

On Neutrosophic Semi Alpha Open Sets

Qays Hatem Imran¹, F. Smarandache², Riad K. Al-Hamido³ and R. Dhavaseelan⁴

¹Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq. E-mail: gays.imran@mu.edu.iq

²Department of Mathematics, University of New Mexico 705 Gurley Ave. Gallup, NM 87301, USA.

E-mail: smarand@unm.edu

³Department of Mathematics, College of Science, Al-Baath University, Homs, Syria.

E-mail: riad-hamido1983@hotmail.com

⁴Department of Mathematics, Sona College of Technology, Salem-636005, Tamil Nadu, India. E-mail: dhavaseelan.r@gmail.com

Abstract. In this paper, we presented another concept of neutrosophic open sets called neutrosophic semi- α -open sets and studied their fundamental properties in neutrosophic topological spaces. We also present neutrosophic semi- α -interior and neutrosophic semi- α -closure and study some of their fundamental properties.

Mathematics Subject Classification (2000): 54A40, 03E72.

Keywords: Neutrosophic semi- α -open sets, neutrosophic semi- α -closed sets, neutrosophic semi- α -interior and neutrosophic semi- α -closure.

1. Introduction

In 2000, G.B. Navalagi [4] presented the idea of semi- α -open sets in topological spaces. The concept of "neutrosophic set" was first given by F. Smarandache [2,3]. A.A. Salama and S.A. Alblowi [1] presented the concept of neutrosophic topological space (briefly NTS). The objective of this paper is to present the concept of neutrosophic semi- α -open sets and study their fundamental properties in neutrosophic topological spaces. We also present neutrosophic semi- α -interior and neutrosophic semi- α -closure and obtain some of its properties.

2. Preliminaries

Throughout this paper, (U,T) (or simply U) always mean a neutrosophic topological space. The complement of a neutrosophic open set (briefly N-OS) is called a neutrosophic closed set (briefly N-CS) in (U,T). For a neutrosophic set \mathcal{A} in a neutrosophic topological space (U,T), $Ncl(\mathcal{A})$, $Nint(\mathcal{A})$ and \mathcal{A}^c denote the neutrosophic closure of \mathcal{A} , the neutrosophic interior of \mathcal{A} and the neutrosophic complement of \mathcal{A} respectively.

Definition 2.1:

A neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is said to be:

(i) A neutrosophic pre-open set (briefly NP-OS) [7] if $\mathcal{A} \subseteq Nint(Ncl(\mathcal{A}))$. The complement of a NP-OS is called a neutrosophic pre-closed set (briefly NP-CS) in (\mathcal{U}, T) . The

family of all NP-OS (resp. NP-CS) of \mathcal{U} is denoted by NPO(\mathcal{U}) (resp. NPC(\mathcal{U})).

- (ii) A neutrosophic semi-open set (briefly NS-OS) [6] if $\mathcal{A} \subseteq Ncl(Nint(\mathcal{A}))$. The complement of a NS-OS is called a neutrosophic semi-closed set (briefly NS-CS) in (\mathcal{U}, T) . The family of all NS-OS (resp. NS-CS) of \mathcal{U} is denoted by NSO(\mathcal{U}) (resp. NSC(\mathcal{U})).
- (iii) A neutrosophic α -open set (briefly N α -OS) [5] if $\mathcal{A} \subseteq Nint(Ncl(Nint(\mathcal{A})))$. The complement of a N α -OS is called a neutrosophic α -closed set (briefly N α -CS) in (\mathcal{U}, T) . The family of all N α -OS (resp. N α -CS) of \mathcal{U} is denoted by N α O(\mathcal{U}) (resp. N α C(\mathcal{U})).

Definition 2.2:

- (i) The neutrosophic pre-interior of a neutrosophic set \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is the union of all NP-OS contained in \mathcal{A} and is denoted by $PNint(\mathcal{A})[7]$.
- (ii) The neutrosophic semi-interior of a neutrosophic set \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is the union of all NS-OS contained in \mathcal{A} and is denoted by $SNint(\mathcal{A})[6]$.
- (iii) The neutrosophic α -interior of a neutrosophic set \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is the union of all N α -OS contained in \mathcal{A} and is denoted by $\alpha Nint(\mathcal{A})[5]$.

Definition 2.3:

(i) The neutrosophic pre-closure of a neutrosophic set \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is the intersection of all NP-CS that contain \mathcal{A} and is denoted by $PNcl(\mathcal{A})[7]$.

(ii) The neutrosophic semi-closure of a neutrosophic set \mathcal{A} of a neutrosophic topological space (U,T) is the

intersection of all NS-CS that contain \mathcal{A} and is denoted by $SNcl(\mathcal{A})[6]$.

(iii) The neutrosophic α -closure of a neutrosophic set \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is the intersection of all N α -CS that contain \mathcal{A} and is denoted by $\alpha Ncl(\mathcal{A})$ [5].

Proposition 2.4 [5]:

In a neutrosophic topological space (\mathcal{U},T) , then the following statements hold, and the equality of each statement are not true:

- (i) Every N-OS (resp. N-CS) is a N α -OS (resp. N α -CS).
- (ii) Every N α -OS (resp. N α -CS) is a NS-OS (resp. NS-CS).
- (iii) Every N α -OS (resp. N α -CS) is a NP-OS (resp. NP-CS).

Proposition 2.5 [5]:

A neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) is a N α -OS iff \mathcal{A} is a NS-OS and NP-OS.

Lemma 2.6:

- (i) If \mathcal{K} is a N-OS, then $SNcl(\mathcal{K}) = Nint(Ncl(\mathcal{K}))$.
- (ii) If \mathcal{A} is a neutrosophic subset of a neutrosophic topological space (\mathcal{U},T) , then $SNint(Ncl(\mathcal{A})) = Ncl(Nint(Ncl(\mathcal{A})))$.

Proof: This follows directly from the definition)2.1) and proposition (2.4).

3. Neutrosophic Semi- α -Open Sets

In this section, we present and study the neutrosophic semi- α -open sets and some of its properties.

Definition 3.1:

A neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U},T) is called neutrosophic semi- α -open set (briefly NS α -OS) if there exists a N α -OS \mathcal{H} in \mathcal{U} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(\mathcal{H})$ or

equivalently if $A \subseteq Ncl(\alpha Nint(A))$. The family of all NS α -OS of \mathcal{U} is denoted by NS α O(\mathcal{U}).

Definition 3.2:

The complement of NS α -OS is called a neutrosophic semi- α -closed set (briefly NS α -CS). The family of all NS α -CS of $\mathcal U$ is denoted by NS α C($\mathcal U$).

Proposition 3.3:

It is evident by definitions that in a neutrosophic topological space (U, T), the following hold:

- (i) Every N-OS (resp. N-CS) is a NS α -OS (resp. NS α -CS).
- (ii) Every N α -OS (resp. N α -CS) is a NS α -OS (resp. NS α -CS).

The converse of the above proposition need not be true as seen from the following example.

Example 3.4:

Let $U = \{u\}$, $A = \{\langle u, 0.5, 0.5, 0.4 \rangle : u \in U\}$,

 $\mathcal{B} = \{\langle u, 0.4, 0.5, 0.8 \rangle : u \in \mathcal{U}\}, C = \{\langle u, 0.5, 0.6, 0.4 \rangle : u \in \mathcal{U}\}, D = \{\langle u, 0.4, 0.6, 0.8 \rangle : u \in \mathcal{U}\}.$

Then $T = \{0_N, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, 1_N\}$ is a neutrosophic topology

- (i) Let $\mathcal{H} = \{\langle u, 0.5, 0.1, 0.3 \rangle : u \in \mathcal{U}\}, \ \mathcal{A} \subseteq \mathcal{H} \subseteq Ncl(\mathcal{A}) = \langle u, 0.6, 0.4, 0.2 \rangle$, the neutrosophic set \mathcal{H} is a NS α -OS but is not N-OS. It is clear that $\mathcal{H}^c = \{\langle u, 0.5, 0.9, 0.7 \rangle : u \in \mathcal{U}\}$ is a NS α -CS but is not N-CS.
- (ii) Let $\mathcal{K} = \{\langle u, 0.5, 0.1, 0.2 \rangle : u \in \mathcal{U}\}, \mathcal{A} \subseteq \mathcal{K} \subseteq Ncl(\mathcal{A}) = \langle u, 0.6, 0.4, 0.2 \rangle$, the neutrosophic set \mathcal{K} is a NS α -OS, $\mathcal{K} \nsubseteq Nint(Ncl(Nint(\mathcal{K}))) =$

 $Nint(Ncl(\langle u, 0.5, 0.5, 0.4 \rangle)) = Nint(\langle u, 0.6, 0.4, 0.2 \rangle) = \langle u, 0.5, 0.5, 0.4 \rangle$, the neutrosophic set \mathcal{K} is not N α -OS. It is clear that $\mathcal{K}^c = \{\langle u, 0.5, 0.9, 0.8 \rangle : u \in \mathcal{U}\}$ is a NS α -CS but is not N α -CS.

Remark 3.5:

The concepts of $NS\alpha$ -OS and NP-OS are independent, as the following examples shows.

Example 3.6:

In example (3.4), then the neutrosophic set $\mathcal{H} = \{\langle u, 0.5, 0.1, 0.3 \rangle : u \in \mathcal{U} \}$ is a NS α -OS but is not NP-OS, because $\mathcal{H} \nsubseteq Nint(Ncl(\mathcal{H})) = Nint(\langle u, 0.6, 0.4, 0.2 \rangle) = \langle u, 0.5, 0.5, 0.4 \rangle$.

Example 3.7:

Let $\mathcal{U} = \{a, b\}$, $\mathcal{A} = \{(0.4, 0.8, 0.9), (0.7, 0.5, 0.3)\}$, $\mathcal{B} = \{(0.5, 0.8, 0.6), (0.8, 0.4, 0.3)\}$, $\mathcal{C} = \{(0.4, 0.7, 0.9), (0.6, 0.4, 0.4)\}$, $\mathcal{D} = \{(0.5, 0.7, 0.5), (0.8, 0.4, 0.6)\}$.

Then $T = \{0_N, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, 1_N\}$ is a neutrosophic topology on \mathcal{U} .

Then the neutrosophic set $\mathcal{K} = \{(1, 1, 0.3), (0.7, 0.3, 0.6)\}$ is a NP-OS but is not NS α -OS.

Remark 3.8:

- (i) If every N-OS is a N-CS and every nowhere neutrosophic dense set is N-CS in any neutrosophic topological space (\mathcal{U}, T) , then every NS α -OS is a N-OS.
- (ii) If every N-OS is a N-CS in any neutrosophic topological space (\mathcal{U}, T) , then every NS α -OS is a N α -OS.

Remark 3.9:

- (i) It is clear that every NS-OS and NP-OS of any neutrosophic topological space (U, T) is a NS α -OS (by proposition (2.5) and proposition (3.3) (ii)).
- (ii) A NS α -OS in any neutrosophic topological space (\mathcal{U} , T) is a NP-OS if every N-OS of \mathcal{U} is a N-CS (from proposition (2.4) (iii) and remark (3.8) (ii)).

Theorem 3.10:

For any neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U},T) , $\mathcal{A} \in N\alpha O(\mathcal{U})$ iff there exists a N-OS \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Nint(Ncl(\mathcal{H}))$.

Proof: Let \mathcal{A} be a N α -OS. Hence $\mathcal{A} \subseteq$

 $Nint(Ncl(Nint(\mathcal{A})))$, so let $\mathcal{H} = Nint(\mathcal{A})$, we get $Nint(\mathcal{A}) \subseteq \mathcal{A} \subseteq Nint(Ncl(Nint(\mathcal{A})))$. Then there exists a N-OS $Nint(\mathcal{A})$ such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Nint(Ncl(\mathcal{H}))$, where $\mathcal{H} = Nint(\mathcal{A})$.

Conversely, suppose that there is a N-OS \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Nint(Ncl(\mathcal{H}))$.

To prove $\mathcal{A} \in N\alpha O(\mathcal{U})$.

 $\mathcal{H} \subseteq Nint(\mathcal{A})$ (since $Nint(\mathcal{A})$ is the largest N-OS contained in \mathcal{A}).

Hence $Ncl(\mathcal{H}) \subseteq Nint(Ncl(\mathcal{A}))$, then $Nint(Ncl(\mathcal{H})) \subseteq Nint(Ncl(Nint(\mathcal{A})))$.

But $\mathcal{H} \subseteq \mathcal{A} \subseteq Nint(Ncl(\mathcal{H}))$ (by hypothesis). Then $\mathcal{A} \subseteq Nint(Ncl(Nint(\mathcal{A})))$.

Therefore, $A \in N\alpha O(U)$.

Theorem 3.11:

For any neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) . The following properties are equivalent:

- (i) $\mathcal{A} \in NS\alpha O(\mathcal{U})$.
- (ii) There exists a N-OS say \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H})))$.
- (iii) $\mathcal{A} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A})))).$

Proof:

(i) \Rightarrow (ii) Let $\mathcal{A} \in NS\alpha O(\mathcal{U})$. Then there exists $\mathcal{K} \in N\alpha O(\mathcal{U})$, such that $\mathcal{K} \subseteq \mathcal{A} \subseteq Ncl(\mathcal{K})$. Hence there exists \mathcal{H} N-OS such that $\mathcal{H} \subseteq \mathcal{K} \subseteq Nint(Ncl(\mathcal{H}))$ (by theorem (3.10)). Therefore, $Ncl(\mathcal{H}) \subseteq Ncl(\mathcal{K}) \subseteq Ncl(Nint(Ncl(\mathcal{H})))$, implies that $Ncl(\mathcal{K}) \subseteq Ncl(Nint(Ncl(\mathcal{H})))$. Then $\mathcal{H} \subseteq \mathcal{K} \subseteq \mathcal{A} \subseteq Ncl(\mathcal{K}) \subseteq Ncl(Nint(Ncl(\mathcal{H})))$. Therefore, $\mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H})))$, for some \mathcal{H} N-OS. (ii) \Rightarrow (iii) Suppose that there exists a N-OS \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H})))$. We know that

 $(ii) \Rightarrow (iii)$ Suppose that there exists a N-OS \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H})))$. We know that $Nint(\mathcal{A}) \subseteq \mathcal{A}$. On the other hand, $\mathcal{H} \subseteq Nint(\mathcal{A})$ (since $Nint(\mathcal{A})$ is the largest N-OS contained in \mathcal{A}). Hence $Ncl(\mathcal{H}) \subseteq Ncl(Nint(\mathcal{A}))$, then $Nint(Ncl(\mathcal{H})) \subseteq Nint(Ncl(Nint(\mathcal{A})))$, therefore $Ncl(Nint(Ncl(\mathcal{H}))) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A}))))$.

But $A \subseteq Ncl(Nint(Ncl(\mathcal{H})))$ (by hypothesis). Hence $A \subseteq Ncl(Nint(Ncl(\mathcal{H}))) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A}))))$, then $A \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A}))))$.

 $(iii) \Rightarrow (i) \text{ Let } \mathcal{A} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A})))).$

To prove $\mathcal{A} \in \operatorname{NS}\alpha O(\mathcal{U})$. Let $\mathcal{K} = \operatorname{Nint}(\mathcal{A})$; we know that $\operatorname{Nint}(\mathcal{A}) \subseteq \mathcal{A}$. To prove $\mathcal{A} \subseteq \operatorname{Ncl}(\operatorname{Nint}(\mathcal{A}))$. Since $\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{A}))) \subseteq \operatorname{Ncl}(\operatorname{Nint}(\mathcal{A}))$. Hence, $\operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{A})))) \subseteq \operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{A})))) = \operatorname{Ncl}(\operatorname{Nint}(\mathcal{A}))$. But $\mathcal{A} \subseteq \operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{A}))))$ (by hypothesis). Hence, $\mathcal{A} \subseteq \operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{A})))) \subseteq \operatorname{Ncl}(\operatorname{Nint}(\mathcal{A})) \Rightarrow \mathcal{A} \subseteq \operatorname{Ncl}(\operatorname{Nint}(\mathcal{A}))$. Hence, there exists a N-OS say \mathcal{K} , such that $\mathcal{K} \subseteq \mathcal{A} \subseteq \operatorname{Ncl}(\mathcal{A})$. On the other hand, \mathcal{K} is a N α -OS (since \mathcal{K} is a N-OS). Hence $\mathcal{A} \in \operatorname{NS}\alpha O(\mathcal{U})$.

Corollary 3.12:

For any neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) , the following properties are equivalent:

- (i) $\mathcal{A} \in NS\alpha C(\mathcal{U})$.
- (ii) There exists a N-CS \mathcal{F} such that $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{A} \subseteq \mathcal{F}$.
- (iii) $Nint(Ncl(Nint(Ncl(\mathcal{A})))) \subseteq \mathcal{A}$.

Proof:

(i) \Rightarrow (ii) Let $\mathcal{A} \in NS\alpha C(\mathcal{U})$, then $\mathcal{A}^c \in NS\alpha O(\mathcal{U})$. Hence there is \mathcal{H} N-OS such that $\mathcal{H} \subseteq \mathcal{A}^c \subseteq Ncl(Nint(Ncl(\mathcal{H})))$ (by theorem (3.11)). Hence $(Ncl(Nint(Ncl(\mathcal{H}))))^c \subseteq \mathcal{A}^{c^c} \subseteq \mathcal{H}^c$,

i.e., $Nint(Ncl(Nint(\mathcal{H}^c))) \subseteq \mathcal{A} \subseteq \mathcal{H}^c$. Let $\mathcal{H}^c = \mathcal{F}$, where \mathcal{F} is a N-CS in \mathcal{U} . Then $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{A} \subseteq \mathcal{F}$, for some \mathcal{F} N-CS.

 $(ii) \Rightarrow (iii)$ Suppose that there exists \mathcal{F} N-CS such that $Nint \left(Ncl(Nint(\mathcal{F}))\right) \subseteq \mathcal{A} \subseteq \mathcal{F}$, but $Ncl(\mathcal{A})$ is the smallest N-CS containing \mathcal{A} . Then $Ncl(\mathcal{A}) \subseteq \mathcal{F}$, and therefore: $Nint(Ncl(\mathcal{A})) \subseteq Nint(\mathcal{F}) \Rightarrow$

 $Ncl\left(Nint(Ncl(\mathcal{A}))\right) \subseteq Ncl(Nint(\mathcal{F})) \Rightarrow$

 $Nint(Ncl(Nint(Ncl(A)))) \subseteq Nint(Ncl(Nint(F))) \subseteq$

 $\mathcal{A} \Rightarrow Nint(Ncl(Nint(Ncl(\mathcal{A})))) \subseteq \mathcal{A}.$

 $(iii) \Rightarrow (i) \text{ Let } Nint(Ncl(Nint(Ncl(\mathcal{A})))) \subseteq \mathcal{A}.$

To prove $\mathcal{A} \in NS\alpha C(\mathcal{U})$, i.e., to prove $\mathcal{A}^c \in NS\alpha O(\mathcal{U})$.

Then $\mathcal{A}^c \subseteq (Nint(Ncl(Nint(Ncl(\mathcal{A})))))^c =$

 $Ncl(Nint(Ncl(Nint(\mathcal{A}^c))))$, but

 $(Nint(Ncl(Nint(Ncl(\mathcal{A})))))^c =$

 $Ncl(Nint(Ncl(Nint(\mathcal{A}^c)))).$

Hence $\mathcal{A}^c \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A}^c))))$, and therefore $\mathcal{A}^c \in NS\alpha O(\mathcal{U})$, i.e., $\mathcal{A} \in NS\alpha C(\mathcal{U})$.

Proposition 3.13:

The union of any family of N α -OS is a N α -OS.

Proof: Let $\{A_i\}_{i\in\Lambda}$ be a family of N α -OS of \mathcal{U} .

To prove $\bigcup_{i \in \Lambda} A_i$ is a N α -OS,

i.e., $\bigcup_{i \in \Lambda} A_i \subseteq Nint(Ncl(Nint(\bigcup_{i \in \Lambda} A_i))).$

Then $A_i \subseteq Nint(Ncl(Nint(A_i))), \forall i \in \Lambda$.

Since $\bigcup_{i \in \Lambda} Nint(\mathcal{A}_i) \subseteq Nint(\bigcup_{i \in \Lambda} \mathcal{A}_i)$ and

 $\bigcup_{i \in \Lambda} Ncl(\mathcal{A}_i) \subseteq Ncl(\bigcup_{i \in \Lambda} \mathcal{A}_i)$ hold for any neutrosophic topology.

We have $\bigcup_{i \in \Lambda} \mathcal{A}_i \subseteq \bigcup_{i \in \Lambda} Nint(Ncl(Nint(\mathcal{A}_i)))$ $\subseteq Nint(\bigcup_{i \in \Lambda} Ncl(Nint(\mathcal{A}_i)))$

 $\subseteq Nint(Ncl(\bigcup_{i \in \Lambda}(Nint(\mathcal{A}_i))))$

 $\subseteq Nint(Ncl(Nint(\bigcup_{i\in\Lambda}\mathcal{A}_i))).$

Hence $\bigcup_{i \in \Lambda} \mathcal{A}_i$ is a N α -OS.

Theorem 3.14:

The union of any family of $NS\alpha$ -OS is a $NS\alpha$ -OS.

Proof: Let $\{A_i\}_{i\in\Lambda}$ be a family of NS α -OS. To prove $\bigcup_{i\in\Lambda} A_i$ is a NS α -OS. Since $A_i \in NS\alphaO(\mathcal{U})$. Then there is a N α -OS \mathcal{B}_i such that $\mathcal{B}_i \subseteq A_i \subseteq Ncl(\mathcal{B}_i)$, $\forall i \in \Lambda$. Hence $\bigcup_{i\in\Lambda} \mathcal{B}_i \subseteq \bigcup_{i\in\Lambda} A_i \subseteq \bigcup_{i\in\Lambda} Ncl(\mathcal{B}_i) \subseteq Ncl(\bigcup_{i\in\Lambda} \mathcal{B}_i)$. But $\bigcup_{i\in\Lambda} \mathcal{B}_i \in N\alphaO(\mathcal{U})$ (by proposition (3.13)). Hence $\bigcup_{i\in\Lambda} A_i \in NS\alphaO(\mathcal{U})$.

Corollary 3.15:

The intersection of any family of NS α -CS is a NS α -CS. **Proof:** This follows directly from the theorem (3.14).

Remark 3.16:

The following diagram shows the relations among the different types of weakly neutrosophic open sets that were studied in this section:

4. Neutrosophic Semi- α -Interior and Neutrosophic Semi- α -Closure

We present neutrosophic semi- α -interior and neutrosophic semi- α -closure and obtain some of its properties in this section.

Definition 4.1:

The union of all NS α -OS in a neutrosophic topological space (\mathcal{U}, T) contained in \mathcal{A} is called neutrosophic semi- α -interior of \mathcal{A} and is denoted by $S\alpha Nint(\mathcal{A})$, $S\alpha Nint(\mathcal{A}) = \bigcup \{\mathcal{B}: \mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \text{ is a NS}\alpha\text{-OS}\}.$

Definition 4.2:

The intersection of all NS α - CS in a neutrosophic topological space (\mathcal{U}, T) containing \mathcal{A} is called neutrosophic semi- α -closure of \mathcal{A} and is denoted by $S\alpha Ncl(\mathcal{A}), S\alpha Ncl(\mathcal{A}) = \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a NS}\alpha\text{-CS}\}.$

Proposition 4.3:

Let \mathcal{A} be any neutrosophic set in a neutrosophic topological space (\mathcal{U}, T) , the following properties are true: (i) $S\alpha Nint(\mathcal{A}) = \mathcal{A}$ iff \mathcal{A} is a NS α -OS.

- (ii) $S \alpha N cl(\mathcal{A}) = \mathcal{A}$ iff \mathcal{A} is a NS α -CS.
- (iii) $S\alpha Nint(A)$ is the largest NS α -OS contained in A.

(iv) $S \alpha Ncl(\mathcal{A})$ is the smallest NS α -CS containing \mathcal{A} . **Proof:** (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let \mathcal{A} be any neutrosophic set in a neutrosophic topological space (U, T), the following properties are true: (i) $S\alpha Nint(1_{N-1}A) = 1_{N-1}(S\alpha Ncl(A))$.

(i) $S\alpha Nint(1_N - A) = 1_N - (S\alpha Ncl(A)),$ (ii) $S\alpha Ncl(1_N - A) = 1_N - (S\alpha Nint(A)).$

Proof: (i) By definition, $S\alpha Ncl(\mathcal{A}) = \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } NS\alpha\text{-CS}\}$

$$\begin{array}{l} \mathbf{1}_N - (S\alpha Ncl(\mathcal{A})) = \mathbf{1}_N - \bigcap \{\mathcal{B} \colon \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a NS}\alpha\text{-CS}\} \\ = \bigcup \{\mathbf{1}_N - \mathcal{B} \colon \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a NS}\alpha\text{-CS}\} \\ = \bigcup \{\mathcal{H} \colon \mathcal{H} \subseteq \mathbf{1}_N - \mathcal{A}, \mathcal{H} \text{ is a NS}\alpha\text{-OS}\} \\ = S\alpha Nint(\mathbf{1}_N - \mathcal{A}). \end{array}$$

(ii) The proof is similar to (i).

Theorem 4.5:

Let \mathcal{A} and \mathcal{B} be two neutrosophic sets in a neutrosophic topological space (\mathcal{U}, T) . The following properties hold:

(i) $S\alpha Nint(0_N) = 0_N$, $S\alpha Nint(1_N) = 1_N$.

(ii) $S \alpha Nint(\mathcal{A}) \subseteq \mathcal{A}$.

(iii) $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow S\alpha Nint(\mathcal{A}) \subseteq S\alpha Nint(\mathcal{B})$.

(iv) $S\alpha Nint(A \cap B) \subseteq S\alpha Nint(A) \cap S\alpha Nint(B)$.

(v) $S\alpha Nint(A) \cup S\alpha Nint(B) \subseteq S\alpha Nint(A \cup B)$.

(vi) $S\alpha Nint(S\alpha Nint(A)) = S\alpha Nint(A)$.

Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious.

Theorem 4.6:

Let \mathcal{A} and \mathcal{B} be two neutrosophic sets in a neutrosophic topological space (\mathcal{U}, T) . The following properties hold:

(i) $S \alpha N cl(0_N) = 0_N$, $S \alpha N cl(1_N) = 1_N$.

(ii) $\mathcal{A} \subseteq S\alpha Ncl(\mathcal{A})$.

(iii) $\mathcal{A} \subseteq \mathcal{B} \Rightarrow SaNcl(\mathcal{A}) \subseteq SaNcl(\mathcal{B}).$

(iv) $S \alpha N cl(\mathcal{A} \cap \mathcal{B}) \subseteq S \alpha N cl(\mathcal{A}) \cap S \alpha N cl(\mathcal{B})$.

 $(v) S\alpha Ncl(\mathcal{A}) \cup S\alpha Ncl(\mathcal{B}) \subseteq S\alpha Ncl(\mathcal{A} \cup \mathcal{B}).$

(vi) $S\alpha Ncl(S\alpha Ncl(\mathcal{A})) = S\alpha Ncl(\mathcal{A})$.

Proof: (i) and (ii) are evident.

(iii) By part (ii), $\mathcal{B} \subseteq S\alpha Ncl(\mathcal{B})$. Since $\mathcal{A} \subseteq \mathcal{B}$, we have $\mathcal{A} \subseteq S\alpha Ncl(\mathcal{B})$. But $S\alpha Ncl(\mathcal{B})$ is a NS α -CS. Thus $S\alpha Ncl(\mathcal{B})$ is a NS α -CS containing \mathcal{A} . Since $S\alpha Ncl(\mathcal{A})$ is the smallest NS α -CS containing \mathcal{A} , we have $S\alpha Ncl(\mathcal{A}) \subseteq S\alpha Ncl(\mathcal{B})$. Hence, $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow S\alpha Ncl(\mathcal{A}) \subseteq S\alpha Ncl(\mathcal{B})$.

(iv) We know that $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B}$.

Therefore, by part (iii), $S\alpha Ncl(A \cap B) \subseteq S\alpha Ncl(A)$ and $S\alpha Ncl(A \cap B) \subseteq S\alpha Ncl(B)$.

Hence $S\alpha Ncl(\mathcal{A} \cap \mathcal{B}) \subseteq S\alpha Ncl(\mathcal{A}) \cap S\alpha Ncl(\mathcal{B})$.

(v) Since $\mathcal{A} \subseteq \mathcal{A} \cup \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A} \cup \mathcal{B}$, it follows from part (iii) that $S\alpha Ncl(\mathcal{A}) \subseteq S\alpha Ncl(\mathcal{A} \cup \mathcal{B})$ and $S\alpha Ncl(\mathcal{B}) \subseteq S\alpha Ncl(\mathcal{A} \cup \mathcal{B})$.

Hence $S\alpha Ncl(\mathcal{A}) \cup S\alpha Ncl(\mathcal{B}) \subseteq S\alpha Ncl(\mathcal{A} \cup \mathcal{B})$.

(vi) Since $S\alpha Ncl(\mathcal{A})$ is a NS α -CS, we have by proposition (4.3) part (ii), $S\alpha Ncl(S\alpha Ncl(\mathcal{A})) = S\alpha Ncl(\mathcal{A})$.

Proposition 4.7:

For any neutrosophic subset \mathcal{A} of a neutrosophic topological space (\mathcal{U}, T) , then:

```
(i) Nint(A) \subseteq \alpha Nint(A) \subseteq S\alpha Nint(A) \subseteq S\alpha Ncl(A) \subseteq S\alpha Nint(A) \subseteq S\alpha N
                                                                                                                                          Now, by (1) and (2), we get that Ncl(S\alpha Ncl(A)) =
\alpha Ncl(\mathcal{A}) \subseteq Ncl(\mathcal{A}).
                                                                                                                                          S \alpha N cl(N cl(\mathcal{A})).
(ii) Nint(S\alpha Nint(A)) = S\alpha Nint(Nint(A)) = Nint(A).
                                                                                                                                          Hence Ncl(S\alpha Ncl(\mathcal{A})) = S\alpha Ncl(Ncl(\mathcal{A})) = Ncl(\mathcal{A}).
(iii) \alpha Nint(S\alpha Nint(A)) = S\alpha Nint(\alpha Nint(A)) =
                                                                                                                                          (vii) To prove SaNint(A) = A \cap Ncl(Nint(Ncl(Nint(A)))).
\alpha Nint(\mathcal{A}).
                                                                                                                                          Since S\alpha Nint(A) \in NS\alpha O(U) \Rightarrow S\alpha Nint(A) \subseteq
(iv) Ncl(S\alpha Ncl(\mathcal{A})) = S\alpha Ncl(Ncl(\mathcal{A})) = Ncl(\mathcal{A}).
                                                                                                                                          Ncl(Nint(Ncl(Nint(S\alpha Nint(A)))))
(v) \ \alpha Ncl(S\alpha Ncl(A)) = S\alpha Ncl(\alpha Ncl(A)) = \alpha Ncl(A).
                                                                                                                                           = Ncl(Nint(Ncl(Nint(\mathcal{A})))) (by part (ii)).
(vi) S \alpha N cl(\mathcal{A}) = \mathcal{A} \cup Nint(Ncl(Nint(Ncl(\mathcal{A})))).
                                                                                                                                          Hence S\alpha Nint(A) \subseteq Ncl(Nint(Ncl(Nint(A)))), also
(vii) S\alpha Nint(A) = A \cap Ncl(Nint(Ncl(Nint(A)))).
                                                                                                                                          S\alpha Nint(\mathcal{A}) \subseteq \mathcal{A}. Then:
                                                                                                                                          S\alpha Nint(A) \subseteq A \cap Ncl(Nint(Ncl(Nint(A))))....(1)
(viii) Nint(Ncl(\mathcal{A})) \subseteq S\alpha Nint(S\alpha Ncl(\mathcal{A})).
                                                                                                                                          To prove A \cap Ncl(Nint(Ncl(Nint(A)))) is a NS\alpha-OS
Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii).
                                                                                                                                          contained in A.
(ii) To prove Nint(S\alpha Nint(A)) = S\alpha Nint(Nint(A)) =
                                                                                                                                          It is clear that \mathcal{A} \cap Ncl(Nint(Ncl(Nint(\mathcal{A})))) \subseteq
Nint(\mathcal{A}). Since Nint(\mathcal{A}) is a N-OS, then Nint(\mathcal{A}) is a
                                                                                                                                          Ncl(Nint(Ncl(Nint(\mathcal{A})))) and also it is clear that
NS\alpha-OS. Hence Nint(\mathcal{A}) = S\alpha Nint(Nint(\mathcal{A}))
                                                                                                                                          Nint(\mathcal{A}) \subseteq Ncl(Nint(\mathcal{A})) \Rightarrow Nint(Nint(\mathcal{A})) \subseteq
(by proposition (4.3)). Therefore:
                                                                                                                                          Nint(Ncl(Nint(\mathcal{A}))) \Rightarrow Nint(\mathcal{A}) \subseteq
Nint(\mathcal{A}) = S\alpha Nint(Nint(\mathcal{A}))....(1)
                                                                                                                                          Nint(Ncl(Nint(\mathcal{A}))) \Rightarrow Ncl(Nint(\mathcal{A})) \subseteq
Since Nint(A) \subseteq S\alpha Nint(A) \Rightarrow Nint(Nint(A)) \subseteq
                                                                                                                                          Ncl(Nint(Ncl(Nint(\mathcal{A})))) and Nint(\mathcal{A}) \subseteq Ncl(Nint(\mathcal{A}))
Nint(S\alpha Nint(A)) \Rightarrow Nint(A) \subseteq Nint(S\alpha Nint(A)).
                                                                                                                                          \Rightarrow Nint(\mathcal{A}) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A})))) and Nint(\mathcal{A})
Also, S\alpha Nint(A) \subseteq A \Rightarrow Nint(S\alpha Nint(A)) \subseteq
                                                                                                                                           \subseteq \mathcal{A} \Rightarrow Nint(\mathcal{A}) \subseteq \mathcal{A} \cap Ncl(Nint(Ncl(Nint(\mathcal{A})))).
Nint(\mathcal{A}). Hence:
                                                                                                                                          We get Nint(A) \subseteq A \cap Ncl(Nint(Ncl(Nint(A)))) \subseteq
                                                                                                                                          Ncl(Nint(Ncl(Nint(A)))).
Nint(A) = Nint(S\alpha Nint(A))....(2)
                                                                                                                                          Hence \mathcal{A} \cap Ncl(Nint(Ncl(Nint(\mathcal{A})))) is a NS\alpha-OS (by
Therefore by (1) and (2), we get Nint(S\alpha Nint(A)) =
                                                                                                                                          proposition (4.3)). Also, \mathcal{A} \cap Ncl(Nint(Ncl(Nint(\mathcal{A}))))
S\alpha Nint(Nint(A)) = Nint(A).
                                                                                                                                          is contained in \mathcal{A}. Then \mathcal{A} \cap Ncl(Nint(Ncl(Nint(\mathcal{A}))))
(iii) To prove \alpha Nint(S\alpha Nint(A)) = S\alpha Nint(\alpha Nint(A))
                                                                                                                                           \subseteq S\alpha Nint(A) (since S\alpha Nint(A) is the largest NS\alpha-OS
= \alpha Nint(\mathcal{A}). Since \alpha Nint(\mathcal{A}) is N\alpha-OS, therefore
                                                                                                                                          contained in \mathcal{A}). Hence:
\alpha Nint(\mathcal{A}) is NS\alpha-OS. Therefore by proposition (4.3):
                                                                                                                                          \mathcal{A} \cap Ncl(Nint(Ncl(Nint(\mathcal{A})))) \subseteq S\alpha Nint(\mathcal{A})....(2)
\alpha Nint(\mathcal{A}) = S\alpha Nint(\alpha Nint(\mathcal{A}))....(1)
                                                                                                                                          By (1) and (2), S\alpha Nint(A) = A \cap Ncl(Nint(Ncl(Nint(A)))).
Now, to prove \alpha Nint(\mathcal{A}) = \alpha Nint(S\alpha Nint(\mathcal{A})). Since
                                                                                                                                          (viii) To prove that Nint(Ncl(\mathcal{A})) \subseteq S\alpha Nint(S\alpha Ncl(\mathcal{A})).
\alpha Nint(\mathcal{A}) \subseteq S\alpha Nint(\mathcal{A}) \Rightarrow \alpha Nint(\alpha Nint(\mathcal{A})) \subseteq
                                                                                                                                          Since S \alpha N cl(A) is a NS\alpha-CS, therefore
\alpha Nint(S\alpha Nint(A)) \Rightarrow
                                                                                                                                          Nint(Ncl(Nint(Ncl(S\alpha Ncl(A))))) \subseteq S\alpha Ncl(A) (by
\alpha Nint(\mathcal{A}) \subseteq \alpha Nint(S\alpha Nint(\mathcal{A})).
                                                                                                                                          corollary (3.12)). Hence Nint(Ncl(\mathcal{A})) \subseteq
                                                                                                                                          Nint(Ncl(Nint(Ncl(\mathcal{A}))) \subseteq S\alpha Ncl(\mathcal{A}) (by part (iv)).
Also, S\alpha Nint(A) \subseteq A \Rightarrow \alpha Nint(S\alpha Nint(A)) \subseteq
\alpha Nint(\mathcal{A}). Hence:
                                                                                                                                          Therefore, S\alpha Nint(Nint(Ncl(\mathcal{A}))) \subseteq
\alpha Nint(\mathcal{A}) = \alpha Nint(S\alpha Nint(\mathcal{A}))....(2)
                                                                                                                                          S\alpha Nint(S\alpha Ncl(\mathcal{A})) \Rightarrow
Therefore by (1) and (2), we get \alpha Nint(S\alpha Nint(A)) =
                                                                                                                                          Nint(Ncl(\mathcal{A})) \subseteq S\alpha Nint(S\alpha Ncl(\mathcal{A})) (by part (ii)).
S\alpha Nint(\alpha Nint(\mathcal{A})) = \alpha Nint(\mathcal{A}).
(iv) To prove Ncl(S\alpha Ncl(A)) = S\alpha Ncl(Ncl(A)) =
                                                                                                                                          Theorem 4.8:
Ncl(\mathcal{A}). We know that Ncl(\mathcal{A}) is a N-CS, so it is NS\alpha-CS.
                                                                                                                                          For any neutrosophic subset A of a neutrosophic
Hence by proposition (4.3), we have:
                                                                                                                                          topological space (U,T). The following properties are
                                                                                                                                          equivalent:
Ncl(\mathcal{A}) = S\alpha Ncl(Ncl(\mathcal{A}))....(1)
                                                                                                                                          (i) \mathcal{A} \in NS\alpha O(\mathcal{U}).
To prove Ncl(A) = Ncl(S \alpha Ncl(A)).
                                                                                                                                          (ii) \mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H}))), for some N-OS \mathcal{H}.
Since S \alpha Ncl(\mathcal{A}) \subseteq Ncl(\mathcal{A}) (by part (i)).
                                                                                                                                          (iii) \mathcal{H} \subseteq \mathcal{A} \subseteq SNint(Ncl(\mathcal{H})), for some N-OS \mathcal{H}.
Then Ncl(S \alpha Ncl(\mathcal{A})) \subseteq Ncl(Ncl(\mathcal{A})) = Ncl(\mathcal{A}) \Rightarrow
                                                                                                                                          (iv) \mathcal{A} \subseteq SNint(Ncl(Nint(\mathcal{A}))).
Ncl(S \alpha Ncl(A)) \subseteq Ncl(A). Since A \subseteq S \alpha Ncl(A) \subseteq
                                                                                                                                           Proof:
Ncl(S \alpha Ncl(A)), then A \subseteq Ncl(S \alpha Ncl(A)). Hence
                                                                                                                                           (i) \Rightarrow (ii) Let \mathcal{A} \in NSaO(\mathcal{U}), then \mathcal{A} \subseteq
                                                                                                                                           Ncl(Nint(Ncl(Nint(\mathcal{A})))) and Nint(\mathcal{A}) \subseteq \mathcal{A}. Hence
Ncl(\mathcal{A}) \subseteq Ncl(Ncl(S \cap Ncl(\mathcal{A}))) = Ncl(S \cap Ncl(\mathcal{A}))
                                                                                                                                          \mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H}))), where \mathcal{H} = Nint(\mathcal{A}).
\Rightarrow Ncl(\mathcal{A}) \subseteq Ncl(S \alpha Ncl(\mathcal{A})) and therefore: Ncl(\mathcal{A}) =
                                                                                                                                           (ii) \Rightarrow (iii) Suppose \mathcal{H} \subseteq \mathcal{A} \subseteq Ncl(Nint(Ncl(\mathcal{H}))), for
Ncl(S \alpha Ncl(\mathcal{A})).....(2)
                                                                                                                                          some N-OS \mathcal{H}.
```

But $SNint(Ncl(\mathcal{H})) = Ncl(Nint(Ncl(\mathcal{H})))$ (by lemma (2.6)).

Then $\mathcal{H} \subseteq \mathcal{A} \subseteq SNint(Ncl(\mathcal{H}))$, for some N-OS \mathcal{H} . (iii) \Rightarrow (iv) Suppose that $\mathcal{H} \subseteq \mathcal{A} \subseteq SNint(Ncl(\mathcal{H}))$, for some N-OS \mathcal{H} . Since \mathcal{H} is a N-OS contained in \mathcal{A} . Then $\mathcal{H} \subseteq Nint(\mathcal{A}) \Rightarrow Ncl(\mathcal{H}) \subseteq Ncl(Nint(\mathcal{A}))$ \Rightarrow $SNint(Ncl(\mathcal{H})) \subseteq SNint(Ncl(Nint(\mathcal{A})))$. But $\mathcal{A} \subseteq SNint(Ncl(\mathcal{H}))$ (by hypothesis), then $\mathcal{A} \subseteq SNint(Ncl(Nint(\mathcal{A})))$. (iv) \Rightarrow (i) Let $\mathcal{A} \subseteq SNint(Ncl(Nint(\mathcal{A})))$. But $SNint(Ncl(Nint(\mathcal{A}))) = Ncl(Nint(Ncl(Nint(\mathcal{A}))))$ (by lemma (2.6)). Hence $\mathcal{A} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{A}))))$ \Rightarrow $\mathcal{A} \in NS\alphaO(\mathcal{U})$.

Corollary 4.9:

For any neutrosophic subset \mathcal{B} of a neutrosophic topological space (\mathcal{U}, T) , the following properties are equivalent:

- (i) $\mathcal{B} \in NS\alpha C(\mathcal{U})$.
- (ii) $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} N-CS.
- (iii) $SNcl(Nint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} N-CS.
- (iv) $SNcl(Nint(Ncl(\mathcal{B}))) \subseteq \mathcal{B}$.

Proof:

 $(i) \Rightarrow (ii)$ Let $\mathcal{B} \in NS\alpha C(\mathcal{U}) \Rightarrow$ $Nint(Ncl(Nint(Ncl(\mathcal{B})))) \subseteq \mathcal{B}$ (by corollary (3.12)) and $\mathcal{B} \subseteq Ncl(\mathcal{B})$. Hence we get $Nint(Ncl(Nint(Ncl(\mathcal{B})))) \subseteq \mathcal{B} \subseteq Ncl(\mathcal{B})$. Therefore $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, where $\mathcal{F} = Ncl(\mathcal{B})$.

 $(ii) \Rightarrow (iii)$ Let $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} N-CS. But $Nint(Ncl(Nint(\mathcal{F}))) = SNcl(Nint(\mathcal{F}))$ (by lemma (2.6)). Hence $SNcl(Nint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} N-CS.

(iii) ⇒ (iv) Let $SNcl(Nint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} N-CS. Since $\mathcal{B} \subseteq \mathcal{F}$ (by hypothesis), hence $Ncl(\mathcal{B}) \subseteq \mathcal{F}$ ⇒ $Nint(Ncl(\mathcal{B}) \subseteq Nint(\mathcal{F}) \Rightarrow SNcl(Nint(Ncl(\mathcal{B})))$ ⊆ $SNcl(Nint(\mathcal{F})) \subseteq \mathcal{B} \Rightarrow SNcl(Nint(Ncl(\mathcal{B}))) \subseteq \mathcal{B}$. (iv) ⇒ (i) Let $SNcl(Nint(Ncl(\mathcal{B}))) \subseteq \mathcal{B}$. But $SNcl(Nint(Ncl(\mathcal{B}))) = Nint(Ncl(Nint(Ncl(\mathcal{B}))))$ (by lemma (2.6)). Hence $Nint(Ncl(Nint(Ncl(\mathcal{B})))) \subseteq \mathcal{B} \Rightarrow \mathcal{B} \in NS\alphaC(\mathcal{U})$.

5. Conclusion

In this work, we have defined new class of neutrosophic open sets called neutrosophic semi- α -open sets and studied their fundamental properties in neutrosophic topological spaces. The neutrosophic semi- α -open sets can be used to derive a new decomposition of neutrosophic continuity, neutrosophic compactness, and neutrosophic connectedness.

References

- [1] A.A. Salama and S.A. Alblowi. Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 3 (4). 2012), .31-35.
- [2] F. Smarandache, A unifying field in logics: Neutrosophic Logic. Neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, NM, (1999).
- [3] F. Smarandache. Neutrosophy and neutrosophic logic. In: F. Smarandache (Ed.), Neutrosophy, neutrosophic logic, set, probability, and statistics. Proceedings of the International Conference, University of New Mexico, Gallup, NM 87301, USA (2002).
- [4] G.B. Navalagi. Definition bank in general topology. Topology Atlas Preprint # 449, 2000.
- [5] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala. On some new notions and functions in neutrosophic topological spaces. Neutrosophic Sets and Systems, 16(2017), 16-19.
- [6] P. Iswarya and K. Bageerathi, On neutrosophic semi-open sets in neutrosophic topological spaces, International Journal of Mathematics Trends and Technology, 37(3) (2016),214-223.
- [7] V. Venkateswara Rao and Y. Srinivasa Rao, Neutrosophic Pre-open sets and pre-closed sets in neutrosophic topology, International Journal of ChemTech Research, 10 (10) (2017),449-458.

Received: November 3, 2017. Accepted: November 30, 2017