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Abstract

Sometimes you are unreliable at fulfilling your doxastic plans: for
example, if you plan to be fully confident in all truths, probably you
will end up being fully confident in some falsehoods by mistake. In
some cases, there is information that plays the classical role of evi-
dence—your beliefs are perfectly discriminating with respect to some
possible facts about the world—and there is a standard expected-
accuracy-based justification for planning to conditionalize on this ev-
idence. This planning-oriented justification extends to some cases
where you do not have transparent evidence, in the sense that your
beliefs are not perfectly discriminating with respect to any non-trivial
facts. In other cases, accuracy considerations do not tell you to plan to
conditionalize on any information at all, but rather to plan to follow
a different updating rule. Even in the absence of evidence, accuracy
considerations can guide your doxastic plan.

I The Nap

A What should I believe?
B The truth!

A Really? Ithought the answer would have something to do with what
my evidence supports. But before we get to that, I should clarify that
I don't really just have “on-off” beliefs. My beliefs come in degrees
between zero and one: I have credences. So my real question is: what
degrees of belief are the best ones for me to have?

*Thanks to Jeremy Goodman, John Hawthorne, and an anonymous referee for comments.



B Well, the best degrees of belief to have are those that maximize epistemic
utility. But I suppose that’s just a fancy way of saying “best.” More
substantively, I say degrees of belief are better—have higher epistemic
utility—when they are closer to the truth. If p is true, then the credence
in p with highest epistemic utility is 1, and if p is false, then the credence
in p withhighest epistemic utility is 0. Does that fit with your conception
of “best”?

A Yes, that fits with my goals. What I want from my beliefs is accuracy:
closeness to the truth[f]

B Then that answers your question. The best credences follow the truth
rule: assign one to every truth, and zero to every falsehood. Like I said:
if your goal is accuracy, then what you should believe is the truth.

A That’s not a helpful answer! I can’t have those degrees of belief.

B What, you have some problem with zeros or ones? Are those degrees
of belief beyond your reach?

A No, of course that’s not what I mean. I can have credence one just as
well as any other number. I suppose it’s even within my power to adopt
a credence function which happens to conform to your truth rule. But if
I did that, it would just be by luck. My attitudes just aren’t as sensitive
to the world as you seem to assume when you recommend the truth
rule.

Let me put it another way. Suppose I plan to follow the truth rule. I
might succeed in following it, by luck, but very likely I won’t succeed.
In fact, I have a good chance of ending up assigning credence one to a
false proposition that way, which is as bad as it gets accuracy-wise. For
that reason, the truth rule doesn’t seem like a very good plan for me.

B Ah, I see you were really asking a different question then. The question
you are interested in is not what degrees of belief are best for you to
have. Rather, your question is what degrees of belief are best for you to
plan to have. That’s an interesting question, toof

1. Arguing for epistemic norms on the basis of accuracy considerations is a dominant
theme in recent epistemology: for a small selection, see Joyce (1998), Moss (2011), Pettigrew
(2016), Levinstein (2017), Schoenfield (2018), and Horowitz (2019), along with other works
we discuss in more depth below.

2. Evaluating doxastic plans is another theme in recent epistemology: see for example
Schafer (2014), Schoenfield (2018, sec. 6, and references therein), and Pettigrew (2016, ch. 14).



A Yes, that sounds right.

Let me tell you more about a particular situation. (This one should be
easy.) My daughter is at the age where she’s dropping her nap. She
takes an afternoon nap roughly half the time. On the days when she
has a good nap, she is usually in a good mood in the evening. On the
days when she doesn’t have a good nap, she is often really cranky. What
I'm wondering is what degree of belief I should have that she will be
cranky this evening, after I find out whether she naps.

I suppose I could plan to follow the truth rule. That is, I could plan to
be sure she will be cranky if she really will be cranky, or else be sure she
won't be cranky if she really won't be. But that plan would be futile.
Even after I find out about her nap, I still won’t be sure what degrees
of belief would conform to the rule I planned to follow. I would just
be guessing (compare Horowitz 2019; Holguin, forthcoming; Dorst and
Mandelkern, forthcoming).

In fact, here’s what I think I would really do if I planned to follow the
truth rule: if my daughter naps, my best guess would be that I was in
the Nap-and-not-Cranky state, so I would put all my credence in that
state. If she doesn’t nap, I would guess that I was in the no-Nap-and-
Cranky state, and put all my credence in that state. (See[Figure 1) That
would make my accuracy as good as possible if I really am in one of
those two states. The problem is that for all I know now, I might be in a
Nap-and-Cranky world or a no-Nap-and-not-Cranky world. That can
happen. And in those cases, planning to follow the truth rule would
end up making my credences extremely inaccurate. It doesn’t look like a
good trade-off. To be precise, my current expected accuracy for planning
to follow the truth rule doesn’t look all that great.

B That’s right. I'll bet you can do better than that—and you won't be
surprised how. How about you plan to proportion your belief to the
evidence? That is, you could plan to follow this conditionalization rule:
if she naps, for each proposition p, set your credence in p equal to your
current conditional credence in p given Nap. Likewise, if she doesn’t
nap, set your credence in p equal to your current conditional credence
in p given no-Nap. What do you think would happen if you planned
to follow that rule?

A That’s one I think I can handle in this situation. I think I would really
have the credences the rule prescribes, whether or not she naps.
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Figure 1: The guess graph for the Nap situation. Nodes in the graph
represent states. An arrow from state s to s’ means that in state s one
guesses state s’.

B Great. So in that case, the expected accuracy of planning to follow the
conditionalization rule is exactly the same as the expected accuracy of
following the conditionalization rule. And this is better than what you
get from planning to follow the truth rule.

Actually following the truth rule would be better (expected accuracy-
wise) than conditionalizing. But planning to follow the truth rule is
worse than planning to conditionalize. The basic thing that’s going on
here is that you are foreseeably imperfect at following the truth rule in
this case, so the value of planning to follow that rule comes apart from
the value of successfully following it.

A So is conditionalization the best rule for me to plan to follow?

B That seems plausible, but to entirely settle the question we’ll need to fill
in some background assumptions. Let’s say a doxastic rule (just a rule
for short) is a function that takes each state of the world to a credence
function defined over states of the world | You also have your current
credences defined over these same states.

In order to evaluate the expected accuracy of planning to follow an
arbitrary rule, we need to model what credences this will lead you to

3. We are considering “coarse-grained" states, for now, rather than “fine-grained" com-
plete possible worlds. And we are thereby setting aside, for now, questions like what to
believe about one’s own credences. In our model of the Nap case there are just four states.
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have. In this situation, what you said about the truth rule provides a
general recipe. Say you plan to follow a rule f. Since all Nap states look
the same to you (so to speak), the best you can do is take a guess as to
which of the Nap states you are in. If you guess you are in state s, your
attitude will be f(s).

Your guess will be the same in all Nap states, and it will also be the
same in all no-Nap states. So in this case, whatever rule you plan to
follow, the attitude you will really end up having is entirely determined
by which cell of a partition of states you are in: one cell contains all the
Nap states, and the other contains all the no-Nap states. The question
of which rule to plan to follow comes down to the question of which
function from cells in that partition to credence functions maximizes
expected accuracy. This is a question we know the answer to: it’s
conditionalization (Greaves and Wallace 2006; see also Leitgeb and
Pettigrew 2010a, |2010b; Easwaran [2013; Pettigrew 2016, chs. 14-15;
Briggs and Pettigrew 2018).

Oh right, I think I knew that.

We can say something very similar about any situation where the cre-
dence that results from planning to follow a certain rule is determined
by your best guess at which state you are in, and your best guess is
itself determined by which state you are really in. We can represent a
situation like this with a deterministic guess model. We can work out the
details later when we have some paper (see [Appendix B), but here’s
the basic idea. A deterministic guess model is built up from two bits.
First, there’s a probability function representing your prior credences
about which state you are really in. Second, there’s a function g that
describes your guessing behavior: “for each state s, if I'm in state s, I
will guess I'm in state g(s)". Call this your guess function. This function
induces a partition of states: for any state s’ that you might guess, the
set of states where you guess s’ is a cell of the partition (that is, the set
of states s such that g(s) = s’). Then planning to follow the rule that
says to conditionalize on the cell of that partition given by your guess
will be optimal [

This was a kind of complicated way to get to an unsurprising conclusion.

Right, no surprises so far.

4. Though not quite uniquely optimal! See ITheorem 2| in lAppendix B}




IT The Clock

A Can I tell you about another problem I have? In the other room, there
is “a plain, unmarked circular dial with a single pointer that rotates
in imperceptibly short discrete jerks, a modernist clock-face designed
with an eye to the appearance rather than the reality of functional
efficiency” (Williamson 2011} p. 153; see also Elga 2013} Christensen
2010; Williamson 2014).

At the moment, I think that the pointer is equally likely to be in any
of its positions. Soon I'm going to look at that clock and update my
opinion about where the pointer is. What should I think??|

B Well, as always, the truth rule would be the best rule to follow, if you
could pull that off. What do you think would happen if you planned to
follow the truth rule in this case?

A TI'm not sure! My cognitive state isn’t perfectly sensitive to the position
of the pointer, but of course it also isn’t totally insensitive. For example,
if the pointer is at 12, I can tell that it isn't at 6. In fact, I'm sure that I
wouldn’t be off by more than one. If I planned to follow the truth rule,
I would have to take a guess at the state of the clock. If the pointer
is really at 7, I'm not sure what I would guess, but I am sure that my
guess would be n — 1, n, or n + 1 (modulo 12). And in fact, I assign
each of the three possibilities equal credence. (See [Figure 2]) So one
important difference between this kind of case and the nap situation
we were discussing earlier is that my guessing is indeterministic, by the
lights of my prior credences[f]

B Well, planning to follow the truth rule doesn’t look like a good idea:
for example, you might well end up being sure the pointer is at 2 when
it’s really at 1. But here’s a natural idea. The margin for error in your
guesses is one step of the clock: you can tell where the pointer is, to
within one step. So it’s natural to say that your evidence, when you look
at the clock and you're in state 7, is the set of states

E(n)={n’|n—1$n’$n+l}

5. Gallow (2021) provides a closely related analysis of this case, based on ideas that
overlap with the themes developed in this paper. We discuss the relationship between our
framework and Gallow’s in[Section V}

6. While this story is obviously simplified, there is empirical evidence that people do
make guesses which are implicitly sampled from an underlying probability distribution
(Vul and Pashler 2008).



1/3 1/3

Figure 2: The stochastic guess graph for the clock case. An arrow from s to
s’ with label p means that in state s one guesses state s’ with probability p.

(compare Williamson 2011).

A Soshould Ijust plan to proportion my belief to this evidence, like before,
by conditionalizing on E(#n)?

B Let’s check. Earlier we mentioned Greaves and Wallace’s result: in any
case where there is a function E that takes each state s to a set of states
E(s), and these sets of states form a partition, then among those doxastic
rules which are a function of your evidence, the optimal rule to follow
is to conditionalize on E(s) in each state s. But this isn’t a case like that:
in particular, the sets E(n) are not a partition. For example, the distinct
sets of states E(10) = {9,10,11} and E(11) = {10, 11, 12} have states in
common.

A Isee. That means that if E(n) represents my evidence in each state n,
then my evidence is not transparent: my evidence does not settle what
evidence I have. My evidence in state n is E(n), and this set includes
states like 7 + 1 in which my evidence is E(n + 1), which is different
from E(n). Intuitively speaking, if that’s my evidence, then I can’t tell
what my evidence is.

B That's right.
A So how do things go in this kind of case?

B Schoenfield (2017) shows that in cases like this, conditionalizing on
E(n) when you are in state 7 is not the best rule to follow, out of those



rules that are a function of your evidence Rather, out of those rules,
the best one to follow is what she calls “conditionalization*”: in each
state 11, conditionalize on the proposition “my evidence is E(n)”. That
is, conditionalization* says to conditionalize your priors on the set of
states

E'(n) = {n" | E(n’) = E(n)}

In my clock case, no two states have precisely the same evidence propo-
sition. So for each state n, we have E*(n) = {n}. That means that
conditionalization* coincides with the truth rule in my case.

Right.

Okay, I know that the truth rule is pretty great as far as expected
accuracy goes, butitstillisn’taruleIcan follow! Aswe discussed before,
the expected accuracy of planning to follow this rule is dramatically
worse than the expected accuracy of actually following it.

I see that we have to distinguish two different things. There are rules
which are a function of my evidence. And there are rules which are
followable, in the sense that if I plan to follow the rule, then I can be sure
I will succeed in having the attitude the rule prescribes. When evidence
is partitional, and I can be sure the evidence determines my attitude,
these two notions coincide. But in the clock case, conditionalization* is
a function of my evidence, but it is not followable.

Come to think of it, in this situation the ordinary conditionalization
rule is the same way: it’s a function of my evidence, but I can’t follow
it any more reliably than the truth rule or conditionalization*. If I plan
to follow it, I will probably fail! If I plan to conditionalize on E(1n), I am
just as likely to conditionalize on E(n — 1) or E(n + 1) as I am to do what
the rule actually tells me to do.

That’s true. But in fact, if your cognitive state is sensitive to the clock
in the way you have said, then only trivial rules are followable in your
sense. Whatever a rule says to do in state 7, you might instead do that
in the state n — 1 or n + 1. So if a rule is to be followable, it must say to
do the same thing in all three of those states. And so (by induction) the
rule must be trivial, in the sense that it prescribes the very same attitude
no matter what state you are in. Restricting your plans to followable

7. That is, those rules f such that for all states s and s’, if E(s) = E(s’) then f(s) = f(s).



rules does not seem like a good option here: that would keep you from
updating at all (compare Williamson 2008} Srinivasan 2015).

Very well then: if I'm going to make any plans at all, I'd better not ex-
clude rules that aren’t followable. Iwon’t rule out the conditionalization
rule—and I also won't rule out the truth rule, or conditionalization*,
which amounts to the same thing in this case. None of these rules is
followable: planning to follow any of these rules is unlikely to turn out
precisely the way the rule prescribes. But I can still consider how good
each of them is as a plan. I just have to take into account the differ-
ent ways things might go if I plan to follow the rule, whether or not I
succeed in following it in the end

So which rule makes the best plan?

In this case, like before, we are assuming that if you plan to follow a
rule f (which, as we said, is a function from states to credence functions
defined on states), then you will end up having the credence f(s),
where s is the state that you guess that you're in. Unlike before, though,
your guess is not simply determined by the state you are really in. It’s
stochastic. But we can use your prior credences about your guessing to
calculate the expected accuracy for any rule you might plan to follow.

Give me a minute to work this out ... (See for details.)

Okay, I've got it. In this case the rule that uniquely maximizes expected
accuracy really is conditionalization on E(#) in each state n.

Neat! So it looks like planning to proportion my belief to the evidence is
vindicated! In particular, this is better (in terms of expected accuracy)
than planning to proportion my belief to my evidence* along the lines
of Schoenfield (2017), or planning to follow the truth rule.

Or maybe this is a better way to put it. What we have vindicated is the
idea that, given these assumptions about my powers of discrimination,
the set of three states E(n) = {n —1, n, n+1} really specifies something
I ought to plan to proportion my belief to. In that sense, we could say
this family of propositions plays the role of evidence for me. To get to
that conclusion, we didn’t actually need to assume that the function E
played some special role in constraining my credences. Rather, it arose
from a description of my psychological propensities—the way in which
my cognitive state is sensitive to the state of the clock. The set E(n)

8. In fact, this is precisely what Schoenfield (2018) recommends in a different context.



includes the states that are “close” to 1, in the sense that they are states
I could easily mistake for 7, if I guess which state I'm in.

That’s how it worked out in this case. But maybe we shouldn’t general-
ize too hastily.

IIT An Old Friend

A

Here’s another situation I'm in surprisingly often (Lasonen-Aarnio
2015; Salow 2018). I'm waiting at a cafe for an old friend who I haven't
seen for a long time. I think the next person who walks in might be
my friend, or they might be a similar-looking stranger. Let’s say both
possibilities are equally likely. If my friend comes through the door,
I feel sure that it’s my friend—I'd know that face anywhere. But if a
similar-looking stranger comes through the door, I can’t tell whether or
not it’s my friend.

Why not reason like this? (Salow 2018, pp. 702-707) If you know this
is how it goes for you, then if you introspect and recognize that you
don’t feel sure whether it’s your friend, you can then deduce that it must
really be a stranger. So whether you feel sure or not, you really can tell
whether it’s your friend.

That might work for some people, but I've tried it, and when I'm in this
situation I'm just not good enough at introspection! When I feel sure it’s
my friend, I can recognize my feeling of confidence just fine: I'm in no
danger of mistaking my sure feeling for the more ambiguous feeling.
But when it’s a stranger and I have an ambiguous feeling, my attempts
to identify my own feeling are equally ambiguous. I have the same
problem recognizing my own feelings as I have recognizing people!

And I suppose it’s no help to introspect and check whether you feel sure
that you feel sure . ..

Right! When it feels ambiguous to me whether it’s my friend, it also
feels ambiguous to me whether it feels ambiguous, and my attempts to
identify that ambiguous ambiguity are also ambiguous!

So how have you dealt with these situations so far?

Here’s something some people have suggested (Lasonen-Aarnio 2015;
Williamson 2000). When I see my friend, in fact I know it’s my friend,
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Figure 3: The guess graph for meeting an old friend.

and I have evidence that entails it’s my friend. When I see a stranger, I
don’t know whether it’s my friend or a stranger, and my evidence leaves
both possibilities open. It’s natural to think I should plan to proportion
my belief to the evidence, like in the other cases we’ve been talking
about. So here’s the rule I plan to follow. If it’s my friend who comes
in, I'll update on my evidence, and thus be sure it’s my friend. If it isn’t
my friend, I don’t get any relevant evidence, and so I'll continue to have
credence one-half that it’s my friend.

How’s that been going?

Not well! Here’s what happens when I plan to follow that rule. In the
good case when it is my friend, I always wind up having credence one
that it’s my friend, and that’s nice. But in the bad case when it isn’t my
friend, and my phenomenology is ambiguous, I just guess.

I suppose that you can’t tell that you're guessing, so you can’t use that
fact to figure out that it’s really a stranger, either.

Afraid not. So in the bad case, I can go either way. I'm equally likely to
end up doing what I planned for the good case when it is my friend as
I am to do what I planned to do in the bad case when it isn’t my friend.

(See[Figure 3)

With this plan, in the good case, I always end up certain I'm in the good
case. But in the bad case, half the time I wind up being wrongly certain
I'm in the good case. Now that I'm thinking about optimizing expected
accuracy, that seems like it may not be a very good trade-off. What do
you think?

Let me think about it for a minute ... Ok, here’s a rule. When it’s
a stranger, be certain that it’s a stranger; when it’s your friend, have
credence 2/3 thatit’s your friend. Planning to follow this rule maximizes
expected accuracy.
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A That’s weird, isn't it? Given my propensities to make mistakes, it would
be natural to say that my evidence is stronger in the good case, when
I can easily recognize my friend, than it is in the bad case, when I
can’t tell what’s going on. But while this rule does make different
recommendations for the two cases (even though I can’t always tell
them apart), it recommends less confidence when I am in the good case
than when I am in the bad case!

There is an asymmetry in my propensity to make mistakes in the good
case and the bad case. I won't easily mistake my friend for a stranger,
but I might easily mistake a stranger for my friend. We could say that
the mistakability relation is asymmetric: the good case is not mistakable
for the bad case, but the bad case is mistakable for the good case. It was
very natural to think that there is a relation of “evidential accessibility”
that goes the same way. What I mean is, it is natural to think that when
I am in the good case, I should rule out the bad case (in the sense of
becoming certain that it does not obtain); but in the bad case I should
not rule out the good case. But in fact, the optimal rule says exactly the
opposite: in the bad case, rule out the good case, but not vice versa.

B Right, but that’s not the only difference. The best plan isn’t to condition-
alize on the set of states that you don’t rule out. In the good case, you
don’t get to rule out any states. But your prior credence that it’s your
friend is 1/2, while the posterior credence you plan to have in that case
is 2/3. The best rule to plan to follow in this case isn’t to conditionalize
on any set of states. It’s a different kind of thing.

A Can you explain why that’s the best plan?
B Sure. Here’s the reasoning[)| There are three relevant possibilities:

1. You see your friend, and you guess it’s your friend.

2. You see a stranger, and you guess it’s your friend.

3. You see a stranger, and you guess it’s a stranger.
You assign case 1 prior credence 1/2 and cases 2 and 3 prior credence
1/4 each. If you plan to follow a certain rule f, then you will end

up having the credences f(Friend) in cases 1 and 2, and the credences
f (Stranger) in case 3. There are a few fiddly details here about scoring

rules (see|Appendix C) but things work out basically the way you would

9. See[Theorem 3|in|Appendix C|for a generalization.
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expect: since case 1, where you see your friend, is twice as probable as
case 2, where you don't, the optimal credence function to have for those
cases gives twice as much probability to seeing your friend as to seeing
a stranger. Meanwhile, in case 3 it’s best to be sure it’s a stranger, since
that’s the only way case 3 can arise.

A So this case goes differently from the clock case we talked about before.
In that case, the best rule for me to plan to follow involved becoming
sure of something: that the clock pointer is at one of those positions
that could easily be mistaken for the actual position. Furthermore,
my best plan was to conditionalize on this proposition. Here, though,
while my best plan sometimes involves becoming sure of something—
that it’s a stranger—this certainty doesn’t line up with the strength of
my epistemic position in the way I expected. Furthermore, the rule
that is best for me to plan to follow sometimes prescribes changing my
credences without becoming certain in anything new. So in some cases,
this optimal rule does not say to conditionalize on any proposition.

IV The Music Competition

A Here’s another situation I'm in. It feels quite different to me, and I'm
curious what you'll make of it.

My little brother has his heart set on attending Julliard. He plays the
oboe, and is currently one of two finalists in a music competition. I've
been told that applicants like him who win this sort of competition are
admitted to Julliard around 90% of the time, and that applicants like
him who haven’t won this sort of competition are admitted around 10%
of the time. My brother says that he and his competitor are very evenly
matched, so it’s about fifty-fifty whether he wins. As you’d expect, right
now my credence that he’ll get into Julliard is 0.5. But I have a hard
time figuring out how to react when my brother lets me know whether
he won the competition.

B Why are you finding it hard? This one seems pretty straightforward:
structurally, it sounds just like the nap case from earlier.

A Here’s the thing: I'm very emotionally invested in my brother’s aca-
demic wellbeing, and that makes my thoughts about him less stable
than my other thoughts. Whatever I try to do, I'm always either over-
confident, becoming certain that my brother will get in or certain that he
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won't, or else I'm underconfident, staying at my original credence of 0.5. I
can’t seem to sustain any other degree of belief on this question besides
0, 0.5, or 1. I hear that this kind of thing is not that uncommon

What determines which state of belief you're in?

It’s like this. If I aim to be confident that my brother will be admitted,
and go for credence 0.8 or above, I wind up certain that he’ll get in.
If I aim to be confident that my brother won't get admitted and go for
credence 0.2 or below, I wind up certain that he won’t get in. And if I
aim to have middling credence between 0.2 and 0.8 then I wind up at
0.5. As you might imagine, my credence about my brother’s academic
trajectory has jumped around dramatically! I'm like Plato’s charioteer,
trying to guide winged horses that are irrationally pulling me off in
different directions.

So you'd better make a plan that compensates for your dispositions
toward overconfidence or underconfidence. Here’s how it’s going to
go. Your dispositions are coarse-grained enough that it doesn’t really
matter what precise credence you aim for—in most cases you won't
hit it anyway. All you get to choose is, in each situation, whether to
go High, where you end up at 1, Middling, ending up at 0.5, or Low,
ending up at 0. So consider the trade-off between these two options:

1. A90% chance of credence 1in a truth, and a 10% chance of credence
1 in a falsehood.

2. A 50% chance of credence 0.5 in a truth, and a 50% chance of
credence 0.5 in a falsehood.

I'm not sure which one is better. Which option has higher expected
accuracy?

Thatdepends! There are many different scoring rules, which are different
ways of measuring closeness to the truth. For the other problems we’ve
talked about so far, it hasn’t mattered which scoring rule you use. In all
of those cases, all (proper) scoring rules have given the same verdicts
about accuracy-optimizing plans[7] But in this case, things are messier.
Different scoring rules give different answers.

10. For more realistic versions of such overconfidence effects and conservatism bias, see
Fischhoff, Slovic, and Lichtenstein (1977) and Edwards (1982).

11. “Proper scoring rules” (see include all of the accuracy measures that
are widely defended in the literature, such as the Brier score or logarithmic score (though
technically this is not a real-valued scoring rule, since its value can be negative infinity).
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For example, the logarithmic score says that it’s really bad to be certain of
a falsehood If that’s your scoring rule, then you should avoid the risk
of extremely costly overconfidence, and just stick to some Middling cre-
dence, no matter what you find out about your brother’s competition—it
isn't worth the risk. For a different example, the Brier score says that the
inaccuracy of having credence p in a falsehood is p?, and the inaccuracy
of having credence p in a truth is (1 — p)2. (A credence is more accurate
when its inaccuracy is closer to zero.) According to this scoring rule,
having a Middling credence has inaccuracy 0.25 whatever happens to
your brother. Meanwhile, if your brother wins then a High credence
has a 10% chance of inaccuracy 1 and a 90% chance of inaccuracy 0, so
the expected inaccuracy is 0.1. So you'd be more accurate on balance
by going High and taking the risk.

Your situation is pretty much the way William James famously put it
(1896):

[B]y choosing between [different scoring rules] we may end
by coloring differently our whole intellectual life. We may
regard the chase for truth as paramount, and the avoidance
of error as secondary; or we may, on the other hand, treat the
avoidance of error as more imperative, and let truth take its
chance.

But the other cases we discussed before weren't “Jamesian” in this way:
all proper scoring rules agreed on what credal plan they recommended.

Still, things aren’t completely up in the air even now. Every reasonable
scoring rule is going to give rise to the same kind of plan for cases
like this one. There will be some pair of threshold probabilities to and
t1. What the thresholds are will be determined by your scoring rule.
(Note these won’t generally be the same as the thresholds that figured
in your dispositions, which were 0.2 and 0.8.) The optimal rule will say
something of this form: if you are in a state s such that the conditional
probability of p given E(s) is above t1, go High; if it is below t(, go Low;
and otherwise go Middling.

Even more complicated situations can lead to even greater divergence

in the recommendations of apparently sensible scoring rules. But so it
goes.

12. The logarithmic inaccuracy of credence p in a truth is —log p, and for a falsehood the
inaccuracy is —log(1 — p). This diverges to infinity for credence 0 in a truth or credence 1 in
a falsehood.
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V Taking Stock

Let’s draw some lessons from the preceding scenes.

We’ve been thinking about updating: changing your degrees of belief in
response to changes in your situation. Which ways of updating are epistem-
ically upstanding? We have taken up two themes from recent epistemology.
First, our standard of evaluation is accuracy—closeness to the truth. Second,
our object of evaluation is a doxastic rule: a prescription for what credences
to adopt in various circumstances. But (as others have noted in other con-
texts) planning to follow a rule and successfully following it are two different
concerns. Sometimes it is better to aim for a lower target than to aim high
and risk missing badly. So the central ideas we have been exploring are
that methods for epistemic updating are described by doxastic rules, and
that such a method is better insofar as planning to follow the rule is more
accurate in expectation, taking into account one’s fallibility at following
plans.

Gallow (2021) pursues some closely related ideas. Where we consider
doxastic rules, Gallow considers “learning dispositions”: these are modeled
as functions that take each proposition which might be your total evidence to
a credal state. Where we consider the possibility of imperfectly following
one’s planned rule, Gallow considers the possibility that one’s “learning
disposition may misfire”. There is a stochastic relationship between which
proposition actually is your total evidence and which proposition is updated
on (see Gallow’s sec. 2 and sec. 4). Gallow then considers the question of
which dispositions optimize expected accuracy under these conditions—
this is directly analogous to our main line of inquiry, cast in his alternative
framework. Unsurprisingly, given these shared starting points, he recom-
mends an updating rule that coincides with the ones we discuss in many
cases. (His central case is a version of the unmarked clock we discuss in
Compare, in particular, our[Theorem 3|with Gallow’s proposition
1 in appendix B.)

Still, there are many differences between Gallow’s framework and ours.
First, Gallow’s “misfiring” always consists in updating in the right way on
the wrong evidence. The credences you end up with are the ones your
“learning disposition” specifies for some possible evidence proposition—it
just may not be the evidence you really have. But as we considered in
your credences might be imperfectly sensitive to the state of the
world in many different ways besides this.

More generally, the most important point of contrast concerns the role
of evidence. Gallow treats evidence as an “input”: the propositions that
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one might receive as evidence are taken as given, and they provide the key
structure that guides his analysis. But a very different picture emerges from
the preceding scenes. When “evidence” appears in our analysis at all, it is
not as an input, but as an output.

It is standardly thought that evidence constrains updating. What does
this amount to? Here was the picture from Greaves and Wallace (2006) and
Schoentfield (2017). First, as a simplifying assumption, we factor out states
from plans. This is to suppose that the subject matter under consideration
is not so fine-grained that it settles which doxastic rule you plan to follow.
(Otherwise the prior probability of being in one state or another would
vary with your plan, rather than being held fixed as Greaves and Wallace
assume.) Second, there is some feature of your state that, together with your
planned rule, determines your credences. We can represent this feature by
a partition & of the set of states. The only doxastic rules that are “available”
(to use Greaves and Wallace’s term) are those which are determined by &—
that is, the available rules are functions from states to credence functions
which are constant on each &-cell. This has the upshot that, among the
available rules, the one that maximizes expected accuracy is conditionalizing
on whichever &-cell is true.

The partition & plays the role of evidence in two ways. First, it cir-
cumscribes which updating rules count as “available”: those which are a
function of the evidence. Second, among these available rules, the one that
maximizes expected accuracy tells you to be certain of a proposition in this
partition]"|

We have relaxed the assumptions of Greaves and Wallace’s framework.
They only considered certain kinds of change of mind to be available as plans
at all—those which are determined by an antecedently given partition &
So what evidence you might have imposes a constraint on what doxastic
plans you can have. For example, you can’t take up the truth rule as your
updating policy—that rule is not “available”. Meanwhile, if you adopt one
of the quailable rules, the framework takes for granted that you will succeed
in conforming to it: the possibility of ending up with credences other than
those you planned to have is not even considered.

Cases like the unmarked clock suggest that this is not a realistic picture.
In such cases your change of mind is predictably sensitive to features of the
world, but there is no feature of the world to which it is perfectly sensitive.

13. Note, though, that calling the true &-cell (as we have characterized it) your “evidence”
conflicts with how Schoenfield (2017) describes things: this proposition corresponds to what
she calls E*, rather than E. Your &-cell, which determines your posterior credences, is not
your evidence proposition itself, but rather the proposition “my evidence is E.”
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Then there may be no non-trivial rule that you can plan to follow with
assurance of perfect success. Anti-luminosity considerations more gener-
ally suggest that such predicaments are pervasive: our access to the world,
and our ability to guide our own minds in response to our environment, is
inexact.

The picture we have explored instead is that there is no prior constraint
on which doxastic plans you are allowed to have. You can plan to follow
the truth rule, or whatever—but there is no guarantee that adopting such a
plan will have the intended results. In this sense, then, this is a picture of
updating without evidence. There are no criteria that rule in some “avail-
able” plans which are sensitive only to “accessible” features of the world,
and rules out others that appeal to “inaccessible” features. Rather, there
are many ways we can come close to fulfilling our doxastic plans or depart-
ing from them—many varieties of doxastic triumph or tragedy. There also
need not be anything with the second feature characteristic of evidence in
the setting of classical conditionalization: the rule that maximizes expected
accuracy as a plan may not recommend certainty in any non-trivial set of
states. But even in these conditions, where there is no natural sense in
which you are gaining classical “evidence,” we can still evaluate how well
an updating rule conduces to forming accurate beliefs—as a fallible plan.

In order to carry such evaluations out in any detail, we begin—as we
did in the preceding scenes—by describing prior probabilities about what
credences an agent will end up having in various circumstances if they
adopt a certain doxastic rule as their plan. In[Sections I to[ITI, we considered
an agent whose psychological propensities had a simple structure. What
determined their credence was a guess about the state of the world, which
was imperfectly correlated with the actual state of world. If the agent
guesses they are in state s, they adopt those credences that they planned
to adopt in s. In[Section I} the agent’s guess was determined by the actual
state of the world, while in and [[I] the agent’s guess was only
stochastically related to it. We can represent situations like these using what
we call a guess model. Such a model is given by a probability distribution
over pairs of states, one component representing the actual state, and the
other the agent’s guess. For such simple cases, it is possible to exactly
characterize the rules which maximize expected accuracy as plans: this is
worked out in and

In situations apt to be represented by these simple guess models, we
can say precisely when a certain partition of states & does play the classical
evidence role—that is, when the best plan is to conditionalize on whichever

cell in & is true. (This is made precise in |[Appendix D}) This holds if and

18



only if the following two conditions hold. First, your beliefs are perfectly
sensitive to this subject matter: your guess state is certain to be in the same
&-cell as the actual state. Second, your beliefs are perfectly insensitive to
anything else: the probability of guessing any state, given that you are
actually in a certain state s, is the same for each state s within the same
&-cell. These conditions correspond to two idealizations that commonly
underwrite traditional notions of evidence. But these conditions are not
realistic in general; when they fail, nothing plays this classical role.

Still, one might suspect that the evidence has simply been hidden else-
where in the model. In simple guess models, we spoke as if your guess
plus your plan determines your credences. And the optimal rule to plan to
follow effectively says to conditionalize on “my guess is s” when you are
in state s. (We discussed this informally in and we spell it out
carefully in[Appendix C]) So isn’t the fact about what your guess is playing
the standard evidence role? In particular, doesn’t this have the upshot that
you should plan to be certain of what your guess is?

First, that isn’t quite what a guess model actually says. A doxastic rule
only represents your credences about what state you are in, a guess model
only says anything about the evolution of these credences, and the accuracy-
based evaluations we glean from the model only apply to rules for updating
these credences. But the state you are in does not include your guess[ So
in fact, instead of prescribing certainty about what state you have guessed
that you are in, the accuracy evaluations we can derive from a guess model
are simply silent on this question.

Indeed, we need not think of the guess in the model as representing
anything psychologically real at all, which you might have some opinion
about. Rather, it can be thought of as a device for taking a plan and a prior
and producing a probability distribution over pairs (s, P) of a state and
credence function defined on states[| In the “guess anti-realist” picture,

14. It is important that we are still supposing, with Greaves and Wallace, that the “state”
is not a fine-grained possible world that settles every question; it is coarse-grained, and
in particular it does not settle your state of mind. But in general, you can of course have
credences in propositions about your own credences; and of course, what you plan to believe
about your own beliefs is not independent of what you believe. This makes things hard
in ways we do not address here (see Greaves [2013). For example, it might look like it’s
worth taking a small accuracy hit by having positive credence that 2 + 2 = 5, if that lets you,
for example, improve your accuracy score for your credence in the proposition someone has
positive credence that 2 + 2 = 5.

15. The resulting picture is similar to Schwarz|2018(s “imaginary foundations”: one con-
ditionalizes on some “imaginary” proposition, which does not represent some fact about
one’s environment or about one’s psychology, but rather serves as a mere index.
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you have genuine prior credences about how your doxastic plan might turn
out—how your possible beliefs are correlated with your possible state—
and this ends up leading to the recommendation that you should plan to
update your credences as if you were conditionalizing on some further
subject matter. But that subject matter—your “guess”—isn’t one you really
had any prior opinion on, and it isn’t one you need to have any posterior
opinion on, either. It's a mere calculation aid.

Guess models capture two idealizing assumptions. (1) You are sure to
do something that you planned to do. That is, it is certain that your credal
state will be one that fits with your plan for some possible state, even if not
the state you are actually in. (2) The kinds of mistakes you are liable to
make do not depend on which doxastic rule you plan to follow. Condition
(1) guarantees that for each rule, the probability of having certain credences
in a given state when you plan to follow that rule can be generated by an
error model, which tells you how likely you are to follow any given state t’s
recommendations when you are actually in some state s. What condition (2)
says is that there is a single error model that generates these probabilities for
every rule. But these conditions on what kinds of credences you anticipate
having given various doxastic plans do not require that you are really going
through some psychological process of guessing a state at all.

The idealizing assumptions incorporated in guess models do not al-
ways hold. There are other ways in which one’s beliefs might depend on
one’s doxastic plan without being perfectly reliable. The music competi-
tion example in is like this: in particular, there the agent might
end up with credences they did not plan to have in any circumstances.
The model we described for a case like this did not include a “guess”: in-
stead, we directly described a probabilistic relationship between an agent’s
planned update rule, the state of the world, and their eventual credences.
In[Appendix A]we call representations of these more general relationships
planning models. Planning models without any guess structure do not make
it tempting to think that there is really some hidden fact playing the evi-
dence role—neither an input parameter that is fed to the doxastic plan, nor
some proposition the optimal plan tells you to be sure of.

In these more general planning models, the doxastic rule itself may not
really play a crucial role at all: the key thing that we end up evaluating is just
what dispositions to form beliefs result from planning to follow that rule.
What really matters is not what the rule says to believe, but how planning to
follow the rule might affect your beliefs, which may in principle come very
far apart from what the rule officially says. The role the rule still plays is as
a parameter for a comparison class of potential doxastic dispositions.

20



In this way of thinking about it, epistemic updating comes down to
a question of robot design[¥ The picture is that you have some stock
of cognitive widgets that can be assembled to produce various doxastic
dispositions, and the question is just how to put them together to build
the best believing machine. What we have explored here is how this kind
of project might go, by examining a few different kits of simple, tractable
widgets—in particular, noting some situations in which the best robots we
can build are conditionalizers, and others where they are not. This project
is in the broad spirit of Quine’s naturalized epistemology: as he put it, “For
me normative epistemology is a branch of engineering. It is the technology
of truth-seeking” (Quine 1986} pp. 663-665)["]

Once upon a time, Bayesians thought we had a “cognitive home” (Wil-
liamson 1996): a domain of transparently recognizable and unmistakable
facts to which our beliefs were sensitive—perhaps facts about our own sense
data. But there are good reasons to think that we have no such cognitive
home (among others, see Jeffrey 1983; Williamson 2000). We can make mis-
takes about our own experiences, and even about how our own experiences
seem to us. Here we have been exploring cognitive homelessness.

Some philosophers have turned to other theories of evidence: for exam-
ple, Jeffrey (1983) conceived of evidence as imposing “arational” doxastic
constraints. Experience knocks certain degrees of belief around; your job
is to do the best you can to keep everything coherent (compare also van
Fraassen 1989, ch. 13). But that’s not what’s happening here, either. We
impose no constraints on what doxastic plans you may form. You are not
required to be certain of anything in particular; no more are you required
to be uncertain to any particular degree in anything in particular. The con-
tingent facts your beliefs are responding to are all the facts in the world,
though the degree to which you can successfully hope to respond to them
varies quite a bit—you’ll do better if you try to follow traffic signs than if

16. Compare Carnap (in Carnap and Jeffrey (1971, p. 17):

Thinking about the design of a robot might help us in finding rules of ratio-
nality. Once found, these rules can be applied not only in the construction of a
robot but also in advising human beings in their effort to make their decisions
as rational as their limited abilities permit.

Carnap quaintly thought of his "robot" as an ideal reasoner, serving as a foil for humans’
"limited abilities". In contrast, our "robots" are also very limited, but in predictable ways
that we can study and accommodate.

17. Compare Pollock (1986)’s notion of procedural justification, as well as approaches that
give a central place to cognitive dispositions (Lasonen-Aarnio, |n.d.) or habits (Hawthorne and
Srinivasan [2013).
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you try to follow fluctuations in cosmic background radiation. The overall
story here is not about optimizing your belief state under certain constraints
imposed by the “evidence” (whatever that may be)—but about optimizing a
belief-plan under the psychological constraints given by your limited ability
to follow belief-plans. Instead of trying to come up with a new theory of
what evidence is, we have advanced a theory that gives evidence no central
role at all.

A Preliminaries

Planning to follow an updating rule does not generally guarantee that you
will successfully conform to it, but there is some connection between your
planned rule and your future credences. In to[[V]we considered
various ways this connection might go, proceeding from stronger to weaker
constraints. In an agent’s credences were determined by their
guess, which was deterministically settled by the state of the world. In
tions Iljand [III, we generalized this to consider indeterministic connections
between the state of the world and an agent’s guess. In we
dispensed with guesses and associated each plan with predicted credences
more directly. These appendices will make each of these approaches more
precise, and spell out and justify the main claims in the text about expected-
accuracy-maximizing plans.

For a set X, a discrete probability distribution on X is a function from X to
[0, 1] whose values sum to one. (We will focus on the discrete case just to
keep the math simple, avoiding integrals.) Let PX be the set of all discrete
probability distributions on X.

Let S be a set of states. For short we’ll call elements of PS opinions. An
accuracy scoring rule is a function A : S X PS — R that takes each pair of a
state and an opinion to a real number—intuitively, the accuracy of credal
state Q if s turns out to be actual. Greater numbers represent more accurate
opinions[T¥|

For an opinion Q € PS, let EA(P, Q) be the expected accuracy score

EA(P,Q) = ) P(s) A(5,Q)

seS

An opinion P € PS is self-recommending with respect to a scoring rule A iff

EA(P,P) > EA(P,Q) forallQ # P € PS

18. Greaves and Wallace (2006) call these epistemic utility functions. In other contexts
sometimes the sign is reversed, and one instead considers inaccuracy scores.
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A scoring rule A is strictly proper iff every opinion in PS is self-recommending| ™|

A (doxastic) rule is a function f : S — PS from states to opinions.

Our most general way of describing the likely consequences of planning
to follow a rule is a planning model. A planning model is a function M) that
takes each doxastic rule f to ajoint probability distribution M € P(S X PS).
Intuitively M ¢(s, Q) represents the probability of being in state s and having
opinion Q, if you plan to follow the doxastic rule f

For such a joint distribution P € P(S x PS), the expected accuracy of P is

EA(P):= > P(s,QA(,Q)

seS,QePS

(This definition generalizes the definition of relative expected accuracy
for two opinions given above: for P,Q € PS, EA(P,Q) = EA(R) where
R(s,Q’) = P(s) for Q" = Q and 0 otherwise.) A rule f is optimal with respect
to a planning model M) iff for any rule f”,

EA(My) > EA(My)

The main results below are applications of Greaves and Wallace’s Theo-
rem (2006); so we begin by restating that result in the terms of this appendix.

Besides the value of planning to follow a doxastic rule, we can also
consider the value of actually following a rule. Forarule f : S — PS and a
probability distribution P € PS, the expected accuracy of following f is

EA(P, f) = ) P(s)Als, f(5))

seS

(This definition is also a special case of the definition of expected accuracy
for a joint distribution given above: EA(P, f) = EA(R) where R(s, Q) = P(s)
if f(s) = Q and 0 otherwise.)

Let E be a partition of S. For any state s € S, let E(s) be the unique
E-cell that contains s. A rule f : S — PS is E-determined iff for all s,s” € S,
f(s) = f(s”) whenever E(s) = E(s’).

For a probability distribution P € PS and a partition E, the conditional-
ization rule condpg : S — PS is the function that takes each state s to the
distribution

condpr(s) = P(— | E(s))
19. In Greaves and Wallace’s terminology, everywhere strongly stable.
20. Compare Pettigrew’s (2020) closely related idea of a stochastic update rule.

23



Theorem 1 (Greaves and Wallace 2006). Let P € PS be a probability distribu-
tion, let E be a partition, and let A : S X PS — R be a strictly proper scoring rule.
Suppose that condp g (s) is self-recommending for each s € S. Then

EA(P,condpr) > EA(P, f)
for every E-determined rule f distinct from condp.

It’s worth re-emphasizing that this theorem is about the optimality of
actually following a certain rule, rather than the optimality of planning to
follow a rule when one is not sure to succeed.

B Deterministic guess models

In principle, a planning model can represent an arbitary relationship be-
tween a rule and what one expects to ensue from planning to follow it. To
make progress, we considered a tractable class of planning models that we
called guess models. In[Section ] we began with deterministic guess models,
where the actual state determines which state you guess you are in. The
intuitive picture is that when you plan to follow a rule f, the following
happens. First, you guess which state you are actually in: if your actual
state is s, call your guess g(s). Second, you adopt the attitude f(g(s)).

Definition 1. A deterministic guess model is a planning model M_) for which
there exists a prior probability distribution P € PS, and a function g : S — S
that we call a guess function, such that for each rule f : S — PS,

P(s) if f(g(s)) = Q

0 otherwise

Mf(S/Q) = {

For simplicity, we will only consider regular prior probability distribu-
tions such that P(s) > 0 for each state s € S.

Theorem 2. A doxastic rule f is optimal for the deterministic guess model corre-
sponding to (reqular) prior P and guess function g iff, for each state s in the range

of g
f(s)=P(- | g7(s)) foreachstates €S

(Here g7'(s) is the preimage of s under g: thatis, ¢7!(s) = {s" € S |
g(s’) =s}.)
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Proof. According to a deterministic guess model, planning to follow the rule
f is tantamount to actually following the rule f o g. That is, if you are in s,
then you are sure to follow the recommendation that f gives for the state
you guess, g(s). In particular, the definitions tell us:

EA(My) = EA(P, f o g)
Let E be the partition induced by g: that is, for each state s,

E(s)=g7'(g(s) = {s’ € S| g(s") = g(s)}

For any rule f, therule f o g is E-determined. Thus tells us that
for any rules f and f’, if

fog=condpr
f'og# condpk
then
EA(My) = EA(P, f o g) = EA(P,condpg) > EA(P, f' o g) = EA(My)

Thus a rule f is optimal iff for each state s,

f(g(s)) = condpe(s) = P(— | §7'(g(s))) O

C Stochastic guess models

In[Sections Il and [[I| we considered situations where the agent’s credences
were still determined by a guess, but this guess was not determined by the
actual state of the world (the position of the clock, the person entering the
cafe) but was probabilistically related to the state.

Definition 2. A stochastic guess model is a planning model M_) for which
there exists a joint probability distribution P € P(S x S), the guess distribu-
tion, such that, for each rule f : S — PS, state s € S, and opinion Q € PS,

Ms(s,Q) =P{(s,H| f(H=Q} = > P(s,1)
Ef(D=Q

Intuitively, the guess distribution P(s, t) represents the probability of
being in a state s while guessing that you are in state t. In that case, if you
planned to follow the rule f, the opinion you end up holding is f(¢). So the
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probability of having opinion Q in state s is the same as the probability of
being in s and guessing some state t such that f(t) = Q.

For simplicity we will again restrict attention to models satisfying a
regularity condition. Call a distribution P € P(S X S) state-regular iff for
each state, the probability that you are in it is positive; thatis, P({s} xS) > 0
for each state s.

Every deterministic guess model is also a stochastic guess model. If a
planning model M_) arises as a deterministic guess model from a prior P
and guess function g, then it is also arises as a stochastic guess model from
the guess distribution that assigns probability P(s) to each pair (s, g(s)),
and probability zero to all pairs not of this form.

Theorem 3. For a stochastic guess model with (state-regular) guess distribution
P € P(S x S), the uniquely optimal doxastic rule is the function f : S — PS such
that, for any state t € S,

f&)=P((=t)| E(1))
where E(t) = {(s, t) | s € S}.

In other words, the optimal rule recommends for the state t the probabil-
ities that result from, first, conditionalizing the guess distribution P € P(SxS)
on the proposition “my guess is t”, and, second, marginalizing that result to
ignore the guess component.

The proof is another application of This time there are
some extra complications, because we are moving between two different
state spaces: the original state space S, and the enriched “guess space”
S x S. Since the accuracy scoring rule A we use to assess doxastic rules
is only defined for the original state space, to apply Greaves and Wallace’s
Theorem we first need to construct an “enriched” scoring rule for the “guess
space”.

We can move back and forth between the basic state space S and the
enriched guess space S X S. For any opinion Q € PS and any state t € S, we
can “lift” Q to an opinion defined on pairs of states:

Q(s) ift=¢t

0 otherwise

Ql(s,t) = {

Basically, this copies the distribution Q onto E(t), which is a copy of S within
S xS. We can also use a state t € S to “lower” an opinion Q € P(S X S) to the
opinion Q(—, t) € PS. Lifting an opinion and then lowering it again takes
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you back to the same opinion you started with: for any opinion Q € PS and
statet € S,

Qt(_l t) = Q
We can also lift a rule f : S — PS to a rule defined for pairs of states
fr:5%xS5 —P(S xS), namely:

fis,t)=f(t)

Given a pair of an actual state s and a guess ¢, the enriched rule is only
sensitive to the guess, ignoring the actual state, and it only assigns non-zero
probabilities to the pairs where the second coordinate matches the guess.

can be restated more simply in these terms: what we want
to show is that, for a guess distribution P, a rule f is optimal iff

f*=condpr

where F is the partition of S X S consisting of each of the sets E(t) =

{(s,t) | s € S}.

Lemma 1. For any scoring rule A : S X PS — R, there is a “lifted” scoring rule
A" (SXS)xP(SxS)—R

such that for any stochastic guess model M _y with guess distribution P, and any
rule f : S — PS,
EA(My) = EA*(P, f7)

Furthermore, if A is strictly proper, then while A* need not be strictly proper in
general, each lifted opinion Q' is self-recommending with respect to A*, for any
QePSandt € S.

Proof. For (s,t) € SxSand Q € P(SxS), let

A*((s,1),Q) =A(s,Q(-, 1))
For any plan f : S — PS, we have by the definitions

EA'(P, f*) = ZP(s DA ((s, 1), f(t)))
= ZP(S BDA(s, f(1) (=, 1))
= ZP(s, DAG, f(t) = EAMy)
s,t
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For the second part, let R € P(S X S) and suppose Q # R. Then, by the
definitions (and in particular the fact that Q'(s, t’) = 0 for t # t),

EA*(Q',R) = Z Q'(s, t') A*((s, '), R)

s, t’

=, Q) A ((s,1),R)
- Z Q(s)A(s,R(—,1)) =EA(Q,R(-,1))

Thus, since Q is self-recommending with respect to A,
EA*(Q',R) = EA(Q,R(~, 1))
<EA(Q,Q) = EA(Q,Q'(~, 1) = EA*(Q", Q")
So Q! is self-recommending with respect to A*. |
Proof of It suffices to show that a rule f : S — PS is optimal iff
f*=condpr

where P is the guess distribution, and F is the partition whose cells consist
of sets of pairs (s, t) with the same guess coordinate ¢.

Let A* be the lifted epistemic utility function as in Then
since f*(s,t) = f(t)!, the lemma tells us that each opinion in the range of
f* = condp is self-recommending with respect to A*. We can also check
that, for any rule g : S — PS distinct from f, we also have f* # g¢*. It also

follows from the definitions that ¢* is F-determined. Thus [Theorem T|tells
us that

EA(My) = EA*(P, f*) = EA(P,condps) > EA(P,g") = EA(My) O
We can also put the conclusion of another way. First, we

state a standard characterization of conditionalization.

Lemma 2. For probability distributions P, Q € PX and any set E C X such that
P(E) > 0, we have Q = P(— | E) iff:

(a) Q(s)=0fors € X \E,and
(b) Q(s):Q(s") =P(s): P(s’) fors,s’ € E.
(The ratio notation x : y = x’ : y’ is a convenient alternative for xy’ =

x'y.)
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Corollary 1. A rule f is optimal for a stochastic guess model given by a guess
distribution P iff for all states s, s’, t € S:

FES) - FES') = P(s, 1) : P, )
Proof. Recall that[Theorem 3|says that f is optimal iff for t € S,
f(t)(s)=P((s,t) | E(t)) where E(t) = {(s,t) | s € S}
By [Lemma 2] this holds iff
(@) f(t)(s)=0for(s,t) ¢ E()
(b) f(t)(s): f(t)(s") =P(s,t): P(s’,t) for (s, t) and (s, t) in E(t).

Since (s, t) is always in E(t), (a) is vacuous and (b) simplifies to the statement
above. m|

D Conditions for Conditionalization
Our final result states the conditions under which the optimal rule for a
stochastic guess model is to conditionalize on a given partition.

Theorem 4. Consider a stochastic guess model with (state-regular) guess distri-
bution P € P(S X S). Let Py € PS be the marginalized distribution on states,

Po(s) = P{(s, ) [ t € S} = > P(s, 1)
t

Let c(s, t) be the conditional probability of guessing state t while in state s:
P(s,t)
Po(s)

Let E be a partition of S. Then the conditionalization rule condp, g is optimal iff
both of the following two conditions hold:

c(s, t) =

(a) c(s,t) = 0 whenever s and t are not in the same cell of E; and

(b) c(s,t) =c(s’, t) whenever s, s’, t are all in the same cell of E.

Proof. By the conditionalization rule condp,  is optimal iff for
all states s, s’,t € S,

condp, £(t)(s) : condp, g(t)(s") = P(s,t) : P(s’, 1) *

Let s ~¢ t mean that states s and t are in the same cell of E. There are two
cases to consider.
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(a) We do not have s, s’, and t all in the same E-cell; without loss of

generality, say s +g t. Then[Lemma 2|(a) tells us
condp, £(t)(s) =0
So (*) holds for all cases of this form iff
P(s,t)=0 foralls ¢t

This is equivalent to condition (a) of the theorem statement.

(b) If s ~g 5" ~¢ t, then by [Lemma 2|(b),
condp, g(t)(s) : condp, £(t)(s") = Po(s) : Po(s")
So () holds for all cases of this form iff
Po(s) : Po(s’) = P(s,t): P(s’,t) foralls ~p s ~pt
This is equivalent to condition (b) of the theorem statement.

In short, (*) holds in all cases iff both conditions of the theorem hold. m|
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