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Chapter 1

Overview and Background

One of the most remarkable human abilities is our capacity to deliberate and reason. We appear
to be attuned to the world in a way that transcends reflexive reaction to momentary stimuli.
We imagine the merely possible, plan for the future, reflect on the past, wonder what might
have been, ponder what is “right” or “good” to do or think, and much more. Rational thought
and action seem intimately tied to these paradigmatically rational processes.

At the same time, thinking, reasoning, planning, problem solving, perceiving and learning
all cost time, energy, and other precious resources. Rationality is also in part knowing when
to bypass more resource-intensive modes of thinking. A second striking feature of human
thought and cognition, similar to that of many other organisms, is our ability to cope with
challenging and complex problems using highly limited resources. This is true at multiple
levels. The mammalian brain—the presumptive substrate for much of individual thought and
deliberation—is exquisitely efficient in its allocation and consumption of energy (Niven and
Laughlin, 2008). Meanwhile, entire social institutions, such as scientific communities, appear
to be structured in part to support effective resource allocation (Kitcher, 1990).

The aim of this Element is to present an approach to rationality that emphasizes the role of
resource constraints. A concept of rationality can be understood as a theoretical tool. It should
help us understand ourselves, including how we think and how we (think we) ought to think.
It can also serve as a means of assessment, providing a normative standard on which to judge
behavior in a broad sense. That is, a theory of rationality should help identify and characterize
possibilities for improvement. A concept of rationality can serve such purposes more or less
well, and a motivating contention here is that sensitivity to resource limitations in particular is
paramount. From a scientific perspective, discovering the nature of our own rational faculties
demands attention to the limited capacities we bring to problems. From a moral and political
perspective, policies and institutions grounded in conceptions of rationality that abstract away
from acute resource limits risk exacerbating extant inequities (Mills, 2005; Morton, 2017).

The work presented here is predominantly formal, involving concepts from decision and
rational choice theory on the one hand, and the theory of computation on the other. In some
ways the framework of resource rationality can be seen as a marriage of decision theory and
computational theory. The reason for exploring our subject from a mathematical perspective
is twofold. The first is simply that we are interested in relatively complex structures and
much of mathematics is designed to facilitate the exploration and systematization of closely
related structures. The second is that formalization often forces clarity and explicitness about
assumptions, sometimes revealing dimensions of a problem that may not be clear at the surface.

While the formal tools we will introduce are quite flexible in their interpretation and in their
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accommodation of a wide range of philosophical views, they cannot remain totally neutral. The
use of decision theory in particular imposes an emphasis on a kind of “instrumental” rationality.
Starting with some primitive conception of what it would mean for things to go well for an
agent, in a very broad sense, we are interested in what kinds of behavior, again in a broad sense,
would conduce to things going well. In other words, rather than adjudicating what is inherently
good or bad for an agent, the focus will be on tracing out the consequences of assumptions
about what is good or bad. Rational pronouncements will thus be of a conditional nature
(cf. de Finetti 1974, p. 85): if this is what it means for things to go well, and these are the
constraints on the agent’s capacities, then this way of proceeding is the best they can do. Such
a conclusion will typically follow as a matter of mathematics.

As already mentioned, distinctive of resource rationality is its integration of decision theory
and computational theory. The latter is intended to capture crucial details about what agents
are really like, with special emphasis on their ability to recognize, store, and process information,
as well as the costs involved in doing so. With this emphasis comes greater fidelity to the actual
predicaments real agents face. It also thereby narrows the gap between the normative and the
descriptive. Insofar as some of the most interesting rational “oughts” imply “can,” we would
like a rational framework to hew closely to an agent’s assumed capacities. This is just the
familiar sense in which the descriptive constrains the normative.

In the other direction, the normative may well be a fruitful guide to the descriptive. Indeed,
a prevalent theme in this Element is the use of resource rational analysis to generate promising
scientific hypothesis about key aspects of human cognition. Some examples of this will include
approaches to cooperation, polarization, oculomotor processing, visual processing in the ventral
stream, sequential decision making, reasoning heuristics, and random behavior. The successful
application of the methodology depends on an accurate characterization of the problems facing
cognition, which typically involve strategic use of limited resources as a core component.

The remainder of this introductory chapter offers further conceptual background and context
for the core material to follow in subsequent chapters.

1.1 Conceptions of Rationality
A prominent and traditional conception of rationality in philosophy restricts the concept to
organisms possessing a “faculty of reason,” that is, a specific suite of internal mental states
and processes that canonically includes beliefs and desires (Wedgwood, 2002) and that allow
the organism to “recognize, assess, and be moved by reasons” (Scanlon, 1998, p. 23). On this
conception, rationality—which can be further divided into theoretical rationality and practical
rationality—is about norms governing these mental states and processes. Theoretical rational-
ity typically concerns what one ought to believe and how one’s beliefs ought to change with
experience. Practical rationality standardly concerns the resolution of what one ought to do.

Within this traditional (“mentalistic”) picture, there is considerable controversy over the
exact nature of—not to mention the ultimate source of—rationality, whether theoretical or
practical. On one view, rationality is substantive: one’s attitudes are rational to the extent
that they are appropriately responsive to the right reasons (Kiesewetter, 2017; Lord, 2018). For
instance, a belief ought to be sensitive to the evidential factors that weigh in favor or against
it; likewise, a choice of action ought to be properly motivated by practical (notably including
moral) reasons, e.g., the fact that one has made a particular commitment (Sen, 1977).

Another view is that there are structural requirements of rationality, that an agent’s atti-
tudes “cohere” or relate to one another in the right way. For instance, having decided to take
a trip to Paris, there is some pressure to figure out how to get there; failing to take the means
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agent environment
action

perception

Figure 1.1: A traditional picture of the relation between an agent and their environment,
related via perception and action. Similar pictures also appear routinely in the literatures on
control theory and reinforcement learning (e.g., Sutton and Barto 1998, Fig. 3.1). In much of
engineering the agent is instead called the controller, while the environment is the plant.

toward an end is a failure of (practical) rationality. In a similar vein, it would be theoretically
(or “epistemically”) irrational to expect two mutually incompatible events both to occur.

The structural view sits especially well with existing formal treatments of rationality, viz.
logic, probability, and decision theory, inasfar as these frameworks concern the synchronic
and diachronic relationships among (proposed formalizations of) mental states. For instance,
assuming some mental states amount to “degrees of belief,” the probability calculus offers a
way of characterizing coherence, and potentially also norms for revision (e.g., Rescorla 2021).
Such a view is often assumed in cognitive science (e.g., Oaksford and Chater 1999).

Much current debate surrounds both of these distinctions—practical versus theoretical, and
substantive versus structural—most saliently about whether one is more fundamental, per-
haps even subsuming the other. However, essentially all versions of this traditional conception
endorse a picture of the agent relating to the world in a particular way, sometimes called
the “sandwich model” of mind (see Hurley 2001). The world (or the “environment”) produces
“data” for the agent in the form of perceptual input, which transforms their internal (“mental”)
state; the agent, in turn, chooses actions on the basis of their current mental state, potentially
transforming the environment. See Fig. 1.1.

On this picture we can understand different mental states and processes in terms of their
“direction of fit,” roughly corresponding to the division between theoretical and practical. Some
“cognitive” attitudes, like belief, are thought to aim at bringing one’s mind in line with the
world (i.e., so that the belief is true). Other “conative” attitudes, like desire, aim at bringing
the world in line with one’s mind (i.e., so that the desire is satisfied). Much of the traditional
philosophical discussion concerns when and how norms of rationality produce the right kind
of harmony between the world and the agent’s mind. The task of one’s faculty of reason is
precisely to bring about such harmony.

There are variants of the structural view that maintain the basic picture in Fig. 1.1, but
eschew mental states like belief and desire as primitives. Such “behavioristic” approaches to
rationality replace coherence among mental states with coherence among preferences, in par-
ticular preferences as revealed in choice behavior. A long tradition in decision theory (Ramsey,
1931; von Neumann and Morgenstern, 1953; Savage, 1954; Jeffrey, 1965) has explored axioms
on preference orderings that would be sufficient to guarantee that we can represent an agent as
maintaining probabilities (“beliefs”) and utilities (“desires”), such that their choices maximize
the probabilistic expectation of their utilities. By “black-boxing” the agent and the internal
causes of their choices, the framework can enjoy a wider range of application, including to non-
human animals with potentially divergent mental economies, and it may help to unify choice
behavior arising from disparate psychological processes (Vredenburgh, 2020; Thoma, 2021).

A focus on behavior, however, need not proceed in tandem with an axiomatic structural
view. On what we might call a thin conception, rationality involves nothing more or less than
an agent acting (and deliberating) in a way that best conduces to what is good for them.1 In

1Cf. Stich 1990, and further back, American pragmatists like James and Dewey. Note that the thin conception
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other words, the thin conception is exhausted by mere instrumental rationality, which Nozick
(1993) suggests is, “within the intersection of all theories of rationality (and perhaps nothing
else is)” (p. 133). It is generally silent—or to put it more positively, flexible—about what
is good for an agent, and about how we parse “conduces to.” But here, the tools of decision
theory, as a calculus rather than as a set of axioms, can provide some direction.

We can assess an agent using the building blocks of decision theory—states, actions, proba-
bilities, utilities—so long as we can characterize the agent’s predicament in terms of these prim-
itives, perhaps alongside others. Unlike the traditional conceptions, but like the behaviorist
version of the structural conception, this is by default an externalist project.2 The probabilities
and utilities can be, but need not be, the agent’s own. Utilities in particular reflect what the
theorist takes “going well” to mean for an agent. But they can be grounded in a variety of
quite different ways. A few examples include:

1. Stipulated: A psychologist studying human reasoning or decision making may simply
impose a utility structure on a situation, in order to measure how well experimental
participants perform on a well-defined task. Likewise, an engineer might define utilities
to characterize a task of interest, using these to induce an artifact into performing the
task. As a typical example, where the possible actions are simply guesses about the
underlying state, utility might be given by a measure of accuracy.

2. Evolutionary Fitness: Utility can alternatively be construed in evolutionary terms. As
Orr (2007) put the idea, “fitness is the utility that natural selection maximizes” (p. 2998).
Fitness for an individual might be understood as something like the number of offspring
produced in its lifetime, with the “actions” possible phenotypes (Okasha, 2018). Utilities
may play an explanatory role in accounting for features of evolved organisms.

3. Hedonic: Early utilitarian philosophers equated utility with certain internal sensations
like pleasure or the absence of pain. For example, Edgeworth (1879) famously postulated
that, “pleasure is measurable, and all pleasures are commensurable” (p. 396). The
problem of how precisely to measure such putative quantities has been a source of much
controversy; see Narens and Skyrms (2020) for a thorough recent treatment.

4. Revealed Preference: An alternative to hedonic interpretations construes utility in
choice-theoretic terms, grounded in in-principle measurable choice behavior. For example,
if in some situation an agent would prefer (the result of performing) a to a′, then the
utility of a ought to exceed that of a′. By extending these preferences to lotteries with
known probabilities, von Neumann and Morgenstern (1953) showed how imposition of a
few key axioms is sufficient to guarantee a rich utility representation.

5. Objective Goodness: Some have contended that we can (and in some contexts should)
construe utilities as measures of how good, in absolute terms, it would be to take action
a in situation s. This might include factors such as what a person prefers, how much
pleasure it brings about, and so on. But it also crucially incorporates, for instance, moral
considerations. Broome (1991) argues that the von Neumann and Morgenstern approach
to utility can be reappropriated for this interpretation.

here is thinner than the view that Elster (1983), citing Rawls (1971), dubs the thin conception. The latter is
essentially what we are calling the structural conception.

2It is a “moderate” externalism in that it by no means precludes the relevance of internal (e.g., mental) states
to understanding behavior (Satz and Ferejohn, 1994). It just does not presuppose any particular cognitive or
conative architecture.
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Again, only in some of these settings would want to say that the utilities are the agent’s own
in a meaningful sense. They need not represent utility or desirability in any explicit manner.

A canonical way to analyze what a pattern of behavior “conduces to” is in terms of expected
utility, that is, how well the agent does on average (or “in expectation”). But even this is not
forced upon us. We could instead assess behavior by analyzing a notion of regret, or via other
modes of combination that, e.g., punish (or reward) risky behavior. Thus, compared to the
behavioristic-structural approach, the thin view is more perspectival in its pronouncements:
they depend on how we characterize the agent’s predicament and how we integrate the the-
oretical primitives. Yet, what this view lacks in absoluteness it makes up for in breadth of
application. Indeed, something like the thin conception of rationality lies at the foundation of
a variety of endeavors in science and engineering.

For instance, control theory as a discipline (see, e.g., Todorov 2007) begins with a charac-
terization of a system in terms of a “loss” or “cost” function, which is essentially the inverse of a
utility function. Control theory typically deals with noisy environments where uncertainty can
be quantified (by the theorist) in order to design an effective controller. This might tell us, e.g.,
when a system of valves and pumps for managing stormwater flow optimizes environmental and
safety concerns (Kerkez et al., 2016). Essentially this same perspective is adopted in much of
contemporary artificial intelligence and machine learning (Murphy, 2012), and reinforcement
learning in particular (Sutton and Barto, 1998).

Some version of the thin conception arguably grounds some uses of decision theoretic (and
game theoretic) ideas in evolutionary biology as well, insofar as we can take utility to measure
something like (reproductive) fitness; see Okasha (2018) for discussion. Much of perceptual
and motor science is fundamentally couched in the language of decision theory, treating “sub-
personal” subsystems of an agent as though they were themselves rational agents, processing
data and making decisions; see Ma et al. (2022) for a textbook overview.

Use of the word ‘rational’ in these contexts may sound like an abuse of language, and
there is historical evidence that these various other senses of the word in fact derived from the
mentalistic conception sketched above (cf. Broome 2021). In a noteworthy twist, applying this
thin behavioristic conception to human agents will promise a distinctive window in our own
internal lives, including whatever components might comprise a faculty of reason.

1.2 Bounded Resources
Prominent theories of rationality can be demanding. The expected utility calculus of decision
theory seems to require that agents perform extraordinary computations just in order to figure
out what to do. It appears to require the agent to be, as Veblen (1898) vividly put it, a
“lightning calculator” (p. 389). For instance, when faced with a bet about the millionth digit
of π, a person would have to put any amount of money on 5, on pain of irrationality (Good,
1950, p. 49). When playing a game of chess, one of the two players has a winning strategy and
so plainly “ought” to play that strategy (Zermelo, 1913).

There is an important sense in which these “oughts” do indeed have rational force. The
player has a (presumably decisive) reason to play their winning strategy, the identity of this
winning strategy is (structurally) implied what they know, and it would obviously be best for
them to play it, given the goal of winning. So it seems rational on any of the conceptions
discussed above. The mere fact that discerning this winning strategy is difficult—even that
no one currently knows what the winning strategy is (or which player possesses it)—does not
obviously call into question its rational status. Sometimes it just takes a lot of time and effort to
figure out what one ought, rationally speaking, to do. Drawing the precise connection between
rationality and computational limitations can be delicate (Millgram, 1991; Carr, 2022).
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Nevertheless, if we want a theory of rationality to relate more closely to the detailed predica-
ments faced by limited, embodied agents like ourselves, and if we want the theory to shed light
on the process of deliberation itself, then some attention to computational resources seems
essential. As some have ventured, deliberation for an unbounded agent would be a “waste of
time” (Arpaly and Schroeder, 2012, p. 236), perhaps even “unintelligible” (Stalnaker, 1991, p.
429). Deliberation, the suggestion goes, is a solution to the problem of bounded resources.

Resource limitations were discussed by many earlier authors, but the concept of bounded
rationality as a response to standard decision theory in philosophy, psychology, economics, and
engineering in particular, is most closely associated with the work of Herbert Simon (1955;
1956). Simon endorses a version of the thin conception of rationality (see, e.g., Simon 1983,
pp. 7-8, where he writes that reason is “wholly instrumental”), and this conception lends itself
naturally to the incorporation of resource limitations. After all, we want to understand exactly
how the agent—as constituted, limitations and all—achieves a desired end.

A second key move in Simon’s argument, echoing earlier themes from Dewey (1896), is his
critique of the basic picture in Fig. 1.1:

We must be prepared to accept the possibility that what we call “the environment”
may lie, in part, within the skin of the biological organism. That is, some of the
constraints that must be taken as givens in an optimization problem may be phys-
iological and psychological limitations of the organism (biologically defined) itself.
(Simon, 1955, p. 101)

This move reimagines the distinction between what is “internal” and “external” to the agent.
Unlike embodied and enactive approaches that bring the environmental into our understanding
of mind (e.g., Hurley 2001), the move is to treat aspects of mind on a par with aspects of
the environment. If we want to understand rational agents as solving problems, the problems
to be solved must incorporate characteristics of the agents themselves, including memory and
processing limitations, and any quirks in how their minds naturally function.

Historically, increased interest in pursuing such an approach during the second half of the
twentieth century can be traced to two major developments. The first is the rise of compu-
tational approaches to problem solving (starting with seminal advances such as Newell et al.
1959). The very possibility of automating complex tasks put issues of tractability front and
center. With the development of artificial intelligence and attempts to automate human-like
reasoning and decision making, researchers encountered vexing issues like the so-called frame
problem (Pylyshyn, 1987). The challenge, which Fodor (1987a) argued “goes as deep as the
analysis of rationality” (p. 140), is how to determine which aspects of one’s knowledge might
be relevant to a given task. Näıvely implementing classical (structural) canons of rationality
reveals both how demanding those canons can be, and how remarkably efficient much of human
reasoning appears to be in mitigating this problem.

A second contributing factor is the onslaught of empirical work demonstrating the numerous
respects in which ordinary human reasoning and decision making seem to part ways with clas-
sical canons. Dozens of studies revealed that virtually every pattern in reasoning and decision
making that could be violated was, in at least some context (see Slovic et al. 1977; Kahneman
et al. 1982 for early summaries). This is obviously a problem if one had hoped to use rational
principles to predict individual behavior. But it also raises the possibility that the background
rational framework is itself somehow inapt. Appeal to limited computational resources has
been one strategy for vindicating human rationality in the face of this experimental evidence
(Tversky, 1969; Stich, 1990; Gigerenzer et al., 2000; Lieder and Griffiths, 2020). Further sup-
port comes from modern AI approaches, which show progress on the frame problem, but also
reveal the same characteristic violations of classical canons (Dasgupta et al., 2022).
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1.2.1 A Panoply of Research Programs
The term ‘bounded rationality’ is ambiguous between at least two importantly different readings
(cf. Gigerenzer and Selten 2001, pp. 4-6). The first reading construes ‘rational’ as a gradable
adjective, with bounded rationality the study of the many ways in which we fall short of
an idealized standard. The perennial finding is that humans are bounded in the degree to
which they reach this ideal. A second reading construes bounded rationality as a species of
rationality, but one that takes resource constraints into account. Bounded rationality, on this
view, highlights a distinct normative standard, one that is intended to be more appropriate for
assessing human agents in particular. A number of different research programs—with different
goals and emphases, and relating differently to these two senses of ‘bounded’—have emerged:

Heuristics and Biases: Much of the literature in empirical psychology and behavioral
economics takes classical canons of rationality, such as expected utility theory and game
theory as well as classical logic and probability, as the standard. The goal is to document
and theorize the multitude of ways human judgment and behavior deviate from this
standard (e.g., Kahneman et al. 1982). As a typical example, the “cognitive hierarchy
theory” (Camerer and Ho, 2015) aims to predict human strategic behavior in terms of a
bound on the level of higher-order theory of mind experimental participants can reach.

Minimal Rationality: Many normative projects aim at lowering the rational standards
so that bounded agents might have some hope of meeting them. In fact, Savage’s (1954)
original motivation to focus on “small worlds” was to ensure that even mundane decision
making would not be “utterly beyond our power” (p. 16). Proposals in economics,
like Simon’s (1955) original account of “satisficing” or Gilboa and Schmeidler’s (2001)
“case-based” decision theory, are intended to be tractable by design. Similar projects in
philosophy have explored more tractable standards for theoretical/epistemic rationality
(Cherniak, 1986; Harman, 1986), for practical decision making (Weirich, 2004; Pollock,
2006), and for rational learning (Skyrms, 1990; Huttegger, 2017). This program might be
summarized: “Moderation in all things, including rationality” (Cherniak, 1986, p. 9).

Ecological Rationality: Adopting a thoroughly externalist and instrumentalist mode of
rational assessment, a major research program has explored “heuristics” that people use
to solve difficult problems (Gigerenzer et al., 2000; Gigerenzer and Brighton, 2009), with
a focus on features of the environment that render such simple solutions adaptive. One of
the key findings is that simple heuristics can be not only simpler, but more effective (e.g.,
in predictive accuracy) than more complex strategies that attempt to use the calculus of
decision theory itself, a phenomenon known as the “less is more” effect.

Bounded Optimality: By taking computational and other resource bounds into ac-
count, we could try to determine how well an agent could do within those bounds, such
that they still have a chance of being “optimally imperfect” (Baumol and Quandt, 1964);
cf. Good (1950, 1952). This is a common mode of theorizing in economics (Chapter 3)
and a version of it in computer science seeks to identify the optimal program for solving
a given problem, net of computational costs (Horvitz, 1987; Russell and Subramanian,
1995). It has even been suggested that, “artificial intelligence can be usefully characterized
as the study of bounded optimality” (Russell and Subramanian, 1995, p. 576).

The bounded optimality approach in particular has influenced a closely related research program
in cognitive science that has gone under various names, including computational rationality
(Lewis et al., 2014; Gershman et al., 2015), algorithmic rationality (Danks and Eberhardt,
2011; Halpern and Pass, 2015), and resource rationality (Lieder and Griffiths, 2020).
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Although our understanding of the concept differs in numerous ways from previous treat-
ments, we adopt the term ‘resource rationality’ for the target of interest in this Element,
generalizing beyond its methodological application in cognitive science (the subject of Chapter
5). The framework presented here has much in common with minimal rationality and ecological
approaches. The difference is largely one of emphasis, and conceptual and technical primitives.
‘Resource rationality’, which appeared first in print three decades ago (Cherniak, 1994, p. 103),
connotes the idea of being a resourceful agent. It also avoids the ambiguity inherent in ‘bounded
rationality’ and highlights the central role of procedure in reasoning and decision making.

1.2.2 The Importance of Procedure
The concept of resource rationality presented in this Element supplements the usual components
of decision theory—probabilities, utilities, etc.—with assumptions about what the agent is like.
That is, while behavioristic conceptions of rationality tend to “black box” inner processes
and computations, these are front and center for resource rationality. This gives a procedural
emphasis (Veblen, 1898; Simon, 1976), highlighting the sequence of steps an agent undergoes
in the course of decision making. Roughly speaking, “an action is rational if and only if it
is adequately supported by appropriate deliberative procedures” (Gauthier, 1994, p. 700),3
where “deliberative procedures” is to be understood here very broadly to encompass not only
reasoning in the ordinary (mentalistic) sense, but also internal mechanisms that generate the
behavior of simple systems, including subpersonal subsystems of people.

Concretely, the component we add to traditional decision theory is the concept of a pro-
gram. Interpreted in a very general way, programs receive some type of input (e.g., through
perception), process that input in some way, and then generate some output (viz. action). The
idea of mental processes as being akin to programs is a familiar one (Turing, 1950; Newell et al.,
1959; Putnam, 1967; Pylyshyn, 1984; Rule et al., 2020). We understand programs to include
“symbolic” procedures that manipulate explicit internal representations in a way analogous to
computer programs, but also “subsymbolic” procedures which generate behavior through cas-
cades of distributed processing units that may or may not manipulate concrete representations
(Rumelhart et al., 1986), and indeed many other types of procedures.4

Much of the interest in resource rationality stems from the setting of sequential decisions,
that is, series of decisions made over some period of time. A strategy (to be introduced formally
in Chapter 2) is essentially a behavioral disposition, that is, a specification of a choice for
every possible eventuality. We can understand programs as implementations of these abstract
strategies. Distinctive of programs is that they may consume resources, and thus “running” a
program—that is, implementing a strategy in a certain way—incurs costs.

To give a preliminary sense for how solving a problem under cost constraints might look,
we recall a small-scale example from the computing literature:

Example 1. In their presentation of bounded optimality, Russell and Subramanian (1995)
study a relatively simple mail-sorting problem; see Fig. 1.2. A machine must process incoming
mail by scanning hand-written zip codes and dispatching parcels to appropriate buckets. The
goal is to maximize allocation accuracy while minimizing rejections and jams (which occur if the
next parcel comes before the last one has been allocated). In this setting there is a mechanism

3Note that the view Gauthier is propounding in this paper is more committal about aspects of sequential
decision making than we will be in this Element; see §2.1.7, §6.4. Outside action theory, the centrality of process
has been emphasized in epistemology too (e.g., Goldman 1986; Ross and Schroeder 2014; Thorstad 2023).

4Some authors in the philosophical literature on resource limitations, e.g., Wimsatt (2007), draw a distinction
between programs or algorithms on the one hand, and heuristics on the other. Following the tradition of Newell
et al. (1959) and others, we intend ‘program’ here to be sufficiently broad, certainly to include anything that
has been labeled a heuristic in the literature.
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Figure 1.2: The mail-sorting problem analyzed in Russell and Subramanian (1995), reproduced
with permission from the Journal of Artificial Intelligence Research.

designer, who possesses a set of neural networks for reading zip codes. These networks are of
varying qualities (viz. accuracy) and varying execution times, and all of this is known. Having
seen the output of several networks, the mechanism will follow the allocation recommended
by the most accurate network. The problem is that better networks may take longer to run,
risking a jam; so the challenge is to find the resource-optimal sequence of networks to run.

Under different cost regimes—fixed deadline, fixed time cost, and stochastic deadline—
Russell and Subramanian show how to derive the optimal sequence. Under a fixed time budget,
it is optimal simply to run the highest quality network that fits within the budget, since one is
sure that it will terminate in time. In other settings, sequencing together several faster networks
is optimal, always in order of increasing quality. This happens, for instance, in the stochastic
deadline regime when expected arrival rates are high, or when arrival time variance is high.

The mail-sorting task is of course very different from tasks that people ordinarily face.
Nonetheless, it provides a very simple illustration of what it means to identify a program—
in this case, a sequence of neural networks—that achieves the best performance under given
resource constraints. Another noteworthy feature of the example is that the aim of the analysis
is to identify not just a good program that can solve the task, but an optimal one. Optimality
is sometimes viewed as anathema to boundedly rational approaches, especially in much of the
literature on minimal rationality, so it is worth clarifying its role in the present Element.

1.3 Constrained Optimization
Fig. 1.1 depicts an agent facing an environment, related to it by perception in one direction
and action in the other. The task, as construed on the thin conception of rationality, is to
take the sequence of actions that best responds to incoming information about environmental
circumstances.5 Suppose an agent’s behavioral dispositions are captured by (the strategy im-
plemented by) a program π, and that we have a measure U(π), telling us how effective π is
in this environment (to be formalized below in Chapter 2; see Eqs. 2.9 and 2.18). So far this
just looks like traditional decision theory. Simon (1955) implores us to acknowledge that part
of the problem facing an agent stems from constraints and limitations internal to the agent
(that is, within the “agent” box in Fig. 1.1). Let us capture this by imposing a cost C(π) on
the program π. Like the performance measure U(π), the cost C(π) may well depend on the

5Solving a task well in this sense is sometimes to referred to as substantive rationality (Simon, 1976), not to
be confused with the substantive conception of rationality that centers attention on reasons (§1.1).



CHAPTER 1. OVERVIEW AND BACKGROUND 13

environment, e.g., which perceptual inputs are to be processed. So in the probabilistic setting
it too will often be an expectation of a random variable.

A surprisingly robust (“cost-benefit”) formulation of the problem facing the agent amounts
simply to a linear combination of these two terms:

V(π) = U(π)− C(π). (1.1)

The overall value V(π) of running program π in a given environment is determined by how well
the agent performs at the task, externally assessed, minus the internal “computational” costs
that π incurs while achieving this performance.

Given a class Π of possible “agent programs” (Lewis et al., 2014; Icard, 2014), or “biologically
feasible minds” (Lieder and Griffiths, 2020), we say that π ∈ Π is resource rational to the
extent that V(π) is high. In practice, there are two different approaches to resource rationality,
depending on whether we look at fine-grained costs or simply rule out of Π any programs that
would be above a fixed “resource budget”:

Cost-theoretic approach: Given some architectural assumptions about a class Π of
programs, we can estimate the cost of performing certain operations, or of maintaining
and updating relevant internal states. In this way, programs are compared both in how
well they perform the task and in how efficiently they mitigate fine-grained costs.

Panoramic approach: Without analyzing the costs of specific operations, we can simply
restrict Π to a class of programs that we assume are all broadly feasible without attending
to any resource differences among programs. In effect, this assumes V(π) = U(π) for
π ∈ Π, that any differences in resource usage are negligible or irrelevant.

We return below (§1.4) to reflect further on what cognitive costs are in the first place, and on
when one or the other approach is more appropriate.

In many settings there will be programs that are optimal, in the sense that V(π) is not
exceeded by any other program in Π. That merely signifies that the agent is performing the
task as well as possible, given inherent resource limitations (as in Ex. 1). Numerous authors
have rejected appeal to optimality in this setting, on both descriptive and normative grounds.

For descriptive projects aimed at uncovering the mental processes that humans and other
agents actually use to solve problems, the objection is that optimality is simply not within the
realm of possibility. In his critical review of the rational analysis program in cognitive science
(§5.1), Simon (1991) argues that the mind’s solutions to hard problems tend to be somewhat
arbitrary, and probably do not solve any interesting constrained optimization problem:

Bounded rationality is what cognitive psychology is all about. And the study of
bounded rationality is not the study of optimization in relation to task environments.
(Simon, 1991, p. 35)

Authors like Gigerenzer and Selten (2001) and Gigerenzer and Brighton (2009) suggest that
simple heuristics (such as “Take-the-Best”) are probably not optimal, but they are the strategies
that people seem to use much of the time. A further reason for doubting that minds in par-
ticular (perhaps unlike some simple computer programs) could be employing resource-optimal
strategies is that the problem of identifying the resource-optimal strategy is often as difficult
as solving the task itself (van Rooij et al., 2019). Even if agents are not individually assumed
to discover the resource-optimal strategy themselves, online or through learning, tractability
appears to prevent evolutionary emergence of the optimum just the same (Rich et al., 2020).

From a normative point of view, common wisdom is that imperfect agents should typically
not attempt to be optimal in any robust sense. This is an important lesson from Gigerenzer
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and Brighton’s (2009) discussion: not only do people naturally employ simple heuristics, but
their performance is decidedly worse when they attempt to use a putatively optimal method.
Similar arguments have appeared in epistemology (see, e.g., Staffel 2017).

A related objection to optimization is that it threatens regress. The point of taking costs
into consideration is that making good decisions demands intelligent allocation of resources.
But if an agent has to figure out the best means of allocating resources before deliberating,
then they are faced with a meta-decision-problem that may be at least as demanding. If
optimizing something like Eq. (1.1) is the normative target, then we need to worry about how
the agent will figure out the optimum of Eq. (1.1), in effect spawning another instance of the
same equation “one level up.” The lesson that many have drawn is that taking deliberation and
resources into account demands that we give up on optimization altogether (Ryle, 1949).

While these objections have considerable force against some “constrained optimization”
projects, we can respond to all of them by doubling down on the external and perspectival
nature of the thin conception of rationality. There is no assumption that Eq. (1.1) is considered
in any explicit way by the agent, and there is no normative requirement to strive to maximize
V(π). On the contrary, the framework captures the fact that in some contexts deliberation of
any sort is (viewed externally) suboptimal; its costs need only outweigh its benefit. In other
words, the framework correctly diagnoses both the external assessment (what would be good
to think about) and the internal predicament (“Do not think!”). Cf. Example 31 in §6.5.

The panoramic approach encompasses proposals like satisficing as special cases, for instance,
by suitably coarsening U(π), letting all programs that guarantee a fixed “aspiration level”
(Simon, 1955) be equivalent in task-performance. As Baumol and Quandt quipped, this makes
satisficing a kind of “constrained maximization with only constraints and no maximization”
(Baumol and Quandt, 1964, Fn. 2). In a similar vein, Gigerenzer and colleagues’ claim that
simple heuristics outperform putatively optimal, e.g., Bayesian methods (when the latter are
misaligned with the environment), can be seen as a claim that the value of one program is
greater than that of another, precisely in the sense of Eq. (1.1). How we characterize the
task—namely, U(π)—and how we characterize the costs—C(π); see the next section, §1.4—
together determine how we understand the landscape of resource rational agents.

Of course, this perspectival nature of the framework is a potential hazard when our aim
is to uncover the mental processes that generate human behavior. As a research strategy in
cognitive science, resource rational analysis only has a chance of success to the extent that our
characterization of the problem matches some features of the agent’s history—whether at the
scale of evolution, of development, of learning and online inference, or some combination of
these—that could plausibly have led to optimization. Here the concerns about inheritance of
intractability (Rich et al., 2020) are quite germane. In suitably complex settings, even we as
theorists will not be in a position to solve for the optimal program. A further issue is that we
often lack a sufficiently detailed understanding of the task and plausible costs to formulate the
problem so that Eq. (1.1) is well-defined in the first place.

Ultimately, the success of the descriptive project of resource rational analysis (Chapter 5)
will be judged by its theoretical and empirical fruit. As a counterpoint to the more “heuristic”
approach to discovering heuristics advocated by Simon (1955, 1956); Gigerenzer and Selten
(2001); Gigerenzer and Brighton (2009) and others, formulating problems in terms of optimiza-
tion often enjoys, “generalizability, mathematical simplicity, elegance, and heuristic fruitful-
ness” (Mongin, 2000, p. 105). Somewhat perversely, this is the same argument that has been
marshaled in favor of idealized models ignoring cognitive resources altogether (e.g., Friedman
and Savage 1948). Indeed, on the view of resource rationality adopted in this Element, there is
some merit to the charge that it marks only a moderate departure from traditional accounts of
decision theoretic optimization (see, e.g., Simon 1991; Gigerenzer and Selten 2001; Arrow 2004
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among others). To some this will be a feature, to others a bug.
Returning to the normative, while adopting an external perspective it would nevertheless be

desirable to draw some meaningful connection to the internal context of deliberation. We can
understand Eq. (1.1) as assessing “habits of mind” that might be more or less (instrumentally)
desirable to cultivate. To that extent, knowing which habits of mind conduce to which desirable
ends may be of some limited use for a deliberator. The question of how such habits might be
trained or induced, if they can be at all, is a species of a more general family of questions
about how to develop skill, virtue, and other qualities whose active pursuit can undermine
their realization. As Whitehead colorfully put it,

Civilization advances by extending the number of important operations which we
can perform without thinking about them. Operations of thought are like cavalry
charges in a battle—they are strictly limited in number, they require fresh horses,
and must only be made at decisive moments. (Whitehead, 1911, p. 46)

This is a familiar theme from discussions of ethics and virtue (e.g., Annas 2011), where the
roles of education and reflection are carefully negotiated with the importance of non-deliberative
thought and action. But while “intentionally not maximizing” is surely part of a good solution
to the deliberative predicament, this is not the same as “intentionally sub-maximizing” (Pettit,
1984), that is, choosing a worse strategy when strictly better ones are conspicuously available.

1.4 Costs and Resources
Distinctive of resource rationality is its incorporation of agent programs, and with this, con-
sideration of resources and their costs. Fundamentally, we are assuming there are (“internal”)
physical resources that an agent can bring to bear in generating its behavior: energy, mem-
ory space, and so on. Such resources do not bear value inherently, but only instrumentally
through an appropriate sort of transaction. Broadly cognitive resources, similar to dollar bills
or oil, are valuable only in the context of a functioning system, and only insofar as they can
be “exchanged” for something assumed to have value. For example, probing one’s memory for
whether the next turn is a right or a left is worth the cognitive resources because it is more
important to arrive at the correct destination on time than to direct those same resources to-
ward some other aim. This is not just a notional sense of a foregone opportunity. A physical
process has taken place in which concrete resources were “consumed.” Resource rationality is
marked by the separation and explication of cognitive resources and their functional roles in
the production of intelligent behavior and decision making.

Cognitive resources are scarce and scarcity implies cost: by employing resources for one pur-
pose one foregoes the use of these same resources for another purpose. This is why economists
often equate cost with opportunity cost: “the cost of obtaining anything is what must be sur-
rendered in order to get it” (Robbins, 1934, p. 2).

Applying this to the present setting, we might imagine that the cost of employing a resource
for a given purpose has something to do with the value that resource would have if it were
not being put to this purpose. This is a counterfactual analysis (Nozick, 1977): choosing some
option x consumes some resources, and the cost of those resources is the value of the alternative
action x′ that the agent would have taken using the same resources, were x somehow unavailable.

It may seem puzzling why this counterfactual notion of cost is needed at all. It appears
redundant: an agent would rationally opt for x just in case the value of x exceeds its cost
in resources, but that happens just when x is the best available option, that is, the best use
of those resources. In fact, postulating separate costs is unnecessary—indeed, redundant—
whenever we possess an explicit, exhaustive list of all the relevant possible uses of the resource.
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Such contexts are when the panoramic approach is often most apt, as all opportunity costs are
already incorporated into the analysis.

Example 2 (Shared Representation). Suppose, for example, that some neural structure is
common to multiple different functional pathways. That is, the very same neurons are used
as a critical resource for distinct cognitive or perceptual tasks (e.g., recognizing words and
recognizing colors). This appears to be a fundamental principle of brain organization not just
for reasons of “reuse,” but in that sharing neural pathways (and intermediate “representations”)
facilities faster and more effective learning (Rumelhart et al., 1986; Rogers and McClelland,
2006). At the same time, such sharing raises a problem for multitasking because effective use
of the pathway for one purpose (e.g., recognizing a word) comes at the expense of the other
(e.g., recognizing a color). The brain thus faces a tradeoff between efficient learning and ease
of multitasking. A program—in this case a particular organization of neural pathways, that is,
a particular use of a fixed set of resources—might strike a better or worse balance among its
various aims. As a preview of resource rational analysis (Chapter 5), Shenhav et al. (2017);
Musslick and Cohen (2021) suggest that the brain does in fact optimize this tradeoff. (We will
encounter a rather different example of neural wiring optimization in §5.3.2.)

However, many factors that we would like to classify as cognitive resources can be used
for an intractably wide array of purposes—they are, as Klein (2018) puts it, causally promis-
cuous. As a prototypical example, ATP is consumed as part of numerous biochemical (and
specifically neural) processes, from maintaining membrane potentials to synthesizing proteins
and neurotransmitters like dopamine (Niven and Laughlin, 2008), which are themselves cru-
cial components in a multitude of cognitive functions. A very different example of a highly
promiscuous physical resource is time, which is “consumed” by virtually any process.

Due to their promiscuity, as well as their fungibility—e.g., any token ATP molecule is as
good as any other—it is useful to quantify resource usage, as a stand-in for opportunity cost.
To understand the role of resources for a particular cognitive problem, it may not be enough
to look at all feasible solutions to that very problem (as in the panomaric approach), because
those same resources might be involved in solutions to other problems as well. Rather, we want
to solve this problem in a way that minimizes the use of resources that could be put to other
ends. That leads naturally to the cost-theoretic approach.

Costs postulated in cost-theoretic approaches to resource rationality have been multifarious
(cf. Ma and Woodford 2020), reflecting different levels of abstraction and dimensions of ideal-
ization. For complex behaviors it is often difficult or unhelpful to pinpoint the exact low-level
(e.g., biochemical) costs involved, and theorists turn instead to higher-level abstractions like
memory space and number of “queries” to memory, attention, “willpower,” and many others.
Examples like these abstract in space, e.g., considering large neural populations, and also in
time, e.g., holistically measuring the cost of a heterogeneous sequence of lower-level operations.

Even for relatively low-level (biochemical) resources, characterizing costs calls for idealiza-
tion. While it is generally true that having more of a resource is better—greater resource
consumption should generally be more costly, since those resources could be used for more
ends—it has been recognized at least since the 1730s that the value of resources (like money or
time) scales sublinearly with quantity. Because we typically only deal with relatively modest
quantities of a resource (ATP molecules, steps of time) it is very often assumed that value
forgone, i.e., the cost, is nonetheless proportional to the amount consumed. Suppose executing
program π incurs “true” cost C(π), but instead we measure a “pseudo-cost” C̃(π), such as the
amount of ATP consumed or the number of time steps taken. The assumption is that at least
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the ratios between costs of any two programs are equal (Knight, 1934, Fn. 3):

C(π1)
C(π2) = C̃(π1)

C̃(π2)
,

and thus the ratio C̃(π)/C(π) is the same number—call it β—for any program π. This means
that we can rewrite Eq. (1.1) instead in terms of pseudo-costs:

V(π) = U(π)− 1
β
C̃(π). (1.2)

The common idealization is that C̃(π) just is (a factor β of) the true cost C(π) of executing
π. This idealization is useful to the extent that C̃ really does track the value of foregone
alternatives. In empirical work this “conversion factor” β is often fit from data. Since it is fixed
for all possible programs in Π, this severely limits the degree to which costs can be postulated
ad hoc to rationalize any behavior (cf. Schoemaker 1991; Arrow 2004).

We will encounter many different approaches to cost in this Element. Some examples
include, with increasing degrees of abstraction:

1. Metabolic: Much study has been devoted to the energetic and metabolic costs involved
in maintenance and operation of neural structures (Niven and Laughlin, 2008; Bullmore
and Sporns, 2012; Cherniak, 2012; McNamee and Wolpert, 2019; Ma and Woodford,
2020). For instance, the cost of neural connectivity is assumed to scale with “length or
distance of inter-neuronal connections and the cross-sectional diameter of axonal projec-
tions” (Bullmore and Sporns, 2012, p. 337). Further costs accompany the synthesis of
neurotransmitters and “macromolecules” like proteins, maintaining the right concentra-
tions of ions between cell membranes, and much else (Niven and Laughlin, 2008).

2. Computational: At a slightly higher level of abstraction, if we liken mental operations
to those of a specific computational model, we can use components or operations of the
model as putative stand-ins for costly mental operations. This might be the number of
steps or amount of memory used in a run of a Turing machine, the number of states in
a finite automaton, the width of a feedforward neural network, or the number of steps
along a Markov chain in a Monte Carlo inference algorithm.

3. Informational: Even more abstractly, information theory captures one sense in which
“information” can be understood as a resource. A number of different theorists have
suggested using concepts like (relative) entropy and mutual information to characterize
resource costs (Mattsson and Weibull, 2002; Tishby and Polani, 2011; Still and Precup,
2012; Ortega and Braun, 2013; Lai and Gershman, 2021). Often inspired by coding theory
or even statistical physics, these approaches are touted as being less committal about the
substrate of internal processing (Bialek et al., 2001; Ortega, 2010).

It is worth emphasizing again that the construal of costs is, by default, from an outside
theorist’s perspective. This by no means precludes the internal representation of costs by the
agent; in some cases this may even help explain how a given tradeoff is optimized (cf. §6.5).
Costs as represented by the agent, however, need not be understood in the same way. They
may not be encoded as opportunity costs in any substantial sense, but, e.g., as “intrinsic,” in
need of no further analysis beyond their inherent disutility (Kool and Botvinick, 2018).

To summarize, peering inside the agent introduces a transactional perspective on decision
making: internal currency is being spent in part to bring about external states of affairs.
Cognitive processes have costs in the context of a mental economy in which execution of those
processes may help conduce to outcomes that are more or less good for the agent.
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1.5 Overview of Chapters
The goal of this element is to advance a particular view of rational decision making under
resource constraints, and to work toward a reasonably unified framework for theorizing about
resource rationality. A number of authors have been skeptical that such a task is achievable.
For instance, on the project that Simon catalyzed in the 1950s, Aumann comments, “There is
no unified theory of bounded rationality, and probably never will be” (Aumann, 1997, p. 3). As
discussed above (§1.2.1), we can agree with this assessment while still pursuing a more unified
account of resource rationality in particular, with its characteristic combination of decision
theory and computational theory. In some respect, the challenge is to see how far the “thin”
externalist, instrumental conception of rationality can take us toward illuminating keystone
features of rational thought and action; the contention is that it will take us much further if
we incorporate computational resource considerations.

The hope is that what emerges in the pages that follow will help ground a unified set
of conceptual and technical tools, building on and integrating a wealth of previous work in
philosophy, computer science, cognitive science, statistics, and economics.

Concretely the substantive chapters are set out in the following way:
Chapter 2: We introduce the formal underpinnings of “traditional” decision theory, along
the lines of the thin conception sketched above. Special attention is given to sequential
decision problems, including ideas and key results from reinforcement learning.

Chapter 3: As a first foray into decision making with bounded resources, we revisit work
in economics and game theory from the 1980s and 1990s in which “players” are assumed
to be abstract machines, viz. Turing machines or finite automata. Many of the canonical
results in game theory, e.g., Nash’s theorem on existence of equilibria, fail in this setting.

Chapter 4: As an extended case study, we explore the question of when and how resource
bounds might justify behavior that is random or otherwise indeterminate. In addition to
the machine model perspective introduced in Chapter 3, we also introduce the relatively
abstract model of costs founded on information theory.

Chapter 5: The research program in cognitive science recently labeled resource rational
analysis is presented and assessed, as a concrete illustration of descriptive projects issuing
from the normative project. Several examples are given from the recent empirical and
modeling literatures, and methodological issues are discussed.

Chapter 6: In the most speculative part of the Element, based on the more technical
work of the previous four chapters, we explore the possibility that many core features
of human thought and agency may plausibly be shaped by resource considerations. The
form of the conjecture is that the feature in question makes sense in light of (and perhaps
mainly in light of) the need to make good use of limited resources.

Finally, in the conclusion (Chapter 7), we revisit some of the most central themes that pervade
our discussion throughout. As one notable example, a pressing question is how far we want
to go in incorporating more “realistic” features of agents like ourselves, particularly given our
(perhaps extended but still highly) limited capacities and resources as theorists.

It is worth emphasizing once more that the stance in this Element toward human ratio-
nality generally is neither one of vindication nor of criticism. Sensitivity to very real resource
constraints does often allow rational sense to be made of otherwise puzzling human behavior.
However, the concept of resource rationality developed in the Element is not offered as part
of a sweeping hypothesis about human nature, but rather as a theoretical tool, one that may
prove more or less useful in understanding and assessing complex agents like ourselves.



Chapter 2

Traditional Decision Theory

The goal of this chapter is to give formal and conceptual background on what we are calling
traditional decision theory. This is essentially decision theory where “internal” resource costs
are idealized away. Even before introducing agent programs and resource costs, the concepts
employed by traditional decision theory—probability, utility, and so on—themselves invite con-
siderably controversy. The presentation in this chapter is motivated by the thin conception of
rationality discussed above in §1.1. The philosophical discussion is intertwined with concepts
and tools arising in other disciplines, especially control theory and reinforcement learning.
Much of this chapter can be used as a reference, skimmed on a first reading.

2.1 Bayesian Decision Theory
Prior to introducing the sequential decision setting, which will be our focus for most of the
Element, we begin by dwelling on the conceptual primitives involves in the standard “Bayesian”
decision theoretic framework. As a slight elaboration of the “sandwich model” introduced in
Fig. 1.1, a depiction of the basic setup—with states, observations, probabilities, actions, and
utilities—appears in Fig. 2.1. We proceed to discuss each of these primitives in turn.

agent
state s ∼ p

utility u(s, a)action a

o ∼ l( · |s)

Figure 2.1: Standard decision-theoretic picture. What goes in inside the “agent” box will not
be specified in this chapter. A common picture locates representations of probabilities, actions,
and utilities here. No such assumption is required on an external (“behavioristic”) perspective,
though we return to the agent side in later chapters (5 and 6).

2.1.1 States, Observations, and Probabilities
The uses of probability in this Element will be largely elementary. We will typically assume
there is a set S = {s1, s2, . . . } of states, viz. relevant ways the world might be at any given
time. In theorizing about complex interactive systems it is often useful to assume there is some
probability distribution associated with the states, measuring how likely the world is to be in a
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given state s. This is a function p : S → [0, 1], assigning a probability p(s) to each state s ∈ S,
with the only requirement that

∑
s p(s) = 1; the probabilities sum to 1. We let ∆(S) denote

the set of all such probability distributions on S.
In some settings we want to assume that an agent will observe the state s of the world

directly. But in others it is useful to capture the idea that an agent only observes some
(potentially imperfect) reflection o of the state. Given a set O of possible observations, we will
often have a likelihood function l(o|s), specifying the probability of observing o in state s. Note
that, for each s, the function l( · |s) is thus an element of ∆(O).

Together, p and l determine a posterior probability distribution on states. That is, after
observing o, the probability that s is what generated o is determined in a Bayesian fashion:

p(s|o) = l(o|s) p(s)∑
s′ l(o|s′) p(s′)

. (2.1)

Since the denominator is the same for every state s, it is notationally convenient to write simply
that the posterior is proportional to the likelihood times the “prior” probability on s:

p(s|o) ∝ l(o|s) p(s).

If we imagine a sequence of observations ~o = o1, . . . , on, with each oi generated independently,
then the posterior is proportional to the product:

p(s|~o) ∝
∏
i≤n

l(oi|s) p(s),

again combining the prior on s with the probability that it would have generated each of these
observations. Note that, again assuming the observations are generated independently, we can
calculate the posterior on s “all at once,” and the order of observations does not matter. By
contrast, for an agent that is processing each observation in sequential turn, even if they are
probabilistically independent, the order in which they are processed might matter. For bounded
agents, we will see that this is often the case (e.g., in §3.5, §5.2).

In a few places (§2.4.2, §4.1.2, §4.4.1, §5.3.4) we will deal with state spaces S that are
not discrete, and therefore call upon the resources of measure theory. Assuming a so-called
σ-algebra on S—a set E of “measurable” subsets of S that is closed under complementation
and countable union—we define a probability measure to be a function µ : E → [0, 1], such that
µ(S) = 1 and µ(A ∪B) = µ(A) + µ(B) whenever A ∩B = ?.

The picture we have sketched so far is an external one. We imagine an agent situated in some
state in S, and with possible observations O, and we the theorists associate the situation with a
prior on S and a likelihood for possible observations. It is against this theoretical backdrop that
we will typically be assessing different possible agents, by which we mean, different possible
ways of thinking, inferring, deliberating, reacting, and choosing.

Of course, some agents may themselves maintain representations for dealing with their own
uncertainty about the world, either implicitly or explicitly. Most obviously, an agent might
maintain and update encodings of probabilities p(s) directly (see, e.g., Rescorla 2020). Or
one might maintain a more coarsened or qualitative encoding, e.g., tracking merely which
possibilities are more or less likely than which others (see de Finetti 1937; Ibeling et al. 2023),
or coarse-graining the state space by ignoring some distinctions between states (cf. §5.3.3, §6.2).
At several points we will consider the possibility that an agent implicitly encodes a distribution
on states through an ability to sample possibilities—that is, to token a representation of a
possibility—roughly in proportion to its probability (§4.1.3, §5.3.4, §6.3.1). In all of these cases
the agent’s internal perspective on the situation may differ substantially from the theorists,
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in the probabilistic values and relationships among states, or even more dramatically in the
characterization of what the space S of possibilities is in the first place.

An advantage of separating the internal and external perspectives is that we can employ the
latter to adjudicate among different instantiations of the former, comparing different represen-
tational and inferential strategies to one another, and even to alternative agent architectures
that eschew such representations altogether.

2.1.2 Actions
In addition to the set S of states, another primitive is a set A of actions that our agent might
take. Decision theory as an abstract (“thin”) framework presupposes only a minimal sense of
agency and action, the latter understood merely as an event that is, in some sense, directly under
the agent’s control. This may of course include robust intentional action involving rich linguistic
or representational capacities such as self-knowledge (Anscombe, 1957) or maintaining an agent
“standpoint” (Bratman, 2018). But it also encompasses the movements of simple artifacts such
as allocating mail parcels into buckets (Example 1), or neural systems trading off between
competing goals like learning and multitasking (Example 2). The framework is intended to be
sufficiently broad as to include anything that can sensibly be attributed any kind of behavior,
even in the absence of anything we would want to call deliberation. The actions A are to be
understood as the primitive building blocks of behavior. (More complex sequential behaviors
will be introduced shortly in §2.2.)

Thus, while resource rationality is characteristically concerned with the thought and delib-
eration that generate behavior, the decision theoretic framework adopted here is designed for
assessing any behavioral dispositions whatsoever, even when deliberation is absent.

A recurring theme—and the topic of Chapter 4—is the idea that some agents may behave
in a non-deterministic, or stochastic manner. To capture this, we will sometimes expand the
set A of actions to the set ∆(A), all probability distributions on A, giving the probability with
which an agent realizes a given action.

2.1.3 Utility
Assessment of different ways of being in the world depends on some grasp of what it is for a given
situation (or sequence of situations) to be better or worse. Specifically, we might be interested
in a measure of how “good,” or how “desirable” (Jeffrey, 1965), it would be to take action a
in situation s. A theoretical tool in this vicinity is the utility function, a map u : S × A → R.
A central question of utility theory is how we should understand what the numbers u(s, a)
mean. In §1.1 we listed five possible candidates for a theoretical understanding of utility,
all potentially independent of whether the agents in question have their own representations of
utility. As with probability, an agent might directly encode a measure of how desirable they take
various outcomes to be. Alternatively, they might maintain more abstract representations, e.g.,
of relative desirability between outcomes. A particularly minimal representation would simply
be to encode a “goal” state, without further detail. This is tantamount to saying, e.g., that
u(s, a) = 1 just in case a achieves the goal in state s, and u(s, a) = 0 otherwise (cf. §1.3). And
as with probability, our external understanding of utility may depart from the agent’s own.1

Many of these interpretations face difficult challenges of comparison. Most obviously, by
taking the values u(s, a) to be (real) numbers, we presuppose that (relative to any state) any

1Strikingly, Millgram (2009) argues that it would be positively irrational to maintain overall preferences that
could be represented by a utility function in the tradition of von Neumann and Morgenstern (1953).



CHAPTER 2. TRADITIONAL DECISION THEORY 22

two actions are comparable. This may be unproblematic when talking about evolutionary fit-
ness or accuracy. But for many decisions—such as Sartre’s famous student deciding between
caring for an ailing parent and joining the French resistance—the options seem genuinely in-
commensurable. See Andersson and Herlitz (2022) for a recent compendium on this topic.

Another problem of comparison comes from the multi-agent setting. How are we to trade off
between an increase in one’s utility against a decrease in another’s? Are comparisons between
individuals meaningful at all? See Broome (1991) or Narens and Skyrms (2020) for different
approaches to this problem motivated by different interpretations of utility.

A seemingly more tractable, but still formidable, problem is how to compare and aggregate
utilities for a single individual across time. For instance, how should we compare a good
outcome at the present moment with the “same” good outcome at a future moment? We will
occasionally assume, following suggestions in psychology and economics, that future utilities are
(geometrically) “discounted”—cf. Eq. (2.7) below—though this is obviously not a completely
neutral assumption.2 The questions become even more delicate when agents experience a
change of heart in what they value (see §2.1.7 later in this chapter).

For many purposes we will be able to rest content with a stipulated notion of utility, which
manages to evade some of these concerns about comparison. However, any full account of (re-
source) rationality that employs a utility concept will ultimately have to face them. Moreover,
crucial for the project of resource rationality, in its cost-theoretic formulation, utilities will need
to be commensurate with an appropriate measure of resource costs (recall §1.4), in order for
characterizations like the fundamental Eqs. (1.1) and (1.2) to make sense.

2.1.4 Expected Utility
What the numbers u(s, a) mean depends not only on their source, but also on how they are
going to be used, either by the theorist or directly by the agent. When the state s is known,
we assume the best choice a is one that maximizes u(s, a); and in general, the higher u(s, a),
the better a is. But what about when s is not known? The most common way of incorporating
utility into a theory of decision under uncertainty is to take its expectation with respect to the
probability on states. The expected utility of taking action a ∈ A—written EU(a)—is defined
as the average of u(s, a) where s ∼ p, that is, where s is drawn with probability p(s):

EU(a) = Es∼pu(s, a)
=

∑
s∈S

p(s)u(s, a). (2.2)

In other words, EU(a) is simply a shorthand for this sum over utilities weighted by state
probabilities. This quantity offers a plausible sense of “goodness” when the state is unknown
but the state probabilities are somehow determined (again, either by the theorist or because
they are the “agent’s own” subjective probabilities). Thus, as a special case, the best an agent
can do in a situation of uncertainty is to choose an action that maximizes the expected utility.

Remark 1. When measuring actions by their expected utility, we would obtain the same
ranking of actions if we took any positive linear transformation of the utilities. That is, if
we transformed the utility function u by setting u∗(s, a) = r · u(s, a) + b for some r > 0 and
b ∈ R, then the ranking of actions by expected utility will be the same whether we take u or u∗.
Consequently, in some settings it will sometimes be claimed that utilities are only meaningful
“up to” positive linear transformation (e.g., Stevens 1946; Narens and Skyrms 2020).

2In the context of saving for the future, Ramsey (1928) wrote that any kind of discounting was “ethically
indefensible and arises merely from the weakness of the imagination” (p. 543).
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Why should we take expected utility as a yardstick for rational choice? One response is
simply to insist that this is “rational bedrock” (Briggs, 2019). As Lewis (1974) famously put
it, expected utility theory “is the very core of our common-sense theory of persons, dissected
out and elegantly systematized” (p. 338). A similar stance is adopted in much of science and
engineering. For instance, in a popular textbook on machine learning, where probabilities and
utilities (or “loss functions”) are often made explicit and typically imposed by the theorist
or practitioner, Murphy (2012) characterizes expected utility maximization as “the essence of
what we mean by rational behavior” (p. 177).3

A substantial tradition in statistics, economics, and philosophy has nevertheless endeavored
to justify expected utility maximization without assuming probabilities and utilities as primi-
tives (either of the agent or of the theorist). Rather, the starting point is an agent’s preferences
between lotteries or gambles. As already mentioned, granting probabilities known to the agent,
von Neumann and Morgenstern (1953) showed how to derive utilities from a few key axioms.
For instance, a continuity axiom states that if X is preferred to Y and Y is preferred to Z,
then there is some lottery between X and Z (with probability p of X and 1− p of Z) that will
make the agent indifferent between that lottery and a sure outcome of Y . The von Neumann
and Morgenstern results shows that, a long as an agent’s choices obey the axioms, they are
behaving as though they are maximizing the expectation of some utility function (unique up to
positive linear transformation; recall Remark 1).

A more ambitious project is to show that both utilities and (subjective) probabilities can be
derived from rational choice behavior. Perhaps the most celebrated attempt is that of Savage
(1954), whose representation theorem not only recovers probabilities, but does so uniquely.4
In addition to the set S of states—the objects of uncertainty—Savage takes as primitive a
set of consequences—the objects of desirability. Preferences are then over acts, viz. functions
from states to consequences. Our set A of actions could be understood in these terms: each a
defines a function from s to consequences, and u(s, a) measures how good the corresponding
consequence is. The force of taking consequences as a primitive, however, is to guarantee a very
large and rich space of acts. For instance, Savage assumed that for each consequence there is a
“constant act” that has that same consequence no matter what the world is like. Though there
are ways of curtailing these richness assumptions (e.g., Gaifman and Liu 2018), the objects of
preference will have to be exceedingly rich in order for the theorem to go through.

This is to say nothing of the axioms themselves, whose status as postulates of rational choice
have been hotly contested. The Sure Thing Principle is a notable example. Suppose E ⊆ S is an
event (that is, a set of states), and suppose an agent prefers one act to another in case E occurs,
and also in case E does not occur. Then the agent should have the same preference without
knowing anything about E. Putative counterexamples to this and other principles abound
(Briggs, 2019; Buchak, 2013, 2022), which in turn have motivated alternative axiomatizations.

2.1.5 Actions and Causes
Although we will not be engaged in debates around axioms for deriving probabilities and
utilities, it is worth highlighting an important point of controversy related to the Sure Thing
Principle in particular. This axiom is obviously unsound when E’s occurrence is in some way

3Practice in cognitive science reflects the same stance. For example, in research programs that compare
alternative heuristic inference methods, assessment is still given by expected (viz. average) accuracy (Gigerenzer
et al., 2000; Gigerenzer and Brighton, 2009). The relevant distributions on problems are not necessarily accessible
to the experimental participants, but expected accuracy is the yardstick used to measure degrees of “ecological”
rationality. See Okasha (2016) and Thoma (2021) for different sources of doubts about this stance.

4Savage’s approach was anticipated by earlier work of Ramsey (1931).
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dependent on the agent’s choice, and this reverberates even into our thin interpretation of
decision theory. Consider the following example (from Ahmed 2021, p. 20):

Example 3 (Driving Test). You will have a driver’s test next week, and you want to pass. In
the meantime you can purchase a lesson, and you know that most people who take the lesson
pass, while most people who do not take the lesson fail.

The Sure Thing Principle would apparently have you reason as follows. If you know you
will pass, you would rather not pay for the lesson. If you know you will fail, you would still
rather not pay for the lesson. And after the fact, no matter how the world turns out, holding
either outcome fixed, you would rather not have paid for the lesson. So you should not pay.

Nonetheless, common sense insists that it may well be rational to pay for the lesson, simply
because the lesson could help bring about the more desirable state of passing.

The example brings to the fore the fact that states and actions are themselves embedded in
a larger context that does not always make its way explicitly into the formalism. This wider
context can matter. Example 3 illustrates the possibility that the state depends causally on
which action is chosen. There may also be dependence between the state and the action that is
not directly causal. Such examples arise routinely in multi-agent scenarios, as in the following
famous illustration from (von Neumann and Morgenstern, 1953, p. 177).

Example 4 (Holmes and Moriarty). Holmes is traveling by train from London to Dover, but
he is being pursued by Moriarty, who is on the same train. Moriarty wants to disembark
at the same station as Holmes, while Holmes wants the opposite. There is exactly one stop
between London and Dover, namely Canterbury. The choice facing both of them is whether to
disembark at Canterbury or wait until Dover.

Holmes knows that Moriarty is very clever and, from many past observations, is good at
predicting what Holmes will do. Should Holmes get off at Canterbury or not?

Deliberative instability threatens. Merely finding himself inclined toward waiting until
Dover seems to provide information about what Moriarty will do, since he knows Moriarty
will have anticipated this very inclination. Revising the intention instead to exit at Canterbury
does not help, since Moriarty will plausibly have predicted this shift as well. The concern is
that Moriarty may always be one mental step ahead.

Indeed, Holmes’s attempt (and perhaps also our attempt as theorists) at assessing the prob-
abilities of Moriarty’s actions seems to be tied up in some way with Holmes’s own deliberation
about what he himself will do. How then can Holmes hope to maximize any expected utility?

In this example—typical of scenarios studied in game theory (§3.1; see Ex. 10)—the relevant
state is in fact the choice of another agent. And while we may assume that Holmes’s choice does
not exert a causal influence on Moriarty’s choice, it may seem to provide information about
it (presumably because of some upstream “common cause,” such as an underlying disposition
of Holmes about which Moriarty has sufficient information). Many such examples have been
discussed in the literature, including Newcomb’s problem, the Prisoner’s Dilemma (Example
11 below), and many more (see, e.g., Savage 1954; Jeffrey 1965; Skyrms 1980; Joyce 2009).
Researchers in reinforcement learning have been concerned with similar issues of so-called con-
founding (e.g., Bareinboim et al. 2015; Namkoong et al. 2020).

The idea that decisions—and deliberative styles and strategies more generally—can be sub-
ject to causal influence by “external” and indeed measurable factors is what makes the psychol-
ogy of decision making possible at all: to some extent decisions are predictable. Nonetheless,
the very context of deliberation seems to involve a presupposition that the deliberating agent
may somehow (and at least to some degree) override whatever factors make decisions partly
predictable. This tension is nicely summarized by Meek and Glymour:
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One may view decisions, one’s own or another’s, as the result of a dual system with
a default part and an extraordinary part—the default part subject to causes that
may also influence the outcome through another mechanism, but the extraordinary
part not so influenced and having the power to intervene and displace or modify
the productions of the default part. (Meek and Glymour, 1994, p. 1007)

At issue is a fundamental question about how we understand the nature of choice. Among the
most prominent ways of responding to this set of issues are:

1. Always devise a space S of possibilities so that there will be no (probabilistic or causal)
dependence between actions and states (Savage, 1954), for instance by ensuring that S is
sufficiently fine-grained (Skyrms, 1980). Ensuring this even in moderately sized problems
often requires very large and rich state spaces (cf. Joyce 2009).

2. Assume that the probability distribution is over states and actions together, so that con-
ditional probabilities like p(s|a) are defined. Following Jeffrey (1965), evidential decision
theorists advocate maximizing the conditional probability of reward, following the adage,
“Do what you most want to learn that you will do” (Ahmed, 2021, p. 7).

3. Make the causal structure in a decision problem explicit and construe (at least some)
actions as causal interventions on that underlying structure (Meek and Glymour, 1994).
The theoretical injunction is to clarify precisely how an outcome may depend on an action
and how actions and outcomes may both depend on common causes (Hitchcock, 2016).

This in no way exhausts the approaches one can find in the philosophical literature. While much
of what follows will remain neutral on how we deal with issues of action-state dependence, it
is worth noticing that these issues are not unrelated to resource limitations. For instance, in
Example 4, Holmes’s predicament appears to stem from a fear of being outwitted by Moriarty.
Potential richness of the state space, and the possibility that an agent may not be able to
introspect on the causes of their decisions are just two more examples. These questions about
action-state dependence will thus remain in the background throughout this Element.

2.1.6 Alternatives to Expectation Maximization
Whereas all of the aforementioned approaches to decision theory agree that some kind of ex-
pected utility is the relevant quantity for rational assessment, there has also been considerable
dissent from this assumption. One type of objection takes issue with one of the basic build-
ing blocks. Incommensurability in utility was already mentioned above in §2.1.3; others have
argued that ambiguity and imprecision in uncertainty call for alternatives to standard proba-
bility representations. Both of these—individually and in concert—have resulted in alternative
decision theories. For instance, if we lack a probability function on states, then an agent might
pick an action a that maximizes the minimum utility over all possible states:

max
a∈A

min
s∈S

u(s, a), (2.3)

or one that minimizes the maximum regret over all states (Savage, 1954, Chapter 9):

min
a∈A

max
s∈S

max
a∗∈A

[
u(s, a∗)− u(s, a)

]
, (2.4)

These “maximin” and “minimax regret” principles will return below in the discussions of rein-
forcement learning (§2.3) and game theory (§3.3). Buchak 2022 reviews many other approaches
to dealing with the absence of (or generalizations of) probability and utility.
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However, even if we admit the same building blocks—a probability p on states (with likeli-
hood l), and a utility u on state-action pairs—concerns have been raised as to whether taking
an arithmetical expectation, Eq. (2.2), is the right way of combining these ingredients.

Many of the concerns are motivated by problems of risk. For various reasons, losses may
loom larger than gains. Suppose, for instance, utility is given by fitness, viz. number of
offspring. Should we understand a concept like “adaptiveness” as expected fitness, that is,
expected number of offspring? A potential danger with taking an arithmetical expectation is
that it is not sufficiently sensitive to the most disastrous possible outcome, namely extinction.
Consider this simple example from Sober (2001) (see also Gillespie 1977):

Example 5. When a certain bird builds a nest, it has 0.1 chance of that nest evading predators.
The bird has two options: (1) lay 10 eggs in a single nest, or (2) lay 5 eggs in each of two different
nests. It is easy to calculate that the (arithmetical) expected number of eggs is the same under
both options, namely, 1. But they have different probabilities of going extinct. Under option
(1) the bird’s line dies with probability 0.9, where under option (2) the probability is only 0.81.
If we imagine the progeny of this bird (if any survive) carrying out the same strategy over
generations, it is easy to show that (2) has a higher chance of long-term survival.

The idea is that adaptation depends not just on the first moment of a distribution (the
mean), but also on the second moment (the variance). Following an early suggestion by
Bernoulli, a number of authors have advocated taking not the arithmetical expectation, but the
geometric expectation (Gillespie, 1977; Orr, 2007), which is approximated by µ−v/(2µ), where
µ is the mean (e.g., expected utility) and v is the variance. Penalizing variance in this way
provides an alternative mode of combination, one that emphasizes not only the usual (arith-
metical) expected utility, but also the degree of dispersion from it across different outcomes. In
sequential problems (see §2.2), this is meant to privilege a kind of stability in outcome.

A different way of incorporating risk is not to change the type of expectation, but rather
to augment the set of primitives (probability and utility functions) with an additional risk
function. A particularly well-developed version of this account is Buchak (2013), who allows,
e.g., a very desirable but very unlikely outcome to weigh either more or less than it would
in the usual expected utility calculation. Debates continue between advocates and critics of
expected utility theory, though we will mostly rely on classical expected utility in this Element
(the exceptions being in our discussion of learning, §2.3.3, and of game theory, §3.1). Notably,
many of the critiques of alternatives—including both of risk-weighted utility theory (Briggs,
2015; Thoma, 2019) and of geometric expectation (Samuelson, 1971)—pertain to the setting of
sequential decisions, sometimes also known as “dynamic choice.”

2.1.7 Dynamic Choice and Preference Change
Before introducing the formal framework for sequential decision making—one that will be
applicable to a diverse array of agents, including those that do not engage in any kind of
deliberation—it is worth considering how such problems might “look” from the perspective of
a deliberating agent. There is an obvious connection between sequential decisions and one-off
decisions: in any sequential problem there will be some first choice point where a decision has
to be made. Like in the multi-agent setting (cf. Example 4 above, and §3.1 below), the quality
of a single decision can depend on choices made by other agents; in this case it will be choices
made by the same agent, only at a different time.

Given this dynamic aspect of sequential choice, how should an agent make that first choice?
The notion of an optimal strategy in a sequential decision—to be formally defined below in
Eq. (2.9)—implicitly assumes that the best action now is the one that achieves the optimal
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balance between immediate utility and (possibly discounted) future rewards, assuming that you
will continue to pursue this optimal balance at future choice points, given your current view of
future choice points. This is quite explicit in the so-called Q-value introduced later in Eq.
(2.11). Such a “näıve” (Steele, 2010) assumption may be problematic for at least two reasons.

The first is simply that it may be overly optimistic about the agent’s future computational
abilities, the very topic of this Element. For instance, a person could plan the shortest and
most efficient path from the train station to City Hall. But when it comes time to execute
that plan, if it involves a complex pattern of twists and turns, the agent’s attempt to follow it
may instead leave them lost. In other words, even independent of the difficulties in formulating
good plans or strategies, carrying out an optimal strategy may itself be too costly. This will
be a main theme of the next several chapters, so we leave it to the side here.

A second reason to question future optimality is that one’s impression of what is better or
worse may change. This intuitive example comes from Thoma (2018):

Example 6. During a coffee break from work you would like to watch a television episode. It
would not be good overall, you currently judge, to watch more than one episode. However, you
know that once you have watched the first, you will prefer to watch a second than to return to
work. Should you watch the first episode or not?

One response to this type of challenge—an approach known as sophisticated choice (e.g.,
Steele 2010)—is to say that the person has two options: (1) watch the first episode, but
simultaneously implement a (potentially costly) measure to guarantee that there is no possibility
of watching the second; or if that is not feasible, (2) do not watch the first episode. The obvious
challenge for sophisticated choice is the realization that there is a sequence of actions that, at
any given point, they would prefer to the sequence they in fact pursue: simply watch the
first episode and then stop before the second, without any costly intervention guaranteeing the
latter. (Notably, this structure is shared with iterated prisoner’s dilemmas; see Example 11).

An alternative response that attempts to make good on this intuition—known as resolute
choice (e.g., McClennen 1990; Gauthier 1994)—is to permit watching the first episode, so long
as the person pre-commits to a plan of stopping after the first episode. In other words, rather
than rely on some external commitment device, simply exercise your own will. This of course
assumes that the individual has the cognitive resources necessary to promote “reason above
passion” (Hume, 1739, II.iii.3). But an even more basic challenge for the proponent of resolute
choice is to clarify why, at the point of decision, it is rationally required—or indeed even
permitted—to follow through with the plan in the first place. By assumption, after the first
episode the person judges it overall better for them to watch a second episode than to return to
work. What rational force does a plan devised by a previous version of oneself have over one’s
current choices, and why is insistence that one follow the plan anything other than irrational
“rule workship” (Smart, 1956; Bratman, 2018)?

A different, though related set of puzzles arises from the possibility that some decisions may
change what one values in a more fundamental, long-term manner. For instance, the decision
to give birth can alter what one comes to find better or worse, including in ways that cannot be
adequately anticipated beforehand (Ullmann-Margalit, 2006). The challenge here is thus also
epistemic: not only does one need to account for future changes in utility assessment, there is
a problem of imagining what those future utilities will be in the first place (Paul, 2014).

These various challenges related to dynamic choice may motivate incorporating additional
components into the decision theoretic formalism introduced so far, viz. time-relative utilities,
“planning states” as a basic component of an agent, and so on. It is important to emphasize,
however, that this does not by itself answer the fundamental philosophical questions. We still
face further issues such as how—at the time of decision—one ought to aggregate past and future
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utilities (cf. Pettigrew 2019), or how—again at the time of decision—a plan constrains what
one ought to do at that time (cf. Bratman 2018 and §6.4).

At issue are substantive questions about what it means for things to “go well” for an agent
across an extended period of time, and specifically how this relates to the agent’s own subjective
states of valuing at each particular point in time. Though we will not attempt to answer these
substantive questions here, in Chapter 6 we will address some such considerations that pertain
to—or perhaps even emerge from—resources consideration in particular (§6.4).

Putting aside these subtleties about dynamic choice, and how it might look to an agent
sophisticated enough to think about it, we now move on to the standard framework we will
employ throughout this Element for assessing sequential behaviors.

2.2 Sequential Decisions
In the formulation of one-off decision problems, there is one choice to be made, namely, a
selection from A. Then, depending on the state s, some utility u(s, a) is obtained. Yet much
of what is challenging about decision making stems from the need to make a whole series of
decisions over time. Given, as before, a set S of possible states and a set A of possible actions,
we assume an interaction between the agent and its environment produces a history h:

h = s0, a0, . . . , st−1, at−1, st

of length 2t+1, with each of the t actions ai producing a new state si+1. We of course allow that
some “actions” may amount to the agent doing nothing, in which case the state may change
without any intervention on the part of the agent. Let Ht be the set of all histories of length
2t+ 1, and let H =

⋃
tHt be the set of all histories.

To capture the environmental dynamics, we assume there is some transition function q :
H×A→ ∆(S), with qh,a(s) the probability of entering state s after history h when the agent
performs action a. The environment begins in state s with probability q0(s). This leads to:

Definition 1. A sequential decision problem is a 4-tuple (S,A, q, u):

• S is a set of states;

• A is a set of actions;

• qh,a(s) gives the probability of reaching s in one step following history h when a is taken;
meanwhile q0(s) is the probability of initially being in s;

• u(h, a) is the utility, or reward, obtained from taking action a following history h.

In this simple setting there is no uncertainty about what state the agent is in or about
what history has taken place. (Uncertainy about the state will be introduced in §2.4, while
uncertainty about the history will appear when we put limits on available memory; see §3.4.)
In particular, the utilities of all actions are transparent. The only uncertainty is about what
state will result from a given action. This already introduces a distinctive strategic component:
choosing worse (viz. lower utility) options now may lead to the possibility of better actions
later on, and perhaps greater cumulative utility. In the sequential setting we assess not just
individual actions, or even sequences of actions, but instead entire strategies. We might think
of a strategy as a behavioral disposition, or as a “policy.”

Definition 2. A strategy is a function σ : H → ∆(A), specifying a distribution on actions for
every possible history. We write σh(a) for the probability of action a at history h.
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As an agent implements a strategy in a sequential problem, there are two potential sources
of nondeterminism: the transition function and any randomness in action selection. Putting
these together, for a given number of steps T , they induce a probability distribution Pσ

T on
histories in HT . As a piece of notation, for h ∈ HT and t < T , let ht be the initial segment of
h that stops at st; thus, ht ∈ Ht. Then the distribution Pσ

T is defined as follows.

Pσ
T (h) = q0(s0) ·

T−1∏
t=0

σht(at) · qht,at(st+1). (2.5)

How are we to assess a strategy? If only a finite sequence (i.e., a history) is generated (with
probability 1), then we could simply add up the utilities obtained along that history:

U(h) =
T−1∑
t=0

u(ht, at). (2.6)

This amounts to assuming that every “time slice” of the agent is weighed equally. Such an
assumption might be especially sensible in the context of externally and holistically evaluating
“how well things go” for an agent over an entire (finite) lifespan.5 since there may be no
distinguished time of evaluation. It may be worth noting, empirical studies suggest that, when
reflecting abstractly on how a good life looks, people actually prefer that things become better
over time rather than worse. Thus, realistically, the order of outcomes may matter.

For a variety of reasons, decision theorists have found it useful to introduce temporal dis-
counting into the framework, particularly when we think of there being a “now”—a so-called
anchor point—the very first decision in a series of future decisions. Rather than emphasizing
improvement over time, timepoints in the future actually receive less weight relative to the
anchor. The assumption is that there is a discount γ > 0, such that:

U(h) =
T−1∑
t=0

γtu(ht, at) (2.7)

Of course, Eq. (2.6) is the special case where γ = 1. But if γ < 1, then future utilities count
less toward the sum. One interpretation of γ is that it specified the probability of continuing
on to another round of decision making.6 Another is as a “measure of impatience” (Aumann,
1981), consistent with the empirical finding that people care less about future rewards than
about immediate rewards. Though this “exponential discounting” expression does not perfectly
match empirical behavior (Frederick et al., 2002), it is a common and convenient assumption.

Whether we adopt Eq. (2.6), (2.7), or some other means of assessing histories, we can use
Eqs. (2.5) and (2.6) to calculate the T -step expected utility for strategy σ:

UT (σ) = Eh∼Pσ
T
U(h). (2.8)

This is just like the expected utility measure in the non-sequential case (Eq. (2.2)), but the
expectation now is with respect to a distribution defined on entire histories.

In some settings we may not want to impose any specific finite bound on the length of time.
As long as γ < 1, the T -step expected utilities will converge as T increases, so we can assess a
strategy σ in general by taking the limit:

U(σ) = lim
T→∞

UT (σ). (2.9)

5In support of this suggestion, Rawls writes, “Rationality requires an impartial concern for all parts of our
life. The mere difference of location in time, of something’s being earlier or later, is not a rational ground for
having more or less regard for it” (Rawls, 1971, p. 293). Cf. also Fn. 2.

6However, under this interpretation we would need to add a term, 1− γ, for the stopping probability.
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Naturally, Eq. (2.9) will always be well-defined if the process terminates with probability 1,
even if γ = 1 (no discounting). We thus take Eq. (2.9) as the official assessment measure for
strategies in sequential decision problems.

Remark 2 (Strategies versus Plans). While strategies specify an action for every possible his-
tory, there is no assumption that an agent actually maintain or encode a strategy in any explicit
way. A strategy is rather an abstract characterization of an agent’s behavioral dispositions. No
matter which history h comes to pass, the agent will do something (or nothing) at that point,
and σh(a) specifies the probability of the agent actualizing a.

Of course, many agents maintain a mental economy that does involve explicit intentions to
perform specifies actions at future times. This mental state of planning is usually understood to
be highly partial (Bratman, 1987, Chapter 3), far less detailed than what is required to specify
a strategy in the sense of Def. 2 (cf. Zhi-Xuan et al. 2020 for relevant recent computational
work). Partiality may be advantageous if deliberation can be postponed to a later point, and
it may be resource-efficient to the extent that there is no need to plan for contingencies that
(the agent believes) are not going to happen. Plans in this sense fit into the framework in a
different way, namely as part of an agent architecture, with operations over plans represented
in the theory by programs (recall §1.2.2, and see §6.4 below for more).

Returning to the technical apparatus of sequential decision making, a particularly important
setting for sequential problems is when utilities and the next state do not depend on the entire
history, but only on the action and the current state. This “Markovian” assumption (Bellman,
1957) leads to a simplification of Def. 1:

Definition 3 (MDP). A Markov decision process is a sequential decision problem (S,A, q, u)
in which qh,a = qh′,a and u(h, a) = u(h′, a), whenever h, h′ agree on their last state. When
dealing with MDPs we simply write qs,a instead of qh,a, and likewise u(s, a) instead of u(h, a).

The Markov assumption may appear to be a limitation. After all, what is good for an
agent at a particular time may depend on what happened at an earlier time. For instance, one
might be concerned with whether a current choice is consistent with a pattern of past choices.7
Yet there is an important sense in which the Markov assumption by itself involves no loss in
generality. The reason is that we can always convert a sequential decision problem into an
MDP simply by letting the states of the MDP encompass all possible histories in the sequential
decision problem (cf. Sutton and Barto 1998, Section 3.5).

Correspondingly, we can simplify the notion of a strategy, so that it too depends only on
the current state rather than the entire history:

Definition 4 (Stationary Strategy). A strategy σ is stationary if it depends only on the current
state. Assuming stationarity, a strategy is a function σ : S → A, and we simply write σs.

We state without proof the following landmark result:

Theorem 1 (Blackwell 1970). If an MDP admits any optimal strategy at all, then there is an
optimal strategy that is stationary.

While the conversion of any sequential decision problem into an MDP—and with it, the
restriction to stationary strategies—is thus possible in principle, the conversion does result in a
much larger state space, and therefore potentially more complex strategies. How we represent
the decision problem may impact how we capture resource costs:

7Perhaps one’s life going well inherently involves a certain consistency in choice across time, for example.
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Remark 3 (Preview of Strategic Cost). We will encounter two ways of imposing resource costs
on a strategy, both of which involve presumptive limitations on memory.

In the general setting of sequential problems, we could study the degree to which a strategy
depends on history: do we need to remember what happened many steps back, or do we only
need to look at the current state? We study this question in the next chapter using automata
theory (see Def. 11). Since stationary strategies have minimal cost in this setting, Theorem 1
shows that MDPs always have optimal strategies with minimal cost.

However, there is a second approach to strategy cost that penalizes not dependence on
history, but sensitivity to a diversity of states. If there are many relevantly different states
in an MDP, it may require substantial resources to respond differentially to all of them. One
prominent approach to formalizing this idea uses information theory (see Def. 14, 15).

Evidently, when we convert a sequential decision problem into an MDP, we may trade in the
first type of complexity for the second: though our strategy will no longer be history-dependent,
it must be defined relative to a significantly larger state space.

A theoretical advantage of working with MDPs and assuming stationarity is that we can
formulate an elegant recursive specification of the assessment function in Eq. (2.9) above:
Remark 4 (The Bellman Equation). Given a strategy σ, we might be interested in the value
of being in a state s. This leads to the recursive Bellman equation (after Bellman 1957):

Uσ(s) = Ea∼σs
[
u(s, a) + γ Es′∼qs,aUσ(s′)

]
, (2.10)

such that we recover Eq. (2.9) as U(σ) = Es∼q0Uσ(s), so long as U(σ) is well-defined.
Another useful fact for MDPs with stationary strategies is that, under common assumptions,

they together define a “stationary distribution” (not to be confused with a stationary strategy):
Remark 5 (Stationary Distribution). As a technical point—which can be skipped here but will
be invoked in later discussions (§4.3.4, §5.3.3)—the strategy and transition functions together
define a so-called stationary distribution Pσ(s) specifying the “long-term” probability of visiting
state s. Suppose the states in S are listed as s1, s2, . . . . Then σ and q give a transition matrix
T, such that T[i, j] =

∑
a σsi(a) qsi,a(sj). This is the average probability (given strategy σ) of

moving from state si to state sj in one step.
A stationary distribution is a “fixed point” vector s satisfying sT = s. Under relatively

minimal conditions, such a distribution exists uniquely. For example, as long as every state is
reachable from every other state with positive probability (“irreducibility”), and for every state
s there is no number k such that the system will return to s in k steps with probability 1 (“ape-
riodicity”), this is guaranteed. (See, e.g., Chapter 3, Theorem 1.3 of Karlin and Taylor 1975.)
We assume both of these are satisfied, which justifies reference to the stationary distribution,
whereby Pσ(si) = s[i] for the stationary distribution vector s.

If we know all of the relevant parameters in an MDP, solving for the optimal policy can
actually be reasonably tractable (Papadimitriou and Tsitsiklis, 1987), assuming the spaces of
states S and actions A are not too large. However, we the theorists—not to mention the agents
themselves—often do not know all the details of the environment. In this case, we need to
study not just strategies, but learning methods for inducing strategies.

2.3 Reinforcement Learning
Imagine an agent introduced to a new environment in which the relevant features (e.g., the
transition probabilities q or utilities u) are not known or previously experienced. How might
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the agent learn to flourish in this new environment? And how might we—at the theoretical
level—assess different approaches for learning? What makes a learning procedure better or
worse? In discussing these questions we will assume the environment is Markovian (Def. 3).
While the task is therefore to learn an optimal stationary strategy (Def. 4), an agent will
typically not employ a stationary strategy during the course of learning. The whole point of
learning is that the strategy may change with experience—it will thus be history dependent.

There are two families of approaches to reinforcement learning, model-free and model-based,
and we discuss each in turn.

2.3.1 Model Free Methods: Q-Learning
Model-free approaches are quite simple, and date back to the “law of effect” introduced in
psychology by Thorndike (1911). All the agent needs to do is learn to take the right actions in
the right states so that expected cumulative utility (Eq. (2.9)) is maximized. In other words,
it suffices to encode a “cached” value for each state-action pair. This idea of cached values
leads to a very simple model-free method known as Q-learning. Intuitively, the value of taking
a in s equals the immediate reward u(s, a) plus the expected future reward from that point on.
Fixing a strategy σ, we define the Q-value to be:

Qσ(s, a) = u(s, a) + γ Es′∼qs,aUσ(s′), (2.11)

where Uσ(s′) is given by the Bellman Equation (2.10). Note that the best possible Q-values—
those resulting from an optimal strategy σ∗—will then satisfy another recursion, withQ∗ = Qσ

∗ :

Q∗(s, a) = u(s, a) + γ
[
Es′∼qs,a max

a′∈A
Q∗(s′, a′)

]
. (2.12)

That is, taking a in s is as good as its immediate reward and the best one could do from that
point forward. This insight is the basis for the Q-learning algorithm, which iteratively updates
estimates Q̃t of the optimal function Q∗, essentially following Eq. (2.12). Suppose at step t+ 1
that the agent is in state s, takes action a, and moves on to a next state s′ (drawn from qs,a).
Then we update the previous estimate Q̃t(s, a) by:

Q̃t+1(s, a) ← (1− η) Q̃t(s, a) + η
[
u(s, a) + γmax

a′∈A
Q̃t(s′, a′)

]
, (2.13)

for some “learning rate” η ∈ (0, 1) that determines how quickly we move away from the previous
estimate. Under minimal conditions, as long as each action is taken at each state infinitely often,
it can be shown that Q̃t converges to the optimal Q∗ as t increases (e.g., Jaakkola et al. 1994).
So any Q-learning agent will eventually be acting optimally, simply by choosing the action that
has the highest Q-value for any given state.

Remark 6 (Deep Reinforcement Learning). Recent successes in learning to play complex
games—including Go, chess, and a range of Atari video games—involve an approximate Q-
learning algorithm known as deep Q-learning (Mnih et al., 2015; Silver et al., 2018). Rather
than encoding an entire table of values Q(s, a) for all s and a, these values can instead be
estimated using a pair of (convolutional) neural networks.

A remarkable feature of Q-learning is that it works no matter how the actions are chosen
during learning (it is “off policy” in the reinforcement learning jargon). But an agent in a real
environment might want to learn quickly while also performing as well as possible during the
learning process. So we would like to say something about how the agent should behave during
learning. This leads to the well-known tension between exploration and exploitation:
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2.3.2 Exploration/Exploitation Tradeoff
After observing the current state s at stage t in the learning process, the agent needs to choose
a next action. How should this action be chosen? One obvious possibility is to pick a that
maximizes the current estimate Q̃t(s, a). Given past experience, a may have led to the best
outcomes. This is pure “exploitation” of known rewards.

However, there may well be actions that would be significantly better than a, but that the
agent has not yet tried. Pure “exploration” would involve picking the least known action, for
instance, the one that has been attempted in this state the least number of times, or perhaps
by choosing an action totally at random.

The exploration/exploitation tradeoff arises from the need to balance these two considera-
tions: ensuring that the agent does well enough while still learning, and ensuring that learning
happens efficiently. This fundamental tension, which has been called a “basic feature of the
human condition” (Huttegger, 2017, p. 36), has prompted a variety of approaches:

Example 7 (Random Exploration: Softmax). Suppose the current estimate of a is V (a). For
instance, we might have V (a) = Q̃t(s, a) for a Q-learning agent. Then the softmax (or Boltz-
mann) decision rule (Bishop, 1995; Sutton and Barto, 1998) selects action a with probability:

eβV (a)∑
a′∈A e

βV (a′) , (2.14)

where β is a so-called inverse temperature parameter (see §4.3.3 for the source of the nomencla-
ture). As β goes to 0, the rule comes ever closer to complete randomization (high exploration);
as β increases, the rule comes ever closer to maximizing estimated value (high exploitation).
We will revisit this rule below in Chapter 4; see especially §4.1.2.

Example 8 (Uncertainty-Directed Exploration: Upper Confidence Bound). An alternative
to random exploration is to alter the update rule in (2.13) by adding a premium for actions
that have been less explored. Recall that Q̃t+1(s, a) is a weighted combination of Q̃t(s, a), the
previous estimate, and

u(s, a) + γmax
a′∈A

Q̃t(s′, a′). (2.15)

If we simply add to (2.15) an “uncertainty premium” ρ as another summand, then we arrive at
the family of upper confidence bound (UCB) methods. The uncertainty premium ρ is chosen
proportional to 1/

√
n, where n is the number of times a has been chosen in state s so far. As ρ

ensures sufficient exploration, the agent can simply maximize estimated Q-values at each step.

Both softmax exploration and UCB-type methods have been implicated in studies of human
choice behavior (Schulz and Gershman, 2019). Common to all approaches to the dilemma is
an assumption that an agent should begin with a strong bias toward exploration, and then
as time goes on transition more and more toward exploiting. For softmax exploration this
amounts to a kind of “annealing” by increasing β; for UCB it amounts to decreasing the
uncertainty premium ρ over time. Construing an entire human lifespan as one long sequential
decision problem, Gopnik (2020) suggests that childhood can be understood in part as nature’s
solution to a large-scale exploration/exploitation dilemma, insofar as children appear to be in
a privileged and extended position to learn and explore in novel environments.

The exploration/exploitation tradeoff is of course deeply related to issues of resource limi-
tations, particularly when we think of exploration as somehow “internal” to the agent’s mind
(Gopnik, 2020; Aronowitz, 2021), a theme explored further in §6.5. Yet it arises for virtu-
ally any learning agent, independent of computational resources. A difficult methodological
question is how to assess a learning process, even before worrying about resource costs.
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2.3.3 Assessing Learning Methods
If we think of the learning problem as simply one large (meta-)decision problem, and we proceed
as we did in §2.1, then we would have to put a prior distribution on a suitable space of MDPs.
Construing entire strategies as basic actions, Eq. (2.9) specifies a utility for a pair of an MDP
and a choice of strategy. So a Bayesian solution would be to maximize expected utility, where
the expectation is now with respect to the distribution on MDPs. It is possible to formulate
the problem this way (Bellman, 1957)—cf. Remark 7 below—and intricate methods have been
developed for this formulation (Ghavamzadeh et al., 2015). One of the putative advantages
of the Bayesian approach is that it solves the exploration/exploitation problem in a principled
way: the tradeoff is implicit in whatever sequence of actions maximizes expected utility.8

Nevertheless, for a host of reasons, most work in reinforcement learning has not adopted
such a formulation. Instead, emphasis has been on two criteria that do not require putting a
prior distribution on the space of MDPs:

Sample complexity: In the worst case (among MDPs), how many time steps does
it take before the learning agent is within some sufficiently small range of the optimal
strategy, with high probability (see, e.g., Strehl et al. 2006)?

Worst-case regret: In the worst case (among MDPs), how much worse does the agent
perform than the optimal agent? This is a version of minimax regret, Eq. (2.4) above.

To unpack the second criterion, suppose we divide the learning phase into I “episodes” each
lasting some finite number of steps. In each episode the agent employs a strategy σi based on
their experience (e.g., estimated Q-values) from the previous episodes. Then the worst-case
regret for a given MDP measures how much worse the agent is performing across all episodes,
compared with the optimal strategy σ∗ for that MDP:

I∑
i=1

[
U(σ∗)−U(σi)

]
. (2.16)

Because the MDP is not known ahead of time, no learning algorithm can avoid some degree
of regret. In fact, fundamental lower bounds on worst-case regret can be derived (Azar et al.,
2017; Jin et al., 2018), which scale (sublinearly) with the size of the MDP (S and A) and the
number of episodes and steps per episode. In other words, these results show that for any
algorithm, as the size of the MDP and the number of episodes increases, there will be MDPs
that prevent the algorithm from reaching the optimal policy too quickly.

Jin et al. (2018) show that worst-case regret and sample complexity are closely related (see
also Dann et al. 2017; Osband and Van Roy 2017), and moreover that specific versions of UCB
(Example 8) in fact approach the theoretical optimal performance. Softmax exploration, while
conceptually simple, is less well understood theoretically, and in any case appears to be less
sample-efficient than more “directed” (deterministic) approaches (Cesa-Bianchi et al., 2017).
Of course, it evidently requires even less memory than UCB (since it does not have to store
any data about how often actions have been chosen), which raises the possibility that it is
nonetheless a resource rational approach, balancing statistical and computational efficiency.
We consider this question in a broader context (beyond learning) in Chapter 4; see Cor. 8.

8It will follow from Theorem 5 below (in §4.2) that such a solution will not involve any randomization at all,
thereby ruling out any type of softmax exploration.
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2.3.4 Model-Based Methods
Agents that learn in a model-free way, e.g., through Q-learning, are inducing conditioned re-
sponses to stimuli, akin to stimulus-response approaches in psychology (e.g., Thorndike 1911):
when in state s, perform action a. But what happens if, say, the transition probabilities remain
as they were, but the utility structure changes dramatically? In other words, what is good for
the agent changes. For this new environment, the learned strategy may be next to useless, and
the agent will have to start learning again from scratch.

An alternative approach is to learn not just the estimated value of taking a in s, but actual
features of the environment itself, most saliently the transition probabilities (q) and the utility
structure (u). To the extent that an agent has internalized these components, if one of them
changes, all they need to do is learn about those changes, and then they can engage in some
type of replanning, taking the changes into account. The idea that humans and other animals
learn by building “internal models” was a key motivating idea in the development of cognitive
science (Craik, 1943), a theme to which we will return in §6.1.

A model-based approach thus involves explicitly learning about features of the environment.9
Given some history h = s0, a0, . . . , sT of interaction, we might suppose the agent maintains a
probability P(M |h) that this history was generated by MDP M . On a Bayesian formulation,
this could be derived from an assumed prior distribution P(M) on MDPs, together with the
obvious likelihood P(h|M) = q0(s0) ·

∏T−1
t=0 qst,at(st+1). Further experience thus allows the

agent to refine their uncertainty about the underlying MDP.
Once M has been learned, the agent can solve for the optimal strategy σ∗ and behave

according to σ∗. But in the course of learning, just as in the model-free setting, the agent faces
a tradeoff between exploration and exploitation. Model-based UCB-type algorithms (Example
8) have been studied in this setting as well, and shown to achieve optimal regret bounds (Azar
et al., 2017). There are also prominent approaches that rely on random behavior:

Example 9 (Posterior Sampling). One method, knowing as posterior sampling or Thompson
sampling (after Thompson 1933), works as follows. At the beginning of each episode, having
observed history h, the agent randomly draws an MDP M with probability P (M |h), solves for
the optimal strategy σ∗ in M , and then uses σ∗ for the remainder of that episode, generating
a longer history for the next draw at the start of the next episode.

Theoretical work has shown that this approach also attains optimal regret bounds in a
certain sense (Osband and Van Roy, 2017).10

When should an agent employ a model-free mode of learning, and when should they invoke
an internal model? While a model may be computationally costly to learn, maintain, and use,
it facilitates quick and flexible adaptation (cf. Godfrey-Smith 1998). By contrast, model-free
approaches demand fewer computational resources, though they may adapt less efficiently.

This is a paradigm example of a tradeoff between efficiency and computational costs. There
is evidence that brains in fact employ both types of learning in concert—both a “habitual”
model-free system, and “goal-directed” model-based system—and they may come into conflict
(Daw et al., 2005). When conflict occurs, and a decision must be made, the system must

9A precise distinction between model-free and model-based learning offered in the literature (Strehl et al.,
2006; Jin et al., 2018) invokes computational resources, specifically memory: a method is model-free just in case
its space requirements scale sublinearly with the space needed to encode the entire MDP. So if the “internal
model” were sufficiently compact, it would not actually be counted as model-based learning. Note that this
definition is best read as offering necessary conditions for being a model, but not sufficient conditions.

10Osband and Van Roy (2017) use a notion of Bayesian regret that is just like Eq. (2.16), except that the
worst case MDP is replaced by taking an expectation of (2.16) with respect to a prior distribution on MDPs.
In anticipation of Chapter 4, this does not show randomization is necessary to minimize (Bayesian) regret.
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somehow adjudicate between the two. Daw et al. (2005) give evidence that this is done in a
statistically efficient way, while Gershman et al. (2014) suggest that there is even more direct
interaction between the systems, e.g., whereby the internal model supplies “simulated data” to
help the habitual module learn more efficiently. This body of work offers another illustration
of resource rational analysis, the topic of Chapter 5.

2.4 Sequential Decisions with Partial Observability
As a final topic in traditional decision theory, we now consider a generalization of Markov
decisions processes that allows imperfect observations of the underlying state (Åström, 1965;
Kaelbling et al., 1998). We augment the MDP formalism (Def. 3) with a set O of observations,
and a likelihood function l(o|s) for the probability of observing o ∈ O when in state s.

Definition 5 (POMPDP). A partially observable Markov decision process is specified by a
6-tuple, (S,A,O, q, l, u):

• S is a set of possible states;

• A is a set of possible actions;

• O is a set of possible observations;

• q : S ×A→ ∆(S) is a transition function, whereby qs,a(s′) is the probability of reaching
s′ when a is taken in s; meanwhile, q0 is a distribution on initial states;

• l : S → ∆(O) is a likelihood function, with l(o|s) the probability of observing o in s;

• u : S ×A→ R is the utility function.

Notably, POMDPs have been used in cognitive science to capture intuitive “theory of mind,”
including with infants (Jara-Ettinger et al., 2016).

In the partially observable setting, since the agent does not perceive states but only noisy
indications o of them, let us call a sequence ω = o0, a0, . . . , ot−1, at−1, ot an observation history.
Let Ot be the set of all observation histories of length 2t+ 1, i.e., those with t actions and t+ 1
observations, and let O =

⋃
tOt be the set of all observation histories.

Definition 6 (Strategy in a POMDP). A strategy is a function σ : O → ∆(A). We write
σω(a) for the probability of action a given observation history ω.

Note that, even though the underlying dynamics (represented by q) are assumed here to
be Markovian, depending only on the current state, we cannot necessarily restrict attention to
stationary policies that depend only on the last observation. Since the agent does not directly
observe the state, the whole observation sequence might be relevant.

A strategy σ, with a likelihood function l and a transition function q, still gives a distribution
Pσ
T on histories parallel to (2.5), though histories are now slightly more complex objects. In the

partially observable setting a history will be a sequence h = s0, o0, a0, . . . , st−1, ot−1, at−1, st, ot.
Let us write ω(h) for the subsequence obtained by removing all state occurrences. Thus,
ω(h) = o0, a0, . . . , ot−1, at−1, ot is an observation history as defined above.

Given σ, we define a distribution on T -step histories as follows:

Pσ
T (h) = q0(s0) · l(o0|s0) ·

T−1∏
t=0

(
σω(h)�t(at) · qst,at(st+1) · l(ot+1|st+1)

)
(2.17)
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which in turn gives a T -step expected utility analogously to Eq. (2.8),

U(h) =
T−1∑
t=0

γtu(st, at)

UT (σ) = Eh∼Pσ
T
U(h).

and finally an overall expected utility just as in (2.9):

U(σ) = lim
T→∞

UT (σ). (2.18)

An optimal policy is a function σ for which U(σ) is maximal.

Remark 7. On a Bayesian formulation (recall §2.3.3), the problem of learning a fixed MDP
can be characterized as a POMDP. Suppose, for instance, that the agent knows the states S,
the actions A, and the utility function u, but is uncertainty about the transition function.

Then a POMDP representation of the learning problem takes the set of states to be all
pairs 〈q, s〉 where q is a transition function and s ∈ S, the actions A are the same, and
observations are the states O = S, with likelihood function l(s|〈q, s〉) = 1. The new utilities
are u∗(〈q, s〉, a) = u(s, a). The transition function q∗ in the POMDP is given by q∗〈q,s〉,a(s′) =
qs,a(s′). In other words, the only uncertainty comes from the initial distribution q∗0 , defined so
that q∗0(〈q, s〉) = q0(s) p(q) for some prior p on transition functions.

Solving this POMDP thus produces the optimal learning strategy relative to the prior p on
transition functions, again balancing exploration and exploitation in a principled way.

2.4.1 Bayesian Filtering
Given partial observability, it seems that an agent would need—in some way or another—to
track (their uncertainty about) the underlying sequence of states that likely generated the
observation history ω = o0, a0, . . . , ot, at, ot+1 encountered so far. Doing so in a Bayesian
manner—known as filtering—leads to the following posterior probabilities:

Proposition 1. The posterior probability P (s|ω) of state s, given observation sequence ω, is
defined by recursion on the length of ω:

P (s|o0) ∝ l(o0|s) q0(s)
P (s|o0, a0, . . . , ot, at, ot+1) ∝ l(ot+1|s)

∑
s′

P (s′|o0, a0, . . . , ot) qs′,at(s).

The first probability, P (s|o0), is just the standard posterior after the first observation (cf.
Eq. (2.1)). For the recursion we multiply the likelihood of the last observation given s, by
the probability of having arrived at s after taking the last action at. An optimal solution to a
POMDP would generally seem to demand sensitivity to these posterior probabilities specified
in Prop. 1. In fact, there is a precise sense in which an agent tracking beliefs in a POMDP can
be understood as inhabiting an ordinary MDP, in which the states are belief states.

2.4.2 Belief MDPs
If an agent were tracking the posterior distribution on states, following the expressions above
in Prop. 1, then we could think of them as traveling between different belief states, depending
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on what actions are taken and what observations are made. As Prop. 1 shows, knowing the
previous belief state “screens off” the new probability from the rest of the history:

belief b, action a 7→ new belief b′ such that b′(s) =
∑
s′

b(s′) qs′,a(s)

belief b, observation o 7→ new belief b′ such that b′(s) ∝ b(s) l(o|s)

Given a belief state b, let us write b[a] or b[o] for the respective resulting belief state.
This itself defines a kind of dynamics, whereby an agent decides on an action a given their

belief state b, which then establishes a new belief state b[a] that can change again with a further
observation; and we finally end up where we can repeat the same process but relative to the
new belief state b[a][o]. What this informal observation shows is that POMDPs can actually be
construed as (continuous-state) MDPs, in which the states are the possible beliefs of the agent.
A variation on the following appears in Åström (1965):

Proposition 2. For every POMDP M = (S,A,O, q, l, u) there corresponds an MDP (as in
Definition 3), M∗ = (B,A, q∗, u∗), such that:

• The set of states is B = ∆(S), that is, all probability distributions on S;

• A is the same in M∗ as it is in M ;

• The transition function q∗ : B × A → B is defined so that q∗b,a(b′) is the probability of
there being some observation that leads to belief state b′; that is,11

q∗b,a(b′) =
∑
s,o

(
b[a](s) · l(o|s) · 1b′=b[a][o]

)
.

• Finally, the utility u : B × A → R is defined so that u∗(b, a) =
∑
s∈S b(s)u(s, a); this is

just the expected utility of a under b (Eq. (2.2)).

Any optimal strategy σ∗ for M∗ canonically induces an optimal strategy σ for M , whereby
σω = σ∗b with b the belief state defined by b(s) = P (s|ω) as given in Prop. 1.

In contrast to MDPs, it is known that the worst-case computational complexity of solv-
ing POMDPs is relatively high (Papadimitriou and Tsitsiklis, 1987), typically intractable in
theory and in practice. Unsurprisingly, dealing with continuous-state MDPs is also generally
intractable. While the unrestricted framework is attractive in virtue of its significant general-
ity, particular applications—especially when we as theorists actually want to solve for the best
strategies—may call for simplifications or restrictions.

2.5 Summary
Prior to introduction of considerations of resources or resource costs, we have identified some
of the key tools and themes in traditional approaches to decision theory. Despite points of
philosophical controversy and contention at nearly every turn, we can identify a relatively
canonical set of structures implied by a typical (especially sequential) decision problem. As a
summary of core concepts and notation, we have encountered the following components:

11Here 1ϕ is the indicator function, equal to 1 if ϕ is true, 0 otherwise.



CHAPTER 2. TRADITIONAL DECISION THEORY 39

• S: set of states

• A: set of actions

• O: set of observations

• q, p, P,P: a probability distribution

• ∆(X): set of distributions on X

• Ex∼pf(x): p-expected value of f

• u(s, a): utility of a at s

• σ: strategy

• U(σ): expected utility of a strategy

• Qσ(s, a): Q-value of a at s

• π: a program

• Π: a set of programs

• C(π): cost of a program

• V(π): overall value of a program

These components highlight numerous sources of costs and complexity. We will encounter a
range of approaches to characterizing such costs, from those that depend concretely on details
of agent architecture (e.g., how representations are encoded), to those that purport to place
limits on any physically embodied agent whatsoever.



Chapter 3

Machines Playing Games

As discussed at end of the previous chapter there are numerous sources of complexity in tra-
ditional models of decision making. The present chapter presents a line of work originating
in Economics in the 1980s that construes players in games as resource constrained machines.
Rather than looking at the topic from the perspective of a single decision maker, this body
of research takes the multi-agent perspective of game theory. A prominent theme here is that
familiar results and patterns in standard approaches to game theory look quite different when
the individuals are even minimally constrained in what they can compute.

Compared to some other approaches that hew closely to human psychological processes
(see especially Chapter 5), this line of work is relatively coarse-grained, studying agents that
are human-like only in being subject to very general computational constraints. This alone is
sufficient to reveal some subtle—and indeed seemingly human-like—behaviors.

Since the previous chapter dealt only with single-agent decision problems, our first task is
to introduce game theory against this background. As a segue to later chapters, this chapter is
also tasked with introducing two fundamental concepts from the theory of computation, namely
(probabilistic) Turing machines and (probabilistic) finite state automata.

3.1 Games and Decisions
Game theory is the study of rational decision making among groups of agents who may have
different desires or preferences. At first blush it may not be clear why multi-agent contexts in-
troduce anything fundamentally new beyond the Bayesian decision theoretic setting covered in
the previous chapter.1 The trouble, of course, is that Holmes’s attempt to arrive such an assess-
ment is frustrated by a potential symmetry in the strategic situation, which in turn threatens
deliberative instability. After all, Moriarty faces essentially the same decision problem, with
the goal of assessing what Holmes is most likely to do. Each assumes the other is shrewd and
neither wants to disappoint.

3.1.1 Game Theoretic Equilibrium
The motivating idea behind the theory of games is that these multi-agent scenarios cannot
be easily reduced to separate individual-level decision problems—there is something holistic
about strategic situations among intelligent agents. Recall that in a single-agent, one-shot

1Indeed, we will briefly discuss conservative multiagent extensions to single-agent decision theory in §6.6.

40
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decision problem, we assume a set A of actions, a set S of possible states, and a utility function
u : S × A → R. In standard game theoretic scenarios we assume that the primary source of
uncertainty is what action another agent (or agents) will take. Thus, let N = {0, . . . , n − 1}
denote a set of n “players,” such that each player i < n has a set Ai of possible actions, with
A = (A0, . . . , An−1). The utility now depends on what all of the players do; so player i will
be associated with a utility function ui : A → R. It will be convenient to assume in most of
this chapter that there are only two agents. So a game will be simply a pair G = (A,u), where
A = (A0, A1) and u = (u1, u2). Here is a very simple rendering of Example 4:

Example 10. Suppose Holmes (player 0) and Moriarty (player 1) both have actions A0 =
A1 = {c, d} (Canterbury and Dover). Their respective utilities can be depicted in a table, with
the first number the payoff for 0, the second the payoff for player 1. Actions along the leftmost
column are those of 0, while actions on the top row are those of 1:

c d
c −10, 10 5, 0
d 10,−5 −10, 10

For instance, if Moriarty disembarks early at Canterbury but Holmes continues to Dover (bot-
tom left), this is especially bad for Moriarty, as he misses Holmes and is stranded in Canterbury.

If Holmes did have a prior probability over Moriarty’s actions, then it would make sense for
him to maximize expected utility with respect to that prior. For instance, if he judged Moriarty
equally likely to choose Canterbury or Dover, then Holmes would stay on until Dover. However,
as discussed in §2.1.5, playing against a clever agent introduces the possibility of dependence
between states and actions, in which case maximizing expected utility may no longer make
sense. For instance, it might seem reasonable to expect Moriarty to avoid Canterbury, since he
would not want to be stranded there. The problem is that Moriarty, having anticipated this
very expectation, will choose Canterbury precisely to outwit Holmes. And so on.

Just as in Chapter 2, a strategy for player i is a distribution σi ∈ ∆(Ai) over actions Ai.
Given a pair σ = (σ0, σ1) of strategies for the two players in game G, the expected utility for
each player i is a sum of products:

Uσ
i =

∑
a0∈A0

∑
a1∈A1

σ0(a0)× σ1(a1)× ui(a0, a1). (3.1)

The operative notion in game theory is that of a Nash equilibrium.

Definition 7 (Nash Equilibrium). A pair σ = (σ0, σ1) of strategies forms a Nash Equilibrium
if, for each i and each σ′ that differs only on σi, we have Uσ

i ≥ Uσ′

i .

Nash (1950) famously proved that every finite game has a Nash equilibrium, though in
general this result requires “mixed”—that is, randomized—strategies. For instance, it is easy
to check that in Example 10, the only Nash equilibrium is fully randomized: Holmes chooses
Canterbury with probability 1/3 and Moriarty chooses Canterbury with probability 3/7.

This result is in stark contrast to the setting of individual Bayesian decision making, where
it can be shown that there is always a deterministic strategy that maximizes utility. (A strong
version is proven in Theorem 5 of Chapter 4.) The question naturally arises of how the pro-
nouncements of decision theory and game theory should be reconciled. That is, how does
maximizing expected utility relate to playing a Nash equilibrium strategy?

Some have argued that decision theory should be understood as fundamental, and that
equilibrium notions make sense when (and only when) one’s subjective probabilities match
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those of the equilibrium solution (see, e.g., Kadane and Larkey 1982). In their introduction of
modern game theory, von Neumann and Morgenstern (1953) called this the “Robinson Crusoe”
model of strategic decision making, since it treats other agent decisions as just another aspect of
the world about which one might be uncertain. For instance, if Holmes judges that Moriarty will
choose Canterbury with probability 3/7 then it would be acceptable to play his mixed strategy
of 1/3 and 2/3. At the same time, given these beliefs, any strategy for Holmes would maximize
his expected utility (namely −10/7), including, say, deterministically opting for Dover. And if
he judged Moriarty only minimally more likely to wait until Dover, the only way to maximize
expected utility would be to (deterministically) disembark at Canterbury.

Recall, however, that the distinctive challenge of the strategic multi-agent context is pre-
cisely how to assess such probabilities. Some have suggested that, at least in certain circum-
stances with as-good-as-ideal players, equilibrium considerations might furnish a stable prior
probability for each of the players (Harsanyi, 1982). On this interpretation the probabilities in
a mixed strategy do not describe randomization over actions (Zollman, 2023), but rather the
subjective degrees of belief for the other players in the game (Aumann, 1987). In other words,
in Example 10 taking Moriarty to choose c with probability 3/7 and d with probability 4/7
identifies the beliefs that Holmes ought, by appeal to deliberative symmetry, to have.

There are yet further proposals for ameliorating the potential tension between expected
utility maximization and game theoretic equilibrium. For example, in the spirit of resource
rationality—specifically an instance of the “minimal rationality” approach described in §1.2.1—
Skyrms (1990) shows how very simple learning agents aiming to maximize expected utility
may reach game theoretic equilibria by virtue of achieving a kind of “dynamic deliberative”
equilibrium. Other work abandons the idea of equilibrium play as a matter of rationality at
all, and instead treats game theory as an analytic tool for describing or predicting group-level
behavior, for instance in penalty kicks at soccer games (Chiappori et al., 2002) or in the evolved
distribution of traits in a large population (Maynard Smith and Price, 1973).

3.1.2 Prisoner’s Dilemma
Perhaps the most famous game is one for which decision theory (viz. expected utility maxi-
mization) and game theory (Nash equilibrium play) in fact agree:

Example 11 (Prisoner’s Dilemma). Two players, {0, 1}, each have possible actions {c, d}
(mnemonic for cooperate and defect), with utilities given by the table:

c d
c 3, 3 0, 4
d 4, 0 1, 1

On one story, after Hume (1739), two farmers stand to benefit from the other helping to harvest
their crops. Farmer 0 has a choice of whether to help farmer 1, and 1 has a choice of whether to
help 0. Let us suppose (contrary to Hume’s discussion) that both choices will be made without
knowledge of the other’s choice. If both help each other, then they do reasonably well (utility
3). But if, say, 0 helps 1 but not vice versa, then 1 does even better (utility 4).

For both players choice d “dominates” choice c, in the sense that it gives a superior outcome
no matter what the other does. The only Nash equilibrium in this game is thus the pair of pure
strategies according to which both players defect. This is also the only strategy that maximizes
expected utility, relative to any prior probability on the other’s actions.

Games like the prisoner’s dilemma have raised questions about the rational pronouncements
of standard decision and game theory; see Peterson (2015) for a compendium. Many have the
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intuition that, e.g., Hume’s farmers ought to be able to cooperate. After all, they both end up
better off if they, collectively, do not play the strategies that rationality evidently demands of
them. Moreover, in experimental studies people cooperate about half of the time in (one-shot)
decision problems that resemble prisoner’s dilemma situations (Camerer, 2003, p. 46).

Some have suggested that we might draw parallels between prisoners’ dilemmas and phe-
nomena of temptation and potential preference change discussed in §2.1.7, such that the two
predicaments may enjoy a common solution. For instance, Gauthier (1994) argues that, just as
in a case of temptation, maintaining a policy of cooperation might conduce better to one’s life
going well overall (cf. §6.4). Other authors like Gold and Sugden (2007) maintain that we can,
and often do, elevate to a “group” or “team” perspective and figure out what course of action
is best for the group. Whether such attempts to rationalize cooperation amount to changing
the decision situation fundamentally (see Binmore 2015) remains a matter of controversy.

In any case, it is well understood that sequential versions of the prisoner’s dilemma can
induce cooperative behavior in rational players, consistently with classical decision and game
theory (see Example 13 below). Before approaching the sequential game setting we first intro-
duce some foundational concepts from computability theory.

3.2 Turing Machines and Implementable Strategies
The fundamental idea behind resource rationality is that agents implement programs that gov-
ern their behavior. A foundational approach to understanding which behaviors can, in principle,
be implemented by some program takes Turing’s (1936) celebrated analysis of computability as
a starting point. The very idea that the mind can be likened to some kind of computing device
takes inspiration from this analysis (McCulloch and Pitts, 1943; Putnam, 1967). The use of
Turing machine programs per se in studying game theoretic strategies was explored thoroughly
starting in the 1980s (e.g., Neyman 1985; Nachbar and Zame 1996, among many others).

We leave the definition of Turing Machines here semi-formal, since the details can be found
in any textbook on theory of computation (e.g., Hopcroft and Ullman 1979). We assume:

Definition 8. A Turing machine is given by:

1. An infinite read/write tape with inputs (“observations”) written on the tape at the begin-
ning of computation and outputs (“actions”) written on the tape at the time of halting;

2. A finite set of states that the machine can be in;

3. Transition rules that can flip fair coins to determine what to do next; specifically, these
rules have the form:

〈q, o, b; a, d, q′〉,
and are read: when in state q, reading symbol o and random bit b, rewrite o as a, go
direction d on the tape (left or right), and enter state q′.

From Turing’s (1936) analysis and much subsequent work, it is generally assumed that
deterministic Turing machines—those whose actions do not depend on the random input—
define exactly the computable functions. This class is widely assumed to delimit the functions
(“input-output” relations) that could be computed by (reasonable idealizations) of the human
mind. As von Neumann famously put it:

You insist that there is something a [Turing] machine cannot do. If you will tell me
precisely what it is that a machine cannot do, then I can always make a machine
that will do just that. (quoted in Jaynes 2003, p. 7)
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A similar analysis can be given for the more general class of probabilistic Turing machines
(PTMs). By allowing output to depend on random bits, PTMs define functions from observa-
tions to distributions on actions, or in other words, strategies in the sense of Def. 2. A strategy
that can be implemented by a Turing machine we call a computable strategy.

One-shot games, as defined above in §3.1, do not involve any observations. So a strategy
will simply be a machine for effecting a distribution on actions (a “mixed” strategy). A basic
question is whether equilibrium play can be achieved by a pair of PTMs. That is, for cases
like Example 10 that require mixed strategies, when are these strategies computable by Turing
machines? Turing (1936) defined the notion of a computable real number : roughly, one for
which there is a Turing machine that can compute a rational approximation to the number for
any desired degree of approximation. As long as the utilities in the game are all computable
numbers, it can be shown that equilibrium strategies will be Turing computable. The reason is
that equilibria can be construed as solutions to polynomial equations, always giving algebraic
(and thus computable) numbers (Lipton and Markakis, 2004). Specifically, a pair of (mixed)
strategies (σ0, σ1) is associated with probabilities x1, . . . , xn and y1, . . . , ym over A0 and A1,
respectively; and an equilibrium will be a solution to the following system:

x1, . . . , xn, y1, . . . , ym ≥ 0 U(σ0,σ1)
0 ≥ U(σ∗0 ,σ1)

0∑
i≤n

xi =
∑
j≤m

yj = 1 U(σ0,σ1)
1 ≥ U(σ0,σ

∗
1 )

1

where U0,U1 are the polynomials defined above in (3.1), and σ∗0 and σ∗1 range over the (finitely
many) pure (non-mixed) strategies for players 0 and 1, respectively.2 As any solutions will
therefore give computable real numbers, there will be a probabilistic Turing machine that
exhibits this behavior; see, e.g., Icard (2020) for a proof. We thus have:

Theorem 2. Equilibrium play in a one-shot game can be accomplished by Turing machines.

Recall, however, that the interest in agent programs is the fact that different programs may
incur different costs. Suppose a pair of (Turing machine) programs π = (π0, π1) generates a
pair of strategies σ = (σ0, σ1) with expected utilities U0(σ),U1(σ), and that using πi incurs
cost C(πi). Then we arrive at a version of (1.1) for each player i ∈ {0, 1}:

Vi(π) = Ui(σ)− C(πi).

In this new machine game, an equilibrium would be a pair π = (π0, π1) such that neither has
any incentive to adopt a different program given the other player’s choice of program. In a
machine game, equilibria are no longer guaranteed to exist in general:

Example 12. A simple observation due to Halpern and Pass (2015) is that in games with only
mixed strategy equilibria—games like that in Example 10—charging for randomness results in
a situation with no equilibria. For instance, if deterministic programs incur no cost while any
probabilistic program incurs positive cost, then for any mixed strategy that player 1− i might
adopt, player i would prefer some pure strategy to any mixed strategy. But by assumption
there are no pure strategy equilibria in the game.

There is a sense in which this situation is representative, in that equilibria are guaranteed to
exist so long as there is no cost for randomization (Halpern and Pass, 2015, Thm. 5.4). Thus,
costs for other resources such as time and space do not affect Theorem 2. It is perhaps inter-
esting to consider in what conceivable settings access to random bits, but not other resources
like time or memory, would come with opportunity cost.

2It is easy to check that restriction to pure strategies suffices here; cf. 4.4 below.
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Remark 8. To the extent that a decision problem—whether multi-agent or single-agent—
requires updating subjective probabilities with new observations, the question arises of whether
probabilistic conditioning (recall Eq. (2.1)) is a computable operation. In general, it is not.
Even if an agent’s prior probabilities are expressed by a Turing machine, it does not follow
in general that conditional probabilities will be; see Ackerman et al. (2019) for the continuous
case, and Icard (2020) for the discrete case. As both of these papers show, there are nonetheless
substantial classes of instances where computability is closed under conditioning.

Remark 9. It is worth mentioning here the topic of (asymptotic, worst-case) complexity theory.
Taking the Turing machine as a model of computation, this approach concerns the amount of
space (viz. number of tape cells) or time (viz. number of steps) required for computational
problems, particularly as a function of the “size” of the problem instance. If the required space
or time (for the worst-case problem instance) increases too quickly, it is said to be intractable.
Finding a Nash equilibrium in a two-person is believed to be intractable in this sense, which
some have argued calls its normative and predictive significance into question (Daskalakis et al.,
2009). Computing conditional probabilities is also believed to be intractable, and, as mentioned
in §2.4, computing a solution to a POMDP is known to be intractable.

This type of complexity analysis can be a useful tool for a priori falsification of cognitive
models: if a mind is hypothesized to compute some function whose resource requirements grow
too quickly even for moderately sized instances, then that hypothesize should either be rejected
or else refined, e.g., by identifying natural “subproblems” that remain tractable (van Rooij
et al., 2019). We will not be pursuing such an approach in this Element, and we will not be
using the so-called complexity classes—Polynomial time, NP-time, Polynomial space, etc.—to
classify problems. The study of resource rationality, as proposed in this Element, typically
benefits from more fine-grained approaches to resource costs.

Questions of computability and resource limitations take on special interest in repeated, or
sequential, games, to which we now turn.

3.3 Repeated Games
Given a game G, we can imagine playing it multiple times. This essentially becomes a sequential
decision problem, just as in §2.2. As in the more general setting, a history is a finite sequence of
elements from A—here including at each point an action for all of the players—and a strategy
for player i is a function σi : H → ∆(Ai), where H is the set of all histories. Recall the
progression of definitions in §2.2, starting with the T -step utility for history h:

Ui(h) =
T−1∑
t=0

γtui(ht, at)

For a pair of strategies σ = (σ0, σ1) we define a T -step distribution on histories, Pσ
T , in a

similar way, replacing the prior q0 and the transition distribution qh,a on states with player
i− 1’s strategy, which analogously produces a distribution on actions (player i− 1’s actions are
like states for agent i) for each history. This allows defining the T -step expected utility for i:

(Uσ
T )i = Eh∼Pσ

T
Ui(h)

and finally the overall utility for agent i, when the strategies σ = (σ0, σ1) are being played:

Ui(σ) = lim
T→∞

(Uσ
T )i. (3.2)
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Holding fixed 1’s strategy σ1, we can ask which strategy σ0 maximizes U0(σ0, σ1). This strategy
is called 0’s best response to σ1, and it brings us back to the ordinary setting of sequential
decision problems when the “transition function” (i.e., agent 1’s strategy) is known.

Note that, from each agent’s perspective a sequential game is a typically non-Markovian
decision problem (Def. 3), since what the other player will do next may itself depend on earlier
interaction in the history of play. Thus, strategies cannot necessarily be assumed stationary
(Def. 4). One could again take an individualistic (“Robinson Crusoe”) Bayesian approach by
putting a prior probability on the possible strategies that the other agent could possibly be
pursuing. The most common game theoretic approach, however, instead extends the notion of
Nash equilibrium (Eq. (3.1)) from the one-shot context.

Definition 9. In a sequential game, we say that σ = (σ0, σ1) is a Nash equilibrium if, for each
i ∈ {0, 1}, we have Ui(σ) ≥ Ui(σ′) for any σ′ that differs only on σi. In other words, each
agent’s strategy is a best response to the other agent’s strategy.

3.3.1 The Folk Theorem
One of the main results on repeated games is the Folk Theorem (e.g., Aumann 1981; Fudenberg
and Maskin 1986), which tells us what combinations of rewards are attainable from equilibrium
play in infinitely repeated games. Somewhat dual to the maximin concept (see Eq. (2.3)), let
us say that the minimax actions for players 0 and 1, respectively, are defined:

a∗0 = arg min
a0∈A0

max
a1∈A1

u1(a0, a1) a∗1 = arg min
a1∈A1

max
a0∈A0

u0(a1, a0).

In other words, a∗0 is the action by 0 that pushes 1’s utility as low as possible, provided 1 is
playing the best response to the action. Define the minimax values, respectively, as:

m0 = max
a0∈A0

u0(a0, a
∗
1) m1 = max

a1∈A1
u1(a∗0, a1).

Then, e.g., m1 is the best utility 1 can achieve when 0 is playing their minimax action. The
Folk Theorem then says that, in a repeated (discounted) game, if there is a pair of actions that
guarantees each some utility greater than their minimax values, then that pair of actions will
form an equilibrium. More formally:

Theorem 3 (Folk Theorem). Suppose there is a pair of actions a = (a0, a1) such that for each
i ∈ {0, 1}, ui(a) > mi for the minimax value mi. Then there is an equilibrium pair of strategies
σ for the repeated game, such that Ui(σ) =

∑∞
k=1 γ

k−1ui(a) for both i ∈ {0, 1}.

Proof sketch. If agent 0 plays the strategy that begins with a0 but switches to the minimax
action a∗0 forever as soon as the agent 1 deviates from playing a1, then agent 1 cannot benefit
by deviating, as long as the discount is suitably high. A symmetric argument applies to agent
1 playing such a strategy. Thus, they play a = (a0, a1) for the duration of the game, each
i ∈ {0, 1} achieving cumulative reward

∑∞
k=1 γ

k−1ui(a).

A notable instance of the Folk Theorem is the repeated prisoner’s dilemma:

Example 13 (Iterated Prisoner’s Dilemma). The minimax values for the prisoner’s dilemma
(Example 11) are (1, 1). However, when both cooperate (both choose c) they achieve values
(3, 3). The Folk Theorem thus tells us that there are strategies allowing both to cooperate on
every play of the game. In particular, both agents can play a strategy of cooperation up until
the other fails to cooperate, at which point they defect forever. This pair of strategies (known
as “trigger” strategies—see Example 15 below) forms a Nash equilibrium.
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3.3.2 Turing Machines Playing Repeated Games
Repeated games—and indeed sequential decision problems more generally—present a distinc-
tive challenge for resource limited agents. One’s strategy needs to be sensitive to an increasing
stream of observations. In the game theoretic context the observations are of other players’
actions. Intuitively, strategies may be more or less costly to implement, depending on their
sensitivity to the other player’s actions.

Recall that the study of resource rationality can be divided into cost-theoretic and panoramic
approaches (§1.3). Taking a panoramic approach, we can start by asking which strategies can
be implemented by a Turing machine at all. We know from general computability theory that
many functions from an infinite set (like the set of all histories) to any other non-empty set
(like the set of actions) are not computable by any Turing machine. The question is, how much
of the theory of repeated games survives a restriction to computable strategies?

In one study of iterated prisoners dilemmas (and many games like it), Nachbar and Zame
(1996) show that there is a pair of equilibrium (deterministic) strategies (σ0, σ1) such that σ1
can be implemented by a Turing machine, while no best response to σ1 is computable. The
strategy σ1 amounts to a complicated pattern of delayed “punishments” for defecting behavior,
such that responding optimally would be tantamount to solving Turing’s (1936) famous halting
problem. Furthermore, there are classes of computable strategies for player 1 that each admits
some computable best response for player 0, but the function that computes a best response is
itself uncomputable. In other words, for each strategy in the class there is a Turing machine
that would be a best response to it (and thus they would be in equilibrium), but there is no
Turing machine that takes a game as input and outputs the requisite strategy for that game.

Despite these limitative results, some of the standard results still hold, including the Folk
Theorem 3. This is because the simple pair of strategies described in the proof of Theorem 3
can easily be carried out by Turing machines. In fact, those strategies can be carried out by
a special class of Turing machines known an finite state automata, which can be construed as
Turing machines with a fixed finite bound on available memory (see, e.g., Minsky 1967). Much
of the literature in economics has been devoted specifically to automata playing games, and
this will take us back to the cost-theoretic approach to resource rationality.

3.4 Finite Automata
Following a suggestion by Aumann (1987), a sizable body of work has investigated the memory
costs involved in carrying out sequential strategies (recall Remark 3). Reviews of this research
tradition can be found in Kalai (1990); Rubinstein (1998). Most of the literature focuses on
deterministic automata, but we turn to probabilistic automata below in §3.4.2.

3.4.1 Deterministic Automata
A very general type of deterministic automaton is sometimes called a transducer since it trans-
forms sequences of inputs to sequences of outputs:

Definition 10. A (deterministic) automaton is given by a quadruple A = (Q, q0, O,A, δ, τ):

• Q is a non-empty set of states, with distinguished start state q0;

• O is the input alphabet, or space of possible observations;

• A is the output alphabet, or space of possible actions;
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• δ : Q→ A is the output function;

• τ : Q×O → Q is the transition function;
If Q is finite, we call A a finite-state automaton.

In the context of a two-player game G = ((A0, A1), u), it is natural to take A = Ai to be
player i’s actions, and O = A1−i to be the actions of the other player. Then we have:
Fact 1. Every deterministic strategy σi can be represented by an automaton.

To see this, simply let Q = H be the set of states, with ε (the empty history) the initial
state q0. We can define δ(h) = σi(h) and let τ(h, a) be simply h concatenated with a. Of
course, this is most interesting when the resulting automaton is finite. Not every strategy can
be represented by a finite-state automaton, but many can. Here are some elementary examples:
Example 14 (“Always Cooperate”). A simple strategy to cooperate unconditionally gives a
one-state automaton, beginning in state q0 and remaining there no matter whether the other
player chooses c or d (notated on the transition arrow from q0 back to itself):

q0

c, d

δ(q0) = c

By declaring δ(q0) = d instead, we obtain an “Always Defecting” agent.
Example 15 (“Trigger”). Another simple strategy is to cooperate until the other agent defects,
and to defect from then on:

q0 q1

c c, d

d

δ(q0) = c

δ(q1) = d

This is the strategy we used to illustrate one special case of the Folk Theorem. In a bit
more detail, suppose our discount factor γ is 3

4 . If both players opt for Trigger, then, according
to Eq. (3.2), they both have an expected payoff of

∑∞
k=1( 3

4 )k−1 × 3 = 4 × 3 = 12. Given this
strategy of the other player, no deviation can result in a better expected payoff. For example, if
at any stage n of the iterated game, agent 1 plays d, they will gain 1 utile by doing so (achieving
payoff 4 rather than 3). But since player 0 will henceforth play d, the best they can do from
then on is to play d as well, which will result in a (discounted) payoff of 1 at all subsequent
rounds. The point is that for any n > 0:

∞∑
k=n

(3
4

)k−1
3 >

(3
4

)n−1
4 +

∞∑
k=n+1

(3
4

)k−1
.

A similar calculation shows that two players adopting the following strategy will also be in
equilibrium, so this provides yet another illustration of the Folk Theorem.
Example 16 (“Tit-for-Tat”). Another strategy is to play whatever the other just played:

q0 q1

c d
d

c

δ(q0) = c

δ(q1) = d
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In fact, if 0 opts for Trigger and 1 opts for Tit-for-Tat, they will again be in equilibrium. It is
perhaps noteworthy that in empirical studies of iterated prisoners dilemma, all of the strategies
mentioned above are attested (dal Bó and Fréchette, 2018). Furthermore, there appears to be
a preference for simpler, or less costly, strategies across human experiments.

A natural cost to associate with an automaton A is the number of states in Q. We can
think of these as “states of mind” whereby an agent can only be in one of finitely many.
Correspondingly, let us say that the inherent (memory) complexity of a strategy is the size of
the smallest automaton implementing the strategy:

Definition 11 (Complexity of a Strategy). The complexity of a strategy σ, written C(σ), is
the smallest number k, such that there is an automaton with k states that implements σ.

An alternative way of understanding this same complexity measure in terms of the size of
an “information system” needed to encode the strategy (Kalai, 1990).

Definition 12 (Complexity of a Strategy, Version 2). Given a strategy σ and a history h, write
(σ � h) to be the function defined by (σ � h)(h′) = σ(h · h′). Then complexity can be taken as
the cardinality of the set {(σi � h) : h ∈ H}.

The next result follows from the Myhill-Nerode Theorem (e.g., Hopcroft and Ullman 1979):

Proposition 3. The complexity measures in Defs. 11 and 12 agree: the cardinality of the
information system coincides with the number of states needed to implement the strategy.

As another special case of (1.1)—and specifically Eq. (1.2)—we can define the cost-adjusted
utility of strategy σi to be (where, again, Ui(σ) is defined as in Eq. (3.2)):

Vi(σ) = Ui(σ)− 1
β
C(σi). (3.3)

for some β > 0, measuring how much additional states cost. All of the automata above are
minimal for their respective strategies, possessing costs of β and 2/β.

Suppose we take, for instance, β = 1. Will the pair (Trigger,Trigger) still be in equilibrium?
According to Eq. (3.3) both agents can expect a utility of 12 − 2 = 10. If one agent is
playing Trigger—or indeed any strategy that always cooperates whenever the other agent is
cooperating—then the other can benefit by switching to Always Cooperate: this has the same
long run payoff, but the cost is only 1 rather than 2. However, when one agent is playing Always
Cooperate the other agent would clearly benefit by playing Always Defect. These observations
reveal that there is no pair of machine strategies in equilibrium according to which both agents
always cooperate. So in fact:

Proposition 4. For sequential decision problems with strategic cost measured as in Def. 11—
that is, by the size of the smallest implementing automaton—the Folk Theorem 3 fails.

Nevertheless, equilibria in these games are always guaranteed to exist. Here is one interesting
example of equilibrium strategies presented in Rubinstein (1998):

Example 17 (“Initial Threat”). Suppose both agents play the following strategy:

q0 q1

c c
d

d

δ(q0) = d

δ(q1) = c
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In other words, both agents start off defecting, which moves both to state q1, where they will
cooperate as long as the other is cooperating. With δ = 3

4 and β = 1 both expect utility of
1 +

∑∞
k=1( 3

4 )k3 − 2 = 8. Neither pure strategy is a best response to Initial Threat: Always
Cooperate leaves the other defecting forever and gives a utility of −2, while Always Defect
has the other defecting every other step, which again results in long run utility of less than 8.
Moreover, once the second agent is in state q1 a similar analysis to that above shows that the
first gains no advantage by deviating, as the subsequent punishment outweighs the momentary
gain. Both agents playing Initial Threat forms an equilibrium.

Somewhat surprisingly, in (pure strategy) equilibria of these games, the strategies opted by
the two players always have the same number of states, and even much of the same structure
(Rubinstein, 1998). There are numerous other results about machine games. For instance,
Neyman (1985) shows that if the players have an upper bound on the size of their automaton,
then cooperation can result even in the prisoners dilemma repeated only finitely many times (see
also Halpern and Pass 2015). Meanwhile, Gilboa and Samet (1989) studied repeated games in
which one player can choose an arbitrarily complex Turing machine while the other is restricted
to a finite state automaton, showing that under certain assumptions the limited player has a
strategic advantage (the “tyranny of the weak” effect). For further discussion and many more
results, see the surveys in Kalai (1990); Rubinstein (1998).

3.4.2 Probabilistic Automata
The literature on games played by automata has tended to focus on deterministic automata.
But as in our discussion of Turing machines above in §3.2, it makes sense to consider stochastic
machines in addition. These will play an important role in the next chapter as well.

Definition 13. A probabilistic automaton is just like in Def. 10, except that the transition
function now brings a state/observation pair to a distribution on next states:

τ : Q×O → ∆(Q).

We allow generalizing from a start state q0 to an initial distribution p0 ∈ ∆(Q) over states.

A probabilistic automaton thereby implements a strategy in the sense of Chapter 2.

Example 18 (“Stochastic Tit-for-Tat”). The following specifies a mixed strategy for the iter-
ated prisoners dilemma, whereby the agent (deterministically while in q0) begins cooperating,
defecting (moving to q1) whenever the other defects, and then moving back to q0 only with
some probability p whenever the other cooperates.

q0 q1

c
d

c : 1− pd

c : p

δ(q0) = c

δ(q1) = d

The usual Tit-for-Tat strategy (Ex. 16) is the special case where p = 1, while Trigger (Ex. 15)
is the special case where p = 0.

This automaton is a kind of interpolation between Tit-for-Tat and Trigger, in the sense
that one could, at each stage, flip a p-biased coin to determine whether to play Tit-for-Tat or
Trigger for the next move. By a similar calculation to those above in §3.4.1, any two players
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adopting any version of Stochastic Tit-for-Tat (that is, any choices for the parameter p) will be
in equilibrium. However, again for similar reasons, they will no longer be in equilibrium once
we impose a cost on each additional state: in this case both would want to opt for the simpler
Always Cooperate strategy, which will again thwart equilibrium.

Importantly, once we limit the size of automata, a stochastic strategy—that is, play by a
probabilistic automaton—is not the same thing as a probabilistic mixture of automata. Some
of the literature (e.g., Neyman 1985) has considered settings where a player can adopt a mixed
strategy by randomly choosing a (deterministic) automaton from among those below a given
complexity, and then using that selected automaton for the duration of the repeated game. It
is straightforward to check that there is no probabilistic mixture of two-state automata that
will enjoy the same behavior as Stochastic Tit-for-Tat (Ex. 18). See §4.4.2 for more on this.

3.5 Automata and Polarization
One of the most striking multi-agent phenomena is belief polarization, whereby two individuals
with only slightly differing views on a subject come to have dramatically different opinions after
being presented with the same evidence. This phenomenon has been identified in numerous
domains, including gun control and capital punishment (Taber and Lodge, 2006), climate change
(Cook and Lewandowsky, 2016), and many other consequential topics.

Under very minimal conditions, two “ideal Bayesian” agents updating on the same evidence
will come to agree, even given very different prior judgments (Blackwell and Dubins, 1962), a
result that even holds when priors are assumed computable (Zaffora Blando, 2022). Polarization
is evidently due to some departure from this idealized picture. Many different explanations
have been given, but one theme that emerges in many studies is the idea that people are not
perfect in the way they process and encode evidence (see Taber and Lodge 2006). For instance,
while it seems sensible to update one’s opinion about the reliability of a source based on how
plausible one finds their testimony, polarization can result if such dependencies are routinely
forgotten (Pilgrim et al., 2022). Similarly, polarization may persist in cases where people cannot
remember all the evidence supporting their belief, even though they originally incorporated that
(potentially ambiguous) evidence in a rational manner (Dorst, 2023).

Remarkably, the very general assumption that people have limited memory is enough to pro-
duce polarization, even among agents who are in every other way idealized. Thus, whereas the
full story about how and why people polarize is likely to be multifaceted, the mere assumption
of limited memory already affords a window in the phenomenon.

Suppose a decision maker faces a choice between two options a and b, and there are two
relevant states, h and l, with probabilities p(h) and p(l), and the following payoff matrix:

h l
a “high” “low”
b 0 0

In other words, b is the “safe” action guaranteeing status quo, while a is the best action to
take just in case state h obtains. For instance, a might be the action of asserting that state h
obtains, while b could be publicly withholding judgment about whether h or l obtains, a choice
that especially makes sense when the agent thinks l is the more likely state.

Suppose moreover that there is a finite set O of possible observations, with likelihoods
p(o|h) and p(o|l) for o ∈ O. Then given some finite sequence ~o = (o1, . . . , ok) of independent
observations, the optimal action is straightforward: the decision maker should choose a just if

p(h|~o)
p(l|~o) >

“low”
“high”
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where p(h|~o) = p(h)×
∏
i≤k p(oi|h) is determined by Bayes rule, and likewise for p(l|~o).

But now suppose that our decision maker has only limited memory and thus cannot process
data in an arbitrarily fine-grained manner. A very general way of imposing a constraint of finite
memory on the agent is to assume that their decision making strategy must be implementable
by a (possibly probabilistic) finite state automaton (Def. 13), with a hard upper bound on
the number of states. In other words, the agent can employ any decision making strategy
whatsoever, as long as it can be done with a limited number of functionally different states.
This is another instance of the panoramic approach to resource rationality (§1.3).

In such a setting Wilson (2014)3 has provided a general analysis of what the optimal finite
state machine for this problem would be. Wilson assumes there is some termination probability
η, such that after each successive observation, with probability η the sequence ends and an
action is chosen. For fixed η and p, and values for “high” and “low,” the aim is to determine
for each k the automaton of size ≤ k that has the highest expected reward. It is shown not
only that an optimum exists, but that it always takes on a particular form. As an illustrative
example, for small η, the optimal 3-state automata all take the following form:4

q0 qhql

o∗
oh, o∗

ol : 1− λohol

ol : λ

δ(q0) = δ(qh) = a

δ(ql) = b

ol, o∗

oh : 1− χ

oh : χ

Here oh is the observation with highest likelihood ratio in favor of h—i.e., the o maximizing
p(o|h)
p(o|l) —and likewise for ol, while o∗ stands for every other observation in O. In other words,
the optimal decision making agent ignores all but the most extreme signals. In general, having
reached one of the extreme states (ql or qh), the probabilities χ and λ of leaving those states
upon presentation of contrary evidence will be quite small (and moreover, χ < λ).

This analysis affords a number of different perspectives on rational polarization. The first
point is that, even for two agents who have the same priors and likelihoods and the same
(memory-optimal) decision making policy, if they make their observations in a different order,
they are likely to occupy diametrically opposed positions. Even in this simple example, seeing
ol and then oh is very different from seeing oh before ol; the first is almost sure to bring the
agent to ql, the second to qh. Once there, arriving back at the “more neutral” q0 is unlikely.
This is of course in stark contrast to “ideal” Bayesian inference (recall §2.1.1; cf. Example 28).

For k > 3 the optimal automata look similar to that above, but with more intermediate
states between the two extremes:

. . .

Some of the intermediate transitions will be deterministic (e.g., upon seeing oh go right with
probability 1), while others will be stochastic. Again, all non-extreme signals are ignored
altogether. Thus, we see at least three more potential sources of polarization, aside from the
order dependence already mentioned: (1) given the same priors and the same memory bound,

3See also Halpern et al. (2014) for further development of these ideas. The foregoing results were anticipated
by a much earlier line of work from Hellman and Cover (1970, 1971), which will return below in §4.4.

4Assume moreover that p(h) = p(l) = 0.5, while “high” = 1 and “low” = −1. The probability parameters λ
and χ are then a function only of η and the likelihoods p(o|h) and p(o|l).
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polarization could result from random transitions; (2) two agents starting in two different
intermediate states may respond differently to the same signals; (3) slightly different priors
or likelihoods (or different upper bounds on size) would produce slightly different optimal
automata, which again could result in two agents moving to opposite extremes with the same
data points, in contrast to the classical merging-of-opinions results.

The full explanation for polarization phenomena in human agents is surely complex and
multifaceted—see Bramson et al. (2017) for a systematic review and discussion. It is remark-
able, and potentially illuminating, that optimization under limited memory is already sufficient
to recapitulate the basic pattern. Wilson’s results on optimal automata—as well as older re-
sults from Hellman and Cover (1970, 1971)—lead us directly to the theme of the next chapter,
concerning the question of when randomization may be beneficial for a resource-limited agent.

3.6 Conclusion
The goal of this chapter has been to introduce some relatively simple models of “agent programs”
modeled on Turing machines and finite state automata. Relative to standard game theory, this
resource rational perspective already highlights some important departures, including two of
the most canonical results in game theory, Nash’s Theorem and the Folk Theorem.

With the next few chapters we will be slowly moving away from the still highly idealized
picture of agent programs studied in this literature, toward analyzing increasingly detailed
features of human agents, which in turn calls for greater psychological fidelity in what we take
to be an agent program.



Chapter 4

Resource Rational Randomness

A remarkable aspect of resource rationality is the emergence of randomness in characterizations
of rational thought and behavior. One might have expected randomness and randomization
to be somehow in opposition to rational, purposive behavior. After all, the very etymology
of ‘random’ brings in ideas of being “without aim or purpose, or principle” (Oxford English
Dictionary). In fact, there is a very general reason that non-trivial randomization is prohibited
by standard Bayesian decision theory, reviewed below in §4.2. Yet, as we have already seen
in the previous chapter (e.g., §3.5), random behavior may nonetheless emerge as optimal once
we take resource limitations into account. Evidently, introducing computational cost into the
picture can be sufficient to defeat the decision theoretic argument. The task of the present
chapter is to interrogate this phenomenon in more depth.

Aside from being of interest in its own right, randomization provides a useful case study for
illustrating two alternative approaches to thinking about costs and resources. The first considers
random behavior to be a kind of default, whereby computational resources are required in order
for the agent to override that default. Even if the ultimate goal is to choose the “right” action
deterministically, resource limitations make it so that one ought only go so far in that direction.
The second approach construes randomness itself as a resource, which might trade off with other
resources such as memory. That is, if an agent could somehow harness a suitably random source,
this might be helpful for mitigating other resource limitations.

These two ways of thinking about rational randomness—randomness as default and as
resource—draw upon different technical tools. The second is based on the machine models
introduced in the previous chapter (Turing machines, automata, etc.). The first invokes ideas
from information theory. Thus, a further task of the present chapter is to introduce these ideas
from information theory. Additionally, randomization provides a natural segue to the next two
chapters, which concern the use of resource rationality to understand key aspects of cognition.

4.1 Randomness in Humans
There is considerable controversy over what processes count as random, and indeed whether
any processes in the world are “genuinely” random. For present purposes, it is enough to con-
sider processes that are well modeled as being probabilistic or random. This may of course be
because the process is in some sense indeterminate, but it could also be because—from an ap-
propriate perspective—the process is unpredictable (Eagle, 2005). In this case, the probabilities
summarize variations in behavior that cannot be (practically) predicted. Once we admit these
more perspectival varieties of randomness, random processes evidently abound in nature, and

54
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in the human sciences in particular; see, e.g., Glimcher (2005) and Icard (2021) for reviews.

4.1.1 Neural Noise
Some of the most striking evidence for random processes in humans comes from neuroscience.
As Niven and Laughlin (2008) summarize in their review of energy limitations in perception,
“intrinsic noise occurs at all stages of sensory processing, including the transduction of the
sensory stimulus into an electrical signal, the transmission of electrical signals within neurons
and synaptic transmission of signals between neurons” (p. 1796). Since information only ever
decreases along a noisy channel—a fact known as the data-processing inequality (Shannon,
1948)—each additional source of corruption only seems to make the problem of extracting
meaningful sensory signals from the environment more difficult.

Below sensory processing, even at the cellular level there appears to be inherent noise in
neural firing rates. It is well known, for example, that neurons in the visual cortex respond
preferentially to different properties of visual stimuli. A neuron’s average firing rate over a given
time span might be a reliable indicator of, say, the orientation of a line in some part of the
visual field (Example 29). When researchers have attempted to characterize the firing pattern
in greater detail, it has been repeatedly found to be well modeled as otherwise random. The
“most random” probability distribution for a given average rate is the Poisson distribution:1

pλ(k) = λke−λ

k! (4.1)

For a given firing rate λ within a fixed time interval, pλ(k) is the probability of observing exactly
k spikes in that interval. While neural firing is not exactly Poisson distributed—e.g., due to
refractory periods in which firing is momentarily suppressed—numerous studies have employed
Eq. (4.1) as an accurate approximation (see Faisal et al. 2008 for a review and discussion).
Furthermore, there is reason to think randomness, or at least unpredictability, is relatively
fundamental in the nervous system (Mainen and Sejnowski, 1995; Glimcher, 2005).

This short summary reveals two potential links to resource limitations, with randomness
appearing either as a feature or as a bug. The ubiquity of noise in neural processing could
be seen as a feature, were it determined that some extractable source of randomness could be
beneficial. At the same time, it is a potential bug if we focus instead on the resources necessary
to preserve and transmit as much of the incoming stimulus as possible.

4.1.2 Softmax Decisions
Apparent randomness has been observed not just in the brain but also in observable high-
level behavior. From the earliest days of empirical psychology, researchers like Fechner and
Thurstone assumed that behavior could only be summarized probabilistically, and subsequent
research explicitly modeled choice behavior as stochastic (see Luce and Suppes 1965 for an
early review). One particularly striking phenomenon is known as probability matching (e.g.,
Estes 1959). Suppose that exactly one of two levers, A and B, could deliver a reward. Imagine
that 70% of the time lever A delivers a reward, while 30% of the time it is B that delivers the
reward. If presented with these two levers it seems that the optimal strategy would always be
to pull lever A. Empirically, however, people often match the success probabilities, pulling A
around 70% of the time and B around 30% of the time (see Vulcan 2000 for a review).

1Specifically, it is the discrete distribution with maximum entropy among a reasonable family of distributions
that give the same average rate (Harremoës, 2001). For more on entropy see 4.3.1 below.
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Such matching phenomena also extend to more “notional” probability distributions such as
those derived by Bayes’ rule from assumed priors and likelihoods (Peterson and Beach, 1967).
For instance, when asked to estimate how much a movie will ultimately gross after observing
that it has made $40 million so far, experimental participants give responses that in aggregate
match the posterior derived from the actual empirical distribution (Griffiths and Tenenbaum,
2006), rather than giving the response that would maximize posterior probability. (Note the
similarity to posterior sampling discussed in Chapter 2, Example 9, in the context of learning.)

This and a plethora of other behavioral patterns have been well modeled in terms of a
decision strategy first formulated by Luce (1963). Given a set A of actions, suppose we have a
measure V (a) of how “valuable” action a ∈ A is in the present context. The strategy suggested
by Luce is to select a with probability given as follows:

eβV (a)∑
a′∈A e

βV (a′) , (4.2)

for some parameter β. This is in fact the same softmax function that we considered in Example
7 during our discussion of reinforcement learning (§2.3). In that setting V (a) was an estimate
of the expected utility of a during the course of learning. Aside from taking V (a) as expected
utility, Eq. (4.2) will also encompass examples like the following:

Example 19. As a special case, consider a setting with possible states S and prior p(s),
together with possible observations O and likelihood l(o|s), so that the posterior p(s|o) is given
in terms of Bayes’ rule, p(s|o) ∝ p(s)l(o|s). Assume that S = A and the utility of guessing
state s given observation o is V (s) = log p(s|o). In such a setting the task is to guess the
right state, and we assess how valuable a guess is by (the natural logarithm of) its posterior
probability. Then, assuming also that β = 1, the softmax expression in (4.2) becomes p(s|o).
In other words, we recover posterior matching exactly in this setting.

A conservative way to think of the softmax function in (4.2) is in terms of a theorist’s
uncertainty about the agent’s own latent utility function. Under suitable assumptions about
the distribution of utility functions in a population—see Theorem 4 below—the softmax rule
emerges as the correct way of analyzing choice probabilities in the population (McFadden, 1973).
This so-called random utility model is, by design, fully consistent with classical decision theory.
Each individual agent is assumed to maximize expected utility deterministically. Apparent
randomness arises from a noisy sample of a heterogenous population.

An earlier, more radical interpretation, following Thurstone (1927) and Luce and Suppes
(1965), attributes stochastic behavior to the individual agent. We might assume the agent sam-
ples a utility function u from a distribution on such functions, and then maximizes (expected)
utility according to u. Suppose there is a random variable Ua for each action a, giving the
distribution on utility values for a, and that these are all independent for different actions a.
Suppose, moreover, that the probability density function for possible values x of Ua is:

f(x) =
{
eβV (a)+exβV (a) x ≤ 0
0 x > 0

giving a so-called Gumbel distribution on each Ua. Then we can show the following:

Theorem 4. The probability that Ua is maximal is given by Eq. (4.2), the softmax rule.

A proof of Theorem 4 is provided in Appendix 4.A.1. Thus, a specific assumption about
the distribution on utility functions provides one way of deriving the softmax rule. This inter-
pretation again does not concern resource limitations per se.
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Figure 4.1: Illustration of physical artifact capable of drawing “samples” from a normal (Gaus-
sian) distribution. Adapted from Galton (1889).

4.1.3 Sampling Propensities
While these random utility interpretations (stochastic or deterministic) may be appropriate
for many settings, they do not obviously apply to examples like posterior matching (Example
19), where we assume the utility structure is relatively clear (typically: guess the state with
highest probability). A third interpretation, suggested first in the literature by Vul (2010),
is that agents stochastically sample, not a utility function, but a state s in proportion to its
(posterior) probability. The idea is that people have an inbuilt ability to generate possibilities
in a random way, and to use these “samples” for decision making.

In particular, if an agent drew some number k of samples s1, . . . , sk from p(s), then they
might choose an action a that maximizes the estimated expected utility in the following sense:

Choose a that maximizes Ṽ (a) = 1
k

k∑
i=1

u(si, a). (4.3)

When k = 1, S = A, and u(s, s′) = 1s=s′ , we recover precisely posterior matching. But this
formulation also captures a wider array of choice problems in which state estimation is an
important component. For example, in the course of deciding which of two highways to take a
person might (unconsciously) conjure up several possible states of the world—imagining what
the traffic situation is likely to be, how pleasant each one might be, etc.—and compute an
estimate Ṽ (a) of how good each option a appears across these sampled states.

Just as (4.2) converges to maximizing behavior as β increases, so (4.3) converges to expected
utility maximization as k increases. Smaller k will in general produce more random decisions.
There is evidence that experimental participants do in fact produce responses probabilistically,
in a way that seems consistent with a method like (4.3) with relatively small k, i.e., few samples;
see, e.g., Vul and Pashler (2008); Collins and Frank (2012); Vul et al. (2014), among others.

As these authors have reported, behavior tends to become less random given either higher
stakes or more time to reach a decision (e.g., Vul et al. 2014). Whether we interpret this as
modulating β in (4.2) or k in (4.3), it seems clear that stochastic choice may be closely re-
lated to issues of resource limitations. It has even been suggested, motivated by computational
considerations, that a primary format for representing uncertainty may be via generative pro-
cedures that primitively draw samples from implicit probability distributions (Vul et al., 2014;
Icard, 2016; Sanborn and Chater, 2016), much the same way a “Galton box” (Fig. 4.1) has
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a propensity to sample (approximately) from a normal distribution without, e.g., explicitly
encoding a mean or variance.

An important inspiration for this suggestion about sampling propensity comes from the
observation that computational work in statistics and machine learning often employs “Monte
Carlo” sampling algorithms to perform complex probabilistic inference tasks (e.g., Murphy 2012;
cf. the discussion below in §5.3.4). In fact, the original revolution in Monte Carlo methods in
science and engineering came from the need to simplify difficult calculations (Metropolis et al.,
1953). The intuition is that, while exact calculations can be computationally prohibitive, it
can be relatively easy to generate random samples from a related distribution and use these
samples to approximate the quantity of interest. The question thus arises of how and why,
exactly, would randomness confer resource-related benefits?

4.2 Counteracting Convexity
It is worth pausing to see exactly why randomness is prohibited by the Bayesian decision
theoretic framework reviewed in Chapter 2. It is an instance of a more general pattern.

Given some deterministic programs πi, let us write
∑
i piπi for the randomized program

that pursues πi with probability pi. A value function V on programs is said to be convex if

V
(∑

i

piπi
)
≤

∑
i

piV(πi). (4.4)

This means that the value of a randomized program can be no greater than that of the most
valuable program in the mixture. Unless all of the programs are equally valuable, an agent
always stands to gain by deterministically opting for the most valuable one.

An example of a convex value function V is expected utility—as in Eqs. (2.2) and (2.9)—in
that case, the inequality in (4.4) becomes an equality. In a one-shot decision problem this is
because EsEau(s, a) = EaEsu(s, a), simply by the commutativity of addition. The argument is
less immediate in the sequential decision setting, and it is closely related to a famous result in
game theory known as Kuhn’s Theorem (after Kuhn 1950).

Recall from §2.4 the notion of a strategy in a (partially observable) sequential decision
problem, viz. a function σ : O → ∆(A) from observation histories to distributions on actions. In
the present context—following the game theory literature—let us call this a behavioral strategy.

An alternative setting would be to consider the set Σ of deterministic strategies, that is,
functions ς : O → A, and the set ∆(Σ) of distributions over these deterministic strategies. Let
us call the elements µ ∈ ∆(Σ)—again following game theory nomenclature—mixed strategies.

Suppose that O and A are both finite, i.e., there are only finitely many possible observations
and only finite many actions available to an agent.2 Then:
Theorem 5. For every behavioral strategy producing a distribution on histories (in the sense
of Eq. (2.17)), there is a mixed strategy that produces the same distribution.
Proof sketch. Fix T , the number of steps, and consider any behavioral strategy σ. We define a
mixed strategy µ as follows. The probability of adopting deterministic strategy ς is

µ(ς) =
∏

ω∈Ot:t<T
σω(ς(ω)).

That is, the probability of a deterministic strategy ς is the product of the probabilities that
σ would make the same choice as ς at each observation history. We show in Appendix §4.A.2
that this defines the same distribution on T -step histories as σ.

2The finiteness restriction is necessary; see Megiddo (1994) for a counterexample to Thm. 5 if A is infinite.
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Assuming the strategy σ is a computable function, it follows immediately by the argument
above that µ will also be computable. Hence we have the following corollary.

Corollary 1. Any finitary behavior achievable by a probabilistic Turing machine can be
achieved by a probabilistic mixture over deterministic Turing machines.

Theorem 5 and Corollary 1 essentially allow us to reduce the sequential setting to the one-
shot setting: any (behavioral) strategy can be replaced by a deterministic strategy, with all
randomization occurring upfront. Although game theory still countenances mixed strategies
when the state is chosen by another intelligent agent (§3.1), once we fix the transition function
and the likelihood (q and l from Def. 5), a similar argument applies. Recall Eq. (2.9):

U(
∑
i

piπi) = lim
T→∞

E
h∼PΣipiπi

T

U(h)

= lim
T→∞

∑
i

pi Eh∼Pπi
T
U(h)

=
∑
i

pi lim
T→∞

Eh∼Pπi
T
U(h)

=
∑
i

pi U(πi).

The first step is allowed because all randomization occurs upfront, before the first observation.
Thus, once again, randomization is never better, and typically leads to a worse result.

How could resources come in to defeat this argument? In broad strokes, convexity could
fail simply due to the introduction of a cost term. Recall the fundamental Eq. (1.1):

V(π) = U(π)− C(π)

Suppose π∗ is equivalent (in the sense of Theorem 5) to a mixture
∑
i piπi, and hence that

U(
∑
i piπi) = U(π∗). The mere possibility that the cost C(π∗) could be less than the average

cost
∑
i piC(πi) of the deterministic programs in the mixture (or any other behaviorally equiv-

alent mixture) is enough to invalidate Eq. (4.4). In such a case, assuming that the cost of the
mixture is just the average costs of the programs in it, we would have

V(
∑
i

piπi) = U(
∑
i

piπi)−
∑
i

piC(πi)

= U(π∗)−
∑
i

piC(πi)

< U(π∗)− C(π∗)
= V(π∗).

Of course, the mathematical possibility of this does not yet show that it ever happens in plausi-
ble or relevant circumstances. The remainder of the chapter will consider different assumptions
about cost that lead to such a reversal, and even to the optimality of strategies like softmax.

4.3 Randomness as Default
One common perspective is that randomness is not somehow “added” in the decision making
process. Exactly the opposite, randomness is a kind of default behavior (“without aim or
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purpose”) and deliberation is understood as sharpening one’s action distribution in the direction
of, e.g., deterministically maximizing expected utility.

As already noted above in §4.1.1, much of neural processing seems to be subject to random
noise at various levels. While biological brains do appear to have mechanisms for mitigating
the noise, randomness may well still percolate up to the level of observable behavior.

Let us suppose that our agent begins in what Skyrms (1990) calls a state of indecision,
corresponding to a (typically randomized) default strategy δ (cf. also Huttegger 2017 on “choice
propensities”). Perhaps the ideal strategy is one that opts deterministically for the action a∗ of
highest expected utility. For various reasons it may be costly to reach that alternative strategy
starting from δ. For instance, δ may be a strongly ingrained habit, difficult to overcome. Or
perhaps it is computationally demanding to figure out what a∗ is in the first place. Whatever
the reason, resource costs may in effect anchor the agent closer to the default from which they
began. Our question in this section will be how to assess—in a suitably general way—the costs
of moving from the default δ to some other strategy π.

The focus here will be on one specific proposal that has been offered independently by a
number of different researchers. That is to use concepts of information theory. After introduc-
ing the basic constructions, we will see three potential justifications for essentially the same
proposal: axiomatic (§4.3.2), thermodynamic (§4.3.3), and coding theoretic (§4.3.4).

4.3.1 Information Theoretic Cost
Information theory, as developed by Shannon (1948), concerns optimization of communication
codes, and is thus essentially about dealing with limited resources. It is perhaps unsurprising,
therefore, that the theory would appear in analyses of resource limited decision making.

Suppose we have a random variable X taking on some possible values x, with distribution
p(X = x), or simply p(x). We will observe successive values of X and our task is to communicate
those values to some third party. If before sending any messages we have the opportunity to
decide on a code for each value x—a mapping from x to a binary string of 1’s and 0’s—what
would be the best code to optimize for average length of the signal sent? Assuming perfect
communication (a “noiseless channel”), a moment’s thought suggests that the highly probable
values will appear more often and so should be given the shortest codes. Since there are only
so many short codes, some of the less probably values will need to be assigned longer codes.

One can show that the number of bits used to code x in an optimal code for distribution p
is roughly −log2 p(x). Consider the following examples:

Example 20. For instance, if X has 8 possible values, all equally likely with q(X = x) = 1/8,
then an optimal code for q would use −log 1

8 = log 8− log 1 = 3 bits for each value of X. That
is, each value of X is assigned to exactly one of the binary strings of length 3.

On the other hand, the distribution p in this table can have different length codes:

x1 x2 x3 x4 x5 x6 x7 x8
p(x) 1/2 1/8 1/8 1/16 1/16 1/16 1/32 1/32
code 1 001 000 0111 0101 0100 01101 01100

On the second line is an example of an optimal code (the so-called Huffman code). Observe
that the code lengths for p are 1, 3, 4, and 5, in different proportions.

Computing the average number of bits that need to be transmitted in such an optimal code
gives us

∑
x p(x)(−log p(x)), or:

H(p) = −
∑
x

p(x) log p(x) (4.5)
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This quantity H(p) is known as the entropy of X. Aside from the coding intuition, entropy is
often understood as a measure of “disorder” or noise. If we construe −log2 p(x) not as the length
of a code, but as the information conveyed by x, then H(p) measures how much information
is conveyed on average. Continuing Example 20:
Example 21. Obviously the average for the distribution q in Example 20 is 3 bits, correspond-
ing to an entropy of 3 for that distribution. Intuitively, such a distribution is unpredictable.

For the second distribution, p, the outcome is more predictable: half the time we will expect
to see x1—thus, on the coding interpretation we would expect to see a message of length 1 half
the time—and three fourths of the time we expect to see one of only three values, x1, x2, or
x3. Correspondingly, the entropy in this case is lower, at about 2.3.

Next, imagine that we had a code that was optimized for a distribution q, but that the true
distribution is actually p. How “inefficient” would it be to use this code for q? In particular, how
many extra bits would we need to code samples drawn from p when using this code optimized
for q? This is given by the following:

DKL(p || q) = “average length of codes optimized for q”−
“average length of codes optimized for p”

= −
∑
x

p(x) log q(x)−
(
−
∑
x

p(x) log p(x)
)

=
∑
x

p(x) log p(x)
q(x) , (4.6)

known as the Kullback-Leibler divergence (or KL-divergence), also known as relative entropy.
A special case is when q is the uniform distribution: q(x) = 1/K, where K is the number of
possible values of X. Because H(q) = logK, we have DKL(p || q) = logK −H(p).
Example 22. Continuing again with Example 20, the divergence of p from q is DKL(p || q) =
log 8−H(p) ≈ 0.7. In other words, adopting a scheme that assigns every value of X a code of
length 3, our message would on average be 0.7 bits too long.

Similarly, using a code optimized for p when the true distribution is q (uniform) results in
KL-divergence of about 0.6, as we are using inefficient codes of length 4 and 5 half the time.

The bold idea that we will be exploring here is that KL-divergence can be seen not just as a
measure of coding inefficiency, but also as a measure of the costs involved in the transformation
of one action distribution into another.
Definition 14 (Information theoretic cost of a strategy). Hold fixed a default action distribu-
tion δ ∈ ∆(A). Define the cost C(π) of implementing alternative program π as:

C(π) = DKL(π || δ).

Then, the present version of cost-adjusted value (1.1) becomes, for some β > 0:

V(π) = U(π)− 1
β
DKL(π || δ), (4.7)

where U(π) =
∑
a π(a) EU(a) in this case (recall Eq. (2.2)).

Theorem 6. With cost measured by (a multiple of) KL-divergence (Def. 14), the strategy
π∗ ∈ ∆(A) that maximizes value V(π∗) according to Eq. (4.7) is

π∗(a) ∝ δ(a) eβ·EU(a) (4.8)

The proof of this result is given in a technical appendix to this chapter, §4.A.3.
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This connects directly to the discussion of probability matching and the softmax rule (Ex-
ample 7, §4.1.2) via the following easy consequence of Theorem 6.

Corollary 2. When the default distribution δ is uniform—that is, δ(a) = 1/|A| for each
a—then the optimal strategy simplifies to:

π∗(a) ∝ eβ·EU(a),

that is, precisely the softmax distribution (4.2). This is equivalent to assuming that we are
maximizing (a multiple of) entropy H(π), rather than minimizing KL-divergence to δ.

The cost function in Def. 14 has been proposed and discussed across many different litera-
tures, most explicitly by Mattsson and Weibull (2002) and later by Ortega and Braun (2013),
though versions have also appeared in neuroscience and in reinforcement learning (see §4.3.4
below), and even in recent theories of linguistic pragmatics (Example 32 in §6.6). The question
is, how can we justify Def. 14 as a sensible analysis of resource costs?

4.3.2 The Cost of Control
Mattsson and Weibull (2002) suggest that DKL(π) can be justified axiomatically, so long as
the axioms appear intuitive. The starting point is a control cost function c, measuring the cost
c(π, δ) of moving from default distribution δ to some new distribution π. It is assumed to be
continuous in π and δ (as vectors of probabilities), and we presume that c(π, δ) = 0 if and only
if π = δ. Mattsson and Weibull then consider three further axioms:

Axiom 1. Cost is invariant under relabeling. That is, if π∗ and δ∗ are permutations of
π and δ, respectively, then c(π, δ) = c(π∗, δ∗). In other words, all “atomic” events are
treated the same, and only the probability values matter.

Axiom 2. It is costlier to rule out a larger set of actions than to rule out a proper subset.
Specifically, if A1 ⊂ A2, then the uniform distribution on A1 is no more costly than the
uniform distribution on A2.

Axiom 3. If A is divided into two subsets, B and C, then the cost c(π, δ) of moving from
δ to π (both distributions on A) is the same as the sum of costs of (i) moving from the
probabilities δ(B) and δ(C) to π(B) and π(C), and (ii) the weighted (by π(B) and π(C),
respectively) costs of moving from δ( · |B) to π( · |B) and δ( · |C) to π( · |C).

The key result follows from a generalization of the derivation of entropy due to Shannon (1948).

Theorem 7 (Hobson 1969). Any cost function that satisfies Axioms 1-3 is proportional to KL
divergence. That is, if Axioms 1-3 hold of c, then

c(π, δ) ∝ DKL(π || δ);

that is, we recover exactly Definition 14.

As an alternative interpretation, also from the the economics literature, Matějka and McKay
(2015) suggest we could take c as a measure of “rational inattention,” with entropy reduction
measuring something like how many questions an agent needs to ask (possibly to themselves)
in order to narrow down their decision. On either interpretation, the ultimate success of this
analysis depends on how plausible we find Axioms 1-3.
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X Y

Figure 4.2: Compressing X (with volume V1) to Y (with volume V2). Adapted from Feynman
(1998), Fig. 5.2. It is assumed that there is no difference between the total energy in X and in
Y . Because we had to put in some energy to compress, this “missing” energy that got absorbed
into the heat bath is what we want to measure. The point is that this is a change in entropy.

4.3.3 Information and Energy
An alternative justification, offered by Ortega and Braun (2013) (see also Ortega 2010 and
Genewein et al. 2015), starts from the commonplace that computation requires physical energy.
In fact, it has been suggested that we should understand a computer just to be “an engine
that dissipates energy in order to perform mathematical work” (Bennett, 1982, p. 906). Each
time a choice gets made—each time a computation step occurs—there is some thermodynamic
work that must be done in order to “record” or “register” that choice. The core idea of this
approach is to postulate a general correspondence between units of information (e.g., bits) and
units of thermodynamic work, so that the amount of information processed in moving from
distribution δ to distribution π—as measured by KL-divergence—can be related to the amount
of (e.g., thermodynamic) work involved in such processing.

Consider a simple thought experiment about ideal gases from Feynman (1998). Imagine a
box X of gas with volume VX containing N atoms, and suppose we wanted to compress the
gas to a smaller box Y with volume VY . Assuming we can do this in a way that keeps the
temperature T constant, the physical work involved in this process is given by the negative
of the so-called (Helmholtz) free energy difference ∆F between the state before and after the
compression. This is the well known equation:

∆F = NkT ln VX
VY

(4.9)

where k is the Boltzmann constant. As Feynman explains, the thought experiment still makes
sense even if we only have N = 1 atom in the box. We can think of the compression as reducing
our uncertainty about the location of the atom; see Fig. 4.2.

The free energy difference ∆F thus quantifies how much work must go in to achieve this
reduction. For example, if compressing cuts the volume of X in half, we obtain kT ln(2),
which von Neumann (1966) famously estimated as the “thermodynamic minimum of energy
per elementary act of information” (p. 66).

Ortega and Braun (2013) suggest extending the thought experiment by partitioning X into
some cells a. Suppose our primary interest is locating in which cell the particle resides. We
then have an obvious distribution δ(a) = VX(a)/VX , where VX(a) is the volume of a within X,
quantifying our uncertainty about the location of the particle before compression. Likewise,
for the probability after compression, let π(a) = VY (a)/VY , where VY (a) is the volume of a
in Y . Assuming that the atom could equally likely be in any position within box X before
compression, and anywhere in Y afterward, the probabilities δ and π = δ( · |Y ) intuitively
quantify our uncertainty about which cell the atom occupies. See Fig. 4.3.
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Figure 4.3: In this elaboration of Fig. 4.2, adapted from Ortega and Braun (2013), there are
four actions corresponding to the four colors, with area representing probability mass. Here we
consider both the separate amounts of work required to compress each compartment, and the
overall reduction in entropy with respect to the coarsened (i.e., compartmentalized) space.

The free energy difference can thus be written in the following way (where now N = 1):

∆F = kT ln VX
VY

= kT
∑
a

π(a) ln
(VX
VY

VX(a)
VX(a)

VY (a)
VY (a)

)
=

∑
a

π(a) kT ln VX(a)
VY (a) + kT

∑
a

π(a) ln
( VX
VX(a)

VY (a)
VY

)
= Ea∼π∆F [a] + kT

∑
a

π(a) ln π(a)
δ(a)

= Ea∼π∆F [a] + kT DKL(π || δ).

In other words, the overall thermodynamic cost of this operation can be broken down into
a sum of two terms. The first term is the expected free energy difference per compartment,
written here as ∆F [a]. This can be seen as the work involved in compressing just that single
cell a. However, this does not exhaust the work performed. The second term captures the
work involved in reducing our uncertainty about which compartment houses the particle. This
is measured by the KL-divergence from the old distribution δ to the new distribution π, with
a conversion factor of kT . Note that this gloss depends on π being sharper than δ.

At this point Ortega and Braun (2013) suggest a substantive reinterpretation by switching
from the location of a particle in a box to an action performed by an agent. Suppose instead
that a ranges over actions and that δ and π are action distributions. The suggestion is to
replace the per-compartment free energy ∆F [a] with the disutility −U(a) of opting for action
a. In the (very) special case that the action happens to be compressing a cell within an ideal
box, this is not a reinterpretation at all. But we might imagine more generally that U(a) gives
some independent measure of how good (or “not bad”) action a is; e.g., U(a) = Es u(s, a) could
be defined as expected utility over some assumed distribution on relevant states.

On this reinterpretation, minimizing the free energy difference is tantamount to maximizing
the expected utility of using π minus the cost of overriding the default δ, in line with Eq. (4.7):

−∆F = U(π)− kT DKL(π || δ),

where kT = 1/β. This explains why β is often called the inverse temperature. As stated in
Theorem 6, the maximum is given precisely by the softmax decision rule.

The specific conversion factor kT is motivated by the theory of ideal gases. In any concrete
physical system (such as a brain or a computer) the costs of information processing will be
greater. The bold hypothesis (cf. §1.4) is that there will be some conversion factor β that
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accurately characterizes this cost, and in particular that the (opportunity) cost of moving
from δ to π will be proportional to the relative entropy, DKL(π || δ). To the extent that this
hypothesis holds, it gives a resource rational justification for random behavior, and specifically
for (posterior) probability matching.

4.3.4 Information Coding
The discussion of information theory so far has focused on one-shot decision problems and
probability distributions over single actions. Interestingly, moving to the setting of (fully ob-
servable) sequential decision problems (§2.2) supplies us with a canonical default distribution.
A natural choice is to let the default probability of a be something like the long-run frequency
of action a. Then we could measure the complexity of a strategy—relative to the probabilities
characterizing an environment—as the average cost of diverging from that default distribution
to a situation-specific distribution.

More precisely, recall (Remark 5) the stationary distribution Pσ(S = s) for a given MDP
strategy σ, capturing the long-term frequency with which we expect to visit state s. We can
define an analogous random variable A for the stationary distribution on actions:

Pσ(A = a) =
∑
s∈S

Pσ(S = s)σs(a). (4.10)

We thus have two random variables S and A with distributions Pσ(S) and Pσ(A). Note that
randomness in action selection is actually inherited from (apparent) randomness in the envi-
ronment. Even if the agent were to behave deterministically in any given state, the stationary
distribution Pσ(A) will still generally be non-deterministic.

Taking Pσ(A) as the default, we can then measure cost by averaging over KL-divergences:

Definition 15 (Information theoretic cost of a sequential strategy). The cost C(σ) of imple-
menting sequential strategy σ is,

C(σ) = Es∼PσDKL

(
σs ||Pσ(A)

)
, (4.11)

that is, the KL-divergence from the default distribution Pσ(A) to the situation-specific distri-
bution σs, averaged over states.

Assuming we can justify KL-divergence as the right way of measuring the cost of moving
from a default to a sharpened action distribution (e.g., via §4.3.2 or §4.3.3), this seems like the
right extension to the sequential setting; the question is, how much on average does it cost to
move from the stationary distribution on actions to a situation-specific disposition?

Very similar to the derivation of Theorem 6, we have the sequential generalization of it:

Theorem 8. Where U(σ) is defined as in Eq. (2.9) and C(σ) as in Eq. (4.11), the value

V(σ) = U(σ)− 1
β
C(σ)

is maximized by σ∗, defined so that for each s ∈ S and a ∈ A:

σ∗s (a) ∝ Pσ∗(A = a) eβQ
σ∗ (s,a), (4.12)

where Qσ∗ is the Q-function introduced in Eq. (2.11).
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Figure 4.4: Inside a strategy σ for the Markov decision process. The agent is assumed to encode
the state s via an encoding c = e(s), and then draw an action from the (typically lossy) action
distribution σc. Higher mutual information between state and action distributions presumably
implies more complex encodings. Adapted from Lai and Gershman (2021), Fig. 1A.

Observe that Eq. (4.12) is just like Eq. (4.8), the original default-relative softmax expres-
sion, except that Q replaces expected utility of a, and the default distribution is Pσ∗(A).

There is another way of interpreting Definition 14, revealed in the following derivation:

C(σ) = Es∼PσDKL

(
σs ||Pσ(A)

)
=

∑
s,a

Pσ(S = s)σs(a) log σs(a)
Pσ(A = a)

=
∑
s,a

Pσ(S = s)σs(a) log Pσ(S = s)σs(a)
Pσ(S = s)Pσ(A = a)

=
∑
s,a

Pσ(S = s,A = a) log Pσ(S = s,A = a)
Pσ(S = s)Pσ(A = a) , (4.13)

the equality Pσ(S = s,A = a) = Pσ(S = s)σs(a) following from Eq. (4.10). This last expression
(4.13) is known as the mutual information between S and A, often written I(S; A). What this
simple derivation shows is thus that Definition 14 is equivalent to saying we measure cost by
the mutual information between the (stationary) state and action distributions.

The concept of mutual information—also called predictive information—has a long and
significant history in neuroscience, dating back to the “efficient coding hypothesis” of Barlow
(1961). As a measure of the information carried by one random variable about another, mutual
information has been proposed as a way of measuring how well a population of neurons encodes
some class of stimuli (e.g., Brunel and Nadal 1998). Presumably, a better encoding will demand
greater resources and thus incur greater cost. This is only exacerbated by the various sources
of noise in the nervous system (§4.1.1), which seems to demand considerable redundancy in
neural coding in order to overcome the noise (Niven and Laughlin, 2008).

Motivated by considerations like these, mutual information has been independently proposed
as a cost term in reinforcement learning and theoretical neuroscience (e.g., Tishby and Polani
2011; Still and Precup 2012). The idea is intuitive: the more an agent’s action distribution
carries information about the state—that is, the more it would be possible to predict the
state from the action—the more the agent must be differentially responding to different states.
Responding differentially in turn requires that the agent somehow encode states appropriately.
More sensitive responses require better encodings, and better encodings demand resources. See
Fig. 4.4 for one way of illustrating the core idea, adapted from Lai and Gershman (2021).

We will return to these ideas below in §5.3.3 when discussing resource rational analysis
in cognitive science. For now, it merits emphasis that all of these approaches to information
theoretic cost are relatively abstract. Under auxiliary assumptions, it can be proven that
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mutual information does place a lower bound on the amount of memory needed to implement
a given strategy (see, e.g., Shalizi and Crutchfield 2001, Thm. 5). At the same time, the
perspective is often promoted as a “model-neutral” approach that makes minimal assumptions
about computational architecture (see, e.g., Bialek et al. 2001; Ortega 2010).

4.4 Randomness as Resource
A different starting point on the question of when randomness could be (resource) rational takes
it to be, not a default, but a resource. Perhaps the default behavior of an agent is actually
deterministic: despite the presence of neural noise, when put in a particular circumstance,
without deliberation the agent would always carry out the same (perhaps suboptimal) strategy.
On this view, a source of random noise—whether originating in the nervous system or external
to the agent—might actually help the agent improve upon suboptimal deterministic strategies.
Here we explore two ways that might happen.

4.4.1 Stochastic Resonance
Imagine a system with a binary “output” variable Y that depends on another binary “input”
variable X. The system operates with a threshold θ > 0, such that Y takes on value 1 just in
case its input value surpasses θ. If θ < 1, then such a system would behave deterministically,
with Y always being present (i.e., having value 1) whenever X is present. If P (X = 1) = 0.5,
say, then they will both be present together half the time.

But suppose θ > 1. Then Y will not be sensitive to the presence of X at all. The idea of
stochastic resonance is that it could be helpful in such a situation to add some random noise
to the signal X. Imagine a third variable Z whose distribution is Gaussian with mean 0 and
variance v, and let:

Y =
{

1 if X + Z > θ

0 otherwise.

If v = 0, then we are back in the previous case. But it now seems intuitive that having positive
variance could actually be useful here. Let the objective be to maximize the mutual information
between X and Y (Eq. (4.13) above), and assume θ = 1.25. With v = 0, the mutual information
is 0. However, if the variance is instead, say, 1/4, then I(X; Y) > 1/10. See Fig. 4.5. Intuitively,
even though Y sometimes “misfires” when X is absent, it exhibits a strong enough correlation
with X so that some signal passes through the system. Of course, if v is too high, X and Y will
again become decorrelated. There is in fact an optimal noise level (Bulsara and Zador, 1996).

Some evidence of stochastic resonance has been found in the biological world. In one famous
study, Russell et al. (1999) showed that injecting the optimal amount of electric noise into the
surrounding water of a paddle fish allowed the fish to detect planktonic prey more effectively.
Whether any organisms use “intrinsic” sources of randomness—e.g., intrinsic neural noise—for
such purposes remains a matter of debate; see McDonnell and Abbott (2009) for a review.

It is important to emphasize that stochastic resonance depends on the threshold θ being a
fixed feature of the organism. If the threshold can be set by the agent, then noise can again
confer no benefit. Thus, whether stochastic resonance counts as a resource rational justification
for randomness depends in part on whether we consider the thresholding mechanism to be an
inherent part of the agent in question (recall Fig. 1.1). Some have suggested that dynamically
setting the threshold could itself be a costly process (cf. McDonnell and Abbott 2009), but
substantiating this suggestion requires a further argument, perhaps drawing on ideas about
resource requirements such as memory. This leads to our last rationale for randomness.
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when X is absent when X is present

Figure 4.5: An example of stochastic resonance. Gray shading denotes Gaussian noise (X + Z),
with darker signifying greater probability. In order for Y to register the presence of X, activity
needs to surpass the dotted red threshold (θ).

4.4.2 Randomization and Memory
We have already seen in Chapter 3 that agents with a finite memory appear to benefit from
randomization. Recall that a general way of enforcing finite memory is to assume the agent
can only be in one of finitely many behaviorally distinct states; in other words, the agent’s
deliberative strategy must be implementable by a finite automaton (Defs. 10 and 13). On
this approach memory is not formalized explicitly or assumed to have any particular format.
Instead, restrictions on memory are captured by restrictions on the size of the automaton.

The work on polarization by Wilson (2014) discussed in §3.5 was partly anticipated in earlier
work by Hellman and Cover (1970, 1971). They looked at the problem of hypothesis testing by
finite automata. Given a prior over hypotheses and a likelihood function for observations given
hypotheses, the best strategy for an unbounded agent is simply to guess the hypothesis with
highest posterior probability. However, this strategy generally requires unbounded memory.
The question is, what happens when memory is bounded? The following simple illustration is
adapted from Icard (2021), inspired by Hellman and Cover (1970, 1971):

Example 23 (Hypothesis testing with a finite memory). Imagine there are just two states,
S = {s1, s2} (“coin 1” or “coin 2”), and there are two possible observations O = {h, t} (“heads”
and “tails”). The two coins are equally likely a priori—p(s1) = p(s2) = 1/2—and the likelihoods
are l(h|s1) = 0.99 and l(h|s2) = 0.9. Thus, heads is more likely than tails for both coins, but it
is vastly more likely in s1. Suppose that we will encounter T observations (“flips of the coin”),
after which we have to guess which coin generated the observations. That is, A = S. What is
the best we can do if our strategy must be implemented by a finite state machine? Specifically,
suppose our finite state machine can have at most two states.

If we are forced to use a deterministic strategy, the best we can do is the following:

q0 q1

h h, t

t

δ(q0) = s1

δ(q1) = s2

We begin by guessing coin 1 (in q0), but as soon as the first tails is observed we guess coin 2,
and that is our guess forever after. Note, incidentally, that this is just the “trigger” strategy
discussed in Example 15 of the previous chapter. If T = 100, this strategy will be correct about
68% of the time. If T = 200 this drops to around 57%, and by the time we reach T ≥ 500, the
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agent’s performance is no better than chance: there is almost always at least one flip of tails,
no matter whether it is coin 1 or coin 2.

If we are allowed to employ stochastic transitions, however, we can do much better.

q0 q1

h
t

h : 1− pt

h : p

δ(q0) = s1

δ(q1) = s2

This strategy is just like the deterministic strategy above, except that in state q1 there is some
probability p of returning back to q0 (guessing s1). If we see enough heads in a row, even if
p is very small, we will eventually make that transition. Notice that this is just “stochastic
tit-for-tat” discussed in Example 18. The analysis from Hellman and Cover (1970, 1971) shows
p ≈ 0.03 leads to the best performance in this specific case. With more than a few dozen
observations, the strategy will be correct about 77% of the time, no matter how large T is.

The intuition behind Example 23 is clear enough: random transitions provide the memory-
bounded agent with a means of escaping hypotheses that may have initially seemed plausible,
but become decreasingly plausible given more data.

An even simpler illustration comes from a well known example in game theory, where strate-
gies are restricted to those implementable by an automaton with just a single state:

Example 24 (Absent Minded Driver). This is a sequential decision problem introduced by
Piccione and Rubinstein (1997). Suppose an agent is out late at a concert and needs to drive
home afterward. Taking the first turn on the route would lead to a swamp, which is highly
undesirable. The second turn, however, leads home. If the agent does not turn at all, then they
arrive at a hotel and have to pay for a room, which is again slightly undesirable.

Because they are very tired, they will not remember whether they are at the first or second
stop. A depiction of the scenario appears in Fig. 4.6. We now impose the requirement that the
strategy be implementable by a one-state machine. What is the best deterministic strategy?
Simply never turn, giving an expected utility of 1. By the argument from convexity (§4.2), no
probabilistic mixture of deterministic one-state strategies does better.

But what if we can employ a behavioral strategy and randomize our decision at each step,
e.g., turning with probability p at both choice points? Call this strategy σ. Then:

Expected utility of strategy σ = p(1− p)4 + (1− p)(1− p)
= 2p− 3p2 + 1.

This takes on a maximum when p = 1/3, giving expected utility 4/3. The best strategy is
behavioral, and no mixed strategy can achieve the same.

Both Example 23 and Example 24 demonstrate an intriguing failure of Theorem 5, the
result that every behavioral strategy is equivalent to some mixed strategy. While this is true
when we ignore the resource costs required to implement the strategy—even if we impose the
requirement that the strategy be implementable by some computer program; recall Corollary
1—it fails if we put an upper bound on available memory. Both examples here reveal cases in
which the performance of a probabilistic automaton of a given size cannot be matched by a
probabilistic mixture of deterministic automaton of the same size.

Consequently, if it is a fixed feature of an agent that their memory capacity is limited,
that by itself raises the possibility that randomization could confer a definitive benefit. This
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Figure 4.6: Schematic for the absent minded driver (Example 24). The dotted oval around the
two choice points signifies that the agent cannot distinguish between the two. So any admissible
strategy will have to treat these choice points identically.

is especially plausible, as Example 23 makes salient, when the amount of data confronting the
agent vastly outstrips available memory and processing capacity (cf. Christiansen and Chater
2016 on the specific challenges of real-time language processing). It is argued in Icard (2021)
that this situation is common in humans and other agents of sufficient complexity, which might
in turn (resource) rationalize widespread randomization. Here is one last illustration.

Example 25 (Random Pigeons). A study by Machado (1993) had pigeons producing sequences
of pecks, on a left key (L) or a right key (R). The goal is for the sequence to be normal at level
k, meaning that the proportion of all k-length subsequences should be uniform. This can be
construed as a kind of search problem. Imagine there is some “prize” k-length sequence, such
that producing that sequence gives positive probability of a large prize. Assuming all k-length
sequences are equally likely, the goal is to produce each subsequence the same number of times
so as to maximize the overall chance of a prize. In these experiments, reward in the form of
food is delivered throughout the trial, with probability of reward proportional to how balanced
the produced sequence is among subsequences of length k.

There exists an optimal deterministic strategy for this task, provided by so called de Bruijn
sequences. In the case of k = 1, the optimal strategy is simple alternation, captured by this
deterministic automaton (with no observations, and the action, L or R, appearing in the state):

L R

guaranteeing the same number of L as R throughout. Pigeons routinely learn this strategy. For
k = 2, the optimal strategy is slightly less obvious:

L

L

R

R

This balances all subsequences of length 2. With slightly more difficulty, pigeons are able to
learn this strategy (Machado, 1993, Exp. 1). The answer for k = 3, however, is not at all
obvious. It turns out that repeating the following sequence is the optimal strategy:

R

L L L

R

LRR
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No pigeons in this study demonstrated such behavior. More interesting, however, is the finding
that almost all of the birds in this experiment behaved in a way that was eventually indis-
tinguishable from a random Bernoulli process. The produced sequences passed a barrage of
statistical tests, suggesting that they had learned to achieve variability by acting more or less
randomly (Machado, 1993, Exp. 2). Evidently, when the memory requirements become too
demanding, the pigeons in this study latch on to the optimal alternative, which in this case is
simply to act randomly, all but guaranteeing approximate balance for long enough sequences.

4.5 Conclusion
There have been a number of arguments for the rationality of randomization across various lit-
eratures. The need for randomized experiments to control for unknown confounders in causal
inference is one famous example (going back at least to R. Fisher). Game theorists have ar-
gued that randomized strategies might confer protection against being outwitted in strategic
scenarios (§3.1). Meanwhile, researchers in reinforcement learning have suggested that ran-
domizing one’s decisions—especially in accord with the softmax distribution in (4.2)—can help
balance exploitation of known rewards with exploration for even higher sources of reward (recall
§2.3.2). In a very general sense, each of these arguments relates to resource limitations. For
instance, they all stem from a concern that formulating (and computing with) a suitable prior
distribution on relevant states of the world may be difficult.

Such appeals to resources tend to be informal. The approaches discussed in the present
chapter offer concrete rationales for random behavior by reference to a formalization of resource
costs. Aside from shedding light on the intriguing question of when randomness in behavior
might in fact be resource rational, an important function of this chapter has been to introduce
the information theoretic approach to understanding resources more generally, as a potential
alternative to the mechanistic approach grounded in explicit computational models. Both show
how the convexity argument in §4.2 can fail, though in rather different ways. We will see
examples of both in the next chapter on resource rational analysis in cognitive science.

4.A Technical Appendices
These appendices include technical material from the present chapter. In §4.A.1 we derive the
softmax function from the random utility model introduced in §4.1.2. Next, in §4.A.2 we prove
Theorem 5, showing that every behavioral strategy is equivalent to a mixed strategy. Finally,
§4.A.3 is dedicated to a derivation of the softmax decision rule from imposing an information
theoretic cost on any sequential decision making strategy.

4.A.1 Random Utility Derivation of Softmax
The following argument appears in Luce and Suppes (1965), who in turn attribute it to E.
Holman and A.A.J. Marley. The probability that action a has maximal value Ua can be
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obtained by integrating over all possible maximal values:

Probability that Ua is maximal =
∫ ∞
−∞

[
P (Ua = x) ·

∏
a′ 6=a

P (Ua′ ≤ x)
]
dx

=
∫ 0

−∞
eβV (a)+exβV (a)

·
∏
a′ 6=a

[ ∫ x

−∞
eβV (a′)+eyβV (a′)

dy
]
dx

=
∫ 0

−∞

[
eβV (a) · ee

xβV (a)
·
∏
a′ 6=a

ee
xβV (a′)]

dx

=
∫ 0

−∞

[
eβV (a) ·

∏
a′

ee
xβV (a′)]

dx

=
∫ 0

−∞

[
eβV (a) · e

∑
a′
exβV (a′)]

dx

= eβV (a)∑
a′ e

βV (a′) ,

which is precisely the softmax function.

4.A.2 From Behavioral to Mixed Strategies
Let Ω =

⋃
t<T Ot, with Ot all observation histories consisting of exactly t actions (and t + 1

observations). Define ΣT to be the set of all functions from Ω to A. Note that a distribution
µ ∈ ∆(ΣT ) canonically gives a distribution on strategies in Σt for any t < T as well. We abuse
notation and write µ(ς) for the sum of probabilities µ assigns to strategies in ΣT that extend ς.

Recall the definition of µ. For each ς ∈ ΣT :

µ(ς) =
∏

ω∈Ot:t<T
σω(ς(ω))

=
∏
ω∈Ω

σω(ς(ω)).

We first need to check that µ is a proper probability distribution, specifically that it sums to
unity. The crucial observation is the following identity for all t < T :∑

ς∈Σt+1

µ(ς) =
∑
ς∈Σt

µ(ς)×
( ∏
ω∈Ot

∑
a∈A

σω(a)
)

(4.14)

The reason this holds is that each function in Σt gets extended in all possible ways to a function
in Σt+1. Summing over (the weights of) all such extensions gives the term on the right. Using
this identity T times leads to the result:∑

ς∈ΣT

µ(ς) =
( ∏
ω∈O0

∑
a∈A

σω(a)
)
× . . .×

( ∏
ω∈OT−1

∑
a∈A

σω(a)
)

=
∏
t<T

∏
ω∈Ot

∑
a∈A

σω(a)

=
∏
ω∈Ω

1

= 1,
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since each σω is assumed to be a probability distribution summing to one.
We now show that σ and µ produce the same distribution on histories. The crucial point is

that, for any observation history ω = o0, a0, . . . , oT−1, aT−1, oT , the probability that σ generates
each action at at observation history ω � t is the same as the sum of probabilities that µ assigns
to deterministic strategies ς, each of which generates at at ω � t. That is, where Σ∗T is the set
of all those ς such that ς(ω � t) = at for all t < T , we need:∏

t<T

σω�t(at) =
∑
ς∈Σ∗

T

µ(ς). (4.15)

To show (4.15) consider a variation on Eq. (4.14), for each t < T :∑
ς∈Σ∗t+1

µ(ς) =
∑
ς∈Σ∗t

µ(ς)× σω�t(at)×
( ∏
ω′ 6=(ω�t)

∑
a∈A

σω′(a)
)
, (4.16)

where Σ∗t is defined analagously to Σ∗T . The argument is the same as for (4.14), except that
we remove all variations for the observation histories ω � t, since those are held fixed at at.
Contuing analogously to the previous argument, using Eq. (4.16) T times, we obtain:∑

ς∈Σ∗
T

µ(ς) =
∏
t<T

[
σω�t(at)×

( ∏
ω′ 6=(ω�t)

∑
a∈A

σω′(a)
)]

=
[ ∏
t<T

σω�t(at)
]
×
[ ∏
t<T

∏
ω′ 6=(ω�t)

∑
a∈A

σω′(a)
]

=
[ ∏
t<T

σω�t(at)
]
×
[ ∏
t<T

∏
ω′ 6=(ω�t)

1
]

=
[ ∏
t<T

σω�t(at)
]
× 1

=
∏
t<T

σω�t(at).

This gives us exactly Eq. (4.15), which completes the proof.

4.A.3 Information Theoretic Derivation of Softmax
The argument here uses the optimization method of Lagrange multipliers (see, e.g., Chapter 5
of Boyd and Vandenberghe 2004). What we want are the values of variables xa = α(a). We
can rewrite the cost as a function κ(~x) of the variables xa in the following way:

κ(~x) = DKL(α || δ)

=
∑
a

xa log
( xa
δ(a)

)
So we want to choose α to minimize the information theoretic cost DKL(α || δ), subject to the
overall utility of the system, σ(~x) =

∑
a xa EU(a), being equal to some constant c. We also

need to ensure that the sum
∑
a xa is equal to 1, and that each xa ≥ 0.

Writing everything in Lagrangian form, the following is what we want to optimize:

L(~x, β, λ) = κ(~x)− β
(
σ(~x)− c

)
+ λ

(∑
a

xa − 1
)
.
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The parameter β will effectively trade off between the constraint of minimizing costs and
maximizing utility, while λ will effectively be a component of a normalizing term.

We set the gradients all to 0, which gives a set of k = |A| + 2 equations in k unknowns.
Solving this will give us our desired values xa = α(a).

∇L =



...
∂κ
∂xa
− β ∂σ

∂xa
+ λ

...
σ(~x)− c∑
a xa − 1

 = ~0

Note that ∂σ
∂xa

= EU(a), while ∂κ
∂xa

is equal to log
(
xa
δ(a) + 1

)
. The equation for xa becomes:

log
( xa
δ(a) + 1

)
= −λ+ β EU(a)

Solving for xa gives:

xa = δ(a) e−λ+β EU(a).

= 1
eλ
δ(a)eβ EU(a)

Note that each xa is therefore guaranteed to be non-negative.
Since λ is the same for each xa, the term eλ is essentially a normalizing constant (or a

“partition function” as it is called in physics). The last equation, guaranteeing that the sum∑
a xa is equal to 1, implies that

eλ =
∑
a

δ(a) eβ EU(a), and thus

λ = ln(
∑
a

δ(a) eβ EU(a)).

To determine β we appeal to the remaining equation, which gives

c = 1
eλ

∑
a

δ(a) eβ EU(a).

Solving for the only remaining unknown β gives probabilities whereby

α(a) ∝ δ(a) eβ EU(a).

If the default distribution δ was uniform, then DKL(α || δ) would be log(|A|)−H(α), in which
case the term δ(a) could be removed everywhere above. The derivative ∂(log(|A|)−H(α))

∂xa
becomes

log(xa) + 1, so the probabilities simplify to:

α(a) ∝ eβ EU(a).

In any case, the central point is that the parameter β and the expected level c of success are
intimately related. If we want a higher value of c, we correspondingly have to increase β.

A variation on this derivation appeared in Jaynes (1957) to establish the softmax distribution
as that with maximum entropy among those giving a specific mean value.



Chapter 5

Resource Rational Analysis

Researchers interested in descriptive questions about how minds work have numerous tools at
their disposal. Behavioral experiments form the core of the cognitive scientific toolkit, but
there are also other methods that reveal aspects of mental processing including eye-tracking
and response-time studies. Some tools even allow probing the presumptive locus of cognition—
the brain—for instance, with imaging techniques (fMRI, EEG, etc.), various types of lesions or
external stimulation (TMS, optogenetics, etc.), and measurements of individual cells.

Even with all of these methodological tools available, much about the mind remains opaque,
for at least two reasons. The first is simply that the tools are still typically inadequate for
adjudicating between competing hypotheses, resulting in a fundamental identifiability problem
(Pylyshyn, 1984; Anderson, 1990; Yamins and DiCarlo, 2016). A second source of epistemic
opacity is the shear complexity of brain and behavior, a feature shared with many other scientific
domains (Humphreys, 2009). Even if we had perfect observational and experimental access to
brains, we would still face the formidable challenge of uncovering the fundamental logic of the
mind—how all the moving parts fit together to produce behavior (Bechtel and Richardson,
2010; Jonas and Kording, 2017). Often it is not even clear what kinds of hypotheses would be
sensible to test in the first place. This second challenge stems from the very human resource
limitations that are the focus of this monograph (cf. the discussion in Wimsatt 2007).

A founding doctrine for the field of cognitive science is that—at an appropriate level of
abstraction—the mind can be understood as solving various informational problems (Newell
et al., 1959; Marr and Poggio, 1976; Marr, 1982). This perspective affords a distinctive method-
ological tool, a potentially powerful way of formulating psychological hypotheses. If we can
clarify the problem some cognitive system is solving, then we can use solutions to that problem
as guiding hypotheses for the particular way the mind manages to solve them. This is the
methodology of rational analysis.

Traditional approaches to rational analysis (e.g., Anderson 1990) tended to downplay the
role of resource constraints. A number of authors have suggested that resources should instead
be front and center in rational analysis, resulting in a methodology of resource rational analysis.
We have seen several projects in the spirit of this methodology from the previous chapters, e.g.,
optimal tradeoffs in neural processing (Example 2, §2.3.4), broad resource-related reasons why
we might expect polarization in belief formation (§3.5), or randomness is behavioral responses
to stimuli (Chapter 4). Some of those approaches (e.g., the latter two) are less concerned with
detailed modeling of human cognition than with general conditions under which some type
of behavior might be rationalized. Resource rational analysis is motivated by more specific
questions about how the human mind works in particular. As an explicit research program it
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has only been formulated relatively recently (Lewis et al., 2014; Icard, 2014; Griffiths et al., 2015;
Gershman et al., 2015; Lieder and Griffiths, 2020). The present chapter offers a perspective on
this research program, illustrated by a number of concrete examples from different arenas of
cognition that showcase the wide variety of styles and angles that researchers have employed.1

5.1 Rational Analysis
The idea that thought and cognition can be understood in (instrumentally) rational terms is
centuries old. Famously, for Aristotle rationality was characteristic of human beings, with much
of mentality understood by appeal to its function.

The specific application of probabilistic and decision theoretic tools—of the sort introduced
in Chapter 2—for understanding human thought began to appear in the 1950s, with signal
detection theory in perception (Tanner and Swets, 1954), statistical approaches to learning and
decision making (Luce and Suppes, 1965), and the hypothesis that people could be understood
as “intuitive statisticians” (Brunswick, 1957). In a review article, Peterson and Beach (1967)
summarized the state of the field by saying, “in general, the results indicate that probability
theory and statistics can be used as the basis for psychological models that integrate and
account for human performance in a wide range of inferential tasks” (p. 29).

By the 1970s, however, psychologists had amassed dozens of settings where human choice
and behavior seemed dramatically at odds with decision-theoretic standards, including cases
where people apparently thwart their own self-interests (Tversky and Kahneman, 1974; Slovic
et al., 1977). Though some researchers argued that the many suboptimal heuristics and bi-
ases under study in this literature merely pinpoint the fault lines of an otherwise very well
adapted cognitive system (see the discussion between Gigerenzer 1996 and Kahneman and
Tversky 1996), others drew more pessimistic conclusions with “bleak implications for human
rationality” (Nisbett and Borgida, 1975, p. 935). The so-called rationality wars have continued
(Samuels et al., 2002), with vociferous debates about the precise fault lines of human thought
and reasoning, about the general question of whether people are, on the whole, rational, and
even whether such questions could be empirically meaningful (e.g., Cohen 1981).

Right at the height of the rationality wars, Anderson (1990) proposed a bold research
program aimed at mitigating the identifiability problems in cognitive science, premised on a
kind of rationality assumption. Rather than targeting a general notion of rationality applied
at the “personal level” (in the sense of Dennett 1969), the target was rather specific cognitive
systems. The methodology was laid out in six steps:

1. Precisely specify the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is adapted.

3. Make the minimal assumptions about computational limitations.

4. Derive the optimal behavioral function given items (1)-(3).

5. Examine the empirical literature to see whether the predictions are confirmed.

6. If the predictions are off, iterate.

The methodology was illustrated with four examples of putative cognition systems, for memory
retrieval, causal strength induction, general decision making, and categorization.

1The presentation of resource rational analysis in this chapter is an updated version of Icard (2014, 2018).
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Figure 5.1: The problem of categorization. The image comes, with permission, from the e-book
by Goodman and Tenenbaum (2008), and is based on Shafto et al. (2011).

Example 26 (Categorization). Anderson (1990, 1991a) suggests that a fundamental reason
we form categories is to make predictions, with an underlying assumption that objects tend to
cluster together as a function of their attributes (perceptually salient features, labels, behavior,
function, etc.), which makes prediction possible. Thus, suppose an agent has observed some
sequence ~o of objects with different combinations of attributes. They then encounter a new
object, but the value x of some specific attribute is unknown. The goal is to infer the value of
this hidden attribute. See Figure 5.1, where the missing attribute is a linguistic label.

What makes this a categorization problem is that the distribution p(x|~o) is assumed to
decompose via clusterings z of objects by their features:

p(x|~o) =
∑
z

p(x|z) p(z|~o). (5.1)

That is, the task is to estimate the probability of each clustering z given observations ~o, and to
determine the probability of an attribute value x given a clustering z. Step (1) of Anderson’s
methodology is thus to specify the goal of inferring the probability in (5.1).

In step (2), Anderson makes an assumption that these two terms—p(x|z) and p(z|~o)—reflect
a certain type of environment. The probability p(x|z) of a feature given a clustering takes the
form of a so-called beta-distribution: as the number of observations increases, an attribute
becomes more likely to the extent that other objects in the same cluster have that attribute. In
this respect, objects in the same category tend to be more similar. Meanwhile, the probability
p(z|~o) is given by Bayes rule, being proportional to p(~o|z) p(z). The crucial prior p(z) over
clusterings implements a kind of “rich get richer” scheme, which turns out to be an instance of
the so-called Dirichlet process mixture model (Sanborn et al., 2010). This captures the intuitive
idea that objects tend to cluster together into categories.

The precise details of the model are not crucial. The upshot is that, by making these
assumptions about the goal of categorization and about the distributional properties of the
environment, Anderson was able to retrodict a wide array of empirical phenomena uncovered
in the category learning literature, including order effects, prototype effects, the relative ease of
learning different categories of Boolean concepts, and several others (Anderson, 1990, 1991a).

As the example illustrates, rational analysis as a methodological tool has a number of
potential virtues:

1. Hypothesis generation: Proposals for how a cognitive system works are limited to
those that solve the presumptive problem.

2. Unification: As in Example 26, many disparate empirical phenomena may be seen to
arise from the same underlying principle, e.g., optimal prediction.

3. Rationalization: Insofar as the assumed task is intuitive, a successful rational analysis
may “make sense” of otherwise puzzling behavior.
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4. Explanation: Aside from the virtues of unification and rationalization, a successful
rational analysis may also point the way toward an etiological explanation of the cognitive
phenomenon. If a system optimizes some goal, this may well have been caused by a process
of optimization, whether at a phylogenetic or ontogenetic scale (or both).

The formulation of cognitive problems as inference problems under uncertainty has been espe-
cially influential, with recent decades seeing a “Bayesian boom” (Hahn, 2014). People have been
assumed to be “intuitive statisticians” not only in explicit prediction and estimation (Peterson
and Beach, 1967; Griffiths and Tenenbaum, 2006), but also in more implicit ways through per-
ception (Ma et al., 2022; Rescorla, 2015), intuitive physics (Battaglia et al., 2013), language
understanding (Goodman and Frank, 2016), and many others domains (Oaksford and Chater,
1999; Chater et al., 2006). Here is another example, which goes beyond mere Bayesian inference
to encompass the sequential decision making apparatus introduced in §2.2:

Example 27 (Optimal Feedback Control). Imagine a simple motor planning task like reaching
for a cup. If we think of A as the (discretized) “basic” movements an agent can undergo, for a
given state s ∈ S the utility u(s, a) = v(s, a) − k(s, a) might be broken down into a difference
between the task-related “intrinsic value” v(s, a) of performing a in s—e.g., reflecting the degree
to which the task has been successfully completed—and a “cost” term k(s, a) measuring the
energetic or metabolic resources required to carry out a in s. Note that this is an “external”
cost rather than one that is internal to a deliberative mechanism. The aim is to maximize
expected utility: in this case, to achieve the goal (grasping the cup) minimizing the costs.

One way a motor system might try to achieve this is to plan out a trajectory ahead of
time. Then all the system needs to do is to execute that plan. In a stable and controllable
environment, this may well be adequate. However, motor actions often take place in dynamic
environment with many sources of noise, both internal (cf. §4.1.1) and external. What should
the system do when forced off its planned trajectory? One possibility would be to plan a new
trajectory. Another might be to try and return to the original trajectory.

A different perspective on this problem—first suggested by Todorov and Jordan (2002);
see McNamee and Wolpert (2019) for a recent review—is to construe the predicament as one
of control. Instead of planning out a specific trajectory, we should understand the system
as implementing a strategy in the sense of Def. 2. As discussed in Chapter 2 (Remark 2),
strategies are richer objects than what would be needed for a plan. If one were engineering a
motor system, why might it make sense to implement a full strategy? And why might this be a
helpful theoretical lens through which to understand the biological motor system? The intuition
is that, in a highly noisy environment, embodying a more “reactive” policy may be be necessary.
A well adapted agent will have suitable dispositions for a wide range of circumstances, possibly
including those they do not expect to face.

Without speculating on how the strategy might be learned (§2.3) or implemented—and thus
ignoring computational costs—it turns out that optimal strategies for various motor planning
tasks predict empirical motor performance remarkably well. As a typical example, because
of the cost term in the utility function, an optimal system will only respond to noise-induced
deviations when necessary to achieve the goal. See Fig. 5.2. This is exactly what is found in
numerous studies of motor control; see Scott (2012); McNamee and Wolpert (2019).

Despite being a remarkably prodigious research program, Bayesian rational analysis has
met considerable resistance, on virtually all fronts. In many individual cases, researchers have
questioned the norms associated with different cognitive functions. For instance, in contrast to
Anderson’s (1991a) analysis of categorization, Murphy (1993) points out that categories serve
many other roles in cognition, e.g., in memory retrieval, language comprehension, planning,
etc., which do not obviously reduce to attribute prediction.
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Figure 5.2: In a motor planning task, participants reach for a goal and are forced off path.
When the departure frustrates task performance, reaching movements return to the original
path (blues lines on left side). By contrast, when the departure is task-irrelevant, they continue
with the perturbed path (red lines on the right). Reprinted with permission from Scott (2012).

The very idea that rational (in particular ideal-Bayesian) models would be explanatory has
come under criticism. One source of the criticism stems from an expectation that psychological
explanation should be mechanistic in nature (Jones and Love, 2011), while rational explanations
are by design “nearly mechanism-free” (Anderson, 1990, p. 30). At best, therefore, rational
analyses offer a preliminary step toward a genuine (mechanistic or etiological) explanation
(Danks, 2008; Colombo and Seriès, 2012). A related concern is that the method is under-
constrained, such that it is too easy to determine—post hoc—a Bayesian model to fit any data
(Bowers and Davis, 2012). A third concern is simply that we appear to have a wealth of
data showing that, as a matter of fact, behavior is seldom in accord with (Bayesian) rational
principles. In other words, the very background assumption of optimality is generally untenable
(Simon, 1991; Eberhardt and Danks, 2011; Mandelbaum, 2019).

There is a general reason that this last criticism has particular force. As many authors have
stressed, the computations required to behave in a Bayes-optimal manner are almost always
intractable (see van Rooij et al. 2019 for extended discussion of this point). Even if we grant
that Bayesian inference provides the right normative standard for a given cognitive task, it is
simply not possible for a resource-limited system to achieve that standard.

Example 28. Example 26 illustrates the point clearly. Even ignoring the Bayesian inference
required to compute p(z|~o) for a specific clustering z, the expression in (5.1) involves a sum over
all possible clusterings (i.e., partitions) of the observed objects. As Anderson recognized, the
number of clusterings grows extremely quickly, giving the so-called Bell exponential numbers.
This makes (5.1) wildly intractable, so much so that he was unable to compute the purportedly
optimal posterior to derive its predictions.

This is where step (3) is invoked. Instead of maintaining a distribution over all possible
clusterings, Anderson proposed that the mind commits at each step to a particular clustering,
deterministically opting for the extension that has the highest posterior probability. In this
sense, the approximation is “locally” optimal. Significantly, this version of the model was crucial
in accounting for much of the data. For instance, order effects can result from “misleading”
presentations of stimuli, while the idealized model in (5.1) would not predict any order effects
(recall the discussion of Bayesian inference in §2.1.1, and of probabilistic automata in §3.5).

Subsequently, Sanborn et al. (2010) introduced an alternative, stochastic approximation to
the distribution in (5.1), based on the so-called particle filter. This noisy alternative provided
an even better quantitative fit to existing data, also accounting for individual-level variation.
This raises the question of whether the partly randomized alternative could be in any sense
better, or more tractable. It seems plausible that one of the strategies discussed in Chapter
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4 might supply a positive answer to this question. For instance, a particle filter may be more
efficient in memory usage (cf. Levy et al. 2009).

Of course, intractability is not just a feature of probabilistic calculations; it equally applies
to other normative frameworks grounded in deduction, abduction, game theory, or indeed any
framework that involves minimally complex logic or probability as a central component (recall
Remark 9). The same concern applies, for instance, to the optimal control strategy in Example
27. Indeed, failures of optimality in that setting have been argued to be informative about the
concrete mechanisms underlying motor control (see, e.g., de Rugy et al. 2012).

Anderson (1990) argued that the need to incorporate computational costs and architectural
constraints could be the “Achilles’ heel” of the rational approach (p. 32). In keeping with step
(3), the methodology is said to be powerful to the extent that resource-related assumptions
are minimal. Yet, as Example 28 illustrates, assumptions about resource constraints may well
turn out to be crucial. Resource rational analysis is animated by the contention that rendering
resource costs explicit will not only ameliorate some of the weak points of the methodology, it
also has the potential to enhance the promised virtues listed above in 1-4.

5.2 Toward Procedural Rationality
A key motivation for rational analysis is to mitigate the identifiability problems.2 The space
of possible cognitive models will almost always be under-determined by the observational and
experimental data we have available. If we can constrain this space further by hypothesizing
that the system effectively solves a well-motivated problem, this can help to identify promising
candidates that can be further tested and investigated.

In classical rational analysis the problem to be solved is typically understood in substantive
terms (cf. Fn. 5): given some observations, the agent needs to take the right action. For
instance, the action might be a guess about the hidden state that produced the observations.
Given a prior on states and a likelihood describing how states produce observations, the optimal
action is to guess a state with maximal posterior probability. Anderson’s analysis of catego-
rization (Example 26) is a typical instance. More generally, we might say that classical rational
analysis is concerned with strategies (or “policies”) in the sense of Def. 6, that is, functions
from (sequences of) observations to actions. The example of optimal control (Example 27)
would be another paradigmatic instance of classical rational analysis.

By contrast, resource rational analysis characterizes problems in procedural terms (§1.2.2).
Crucially, this involves potential costs involved in “processing” observations and any calculations
required to generate a response. One way of making this idea concrete is to focus not on
abstract strategies, but on programs π that transform observations into actions—and thus, in
effect, implement strategies—while incurring a cost in doing so. We have already seen this idea
at play in Chapters 3 and 4. Generalizing, a given history3 will be associated with some cost
to the program of generating this history. Analogous to the determination of expected utility
(2.18), we have an expected cost C(π) of using program π. Abusing notation by letting U(π)
be the expected utility of the strategy π that effects (2.18), we arrive at a relatively general
version of the fundamental equation (1.1):

V(π) = U(π)− C(π). (5.2)
2As Crupi and Calzavarini (2023) emphasize, it is useful to distinguish at least two identifiability problems:

aiding in the search for promising models on the one hand, and validating models on the other.
3Recall a history is a sequence of interactions the agent has with the environment. See §2.4.
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For the purpose of resource rational analysis, it is V defined on Π—rather than U defined on
all strategies—that captures the relevant problem to be solved by a given cognitive system.
Significantly, the best programs in Π for problem V might have rather different characteristics
from the best (unconstrained) strategies for U.

Resource rational analysis requires strictly more from the researcher. Not only do we need
to specify the problem to be solved in broad inferential terms (essentially U), we also need to
specify a space Π of possible programs, possibly also with a cost function C on Π. A central
concern of resource rational analysis is how to determine Π and C. Recall from §1.3 that there
are two broad approaches to this problem, the cost-theoretic and the panoramic. Methodology
also varies in the degree of detail they assume at the outset of investigation. At one end of the
spectrum among panoramic approaches, the space of programs can be highly constrained by
antecedent understanding of the architecture in question. For instance, Π might be restricted
to a specific set of mechanisms that all resemble a cascade of neural populations (Example 2,
§5.3.2, etc.), or it might be built from a specific set of anatomically grounded operations with
alternative programs differing only in the values of numerical parameters (§5.3.1).

At the other end of the spectrum, some cost-theoretic approaches have explored imposing
abstract costs on any possible implementation, as in Chapter 3 (Def. 11) and Chapter 4 (Defs.
14, 15). For instance, abstract information-theoretic costs can be combined with minimal
assumptions about the mechanism mediating between perceptual input and behavioral output
(§5.3.3). Slightly less abstract, researchers have ventured proposals for the algorithmic logic
underlying cognitive processes, often inspired by computational work in statistics or machine
learning (§5.3.4; Griffiths et al. 2015; Gershman et al. 2015; Lieder and Griffiths 2020).

To summarize, a resource rational analysis involves postulation of (up to) three components:

1. Goals: a utility function U on strategies, characterizing the abstract decision problem
involved (Def. 5). This typically exhausts classical approaches to rational analysis.

2. Programs: a potential restriction Π of the space of all strategies for problem U. In the
panoramic approach, Π encompasses all putatively feasible strategies; in the cost-theoretic
approach programs are measured by:

3. Costs: a measure C of resources required to execute different computations, which can
be traded off against utility as in Eq. (5.2). Specifically, costs are understood at a suitable
level of generality as opportunity costs: the value forgone when employing a resource for
one purpose rather than any other. There is no demand to stipulate a separate cost
function in the panoramic approach. (Recall the discussion in §1.4.)

The result is a relatively conservative revision of Anderson’s six step methodology: in step
3 we do not necessarily make the minimal assumptions about computational limitations. In-
stead, such considerations take center stage and constitute a core component of what is under
investigation (cf. Lewis et al. 2014, p. 282).

When it comes to the role of (resource) rational analysis in hypothesize generation (virtue
1 above), the more we can credibly constrain the problem, the more progress we may hope to
make on the identifiability problem (cf. Anderson 1990, pp. 29-32). Further constraints on the
assumed task—a more demanding decision problem, a more restricted space of programs, or a
more discerning cost function—will typically result in fewer good solutions. With fewer good
solutions, it is more likely that any particular good solution we identify will capture important
aspects of the mental process under investigation. Cao and Yamins (2021) dub this familiar
pattern the contravariance principle, as the size of the solution space is “contravariant” in (or
“anti-monotonically related” to) the difficulty of the problem.
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Of course, the principle is applicable only insofar as two requirements are met. First, and
most obviously, we should believe that the constraints accurately characterize the cognitive
problem in question. Any architectural assumptions built into Π or C should be plausible.
This may be established through background knowledge or independent investigation, though
in some cases successful (resource) rational analyses have themselves been taken as confirmation
that the characterization of the problem was an appropriate one (see, e.g., §5.3.4).

Second, we need to be able to identify at least one good solution (viz., cost-efficient program)
to the constrained optimization problem so characterized. That is, we need to be able to
generate at least one good hypothesis to test experimentally (step 4 in the methodology). In
many cognitively relevant contexts, finding good solutions is a major research challenge in its
own right (cf. Zednik and Jäkel 2016). This is certainly true for problems of probabilistic
inference (Murphy, 2012), not to mention the problem of efficiently solving POMDPs (§2.4).

The prospects for a resource rational analysis to address the methodological problem of
identifiability thus depend in part on navigating these subtle issues. Concerning the other
putative explanatory virtues, 2-4, we return to them below in §5.4 after first considering four
illustrations of resource rational analysis. Together, these four illustrations reveal a wide variety
of very different approaches to the general resource rational methodology.

5.3 Illustrations of Resource Rational Analysis
There is a growing body of work that is explicitly labeled as resource rational analysis, in-
cluding significant strands on planning and decision making (Callaway et al., 2022; Ho et al.,
2022), probabilistic inference (Vul et al., 2014; Lieder et al., 2017; Dasgupta et al., 2017), causal
reasoning (Icard and Goodman, 2015; Bramley et al., 2017), language processing (Gibson et al.,
2019; Hahn et al., 2022), moral reasoning (Levine et al., 2023), and more (Nobandegani, 2017;
Lieder and Griffiths, 2020). However, on the present understanding of resource rational analysis,
much else falls within its purview. Most obviously, it includes work invoking the nearly synony-
mous concept of computational rationality (Lewis et al., 2014; Gershman et al., 2015). It also
includes work on efficient coding in perception (e.g., Sims 2016), neural reuse and cognitive con-
trol (Shenhav et al., 2017), resource-optimality analyses of neural wiring and organization (e.g.,
Bullmore and Sporns 2012; Cherniak 2012), and recent research on “goal-driven deep learning
models” to understand neural computation (Yamins and DiCarlo, 2016; Schrimpf et al., 2020).
While different research strands emphasize different ambitions and dimensions of the method-
ology, they all adhere to the basic tenets presented in the previous section. Described here are
four rather different incarnations of the methodology, moving from very low-level to relatively
high-level cognitive phenomena. The first two (§5.3.1, §5.3.2) are examples of course-grained
approaches, while the next two (§5.3.3, §5.3.4) are examples of cost-theoretic approaches.

5.3.1 Oculomotor Control in Reading
Lewis et al. (2013) study low-level saccadic control in a sequential reading task, focusing es-
pecially on the tradeoff between speed and accuracy (see also Lewis et al. 2014). This is an
example of a panoramic approach in which much is already known about the detailed costs and
constraints faced by the visual and motor systems. Such details are incorporated by restricting
to a highly limited class of possible programs.

Experimental participants are presented with sequences of six four-letter strings, and the
task is to determine whether any of the strings is not a word. For instance, they might see:

aunt swap hack leil step find
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In this case, the goal would be to report that there is a non-word in the list, namely leil.
American experimental participants are assumed to scan the list from left to right. There are
three possible “actions” at each step:

(i) move eyes to next word (ii) push the “yes” button (iii) push the “no” button

While fixated on a particular string, noisy evidence accumulates about whether the string
is a word. An unconstrained program for this task—that is, assuming no costs or resource
limitations—would move on to the next word instantaneously, as soon as sufficient perceptual
evidence is gathered, and then terminate the trial as soon as a conclusion is guaranteed.

The human oculomotor system, by contrast, works under strict architectural constraints,
and much is already known about its various costs and resource bounds. Signals from the brain
take a certain amount of time to reach the eye, and there is also delay incurred in saccadic and
motor programming. Empirically supported hypotheses about these further parameters can be
incorporated into the specification of a program, so that there remain only two free parameters.
First, we need to specify the threshold θs that determines when a saccade to the next string will
be initiated. Second, there is a decision threshold θd that is reached either when a non-word is
detected, or it is determined that all the strings are words. Thus, a strategy essentially amounts
to just a pair of numerical thresholds, (θs, θd), and the space Π of possible programs can be
identified with the set of all such pairs.

A researcher might try to determine these two parameters empirically, e.g., fitting them
from data. Instead, inspired by work in computer science on bounded optimality (Russell and
Subramanian, 1995)—recall Example 1—Lewis et al. (2013) derive the optimal values of θs
and θd given the task and assumptions about architectural constraints. The behavior of this
resource-optimal program can then be compared to human performance on the same task. They
do this across three different conditions characterized by different speed-accuracy tradeoffs:
participants (and the model program) are rewarded for speed and penalized for an incorrect
response, and these reward and penalties come in different proportions. In other words, they
study three different problem settings—Uspeed, Uacc and Umedium—and test whether people’s
behavior matches that of the optimal program—i.e., the pair (θs, θd)—for that problem.

Lewis et al. (2013) find that the resource-optimal program is both qualitatively and quantita-
tively similar to human behavior across all three conditions. There are at least three particularly
noteworthy features of the analysis:

1. Saccadic control appears to be appropriately modulated by the task, viz. the specific
speed-accuracy tradeoff (Uspeed, Uacc or Umedium). In other words, the time spent fixated
on each word is shown to be sensitive to the costs of inaccuracy vs. the reward for speed.

2. Both human performance and the optimal program are appropriately attuned to the
“ecology” of words. As processing becomes more accurate with more familiar words, less
time should be spent on them. This is exactly what they find. (Word familiarity in these
experiements is approximated by frequencies in natural corpora, and is incorporated into
the sequential decision problem formulation.)

3. Crucially, the architectural bounds are necessary to match human performance. The
authors compare the resource-optimal program to various unbounded (or less bounded)
versions of it, in effect expanding the class Π to include programs that do not respect
the cost constraints imposed by the oculomotor system. Such (“unboundedly optimal”)
programs show strictly worse fit to the human data.
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Figure 5.3: The problem of image classification in deep convolutionary neural networks (top)
and in primate cortext (bottom). The figure comes from Schrimpf et al. (2020), reproduced
with permission, and is based on Yamins and DiCarlo (2016).

Thus, given the various intrinsic costs and constraints faced by the perceptual and motor
systems, human saccadic movements appear to be optimized along the remaining degrees of
freedom for solving reading (and presumably many other oculomotor) tasks. That is, they seem
to be optimal given the existing resource constraints confronting the system.

5.3.2 Modeling the Ventral Stream
The primate ventral stream is composed of a sequence of cortical areas, widely believed to
transform visual stimuli into successive representations that ultimately (by area IT) facilitate
robust object recognition. A fundamental challenge is to understand the nature of these trans-
formations. Yamins et al. (2014) introduced the possibility of confronting this challenge by
exploring deep convolutional neural networks (DCNNs) that were trained to perform well at
purportedly difficult visual classification tasks (see also Yamins and DiCarlo 2016). Convolu-
tional neural networks were originally inspired by the biology of the mammalian visual system
(see Lindsay 2021), and Yamins et al. (2014) restricted attention to a class of DCNNs whose
organization bears resemblance to the hierarchy of layers in the ventral stream (Figure 5.3).
The hypothesis was that DCNNs which perform relatively well at the classification task might,
at some appropriate level of abstraction, be good models of the ventral stream.

Like in the previous case (§5.3.1) this is a panoramic approach: the space Π is restricted
to a specific class of “biologically plausible” programs, viz. artificial neural networks, with
no further need to specify additional costs. The programs differ only in their settings of 57
parameters, including some for architectural properties such as the number of hidden layers.
The task U, meanwhile, is given by 8-way classification of 5,760 images: correctly classifying
more images means better performance on the task.

A notable feature of this case study is that the optimal program in Π for U cannot always be
identified. Instead, high-performing programs are identified by through training, using gradient
descent algorithms like backpropagation. Thus, the part of Π to be explored is not stipulated
“by hand” but rather determined indirectly by a training process in much the way that modern
machine learning models are devised in engineering contexts.

A second notable feature is that, unlike in the previous case (§5.3.1), the goal is not (just)
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to predict choice behavior, but to predict neural response patterns in the brain. The express
goal is to reveal the mechanism by which the ventral stream transforms perceptual input into a
classification decision, in effect promising a “triumphant cascade” (Dennett, 1987) from higher
to lower levels of analysis. Much of the methodological work thus focuses on the question of
how to assess fit between a (trained) DCNN and neural measurements.

Yamins et al. (2014) showed that neural activity in successive areas of the macaque cortex
could be predicted (up to a linear transformation) by the activity of artificial neurons in a high-
performing DCNN. Strikingly, such models provide the best quantitative fit to neural activity
in multiple areas of visual cortex (V4, IT) of any existing model, better even than models that
were specifically trained to predict such activity (Yamins and DiCarlo, 2016). Furthermore,
Yamins et al. (2014), and later Schrimpf et al. (2020), identified a strong correlation between
performance of a program π on the task and the degree to which π predicts neural responses.
Crucially, this correlation is only found among models that have the appropriate structure.
Just as in the study from Lewis et al. (2013), “ideal observer” models, which perform the task
perfectly but are free from the relevant architectural constraints, provide poorer fit, showing
again that both the task (U) and the constraints (the restriction to strategies in Π) are essential.

5.3.3 Policy Compression
Moving from perception to action, consider any ordinary sequential decision problem such as
grocery shopping. We might imagine that for a given individual different outcomes of the
shopping process might be more or less desirable, perhaps with the “optimal” outcome one
that best balances quality of goods with their monetary costs. At the same time, most people
are not quite so careful when moving down the shopping aisles. Instead of stopping to inspect
each individual brand of crackers—reading nutritional information, considering the price, and
so on—people will often simply pick up the first acceptable one they see (Simon, 1955).

In such scenarios people are essentially ignoring differences between states: seeing brand A
at the top of the shelf is no different from seeing B. Even though there may be some perceptible
differences between them, people pay no attention to them and the action chosen is the same
either way. The strategy is simply to take whatever box appears at the top of the shelf.

The same example illustrates another intuitive source of strategy simplification. After vis-
iting the same grocery store many times, traversal through it may become increasingly auto-
mated. On a first visit, one might proceed according to a list, deliberately searching for each
successive item. But eventually large sequences can be “chunked” so that little thought is
necessary when moving from item to item. To the extent that the store’s arrangement stays
fixed, the chunked (or “compressed”) strategy achieves the same outcome, with seemingly less
required on the part of the shopper. See §6.2 for more on this type of abstraction.

Lai and Gershman (2021) have argued that these and other related phenomena can be
subsumed under a general resource rational principle of policy compression. Suppose an agent’s
predicament (like the shopping example) can be captured by a Markov decision process (MDP;
Def. 3). There is a space S of possible states, a space A of possible actions, and if action a
is taken in state s, then utility u(s, a) is obtained and there is a probability qs,a(s′) of moving
from s to new state s′, At that point another action is taken. A strategy (or “policy”) is a map
from states to actions, and the best strategy σ is one that maximizes U(σ) (§2.9).

In order to effect a strategy any physically instantiated agent will need to encode states in
some way, to provide some physical intermediary between the “percept” s and the generated
action a. Recall Fig. 4.4, in which the agent program first applies an encoding e to the
state s to obtain a code c = e(s), and then uses this code to generate an action a with some
probability σc(a). On this picture, σ now depends not directly on the state, but on some
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(possibly coarsened, or even distorted) representation of it. Empirically, there does seem to
be a significant compression of information moving from the cortex—where state information
is evidently discerned—to striatum—where action selection is assumed to originate (Lai and
Gershman, 2021). The question now is how we should understand the cost associated with
different degrees of compression, and more abstractly with enacting a given agent program π.

Following the analysis presented in §4.3.2, we might take the cost of implementing program
π to be the mutual information I(A,S) between the “default” distribution on actions, Pπ(A),
and the stationary distribution on states, Pπ(S), or equivalently, by the average KL-divergence
from the default action distribution to the situation-specific distribution πs (Def. 15). As
before, the goal is then to maximizing cumulative reward U(π) while minimizing (some factor
of) information-theoretic cost:

V(π) = U(π)− 1
β
I(A; S) (5.3)

The parameter β determines how “coding” costs trade off against utility: the higher β is, the
less information costs, and the closer the program should be toward maximizing utility. Recall
that, in principle, β should reflect the opportunity cost of using cognitive resources that could
be put to some other purpose.

The optimal program π∗ is one that maximizes V(π∗), which we noted (see Thm 8) has:

π∗s (a) ∝ Pπ∗(A = a) eβQ
π∗ (s,a). (5.4)

Adopting Eq. (5.4) as a working hypothesis for how people engage in sequential decision
problems implies several distinctive qualitative patterns. Perhaps most obviously, the optimal
program is in general stochastic. As long as there are at least two actions with positive utility,
they will both be taken with some positive probability. As discussed in Chapter 4, this might
be offered as a kind of justification for randomized behavior. Another notable aspect of Eq.
(5.4), highlighted by Gershman (2020), is that it implies a kind of perseveration: because of
the term Pπ∗(A = a), actions a that are more often chosen are in turn more likely to be chosen
going forward, even when it appears suboptimal. Such a pattern is one the oldest observed
in the study of human and non-human animal behavior (Thorndike, 1911); here it emerges as
part of an optimal solution to the assumed problem of resource rationality.

When it comes to more quantitative comparisons of the optimal program to human behav-
ior, it turns out that solving the system of equations specified by (5.4) is itself a challenging
problem. The perseverance term introduces a difficult type of circularity, since the probability
of taking a depends on the stationary probability of taking a. Lai and Gershman (2021) intro-
duce a learning algorithm for approximating Eq. (5.4), which allows moving to step 5 of the
(resource) rational analysis methodology, that is, comparison to existing data. The algorithmic
approximation is itself inspired by existing models of the basal ganglia, in effect taking a further
architectural constraint into account (see also Gershman and Lai 2021).

The resulting algorithmic proposal was shown to account for a number of subtle quantitative
patterns in response times, perseveration, action chunking, and state chunking (Lai and Ger-
shman, 2021). One-shot decisions with large state spaces (e.g., as in Collins and Frank 2012)
highlight the need for state chunking, while sequential problems with structured transitions
call for action chunking (Lai et al., 2022). Analysis of these tasks showed that people compress
for both reasons, as predicted by the model, and that increase in cognitive load leads to yet
further compression (a pattern also found in schizophrenic participants; see Gershman and Lai
2021). In cases of action chunking, reaction time decreases, presumably because the successive
states do not even need to be encoded. In cases of state chunking, responses appear to be more
stochastic, a pattern predicted by decrease in the β parameter.
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Thus, in addition to predicting a number of key patterns in choice behavior, the policy
compression model also potentially helps make sense of much of this behavior, insofar as it
involves an intuitive trade off between maximizing reward and minimizing memory costs.

5.3.4 Anchoring-and-Adjustment
One of the classic “heuristics” introduced by Tversky and Kahneman (1974) is the anchoring-
and-adjustment heuristic, whereby point estimates are inappropriately “anchored” to some
irrelevant salient value. For instance, people’s estimates for the percentage of African countries
in the UN are influenced by the number that comes on a roulette wheel (e.g., whether it comes
up 65% or 10%). Strikingly, this pattern reveals itself in judicial sentencing decisions, even when
the judges know the anchor was generated randomly (Englich et al., 2006). While there has
been much debate about the underlying psychological mechanism, evidence that it is influenced
by financial incentives, cognitive load, time pressure, and alcohol consumption suggests that it
may have a basis in resource limitations (Epley and Gilovich, 2006).

Lieder et al. (2012, 2017) explore the idea that anchoring may result from a resource rational
approximation to probabilistic inference. At a high level the idea is that point estimation can
be understood as a problem of inference under uncertainty. As a simplifying idealization it is
assumed that what a person knows about a topic can be captured by a probability distribution.
For example, each individual maintains a distribution p(x) over possible percentages x of African
countries in the UN. However, much of this knowledge is implicit and it may take cognitive work
to extract the consequences of it, in particular to identify the value x with highest probability.
To turn this into a resource rational analysis we need to say something concrete about what
this process of extraction might be, and what costs are associated with it.

It was suggested in Vul et al. (2014)—see also Icard (2016); Sanborn and Chater (2016)—
that a fundamental cognitive mechanism for probabilistic calculation is randomized sampling.
As discussed further in §4.1.3 above, the suggestion is that the mind has an ability of draw a
“sample” value roughly in proportion to its probability. The more samples drawn, the more
the distribution can be accurately recovered (recall the “Galton box” in Fig. 4.1). Behavioral
evidence and neural modeling work are consistent with the idea that the brain encodes some
probabilistic information and performs probabilistic calculations by means of something like
sampling approximations (e.g., Orbán et al. 2016).

How exactly are samples drawn from an implicit probability distribution? Lieder et al.
(2017) notice that one particular sampling algorithm—a “Markov chain Monte Carlo” algorithm
known as the Metropolis method after Metropolis et al. (1953)—bears a prima facie resemblance
to anchoring-and-adjustment. The method works as follows:

Definition 16 (The Metropolis Algorithm). For some number T ≥ 0 of times steps:

1. Start at time t = 0 with an initial value x̂0, which we might call the anchor ;

2. At time steps t+ 1 ≤ T suppose the current value is x̂t. Generate a random perturbation
δ, e.g., from a normal distribution with mean 0, and then let:

x̂t+1 =
{
x̂t + δ if p(x̂t + δ) > p(x̂)
x̂t otherwise.

(5.5)

It is assumed that making the binary comparison p(x̂t + δ) > p(x̂) is relatively easy.

The output of (i.e., the sample from) the algorithm is x̂T .

Fact 2. As T →∞, the distribution of samples x̂T converges to the true distribution p.
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However, for small values of T the method produces biased samples, specifically biased to-
ward the starting anchor. The connection to anchoring-and-adjustment is thus apparent. The
suggestion is that for point estimation problems people employ a program that works as follows:

1. Identify some initial value, either from a salient plausible example, or perhaps by self-
generation (Epley and Gilovich, 2006).

2. For some number of steps, randomly adjust it in the direction of greater plausibility.

For instance, in the original example from Tversky and Kahneman (1974), a participant might
take 10%—the number on the roulette wheel—as an anchor and then consider a short sequence
of random perturbations that move the number up.

Formalizing this procedure as an instance of the Metropolis algorithm gives our set Π of
programs. Fixing a given anchor, the programs in Π differ only in the number of adjustment
steps taken, with more steps promising a more accurate guess but incurring a greater cost. We
thus arrive at the present version of Eq. (1.2), with πT the program that runs for T steps:4

V(πT ) = U(πT )− 1
β
T. (5.6)

As β increases it becomes more advantageous to run the algorithm for longer.
Lieder et al. (2017) show that this simple proposal accounts for a large number of observed

patterns from the literature on anchoring. At a general level it helps make sense of the influence
of factors like financial incentives, cognitive load, and time pressure, insofar as these all impact
the tradeoff parameter β, which itself concerns the overall opportunity costs involved (§1.4).
Other qualitative patterns—such as the increase in bias with more extreme anchors, or the
decrease in bias when participants are more knowledgeable about the domain—also easily fall
out of the proposal. By fitting the various parameters of the model (e.g., the tradeoff parameter
β, the prior p, etc.), Lieder et al. (2017) are also able to provide a close quantitative match to a
range of studies on these and other effects from the literature. Subsequent work has expanded
this type of account from the uni-dimensional settings typical of point estimation problems to
multi-dimensional, combinatorially rich domains (Dasgupta et al., 2017).

5.4 Some Methodological Points
The most formidable challenge to any methodological approach founded on optimality analyses
is the risk of triviality. For any behavior whatsoever there will be some analysis on which
it is optimal. The approach is effective to the extent that the underlying problem (i.e., U),
and the characterization of programs (Π) and their potential costs, are all well motivated and
independently plausible. When they are, and when experimental behavior is well predicted
by the analysis, this can lend even further credence to those very assumptions that went into
the analysis. Not only were they antecedently plausible, but they in concert were sufficient to
derive empirical phenomena. As elsewhere, the more specific these predictions are—the less
they appear to be derivable from other possible accounts—the stronger this inference will be.

The four examples presented above all seem to enjoy this status. Importantly, in all four
cases, both the underlying problem and the incorporation of resource constraints appear to be
crucial for deriving the full suite of empirical predictions. As the examples also demonstrate,
there is a remarkably wide variety of settings in which resource rational analysis can be applied,
spanning numerous domains of perception and cognition. Moreover, these are merely four

4The utility is naturally taken to be expected accuracy: U(π) = −Ex̂∼πEx∼p|x̂−x|. See Lieder et al. (2017).
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representative examples of a now large body of work employing similar strategies. It is worth
highlighting several points about the general methodology.

Resource rational analysis need not be Bayesian. Chapter 2 presented a normative
framework for assessing agents based on Bayesian decision theory. Although we acknowledged
possible variants of this approach (§2.1.6), it remains the presumptive framework for under-
standing what “things going well” might mean. In as far as we are picking up on structure
that has, one way or another, sculpted how our minds work, it would not be surprising if some
agents in some circumstance solve those fundamental problems by employing some of the very
same apparatus that we use from our external perspective, viz. representation of probabilities,
desirabilities, costs, and so on (cf. Chapter 6). With that said, there is no presumption that a
good (externally characterized) solution π will engage in anything that we would recognize as
explicitly “performing Bayesian inference” or “maximizing expected utility,” for example.

Resource rational analysis typically cuts across Marr’s levels of analysis. Marr’s
(1982) “computational” level of analysis can roughly be equated with what we have been calling
the underlying problem U, or (following Anderson 1990, 1991b) the “goals” of the system.
Conceptually, it remains useful to consider problems at this level. After all, abstract inference
and decision problems can be easier to understand and analyze than intricately constrained
optimization problems. In order to separate U from Π (and C) in the first place, we need some
separate understanding of U. Nonetheless, in contrast to traditional rational analysis, resource
rational analysis emphasizes and celebrates “downward glances” (Churchland, 1986) toward
the algorithmic and even implementational details that ultimately constrain possible solutions
to those problems. In this way, resource rational methodology often invokes operations over
concrete representations (cf. §6.1), typically associated with Marr’s second (algorithmic) level.

Some authors propose a “Marr level 1.5” in between the computational and algorithmic
levels, to capture this stance (Griffiths et al. 2015; see also Peacocke 1986), while others highlight
the multiple dimensions at play in talk of levels (e.g., Danks 2008). In any case, distinctive of
the methodology is its promiscuity with respect to the traditional levels of analysis.

A successful analysis can help make sense of otherwise puzzling behavior. In part
due to the separation of U on the one hand, and the constraints agents face in dealing with U
on the other, behavior that may seem arbitrary or “kluge-like” can instead emerge as reasonable
in some meaningful sense (virtue 3 above). Lieder et al.’s (2017) treatment of anchoring-and-
adjustment phenomena is a potential example of this. At first glance, anchoring one’s estimate
toward a number known to be randomly generated appears patently irrational. It may not
reflect behavior that we would want to see in a societally consequential role (such as a court
judge) either. Nonetheless, it is enlightening to consider the possibility that this behavior arose
as part of a good (possibly even resource optimal) solution to a very general and very challenging
problem, in this case, estimation from diverse and scattered evidence. In cases where we want
to “correct” this behavior—say, because we care more about accuracy than efficiency, compared
to the weighting implicit in whatever development lead to the behavior—it may be helpful to
pinpoint its potential (resource) rational source.

Resource rational analysis is not guaranteed to succeed. Anderson (1991b) character-
ized rational analysis as a “high risk, high gain” enterprise (p. 472). It is high risk because
the postulation of goals could be entirely wrong. We could simply have misunderstood the fun-
damental task that some cognitive function is solving. Evidently the primary way we have of
verifying this is via poor fit to empirical data. If it turns out to be consistent with a wide range
of experimental behavior, then it can at least serves as a summary of the behavior in question,
whether or not it gives any insight into the etiology of that behavior. It is usually infeasible
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to trace the development of a cognitive trait, especially in evolutionary time. In this respect,
hypotheses generated by rational analysis are falsifiable, though in practice only weakly so.

Hypotheses generated by resource rational analysis are even higher risk, but also more
strongly falsifiable, at least in principle. In addition to the postulation of goals, the researcher
attempts to capture genuine physical constraints at some appropriate level of abstraction. These
may be antecedently understood (as in the first two examples, §5.3.1, §5.3.2). But in many
cases they are merely hypothesized, potentially even as a central target of the analysis. In such
cases there are simply more ways to be wrong. Here, mischaracterization can be demonstrated
not only through behavioral experiment, but also through subsequent analysis of the relevant
substrate, the brain. Causal and interventional analysis of neural systems could be used to
falsify architectural claims, and claims about availability or use of a given resource. While such
methods remain largely elusive for biological brains, there has been considerable recent progress
in causal analysis of artificial neural systems (see, e.g., Geiger et al. 2021, 2023).

Celebrated “explanatory virtues” are on display in the methodology. A chief method-
ological role for resource rational analysis is to facilitate the search for promising hypotheses.
Yet this clearly does not exhaust its scientific interest. Even when the space Π of natural
variation is already known—that is, even if we could narrow down our space of hypotheses
to precisely those programs that some (possible) agent in our class of interest embodies (an
achievement rarely, if ever, attained)—we may still wish to know why it has the character that
it does. The methodology promises progress on this question as well.

Like more traditional rational analysis, there is a promise of unification insofar as many
disparate phenomena can be subsumed under some of the same general patterns (Colombo and
Hartmann, 2017). This is evident, for instance, in Lai and Gershman’s (2021) analysis of policy
compression. Their entropic cost term leads to a unified analysis of persevertaion, randomness,
action chunking, state chunking, and several other phenomena. Much more broadly, construing
many different aspects of cognition instrumentally as solutions to sequential decision problems
brings in tow a set of tools and concepts—including from engineering—that help pinpoint deeper
structural connections between phenomena that might have otherwise seemed unrelated.

Finally, again in the spirit of traditional rational analysis, there is a hope that a successful
resource rational characterization of a phenomenon will at least point the way toward some
causal or etiological account of how the cognitive function came to be, whether through learning,
evolution, or some combination. As Anderson (1990) expressed the suggestion, “My own sense
is that cognition is likely to be one of the aspects of the human species that is most completely
optimized and optimized in a clean, simple way so that it will yield to scientific analysis”
(p. 29). Furthermore, explanations based on optimality principles may possess their own
distinct explanatory virtues, viz. causal generality (see, e.g., Sober 1983). To the extent
that cognition does yield to optimality-style explanations and analyses—specifically through
principles of resource rationality as presented in this Element—that tempers the perspectival
nature of resource rational pronouncements as introduced in Chapter 1. When employed for
this purpose, such pronouncements should pinpoint those features of thought that have in fact
been subject to a process of optimization, not as a “spandrel” of an unrelated process.

In sum, we should expect resource rational analysis to be an important tool in the larger
toolbox of cognitive science. Ultimately, this style of analysis promises rather deep insights
about what type of agents we are, insofar as it succeeds in highlighting the many ways our
minds are exquisitely tuned to performing tasks under formidable resource constraints. As
Nozick (1993) put it, “our view of the world and of ourselves, and our notion of what counts
as rational, are in continual interplay” (p. 135).



Chapter 6

Creature Construction

Much of what we know about our own minds comes from careful scientific experimentation
and analysis. Often in cognitive science we treat the mind as a kind of “black box,” venturing
hypotheses about its inner workings that we hope will eventually merge with a bottom-up
mechanistic understanding of neurobiology. The four examples of resource rational analysis
discussed in the previous chapter all have some of this character.

At the same time, we also know our own minds from a more direct type of acquaintance.
Granted that introspection and “self-knowledge” are subject to limitations and illusions (e.g.,
Carruthers 2011), we nonetheless appear to enjoy a kind of access to the workings of the mind
that reveals distinctive insights into its structure. We can have the experience of figuring out
what to believe about a topic and subsequently feeling the conviction of the resulting conclusion.
We can experience ourselves planning a course of action and then feeling committed to carry
out each step of the plan. Such “folk” concepts as belief, plan, intention, and so on, are
evidently fundamental to our understand of who we are. They help us navigate the social
world, predicting and interpreting each other’s behavior (Fodor, 1987b)—a capacity that may
even be at the root of our self-understanding—and they play pivotal roles in many of the moral,
social, and legal institutions that matter to us most (Malle and Nelson, 2003; Buchak, 2014).

A common approach to the topic of “bounded rationality” takes folk attitudes for granted
and then motivates resource-sensitive norms for such attitudes. For instance, authors following
Harman (1986) have explored the idea that one ought to avoid “cluttering” one’s mind with
frivolous or useless beliefs. Meanwhile, authors following Stalnaker (1984) have suggested that
much of belief might be usefully “fragmented” in order to solve the aforementioned frame
problem (§1.2). Pursuing this kind of approach requires postulating a relatively specific format
for the attitudes in question. For instance, for the “clutter” metaphor to make sense, harboring
more beliefs must generally demand greater memory usage.

The stance adopted in this Element is slightly different. Though we might grant that our
ordinary conceptions of folk notions like belief, desire, intention and so on, may indeed pinpoint
real structural features of our minds—and thus at this level we can trust the basic deliverances
of introspection—these conceptions remain ambiguous, even equivocal (see, e.g., Schwitzgebel
2010 on belief). As such, they vastly underdetermine many of the architectural features that
matter for characterizing resources and their costs. In the spirit of the previous chapter on
resource rational analysis, we could instead take the architecture itself as a target of analysis
and try to work back to what such structures must be like in order to play the right resource
rational role in our lives. Again as in the previous chapter, this endeavor may be informed by
what we know about the architectural substrate and its resource capacities. Thus, rather than
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taking propositional attitudes and other folk concepts for granted and investigating what is
resource rational for an agent characterized in these terms, we rather use resource rationality
as a tool for uncovering fundamental psychological building blocks, potentially even vindicating
some of our pre-theoretical conceptions.

The present chapter is merely a speculative, preliminary gesture at such a project. Much
of the current literature in resource rational analysis—including examples like those in §5.3.3
and §5.3.4—can already be seen as pursuing this line, probing questions about how belief-like
states might be generated, or how sequential policies might be implemented. The aim here will
be to explore the possibility that many cognitive structures—including attitudes like beliefs
and intentions, as well as capacities for metacognition and metareasoning—might themselves
be understood as solutions to problems of resource optimization.

Such an endeavor can be taken as a species of “creature construction” in the spirit of Grice
(1975b); see also Bratman (2000). Roughly speaking, our task is to sketch “an ascending
order of psychological types” (Grice, 1975b, p. 38), such that each successive type is able
to solve some fundamental problem that eluded previous agent types in the sequence. This
endeavor has a different character from the more quantitative, experiment-driven methodology
described in the previous chapter. It is more speculative and typically less exact. Despite this,
the hope is that it may help clarify some very general ways in which evident psychological
features of human agents emerge from resource rational considerations. To the extent that
it succeeds, the strategy may then transition into a methodology closer to resource rational
analysis, facilitating the study not only of adult human agents, but also of human pre-verbal
infants, non-human animals, and even complex artifacts that display some of the same complex
behavioral repertoires as ours. And if successful, our ordinary “folk” concepts will have been
an essential guide in hypothesizing aspects of what generates intelligent behavior.

The strongest version of a creature construction argument demonstrates the inevitability
of certain cognitive traits. That is, one might like to show that almost any suitable process
of learning, evolution, or optimization would inevitably result in the psychological feature of
interest. Holding fixed enough of the existing architectural background facts, this can sometimes
be achieved (see, e.g., §5.3.2). However, especially when it comes to the highest-level cognitive
traits, such as propositional attitudes, we may remain content with weaker arguments. Merely
showing that the trait plausibly solves a problem of resource rationality would be illuminating.

6.1 Representation
We began our discussion in this Element with a classical picture of an agent embedded in an
environment, related to it by perception in one direction, and action in the other (recall Fig.
1.1 and Fig. 2.1). We never presupposed that any of the fundamental aspects of the agent’s
situation—viz. states S, actions A, probability p, and so on—are represented anywhere inside
the “agent box.” A virtue of the framework is that it applies to any agent whatsoever, no
matter whether (nor how) any of these aspects are encoded.

Many problems, however, appear to be “representation hungry” (Clark and Toribio, 1994),
in the sense that solving them requires sufficient internal structure to mediate between per-
ception and action. This is especially salient in “informationally translucent” environments
(Sterelny, 2003). It is worth distinguishing a very minimal sense of representation, in which
we require no more than the existence of complex internal states to mediate between per-
ceptual input and behavioral output, from the more common, robust conception employed in
philosophy and cognitive science. On the latter conception, we only speak of representation
when we can associate some reasonably stable “meaning” or “content” with stably identifiable
representational “vehicles” (e.g., Shea 2018, Chapter 2). We discuss each in turn.
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6.1.1 Internal Structure
What we called a strategy (Def. 2) is a very general description of a behavior, mapping every
history of environmental interaction to a next action. A good strategy will often require sub-
stantial sensitivity to the state (or to observations generated from the state as represented in a
POMDP), which will invariably demand physical resources.

One very general way of making this precise uses automata theory. Def. 11 specifies an
inherent memory cost for implementing a strategy (see also Def. 12 and Prop. 3), captured
by the smallest implementing automaton. Any artifact that is well modeled by a k-state au-
tomaton maintains at least k distinct internal states (physical “configurations”), sensitively
transitioning from one to another as a function of each new observation. In the physical world
such maintenance can only be achieved through energetic consumption, and the pursuit of en-
ergy sources introduces an obvious opportunity cost. As we saw in §4.4.2 (especially Example
23), the possibility of undergoing stochastic, or randomized, transitions in one’s internal states
may mitigate these costs. But even in the probabilistic (non-stationary) setting it will certainly
remain the case that good strategies demand a substantial number of distinct internal configu-
rations. The resource rational framework—specifically with automata-theoretic resource costs
(Def. 11)—precisely captures a fundamental tradeoff between success of a strategy and the
resource costs involved in maintaining complex sequences of internal configurations.

In the Markovian setting (formalized by MDPs, Def. 2.3), sensitivity to observations can be
measured by information theoretic cost (Def. 15). Recall that one intuition (§4.3.4) motivating
an entropic cost function centers around the internal coding of distinct states (Fig. 4.4). The
more a strategy diverges from the “default” on average, the longer the codes will need to be (on
average) to transform observations into appropriate actions. To the extent that we take this
talk of codes seriously, it is all but presupposed that the codes have meaning: they “denote” or
“represent” a state, or some aspect or function of the state. This brings us to the philosophical
discussion of representational content.

6.1.2 Representational Content
It has long been appreciated that an agent could benefit from “internalizing” aspects of the
external world, so that structures internal to the agent’s mind could “stand for” external en-
vironmental features (Craik, 1943). Some theorists take the stance that few, if any, cognitive
behaviors are truly underwritten by representations in this stronger sense (e.g., Hutto and Myin
2013). But of course that depends on how we analyze representational content, and perhaps
also what kinds of physical entities can serve as representational vehicles. Without any such
constraints, there is a relatively uninteresting sense in which any successful behavior whatsoever
implies the existence of an internal “model” of the environment (Thobani, 2023). Achieving a
complex behavior may demand a complex suite of distinct internal states—as just discussed in
§6.1.1—but that may fall short of the more demanding concept of representation that has been
at the center of much philosophical discussion.

This more demanding concept goes beyond an ability to occupy a large number of distinct
internal configurations. The claim is that, within the pattern of internal states, there are rela-
tively stable physical vehicles that play an important role in the agent’s behavioral repertoire.
Specifically, the behavior is made possible by patterns of operations over “contentful” represen-
tational vehicles, which “bear exploitable relations to distal features of the environment” (Shea,
2018, p. 36). Such a claim was more or less implied by all of the examples discussed in Chapter
5. The analysis of oculomotor control (§5.3.1) postulates representations of words; models of
the ventral stream (§5.3.2) postulate representations of increasingly abstract properties of the
visual stimulus; policy compression (§5.3.3) involves encoding features of the state and presum-
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ably also actions; and the sampling account of anchoring (§5.3.4), at a minimum, attributes
representations of estimated values for a given proposition. Another very simple example has
received a great deal of attention in the philosophical literature:

Example 29. In a famous series of experiments, Lettvin et al. (1959) demonstrated that the
frog retina incorporates an array of “feature detectors,” sensitive to edges, movement, and other
changes in incoming light patterns. Some of these cells respond most actively, “when a dark
object, smaller than a receptive field, enters that field, stops, and moves about intermittently
thereafter” (p. 1951), in other words, when a typical fly—the frog’s staple energy source—is
immediately present. The excitation of these cells, in turn, elicits a tongue movement, which
typically results in the capture and consumption of the fly.

Putting aside subtleties about what precisely is being represented in this pattern of neural
activity and why (see Millikan 2023 for a recent discussion), it seems that the frog’s nervous
system, beginning already in the optic nerve, is effectively tracking the presence of—indeed
representing—(something like) a fly. This plays a fairly obvious role in solving a large-scale
sequential decision problem, namely, ensuring sufficient energetic and nutritional sustenance in
an environment where relatively dark centripetal movement tends to be food.

What might representation have to do with conserving resources (cf. Schulz 2018)? One way
of approaching this question is to compare representational strategies like the one in Example
29 (or those in §5.3) to the way a notional resource-unbounded agent might solve a problem.
A common caricature employs the concept of a “lookup table” agent (see, e.g., Block 1981;
Maloney and Mamassian 2009 for different uses of this thought experiment). Imagine, for
instance, that every pattern of light hitting the frog retina followed a completely independent
causal path to the appropriate behavioral response. That is, rather than passing through a
general purpose “fly detector,” the frog brain would need to embody a separate pathway from
every possible light pattern to the appropriate motor output.

Even if this look-up table solution to the problem were physically feasible, it is well known
that such a piecemeal strategy causes a problem for learning. Transferring and generalizing
beyond past experience depend intimately on the ability to extract invariant features—that is,
to form representations—from that experience (Bengio et al., 2013). If we think of “data” as
another type of resource—not a cognitive resource, but certainly one relevant to what it means
for things to “go well” for most agents—then some type of representation appears to be crucial
for resource-efficient learning (cf. the discussion of sample complexity in §2.3.3).

It is likely that representational cognitive strategies evolved in large part because their
importance for robust learning (Sterelny, 2003). However, even if we put the learning problem
to the side, it is an obvious waste of neural resources to encode every stimulus separately,
especially when only certain distinctions are behaviorally relevant. This was precisely the
intuition motivating the entropic cost function (Def. (15)) discussed in §5.3.3. In the case of
the frog, it is simply not relevant at what exact speed and angle the fly is entering the visual
field. For such a simple behavioral repertoire, a binary signal (fly present or not) suffices. This
advantage in efficiency is even more pronounced in cases where the very same representation
(or system of representations) is employed toward many disparate ends (cf. 6.3 below).

Insofar as such a representation groups together many different inputs on the basis of com-
mon features, the result can be understood as one type of abstraction, a topic in its own right.

6.2 Levels of Abstraction
Dewey suggested that, “abstraction is the heart of thought; there is no way—other than
accident—to control and enrich concrete experience except through an intermediate flight of
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thought with conceptions, relations, abstracta” (quoted in Winther 2014). Much if not all of
thought inherently involves abstractions. One of the remarkable capacities of many agents,
including human agents, is to employ different levels of abstraction in a flexible manner. We
are able to move from one level of granularity, to either a finer or a coarser level, often in a way
that seems most appropriate to the immediate problem being solved.

The need for increasingly abstract representations in decision making was discussed at some
length already in Savage’s (1954) treatise on rational choice: “a smaller world is derived from
a larger world by neglecting some distinctions between states” (p. 9). The usual way to think
of a state abstraction is as a partition on the set of states into disjoint subsets, reifying those
subsets as new states. For instance, in the discussion of policy compression (§5.3.3), a shopper
may ignore distinctions between brands. And in Example 29 from the previous section, the
frog’s brain effectively ignores distinctions between similar light pattern trajectories.

But virtually anything that can be represented can be represented in a more or less abstract
way. In particular it is also true of actions, as the following classic example illustrates:

Example 30 (Tower of Hanoi). Consider the Tower of Hanoi problem, which involves moving
a stack of rings on a peg (A in the picture below) to another peg (C in this picture), with the
constraint that no larger ring can ever be placed on top of a smaller ring:

A B CA

This problem can be encoded as an MDP with no uncertainty about the state or noise in the
transitions. The states include all legal configurations of rings on pegs, while the “primitive”
actions include moving a ring from the top of one stack to the top of another, again provided
there is no smaller ring on that peg. In the “goal” state, the rings are all on peg C. Thus, the
only state/action pair with positive utility is one that involves moving the smallest ring (from
peg A or B) to peg C, when the remaining rings are already appear on C.

Following §2.2, a strategy for this problem would need to specify an action for all 34 = 81
legal configurations. But there is a way of thinking about this problem in terms of more abstract
states and actions. Rather than focus on sequences of concrete moves, it is helpful to break this
problem down into a kind of recursion, using the “abstracted” action, move the top N rings
on peg X to peg Y , which we might symbolize as Move(N,X, Y ).1 The entire goal sequence
then becomes a single action in this sense, Move(4, A,C), which can itself be broken down into
a sequences of simpler instances of the same abstraction:

1. Move(3, A,B); 2. Move(1, A,C); 3. Move(3, B,C).

Move(3, X, Y ) can similarly be decomposed, and in general, Move(N + 1, X, Y ) is solved by:

1. Move(N,X, φ(X,Y )); 2. Move(1, X, Y ); 3. Move(N,φ(X,Y ), Y ).

where φ(X,Y ) denotes whatever the remaining peg is other than X and Y . At the “base” case
of the recursion, Move(1, X, Y ) is again a primitive action.

1These are sometimes called options in the literature on reinforcement learning (Sutton et al., 1999). Note
also that this is an abstraction in Church’s (1941) sense of λ-abstraction, since we are considering sequences of
operations—in this case, of actions—in a way that abstracts from any particular triple of arguments.
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MDP M
simplification

M∗
strategy
for M∗ a

action

Figure 6.1: Similar to Fig. 4.4, we are now assuming that an agent is encoding some aspects
of their deliberative predicament, formalized by M. The simplified representation, M∗, may
omit details (abstraction) and it may also misrepresent aspects ofM (idealization). The figure
is inspired by Ho et al. (2022), Fig. 1(c).

Simon (1975) analyzed the memory requirements for carrying out strategies like this one,
which could also be studied with the automata theoretic framework discussed in §3.4. While
the number of distinct “internal states” (i.e., states of the automaton) grows linearly with
the number of rings, it is significantly smaller than that required for a strategy that does not
collapse the 3k many states, or increasingly long sequences of actions, at all. It could thus be
encoded with only minimal demands on cognitive resources.

This example is somewhat removed from ordinary cognition—indeed, it is often used as a
litmus test for problem solving abilities (see, e.g., Kotovsky et al. 1985). But similar abstractions
can be shown to arise routinely in quite ordinary thought (Posner and Keele, 1968), witness the
examples discussed in §5.3.3 (action), Example 29 (vision), and elsewhere. Ellis et al. (2023)
offer a recent study of abstractions over spaces of programs, including for intuitive physical
reasoning, showing how such abstractions can be synthesized from a small number of examples.

It is common in philosophy of science to distinguish abstraction from idealization: while
abstraction involves omission of details, idealization involves misrepresentation of the assumed
facts (Jones, 2005). Abstraction and idealization often go together. For instance, in a study
of human planning, Ho et al. (2022) investigate human-like approximations to the transition
function in an MDP that mix idealization and abstraction. The approximations are idealiza-
tions because the transition probabilities are inaccurate; they are inaccurate because they are
themselves built from causal representations that omit detail (cf. Icard and Goodman 2015).

The general problem of abstraction (and of idealization) can be understood in the following
way. We suppose a Markov decision process, M—or at least parts of M—could be somehow
presented to an agent. Think of, e.g., presenting the Tower of Hanoi problem to a person. The
agent’s task is to “solve” the MDP, that is, to pursue a strategy that achieves high cumulative
reward (in the sense of Eq. (2.9)). Instead of representing every detail ofM—all of the states,
actions, utility, and transition probabilities—the agent could instead encode a “coarsened” or
“idealized” version M∗ of M. See Fig. 6.1. Which M∗ should an agent employ? And more
generally, what representations should an agent use when solving a problem?

As already discussed (in §6.1), (sample-)efficient learning demands abstraction. This is
true quite independently of any considerations of cognitive or computational resources: the
very possibility of bringing one set of experiences (or data) to bear on another grounds out
in an ability to identify common structure across those experiences. Much work in learning
theory has investigated strategies for abstraction that maximize a learning objective, in model-
based approaches to reinforcement learning (see, e.g., Jiang et al. 2015), and even in model-free
approaches, witness neural approximate Q-learning discussed above in Remark 6 (§2.3).

But quite apart from its importance for learning, we have seen that level of abstraction
trades off against the costs of deliberation: as in Example 30, employing abstractions can
render solvable problems that are not otherwise solvable (or are solvable only under severe
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cost) by resource limited agents. We have seen alternative ways of measuring the cost or
complexity of a deliberative strategy, for instance, using automata theory (§3.4), information
theory (§4.3), and so on. However this measurement is done, for agents that can represent
aspects of their environment and of their own capacities within that environment, we should
expect a significant degree of abstraction to emerge in any resource rational strategy. Often
this will be combined with an ability to modulate flexibly among multiple levels of abstraction,
depending on the specific problem being solved (cf. §6.5 below).

6.3 Beliefs and Desires
Throughout this Element we have assumed that an agent’s predicament—at virtually any scale,
from milliseconds to lifespans—can be understood in terms of something like a Markov deci-
sion process (Def. 3, or perhaps a generalization of it like a sequential decision problem or
a POMDP). These characterize ways our world might be, in terms of states and transitions
between them, together with their probabilities, and utilities for each action in each state. We
have been assuming that such a characterization captures something fundamental about the
kinds of problems we face, and about the nature of (instrumental) rationality.

So far in this chapter we have suggested that resource-constrained solutions to these prob-
lems may often necessitate the deployment of internal representations, possibly at various levels
of representational granularity. But what exactly should be represented, and how? A natural
suggestion is that it could be advantageous to represent aspects of the agent’s assumed predica-
ment, that is, to internalize aspects of the situation as characterized by an MDP, the putative
determinants of what it means for things to “go well” for the agent.2

For simple environments that demand simple behavioral repertoires, more rudimentary
types of representation may suffice. Example 29 of the frog’s “fly detector” exemplifies this
situation. The pattern of activation blends both indicative and imperative moods (Millikan,
1989): it indicates the presence of a fly and simultaneously it brings about the relevant behav-
ior in a direct way. For suitably complex environments that appear to demand considerable
flexibility in behavior, however, it has often been suggested that maintaining something like
beliefs and desires—or else some other types of internal states with both mind-to-world and
world-to-mind directions of fit (§1.1)—would be well worth the energetic costs. Belief-like
representational states in particular have the following panoply of qualities:3

1. In the agent’s psychological economy their function is to track aspects of the environment
(or potentially of the agent’s own internal states).

2. They are potentially decoupled from immediate perceptual input. Thus, unlike the fly
detector (Example 29), belief-like representations do not have to co-occur, spatially or
temporally, with what is being represented.

3. They may reflect information collected from a variety of sensory modalities, and from a
variety of different external sources.

4. They tend to play a role in a multitude of different (potential) decision problems, enjoying
at least some degree of stability across time and contexts.

2Note that this is delicate in light of the perspectival nature of resource rational pronouncements (§1.1). We
presume that the characterization plays into a good explanation of how the agent came to exemplify a particular
strategy for dealing with their environment, through evolution, learning, and maturation. Cf. §1.3 and §5.4.

3This list is inspired by discussions from Godfrey-Smith (1998) and Sterelny (2003). Note that Sterelny
admits the terms ‘belief-like’ and ‘desire-like’ are “weasilish” (p. ix). Some authors instead employ the terms
‘cognitive’ and ‘conative’ for essentially the same distinction (e.g., Schulz 2018).
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More may be required to count as a genuine belief state, e.g., a substantial tendency toward
integration with other belief-like states, and so on (see, e.g., Bratman 1992). The more qualities
associated with them, of course, the more grounds there are for skepticism about their existence
as “psychologically real” constructs (Dennett, 1987). As discussed in §1.1, some have viewed
beliefs as part of a holistic, rational reconstruction of an agent’s behavior without any commit-
ment to corresponding internal states (e.g., Lewis 1974; Davidson 1975). The characteristics
listed in (1)-(4), however, encompass a wider array of possible states, including notions like
“acceptance” (Stalnaker, 1984; Bratman, 1992) and even less intricate constructs, possession of
which may not be exceedingly demanding, but still quite useful.

When it comes to desire-like states—preferences, goals, desires, and others with world-to-
mind direction of it—some have supposed that their satisfaction is just what it means for things
to “go well” for the agent (cf. §1.1). For human agents in particular, this may even involve a
pressure toward coherence with one’s higher order desires about what first-order desires to have
(e.g., Frankfurt 1971). Such views essentially presuppose that an agent has internalized eval-
uative distinctions among possible actions or outcomes. Questions about resource rationality
can then be raised concerning the instrumental attainment of those ultimate aims.

Alternatively, we can again ask the same question about desires as about beliefs: Why
would it make (instrumental) resource rational sense to internalize evaluative information about
possible outcomes in the first place, even for relatively simple agents? One salient possibility
is that it promises flexibility about what ends to pursue. This was evident in the relatively
sophisticated example of the Tower of Hanoi puzzle (Example 30): a good way of achieving
the ultimate goal is by breaking it down into a series of subgoals. Especially when combined
with belief-like representations, some potential ends may appear more or less achievable, and
flexible pursuit of the most worthwhile ends may demand some way of representing not only
what is more or less likely, but also what would be more or less desirable.

The expected utility calculus reviewed in Chapter 2 was of course crafted precisely to sys-
tematize the instrumentally rational integration of belief-like and desire-like representations—
specifically, of probabilities and utilities. Yet, as emphasized repeatedly, a resource rational
agent might succeed in a given environment, achieving high expected utility, by employing a
shortcut that bypasses encodings of any of these quantities. In the framework, they are to be
understood, first and foremost, as part of an externalist characterization of the task.

The question is thus: at what point do the evident advantages of encoding and maintaining
belief-like and/or desire-like representations outweigh the resource costs involved in doing so?
Our folk conceptions of ourselves, and perhaps of other animals, would surely suggest that we
are, in some sense, past that point.

6.3.1 Probabilities and Desirabilities
In fact, there is evidence of probabilistic information encoded already in low-level perception,
where the tradeoff between robust representation and cognitive costs is highly salient. Consider
a basic (but potentially very important) task like figuring out whether one can safely walk
down a steep ravine. We often have access to multiple sources of information about such
matters, including visual, haptic, auditory, and other cues (cf. (3) above). Each one of these
cues supplies potential data about, e.g., the grade of the incline or the distance to a drop-
off. Moreover, different cues may enjoy different levels of reliability. A large body of research
suggests that perceptual systems are able to combine these cues in a statistically optimal manner
(see Rescorla 2015; Ma et al. 2022 for reviews). That is, not only does the brain seem to be
estimating probabilities for each modality separately; it evidently combines them in a way that
is sensitive to their respective levels of reliability, and potential dependencies among them.
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Where and how these probabilistic representations are encoded—and even whether they
are explicitly encoded at all—remain hotly contested questions (see, e.g., Rahnev et al. 2021;
Rescorla 2020). The answers are far from obvious, especially in light of the considerable compu-
tational demands on probabilistic inference (van Rooij et al., 2019), and on high-level perceptual
inference in particular (Brooke-Wilson, 2023). One possibility, at least for some lower-level per-
ceptual tasks, is that only “sufficient statistics” are explicitly encoded, for instance, the mean
and variance, and simple computations are performed over these small numbers of parameters
(Ma et al., 2006, 2022). Another possibility, mentioned at several earlier points (§4.1.3, §5.3.4),
is that the brain employs a sampling approximation, capable of generating token representations
with probability proportional to an assumed “subjective” probability.

Another line of work has revealed evidence of an internal encoding of utility (in the economic
sense of (4) from §1.1), particularly in the midbrain dopamine system (Schultz, 2016). However,
as highlighted by Gershman and Daw (2012), much of the data on probability and utility is
actually consistent with a somewhat deflationary hypothesis according to which the brain is
directly (and approximately) encoding expected utilities of different possibilities. In other words,
there may be no decomposition into probabilities and utilities that have to be combined by
taking an expectation (Eq. (2.2) in Chapter 2). The model-free method of Q-learning (§2.3.1)
involves such an encoding. The Q-value of an action a in state s (Eq. (2.11)) essentially
captures how well an agent could expect to fare in the long term by taking a in the current
state s. As discussed in §2.3.4, there is evidence of such model-free representations in addition to
more goal-sensitive “model-based” representations in the brain, as well as effective adjudication
between the two. But even the latter, more sophisticated model-based representations often
appear to involve substantial simplifications and shortcuts (see Momennejad et al. 2017 on the
so-called successor representation for one notable example).

As we move from relatively low-level “subpersonal” processes to higher (“person-level”)
cognition, the neural underpinnings of putative representations become even less scrutable.
But we again know, without any further ado, that perfect probabilistic calculations are not
even within the realm of physical possibility. Moreover, characteristic of high-level cognition is
the seemingly endless range of considerations that could be relevant for a given probabilistic
judgment, one instance of the notorious frame problem (§1.2). The fact that probabilistic
propositions can be considered at multiple levels of conceptual abstraction (§6.2) easily leads
to patterns of judgment that violate the axioms of probability (Tversky and Koehler, 1994).

The literature on person-level judgment and decision making is immense, but one recent
trend is worth highlighting because of its resonance with the themes explored in this Element.
The possibility that probability is partly encoded dynamically in terms of sampling propensities
(§4.1.3) makes salient the idea that judgments and decision making under uncertainty will
be highly impacted by what comes to mind, from memory (e.g., Stewart et al. 2006) or in
imagination (e.g., Bear et al. 2020). Moreover, what comes to mind will naturally be impacted
by factors that are not directly reflective of likelihoods in the world. When deliberating about
what to do, for instance, it would be beneficial for possibilities to come to mind that are not
only probable or typical, but also likely to be good or valuable in the given context (Morris et al.,
2019; Bear et al., 2020). What spontaneously comes to mind in humans is often impacted by
moral considerations, and this influence turns out to affect not just deliberation about what
to do, but also judgments involving concepts that one might have thought were non-moral—
perhaps even “purely” probabilistic—like causation (Icard et al., 2017), or whether an agent
performed an action freely or intentionally (Phillips et al., 2015; Phillips and Cushman, 2017).

Were we to design a resource limited agent to perform intricate tasks in complex environ-
ments, it does seem that we would want to instill some ability to reason both about what is
likely to happen, and about what they want to achieve. But the mechanisms by which these
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abilities are deployed will likely serve many functions at once, and this sharing of cognitive
resources results in distinctive departures from the austere decision theoretic picture of a clean
decomposition and recomposition of probabilities and utilities. To some extent this insight is
ascertainable from first principles. Studying judgment and decision making in humans (and
non-human animals), for both perception and high-level cognition, makes it particularly vivid.

6.3.2 “All-out” Beliefs
Among the most basic constructs of commonsense psychology is belief. Not partial belief, or
credence, but the “all-out” state one is in when, for instance, feeling convinced today is Tuesday,
or that this Element is too long. Belief appears not just in folk psychology, but also centrally
in epistemology and in much of cognitive and social psychology.

A point of contention in philosophy is how to understand the relationship between (all-
or-nothing) beliefs and degrees of belief (or subjective probabilities). Both purportedly have
the role of tracking the world, and they are both thought to feed into decision making. On
one prominent view, subjective probabilities are most fundamental, with beliefs emerging as
useful abstractions of those finer-grained representations. The motivation for such abstractions
is essentially one of resource limitations. Typical of this perspective is the following quotation
from Ross and Schroeder (2014) (see also Holton 2009, Chapter 2):

If we had infinite cognitive resources, then we’d have no need for an attitude of
outright belief by which to guide our actions, for we could reason in an ideal Bayesian
manner on the basis of our credences and preferences alone. But such reasoning isn’t
feasible for cognitively limited agents like us, and so we need an attitude of outright
belief or of settling on the truth of propositions, so as to limit what we consider in
our reasoning to possibilities consistent with what we have settled on. (p. 286)

The assumption is that something like the picture we have sketched in Chapter 2 does indeed
characterize the agent’s deliberative predicament, and that an ideal agent would simply delib-
erate on the basis of those very components, viz. probabilities and utilities (or preferences).
Assuming those features of the situation are accessible to the agent (recall our externalist start-
ing point in §1.1), it does seem intuitive that calculating with numerical probabilities could be
more difficult than reasoning with presumed settled facts, at least in conscious thought. There
are numerous approaches to “extracting” or “abstracting” beliefs from probabilities (e.g., Lin
and Kelly 2012; Leitgeb 2017; Mierzewski 2022). Such proposals could be offered as hypotheses
for resource rational deliberative architectures, insofar as the resulting suite of operations is in
fact more efficient and effective than probabilistic alternatives (cf. Staffel 2019).

Another possibility is that the processes underpinning intuitive instances of belief are the
same processes that encode uncertainty (cf. Weisberg 2020). This is perhaps clearest for the
analysis of subjective probability in terms of sampling propensities (discussed in the previous
section §6.3.1 and in §4.1.3). It may be, for instance, that the ordinary conception of belief
tracks just those sampling propensities that are entirely stable across a wide variety of contexts,
generating the very same possibility each time.4 On this account there would be no need of
further resource rational justification for beliefs, since they emerge as a special limiting case of
an architectural feature that already enjoys such a rationale.

Finally, there are other accounts of belief that ground its primary function not in individual-
level decision making and deliberation, but in social and interpersonal phenomena. For instance,

4This would be an instance of what Greco (2015) calls the “simple view” of the relation between beliefs and
subjective probabilities. Importantly here, the latter are understood mechanistically as sampling propensities.
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Buchak (2014) argues that beliefs play a fundamental role in our practices of holding one an-
other blameworthy or accountability, a role for which subjective probabilities are inappropriate.
Meanwhile, MacFarlane (2023) suggests that the role of belief is to ground reason giving. That
is, as he puts it, “to say that an agent believes p is to say, roughly speaking, that the agent
treats p as a candidate reason,” e.g., in argumentation. While such rationales point in rather
different directions, they may also ultimately interface with resource constraints that surface
in interactive settings, for instance, involving communication or coordination (cf. §6.6 below).

6.4 Intentions and Plans
It is sometimes suggested that beliefs and desires stand at the core of our commonsense view
of agents (e.g., Jeffrey 1965; Lewis 1974). Given the sequential decision making framework
characterizing the key structural of what it means for things to “go well” for an agent, we
can understand belief-like states and desire-like states as at least roughly tracking probabilities
and utilities, respectively. We have been exploring the possibility that a resource rational
agent might internalize these components, so that they are not just reflexively responding to
environmental cues, but consulting “internal models” of the world and their place in it.

Another fundamental component of the sequential decision making framework laid out in
Chapter 2 is what we called a strategy (Def. 2, or a “policy”). This external specification
of an agent’s behavioral dispositions highlights an additional feature that could profitably be
internalized, namely, what they will do in the future. That is, an agent possessing rich internal
states—beliefs about the world, complex evaluative representations about what would be more
or less desirable, and so on—might draw upon these and other representations to generate
plans. The idea that future planning underlies much of intelligent behavior was a founding
doctrine in the development of cognitive science (Newell et al., 1959; Miller et al., 1960).5

Particularly in the seminal work of Bratman (1987) (see also Bratman et al. 1988) on
plans and intentions, planning agency is seen as part of a solution to a problem of resources.
Perhaps an idealized agent without resource limitations could “precompile” an entire optimal
strategy for all possible contingencies, and then simply carry out one action after another.6
Alternatively, one could simply compute, at each point, what the best action is at that time,
under the assumption that one will always be acting optimally at each future point (thus,
essentially internalizing the optimal Q-function in Eq. (2.12)).

Neither of these approaches may be available to a resource constrained agent. In between
the two extremes of planning ahead for all possible contingencies, and reflexively responding
(whether optimally or otherwise) to each incremental decision problem, it makes sense to form
partial plans that fix some aspects of what one will do, while deferring other details until later.
Bratman (1987) highlighted three key features of planning states—and their building blocks,
intentions—that help conduce to resource rationality:

1. An intention to perform an action a at a time t should, in the normal course, cause the
agent to take a at t. For instance, if I form an intention to take out the trash when I
arrive, then upon arrival, absent any further deliberation about it, the intention should
simply lead me to take out the trash.

5Notably, Miller et al. (1960) suggested that plans could be identified with programs, understood as speci-
fications of sequences of actions that cause each action in turn. Programs in the resource rational framework
specified here (§1.2.2) are importantly different: they may involve many different types of processing, including,
e.g., perceptual processing, and they need not explicitly encode sequences of actions.

6After recognizing that such a suggestion is “preposterous,” Savage (1954) went on to say that it is nonetheless
“the proper subject” of decision theory (p. 16), which in turn necessities a focus on “small worlds” (cf. §6.2).
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It seems useful to figure out what one will do in a future context, particularly when time
and other resources promise to be scarce when the decision is to be realized. Some of the
deliberative costs can then offloaded to an earlier time, when cool, reflective thought is
perhaps easier to realize. This benefit is only effective to the extent that planning does
indeed guide those downstream actions.

2. Plans for the future will only bring about the relevant actions so long as the agent has
taken the necessary means to render those actions feasible. There is thus a pressure to
ensure the means to one’s ends are indeed met.
This pressure toward means-end coherence simultaneously promises resource benefits:
in deliberating about what to do, one can all but ignore possibilities that would be
inconsistent with the ends one has already committed to pursuing. Bratman et al. (1988)
refer to this as a filtering procedure. It can help generate simplified, “local” decision
problems, eliminating some possibilities altogether, and coarsening the state and action
spaces to levels of abstraction appropriate for achieving a given ends (cf. §6.2).

3. As long as plans are partial, there will inevitably be circumstances in which a previously
formed plan no longer appears to be a good way of achieving one’s ends. Dogmatic
adherence to a prior plan goes counter to the supposed aim of maximizing one’s ends.
At the same time, stopping to consider at each point whether one’s plan is still the best
course threatens the very functions described in (1) and (2). Furthermore, some personal
characteristics that are widely admired, such as “grit” (Morton and Paul, 2019), promote
resistance to revision even in highly inauspicious circumstances. Although there is a
question about when resolve turns to dogma, some degree of stability seems essential.

These key features help clarify why we might expect a resource rational creature to maintain
something like intentions and planning states in the first place.

The question raised in (3), about when it makes sense for an agent to revise a previously
drawn plan, drives to the heart of resource rationality. Following the broad framework in-
troduced by Bratman et al. (1988), a number of researchers have explored concrete revision
strategies across different types of environments (Kinny and Georgeff, 1991; Schut et al., 2004;
van Zee and Icard, 2015). This is a paradigmatic exercise in comparing the resource rationality
of alternative agent programs for specific tasks, in precisely the sense we have described in
this Element. Findings from toy environments suggest that even very simple reconsideration
strategies can achieve optimality (see van Zee and Icard 2015).

Much of the literature on intention reconsideration focuses on more complex phenomena,
especially so-called “temptation cases,” in which one’s judgment about what is best temporarily
shifts; recall Example 6. One noteworthy feature of such cases is that they often involve desires
that are, generally speaking, good for one to have. After all, being drawn to rich information
sources (like the television in Example 6) is surely adaptive. The same goes for many other
common temptations, like rich foods and inactivity (i.e., rest). Whereas internalizing desires
for these made sense for a niche at an earlier point in human history, such desires may become
maladaptive (cf. Sterelny 2003). Moreover, the preferences one has at the point of temptation
often disagree sharply with what one wants before and after.

As discussed in §2.1.7, there are numerous responses to such cases, ranging from versions of
“resolute choice” (McClennen, 1990; Gauthier, 1994) to “sophisticated choice” (Steele, 2010), to
the proposal that one ought to configure oneself so that the possibility of reconsideration does
not even seriously arise (Holton, 2009). Although some of these proposals are likely cumbersome
to formalize in their entirety, there is a sense in which many of the debates are about what
“policies of revision” would be most resource rational for a life overall.
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Following the rationales laid out in (1)-(3), there is is widespread agreement that planning
should be understood as, “instrumental to the attainment of our objectives, not an objective
itself” (Gauthier, 1996, p. 218), where those objectives amount to one’s “life going as well as
possible” (Gauthier, 1994, p. 690). Temptation cases present situations in which we must,
“say no to short-run considerations and yes to “long-run” expected return” (McClennen, 1990,
p. 236). What one finds in this literature is thus a range of conjectures about what revision
policies will in fact achieve the best “long-run expected return” for a typical human life.7
Another way of putting this, in context of this Element, is that planning agency, together with
specific policies for revision, is offered as part of a specification of an agent program that enjoys
high expected utility for agents like us, in environments like ours.

Another important rationale for plans and intentions, and their stability, stems again from
problems of interpersonal coordination and cooperation (see, e.g., Bratman 1987; Gauthier 1994,
among many others). Yet even without moving to the multi-agent setting—and outstanding
details about revision policies notwithstanding—there seems ample reason to internalize plans
for a sufficiently sophisticated resource-constrained agent.

6.5 Metareasoning
The resource rationality framework is marked by a separation between the underlying task
facing an agent, determined by their interaction with their environment, and the efficient use
of internal cognitive resources in confronting that task. As remarked at several points (e.g.,
§1.3, §6.1), this relies on a distinction between what is “inside” versus “outside” the agent. The
focus is not just on abstract strategies for solving the task, but on programs that implement
abstract strategies and also specify the internal structures and processes used in pursuit of the
task. In this chapter so far we have been exploring the idea that a program π might involve
operations over internal representations, with various possible functional roles in the program
(desire-like, belief-life, plan-like, etc.), at various possible levels of abstraction.

It is but a small step to imagine that an agent program might represent aspects of that
very program. In other words, the agent may represent not only features of the external
environment and their place in it, but also features of their own internal processing. We have
already encountered numerous points where some type of cognitive control might be relevant:

1. Representing cost (Kool and Botvinick, 2018) and accuracy (Daw et al., 2005) of different
learning strategies so as to adjudicate among them (Example 2, §2.3.4);

2. Representing possible levels of abstraction and selecting among them (§6.2), and more
generally encoding a problem into an appropriate format (Fig. 6.1);

3. Combining perceptual estimates of distal properties from different modalities (§6.3.1);

4. Internalizing desires about one’s own desires (Frankfurt, 1971);

5. Intending that one’s intention be robust to reconsideration (Holton, 2009), and more
generally determining when to reconsider a prior plan (§6.4).

We can understand metareasoning as cognitive control facilitated by representations of other
internal representations and operations. Metareasoning in this sense seems to be ubiquitous in
human thought, viz. assessing confidence, reasoning about what one does or does not know,

7Not everyone in this literature takes planning to be purely instrumental, however. For instance, Bratman
(2018) argues that stability of intention plays crucially into a fundamentally valuable kind of “diachronic self-
governance” that is threatened, among other times, whenever an agent goes in for temptation.
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selecting from among a “toolbox” of problem solving strategies, and so on (see, e.g., Proust
2013; Griffiths et al. 2019). The broad rationale for why it might make sense to spend resources
reasoning about how best to use one’s resources is intuitive. Particularly as one’s mental capac-
ities and available strategies are sufficiently rich and flexible, one inherits the “metaproblem”
of determining how those capacities should be brought to bear on a problem, that is, how best
to allocate those very limited resources.

Just as information about the world can be relevant to one’s decision about which action
to take, so information about one’s own mind can be relevant to one’s decision about which
deliberative strategy to employ. Recall that the latter problem is assumed to be captured by
balance between expected utility of a strategy and its costs, Eq. (1.1), reproduced here:

V(π) = U(π)− C(π). (1.1)

Supposing there is some space Π of candidate “cognitive strategies,” the task is to select among
them to maximize Eq. (1.1). Perhaps the simplest way to internalize this problem is to consider
the setting of just two relevant options—think or act—a predicament sometimes known as
“Hamlet’s problem” (Fodor, 1987a).

Example 31 (Hamlet’s Problem). Suppose, as in §4.3, there is some default behavior δ that
an agent would display without any further thought. And suppose there is some deliberative
procedure π that the agent could pursue, which might improve ultimate decision quality. We
have encountered numerous ways of measuring the cost of π, e.g., by the KL-divergence from δ
to π (Def. 14). The agent should engage in further deliberation, i.e., adopt π, to the extent that
its cost is outweighed by its expected marginal benefit relative to δ. The quantity that must
be strictly positive is sometimes known as the value of computation (Horvitz, 1987; Griffiths
et al., 2019), by analogy with value of information (e.g., from an experiment):

Value of computation =
(
U(π)−U(δ)

)
− C(π).

This basic predicament is of course faced by agents constantly, and a solution to it can simply be
“hard-wired” into an agent architecture. While such “reflexive” strategies enjoy the benefits of
model-free architectures (§2.3.1), for all the reasons discussed in this chapter, representational
strategies that involve reasoning explicitly about crucial determinants of the problem—in this
case, resource costs and benefits of alternative strategies—may in fact be preferable.

As acknowledged in §1.3, determining the optimal solution to Eq. (1.1) is not in general
a task that an agent can solve through deliberation. By the time deliberation has begun one
has already effectively ruled out any programs that are incompatible with that start.8 This is
especially pronounced in Example 31. Nonetheless, in settings where the relevant space Π is
sufficiently separate from the current context of deliberation, this tension need not arise. In
the tradition of resource rational analysis (Chapter 5), a variety of studies have demonstrated
that key phenomena involving metareasoning in humans can be understood in resource rational
terms (e.g., Cushman 2020; Milli et al. 2021; Callaway et al. 2022, among many others).

In sum, for agents with suitably complex internal lives, the question arises of how to de-
ploy one’s array of possible cognitive strategies in an effective way that fits the task at hand.
Metareasoning emerges as a potential solution to that predicament, when the costs of such
“reasoning about reasoning” are outweighed by the benefits. This is already enough to justify

8Of course, some programs may be “self-ratifying” in the sense that the program somehow “endorses” its
own execution (somewhat analogous to Jeffrey’s 1965 notion of ratifiability). But note that there is a tension
here if the selection process is costly. Similar to the argument for Prop. 4 (failure of the Folk Theorem for finite
automata), one would presumably prefer a simpler program that skipped the unnecessary “preprocessing” step.
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metareasoning from a resource rational perspective. But here again there are proposals that
locate at least some of its function in the multi-agent setting. For instance, Shea et al. (2014)
suggest that sharing confidence reports between minds helps facilitate complex coordination
and cooperation. This leads to the last section of this chapter.

6.6 Communication, Coordination and Beyond
We could expand the list of important cognitive phenomena that can be understood, at least
in part, in resource rational terms, to include mind-wandering (e.g., Christoff et al. 2011),
moral judgment (e.g., Levine et al. 2023), trust (e.g., Nguyen 2022), counterfactual thought
(e.g., Icard et al. 2018), emotion (e.g., Huys and Renz 2017), and many others. A repeating
theme throughout our discussion so far is the possibility that some of what makes these cognitive
constructs adaptive stems from their role in interpersonal activities, such as communication and
coordination. It is worth briefly reflecting here on how resource rationality can accommodate,
and be adapted to, the multi-agent setting.

The orientation in this Element has been decision theoretic, focusing on a single decision
maker. As discussed in §3.1.1, there is controversy about how to assess rational behavior in
(competitive) strategic multi-agent scenarios, with Nash equilibrium (and its relatives) some-
times offered as an alternative to maximization of expected utility. Chapter 3 showed how
resources and their costs could be easily incorporated into game theory; in fact, the automata
theoretic perspective has been explored most thoroughly in that setting. We also encountered
a number of instances where incorporation of resource costs invalidates some seminal results
on the subject, e.g., existence of equilibria (Example 12) and the Folk Theorem (Prop. 4).

Much of what makes human cultural achievement possible is our ability to engage in rich
practices of cooperation and social learning, passing cumulative knowledge from one generation
to the next (e.g., Boyd et al. 2011). How can these more cooperative forms of multi-agent
interaction be captured in the resource rational framework? As a basic starting point it makes
sense to postulate a single assessment function U that depends on the behavior of multiple
agents. That is, unlike the strategic context where each agent’s separate utility depends on
what they both do (Eq. (3.1)), but like the “team reasoning” account of Gold and Sugden
(2007) mentioned in §3.1.2, the function U(σ0, σ1) will assign a single number measuring how
well the (here, just two) agents coordinate to achieve some joint task.

A paradigmatic example of cooperative joint activity, evidently essential for cultural ac-
cumulation, is linguistic communication. It turns out that a prominent approach to natural
language pragmatics, the Rational Speech Act model (see, e.g., Goodman and Frank 2016,
essentially formalizing Grice 1975a), can be understood in precisely the same resource rational
framework as the one discussed in §4.3 for single-agent decision making.

Example 32 (Rational Speech Acts). Imagine a speaker, knowledgeable about some underlying
state s, and a listener who will update their view on the state given what the speaker says. In
addition to some states S with distribution p (known to the speaker), there are some possible
messages (“utterances”) M that the speaker could produce. Thus, the listener will maintain a
distribution λ(s|m), while the speaker will maintain an utterance distribution σ(m|s).

How might we measure success of a communicative exchange. Recall from Example 19 that
a natural utility for guessing state s given an observation m is logλ(s|m): guessing more likely
states is better. We might also assume—in the spirit of resource rationality—that there could
be a cost c(m) for sending message m, for instance, higher if m is longer or more difficult for
the listener to process. So the utility of an exchange in which the sender produces message m
and the listener infers the state is s can be taken as u(m, s) = logλ(s|m)− c(m). The overall
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expected utility for a pair σ, λ of behaviors can then be rendered:

U(σ, λ) =
∑
s,m

p(s)σ(m|s)u(m, s).

Moving even closer to resource rationality, Zaslavsky et al. (2020) suggest a further cost term
for the communication system as a whole. Let S be the random variable with distribution p,
and define a “stationary” utterance distribution M so that P (M = m) =

∑
s p(s)σ(m|s). This

is the long-term frequency of uttering m, averaged over states (analogous to Eq. (4.10)).
The mutual information I(S; M) between these random variables measures the average KL-

divergence from the “stationary” utterance distribution M to the state-specific speaker distri-
bution σ(m|s) (recall Def. 15). As in the discussion of policy compression (§4.3.4, §5.3.3), this
can be viewed as the average additional information that needs to be conveyed when commu-
nicating about each state, or alternatively as the amount of information that utterances tend
to carry about the underlying state. There is an obvious sense in which a more informative
signaling system will be costlier in this sense. Thus taking mutual information as the cost we
arrive at a multi-agent version of Eq. (1.2):

V(σ, λ) = U(σ, λ)− 1
β
I(S; M).

By an argument similar to that for Theorems 6 and 8 (Appendix 4.A.3), one can show (see
Zaslavsky et al. 2020, Supplementary Material) that the optimal pair of distributions satisfies:

σ(m|s) ∝ P (M = m) eβu(m,s)

λ(s|m) ∝ σ(m|s) p(s).

Note that λ is essentially a Bayesian listener, while σ is perfectly analogous to the optimal
action distribution in Eq. (4.12), derived in Theorem 8. A large body of empirical phenomena
is predicted by models of communication between speakers and listeners grounded in these two
distributions (see Goodman and Frank 2016 for a review).9

In fact, efficiency appears to be ubiquitous in language, at nearly all levels of linguistic
analysis (Gibson et al., 2019). Much current research employs the same information theoretic
apparatus as Example 32 (and §4.3), conceiving of speech as operating through a “noisy chan-
nel” in the sense of Shannon (1948). The communicative aim of language is to transmit as
much information along this channel as efficiently as possible, mirroring the signature resource
rational tradeoff (Eq. (1.1)). In Example 32 the cost is measured by mutual information, but it
can also be measured in terms of working memory necessary for listener comprehension (which
can also be approximated by mutual information between words), minimum description length
in a hypothesized “language of thought” (Kemp and Regier, 2012; Steinert-Threlkeld, 2021),
and others. This general framework has been used to explain linguistic universals pertaining
to color terms, kinship terms, word order, morphological marking and redundancy, degree of
ambiguity, and many other phenomena (see Gibson et al. 2019 for a review).

While this line of work emphasizes group-level resource rationality around communication
(and sometimes learning), there is also work targeting important ways that language may be

9Strictly speaking, the usual Rational Speech Act model employs an iterative approximation to these dis-
tributions, starting with a “literal” listener (or speaker) and building up from there. Furthermore, the (“per-
severence”) term P (M = m) is usually not included. Zaslavsky et al. (2020) show that the model without this
term emerges if we replace mutual information with conditional entropy, in effect ignoring the entropy of M (cf.
Corollary 2), though there may be empirical reason for including the perseverence term.
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resource optimal at the individual level. For instance, it has been suggested that natural human
languages achieve near optimality in the way that they links “sound and meaning,” mediating
between thought and its expression (e.g., Chomsky 2005). There are extensive debates about
which of the many functions of language are responsible for its evolution (Christiansen and
Kirby, 2003). While obviously important, one of the attractive features of the resource rational
framework is that it focuses less on these specific explanatory questions (though it may of
course feed into them, cf. §5.4). Many different aspects of language can be resource rational in
numerous different respects, and the evidence so far does in fact favor such a pluralistic stance.



Chapter 7

Conclusion and Outlook

Resource rationality, as understood in this Element, is grounded in relatively traditional tools
of decision theory, viz. probabilities, utilities, and so on. We employ these tools as an external
means of assessing the instrumental rationality of a wide array of agents across different kinds
of environments. The framework applies equally to sophisticated intentional agents with rich
mental lives, to subsystems of those agents, and even to non-living artifacts, so long as they
can be parsed as “doing something.”

Distinctive of resource rationality is its separation between what is “inside” and what is
“outside” the agent (Figs. 1.1, 2.1, 4.4, 6.1). The primary role of the traditional decision
theoretic tools is to assess external behavior, that is, interactions between the agent and their
environment, captured formally by a strategy. The framework does not impose assumptions
about what is inherently good or bad for the agent, but rather accommodates a broad range of
such assumptions in the form of a utility function (§1.1).

The concept of a program summarizes the relevant internal structure of the agent. A program
has two key features: it consumes resources and thus incurs costs, and it implements a strategy.
In other words, a program is just a costly implementation of a strategy. Resource costs are
understood as the utility foregone, which the same resources could instead have been used to
achieve (§1.4). In practice, however, costs are determined by some measurable quantity that
ideally stands in for true opportunity costs. Having thus specified both how to assess (the
strategy implemented by) a program π on the task, and the (pseudo-)cost of π, the overall
value of the program is given by a weighted sum, Eq. (1.2), repeated here:

V(π) = U(π)− 1
β
C̃(π).

Meanwhile, on so-called panoramic approaches it suffices simply to compare all “feasible” pro-
grams by how well they perform on the underlying task (§1.3).

Two recurring analyses of cost can be found throughout this Element, both of which purport
to measure a kind of inherent resource demand for implementing a strategy:

Automata-theoretic costs: Every strategy can be implemented by some (possibly
finite-state) automaton. We can measure the inherent cost of the strategy by the size
(number of states) of the smallest implementing automaton (Def. 11). This captures a
lower bound on the amount of memory required to carry out the strategy, insofar as the
agent must be able to occupy at least this number of distinct internal configurations.

Information-theoretic costs: Relative to a “default” strategy (which can be taken as
the stationary action distribution in the sequential case), we can measure the cost of a
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strategy σ by the (average, in the sequential case) relative entropy, or “KL-divergence,”
from the default strategy to σ (Defs. 14, 15). In the sequential case this becomes the
mutual information between the action distribution and the state distribution. Intuitively,
this measures the degree to which the strategy tracks distinctions in the world, again
highlighting intuitions about memory requirements on any implementation of the strategy.

A natural question is how these two analyses relate to one another. As anticipated in Remark
3, it is possible to have arbitrarily high automata-theoretic cost with no information-theoretic
cost whatsoever, because we can have complex strategies that depend in no way on the state
(or observations of it). These will simply be sequences of actions (like in Example 25).

In the other direction, for any stationary strategy we will merely need an automaton with
as many (machine) states as there are actions that receive positive probability in some (world)
state. All strategies with the same set of positive-probability actions will have the same
automata-theoretic complexity, ranging from those with minimal information-theoretic com-
plexity (because all states are ignored) to those with maximal information-theoretic complexity
(given by the entropy of the state distribution, in the case of a one-to-one correspondence
between states and actions). Thus, in general, the two analyses are orthogonal.

Another analysis of cost appeared in §5.3.4, viz. number of iterations in a Markov chain
for drawing a Monte Carlo sample. The broader literature includes many others, such as
the amount of energy consumed in maintaining ion gradients (Niven and Laughlin, 2008), the
volume of connections between neural cells (Cherniak, 2012), the number of samples from a
generative model (Vul et al., 2014), description length in an abstract language of thought
(Piantadosi et al., 2016), the number of steps in a Turing machine program (van Rooij et al.,
2019), and many others. On the view propounded here (§1.4), these should all be understood
as approximations to opportunity costs, which may be more or less apt for different purposes.

The resulting framework promises numerous uses, including the typical roles for a theory
of rationality, helping to clarify ways in which forms of deliberation and behavior may be
adaptive or improvable. In contrast to more idealized rational frameworks that in effect posit,
“infallible powers of calculation and independence from the institutional and ideological context
we inhabit” (O’Neill, 1987, p. 56), resource rationality accommodates and even highlights the
various quirks and limitations of concretely embodied agents. The framework is distinctive to
the extent that we are able to codify important architectural features of the agents under study.

Resource rationality is also singular in the way it blurs the boundary between the normative
and the descriptive. The focus of much of this Element has been its use in identifying and
clarifying the very architectural features that could themselves serve as input to the framework.
Resource rational analysis, as a scientific methodology (Chapter 5), aims to draw descriptive
conclusions from normative assumptions (viz. that some way of solving a problem is a good
one), and there is even some promise of shedding light on very general structural aspects of
human thought and cognition (Chapter 6). The deliverances of this enterprise can then feed
back into further resource rational pronouncements that take this finer structure into account.
We always begin (as Stalnaker 2010 memorably put it in a different context) in the middle.

By design, resource rationality is perspectival in its pronouncements, embracing a depen-
dence on how we choose to characterize an agent’s predicament. This includes both the un-
derlying task and the relevant features of the agent’s deliberative capacities and proclivities.
Our ability to limn the structure of rational thought and action thus relies on identifying useful
abstractions and idealizations to frame our investigation. In other words, our goal as theorists
is to achieve a resource rational balance between fidelity to the facts and theoretical tractabil-
ity. Somewhat perversely, idealizing agents’ abilities often affords analytical simplicity, which
makes finding the right balance particularly acute. It is perhaps a testament to its scope that
such resource-sensitive theoretical tradeoffs fall within the purview of the framework itself.



Bibliography

Ackerman, N. L., Freer, C. E., and Roy, D. M. (2019). On the computability of conditional
probability. Journal of the ACM, 66(3):1–40.

Ahmed, A. (2021). Evidential Decision Theory. Cambridge University Press.

Anderson, J. R. (1990). The Adaptive Character of Thought. Lawrence Earlbaum Associates,
Inc.

Anderson, J. R. (1991a). The adaptive nature of human categorization. Psychological Review,
98(3):409–429.

Anderson, J. R. (1991b). Is human cognition adaptive? Behavioral and Brain Sciences, 14:471–
484.

Andersson, H. and Herlitz, A. (2022). Value Incommensurability: Ethics, Risk, and Decision-
Making. Routledge Studies in Ethics and Moral Theory.

Annas, J. (2011). Intelligent Virtue. Oxford University Press.

Anscombe, G. E. M. (1957). Intention. Harvard University Press.

Aronowitz, S. (2021). Exploring by believing. Philosophical Review, 130(3):339–383.

Arpaly, N. and Schroeder, T. (2012). Deliberation and acting for reasons. Philosophical Review,
121(2):209–239.

Arrow, K. J. (2004). Is bounded rationality unboundedly rational? Some ruminations. In
Augier, M. and March, J. G., editors, Models of a Man: Essays in Memory of Herbert A.
Simon, page 47–55. MIT Press.
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