with the original account of Peirce.
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rigid way as the realm of data, it is not completely arbitrary. There are general
requitements concerning symbolic constructs. According to Margenan, the
main task of the symbolic constructs is to provide the means for physical
explanation, this term to be understood in a broad sense. Thus, for a long time
all permissible constructs hiad to be of the kind often described as mechanical
models or their properties, but this view is now recognized as inadequate.
What is required is “that there be a permanent and extensive correspondence
between constructs and data” (Margenau 1935, p. 64). Putting together data,
symbolic constructs, and their correspondence we propose the Tollowing
general format of an empirical theory:

(2.1) DEFINITION. Let D be a realm of data, and C be the realm of symbolic

constructs. An empirical theory is a representation £ D ——> C. The
mapping fis said to provide a representation of the realm D by the realm C of
symbolic constructs.
Margenau’s requircment that there be a permanent and extensive
correspondence between constructs and data is expressed by the requirement
that the representing map f from D fo C cannot be just any map bat has to
respect the structure of D and C. Thus some constraints of structure
preservation have to be put upon it. The details depend on how the data and
symbolic constructs are conceptualized precisely. We shall have more to say
about it in section 4.6

(2.1) gives us a rather crude picture of the stracture of an empirical theory.
The specific nature and the relation of these two components of a theoretical
representation £ D —--—> C have been the topic of much discussion. A rather
popular account took D as the observable and € as the non-observable. But
this has not been the only approach, Others have considered D as the
empirical, and C as the theoretical, No unanimity has been achieved as to how
these levels of conceptualization are to be understood precisely. Probably, as is
ofien the case, the ome and only right explication does not exist, For the
purposes of this paper we meed not offer any argument for any specific
position in this issue. We are content to point out the following facts:
{1) The distinction between data and symbolic constructs is no absolute
distinction, i.e., in one context entities can fimction as data and in another

_ Margenau is not the only one and not the first who makes such 2 distinction: some more or less
implicit remarks on the representationsl character of empirical theories can be found in Duhem’s
account of The Aim and Structure of Physical Theory, see especially (Dubem 1906, Ch. 8).
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context as symbolic constructs. In particular, data need not be considered as
the “immediately given” as some Logical positivists are said to have done.”

(ii) It is an important task for the philosophical reconstruction of empirical
theories to explicate in a precise manner the structure and the function of the
correspondence between data and symbolic constructs. As has been indicated
already by Margenau, symbolic constructs generate a “conceptnal surplus”
which can be used for determining, explaining and predicting previously
unacessible aspects of data. For example, partially known kinetic data are
embedded into the framework of symbolic constructs like forces,
hamiltonians, or lagrangians in order to obtain new information not available
without them.

The representation of data by symbolic constructs has explanafory and
exploratory functions. It seives to embed the data into a coherent explanatory
theoretical framework,® That is, the correspondence between data and
symbolic constructs is the basis of physical explanation. To use once again the
just mentioned example: a kinetic system may be explained causally by
referring to theoretical constructs like forces. Hence, physical explanation can
be described as a2 movement of the following kind: it starts in the range of
data, swings over into the field of symbolic construction, and returns to data
again. More generally, one can characterize the activity of scientists, be it
explanation, or prediction, or conceptual exploration, as an oscillating
movement between the area of data and the area of symbolic constructions.
Following Mazgenau it may be called “swing”.” Hence we may characterize
an empirical theory more fully as follows:

(2.2} DEFINITION. Let D be a realm of data, and C be a realm of symbolic
constructs. An empirical theory is given by a domain D of data and C of
symbolic constructs endowed with a2 map £ D — C and a symbolic
interpretation 5: C ====>D. The map fis called a representation of the realm

7As Margenan remarks, fhe misleading expression “data” should be replaced by habita, implying
that there may exist no extemal agency to which we are indebted for its gifts (Margenau 1935, p. 60).
In what follows we will stick to the established term data with the caveat that we understand data as
habita. Moreover, we take the distinction between data and constructs as a relative one, i.e., in some
contexts, data (habita) may be considered as symbolic constructs for some other data, while symbolic
constructs may be considered as data with respect to still other symbolic construets. This relativization
shows the indispensable role of a cognizing subject that interprets data as data, and constructs as
constructs, '

% Leytoneven claims “representation is explanation” (Layton 1992, ch. 43,

® As Margenau himself puts it: “The full course of physical explanation ... begins in the range of
perceptible awareness, swings over info what we shall now term the field of symbolic construction,
and retums to perceptible awarencss, or, as we have said, nature. ... The essential feature of a physical
explanation is evidenily the transiion from nature to the realm of constructs, and the reverse.”
(Margenan 1935, p. 59).
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D by the realm C of symbolic constructs. The symbolic interpretation s may
be th'ought of as an operator that (in a quite literal sense) pulls back
meaningful structures of the conceptual realm C to the domain of data D
thereby providing empirical interpretations for the theoretical concepts of the
theory.

According to (2.2), a representational theory should be denoted by

p—L se2sp

or something similar. For the sake of typographical convenience, however, we

continue to denote it simply by £ D ——> C. Before we go on, the following
remarks on (2.2) may be helpful: As will be spelt out in the following the

representation £ D —> C is to be conceived of as a structure-preserving
map in the mathematical sense (see Mundy 1986, Suppes 1989, Swoyer
1991). Roughly, D and C are thought of as relational systems in the standard
sense of model theory, i.c., they are sets together with an ordered set of
relations R'p, and Rl¢ respectively. The representation f is assumed to be a
homomorphism with respect to at least some of the pairs (R, R} (cf. Mundy
1986, p. 394).10 The symbolic interpretation s: C ====>D may be regarded
as a more clusive notion. Structurally, it may be characterized as a device for
pulling1 back meaningful structures from C to D via f. Consider the following
example:

(2.3) EXAMPLE. Let C be endowed with an order structure <. If £ D——>C
is any map < may be pulled back to D by the definition

d<d’:= fid) < fid)
In this way, f gives tise to a D-interpretation of a structure, originally living
on C. In other words, the domain [ inherits certain structures, originally
defined only for C. Although this notion of pulling back meaningful

structures seems to be not so well known we hope to make it reasonably clear

how it works by discussing some examples. 1!
. The_ distin_ction between data and symbolic constructs not only poses
interesting epistemological or methodological problems, As has already been

OWe don’t want to specify the requirements for D, C and f too strictly. In any case, there is a
developed theory of what may be understood by a structure preserving map between relational
systems (Mundy 1986, Swoyer 1991, Suppes 1989).

1 pctually, there is 2 mathematical theory dealing with pairs of relations such as fand s, to wit,
category fheory (Goldblatt 1979). In terms of category theory, the representation £ D ——3 C may
be conceptualized as a functor. Then, the interpretation s is related to a functor C —— D called
the adjoint of £ We'hope to deal with this topic on another occasion.
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pointed out by Margenau himself, it has some very interesting ontological
ramificationss In modern terms it may be stated as the problem of realism
concerning symbolic constructs: “Do masses, elections, atoms, magnetic field
strengths, etc. exist?” (Margenau 1935, p. 164). We don’t want to delve into
mattets of Tealism in any depth in this paper, rather we’d like to outline
Margenan’s own quite original account of the problem of what is to be the
ontological status of symbolic constructs.

According to him, almost every term that has come under scientific
scrutiny has lost its initial significance and acquired a range of meaning of
which even the boundaries are often variable. A notable exception scems to be
the term “to be” and its ilk. This is a regrettable state of affairs, The question
of whether symbolic constructs exist cannot be answered by a simple Yes or
No:

The main point we are making is this: physical construets cannot be said either to exist or not to

exist; their ontological status has to be fixed in accordance with & mote elabotate analysis of the

meaning of existence. In particular, the value of a constract beats absolutely no relation to its

mode of existence. (Margenau 1935, p. 165)

One should resist the temptation to adopt a primitive instramentalist stance .
according to which the data are the only “really” existing entities and the
symbolic constructs are “really” non-existing symbols invented only for the
sake of prediction. On the other hand, a symbolic construct such as an
electron does not have the same ontological status as, say, the philosopher’s
notorious apple tree. Rather, we should define the physical universe as the
totality of all data (nature) and of all symbolic constructs, This leads to an
open. ontology, in contrast, say, to a closed austere positivistic ontology that
countenances only data. As Margenau points out, this austere stance may be
attractive for philosophical or aesthetic reasons, but confronted with the
reality of phiysics, it turns out to be untenable.!2 Representational theories are
committed to a complex ontology that cannot be reduced to philosophically
appealing but unrealistic simplicity. Tn the next section we want to show that
this complex open ontology is not a peculiarity of 20th century physics but
may already be found at the very beginnings of Western scientific thought.

IIL. Geometry and Ontology: Some Historical Considerations

Up to now, the characterization of empirical theories as representations
D—-f——) C N has remained rather abstract. Not much has been said

127he positivist is challenged to cope with the following task of analyzing a simple proposition of
the form “Light is an electromagnetic disturbance” without assuming two classes of things (Margenan
1933, p. 187).

65



Andoni Ibarra and Thomas Monmann

about the represented domain D and the representing domain C except that
they have to be connected by some sort of structure preserving map f. Looking
at the actually existing science, we would like to launch a more specific
thesis:

(3.1) THESIS. Theoretical represenmtations D —~f—> C are geometrical
representations in the sense that the representing domain C may be conceived
of as a (generalized) geometrical space.

The usage of (gencralized) geometry as a representational medium cannot be
solely considered as a clever device for presenting empirical knowledge.
Rather, as we want fo show in the following, the conceptual usage of
geometry has had a strong impact on the epistemology and ontology of
empirical science.

Tn this section we want to study this impact through some elementary
examples that nevertheless may be considered as important turning points for
the historical development of Western science. More precisely, we want to
compare the usage of geometrical representations in Nicole de Oresme’s
Geometry of Qualities and Motions (Clageit 1978) in the 14th century and in
Galileo’s Two New Sciences from the 16th century, This comparison will
show how geometry has a deep influence on matters epistemological and
oniological, More precisely, we show how Oresme’s geometric account of
qualities and motions provides an interesting link between traditional
Aristotelian science and its substance-form ontology and the represen-
tationally informed ontology of modern science of which Galileo’s Two New
Sciences may be considered as an early landmark.

For Aristotle and modern empirical science in its early period one and the
same problem occupied centre stage, to wit, the problem “What is motion?”,
As is well known, the Aristotelian notion of motion not only comprises the
notion of motion in physical space, but also changes such as creation, growth
and general changes of qualities and quantities. It is this all-embracing nature
of the Aristotelian concept of motion that may considered as a hindrance to a
thoroughgoing mathematical treatment of this concept.

Oresme occupies a mediating position in the history of the mathema-
tization of the concept of motion. His “configuration doctrine” may be
considered as an attempt to apply geometrical representations as a universal
tool for modelling motion (in its broad Amxistotelian sense) without
questioning the fundamental presuppositions of Aristotelian ontology. The
programme of the configuration doctrine Oresme stated at the beginming of
his treatise De configurationibus qualitatum et motuum can be described as
follows (Clagett 1978, pp. 165-6). Usually, measurable quantities may be
regarded as continmously changeable quantities. According to Oresme, for
measaring sach quantities it is therefore necessary that one imagines points,
lines and areas, since in these objects one finds measure and proportion in a
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paradigmatic way whilst in other realms these concepts are to be found by
translation only, Even if points, lines, and areas do not exist in reality it is
nevertheless necessary to presuppose them for the measuring of quantities and
the understanding of their proportions. For this reason, the quantity of a
contimuously changeable quality should be represented by a straight line
which is vertical on the point of the entity’s space that has this quality. This is
becanse for any relation of two quantities of the same kind there is a
corresponding relation betwoen two lines and vice versa. Oresme’s account
can be explained as follows: the object that has a continuously changeable
property, e.g. warmth, coldness, colour ete. is represented geometrically by a
so called base line 4B. The intensity of the quality at one point of the object is
represented by a straight Iine perpendicular to the base line 4B:

D C

(3.2)

A B

The global distribution of the quality is represented by the geometxic figure
(“configuration™) ABCD. Hence, the rectangle ABCD 1epresents an object that
possesses a quality that is always of the same intensity. A slightly less trivial
example is the following configuration representing a unifom{ly. changfng
quality distrbution, For example an iron bar whose temperature 15 Increasing
from the left end to the right end:

(3.3) 1 C
A B

In Oresme’s terminology, this configuration is characterized as uniformly
difform. These configurations may be combined in various ways leading to all
kinds of continnously varying quantity distributions:

)
A B

Nowadays, Oresme’s configurational doctrine may appear as a rather sinple-
minded account. Historically, however, it is to be considered as a major
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conceptual achievement. 13 It already contains all the essential ingredients of a
representational theory as laid out in the discussion of Margenan’s account in
section 2, '

Oresme’s account is a fully fiedged two-level representational account in
the sense of section 2. The realm D of data is given by the base-lines of the
configurations. The realm C of symbolic constructs is defined as the confi-
gurations based on the members of D: If b is a member of D, i.¢., 2 base line &
is a configuration in a quite literal sens¢. Hence we may cast Oresme’s

configuration approach into the representational format £ D —> C as
explained in section 2. The domain D is structured mereologically, i.e., if b”is
the base line of an object that is part of another object with base line b, then b’
is part of b, This mereological structure allows a limited comparison of
different configurations. For example, the “hotness” of parts of a body may be
symbolically calculated and compared with cach other:

D E

(3.5)
F G
A B Cc

According to Oresme we may say that the total hotness of the smatl body
represented by the base line 4B equals the total hotness of the large body
represented by the base line AC. More generally, the symbolic interpretation
§: C =====> D is based on the comparison of areas “over” different base lines.

Despite its simplistic appearance, the configurafional approach makes
available quite powerful resources for applying the conceptual serplus of the
representing mediom of geometry to the realm of data. The configurational
account enables us to quantify intensional qualities, e.g. temperature or
whiteness, which could not be quantified according to the traditional
Agistotelian account. The geometric structure of the representing realm leads
to the definition of new complex qualities not available in the traditional
Aristotelian ontology. For instance, Gresme’s interpretation of the area of a
configuration as a “total quality” defined as the symbolic product of other
qualities expands the realm of available qualities beyond that of natural

BDuhem even claimed Oresme's doctrine to be the legitimate precursor of analytic geometry of
Fermat and Descartes {(Duhem 1913-1959, Vol. 7). Nowadays, experts consider this ¢laim to be rather
exaggerated,
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gualities such as “length”, “mass”, etc. to complex qualities such as “global

velocity”, or “global impuise”, With hindsight, this geometrically motivated

constitution of new qualities can be considered as the most fruitful feature of
Oresme’s configurational account. It paves the way, or, at least, can be

regarded as a forerunner of Galileo’s geometrized science of motion which we

will deal with in a moment. The most spectacular application of this early,
representational account may be considered to be the so-called Merton rule

which can be stated as follows:

(3.6) MERTON RULE. The global quality of a uniformly difform
configuration is equal to the global quality of uniform configuration whose

intensity is half as large as that of the fixst:

/E

C D

A B

This assertion is trivially proved by invoking the clementary fact of Euclidean
geometry that the areas of ABCD and ABE are cqual, as is indicated in the
above diagram., If we interpret the base line functionally as 2 moving object in
time, i.e., a point t of the base line b represents an object x at time ¢, and take
the intensional quality at ¢ as x’s momentaneous velocity, we may interpret -
the area of this configuration as the length of the path which x has travelled
during the time interval considered. Comparing the area of a triangle”
configuration and a rectangle configuration over the same base line we get

the “law of uniformly accelerated motion”, We don’t claim that this proof is
valid in the framework of Galilean or Newtonian physics.!4 However, this

early proof of the Merton rule is evidence for the quite powerful conceptual

resources of this medieval doctrine of configurations.

Already in Oresme’s own usage of the configurational docttine, the
geometric character of the configurations is to be taken in a quite general
sense: it may well be the case that the dimensions of the configuration space
are not to be interpreted as dimensions of the physical space E. This implies
that the states of a physical system that are represented by its “positions” in
the state space are not be interpreted as positions in physical space. It is one
of the great conceptual achievements of modern empirical science over the

¥ actually, in the Two New Sciences Galileo used a different argument to prove the law of
uniformly accelerated motion (Drake 1974, p. 165).
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Aristotelian science of the Greek and the Medieval ages to have reached this
more liberal interpretation of geometry.

As a particularly interesting example of this generalized usage of
geometry let us now consider Galileo’s law of uniformly accelerated motion
stated in Two New Sciences as the First Proposition of the Third Day (Drake
1974, p. 165). In non-Galilean, algebraic terms it may simply be stated as s =
1/2 v o 1. Galileo himself formulated this assertion as follows:

(3.?) LAW OF UNIFORMLY ACCELERATED MOTION. “The time in
which a certain space is traversed by a moveable in uniformly accelerated
movement from rest is equal to the time in which the same space would be
traversed by the same moveable carried in uniform motion whose degree of
speed is one-half the maximum and final degree of speed of the previous,
uniformly accelerated, motion.”

Galileo’s proof of this proposition involves a geometrical representation as is
exhibited in the following diagram:

G2 A

(3.8)

The kine 4B represents the fime in which the space CD is traversed by a body
in' uniformly accelerated movement from rest at C. The base of ER of the
triangle AEB represents terminal speed. The area of the rectangle ABFG
represents the distance travelled by the unaccelerated body travelling with
constant speed v/2, The proof of the proposition reduces to the elementary
demonstration that the triangle and the rectangle have the same area. What is
stri_king about this geometrical representation is that lines represent mot
't]lrajectories or distances in physical space but times and speeds. Areas, not
lines, represent distances, The real path of the body in physical space is not
represented at all. '

The essence of Galileo’s geometrical representation of physical pheno-
mena may be seen in the fact that the structure of the representing
geometrical realm controls the structure of the represented realm of physical
phenomena.
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The New Sciences of Galileo (of which Oresme’s geometrical theory of
quality and motion may be considered as & forerunner) open the gateway for
the wealth of generalized geometric representations of modern science.
Euclidean geometry as such, however, wasn't powerful enongh to serve as the
universal representational tool for the purposes of modern science. The
decisive step was taken by the arithmetization of geometry, i.e. the invention
of analytic geometry by Descartes (and Fermat). This amounts o a
representation of the geometric domain, be it the Euclidean plane or space B
or B by an algebraic domain of two or three-dimensional vectors. This Ieads
to an ever more intimate penetration of algebra and geometry resulting finally
in the modern mathematical theories of analysis, algebra and differential
geometry which may be considered as the true organon of modern empirical
science.

These generalized geometric representations should not be considered as -
clever concepinal devices only. Rather, they lead to deep reconceptualization
in the ontology of empirical theories by introducing all sorts of novel
ontological categories. These theoretical ontological categories cmcially
depend on the theory’s geometric representations, ie., without them they
canmot even be thought of, For instance, naively one may think that
something like mass or length “really” exists quite independent from any
theoretical conceptualization. However, entities such as magnetic field
strength of energy momentum tensors are entities not even thinkable without
the concepts of modern generalized geometry. For modem empirical theories
based on geometric representations, ontology and geometry become
inextricably intertwined.

IV. States, Processes, Structures

In this section we want to consider some of the geometrico-representational
concepts.of modern empirical theories in more detail. This will enable us to
understand how deeply geometric considerations are entrenched in the
epistemology and ontology of modern empirical theories.

Let us start with the concept of a state space of a systemn. Although the -
idea of a state space is very simple it has far zeaching ontological ramifi-
cations. For instance, as will be explained in this section, it brings into play
important modal aspects into the theory’s framework.1®

5There is 2o unanimity on how to interprete this modal aspect exactly, see van Fraassen (1989),
Tbara and Mormann (1994).
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We take the concept of a system as primitive. Examples of systems are
provided by mechanical or thermodynamic systems such as particles,
projectiles, pendulums, planets, gases, liquids, lasers. Even entities as large as
galaxies may be considered as systems, or the universe itself taken as the
largest possible system. Generally, a system is an appropriate chunk of the
world taken to be the object of theoretical investigation, Systems are denoted
by S, S’, etc. Systems are assumed to possibly be in different states. For
instance, an atom considered as a system in the sense of quantum theory may
be in an excited state or mot. In order to be accessible to theoretical
considerations at all, for a system S a class of possible states must be selected.
This class of possible states depends on a theory T and, is denoted by Z(S,7)
or simply % if S and T ate understood. It is called the state space of S (with
respect to the theory in question).

Here, “possible” is to be understood in a rather weak sense of logical
possibility. That is to say, some of the elements of % may well turn out to be
really, i.e. physically, impossible states for S. For instance, the state space
%(0) of a material object 0 may be taken, as a first approximation, to be the
whole universe, even if most places in the wniverse are physically inaccessible
for o, e.g. the centre of the sun, The state space X(S,T) of a system § serves
only as general stage on which $°s story is rehearsed. It is not assumed that §
has to occupy all possible locations during the play. Quite the contrary. It’s a
cracial task of the theory to select certain areas of the state space as
containing the “really possible” states for S and to classify the complement of
these areas as a sort of no-go area for S, This can be done in various ways.
Before we consider some of them in some detail let us emphasize that this
distinction between really possible states and the rest, which is drawn by the
theory, introduces a modal component into the theory’s framework, Some
elements (or better areas) of T the system S is not allowed to be in, are
impossible according to the theory. The rest is admissible or possible
according to 7. As we want to spell out later in some detail, this modal
distinction may be considered as a geometrical realization of the theory’s
laws. Before we come to this topic we’d like to study in some more detail how
this distinction between the area of possible and that of impossible states is
made. As will turn out, for a rough and preliminary distinction purely set
theoretical methods will suffice; for a more refined determination, in
particular for the distinction between possible and impossible processes, more
refined structures of the state space come into play.

Let us consider first some elementary cases. Consider the state space of a
mechanical system in the sense of particle mechanics. Assume that the system
S consists of two particles x;, and x, that move independently from each other
in an empty universe. In other words, there are no forces and in particular
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there is no gravitational force between the x;. At first sight one may think that
the state space-of the system of § is the space E? x E® = E. A closer scrutiny
reveals, however, that E® cannot be the space of “really” possible locations of
S. Even if we take the x; and x, as point masscs they cannot occupy the same
place. In other words, even if the x; move completely independently ﬁogn eaclé
other the state space of the system (x1, x) is not E° but the subspace E*® = E
- {(r1,%2)| X1 = x2}. In other words, the state space of the system (x1,%s) 18
obtained from the full Euclidean space E° by imposing some further
constraints on the “really possible” states of the system S. This is actually the
generic case. Usually, the “really” possible states of a system are constrained
by certain restricting conditions.

Let us look at some further examples. Consider the planar pendulum.
What is intetesting about this system from a mechanical point of view is the
position of the pendulum’s bob. Without taking into account any further
considerations, this is located in EZ But taking into account the system’s
mechanical restrictions and afier having carried out the necessary
idealizations, e.g. taking the pendulum’s bob as a point mass, the state space
of a planar pendulum can be conceptualized as a circle s’

4.1y

Similarly, the configuration space of a double planar pendulum, is to be
conceptualized as the Cartesian product of two circles, ie., the two-
dimensional torus 7> = $! x 8. To give a final, somewhat more complex
example, let us determine the state space of a rigid rod r. The rod’s position is
determined by the positions of its endpoints 7(1) and #(2). Hence, as a very
rough first approximation of the /s state space we may take () =B x B’ =
E°. This, however, does not take into account the rigidity of r. Assuming that
#(1) may be posited anywhere in E° the position of #(2) is restricted o the
surface S° of the sphere with centre (1) and radius the distance between r(1)
and #(2). Hence the state space of r is the Cartesian product ExScExE.

Of course, not only mechanical systems have state spaces. As an
elementary, non-mechanical system consider a rather idealized thermo-
dynamical system § assumed to be characterized by two quantitics only,
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volume and pressure. Then, as the first approximation of the state space Z(S)
of the system § one may take a 2-dimensional Euclidean plane E? having an
orthogonal base consisting of the two vectors ¥ (volume) and P (pressure).
Since negative volume and pressure do not exist, only the first quadrant of E?
possibly represents the “really possible” states of s. Actually, further
constraints will play a role. If we assume the ideal gas law to hold, the

- product S(V) + S(P) must be the same for all “really” possible states of S.

Hence, the manifold of possible states of s is the hyperbola defined by the
above equation:

4.2) v

> P

Depending on what idealizations are performed, different state spaces for §
may be obtained. In any case, the first step for theoretically understanding the
behaviour of any empirical system § consists in providing an appropriate state
space Z(S,T). In other words, a system S entexs the theoretical realm only if it
is represented by an appropriate state space. Now, as is already suggested by
the texm “space”, usnally, Z(S,7) is not simply a set but rather a space, .6, a
set endowed with some geometric structure. This structure is used to
differentiate between really possible and really impossible states of the system.

The siates a system is in {or is not), however, are not what is really
interesting about a system. Rather, it is the processes, iec. the temporal
developments a system may undergo that really count. Let us consider
perhaps the most outworn example in the history of science. We are interested
in the orbit of the planets, not in a particular position. As is well known, state
spaces provide a standard representation of processes by representing them as
paths in the state space. Mathematically a path is a map of the wnit interval /,
to be interpreted as a time interval, into the state space Z(S,7)

4.3) o ¥——> S,

In the same vein as for states (which may be considered as a special case of
processes, to wif, consiant processes) there is (an even more important)
distinction between possible and impossible processes a system may undergo
according the theory. A few paths represent processes allowed according to
the laws of the theory, most paths represent forbidden ones. It may be
considered as the essential task of the theory to distinguish the possible
{admissibie) and the impossible (not admissiblc) ones.
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In order to do this job, taking into account merely set theoretical structures
of the state space does not suffice. Rather, the full geometric structure of the
representing state space has to be brought into play. Usually admissible paths
are thonght to be continuous, even differentiable. The ontological problem is
where this necessity (a real path must bave this form and not another) is
located. In other words, the restrictions or constraints on admissible paths are
defined by using certain geometric concepts such as vector fields, differential
and tensor forms.

Tnstead of considering directly these rather technical devices let us take a
closer look at a principle that is often taken for granted, namely, the vencrable
principle Natura non facit saltus. It is geometrically expressed as the
constraint that an admissible (lawful) path has to be continuous:

4.4

(Admissible) (Not admissible)
Mathematically, this claim involves the topological structure of the state space
(S, T) as follows: a path ¢: Y ——> %(S,7) is continuous iff for any open set O
of Z(5,7) ¢™(0) is an open subset of the inferval I If we consider the
topological structure of Z(S,7) as a variable, one can bring it about by
defining an appropriate topological structure with few open sets so that just
any path is rendered continuous. Hence, the topological structure of X(S,7)
may be considered as a (rather coaxse) constraint on the admissible, i.e. lawful
paths of the theory that takes £(S,7) as its state space. In terms of Margenan,
the topological structure of the state space is a symbolic construct that is used
for the symbolic interpretation of the data. It is coarse, since far from all
continuous paths are admissible ones. To restrict the class of lawful paths
further, more sophisticated geometrical tools are necessary. Familiar devices
for many theories are certain geometrical structures, such as vector fields,
differential forms or general tensors fields, and other differential operators
such as Riemannian connections “living on” =(S,7). Roughly, the task of
distinguishing an admissible path from a non-admissible path is carried out as
follows. If ¢ is a path, it defines a “vector field (or tensor field) V; along ¢”,
i.c., for every time ¢ there is defined a vector Vi(f) at $(¢). For every element s
of the state space Z(5,T), i.e., for every state 5 of § the geometrical stractures
defined on E(S,T) define a sort of operator I that may be applied to vectors.
Then the path ¢ is admissible, i.e. describes a temporal development allowed
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by the theory iff T(Vy(¥)) = 0 for all #. Actually, in Iocal coordinates, this
amounts to the fact of ¢ satisying a certain differential equation. We have
chosen this more abstract description since it renders evident the fact that the
admissibility of ¢ does not depend on any specific frame of reference. In other
words, admissibility is an invariant or symmetric notion (van Fraassen 1989).
Being admissible is a feature of a path that does not depend on any specific
frame of reference. Hence, it is an objective property. To give a specific
example, take S to be a single particle not under the influence of any external
force. In this sitwation, the admissible paths selected by the geometric
structare I" defined on 3(S,7) are just the geodesics of Z(S,T).

Admissible paths of a system represent those temporal developments of a
system it has to follow if the theory is true. Hence, admissibility may be
considered as a kind of lawhood defined by the geometric structure of the state
space. Admissibility is defined as invariant notion. Hence, the question arises
as to whether all invariant statements of the theory are to be considered as
laws of the theory. Van Fraassen vigorously denies this: there are too many
invariant statements that cannot reasonably be considered as laws of a theory.
For instance, according to all mechanical theories, be they classical or
relativistic, any statement concerning the number of planeis of the solar
system is an invariant statement. Nevertheless we would not consider the
number of the planets to be a law of any mechanical or astronomical theory.
Hence, the class of invariant statements cannot be the class of the lawful
statements, Van Fraassen concludes that the concepts of symmetries, transfor-
mations and invariances cannot serve as a geometrical ersafz of the linguistic
concept of Jaw. According to him, the geometric concepts of symmetry and
transformations belong exclusively to the realm of the representing, i.e., they
have to be understood purely instrumentally and cannot be pulled back to the
realm of the represented;

The conceptual triad symmetry, fransformation, and invariance does not explicate or vindicate the

ol notion of law - it plays the counterpoint melody on the side of representation. (van Fraassen

1989, . 289).

In (Tbarra and Mormann 1994) we have argued against this radical proposal
by pointing out that van Fraassen’s approach is based on a mistaken notion of
representation. since he strictly separates the representing realm from the
represented realm. In terms of our favourite author Margenau, this criticism
may be rehearsed as follows. The realm C of symbolic constructs of 2 theory is
given by the stractured totality of the possible states if attaches to a system S.
The realm of data is given by the actually observed states and processes.
These may be interpreted as van Fraassen’s “empirical substractures” (van
Fraassen 1980, p. 64). Symmetrics, transformations, and invariances exclusi-
vely belong to the realm of symbolic constructs, i.e. the representing models,
and cannot, allegedly, be pulled back to the realm of data. In terms of
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Margenau’s account of empirical theories, van Fraassen ignores the role of
“swing”, i.¢., the symbolic interpretation 5: C === D).

We think a good candidate for the law statements of the theory is the class
of statements which state the admissibility of 2 class of paths with regard to
certain structurally defined constraints. This class of process-statements may
not be the whole class of lawlike statements of the theory. At least, it
embraces a significant part of them.! We readily admit that the task of
identifying structural laws, i.e. laws defined by the structures of state spaces,
is not an algorithmic matter. Rather, it is a matter of interpretation to be
carried out by some interpreting subject. This topic will be dealt with in more
depth in the next section.

V. Peircean Complementations

Traditionally, the philosophy of science within the analytical tradition has
been liable to neglect the role of the theorizing subject. Examples are to be
found in the various positivist and postpositivist accounts according to which
the basic task of the philosophy of science is to elucidate the notion of a
scientific theory without ever saying a word about the theorizing subject who
invents, and uses the theories in question,’” The representational account
sketched in this paper so far, may be judged guilty of the very same neglect as
well. Till now we have talked about representations ignoring for whom these
representations are made and who has invented them. fn this section we want
to show that the representational approach sketched in the previous sections
can be completed in such a way that it fits nicely with the semiotic theory
Peirce proposed a long time ago. We want to argue that Peirce’s semiotics
offers a general format for a deeper comprehension of the representational
character of theories.

According to Peirce’s semiotics, the concept representation cannot be fully
understood in terms of sign and (signified) object only. Representation
essentially requires the participation of an interpreting subject, called the
interpretant, In Peirce’s own terms, representation is the operation of a sign
or its relation to the object for the interpreter of the representamen. In more
familiar words, this may be expressed as follows: a sign or representation (I)
cannot be understood without presupposing the existence of something real

16pforeover, in the case of mechanics, it does not contain any statement conceming the tumber of
planets,

M\aybe the most exiteme example is Popper's account of “Objective kuowledge” deliberately
designed to be an “epistemology without a knowing subject” (Popper 1972).
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(III) that is represented by it, and the existence of something or somebody (IT)
that interprets the sign:

(5.1) FUNDAMENTAL ASSUMPTION OF PEIRCEAN SEMIOTICS.18 A
representation is always the representation of something (111} by something (I)
for somebody(Il).

Conceiving a theory as a representation, the Fundamental Assumption may be
specialized to the following thesis:

(5.2) FUNDAMENTAL ASSUMPTION OF THE REPRESENTATIONAL
APPROACH. A theory is always a tepresentation of something by something
for somebody.

As has been sufficienily made clear in the previous sections the
representational account countenances at least the two Peircean components
D (D) and C (II0). These are related to each other by the representational map

f: D —> C. The reader may have had the impression we have neglected
the mediating component of the interpreting subject (If). This is, however, not
the case. The interpreting subject is taken care of by what we have called the
symbolic interpretation s: C===> D. The aim of this section is to explicate
this more fuily.

Representations are not simply there; rather they are constructed by
somebody for certain purposes. In the following we would like to-consider two
complementary puzposes of representations:

(i) Reduction of complexity
(il) Induction of complexity

Let us start with the reduction that may be considered as the more familiar
notion. ‘The reductionist account of representation claims that the task of
representation is reduction of superfluous complexity. Examples abound:
Looking for a book in a library, one will not go directly to the shelves, seeking
at random for it. Rather, one will consult a catalogue in which the books are
represented by index-cards or otber, more modern devices. In an obvious
sense, the catalogue may be considered as a representation of the library.
There is 2 reliable relation between the real books, ie. the content of the
library and the cortesponding index-cards of the catalogue. QObviously, this
reptesentation is motivated by the intention of reducing unnecessary

18Eollowing Peirce one is committing an “abstractive fallacy” if one tries to reduce the friadic
relation of representation. Apel sketches a nice classification of various epistemological “abstractive
fallacies” (Apel 1974) which fallaciously neglest one or more constituent of the trdadic
representational relation, &.g.: (1) I without T and II Jeads to materialism-realism; (2} 1T without I and
11 amounts to a radical subjective idealise, according to which nothing exists exoept ideas in a
(transcendental) mind; (3) 1 and NI without 1T induces a version of ontosemantic realism according to
which the world interprets itself, so to speak, ie. there is one and only one representation which
represents the world “as itis”. The participation of an interpreting subject is not neccssary.
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complexity. For the purposes of finding the book, we need not know its
content but only its author, the title and other relevant information for finding
the book. The index-cards are signs that represent the books. They need not
have any similarity with the book, The catalogue is a representation which
only represents the books according to the aspects that are relevant for finding
them on the shelves. This catalogue view of theories (Hung 1981) may be
traced back to Dubem who as early as 1906 proposed such an account
claiming that a physical theory is to be considered as a comvenient
classification of experimental facts (Duhem 1906, part I, ch. 2,3). To put it in
a nutshell: the aim of a physical theory is the economical and parsimonious
classification of empirical data:
These dlassifications make knowledge convenient to use and safe to apply. Consider those utility
cabinets where tools for the same purpose lie side by side, and where partitions logically separate
instruments not designed for the same task: the worker's hand quickly grasps, without fombling
or mistake, the tool needed. Thanks to theory, the physicist finds with certitnde, and without
omitting anything useful or using anything superflous, the laws which may help him solve a given
problen. (Duhem 1906, p. 24).
More generally, according to the reductionist conceptualization of represen-
tation, the representing entities are used as substitutes or surrogates for the
represented entities, For some reason or other, the original entitics cannot be
dealt with direcfly and instead of them appropriate substitutes  are
manipulated. Hence, representational thinking in this way may be described
as surrogative reasoning (Swoyer 1991, Cummniins 1996). Particularly
important examples of this kind of sutrogative reasoning are numetical {or
more generally) mathematical representations and simulations. Thesre are
some obvious advantages in not carrying oot a test crash but rather {0
calculate or simulate its effects with the aid of some representational device.
Although the reductionist account of representation captures some important
aspects of representation, it tells us only half of the story, Distillation and
abridgment may be important to representation, but representations typically
add as well as subtract, having surplus features that do not correspond to
anything in the phenomena they depict (Swoyer 1991, p. 463). This brings us
to the other feature of representation that may be characterized as induction of
complexity.
Already the elementary case of numerical measurement reveals that
representation cannot be identified with reduction. Consider the following:
elementary example. Let O be a class of things to be measured. As usual, such

a4 measurement is based on a mapping » G —> R from O into the real
numbers R. Obviously, the representing realm R has a very rich

mathematical structure that has no counterpart in 0. For instance, many
arithmetical operations, such as -division, subtraction, exponentiation, are
defined real numbers, but not for the members of the empirical domain 0.
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More generaily this can be described as follows: the language of the
representing domain IR contains many concepts and propositions that cannot
be directly translated into concepts and propositions of the language
describing 0.1° Nevertheless the “new” complexity of the representing
domain is not superfluous. On the contrary, it is essential for every
representation since it is used for generating new knowledge of the
represented domain. For instance, in the case of numerical measurement the
rich mathematical structure of the real numbers may be used for working out
a comprehensive theory of approximation. More generally, the true purpose of
representation may be said to be the application of the theory of the
representing system to the represented system (Mundy 1986, p. 392). Hence,
the invention of an appropriate representation may be considered as nothing
less than the essential ingredient for the solution of an intricate problem.
Furthermore, it may be that the process of inventing such representations is
the highest human intellectual ability.

Maybe for some readers numerical representation of extensional quantities
is an exampic too trivial for rendering plausible the thesis that representation

is inextricably related to the induction of new complexity. A hopefully more-

convincing example for the creative and explorative power of representation
is provided by the representational theory that marks the very beginning of
modern science, to wit, Descartes’s arithmetical representation of Euclidean
geometry. By this representation, geometric entities such as points, lines,
curves are represented by algebraic entities such as n-tuples of numbers,
realvalued functions etc. This representation amounts to much more than a
mere transiation from one language to another. The point is that for many
purposes the expressive power and the problem-solving ability of the algebraic
approach is greater than that of geometry.?® Summing up we may say that a
good representation, and this doesn’t simply mean an accurate translation, is
one with “abductive” power in the sense that it facilitates reasoning in the
representing domain that can be pulled back to the sepresented domain, It
shonld be noted that both reduction and induction are features of
representation which crucially depend on a subject interpreting a
representation. There are no “good” or “bad” representational reductions or
inductions fout court. Rather, the assessment of the reductive and inductive

YIn the case of mumerical measurement, the distinction between mational and imrational mumbets
cannot be interpreted in terms of relations between measured empirical oljects. It is a central task of a
“theory of meaningful representation” to establish criteria that enable vs to distinguish between
meaningful and non-mesningful correspondences (artifacts) (Mundy 1986, Swoyer 1991).

*This is not o be understood as a historical remark only. In 20 century mathematics, the
theories of algebraic topology may be conceived of as very successful representational devices for
translating geometric problems into algebraic ones (Ibama and Mormann 1992).
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qualities of a representation depends on the theoretical and/or practical
interests of the-interpreting subject.

VI Is the Concept of Representation Obsolete?

Even if the reader does not buy into every detail of the representational
approach we have presented in the previous sections of this paper, it should
have become evident that the concept of representation occupics a central
place in the sciences, in particular in the natural sciences.?! Nevertheless, the
introductory question of this section is not only a rhetorical one. For some
time, the concept of representation has come under heavy attack in philosophy
from varions gquarters. According to Rorty and other meopragmatists, the
concept of representation leads into a maze of deadlocks and unsolvable
pseudo-problems (Rorty 1991, pp. 154f). Hence, the traditional paradigma of
philosophy based on representation should be abandoned. We think that the
dismissal of the concept of representation from the philosophical discourse, as
proposed by the neopragmatists of Rortyian kind, would have disastrous
effects on the relation between philosopby and sciences. It would amount to a
new alienation and estrangement of philosophy and science confining aga}in
the connecting lines of philosophy to science to the realm of “hermeneutic”
Geisteswissenschaften. As we want to show in the following, Rorty’s
argument against the philosophical respectability of the concept of
representation is based on an impoverished, wmscientific idea of repre-
sentation.

According to Rorty, there are two different camps in philosophy: one is
the reactionary group of representationalist philosophers who belong to the
past. The other camp comsists of the progressive amtirepresentationlist
philosophers who will be, as Rorty claims, the philosophers of the 21st
century:

gf;;yresentaﬁonalists [are] those philosophers who find it fruitful to fhink of mind or language as

containing Tepresentations of reality. [Antirepresentationalists] attempt to eschew discussions of

realism by denying that the notion of “representation” ... has any usefisd role in philosophy.

Representationalists typically think that controversies between idealists and realists were fruitful

and interesting, Antirepresenfationalists typically think both sets of controversies pointless (Rorty

1991, p. 2).

In this ;ntury, typical adherents of representationalism are Frege, Russell,
Husserd, Tarski and Camap (Rorty 1991, p. 151). Pioneers of the new

2IThe same holds for the cognitive sciences (Cummins 1996).
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antirepresentationalist dogma are Quine, Sellars, and Strawson. The
protagonists of the antircpresentational orientation are, however, Dewey,
Wittgenstein, Heidegger, and Davidson (Rorty 1979). Now it is quite obvious
that there is something wrong with Rorty’s classification. For instance, during
his philosophical career the allegedly arch-representationalist Camnap
maintained the antirepresentationalist position that the traditional debate
between idealism and realism was absolutely pointless. For Camap, this
debate was a paradigmatic example of a metaphysical, i.e. non-sensical
philosophers’ quarrel. According to his principle of tolerance, the choice of 2
linguistic or logical framework is not a matter of truth or falsehood, but a
matter of expedience which is determined by practical considerations. Carnap
considers the representationalist doctrine, according to which knowledge is an
accurate representation of reality, to be a piece of obsolete metaphysics. There
are no distinguished representations that represent reality as it “really” is. In
the following we do pot aim simply to draw the line between
representationalists and antirepresentationalists in a somewhat different way
than Rorty, thereby helping philosophers such as Carnap, Hussel, or Cassirer
to reach the antirepresentationalist heaven as well. Rather, we want to show
that Rorty’s distinction between representationalism and antirepre-
sentationalism is based on a flawed and distorted concept of representation.
The original sin of Rorty’s account is an inadequate account of Teprescntation.
More precisely, his argument against representationalism runs as follows:
first he offers an oversimplified and vague concept of representation, then he
shows that this deprived notion of representation does not do any useful work
in philosophy. Leaving the concept of representation he is using rather vague
is justified by him by the thesis that representation has done its work in
traditional philosophy not so much as an explicit and well-defined concept but
rather as an implicit guiding metaphor:

It is pictares mther than propositions, metaphors rather than statements, which detenmine most of

our philosophical convictions. The picture which holds traditional philosophy captive is that of

the mind as a great mirror, containing various representations... (Rorty 1979, p. 12).

Of course, the difficulty of a metaphorical description such as Rorty’s is that
the deconstruction of an account only vaguely described by a metaphor runs
the risk of missing its target. It would do no harm to Rorty’s generalized
thesis of the principal opposition between representationalism and
antirepresentationalism if the wnderlying notion of representation could be
explicated more precisely.

The account of Tepresentation as mirroring is -- as a physical metaphor --
characterized by the idea that the represented and the representing are
resemble each other to a large extent, namely, that one is the mirror-image of
the other. This sort of representation does not play an important role, neither
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in philosophy nor in science. Even perception, described by the best theories
of cognitive.science as visual representation, is not mirroring. There is no
innocent eye that sees the woild as it is. Even visual representations are
representations for a representing  subject, ie. they are soaked with
intexpretations of the seeing subject. .

One may object that we take Rorty’s mirror conception of representatzon’
too seriously. Rorty must have known that one cannot squeceze the concept of
representation as it has been used in philosophy and science, into the
metaphor of mitroring, Somehow, Rorty knows it, or so it seems. Later, he
generalizes his notion of representation and grants it 2 small and rather trivial
role in cognition:

... we should restrict the team “representation” to things Tike raaps and codes - things for which
we can spell out rules of projection which pair objects with other objects, and thus embody
critetia of accugate representation. If we extend fhe notion of representation beyond such things,
we shall burdes ourselves with a lot of philosophical worries we need not have.

Tn particular, if we worry about what rules of projection conmect sentences like “F = MA” ... with

bits of reality, we get nowhere (Rorty 1993, p. 126).

Here, obviously, representation cannot be understood as mirroring: a map
does not yield a mirror image of the landscape. A map that mirrored the
Iandscape it represents would be worse than no map at all (Ziman 1978). On
the other hand, Rorty’s new concept of representation neatly fits the concept
of structure preserving map. A geographical map is a structure preserving
mapping that relates geographical stractures of the landscape to certain
topological or geometrical structures of the map. Some, even most features of
the geography are ignored, i.e., have no counterparts on the map. On the
other hand, many features of the map ar¢ artifacts with no counterpasts 1
reality.

As the quotation. given above teveals, Rorty takes pains to draw a strict
line betwoen the realms of codes, geographical map and other harmless
representations on the one hand, and the reaim of theories on the other. For
the former, it is reasonable to speak of representations, while for the Iatter it is
philosophically dangerous to attribute them representational features. This
atterpt at confining the concept of representation is not sound. It is not at all
plausible that there is an essential differcnce between geographical maps and
other harmless representational devices on the one hand, and representational
theorics on the other. Quite the contrary. The theories of representations

83



Andori Ibarra and Thomas Mormanm

developed in mathematics, science, and philosophy demonstrate that such a
boundary docs not exist.??

As is shown by the representational approach, the sitnilarities between
maps and theories, however, need not be pursucd on the metaphorical level
only. Rather, it may be considered as the aim of a general theory of
representation (Mundy 1989, Swoyer 1992) to reveal the significant body of
knowledge common to all those kinds of representations such as mappings,
measurements, and theories.

Here, “general theory of representation” is not to be understood in the
sense of Rorty, but designates a formal theory whose historical beginnings are
to be located in the representational theories of measurement, geometry, and
kinematics (Mundy 1986, p. 393). The basis for this theory is provided by the
concept of representation as a structure preserving map. The new
antirepresentationalism could claim victory if it were able to show that this
concept of represemtation is obsolete. Representation as mirroring is a
strawman that has nothing much to do with the practice of representation in
science and philosophy. Thus, to counter the antirepresentational attack it is
sufficient to point at the fact that the concept of representation does not
possess an a priori harmless domain of application. Representation is a
complex concept with an open domain of application that cannot be confined
by a philosopher’s decrce. Representation starts 2 dialectical process of
reduction and induction of complexity that completely eludes the simple
conception of representation as mirroring. This process crucially depends on
the activity of an interpreting subject of the representation. If the yardstick for
a “good” representation were simply accuracy (Rotty), a mediating, ie.
interpreting subject, would not be needed. The represented object and its
doppelgiinger would not need the mediation of an interpreting subject. They
could settle the matter between each other, so to speak. Rorty’s mirroring
conception of representation falls prey to a Peircean abstractive fallacy:
instead of maintaining the triadicity of the representational relation it
attempts to reduce it to a binary relation that only acknowledges the two
components of a representational relation. In terms of the previous section,
Rorty rightly criticises a naive ontosemantic realism. His criticisto. does not

22A5 has been pointed ont some firre ago by Ziman (Ziman 1978) the “map metaphor” that draws
on the infimate relation between maps and scientific theories is a particulasdy froitful one (ibidem, pp.
82 ff), and may be used to uncover many important characteristics of scientific knowledge. For
instance, in the same way as more information can be read from a map than was needed to construct it,
a scientific theoty “is an endless source of reliable predictions going far beyond the existing
accnmulation of observational data.”
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hit a fully fledged triadic representationalism in general. Taking reduction
and induction as essential aspects of representation (as one should), things ate
different. Evidently, there are a variety of possible Tepresentational reductions
and inductions; it doesn’t make sense to distinguish one of them as the
“correct” one. Representation always possesses pragmatic components. This
insight deprives Rorty’s attempt {0 play representation against discourse of its
persuasion. The assessment of the pragmatic qualities of a representation, i.e.
the evaluation of the appropriateness of its reductive and inductive
achievements with 1egard to the subject’s interests takes place in a discursive
context, It seems plausibe to conjecture that discourses directed towards
xnowledge, consist, at least to a large extent, of discussions on the fraitfulness
and expedience of rival representations.

Although in this paper oply some aspects of the concept of Tepresentation
have been discussed it should be evident that the concept of representation
cannot be dismissed as easily as Rorty scems t0 asswine. There are good
reasons to insist, against the antirepresentationalist current in philosophy, that
the concept of representation as it appears “reglly” in philosophy and the
sciences is not cbsolete at all.
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