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Abstract—Several state-of-the-art machine and deep learning 
models in the mode of adversarial training, input transformation, 
self adaptive training, adversarial purification, zero-shot, one- 
shot, and few-shot meta learning had been proposed as a 
possible solution to an out-of-distribution problems by applying 
them to wide arrays of benchmark dataset across different 

research domains with varying degrees of performances, but 
investigating their performance on previously unseen out-of- 

distribution malware attack remains elusive. Having evaluated 
the poor performances of these state-of-the-art approaches in 
our previous research on an out-of-distribution attack. In this 

research, we dived deeper to understand why they works better 
for other domain dataset but with poor performance on available 
benchmark malware dataset like Malimg, Malevis, Sorel, and 
Avast CTU malware dataset. We explored the both the embedding 

and vector spaces in datasets and compare them with that from 
other research domain, and find a surprising wide variation 

between the embedding and vector spaces in malware datasets. 
We assert that current state-of-the-art machine and deep learn- 

ing models does not address the wide variation of embedding and 
vector spaces which are peculiar to malware dataset, hence their 
poor performance on out-of-distribution attack classification, and 
so concluded that addressing this variation in embedding and 
vector spaces will bring about substantial increase in detection 

of previously unseen out-of-distribution attack 
Index Terms—Malware, Malware Attack, Machine Learning, 

Deep Learning, Out-of-Distribution attack 

 
I. INTRODUCTION 

Cybercriminals often use all forms of malicious software 
called malware for several purposes such as deception of 
inducing potential victim to divulge financial information per- 
sonal details for identity theft or hijacking several computers to 
launch distributed denial-of-service attack against network of 
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computer [16], [30]. The potency of malware to successfully 
infiltrate any system no matter how sophisticated made it 
an indispensable tool available to cybercriminals today, as 
malware had proven to be highly successful in the extraction of 
sensitive data which could be used by cybercriminals against 
their victim. Several approaches had been widely proposed 
and adopted to combat the rampant threat of malware attack 
among which machine learning (ML) and Deep Learning (DL) 
had been the most promising [33] but the out-of-distribution 
(OOD) problems had lead to vulnerabilities of machine and 
deep learning based approaches against previously unseen 
malware family or new variant of an existing family. This 
is due to the fact that current state-of-the-art approaches are 
based on the assumption that identically and independently 
distributed (IID) data will be available in test time [6], [36]–
[41], which are unfortunately not true in new world scenarios 
[2]. Hence, the close-world assumption of identically and 
independently distributed are violated whenever state-of-the-
art machine or deep learning based model are deploy in real-
world scenarios in the presence of previously unseen out-of-
distribution mal- ware family or variants of an existing family, 
the high failure rate of state-of-the-art approaches to 
previously unseen OOD malware is cyberattack [9]–[11], 
[14]. 

This is evident by the established fact of malware being the 
fastest-growing threat with 41% of enterprises witnessing a 
malware attack in just concluded year 2023 followed by phish- 
ing and ransomware attack. In year 2023 alone, the number 
of enterprises experiencing ransomware attacks increased by 
over 27% with only 8% of businesses attacked resorting to 
paying the ransom demands resulting in significant financial 
loss in addition to losses incurred due to downtime. There 
are 95 new families of malware in year 2022 alone averaging 
1 new family every 4 days aside variants while year 2023 



 

 
 

Fig. 1. Cybercrime expected to Skyrocket in coming years 
Sources: Statista Technology Market Outlook, National Cybersecurity Orga- 
nizations, FBI, IMF 

 

 
witness 43 new malware families averaging 1 new malware 
family per week aside variants making emerging malware 
families a major threat to cybersecurity causing damages worth 
billions of Dollars annually [29], [31]. The ease with which 
attacker creates new variants of malware coupled with the rate 
at which new variants are being release poses a real challenge 
both for their detection, identification and classification, reason 
being that machine learning and deep learning model are only 
effective in detecting previously seen variants during training 
[3]. 

The major cause of this problem is the availability of 
sophisticated tools for cyberattackers to rapidly create an out- 
of-distribution variants of existing malware family or new mal- 
ware family against which State-of-the-art (SOTA) machine 
learning and deep learning models remain vulnerable. Hence, 
Statista Technology Market Outlook, National Cyber Security 
Organizations, FBI, and IMF had projected an increase in 
cybercrime world wide 1 [8], [12], [13] [42]–[46]. 

While several SOTA approaches had been proposed to 
address the problem of OOD in both ML and DL subfield of 
artificial intelligence (AI) on several benchmark datasets, none 
of the SOTA approaches had been applied to OOD malware 
dataset thereby leaving a gap to filled. We started by applying 
and training SOTA models on 4 different benchmark malware 
dataset (Sorel,Malevis,Malimg, and Avast), after seeing the 
poor performance of the current state-of-the-art deep learning 
models and approaches on an OOD malware dataset, we 
proceeded to investigate the possible cause by converting 
each variants in each malware family to bytes and calculating 
the mean square error (MSE) of each family member, same 
procedure was also also repeated for other dataset on which 
SOTA models have good performance. Our result shows wide 
variation between variants from the same malware family 
through the Mean Square Error (MSE) and vector space while 
other datasets shows little to no variation between samples of 
same class. Hence, unlike other dataset where sample from 
a given class can represent the whole class, malware sample 
from a given family does not give a true representation of 

the family due to wide variation between samples from same 
family which we measured in form of the Mean Square Error, 
current SOTA OOD techniques does not give provision for 
this wide MSE spread among samples from the same malware 
family, hence, the reason for their poor performance on OOD 
malware. Our research here has two main objectives; 

• First aim is to investigate how variation of variants 
from same malware family leads to poor performance 
of state-of-the-art machine and deep learning model on 
an previously unseen out-of-distribution attack while per- 
forming better on other domain outside cybersecurity. 
This is crucial because understanding this will enable 
development of new state-of-the-art models for effec- 
tive out-of-distribution malware attack detection, while 
also enhancing current state-of-the-art machine and deep 
learning models. 

• Our second objective is to propose base on the result. 
Hence, we assert future research direction will center 
around mitigating the impact of the variation in vec- 
tor spaces. so, we proposed that future state-of-the-art 
machine and deep learning models will have to address 
this limitation by, (1) exploitation of the in-dimensional 
embedding space between malware variants from the 
same malware family to account for all variations (2) 
exploitation of the inter-dimensional space from different 
malware family and (3) real time dynamic adjustment of 
data points 

II. RELATED WORK 

Among the several types of cyber threat, malware attacks 
remains the top threat defying recent advances due to the ease 
and potency of creating new variants from existing malware. 
In our research, we emphasizes on the out-of-distribution 
problem owing to the fact that each and every current state- 
of-the-art approaches performs very poorly against an out- 
of-distribution malware. Subsequently, we exploit the spaces 
between each and every samples from the same malware 
family in our proposed deep learning-based framework for 
effective classification of previously unseen out-of-distribution 
malware attack.In the following sections, we present related 
work based on the aforementioned research question, provid- 
ing a comprehensive overview of the existing literature and 
relevant findings. 

III. MALWARE OBFUSCATION AND BEHAVIOURAL 

ANALYSIS 

Over the years, several methods had been proposed for 
effective detection of malware which are broadly classified 
into Static and dynamic categories. Static malware detection 
methods such as deployed in [18], [24], [27], [32] are rule 
based and heavily relies header information, file hashes and 
Opcodes features to detect malware, the problem static method 
is that they can be evaded by polymorphism and obfuscation 
techniques [1], [20], [21]. On the other hand, dynamic malware 
detection method uses behavioral-based features such as the 



 
 

Fig. 2. t-sne Side by side comparison of variation in vector spaces between variants of same malware family (MaleVis) Malware dataset compare with Mnist 
dataset showing wide and overlapping vector spaces between variants of same malware family 

 

 
Fig. 3. t-sne Side by side comparison of variation in vector spaces between variants of same malware family (Avast CTU) Malware dataset compare with 
Mnist dataset showing wide and overlapping vector spaces between variants of same malware family 

 

monitoring of the process-level behavior of malware to classify 
it [15]. 

But according to Huan Zhang [34], behavioral-based 
process-level detection malware methods have vulnerabilities 
due to the susceptibilities to evasive tactics such as multi- 
process techniques and junk code injection since a malware 
like ransomware can easily have multiple child processes with 
each process executing small portion of the overall task while 
at the same time evading detection by mimicking benign 
behavior [35]. 

One obvious observation in all the machine and deep learn- 
ing state-of-the-art approaches to malware classification as 
seen in ?? is they are not train for novel variant classification, 
hence their vulnerabilities to previously unseen or novel out- 
of-distribution malware, and so will surely falter when attack 
with more recent sophisticated malware. My proposed deep 
learning based framework will address this gap to make a 
significant contribution to both field of artificial intelligence 
and cybersecurity. 

Certain problems like generalization, convergence and di- 
vergence are peculiar with few-shot learning considering that 

it is aimed at categorizing the new classes of previously 
unseen samples in the training set having been given only 
few samples of from each class, Over the years several 
new algorithms and adjustment to the current state-of-the-art 
algorithm have been developed in order to address some of the 
more peculiar problem associated with few-shot learning [22] 
such as the adoption of Probabilistic models based on Bayesian 
learning [4], [5], Generative models with probability density 
functionality [17], [19], image transformation [7], [23], Using 
memory augmented in neural networks [26] , Meta learning 
[17], [25] and Metric learning [28]. 

IV. RESEARCH METHODOLOGY 

1) Stage 2 - Investigating the Uniqueness of Malware 
dataset and Identification of in-Distributional Dimensional 
Space : In order to have a thorough analysis of the underlying 
structure of malware, we use holistic approach whereby each 
malware family was treated as separate entity. For each variant 
member of a malware family, each of the variants from each 
malware family were converted to a one-channel image for 
proper storage after which each pixels were converted to a 
NumPy array and save. Each of the saved NumPy array were 



 
 

Fig. 4. Visualization of the distribution of Mean Square Error(MSE) between variants from same malware family showing wider MSE 

 

converted back to an image and compared with the original 
image both by physical inspection and byte array to ensure 
that each of the generated arrays is a true representation of 
the original malware image. On confirmation that each of the 
saved NumPy array is a true representation of the original 
image, the following mode of visualization was adopted; 

A. t-SNE for vector space representation of each pixels 

It becomes clear that there is an existence of variation in 
dimensional space between each variants of every malware 
family which had not been previously exploited by any of 
the existing state-of-the-art machine and deep learning based 
approaches for an out-of-distribution detection, unlike other 
dataset where a sample can give true representation of that 
class, a single malware variant does not actually give any true 
representation of that family. We conclude that this variation 
in dimensional space between family of malware had not been 
exploited and it is the reason why all existing state-of-the-art 
OOD approaches performed poorly when applied to malware 
in an out-of-distribution settings 32. 

B. MSE and scatter mapping for proper exploration of the 
wideness in the Mean Square Error (MSE) 

It becomes clear that there is an existence of variation in 
dimensional space between each variants of every malware 
family which had not been previously exploited by any of 
the existing state-of-the-art machine and deep learning based 
approaches for an out-of-distribution detection, unlike other 
dataset where a sample can give true representation of that 
class, a single malware variant does not actually give any true 
representation of that family. We conclude that this variation 
in dimensional space between family of malware had not been 
exploited and it is the reason why all existing state-of-the-art 

OOD approaches performed poorly when applied to malware 
in an out-of-distribution settings 4. 

V. CONCLUSION 

In this research, we investigate how variation in variants of 
same malware family leads to poor performance of state-of- 
the-art machine and deep learning model on an previously 
unseen out-of-distribution malware attack while performing 
better on other domain outside cybersecurity, and diving 
deeper to understand the poor performances on available 
benchmark malware like Malimg, Malevis, Sorel, and Avast 
CTU malware dataset. We explored both the embedding and 
vector spaces in malware datasets and compare them with 
that from other research domain, and find a surprising wide 
variation between the embedding and vector spaces in malware 
datasets even among varints from same malware family. We 
assert that current state-of-the-art machine and deep learning 
models does not address the wide variation of embedding 
and vector spaces which are peculiar to malware dataset, 
hence their poor performance on out-of-distribution attack 
classification, and so concluded that addressing this variation 
in embedding and vector spaces will bring about substantial 
increase in detection of previously unseen out-of-distribution 
attack. 

Considering the impact of variation in vector and embed- 
ding spaces on the poor performance of current state-of- 
the-art models on the detection of previously unseen out- 
of-distribution malware attack, future research direction will 
center around mitigating the impact of these vector spaces. 
Hence, we proposed that future state-of-the-art machine and 
deep learning models will have to address this limitation 
by, (1) exploitation of the in-dimensional embedding space 



between malware variants from the same malware family to 
account for all variations (2) and exploitation of the inter- 
dimensional space from different malware family. 
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