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Abstract

Is the fact that our universe contains fine-tuned life evidence that

we live in a multiverse? Hacking (1987) andWhite (2000) influentially

argue that it is not. We approach this question through a systematic

framework for self-locating epistemology. As it turns out, leading

approaches to self-locating evidence agree that the fact that our own

universe contains fine-tuned life indeed confirms the existence of a

multiverse (at least in a suitably idealized setting). This convergence is

no accident: we present two theorems showing that in this setting, any
updating rule that satisfies a few reasonable conditions will have the

same feature. The conclusion that fine-tuned life provides evidence

for a multiverse is hard to escape.

1 A Question of Size

Reasoning about the size of physical reality is epistemologically fraught.

This paper will explore what such reasoning involves.

Modern discoveries in cosmology are often taken to give powerful ev-

idence that physical reality is a lot bigger than we would otherwise have

supposed. Physics seems to be staggeringly inhospitable for life. Given a

universe with our kind of laws, it would be extremely surprising for it to

support life—and yet here we are.1 It’s commonly thought that this discov-

ery is strong evidence that there are vastly many universes—a multiverse.2

In the right kind of multiverse, even if each universe is overwhelmingly

likely to be devoid of life, it is probable that there is life somewhere or

other.3

1See Weinberg (1989) for a technical analysis of issues relating to the cosmological con-

stant. For a more generally accessible overview, see Lewis and Barnes (2017).

2For an overview of multiverse physics see Vilenkin 2011; Guth 2007.

3We are interpreting fine-tuning as telling us something explicitly probabilistic: see

sections 5 and 7. There is some controversy about how one should read off probabilistic

claims from facts about the values of the physical constants in parameter space (see inter alia
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Some philosophers contend that—far from being powerful evidence—

these cosmological considerations are no evidence for the multiverse at

all. Ian Hacking (1987) and Roger White (2000) have each argued that the

reasoning above relies on a fallacy. Hacking offers this analogy:

The kibitzer asks, ‘Is this the first roll of the dice, do you think,

or have we made many a one earlier tonight?’ The gambler

. . . says, ‘Can I wait until I see how this roll comes out, before I

lay my bet with you on the number of past plays made tonight?’

The kibitzer, no fool, agrees, although charging a slight fee for

allowing this extra ‘information’. The roll is double-six. The

gambler foolishly says, ‘Ha, that makes a difference—I think

there have been quite a few rolls.’

[This gambler reasons] fallaciously. . . .

The point is that the information available to the gambler is

that double-six occurred at this throw. It is no more probable

that double-six should occur at this throw, on the supposition

of many previous throws, than it is that it should occur at this

throw, on the supposition that this is the first throw tonight

. . . (Hacking 1987, pp. 333–4).

Hacking contends that just as the occurrence of an improbable double-six

on this throw does not make it make it more probable that there are many

throws overall, the occurrence of improbably life-permitting conditions in

this universe does not make it more probable that there is a multiverse.

White (2000) develops and defends this line of argument (as we discuss in

sections 2 and 6).

Objectors to Hacking andWhite offer competing analogies,4 while their

defenders marshal yet more analogies in reply.5 But, as this flurry of con-

flicting analogies shows, we don’t yet have a sufficient understanding of this

McGrew, McGrew, and Vestrup 2001). But physicists are comfortable making such claims,

and while this is not the place to evaluate the basis of those claims, for the purposes of this

essay we are comfortable following them. See (Weinberg 1989, 2000) for discussion of the

physics and (Hawthorne and Isaacs 2018) for philosophical discussion.

4For some examples: other dice rolls (McGrath 1988), a photographer who visits casinos

(Whitaker 1988), firing squads (Leslie 1988, 1989), school prizes (Holder 2002), and more

dice (Bradley 2009).

5To yet more dice (Rota 2005), a kidnapper with a mysterious card-sorting device (Juhl

2006), the decay of named uranium atoms (Draper, Draper, and Pust 2007), where in Brook-

lyn one’s parents lived (Leeds 2007), trying on off-the-rack suits (Landsman 2016) (this is a

turned-around version of one from (Rees 2008)), and more.
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issue to see which analogies are apt and which are not. More systematic

theorizing is needed.

Fortunately, the last twenty years of epistemology are rich in resources

that we can apply. The key issue is self-locating evidence, evidence con-

cerning our own place in the world. If all we knew was the general fact

that there is fine-tuned life, confirmation of a multiverse would be straight-

forward. Indeed, as we shall explain in section 3, nearly any mundane

general facts support the multiverse hypothesis—and very specific general

qualitative evidence, of the sort that we routinely learn through ordinary

experiences, supports themultiverse hypothesis very powerfully. ButHack-

ing and White call our attention to other evidence we have besides general

qualitative facts: evidence not just about the existence of a certain sort of

universe, but about our own universe, and about ourselves.

There is no consensus about how updating on such self-locating evi-

dence should work; but there are some theories we can apply. In section 4

we introduce three leading approaches, and in section 5 we show that all of

them agree on the central question: the fact that our own universe contains

fine-tuned life does indeed confirm the existence of amultiverse. (However,

only two of the three theories say that fine-tuning makes any difference to

the strength of this evidence, beyond the simple fact that we are alive at

all: see section 6.) It is no accident that the leading theories agree on the

central question. In section 7 we present two theorems that show that any
rule for generating posterior probabilities that satisfies certain reasonable

constraints (and some simplifications and idealizations) will lead to the

same conclusion. The conclusion that fine-tuned life provides evidence for

a multiverse is hard to escape.

This essay is quite long, and different readers will be most interested in

different parts. Readers who are interested in our dialectic with Hacking

and White will want to read sections 2 and 6, where we give our replies

to their arguments. Section 4 is aimed at catching readers up who are rel-

atively unfamiliar with views on self-locating evidence. Section 5 applies

these theories to fine-tuning and the multiverse; for those who are already

comfortable with the theories in question (Compartmentalized Condition-

alization, Self Indication, and Self Sampling) the summary in table 1 at the

end of section 5 may suffice. Some readers may wish to go directly to our

most general results (which subsume those in section 5), and then read back

as needed: the main theorems can be found in section 7 and appendices A

and B.
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2 This Universe

Hacking andWhite each argue that our evidence concerning fine-tuned life

does not support amultiverse. Let’s start by sayingwhat is right about their

criticism.

As all parties concede, the general qualitative proposition there is fine-
tuned life is straightforwardly evidence for the multiverse. (We discuss this

in more detail in section 3.) But this cannot settle the issue by itself. Our

relevant evidence is not just the general evidence that there is fine-tuned

life in some universe or other: rather, we know the more specific fact that

there is fine-tuned life in this universe, our universe. As White points out,

it is illegitimate to ignore the specific evidence and only pay attention to

the weaker general evidence. Specific evidence can screen off the import of

general evidence.

. . . [O]f course the more universes there are, the more likely

it is that some universe supports life. That is, M [there is a

multiverse] raises the probability of E′ [there is fine-tuned life]

. . . . But now, the response goes, we know that E′ is true since it
follows from E [α contains fine-tuned life, where α is our own

universe]. So E′ confirms M even if E does not. In other words,

our knowledge that some universe is life-permitting seems to

give us reason to accept the Multiple Universe hypothesis, even

if our knowledge that α is life-permitting does not.

We can quickly see that there is something going wrong here.

. . . Suppose I’m wondering why I feel sick today, and someone

suggests that perhaps Adam got drunk last night. . . . Perhaps if

all I knew (bywordofmouth, say)was that someoneor otherwas

sick, this would provide some evidence that Adam got drunk.

But not when I know specifically that I feel sick. This suggests

that in the confirming of hypotheses, we cannot, as a general

rule, set aside a specific piece of evidence in favor of a weaker

piece. (White 2000, p. 264)

All of this is correct.

ButHacking andWhite each go further, andmake a positive claim about

the import of our specific evidence (“this universe contains fine-tuned life”):

namely, that it is independent of how many universes there are, and does

not confirm the hypothesis that there are many universes rather than one.

This conclusion, we contend, is premature. We just don’t understand how
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singular evidence like this works nearly well enough be confident in such

judgments. What’s more, we will argue (in sections 5 to 7) that there are

strong systematic reasons to think that this further claim is false. We will

make the case that that our specific evidence does confirm a multiverse.

There aremany difficult issues about the probabilities of singular propo-

sitions. White’s main argument illustrates some of these difficulties (2000,

262–263). White writes, “Let α be our universe and let T1 be the configu-

ration which is necessary to permit life to evolve.” He then considers the

claim “α instantiates T1”:

. . . [T]he probability of this is just 1/n, regardless of how many

other universes there are, since α’s initial conditions and con-

stants are selected randomly from a set of n equally probable

alternatives, a selection which is independent of the existence of

other universes.

But this conclusion does not follow, for subtle reasons. One of the dangers

of de re probability ascriptions is that they are susceptible to Frege puzzles

(see for example Chalmers 2011). We can grant what White insists on:

The name ‘α’ is to be understood here as rigidly designating the

universe which happens to be ours. Of course, in one sense,

a universe can’t be ours unless it is life-permitting. But the

universewhich happens actually to be ours, namely α, might not

have been ours, or anyone’s. It had a slim chance of containing

life at all. (White 2000, p. 274, note 6, original emphasis)

But this still does not settle the issue.

Consider a simple toymodel. There is either one universe stampedwith

the label Universe One, or two universes stamped with the labels Universe
One and Universe Two, respectively. (The labels are stamped on the outside,

so people inside a universe can’t see them.) If there is one universe, then

the objective chance that Universe One has life is 1/n. If there are two

universes, then the chance that Universe One has life is 1/n, and the chance

that Universe Two has life is 1/n, and these are independent. All of these

facts are known. Roger is in Universe One, but for all he can tell he might

be in Universe Two. Roger says “Let α be my universe.” So “α” rigidly

designates Universe One—though Roger does not know this.

The objective chance that αwould contain life is 1/n. But it does not follow
in this case that the prior epistemic probability of “α contains life” is 1/n. We

must be extremely careful when we try to apply chance-credence principles
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to de re probabilities: chance statements are referentially transparent; epis-
temic probability statements are not (see Hawthorne 2002; Hawthorne and

Lasonen-Aarnio 2009).6 For example, one might introduce a name like this:

“Let β be Universe One if Universe One contains life or there is just one uni-

verse, and otherwise Universe Two.” In this case, β in fact is Universe One,

and has chance 1/n of containing life. But the prior epistemic probability

of “β contains life” is the same as the objective chance that either Universe
One or Universe Two contains life—which is clearly higher than 1/n.

The prior probability of “Universe One contains life” is 1/n. But the

prior probability of “α is Universe One” is less than one (even though this

is a metaphysically necessary truth): Roger can tell that he is in α, but he
can’t tell that he is in Universe One. So it does not follow from the fact that

“Universe One has life” has prior probability 1/n that “α has life” has prior

probability 1/n. The correct prior probability is difficult to determine. In

particular, it is obscure whether this is independent of howmany universes

there are. (There are two reasons “α” is much less clear-cut than “β”. First,
the way the name “α” was introduced leaves it unclear what it refers to, if

anything, in cases where Roger is not in any universe—for example, cases

in which no universe contains any life at all. Second, it is unclear what prior

probability Roger should assign to being in one universe or another. We

discuss the second issue in section 6 and appendix B.)

In a later postscript, White (2003, p. 244) writes about his use of the

proper name α,

I admit that there are difficult issues here in which I would

rather not get entangled, and I regret putting the argument in

these terms as I now think the crucial issue is independent of

these matters . . .

He then dispenses with the proper name and proceeds in first-personal
terms.7 This is a good idea. Instead of the evidence one might state with

“α has fine-tuned life” (where “α” has been introduced as a proper name

for this universe) or “This universe has fine-tuned life,” we will focus on

evidence one might state with “I am in a universe that contains fine-tuned

6In our discussion of de re probabilities in this section we will speak as if sentences are
the bearers of probability—since if α is Universe One, the proposition that α contains life may

well be the same as the proposition that Universe One contains life. In section 4 we will

introduce a different way of avoiding this difficulty for our more official framework.

7“If my observation is to provide mewith evidence of these other rolls, they will have to

make it more likely that I would observe this” White (2003, p. 245, original emphasis). We

take up his ensuing argument in section 6.
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life.” (Each of us has evidence we can express with these words; we do

not presuppose that it is the same evidence in each case. We handle this

more carefully in section 4.) It would be surprising if evidence stated in

terms of “this universe” and evidence stated in terms of “my universe” had
dramatically different import. The standard label for evidence about oneself

is self-locating evidence.8
This narrows the scope of the problem, but it does not make it easy. The

difficulties of probabilistic self-locating epistemology are well-known (for

overview, see Meacham 2008; Titelbaum 2016; Manley, Manuscript). There

is nothing like a consensus about how this works. But we are not utterly at

a loss: we have some proposals we can apply, and a framework in which

we can make the questions precise.

It isworth clarifyingwhatWhitemeans, andwhatwemean, by the ques-

tion of whether something confirms the multiverse. The standard Bayesian

picture is that evidential support means probability-raising—but with re-

spect to what? The picture that has been assumed is that there are certain

prior epistemic probabilities, and that to confirm a hypothesis (in the sense at

issue) is to raise its probability above its prior probability. Note that these

“priors” cannot be literally understood as the credences that you had at

some earlier time: for the priors are unopinionated about whether there is

life, or concrete agents, or any complexmatter. It is difficult tomake sense of

an agent (even a highly idealized agent) who is so deprived of evidence as to

be unopinionated about such questions as these. Instead, we are thinking

about the priors as epistemic ur-priors.9 Such probabilities encode rela-

tions of evidential support between qualitative propositions; it is natural

to model these using objective physical chances, imagining, as White said,

that the universe’s “initial conditions and constants are selected randomly.”

In order to sidestep the complications we just discussed concerning de re
probabilities, formost of this paperwewill only suppose there to be ur-prior

probabilities for general qualitative propositions—such as the proposition

that there are many universes, or that there is life. We do not assume that

our posterior probabilities can be calculated simply by conditionalizing the

8Some philosophers pursue the ambitious project of reducing all attitudes toward singu-

lar propositions to self-locating attitudes (see Lewis 1979; Chalmers 2011; Ninan 2013; for

critical discussion see Cappelen and Dever 2013; Magidor 2015; Yli-Vakkuri andHawthorne

2018). We need not take any stand here on this ambitious project’s prospects. Stalnaker

(2008) and Moss (2012) use the same kind of trick in the other direction, reducing questions

of self-locating probabilities to questions about probabilities of propositions stated using

special names or demonstratives.

9This idea arises from (Keynes 1921) and (Carnap 1950) and is defended by (Williamson

2000); for overview see (Meacham 2016).
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ur-priors: rather, we will be considering a variety of updating rules for self-

locating evidence, which somehow or other take you from qualitative priors
and self-locating evidence to generate self-locating posterior probabilities.10

It may be a vague matter what the exact ur-priors are; it may also be a

“subjective” matter in some sense. We will not take up these foundational

issues further here.

3 Qualitative Evidence and Multiverses

Before we consider theories of self-locating evidence, let’s take a step back

and consider the import of our qualitative evidence a bit more carefully.

For the moment, we set self-location aside.

You know that you’re reading a philosophical argument right now.

That’s a non-qualitative proposition. So for the time being we’ll pretend

that you only know somethingweaker and qualitative—that someone reads

a philosophical argument at some point. Given this pretense, everything

is technically tractable: qualitative hypotheses can straightforwardly be as-

signedprior probabilities, andupdating onqualitative evidence canbedone

by straightforward conditionalization. But doing so yields alien results.

Let’smake some simplifying assumptions. Supposewe know that either

(1) there is a single universe, or (2) there is a multiverse containing 10
100

universes. Suppose that our expectations about the intrinsic properties of

any given universe are the same whether it’s a solitary universe or part of

a multiverse, and also that what goes on in one universe in a multiverse is

probabilistically independent of what goes on in each other universe in that

multiverse.11 Suppose furthermore that each universe is finite, extending

no more than a quadrillion (10
15
) light years across and lasting for no more

than a quadrillion years. Suppose that the prior probability of a multiverse

is just one in a million.

What happens to that probability given our qualitative evidence? You

might expect that the only relevant evidence will involve technical details

from physics. But in fact mundane evidence looms even larger.

To take a famous example, Borges (1941) imagined a library contain-

ing all possible 410-page books of a particular format and alphabet. Such

a library must be truly gargantuan, containing well over 10
4000

books—

10In appendix B we also consider the more ambitious idea of self-locating ur-priors, and

the relationship between these rules and conditionalization. (Arntzenius and Dorr 2017);

see again (Meacham 2016).

11Compare our discussion of separable priors in section 7 and appendix A.
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staggeringly too many to fit in a single universe with the specified dimen-

sions.12 Suppose you read one of Borges’s books13—one of the very many

“random-looking” books, not a long string of the letter q, or the text of

Paradise Lost. The qualitative evidence you gain is just that someone reads

a 410-page book of such-and-such qualitative profile at some point. Given

a solitary universe, this evidence is ludicrously unlikely: only a minuscule

proportion of all Borges-books can be found in a single universe. Given

a multiverse, this evidence is still ludicrously unlikely. There are so many

Borges-books—many orders of magnitude more than 10
100

—that only very

few of them can be found even in a large multiverse. But the tiny probabil-

ity of finding this Borges book somewhere in 10
100

universes is nearly 10
100

times greater than the even tinier probability given just one shot. So, given

our assumptions, the fact that someone reads a book with some particular

random-looking qualitative profile is staggeringly strong evidence for the

multiverse. This evidence alone raises the probability of a multiverse from

one in a million to about 99.9 · · · 999%, where that’s a string of 94 nines.

In fact, the qualitative evidence gained by reading nearly any book

will overwhelmingly support the multiverse. A 410-page history of the

Napoleonicwarswill have a similar effect. Such a book is substantiallymore

likely to be found in a single universe than 410 pages of specific gibberish,

but still extremely unlikely: given reasonable assumptions, the probability

that a universe would contain any book containing those particular words

in that order is still much less than one in 10
100

.14 So it is still nearly 10
100

times more likely that someone would read that sequence of words in a

multiverse of 10
100

universes than in a single a universe. Similarly, listening

to music, eating sandwiches, or paying attention to just about anything else

in ordinary life is liable to provide qualitative information that is so specific

that it is massively unlikely for things just like that to arise in a single uni-

verse. The only goings-on that will not massively confirm a multiverse are

those which have a reasonable shot at going on in any single universe. And

even such extremely banal goings-on still count in favor of the multiverse

at least a little, unless they are certain to occur, come what may.

12If we assume that each book is at least the size of a postage stamp and lasts at least a

nanosecond, and that no two books have overlapping spatiotemporal envelopes, then there

are well under 10
150

distinct books per universe.

13There’s a charming website that generates them: https://libraryofbabel.info/
14Even if each page of the book only contains a hundred words, and each word only

provides an average of one bit of new information, there are still more than 10
500

410-page

histories of the Napoleonic wars in Borges’ library. Again only a tiny proportion of these

books fit in a single universe.
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The root issue here is that our qualitative evidence is ordinarily about

what there is rather than what there isn’t. You can learn just by looking

that there are brown horses. You can’t ordinarily learn just by looking that

there are no blue horses. Of course, you can learn that there are no blue

horses near you, but that’s not a general qualitative proposition.15 If the

universe is big and random enough, then it’s nearly sure to contain blue

horses. If you did somehow learn that there are—without restriction—no

blue horses, that would be overwhelming evidence against the existence of

a large and random multiverse. But it’s hard to see how one would learn

that sort of thing.

We can make this point more precise. For worlds w and w+
, let a

qualitative embedding of w in w+
be a one-to-one function from the concrete

objects in w to concrete objects in w+
which preserves all intrinsic properties

and relations; in this case, say that w+ embeds w. Intuitively, w+
includes

a qualitative copy of everything in w, and perhaps more besides. Call a

proposition p local iff for any world w in which p is true, p is also true in

any world w+
that embeds w.16 Similarly, let a local property be one that is

preserved by embeddings of one world in another.

Any local proposition that is true in a single universe is also true in any

multiverse that includes a copy of that single universe. Whatever prob-

ability such a proposition may have conditional on there being a single

universe (strictly between zero and one), the probability must be greater

conditional on there being many universes. (This still supposes that the in-

trinsic qualitative profiles of each universe are independent and identically

distributed.) It follows that local qualitative evidence can’t help but support

a multiverse—and the more specific the evidence is (that is, the smaller its

prior probability), the more powerfully it supports a multiverse.

How can it be that our qualitative evidence can count strongly in favor

of a multiverse, but can’t count against it? This is due to an asymmetry in

what this qualitative evidence can be like. Any non-trivial local qualitative

proposition q counts in favor of a multiverse. In that case, not-q would

count as evidence against a multiverse. But we have supposed that while q
is the sort of proposition one can have as evidence, not-q is not: the negation

15One complication is that natural kind terms like “horse” are plausibly not really qual-

itative either. Let this discussion be officially understood as concerning qualitative horse-

duplicates.

16For propositions expressed in a first-order language where all predicates stand for

intrinsic properties or relations, local propositions are precisely those expressed by ∃
1

sentences: those that consist of a string of existential quantifiers in front of a quantifier-free

formula. (See Russell 2020).
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of a local proposition is generally not a local proposition itself. There are blue
horses is local, but its negation there are no blue horses is not.

This kind of powerful confirmation of extravagant hypotheses by mun-

dane evidence is unsettling. Fine-tuning evidence works this way, too.

(That is, the qualitative aspect of fine-tuning goes the same way. It remains

to be seen whether fine-tuning makes a special difference to self-locating ev-
idence.) It tells us that the existence of life and complexity is very unlikely

given a singleuniverse—much,much less likely thanonemight havenaïvely

expected. This gives us reason to think that some very general local facts

about our universe—such as the existence of life, stars, or tungsten—have

extremely low prior probability given a single universe. If the probability

of life given a single universe is p (and each universe’s chance at life is

independent of the others), then the existence of life improves the odds of

the multiverse hypothesis by a factor of (1 − (1 − p)n)/p. For large n this

approaches 1/p. If p is very small, this is very powerful confirmation.

But even without fine-tuning, we already had some evidence with this

same feature: local qualitative facts that have very low prior probability,

given a single universe, simply due to including a lot of detail.

Can massive confirmation of a multiverse be escaped? In this section

we’ve been ignoring self-locating evidence. This suggests that it may be

surprisingly important that we take self-locating evidence into account!

You don’t just know that someone read such-and-such book, listened to such-

and-such music, ate such-and-such a sandwich, and so on. You know that

you read such-and-such book, listened to such-and-such music, ate such-

and-such a sandwich, and so on. This self-locating evidence might help.

It might—as Hacking and White claim—screen off the qualitative evidence

from multiverse hypotheses. It’s not obvious whether it does. But self-

locating evidence is ourmost plausible hope for avoiding the overwhelming

confirmation of extravagant hypotheses.

4 Three Rules for Self-Locating Evidence

Let us be very clear: there is no settled method for the epistemology of

self-locating evidence. All of the precise theories we know of face very

serious objections. There is no final science we can present here, but wewill

begin by introducing three leading approaches to the problem. In section 7

we present general results that encompass many alternative self-locating

epistemologies besides these three.

Of course, one can easily find many more than three theories of self-
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locating belief in the philosophy literature. (For helpful overview see Titel-

baum 2013, 2016; for a fewmore recent approaches see also Meacham 2016;

Arntzenius and Dorr 2017; Schwarz 2017; Builes 2020). But many of the dif-

ferences between these theories are in their answers to questions that don’t

immediately arise here: questions about the passage of time, forgetting

information, or people or universes that undergo fission and branching.

None of these tricky issues are immediately relevant here: while they can
arise for agents thinking about fine-tuning, they don’t have to. For the sake

of clarity, we will begin by focusing on simple cases where they do not

arise. In the end, some of the additional complications may turn out to

be relevant. Branching universes—which feature in some interpretations

of quantummechanics—seem especially relevant for a complete account of

multiverse epistemology (see inter alia Greaves 2004; Bradley 2011; Wilson

2013; Sebens and Carroll 2016). The general results we present in section 7

are less sensitive to the simplifications we will make here.

We are only considering propositions that can be expressed using sen-

tences with just the words “I”, “now”, and qualitative vocabulary. We can

think of any such sentence as having the canonical form “I am now F”
where F expresses a qualitative property.17 It is helpful to model things by

focusing on the properties, rather than the propositions. If you have the

evidence you would express with the sentence “I am now happy,” we can

say your self-locating evidence includes the property being happy. While

we do not wish to presuppose that we each express the same proposition
with this sentence whenever we say it, many people can self-ascribe this

property on many occasions. We can handle ordinary qualitative evidence

as a special case: we can associate each qualitative proposition p with the

“boring” qualitative property being such that p.18
As it is convenient to represent propositions with sets of worlds, it is

convenient to represent properties of agents with sets of centers, which are

triples 〈a , t , w〉 of an agent, a time, and an epistemically possible world.

(We will think of worlds as specified in qualitative and eternal terms.) For

example, being happy is represented by the set of triples 〈a , t , w〉 of an

agent a who is happy at time t in world w. So one’s total self-locating

(and qualitative) evidence can be represented as a set of centers: if one’s

total self-locating evidence is that one is F, then these are the centers that

17Again,wedonotwish to presuppose that allpropositions can be reduced to propositions

expressed this way.

18In general, we should not presuppose that being such that p requires being someone; we

discuss this in appendix B, which is the only place it makes a difference.
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represent agents who are F.19 We will call these live centers, and centers

that are not in this set dead.
To keep things tractable, we will suppose there are only finitely many

distinct worlds, each of which contains finitely many centers.20 We start

with a prior probability distribution over these worlds; these priors assign

probabilities to qualitative matters, but are silent on self-locating matters.

(As we discussed in section 2, we are thinking of these as cosmological “ur-

priors” rather than actual credences someone had at an earlier time.) We

will consider various rules that take a qualitative prior, together with self-

locating evidence (represented by a set of live centers), and produce posterior
probabilities for each world. The posterior probability of any qualitative

proposition can then be calculated by adding up the probabilities of the

worlds in it. The rules work by assigning posterior probabilities to each

center, and thereby to possessing any particular qualitative property (by

adding up the centers in that property). But our main focus will be on the

probabilities of qualitative hypotheses—like the hypothesis that there are

many universes.

Consider a really simple situation. There are three worlds. World 1

has someone in a black room (and no one else). World 2 has someone in a

white room (and no one else). And world 3 has two people in a black room

and one person in a white room (and no one else). Let’s suppose that each

world has prior probability 1/3. You find yourself in a black room: being in
a black room is your total self-locating evidence. What posterior probabilities

should you assign to each world?

Here’s the first method for assigning probabilities.21

Compartmentalized Conditionalization.

1. For each world w that contains any live centers, divide the prob-

ability of w evenly between them: that is, assign each live center

probability p/n, where p is the prior probability of w and n is

the number of live centers in w.

2. Assign each dead center probability zero.

3. Renormalize so everything adds up to one.

19This builds in the implicit assumption that one’s evidence includes being an agent.

20This assumption is relaxed somewhat in appendices A and B. Worlds containing in-

finitely many agents are of serious interest in modern cosmology. An important open ques-

tion is the so-called “measure problem,” which in effect amounts to the problem of finding

an appropriate self-locating epistemology for infinite worlds (for overview see Vilenkin

2011; Guth 2007, sec. 4).

21Halpern 2004; Meacham 2008; see also Builes 2020.
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Initial Probability Final ProbabilityUpdating

World 1 1/3 1/21/3

World 2 1/3 0
0

World 3 1/3 1/21/6 1/6 0

Figure 1: Compartmentalized Conditionalization.

When it comes to qualitative propositions, Compartmentalized Condition-

alization for the evidence being F amounts to standard conditionalization

on the qualitative proposition someone is F.
Let’s work through the simple case (fig. 1). The world containing no one

in a black room is ruled out, and the probabilities of the remaining worlds

are renormalized. So the agent winds up having credence 1/2 in world 1

and credence 1/2 in world 3.

The main motivating feature of Compartmentalized Conditionalization

is the idea that the probability of qualitative hypotheses is unaffected by

purely self-locating information: the support that being F gives to a quali-

tative hypothesis is precisely the same as that of the qualitative proposition

someone is F. This same feature, though, makes Compartmentalized Con-

ditionalization hopeless for avoiding confirmation of multiverses. As we

discussed, non-trivial propositions of the form someone is F (where F is

any local property) will always confirm large randommultiverses over sin-

gle universes. According to Compartmentalized Conditionalization, self-

locating evidence does nothing for qualitative hypotheses beyond what

these qualitative propositions do.

There are serious objections to Compartmentalized Conditionalization

besides this. There are other reasons to think that self-locating informa-

tion should make a difference to the probability of qualitative hypotheses.

Consider a simple example adapted from RuthWeintraub (Weintraub 2004;
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see also Bostrom 2002; Titelbaum 2008; Briggs 2010; Dorr, Manuscript).22

There will certainly be three people. A fair coin is flipped. If the coin is

heads, one person sees a red light, and two see a green light. If the coin

lands tails, two people see a red light, and one sees a green light. It seems

clear that seeing a red light is evidence that the coin came up tails. (Indeed,

it seems clear how strong this evidence is: one is twice as likely to see a

red light if the coin came up tails, so the posterior odds should be 2 : 1.)

But the proposition at least one person sees a red light is evidence for neither

hypothesis.23 Compartmentalized Conditionalization has few defenders in

either physics or philosophy.

Michael Titelbaum’s (2008; 2012; see also 2016, p. 674) “Certainty Loss

Framework” (CLF) says that Compartmentalized Conditionalization is cor-

rect in certain restricted cases: in our terminology, these are cases where,

whatever one’s evidence might be, there is at most one live center in each

possible world.24 This restriction avoids the apparent counterexamples of

the kind we just considered. But this restricted rule falls silent on the mul-

tiverse cases we are interested in, which can involve multiple agents in the

same world with the same self-locating evidence. Titelbaum’s strategy for

deriving verdicts for cases that do not satisfy the single-center constraint

is to find analogous cases that do satisfy it. We think that this strategy

can be applied to multiverse models we consider in section 5; when carried

through, the upshot is that Titelbaum’s CLF approach delivers the very

same verdicts in these cases as the next rule we will consider: Self-Indication
(see footnote 29). (In cases where the single-center restriction does hold,

22Weintraub’s original case involved a single person at three times, with memory loss

after each flash of light.

23Sometimes Compartmentalized Conditionalization also recommends changing one’s

view in odd ways. Consider this example. Initially, with objective chance 1/2 there is one

person in a black room, and with chance 1/2 there are two people in separate black rooms.

Each person flips a fair coin and observes how it lands. According to Compartmentalized

Conditionalization, before the coin flip one should have credence 1/2 in being the only

person, but after the coin flip (however it lands) one should assign credence 2/5 to being the

only person.

24“CLF allows an agent to update by Compartmentalized Conditionalization only if for

each time and each centered proposition she entertains, the agent has some uncentered

proposition she is certain at that time has the same truth-value as the centered proposition”

(2016, p. 674). One complication for applying Titelbaum’s theory in our setting—or any

theory that is engineered primarily as a diachronic constraint on agents—is that the “priors”

we are considering over cosmological hypotheses are not literally the prior credences of

any agent. Here we are extending Titelbaum’s theory to apply to these ideal “ur-priors” so

that we can derive lessons about fine-tuning; but Titelbaum himself may not welcome this

extension.
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Initial Probability Final ProbabilityUpdating

World 1 1/3 1/31/3

World 2 1/3 0

World 3 1/3 2/31/3 1/3 1/3    0

1/3    0

Figure 2: Self Indication

Compartmentalized Conditionalization and Self-Indication give precisely

the same results.) So we will not consider CLF as a separate rule in what

follows.

Here’s the second method for assigning probabilities.25

Self Indication.

1. Assign each center the probability of the world it is in.

2. Reassign each dead center probability zero.

3. Renormalize so everything adds up to one.

When it comes to qualitative hypotheses, the effect of Self Indication is

that the relative probability of each world w is boosted by the number

of live centers in w. That is, we can calculate the posterior probability

of w by multiplying Pr(w) by the number of live centers in w, and then

renormalizing.

Let’s work through the simple example again (fig. 2). First, each of the

centers representing anagent in ablack room is assigned 1/3 (theprobability
of its world). Second, the centers representing agents in white rooms are

25Bostrom (2002, p. 66) uses the name the “Self-Indication Assumption” for this principle:

“Given the fact that you exist, you should (other things equal) favor hypotheses according

to which many observers exist over hypotheses on which few observers exist.” For versions

of this idea promoted by physicists, see Vilenkin (1995, eq. (1) on p. 847) and Olum (2002).
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zeroed out. Finally, we renormalize. So the agent winds up with credence

1/3 in world 1 and credence 2/3 in world 3. Since there is one live center

in world 1, zero live centers in world 2, and two live centers in world 2, we

eliminate world 2 and boost the relative probability of world 3 by a factor

of two (from 1 : 1 odds to 2 : 1 odds).

Unfortunately, Self Indication does not escape the result that mundane

evidence overwhelmingly confirms multiverse hypotheses, either. Self In-

dication confirms a hypothesis in proportion to its expected number of

live centers—the more live centers, the more confirmation. For any local

property F, if the expected number of such centers in a single universe is

n, then the expected number of such centers in a multiverse of a trillion

independent universes is a trillion times n—so this kind of multiverse is

confirmed by a factor of a trillion over a single universe. This does not solve

the problem of mundane evidence confirming extravagant hypotheses.

We’d like to note that, while it is counterintuitive, there is a certain sense

to this kind of confirmation of extravagant hypotheses. Putting things very

casually, one might think that the more people there are, the more likely it

would be that you are one of them. It is thus fairly natural to think that your

existence is evidence for there being more people. We’re not saying that

we’re happy with this verdict. But we are saying that unhappiness with it

shouldn’t be considered decisive.

Here’s the third method for assigning probabilities.26

Self Sampling.

1. For each world w that contains any centers at all, divide the

probability of w evenly between all of them: that is, assign each

center probability p/n, where p is the prior probability of w and

n is the total number of centers in w.

2. Reassign each dead center probability zero.

3. Renormalize so everything adds up to one.

The effect is that the relative probability of each world w containing any

26Bostrom (2002, p. 57) uses the label “Self Sampling” for this principle: “All other things

equal, an observer should reason as if they are randomly selected from the set of all possible

observers.” Note that this original use of the term does not pick out a specific rule; we use

the term in a more specific sense, combining Bostrom’s idea with the idea that there is no

additional re-weighting of qualitative worlds. For Self Sampling reasoning in physics, see

Page (1999, especially pp. 226–227) (However, this example is complicated by considerations

about quantum measures, which we return to in section 7).
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Initial Probability Final ProbabilityUpdating

World 1 1/3 3/51/3

World 2 1/3 0

World 3 1/3 2/51/9 1/9

1/3    0

1/9    0

Figure 3: Self Sampling

centers is boosted according to the proportion of live centers among all

centers in w.

Let’s work through the simple example one more time (section 4). First

we assign each of the centers in world 1 and world 2 probability 1/3, and
we split the probability of world 3 between its three centers, giving each

1/9. Then we reset the white-room centers to zero, and renormalize. So the

agent winds up having credence 3/5 in world 1 and credence 2/5 in world

3.

Unlike the other two rules, Self Sampling does not have the effect that

mundane local evidence confirms vast worlds. Self Sampling has a com-

pensating mechanism, already on display in the simple example: if a world

contains centers that don’t fit your evidence, then these take away from the

probability of the centers that do match your evidence. Suppose that each

universe has the same probabilities of producing centers of any particular

kind, regardless of what other universes there may be, and suppose you

have the evidence I am F, where F expresses a specific enough local prop-

erty so that it is unlikely that anyone is F in a single universe. If the issue

is merely that F is specific, then it can still be very likely that there are

agents in a single universe who are other ways besides F. (That is, we are

not here considering a fine-tuning scenario in which it is unlikely that there

is anyone at all in a single universe.) In that case, the multiverse hypothesis

will make it much more probable that someone is F—but one should also

expect, given a multiverse, that there will be vastly more agents who are
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not F. The Self Sampling rule weighs each world containing agents accord-

ing to the proportion of F agents among all agents in that world. There is

no general reason why the expected proportion among multiverse worlds

containing agents should be any different from the expected proportion for

a single universe containing agents. So unlike the other rules we have con-

sidered, Self Sampling need not confirm multiverses given just mundane

local evidence.

But Self Sampling has other problems. One objection is the famous

“Doomsday argument” (Carter 1983; Leslie 1990; see also Bostrom 2002,

pp. 89ff. and references therein). Suppose that Earth is the only populated

planet, and that there is a doomsday device that will destroy all life on earth

in the year 2200 with a known objective chance of one in a million. Suppose

that if the human race is not destroyed, we are guaranteed to endure for a

billion years, stretching out beyond our galaxy and colonizing the universe.

The odds seem good. But Self Sampling tells us to be very confident that the

doomsday device will go off. Suppose that whether or not the doomsday

device goes off, you can tell who you are andwhen it is: your evidence rules

out you being in any other person’s predicament, or now being any other

time. So in each doomsday world, and likewise in each glorious-future

world, there is just one center compatible with your self-locating evidence.

But in a world with more centers total, the single live center receives a much

smaller share of that world’s probability. Since there are more centers in

glorious-future worlds than doomsday worlds by a factor of billions, the

posterior probability of the doomsday hypothesis is boosted from one in a

million to close to one.

A second problem for Self-Sampling is that it is not entirely clear what

it says: its recommendations are sensitive to what exactly counts as a cen-
ter (in a way that those of the other two rules are not). Should we just

count humans, or also pangolins or ants? What about ant colonies, or su-

percomputers, or proper parts (or temporal parts) of people? This is the

so-called “reference class problem” (see Bostrom 2002, chs. 10–11; see also

Arntzenius and Dorr, Manuscript).27

We can summarize all of these rules as follows. Each rule has the effect

of multiplying the prior probability of each world w by some “confirmation

factor” η(w), and then renormalizing. The confirmation factors for each

update rule are as follows.

27The reason this problem does not arise for other views is that the number of dead centers
makes no difference to the final probability. So, for example, if your evidence includes that

you are human, pangolins and supercomputers don’t matter to the final calculation.
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Compartmentalized Conditionalization

ηCC(w) �
{
1 if there are any live centers in w
0 otherwise

Self Indication

ηSI(w) � the number of live centers in w

Self Sampling For worlds w that contain any centers,

ηSS(w) � the proportion of live centers in w among all centers in w

Otherwise,

ηSS(w) � 0

That tells us everything we need to know about the posterior probabilities

of qualitative propositions. When it comes to self-locating probabilities,

each of these rules simply says to evenly divide the posterior probability of

each world w among the live centers in w.

We can sum that up even more simply. Consider a set of mutually

exclusive qualitative hypotheses. Compartmentalized Conditionalization

relatively confirms each hypothesis H in proportion to the conditional

probability that there are any live centers, given H. Self Indication rela-

tively confirms each hypothesis H in proportion to the expected number of
live centers conditional on H. And Self Sampling relatively confirms each

hypothesis H according to the expected proportion of live centers among all

centers, where this proportion is considered to be zero in worlds containing

no centers at all.

5 Fine-Tuning and Multiverses

We now have three rules for dealing with self-locating evidence. Let’s

see what each of them tells us about the significance of fine-tuning for the

multiverse. (Again, wewill generalize the results of this section in section 7.)

We’ll start by working through some simple toy models. Suppose that

the prior probability that there is exactly one universe is 2/3, and the prior

probability that there is a multiverse consisting of exactly four universes is

1/3. Suppose that each “universe” consists of a single room, containing at

most one agent (at just one time). Each room is one of four colors—black,
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white, red, or green—each with equal prior probability. As in section 3,

we suppose that what each universe is like—specifically, its color—is inde-

pendent of what any other universes are like, on the prior. Each agent can

tell what color room they are in, and nothing more. You find yourself in a

black room. This stands in for your “mundane” (but reasonably detailed)

evidence.

First, let’s get a feel for how things work out if life doesn’t need anything

like fine-tuning: suppose that every universe is guaranteed to contain one

agent. We’ll add in fine-tuning after that. (The results of these calculations

are summarized in table 1 on page 24.)28

Compartmentalized Conditionalization. The live centers correspond to

the agents in black rooms. Given a single universe, the probability of

there being such an agent is 1/4. Given a multiverse, the probability

of there being at least one such agent is 1 − (3/4)4 ≈ 0.68. So the

multiverse is relatively confirmed by a factor of ≈ 2.7, bringing the

probability from 1/3 to about 0.57. (From 1 : 2 odds to ≈ 2.7 : 2 odds.)

Self Indication. Each hypothesis is relatively confirmed in proportion to its

expected number of agents in black rooms. Given a single universe,

this expected number is 1/4. Given a multiverse, this is 4 · (1/4) � 1.

So the multiverse is relatively confirmed by a factor of 4, bringing its

probability from 1/3 to 2/3. (From 1 : 2 odds to 4 : 2 odds.)

Self Sampling. Since every world contains at least one agent in this model,

each hypothesis is weighted according to its expected proportion of

black-room agents among all agents. Whether there is a single uni-

verse or a multiverse, this expected proportion is 1/4. So the multi-

verse hypothesis is not confirmed, and its posterior probability stays

at 1/3.

That was straightforward enough. Now let’s get a feel for how things

work out if life is fine-tuned. Again, we’ll use a simple toymodel. As before,

we let the prior probability of a single universe be 2/3, and the probability

of a four-universe multiverse 1/3. As before, the probability of each color is

1/4 for each universe, and independent for different universes. This time,

let the probability that each universe contains an agent be 1/10. Whether

28There are various measures of strength of confirmation (see Fitelson 1999). Here we

focus on the Bayes factor, which is the factor by which the odds of a hypothesis is increased

by evidence. (This is the same as the log-likelihood ratio Fitelson discusses, except on a linear

rather than a logarithmic scale.) Nothing important turns on this choice.
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each universe is inhabited is independent of its color and of what the other

universes are like.

Again, you know this set-up, and you find yourself in a black room.

What probabilities should you assign? Again, we’ll take the three rules one

by one.

Compartmentalized Conditionalization. Givena singleuniverse, theprob-

ability of there being at least one agent in a black room is 1/10 · 1/4 �

1/40 � 0.025. Given a multiverse, this probability is 1 − (1 − 1/40)4 ≈
0.096. So the multiverse hypothesis is relatively confirmed by a factor

of ≈ 3.8, which takes its probability from 1/3 to a bit under 0.66.

Self Indication. Given a single universe, the expected number of agents in

black rooms is 1/40. Given a four-universe multiverse, this expecta-

tion is 4 · (1/40). So the multiverse hypothesis is relatively confirmed

by a factor of 4, bringing its probability from 1/3 to 2/3.

Self Sampling. This is the most complicated one. Each world containing

agents gets weighted according to its proportion of agents in black

rooms, and the uninhabited worlds get zero weight. So we weigh

each of the rival hypotheses H by the probability it gives to there

being at least one agent, multiplied by the expected proportion of

agents in black rooms, conditional on H and there being at least one

agent. For either hypothesis, this conditional expectation is 1/4, so it

can be cancelled out. Given a single universe, the probability of there

being at least one agent is the fine-tuning parameter 1/10. Given a

multiverse, this probability is 1− (1− 1/10)4 ≈ 0.34. So the multiverse

is confirmed by a factor of ≈ 3.4, taking its probability from 1/3 to

≈ 0.63.

Let’s sum up (see table 1). Self Indication says that the multiverse gets

confirmed to exactly the same degree whether or not life is fine-tuned.

Compartmentalized Conditionalization or Self Sampling both say that how

much the multiverse gets confirmed is sensitive to fine-tuning. Self Sam-

pling gives no confirmation at all to the multiverse without fine-tuning, but

with fine-tuning the multiverse gets a substantial boost. With Compart-

mentalized Conditionalization, the multiverse is confirmed even without

fine-tuning, but in the presence of fine-tuning it is confirmed even more.

The general formulas for different parameters in this toy model are also

given in table 1.29

29 How can we derive verdicts from Titelbaum’s CLF for these fine-tuning models? The
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One more observation. In section 3 we noted that highly specific purely

qualitative local evidence strongly confirms a multiverse, and we raised the

possibility that self-locating evidence might screen off this confirmation.

Now we can see that two of these three rules bear this out. Notice that the

formulas for Self Indication and Self Sampling in table 1 do not depend on

q: this means that in our simple setting, the specificity of one’s mundane

evidence makes no difference to how strongly a multiverse is confirmed.

(In the toy model, this mundane evidence is “I am in a black room,” and

q represents the probability that any given agent is in a black room.) So

Compartmentalized Conditionalization is the only one of the three rules for

which the specificity of mundane evidence gives the multiverse a boost.

6 White on Self-Location

The fact that some universe contains fine-tuned life is powerful evidence in

favor of a large multiverse. As we discussed in section 3, additional local
qualitative evidence only piles on additional confirmation. Setting aside

the possibility of non-local evidence (and holding fixed the independence

assumptions in the background), the only hope for a single universe is

non-qualitative evidence.
As we discussed in section 2, Hacking (1987) and White (2000) argued

that the key question is how the evidence that our universe has fine-tuned

life makes a difference, over and above the evidence that some universe has
fine-tuned life. But while they pointed us to the right question, it is harder

to answer than either of them acknowledged. Hacking and White each

claimed that our universe is no more likely to have fine-tuned life given the

most obvious approach is to use Titelbaum’s “technicolor” trick (see 2012, sec. 9.3 and

11.1.2). Consider a variant model where each universe is labeled with a number that can

be clearly seen by any agent that inhabits it. In a multiverse, the universes are labeled 1 to

n. In a single universe, the universe is assigned a label between 1 and n at random (from

a uniform distribution). It seems plausible that these labels do not make a difference to

the probability one should assign to being in a multiverse (though we won’t argue for this

here—and we note that unrestricted Compartmentalized Conditionalization does not agree

with this judgment). In this modified case, there is sure to be at most one live center in each

world: each universe contains only one center, and centers in different universes that might

otherwise have been indistinguishable have been distinguished by being assigned different

labels. In this case, CLF says to conditionalize on the evidence “Someone is in a black room

in universe k” (for whatever number 1 ≤ k ≤ n is observed). The probability of this holding

in a single universe is 1/n · pq, and the probability of this holding in a multiverse is pq, so
the confirmation factor for the multiverse is n, with or without fine-tuning—the same as

with Self Indication. (See also discussion of duplication cases in Titelbaum 2012, sec. 11.2.3).
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Rule No fine-tuning Fine-tuning Formula

Compartmentalized

Conditionalization

≈ 2.7 ≈ 3.8
1 − (1 − pq)n

pq

Self Indication 4 4 n

Self Sampling 1 ≈ 3.4
1 − (1 − p)n

p

Table 1: Relative confirmation factors for the multiverse hypothesis in the

two toy models, and for alternative parameter values (given our indepen-

dence assumption, and assuming that each inhabited universe has at most

one agent). Here p is the fine-tuning parameter (the probability of life in

a universe), q is the probability that an arbitrary agent is F, where one’s

self-locating evidence is being F, and n is the number of universes given

the multiverse hypothesis. (In the toy model without fine-tuning, p � 1,

q � 1/4, and n � 4. In the toy fine-tuning model, p � 1/10, q � 1/4, and
n � 4.)

existence of a multiverse than it is given the existence of a single universe,

and thus that the fact that our universe has fine-tuned life does not confirm

the existence of a multiverse. But it’s just not clear how to think about this.

For a start, whilewe have helped ourselves to prior probabilities for qual-
itative hypotheses about the number of universes and their intrinsic profiles,

it ismuchmore difficult to assess prior probabilities for propositions like our
universe has fine-tuned life. But this is what we would need to do in order to

justify the claim that this is independent of how many universes there are.

We can hope to guide qualitative priors to a large extent by physical chances

or other measures that arise naturally within cosmology. But it is harder

to see how empirical physics might give us much direct guidance about

self-locating prior probabilities.30 In fact, the three rules we have discussed

give us purchase on claims about confirmation by self-locating evidence that

does not have to go through claims about prior probabilities of self-locating

evidence.

That is not to say we think the project of identifying self-locating priors

is hopeless: we take it up in appendix B (see also Arntzenius and Dorr

2017). The way of thinking about things outlined there basically vindicates

30But that might be too pessimistic: many-worlds quantummechanics might do just that.

(For discussion of this interpretive project see, for instance, Greaves 2004). A solution to the

“measure problem” in inflationary cosmology might do the same.
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whatWhite calls the “Observation Principle”: “An observation Imake gives

me evidence for hypothesis H only if it is more likely given H that I would

make that observation” (White 2003, p. 244).31 Furthermore, each of the

self-locating rules we discussed in section 4 can be reinterpreted as recipes

for generating self-locating priors from qualitative priors. But as it turns

out, none of these particular recipes generate priors that vindicate White’s

independence claim—that whether our universe contains life is independent

of how many universes there are.

In a postscript, White (2003) considers more seriously how self-location

might make a difference to this issue. Here is what he says:

It is not enough for confirmation that if my colleagues are rolling

dice, it is more likely that someone will see a double-six. If my

observation is to provide me with evidence of these other rolls,

they will have to make it more likely that I would observe this.

. . . Whatwe need is a probabilistic link betweenmy experiences

and the hypothesis in question. (White 2003, p. 244, original

emphasis)

He then develops this idea in the voice of an interlocutor:

“. . . There are very many beings who could have been created

other thanme. And I’mnomore likely to be born in this universe

than in any other. The more universes there are, the more living

creatures there are. So themore opportunities I had to be picked

out of the pool of ‘possible beings,’ and hence the greater the

likelihood that I should be observing anything.” (White 2003,

p. 244, original emphasis)

This suggestion basically amounts to the Self Indication idea. Before we

discuss White’s reply, let’s pause here. First, we don’t object to framing

31That principle is not quite right in cases of introspective failure (though this is not

especially important in our present context). There may be cases where one observes

oneself to be F, but is not aware of this observation. Let H be “It’s raining but I don’t observe

it.” Suppose I observe that it is raining, but don’t have this fact about my observation as

evidence. My observation that it is raining gives me the evidence that it is raining, which is

evidence for H. But the probability that I would observe that it is raining, given H, is zero.

The correct principle is that the evidence I am F supports hypothesis H only if it is

more likely given H that I would be F (whether or not I observe this). This principle is a

basic fact about conditional probability, given that for E to be evidence for H means that

Pr(H | E) > Pr(H)—including the case of self-locating evidence. We can apply this principle

to the special case where F is making a certain observation—in the ordinary case where one

has evidence about one’s own observations.
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things in terms of a “probabilistic link” between one’s self-locating evidence

and the hypothesis—though we should beware of taking this too literally,

since probabilistic dependence in the priors need not involve any kind of

causal mechanism. But also, while White doesn’t explicitly say this, his

framing strongly implies that this Self Indication idea—that one is more

likely to observe anything at all if there are more living creatures—is the

most promising or the onlyway of establishing such a probabilistic link. We

should be clear that this isn’t true. Aswehave just seen, Compartmentalized

Conditionalization and Self Sampling also each provide the requisite “link”

between the multiverse and your own observations. (When translated into

self-locating priors, in simplemodels they eachmake it more likely that you

would observe anything if there are many universes, when each universe

has a low probability of life.) But neither of these rules builds in the idea

that there being more people makes it more likely that you would observe

anything. They do each build in the idea that there being at least one
observer makes it more likely that you would observe anything. But that

idea is surely right: after all, there being zero observers surely makes it less
likely that you would observe anything.

Here is howWhite replies to the Self Indication suggestion:

Themetaphysical picture behind this story is dubious. But, quite

apart from that, we can see that something must be wrong with

this line of reasoning. The standard argument takes the fact that

a universe must be extremely fine-tuned to support life, that a

random Big Bang has a very slim chance of producing life, as

crucial to the case formultiple universes. If the current objector’s

argument is cogent, then it should go through regardless of the

need for fine-tuning for life. That is, even if a universe with just

any set of fundamental constants is bound to produce life, we

could still argue along these lines that the more universes there

are the more opportunities I had for existing and observing,

and hence that my observations provide evidence for multiple

universes.

Indeed, if the objector’s argument is sound, then the discovery

that a universe must meet very tight constraints in order to

support life should diminish the strength of the case for multiple

universes. For if every universe is bound to produce life, then

by increasing the number of universes we rapidly increase the

number of conscious beings, whereas if each universe has a

slim chance of producing life, then increasing the number of
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universes increases the number of conscious beings less rapidly,

and hence (by the objector’s argument) increases the likelihood

of my existence less. I would be surprised if anyone wants to

endorse an argument with these consequences, but, at any rate,

it is not the standard one that takes the fine-tuning data to be

crucial in the case for multiple universes. (White 2003, pp. 244–

245, original emphasis).

WhenWhite says thatmore stringentfine-tuningwoulddiminish the strength
of the Self Indication argument for the multiverse, that’s a mistake. In our

toy model we saw that the confirmation factor was n (the number of uni-

verses in the multiverse) regardless of the fine-tuning parameter. White’s

reasoning only gives half the story: it is correct that the smaller the fine-

tuning parameter, the smaller the expected number of conscious beings

given a multiverse. But also, in the same way, the smaller the fine-tuning

parameter, the smaller the expected number of conscious beings given a

single universe. (The probability decreases that there will be any conscious

beings at all.) These factors cancel out, leaving the confirmation the same

for any fine-tuning parameter.

Still, White’s more central point in this passage is correct: fine-tuning

does not increase the strength of confirmation that the Self Indication rule

gives to the multiverse. So he’s right: the support that Self Indication gives

to the multiverse is not really a fine-tuning argument. It’s a different beast.

In that way it comes apart from both of the other rules we considered.

Indeed, this feature of Self Indication—that it lends support to huge worlds

regardless of the details of our evidence—is one of the major objections it

faces.

We should distinguish two ideas. One is that being in a universe that

contains fine-tuned life is strong evidence for the multiverse. The second

idea is that the fine-tuning part of this evidence plays a crucial role, over

and above being in a universe that contains life. All three of the rules we

have considered support the first conclusion (as will the broader theoretical

considerations we offer in section 7). But the second idea is less robust: it is

supported by two of the three rules, but not Self Indication. Without doing

more to adjudicate between different approaches to self-locating evidence,

this is as much as we can say: the question remains pressing.

But at least we can see that if fine-tuning does not provide support for

the multiverse, it is not for the reason that Hacking and White defended.

For their main arguments attack the first idea: both of them contend that our
universe contains fine-tuned life does not provide evidence for the multiverse
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at all. For the kind of simplemultiversemodel we have all taken for granted

(with its independence assumptions), that evidence does support a multi-

verse, given any reasonable spelled-out theory of self-locating evidence that

we know of.

7 Two Multiverse Confirmation Theorems

There are good reasons for dissatisfaction with each of Compartmentalized

Conditionalization, Self Indication, and Self Sampling—but it is very hard

to come up with a more satisfactory alternative. This topic is hard. In the

absence of clarity about the correct self-locating epistemology, we should

take a step back and ask whether some other rule might go differently.

Might there be some reasonable rule among those we haven’t thought of
that doesn’t say that, in the presence of fine-tuning, self-locating evidence

supports a multiverse? One might hope so. According to Self Indication,

themultiverse is nomore strongly confirmedwith fine-tuning thanwithout

fine-tuning. According to Self Sampling, the multiverse is not confirmed

without fine-tuning. So onemight hope to comeupwith a single theory that

combines both of these features; such a theory would say that a multiverse

is not confirmed even with fine-tuning. Is there any reasonable theory like

this?

We present two mathematical results that constrain any theory of self-

locating evidence—andwhich strongly suggest that the answer to this ques-

tion is no. We relegate the technical details to appendix A; here wewill state

the results informally and briefly sketch the main ideas of their proofs.

(Appendix B extends these results to the framework of self-locating priors.)

We are now considering abstractly any kind of theory that gives an-

swers to the following kind of question: given certain prior probabilities

over qualitative hypotheses, and given that you are in a certain qualitative

evidential situation, what posterior probabilities should you assign to qual-

itative hypotheses? The theories we considered in sections 4 and 5 are

examples of such theories, but those theories are quite constrained. For

instance, each of those theories assigns the same probability to any two

centers in the same qualitative world that are both compatible with one’s

self-locating evidence.32 This principle looks suspect in general. For exam-

32Compare the “highly restricted principle of indifference” of (Elga 2000, p. 144; see also

Elga 2004): “Since being in T
1
is subjectively just like being in T

2
, and since exactly the same

[qualitative] propositions are true whether you are in T
1
or T

2
, . . . you ought to have equal

credence in each.”
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ple, in Everettian quantum mechanics, there is a certain physical quantity

of “amplitude” or “branch-weight” that ought to make a difference to the

epistemic probability of being in one branch of the quantum wave function

or another (see for example Greaves 2004; Sebens and Carroll 2016; see also

discussion in Titelbaum 2012, pp. 275–276). Two different centers in the

same quantum multiverse can each be consistent with one’s evidence, but

should not be assigned the same probability because they are on branches

with different quantum amplitudes. A different kind of challenge comes

from conceptions of evidence that do not just separate “live” and “dead”

centers, but treat this distinction as a matter of degree (for example, views

in the spirit of Jeffrey 1983). There are also many approaches to puzzles

about time or memory loss (such as the Sleeping Beauty puzzle), some of

which work quite differently from the rules we considered in section 4 (see

the references in section 4). Still, all such views that we know of (insofar

as they give precise answers to the question in the form we have posed it)

are compatible with the abstract framework of this section. Whatever those

views might say about other puzzles, the theorems we will present here

constrain what they say about fine-tuning and the multiverse.

We suppose there is a prior probability distribution over qualitative

hypotheses. We consider qualitative priors which have a certain simple

form, which builds in the same kind of independence assumptions that

Hacking and White supposed, and which we have deployed throughout.

Here is the picture. There is a certain probability distribution over possible

intrinsic profiles of a universe. Howevermany universes theremay be, each

universe’s intrinsic profile is independent and identically distributed: that

is, for each universe u, no matter how many other universes there are, and

no matter what their intrinsic profiles are like, the probability of u having

a certain intrinsic profile is given by this same distribution. We call priors

like this separable. The official definition of separability is stated in terms

of prior probabilities for purely qualitative hypotheses, rather than (as the

informal gloss suggested) giving an official place to prior de re probabilities
about particular universes. This involves some technicalities, discussed in

appendix A. The fine-tuning parameter p is the probability of there being any

centers at all, given a single universe.

This picture is clearly an idealization. For one thing, the multiple uni-

verses that appear in contemporary physics are not entirely separate and

independent of one another. For another, it could be entirely reasonable

to expect different intrinsic properties for an isolated universe than one ex-

pects from a universe in amultiverse. For example, onemight allocate some

prior probability to a theistic hypothesis, according to which God does not
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care much about howmany universes there are, but is adamant that at least

one universe contains life. In that case, a universe that is part of a large

multiverse might be much less likely to contain life than a single isolated

universe. We do not mean to suggest that separable priors are realistic. But

seeing how things go in this especially simple idealized case is illuminating.

We also consider an idealizing constraint on evidence. So far we have

focused on views of evidence according to which it consists in propositions

of the form “I am now F,” which we have represented by way of properties

of agents. But the limiting theorems apply to a much wider range of views

about self-locating evidence. For the purposes of these theorems, we can

be almost entirely neutral about which features of agents are relevant to the

posterior probabilities they should have. We will abstractly consider a rela-

tion of evidential equivalence between centers: intuitively, this means that the

agents of the two centers are exactly alike in whatever respects are relevant

to the probabilities they should assign to qualitative hypotheses. Thismight

require that they share phenomenology, or knowledge, or other properties

concerning their psychologies, histories, environments, or constitutions.

Themain substantive assumptionwewillmake about this relation is that

it is local, in the following sense. Say two possible universes are evidentially
equivalent iff there is a one-to-one correspondence between the centers in

the two universes that takes each center in one universe to an evidentially

equivalent center in the other.

Locality. Intrinsic duplicate universes are evidentially equivalent.

For an internalist who holds that intrinsic duplicate agents are evidentially

equivalent, Locality follows automatically.33 But Locality is much weaker

than internalism. The basic idea is that even if evidence “ain’t in the head,”

it is at least “in the universe.”

Again, Locality is an idealization. One might well assign some prior

probability to non-local evidence. If phenomenal states are evidence, one

might assign some prior probability to the hypothesis that the content of

one’s phenomenal states is partially determined by what goes on in other

universes. If knowledge is evidence, one might assign some prior prob-

ability to coming to know whether or not there is a multiverse. But it is

a reasonable simplification to set such possibilities aside, and it would be

33This also assumes the modest supervenience principle that any duplication map from

one universe to another maps each agent in the first universe to an agent in the other.

Intuitively, whether something counts as an agent doesn’t depend on anything beyond its

universe.
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surprising if the true theory of multiverse epistemology crucially relied on

non-local evidence.

Finallywe consider two constraints on posteriorprobabilities. One idea is

that confirmation only depends on evidentially relevant features of worlds

(whatever those featuresmight be). We say twoworlds are evidentially equiva-
lent iff there is a one-to-one correspondence between the inhabiteduniverses

in the two worlds that takes each inhabited universe in one to an eviden-

tially equivalent universe in the other. Given a prior, we call a posterior

evidential iff no world is confirmed relative to any evidentially equivalent

world. The idea is that if something makes a difference to relative probabil-

ities, it should show up somewhere in a world’s distribution of “evidential

situations”, howeverwe are thinking about that notion. (As usual, whenwe

say “H1 is confirmed relative to H2,” we mean that the ratio of the posterior

probability of H1 to the posterior probability of H2 is greater than their ratio

of prior probabilities.)

Finally, we only consider agents who can tell that there is at least one

agent.

Agents. The posterior probability that there are no agents is zero.

There are two main results. The first concerns “small enough” multi-

verses.

Theorem 1. For any separable qualitative prior and any evidential poste-

rior, Locality and Agents imply that, for any possible multiverse size

1 < n < 1/p, where p is the fine-tuning parameter, the proposition

there are n universes is confirmed relative to there is just one universe.

Proof Sketch. We’ll illustrate with the case n � 2. In this case, the hypothesis

is that the fine-tuning parameter p < 1/2. The main idea of the proof is to

consider how things go if we know exactly one universe is inhabited. Let

Un be the proposition there are exactly n universes. Let I1 be the proposition

exactly one universe is inhabited.
First, for a separable prior Pr(−), a little calculation shows that if p < 1/2,

then it is more probable that exactly one universe is inhabited if there are

two universes than if there is just one. (For two universes this probability is

2p(1 − p), while for one universe it is p.)
Second, we have a lemma that says that, given the number of inhab-

ited universes, our self-locating evidence tells us nothing about how many

uninhabited universes there are (lemma 5 in appendix A). So, conditional
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on exactly one universe being inhabited, neither U1 nor U2 is confirmed

relative to the other.

Third, on the posterior we know that if there is just one universe, then it

is inhabited. So U1 I1 has the same posterior probability as U1, while U2 I1

is no more probable than U2.

Put these three steps together, and we’re done:

Pr(U2)
Pr(U1)

<
Pr(U2 I1)
Pr(U1 I1)

�
Pr∗(U2 I1)
Pr∗(U1 I1)

≤ Pr∗(U2)
Pr∗(U1)

That is, U2 is confirmed relative to U1. �

Theorem 1 tells us that for any n, there is some fine-tuning parameter

p for which a size-n multiverse is confirmed. So a multiverse of any finite

size is confirmed by fine-tuned life—as long as it is fine-tuned enough.
Our second result generalizes to arbitrarily largemultiverses; but it relies

on a principle whose status does not seem nearly as clear as the others. The

idea is that without any fine-tuning, our evidence does not disconfirm a

multiverse. We say a posterior is ordinary iff, for each n > 0, conditional on

every universe containing agents, the existence of just one universe is not

confirmed relative to the existence of n universes.

Posteriors that are not ordinary seem a bit odd (in a context of separable

priors and local evidence). If we suppose that every universe has life, but

each universe’s internal configuration is independent of any other’s, and

our evidence only directly tells us about our universe’s internal configu-

ration, then it’s not clear why we would think that our evidence favors a

single universe. That’s not to say it couldn’t turn out this way. Indeed, this

can happen with Self Sampling. If our evidence indicates that our universe

has a relatively small population, compared to the expected population size

of an arbitrary inhabited universe, then the expected proportion of centers

compatible with our evidence is higher for a single universe than it is for

a multiverse. So this kind of evidence would favor a single universe over

a multiverse, by Self Sampling. (Perhaps we even have this kind of evi-

dence: looking around, one might take our own universe to be surprisingly

sparsely inhabited, compared to what one might expect from an inhabited

universe.)34

We put forward “ordinariness” in a different spirit from the other con-

straints we have discussed. It is not a very plausible constraint on what

34The argument of Olum (2004) is closely related.
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posteriors have to be like in general. It is also not really a simplifying ide-

alization like separability or locality. But theorem 2 tells us something in-

teresting: given the other assumptions, the onlyway that a large multiverse

can fail to be confirmed in the presence of fine-tuning is if our posteriors are

“extraordinary,” which is to say (roughly) that in the absence of fine-tuning
a multiverse is disconfirmed. (Furthermore, the proof of the theorem shows

us that for large n and small p, the only way to avoid confirming a multi-

verse is if, in the absence of fine-tuning, our evidence strongly disconfirms a

multiverse.)

This again tells againstHacking andWhite’s diagnosis of the fine-tuning

argument. If they were right, then our evidence should not count against a
multiverse, either—even in the absence of fine-tuning. (If it is clear that this

roll of the dice coming up double sixes does not support there being many

rolls, it is even clearer that, conditional on every roll coming up double

sixes, this roll of the dice coming up double sixes does not support there

being just one roll of the dice!)

Theorem 2. For any separable prior and any ordinary evidential posterior,

Locality and Agents imply that for any possible multiverse size n > 1,

there are n universes is confirmed relative to there is just one universe.

The proof uses similar ideas to theorem 1. For each 1 ≤ k ≤ n, we

can show that there are n universes exactly k of which are inhabited is not

disconfirmed relative to there is one inhabited universe (for separable priors,

local evidence, and ordinary evidential posteriors). It follows that there are
n universes and at least one universe is inhabited is not disconfirmed relative

to there is one inhabited universe. But the prior probability that at least one

universe is inhabited is higher if there are many universes than if there is

just one. For the rest of the argument see appendix A.

8 Conclusion

The existence of fine-tuned life, taken on its own, is straightforwardly ev-

idence for a multiverse. But this mere qualitative evidence should not be
taken on its own: our relevant evidence is not just that there is some fine-

tuned life or other, but that we ourselves are fine-tuned life. This can make

a difference. We have also evaluated a seductive argument that this more

specific evidence does not confirm the multiverse. Some standard rules

for self-locating probabilities do not vindicate this idea. What’s more, our

general results show that it will be difficult to come up with any reasonable
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theory that does vindicate it. If being in a universewith fine-tuned life is not

evidence for the existence of a multiverse, then some principle in the mul-

tiverse confirmation theorems must fail: in the case of “small” multiverses,

this means that priors are not separable, evidence is not local, or posteriors

are not evidential. This is not to end the debate, but it provides a framework

in which to continue it. A duel of conflicting intuitive analogies won’t cut it:

clear reasoning about the strength of our evidence for a multiverse requires

systematic theorizing about self-locating evidence.

A Theorems and Proofs

Here we present precise statements and proofs of the two theorems in

section 7.

Definition 1. Amultiverse structure consists of the following components.

1. A non-empty set W of possible worlds.

2. A non-empty set I of centers.

3. Anon-empty setU of (possible) universes. Eachuniverse is in exactly

one world, and each center is in exactly one universe.

4. An equivalence relation between universes of intrinsic duplication.

5. An equivalence relation between centers of evidential equivalence.

In what follows we restrict attention to the case where W and I are both
countable. (This relaxes the assumption in section 4 of only finitely many

worlds or centers.) We are thinking of worlds as specified qualitatively. A

(qualitative) proposition is a set of worlds.

(In supposing that every center is in a universe, we set aside the a priori

possibility of being an immaterial agent like an angel or a god. This is

another idealization.)

Definition 2. For any multiverse structure,

(a) A universe u is inhabited iff there is at least one center in u.

(b) For any number n, Un is the proposition that there are exactly n
universes (that is, the set of worlds w such that there are exactly n
universes in w).
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(c) For any number n, In is the proposition that there are exactly n inhab-

ited universes.

We canuse the evidential equivalence relation on centers to define closely
related relations on universes and worlds.

Definition 3.

(a) Universes u and u′ are evidentially equivalent iff there is a one-to-one

correspondence f from the centers in u to the centers in u′ such that

i is evidentially equivalent to f (i) for each center i in u.

(b) Worlds w and w′ are evidentially equivalent iff there is a one-to-one

correspondence f from the inhabited universes in w to the inhabited

universes in w′ such that u is evidentially equivalent to f (u) for each
universe u in w.

(c) A multiverse structure is local iff any pair of intrinsic duplicate uni-

verses are evidentially equivalent.

Let a qualitative prior Pr(−) on a multiverse structure be a (countably

additive) probability function on the set of all qualitative propositions. We

will only consider priors with a certain simple structure. The intuitive idea

is that there is a distribution over possible intrinsic profiles of a universe,

and that each universe is assigned an intrinsic profile at random from this

distribution: so the profiles of all of the universes in a world are indepen-

dent and identically distributed. This is a bit difficult to state officially in

purely qualitative terms: the most natural way of doing it would presup-

pose “trans-world identity” for possible universes, which our model does

not build in. But there is a fairly straightforward way of describing the

qualitative probability distribution that corresponds to this picture.

A first pass at the idea is that the probability of any particular qualitative

profile of a multiverse, given its number of universes, is the product of the

probabilities of the various individual universe-profiles that make it up.

This isn’t quite right, though, because sometimes there is more than one

way to get a qualitative profile. If you roll two fair dice, the probability of

rolling a five and a six is twice the probability of two sixes. While there

is only one way to roll two sixes, there are two ways to get a five and six:

the pairs (5, 6) and (6, 5). Independent universe profiles should have the

same structure. In general, the number of different ways to get a sequence

of n things, which includes d distinct elements repeated k1 , . . . , kd times,
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respectively, is

n!

k1! · · · kd!

This is the number of permutations of n indices, with permutations that

take elements to indistinguishable elements quotiented out.

For a sequence of possible universes (u1 , . . . un), let the local profile
[u1 · · · un] be the set of worlds w such that there are distinct universes

v1 , . . . vn in w which are duplicates of u1 , . . . , un , respectively. Intuitively

this proposition says that the multiverse includes a copy of a (u1 , . . . , un)
multiverse.

Definition 4. Call a qualitative prior Pr(−) on amultiverse frame separable
iff it satisfies the following three conditions.

(a) We say n is apossiblemultiverse size iffPr(Un) > 0. For any numbers

1 ≤ k ≤ n, if n is a possible multiverse size, then k is a possible

multiverse size as well.35

(b) Let n be any possible multiverse size, and let u1 , . . . , un be a se-

quence of possible universes. Suppose that this sequence represents

d different equivalence classes under duplication, which are repeated

k1 , . . . , kd times in the sequence respectively. Then:

Pr([u1 , . . . , un] | Un) �
n!

k1! · · · kd!

Pr([u1] | U1) · · ·Pr([un] | U1)

(c) The fine-tuning parameter p � Pr(I1 | U1) satisfies 0 < p < 1.

Here are some consequences of this structure. We omit the proofs,

which involve some simple combinatorics.

Lemma 1. Let Pr(−) be a separable qualitative prior; let n be a possible multiverse
size; let p be the fine-tuning parameter.

(a) Suppose that none of the universes u1 , . . . , uk are duplicates of any of the
universes uk+1

, . . . , un . Then

Pr([u1 · · · un] | Un) �
(
n
k

)
Pr([u1 · · · uk] | Uk) Pr([uk+1

· · · un] | Un−k)

where
(n

k

)
is the binomial coefficient n!

k! (n−k)! .

35The main purpose of this “regularity” condition is to avoid division by zero, especially

in lemma 1 (a) and the proof of theorem 2. For the purposes of theorem 1, this assumption

could be eliminated at the cost of some technical inconvenience.
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(b) For 0 ≤ k ≤ n,

Pr(Ik | Un) �
(
n
k

)
pk (1 − p)n−k

In particular, given that 0 < p < 1, Pr(Ik | Un) > 0

(c) If 1 < n, it is more likely that there is at least one inhabited universe if there
are n universes than if there is just one:

Pr(¬I0 | Un) > Pr(¬I0 | U1)

(d) If 1 < n < 1/p, it is more likely that there is exactly one inhabited universe
if there are n universes than if there is just one:

Pr(I1 | Un) > Pr(I1 | U1)

Lemma2. LetPr(−) be a separable qualitative prior on a localmultiverse structure.
Let 0 ≤ k ≤ n, where n is a possible multiverse size. Let (u1 , . . . , uk) be a sequence
of inhabited universes, and let Q be the local profile [u1 · · · uk]. Then

Pr(Q | Un Ik) � Pr(Q | Uk Ik)

In particular, this does not depend on n.

Proof. We have

Pr(Un Ik Q) �
∑

R

Pr(Un Q R)

where R ranges over the propositions [v1 · · · vn−k] for each sequence of

uninhabited universes v1 , . . . , vn−k . This is equal to

Pr(Un)
∑

R

Pr(Q R | Un)

� Pr(Un)
(
n
k

)
Pr(Q | Uk)

∑
R

Pr(R | Un−k) lemma 1 (a)

� Pr(Un)
(
n
k

)
Pr(Q | Uk) Pr(I0 | Un−k)

� Pr(Un)
(
n
k

)
Pr(Q | Uk) (1 − p)n−k

lemma 1 (b)

where p is the fine-tuning parameter. Also, by lemma 1 (b),

Pr(Un Ik) � Pr(Un)
(
n
k

)
pk(1 − p)n−k
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The conditional probability Pr(Q | Un Ik) is the quotient of these two quan-

tities, namely:

Pr(Q | Uk)
pk

This is equal to

Pr(UkQ)
Pr(Uk) · pk

�
Pr(UkQ)
Pr(Uk Ik)

�
Pr(Uk IkQ)
Pr(Uk Ik)

� Pr(Q | Uk Ik)

The second equality holds because Q is the local profile for k inhabited

universes, so Uk IkQ and UkQ are equivalent. �

Next we will consider a posterior probability distribution Pr∗(−), also
defined on the same space of worlds.

Definition 5. For a prior Pr(−) and a posterior Pr∗(−), and for propositions

A and B, we say that A is confirmed relative to B iff

Pr∗(A) Pr(B) > Pr∗(B) Pr(A)

We write A �∗ B for this relation. Similarly, we say A %∗ B iff B is not

confirmed relative to A, and A ∼∗ B iff neither A nor B is confirmed relative

to the other.

We sayA is confirmed relative to B conditional on C iffA C is confirmed

relative to B C.

It is a bit more transparent what relative confirmation means if we write

it in this form:

Pr∗(A)
Pr∗(B)

>
Pr(A)
Pr(B)

This says that the ratio of the posterior probabilities of A and B is higher

than the ratio of their priors. But the ratio formulation has the disadvantage

of requiring us to be ever-vigilant about division by zero.

The following basic facts about confirmation follow from the probability

calculus. We omit the proofs.

Lemma 3. Consider any qualitative prior Pr(−) and posterior Pr∗(−), and any
propositions A, B, and C.

(a) If Pr(C) � 0, then A and B are not relatively confirmed conditional on C:
that is, A C ∼∗ B C.

(b) If Pr(B) , 0, A %∗ B, and B %∗ C then A %∗ C.
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(c) Let E be a set of propositions. We say E partitions A iff every world in A is
in exactly one E ∈ E. If E is a countable set that partitions A, and A E %∗ B
for each E ∈ E, then A %∗ B. Likewise, if B %∗ A E for each E ∈ E, then
B %∗ A.

(d) Let E be a countable set of propositions that partitions both A and B. If

Pr∗(A E) Pr(B) ≥ Pr∗(B E) Pr(A) for each E ∈ E

then A %∗ B.

We consider two constraints on posteriors. First, one’s evidence rules

out there being no agents at all.

Agents. Pr∗(I0) � 0

The second idea is that if two worlds are alike in every evidentially

relevant respect, then neither is confirmed over the other.

Definition 6. Let Pr(−) be a qualitative prior. We call a posterior Pr∗(−) evi-
dential iff no pair of evidentially equivalent worlds is relatively confirmed:

that is, for any evidentially equivalent worlds w1 and w2, w1 ∼∗ w2.

We can immediately rewrite this in a more general form.

Lemma 4. For any qualitative prior and any evidential posterior, if E is a set
of pairwise evidentially equivalent worlds, for any propositions A and B, AE is
not confirmed relative to BE; or in other words, A is not confirmed relative to B
conditional on E.

Proof. If Pr(E) � 0 then we are done by lemma 3 (a). Otherwise, there is

some world w ∈ E such that Pr(w) > 0. (Here we use our assumption that

the set of worlds W is countable.) The proposition A E is partitioned by the

set of worlds v ∈ A E. Each world v ∈ A E is evidentially equivalent to w,

so we know that v ∼∗ w. By lemma 3 (c), A E ∼∗ w. By parallel reasoning,

w ∼∗ B E. So A E ∼∗ B E by lemma 3 (b). �

Lemma5. LetPr(−) be a separable qualitative prior on a localmultiverse structure,
and let Pr∗(−) be an evidential posterior. For any possible multiverse sizes m and
n, Un is not confirmed relative to Um conditional on Ik .

Proof. Let Q be the set of distinct local profiles Q � [u1 · · · uk] where

(u1 , . . . , uk) is a sequence of inhabited universes and Pr(Q) > 0. These

propositions are mutually exclusive.
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Consider any Q ∈ Q. Any two worlds in Ik Q are evidentially equiva-

lent: each of the k inhabited universes in one world can be mapped to a

duplicate universe in the other, and locality says that duplicate universes

are evidentially equivalent. Thus lemma 4 tells us that neither of Un or Um
is relatively confirmed conditional on Ik Q. So we have

Pr∗(Un Ik Q) · Pr(Um Ik Q) � Pr∗(Um Ik Q) · Pr(Un Ik Q)

Lemma 2 tells us:

Pr(Q | Un Ik) � Pr(Q | Um Ik)
And so:

Pr(Un Ik Q) · Pr(Um Ik) � Pr(Um Ik Q) · Pr(Un Ik)
Multiplying these two equations together and canceling the (non-zero) fac-

tor Pr(Un Ik Q) · Pr(Um Ik Q)we find:

Pr∗(Un Ik Q) · Pr(Um Ik) � Pr∗(Um Ik Q) · Pr(Un Ik)

The conclusion follows by lemma 3 (d). �

Theorem 1. Let Pr(−) be a separable qualitative prior on a local multiverse struc-
ture, and let Pr∗(−) be an evidential posterior that satsfies Agents. For any possible
multiverse size n, if 1 < n < 1/p, where p is the fine-tuning parameter, then Un
is confirmed relative to U1.

Proof. If Pr∗(U1) � 0 then we’re done; so suppose Pr∗(U1) > 0. By Agents

(and the fact that U1 entails I0 ∨ I1) we have Pr∗(U1 I1) � Pr∗(U1) > 0. So

Pr∗(Un)
Pr∗(U1)

�
Pr∗(Un)

Pr∗(U1 I1)

≥ Pr∗(Un I1)
Pr∗(U1 I1)

�
Pr(Un I1)
Pr(U1 I1)

lemma 5

>
Pr(Un)
Pr(U1)

lemma 1 (d) �

The second result uses the idea is that one’s evidence does not count

against a multiverse, conditional on there being no fine-tuning for life.
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Definition 7. Given a qualitative prior Pr(−) on a multiverse structure, say

a posterior Pr∗(−) is ordinary iff for any possible multiverse size n, U1 is

not confirmed relative to Un conditional on every universe being inhabited.

That is, a posterior Pr∗(−) is ordinary iff for each n such that Pr(Un) > 0,

Un In %∗ U1 I1

Theorem 2. Let Pr(−) be a separable qualitative prior on a local multiverse struc-
ture. Let Pr∗(−) be an ordinary evidential posterior that satisfies Agents. For any
possible multiverse size n > 1, Un is confirmed relative to U1.

Proof. Suppose 1 ≤ k ≤ n. The conditions on a separable prior tell us that

Pr(Uk Ik) > 0 So by lemma 5, ordinariness, and lemma 3 (b),

Un Ik ∼∗ Uk Ik %∗ U1 I1

The propositions I1 , . . . , In partition Un ¬I0, so by lemma 3 (c),

Un ¬I0 %∗ U1 I1

Finally,

Pr∗(Un)
Pr∗(U1)

�
Pr∗(Un ¬I0)
Pr∗(U1 I1)

by Agents

≥ Pr(Un ¬I0)
Pr(U1 I1)

as shown above

�
Pr(¬I0 | Un) Pr(Un)
Pr(¬I0 | U1) Pr(U1)

>
Pr(Un)
Pr(U1)

lemma 1 (c) �

The proof also gives us a lower bound on the strength of confirmation.

For separable priors, the probability Pr(¬I0 | Un) of at least one universe

being inhabited if there are n universes total is 1 − (1 − p)n , where p is the

fine-tuning parameter.

Corollary 1. LetPr(−) be a separable prior, and letPr∗(−) be an ordinary evidential
posterior that satisfies Agents. For any possible multiverse size n, either Pr∗(U1) �
0 or else

Pr∗(Un)
Pr∗(U1)

≥ Pr(Un)
Pr(U1)

(
1 − (1 − p)n

p

)
where p is the fine-tuning parameter. For large n, this confirmation factor ap-
proaches 1/p.
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In other words, for separable priors and ordinary evidential posteriors,

self-locating evidence confirms a multiverse at least as strongly as the qual-

itative evidence “There is life” does.

B Self-Locating Priors

In appendix A we only considered prior and posterior probabilities for

qualitative hypotheses. It’s worth thinking about howwe can apply a more

traditional Bayesian model. If there are also self-locating prior probabilities—
not just prior probabilities of the qualitative world being a certain way, but

prior probabilities of you yourself being a certain way—then updating can

proceed in the traditional way: by conditionalizing the self-locating prior

on one’s self-locating total evidence. These priors need not represent any

person’s primordial credences (no more than the qualitative priors do);

rather they would be “ur-priors” that encode facts about evidential support

(see Meacham 2016, and references therein; Arntzenius and Dorr 2017).

The difficulty is in figuring out what those self-locating prior probabilities

should look like.

First a few preliminaries. While in appendix A we could afford to be

extremely non-committal about the nature of self-locating evidence, for this

sectionwe take themore opinionated stand that one’s self-locating evidence

is the sort of thing that can be conditionalized on. As we discussed in

section 4, we can theorize about a proposition expressed by a sentence “I

am now F” by way of the property of being F, which we can represent as

a set of centers. To make this precise, we deploy some standard tools from

epistemic logic—with centers taking center stage, rather than worlds.

Definition 8. A (centered) frame consists of the following:

1. A non-empty set W of worlds.

2. A non-empty set I of centers. Each center is in exactly one world.

3. A relation of evidential accessibility between centers. We write E(i)
for the set of centers that are accessible from i.

What it intuitivelymeans for a center j to be evidentially accessible from

a center i is that one’s self-locating evidence at i is consistent with being

at j.36 To put that another way, we can consider the conjunction of all

36To be more explicit, if i � 〈a , t , w〉 and j � 〈a′, t′, w′〉, this means that being the

qualitative way a is at t in w implies having only evidence that is compatible with being the

qualitative way a′ is at t′ in w′.
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properties being F which are part of agent a’s self-locating evidence at time

t in world w. This property is represented by a set of centers, which is the

set E(i)where i is the center 〈a , t , w〉.
It is common to take for granted that a center j is compatible with the

evidence at i if and only if one has the same evidence at j as at i, so i and j rule
out precisely the same centers. This amounts to supposing that evidential

accessibility is an equivalence relation, which amounts to a strong access
principle to the effect that one can always tell what one’s evidence is (see for

exampleWilliamson 2000, ch. 10; Salow 2018) But this assumption is highly

contentious, and unnecessary for the results that follow; we do not make

it.37

Even though we are not assuming that evidential accessibility is an

equivalence relation, we can use it to define a closely related equivalence

relation:

• Centers i and j are evidentially equivalent iff E(i) � E( j) and for any

center k, i ∈ E(k) iff j ∈ E(k).

This is the weakest equivalence relation that is extended by the accessibility

relation. Thus we can let a multiverse frame be a multiverse structure in

the sense of definition 1, together with an accessibility relation on centers,

where the structure’s evidential equivalence relation is defined in terms of

accessibility in this way.

Now let’s think about self-locating priors. Consider a simple case. There

are three cards, reading Zero, One, and Two. One of them is drawn by a fair

chance process. If Zero is drawn, there will be no agents; if One, then

there will be exactly one person in a black room; if Two, there will be

exactly two people in black rooms. It is straightforward enough that each

of these three qualitative scenarios should have prior 1/3. But self-locating
prior probabilities are much murkier. It isn’t clear how to come up with

reasonable prior probabilities for propositions like that expressed by “There

is exactly one person, and it’s me.” No objective chance was specified for

this, and it’s a bit mysterious how to even think about it—nowwe also need

37For example, some contend that an agent’s evidence is what they know (Williamson

2000, ch. 9). Moreover, it’s commonplace to say that an agent with hands knows that they

are not a handless brain-in-a-vat with misleading appearances, and that a handless brain-

in-a-vat with misleading experiences does not know whether they are an agent with hands

or a handless brain-in-a-vat with misleading appearances. Then the access principle would

fail. Skeptical hypotheses like these are particularly poignant in the context of cosmology:

if the world may well be vast, the chance of there really being many agents in unfortunate

skeptical predicaments—like “Boltzmann brains”—is not negligible.
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to assign some prior probability to the alternative proposition expressed by

“There is exactly one person, and it isn’t me.”

The way forward is to take this seriously: we can assign prior prob-

abilities to not being a person or an agent at all. This might have been

so—indeed, there might have been no one at all. And the fact that there are
agents—and that you are one of them—can do significant evidential work,

supporting some hypotheses over others. The ur-prior encodes this kind of

potential to do evidential work.

There are two different ways of thinking about what it is like not to be an

agent: contingentism and necessitism. The contingentist holds that onemight

have been nothing whatsoever—and so not an agent. The necessitist holds

that, come what may, one would have been something—but this something

might have been a very boring non-concrete object, without any thoughts

or feelings or spatiotemporal location. In either case, one would not have

been an agent. We will describe possibilities in these neutral terms, rather

than using more loaded language about whether one would have existed.
(To be clear, the relevant modality here is prior epistemic possibility, rather
than metaphysical possibility. But the structural issue is the same either

way.)

The self-locating prior approach requires an innovation (borrowed from

familiar models for free logics). In addition to the “agent-centers”, in each

world there is one additional null center, which represents the possibility of

not being an agent.38 We suppose that the evidential accessibility relation is

defined only on non-null centers: substantively, this is to assume that one

is sure to have evidence that entails being an agent, if one is an agent at all.

(This is another idealization.)

Just as we modeled self-locating evidence as a set of centers, we can

extend this to self-locating prior and posterior probabilities as well. A self-
locating prior Pr(−) is a probability measure defined for all sets of centers,

representing the prior probability of being one way or another.

In appendix A we modeled qualitative propositions as sets of worlds.

We can straightforwardly associate each set of worlds X with a boring set

of centers: namely, those centers that are in some world in X (including

the null centers). Given a self-locating prior Pr(−), we can thus read off

a qualitative prior Prq(−) by considering the probabilities of boring sets of

centers.

38We use just one null center per world because it is simple and sufficient for our appli-

cation, but other applications might call for assigning each world an “outer domain” that

contains many distinct “null centers.” Null centers need not be anything exotic: they might

just be triples 〈x , t , w〉 where x is not an agent.
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Among the properties we are interested in are properties that do not

entail being an agent. The set of centers that represents such a property

will include some null centers. This is important, since we want to assign

non-zero prior probabilities to qualitative propositions like there are no agents,
and thus also to qualitative properties like being such that there are no agents
or more simply not being an agent. No agent in any world has either of these

properties. The positive prior probability that properties like these receive

can only come from the positive prior probabilities of null centers.

In this setting, we can get self-locating posterior probabilities by just

conditionalizing on one’s self-locating evidence.

Definition 9. Let Pr(−) be a self-locating prior on a centered frame. For

any (non-null) center i such that Pr(E(i)) > 0, we define the self-locating
posterior

Pri(−) � Pr(− | E(i))
(where as before E(i) is the set of centers that are evidentially accessible

from i).

We can reconstrue rules like Compartmentalized Conditionalization,

Self Indication, and Self Sampling in this framework. These rules took

for granted that the posterior is determined by a qualitative prior together
with indexical evidence. In this framework, such rules can be reinterpreted

as rules for mapping a qualitative prior Prq(−) to an indexical prior Pr(−)
that enriches Prq(−). (That is, Pr(−) assigns the same probability to each

boring set of centers as Prq(−) assigns to its associated set of worlds.) The

self-locating posterior is then given by conditionalization.

For simplicity we restrict attention here to the case where there are

only finitely many worlds containing finitely many centers.39 In order to

specify enriched self-locating priors, it’s enough to specify the conditional

probability Pr(i | w) for each center i in world w. (Here i and w stand for

the obvious corresponding sets of centers.) The probability of an arbitrary

qualitative property P can then be calculated as

Pr(P) �
∑
w∈W
i∈P

Pr(i | w)Prq(w)

39In fact, even if there are infinitely many worlds, the same formulas will work as long as

the number of centers per world is bounded. (For Compartmentalized Conditionalization, let

T be the maximum number of evidential types in any world, instead of the total number of

evidential types.) The Self-Sampling recipe continues to work even if the number of centers

per world is finite but unbounded.
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Furthermore, it suffices to define Pr(i | w) for each non-null center i in a

world w. We just choose Pr( j | w) for the null center j so that the conditional
probabilities add up to one. Here are the recipes for generating self-locating

priors corresponding to each of the three rules we have discussed.

Self Sampling. For any non-null center i in world w,

Pr(i | w) � 1

n(w)
where n(w) is the number of non-null centers in w.

The prior probability of each world containing non-null centers is

evenly divided among those centers. Worlds that only have a null

center put all their probability there.

Self Indication. For any non-null center i in world w,

Pr(i | w) � 1

N
where N is the maximum number of non-null centers in any world.

The idea is that when there are fewer agents in a world, there is more

prior probability left over for the null center.

Compartmentalized Conditionalization. This case is more delicate: there

is a formula that works in cases where the structure of possible ev-

idence is especially simple, but not in general. It suffices for the

evidential accessibility relation to be an equivalence relation. In that

case, each non-null center i has a unique evidential type: there is a

unique set of centers E( j) (for any center j) that includes i. Let t(i) be
the number of centers in i’s world that are of the same evidential type

as i.40 Let T be the total number of distinct evidential types. For any

non-null center i in world w,

Pr(i | w) � 1

t(i)T

The idea is that the prior probability of a world is first evenly divided

among all evidential types, and then each type’s probability is evenly

divided again among its centers in that world. The probability of a

type that has no centers in a world all goes to the null center.

40The necessary and sufficient condition for Compartmentalized Conditionalization to be

representable by a self-locating prior is that t(i) is well-defined: that is, all evidential types

that contain a common center i must have the same number of elements in i’s world.
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These indexical priors agree with the original rules, in the following sense.

Start with any qualitative prior Prq(−). If you generate a self-locating prior

using the rule’s recipe above, then you conditionalize the prior on the self-

locating evidence for a center i (where E(i) has positive prior probability),

you get the same result as the original rule gives for i. We omit the proofs.

Since each self-locatingprior straightforwardly generates corresponding

qualitative priors and posteriors (via boring sets of centers), the constraints

on priors and posteriors we stated in appendix A can be applied straightfor-

wardly in this setting without modification. But since nowwe are requiring

posteriors to be generated by conditionalization, we can simplify the con-

straints a little. Here is a new principle.

Definition 10. Call a self-locating prior Pr(−) evidentially natural iff, for
any evidentially equivalent worlds w1 and w1, where the equivalence map-

ping takes center i1 in w1 to the center i2 in w2, the probability of being at

center i1 given that one is in world w1 is the same as the probability of being

at center i2 given that one is in world w2:

Pr(i1 | w1) � Pr(i2 | w2)

if Pr(w1) > 0 and Pr(w2) > 0.

Lemma 6. For any evidentially natural self-locating prior Pr(−), for any center i
such that Pr(E(i)) > 0, the posterior Pri(−) is evidential (definition 6).

Proof. Let w1 and w2 be evidentially equivalent worlds. The equivalence

map takes each center j in w1 ∩ E(i) to a center f ( j) in w2 ∩ E(i) (where

w1 and w2 stand for the obvious boring sets of centers). The case where

Pr(w1) � 0 or Pr(w2) � 0 is easy, so assume otherwise. In that case:

Pri(w1) · Pr(w2)

�
Pr(w1 ∩ E(i)) · Pr(w2)

Pr(E(i)) definition of Pri(−)

�

∑
j∈w1∩E(i)

Pr( j) · Pr(w2)
Pr(E(i))

�

∑
j∈w1∩E(i)

Pr( j | w1) · Pr(w1) · Pr(w2)
Pr(E(i))

�

∑
k∈w2∩E(i)

Pr(k | w2) · Pr(w1) · Pr(w2)
Pr(E(i)) evidential naturalness

� Pri(w2) · Pr(w1) by parallel reasoning �
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Theorem 3. Let Pr(−) be a separable, evidentially natural self-locating prior on a
local multiverse frame. For any possible multiverse size n such that 1 < n < 1/p
(where p is the fine-tuning parameter), for any center i such that Pr(E(i)) > 0, n
universes are confirmed relative to one:

Pri(Un)
Pri(U1)

>
Pr(Un)
Pr(U1)

or else Pr(U1) � 0.

Proof. Pri(−) clearly satisfies Agents: since E(i) only contains non-null cen-

ters, Pr(I0 | E(i)) � 0. Since Pri(−) is an evidential posterior, all of the

conditions of theorem 1 hold. �

Similarly, theorem 2 implies the following.

Theorem 4. Let Pr(−) be a separable, evidentially natural self-locating prior on
a local multiverse frame. Let i be a center such that Pr(E(i)) > 0 and Pri(−) is
ordinary (definition 7). For any possible multiverse size n > 1, n universes are
confirmed relative to one.
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