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Abstract Recently I proposed “quantum language” (or,“the linguistic Copenhagen interpre-
tation of quantum mechanics”), which was not only characterized as the metaphysical and linguistic
turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely,
quantum language is the scientific final goal of dualistic idealism. It has a great power to describe
classical systems as well as quantum systems. In this research report, quantum language is seen as
a fundamental theory of statistics and reveals the true nature of statistics.
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QL’s place in the history of Western philosophy is as follows.

The world's shortest hisory of western philosophy

matter

e

Q | think therefore | am

TOE QL

Theory of everything Quantum language

I would like you to read this preprint with this figure in mind
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Preface:
0.1: Philosophy has progressed toward quantum language

My lectures (Fig. 0.1 below) for graduate students in the Faculty of Science and Technology
at Keio University have continued for a quarter of a century and have gradually improved.  Even
after I retired, this has been reported in research reports at Keio University (refs. [B8, [75] cover
the of Fig. 0.1, and refs. [59, [74] covers the of Fig. 0.1). This preprint is a
continuation of ref. [68], and thus, ”

Figure 0.1 : The location of QL in the history of western philosophy
This preprint is devoted to . Here, LCI [resp. HWP| means “linguistic Copenhagen inter-
pretation” [resp. “history of Western philosophy”].
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Note that Figure 0.1 asserts that

For many years I had decided to publish my preprints in Keio Research Reports (KSTS), but KSTS ceased
publication this year. I thank philpapers for giving this preprint a place to be published.
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(A) statistics, quantum mechanics, Scholasticism, Descartes=Kant philosophy and an-
alytic philosophy are each one aspect of quantum language (= the scientific theory
of dualistic idealism) .

In this preprint I devote myself to the green part: ‘LCI (D statistics)’ in the following figure:

L . . Greek phil. —~ .
Analytic phil. Descartes-Kanfl . quantum s;?g.'rliseiir.cs

. statistical |
tuzzy logic gpistemology |4 mechanics Baysian,

mechanics * @ @
Phil. of zcience

HWP < 2§=> LCI( > statistics )

I can promise my readers the following.
e For the first time, readers will know the answer to the question ”What is statistics?”.

I hope many readers will enjoy this preprint.
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Chapter 1

My answer to Feynman’s question

Dr. R. P. Feynman (one of the founders of quantum electrodynamics) said the following wise words: (1)
and (f2):"

(#1) There was a time when the newspapers said that only twelve men understood the theory of
relativity. I do not believe there ever was such a time. There might have been a time when only
one man did, because he was the only guy who caught on, before he wrote his paper. But after
people read the paper a lot of people understood the theory of relativity in some way or other,
certainly more than twelve. On the other hand, I think I can safely say that nobody understands
quantum mechanics.

(#2) We have always had a great deal of difficulty understanding the world view that quantum me-
chanics represents. ------ I cannot define the real problem, therefore I suspect there’s no real
problem, but I'm not sure there’s no real problem.

In this lecture, I will answer Feynman’s question (#1) and (f2) as follows.

(b) T am sure there’s no real problem. Therefore, since there is no problem that should be understood,
it is a matter of course that nobody understands quantum mechanics.

This answer may not be uniquely determined, however, I am convinced that the above (b) is one of
the best answers to Feynman’s question (f1) and (#2).

The purpose of this lecture is to explain the answer (b). That is, I show that

If we start from the answer (b),
we can double the scope of quantum mechanics.
And further, I assert that

Metaphysics (which might not be liked by Feynman )
is located in the center of science.

In this lecture, I will show the above.

!The importance of the two (f1) and (#2) was emphasized in Mermin’s book [Y]



1.1 Quantum language (= measurement theory)

1.1 Quantum language (= measurement theory)

1.1.1 The classification of quantum language (=measurement theory)

Quantum language (= measurement theory ) is classified as follows.

( classical system : Fisher statistics
pure type .
( A ) quantum system : usual quantum mechanics
1
(A) measurement theory
(=quantum language) . classical system : including Bayesian statistics, Kalman filter
mixed type
( AQ) quantum system : quantum decoherence
\

Therefore, we have two kinds of quantum language, i.e., pure measurement theory and mixed

measurement theory. The former is formulated as follows.

[(pure)Axiom 1] [Axiom—?| [inguistic Copenhagen nterpretation]
(Al) ‘ pure measurement theory ‘ = ’ pure measurement ‘—&—‘ Causality ‘—I—’ Linguistic Copenhagen interpretation
(=quantum language) (cf. BZ70) (cf. §83) (c¢f. §BM)
a kind of spell(a priori judgment) the manual to use spells

And the mixed measurement theory (or, statistical measurement theory) is formulated as follows.

[(mixed)Axiom(™) 1) [Axaom2] [inguistic Copenhagen mterpretation|
(Ag) ‘mixed measurement theory ‘ = ‘ mixed measurement ‘Jr‘ Causality ‘H Linguistic Copenhagen interpretation
(=quantum language) (cf. EZI) (cf. §83) (cf. §BD)
a kind of spell(a priori judgment) the manual to use spells

1.1.2 Axiom 1 (measurement) and Axiom 2 (causality)

Since the pure measurement theory is the most fundamental, we mainly devote ourselves to pure
measurement theory. Although it is impossible to read Axiom 1 ( measurement: §2.7) and Axiom 2

(causality; §8.3) at the present time, we present them as follows.
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- (B):Axiom 1 (measurement) pure type ~

(This will be able to be read in )

With any system S, a basic structure [A C A]p) can be associated in which measurement
theory of that system can be formulated. In [A C AJ B(H), consider a I//*-measurement

MX(O:(X, F, F),S[p]) <or, C*-measurement MA(O:(X, F, F),S[p]) > That is, consider
e a IV*-measurement M;(O, S[p]) < or, C*-measurement My (O:(X, F, F),S[p}) ) of an ob-
servable O=(X,J, F') for a state p(€ GP(A*) : state space)

Then, the probability that a measured value = (€ X) obtained by the W*-measurement
Mz (0, S,) ( or, C*-measurement M, (O=(X,J,F), S|)) ) belongs to = (€ ¥F) is given by

P(F(2))(= a-(p, F(Z))7) (1.1)
(if F(Z) is essentially continuous at p, or see Definition 214 ).
- /
And
- (C): Axiom 2 (causality) ~

(This will be able to be read in §83)

Let T' be a tree (i.e., semi-ordered tree structure). For each t(€ T'), a basic structure [A; C
A¢lpm,) is associated. Then, the causal chain is represented by a /7"~ sequential causal

operator {®; ;, : A;, — ‘Ztl}(tl,tg)ETé ( or, C*- sequential causal operator {®,;, : A, —

‘Atl }(t1,t2)ET§ )
NS /

Here, note that

(D;) the above two axioms are kinds of spells (i.e., incantation, magic words, metaphys-

ical statements), and thus, it is impossible to verify them experimentally.

In this sense, the above two axioms correspond to “a priori synthetic judgment” in Kant’s philosophy

(cf. [19]). Therefore,

(D2) what we should do is not to understand the two, but to learn the spells (i.e.,

Axioms 1 and 2) by rote.
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Of course, the “learning by rote” means that we have to understand the mathematical definitions of

followings:

e basic structure [A C A]pgr), state space GP(A*), observable O=(X, ¥, F), etc.

#Note 1.1. If metaphysics did something wrong in the history of science, it is because metaphysics
attempted to answer the following questions seriously in ordinary language:

(#1) What is the meaning of the keywords (e.g., measurement, probability, causality) ?

Although the question (f1) looks attractive, it is not productive. What is important is to create a
language to deal with the keywords. So we replace (#1) by

(f2) How are the keywords (e.g., measurement, probability, causality) used in quantum language ?

The problem (1) will now be solved in the sense of ().

#Note 1.2. Metaphysics is an academic discipline concerning propositions in which empirical validation
is impossible. Lord Kelvin (1824-1907) said

Mathematics is the only good metaphysics.

Here we step forward:

(1) Quantum language is another good metaphysics.

Lord Kelvin might think that Kant philosophy (Critique of Pure Reason [I/9]) is not good meta-
physics. However, 1 consider that a priori synthetic judgment (i.e., axiom which cannot be examined
by experiment) corresponds to [Axiom 1 and Axiom 2]. That is,

‘a priori synthetic judgment — ‘Axiom 1 and Axiom 2‘
(correspondence)

( Kant philosophy ) (quantum language)

See ref. [BR]:S. Ishikawa, Quantum Mechanics and the Philosophy of Language: Reconsideration of
traditional philosophies, Journal of quantum information science, Vol. 2(1), pp.2-9, 2012
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1.1.3 The linguistic Copenhagen interpretation

Axioms 1 and 2 are all of quantum language. Therefore,

(1) after learning Axioms 1 and 2 by rote, we need to brush up our skills to use them through trial

and error.
Here, let us recall a wise saying
e Faxperience is the best teacher, or custom makes all things
and our experience
e A manual helps us to master the rules quickly.

Thus, we understand

to master the linguistic Copenhagen interpretation of quantum mechanics

= to make practice with a manual to use Axioms 1 and 2

Although the linguistic Copenhagen interpretation (= the linguistic Copenhagen interpretation

) is composed of many statements, the simplest and best representation may be as follows.

s ‘ (E):The linguistic Copenhagen interpretation ) ‘ N

(This will be explained in §3-1)

Only one measurement is permitted.

We can also choose apparently opposite viewpoints concerning the linguistic Copenhagen inter-

pretation, though they look a bit too extreme.

(E;) Through trial and error, we can do well without the linguistic Copenhagen interpretation.

(E2) All that are written in this note are a part of the linguistic Copenhagen interpretation.

They are viewpoints obtained from the opposite standpoints. In this sense, there is a reason to

regard this lecture note as something like a cookbook.
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ANote 1.3. Kolmogorov’s probability theory (c¢f. [80] ) starts from the following spell:

(#) Let (X, F, P) be a probability space. Then, the probability that a event =Z(€ F) happens is given
by P(2)

And, through trial and error, Kolmogorov found his extension theorem, which says that

(t) Only one probability space is permitted.

This surely corresponds to the linguistic Copenhagen interpretation “Only one measurement is per-
mitted.” That is,

(the most fundamental theorem) (the linguistic Copenhagen interpretation)
- (correspondence)
Probability theory — ‘ Quantum language
(Only one probability space is permitted) (Only one measurement is permitted)

In this sense, we want to assert that

(#) Kolmogorov is one of the main discoverers of the linguistic Copenhagen interpreta-

tion.

Therefore, we are optimistic to believe that the linguistic Copenhagen interpretation “Only one mea-
surement is permitted” can be, after trial and error, acquired if we start from Axioms 1 and 2. That is,
we consider, as mentioned in (H;), that we can theoretically do well without the linguistic Copenhagen

interpretation.

1.1.4 Summary

Summing up the above arguments, we see:
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- (F): Summary ( All of quantum language ) ~

Quantum language (= measurement theory ) is formulated as follows.

[Bxiam ] [Asaem—2) [inguistic Copenhagen interpretation)]
‘measurement theory‘ = \ Measurement ‘ + ’ Causality ‘—l—‘ Linguistic Copenhagen interpretation‘
(=quantum language) (cf. BZ17) (cf. §83) (cf. §BM)
- 7
Vv Vo
a kind of spell(a priori judgment) manual to use spells
(1.2)

[Axioms]. Here

(F1) Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical state-
ments), and thus, it is impossible to verify them experimentally. In this sense, I consider
that

‘a priori synthetic judgment‘ _ \Axioms 1 and 2\
quantization (quantum language)

(Kant philosophy)

Therefore, what we should do is not “to understand” but “to use”. After learning Axioms
1 and 2 by rote, we have to improve our skills to use them through trial and error.

[The linguistic Copenhagen interpretation]. From a pure theoretical point of view, we do
well without the interpretation. However,

(F2) it is better to know the linguistic Copenhagen interpretation of quantum mechanics (=
the manual to use Axioms 1 and 2), if we want to make quick progress in using quantum
language.

The most important statement in the linguistic Copenhagen interpretation [§3.1) is

L Only one measurement is permatted.
J
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1.2 Example: measurement of “Cold or Hot”

Axioms 1 and 2 (mentioned in the previous section ) are too abstract. And thus, I am afraid that
the readers feel that it is too hard to use quantum language. Hence, let us add a simple example in
this section.

It is sufficient for the readers to consider that our purpose in the next chapters is

e to bury the gap between Axiom 1 and the following simple example (i.e., “Cold” or “Hot”).

Example 1.1. [The measurement of “Cold or Hot" for the water in a cup] Let testees drink
water with various temperature w °C (0 £ w < 100). And assume: you ask them “Cold or Hot 77
alternatively. Gather the data, ( for example, g.(w) persons say “Cold”, gn(w) persons say “Hot”)

and normalize them, that is, get the polygonal lines such that

o(w
felw) = the num’geis )of testees
w
fnlw) = the numggis z)f testees (1.3)
And
1 (0 = w £ 10)
fw)={ B2 (10Sw<T70) ,  fulw)=1- )
0 (70 £ w = 100)

Jn

0 10 20 30 40 50 60 70 80 90 100
Figure 1.2: Cold or hot?

Therefore, for example,

(A1) You choose one person from the testees, and you ask him/her whether the water (with 55

°C) is “cold” or “hot” ?. Then the probability that he/she says { cold

“hot”
£.(55) = 0.25
fu(55) = 0.75

} is given by

In what follows, let us describe the statement (A;) in terms of quantum language (i.e., Axiom 1).
Define the state space 2 such that = interval [0, 100](C R(= the set of all real numbers)) and
measured value space X = {c,h} ( where “c” and “h” respectively means “cold” and “hot”). Here,

consider the “[C-H]-thermometer” such that
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(Ag) for water with w °C, [C-H]-thermometer presents N 1 with probability [ fe(w) 1 This [C-

h fn(w)
H]-thermometer is denoted by O = (f,, fx)

Note that this [C-H]-thermometer can be easily realized by “random number generator”.

Here, we have the following identification:
(As) (A1) <= (A2)

Therefore, the statement (A;) in ordinary language can be represented in terms of measurement
theory as follows.

(A4) When an observer takes a measurement by [[C-H]-instrument] for
measuring instrumentO=(fc, f},)

[water] with ~ [55°C] | the probability that measured value [ ; }
(System (measuring object)) (state(=w € Q) )

f.(55) = 0.25 }

is obtained is given by [ Fu(55) = 0.75
h = U.

This example will be again discussed in the following chapter(Example 223T).
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Chapter 2

Axiom 1 — measurement

Quantum language (= measurement theory ) is formulated as follows.

[B=caom] [Bxiam—J] [nguistic Copenhagen interpretatio]
. ‘measurement theory‘ := | Measurement |+ ‘ Causality ‘4—‘ Linguistic Copenhagen interpretation
(=quantum language) (cf. BZ) (cf. §83) (cf. 8§&M)
a kind of spell(a priori judgment) manual to use spells

Measurement theory asserts that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic Copenhagen
interpretation)!

In this chapter, we introduce Axiom 1 (measurement). Axiom 2 concerning causality will be explained
in Chapter B.

2.1 The basic structure[A C A C B(H)|; General theory

The Hilbert space formulation of quantum mechanics is due to von Neumann. I cannot emphasize
too much the importance of his work (c¢f. [T04]).

2.1.1 Hilbert space and operator algebra

Let H be a complex Hilbert space with a inner product (-, ), where it is assumed that (u, av) =
alu,v) (Yu,v € H,a € C(= the set of all complex numbers)). And define the norm ||u|| = |[{u, u)|'/2.
Define B(H) by

B(H)={T :H — H|T is a continuous linear operator} (2.1)
B(H) is regarded as the Banach space with the operator norm || - || gz, where
1Tl ey = Sup 1Tzl (YT' € B(H)) (2.2)
xT H:1

11



2.1 The basic structure[A C A C B(H)]; General theory

Let T' € B(H). The dual operator 7% € B(H) of T is defined by
(T*u,v) = (u, Tv) (Yu,v € H)
The followings are clear.
() =1, (L) =117
Further, the following equality (called the “C*-condition”) holds:

IT*T|| = |TT*|| = |T||* = |T*|]* (YT € B(H)) (2.3)
When T = T* holds, T is called a self-adjoint operator (or, Hermitian operator). Let T,(n €
N ={1,2,---}),T € B(H). The sequence {T,}>2 is said to converge weakly to 7' (that is, w —
lim, oo T, =T ), if
lim (u, (T, — T)u) =0 (Vu e H) (2.4)
n—oo

Thus, we have two convergences (i.e., norm convergence and weakly convergence) in B(H)".
Definition 2.1. [C*-algebra and W*-algebra] A(C B(H)) is called a C*-algebra, if it satisfies that
(A1) A(C B(H)) is the closed linear space in the sense of the operator norm || - || g(m).
(Ag) A is x-algebra, that is, A(C B(H)) satisfies that

L, Fhe A= F - F, e A, FeA=F'cA

Also, a C*-algebraA(C B(H)) is called a W*-algebra, if it is weak closed in B(H).
2.1.2 Basic structure[A C A C B(H)]; general theory

Definition 2.2. Consider the basic structure [A C A C B(H)] < or, denoted by [A C Alpm) )
That is,

e A(C B(H)) is a C*-algebra, and A(C B(H)) is the weak closure of A.

Note that W*-algebra A has the pre-dual Banach space A, (that is, (A,)* =A ) uniquely. There-
fore, the basic structure[A C A C B(H)] is represented as follows.

e (B): General basic structure:[A C A C B(H)] ~

— —— [B() (2.5)
subalgebra-weak-closure subalgebra
lpre—dual
A,
- /

! Although there are many convergences in B(H), in this paper we devote ourselves to the two.
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2.1.3 Basic structure[A C A C B(H)] and state space; General theory

The concept of “state space” is fundamental in quantum language. This is formulated in the dual
space A* of C*-algebra A ( or, in the pre-dual space A, of W*-algebra A).
Let us explain it as follows.

Definition 2.3. [State space, mixed state space] Consider the basic structure:
A CACBH)

Let A* be the dual space of the C*-algebraA. The mixed state space G™(A*) and the pure state
space GF(A") is respectively defined by

(a) &™(A") ={pc A" [l

a-=1,p>0 (ie, p(T*T) > 0(VT € A))}
(b) 6P(A*) ={p € & (A*) | p is a pure state}. Here, p(€ &™(A*)) is a pure state if and only if
p=ap+ (1 —a)p, p1,p2€ EMA"),0<a<l= p=p=ps
The mixed state space &™(A*) and the pure state space GP(A*) are locally compact spaces (cf.
ref. [T0R]).
Assume that A, is the pre-dual space of A. Then, another mixed state space G (A,) is defined by

(c) 6" (A) ={pe A | llpllz, = L,p 2 0 (ie., p(T*T) 2 O(VT € A))}

That is, we have two “mixed state spaces”, that is, C*-mixed state space &™(A*) and W*-mixed
state space & (A,).

The above arguments are summarized in the following figure:

- (C): General basic structure and State spaces ~
GPA*) Cc G&mA*) C A
C*-pure state C*-mixed state
Tdual
C — C
A = > A —— | B(H
subalgebra-weak-closure . subalgebra ( )
J{ pre-dual
(2.6)
G"(A,) CA,
W*-mixed state
- /

Remark 2.4. In order to avoid the confusions, three “state spaces” should be explained in what
follows.
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2.1 The basic structure[A C A C B(H)]; General theory

Fisher statistics - - - pure state space:&P(A*): most fundamental

(D) “state spaces” C*-mixed state space:&™(A*) : easy
Bayes statistics
W*-mixed state space:&' (A,): natural, useful

In this note, we mainly devote ourselves to the W*-mixed State@m(z*) rather than the C*-mixed
state&™(A*), though the two play the similar roles in quantum language.
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2.2  Quantum basic structure|C(H) C B(H) C B(H)| and State
space

If a conclusion is said previously, we say the following classification of (i.e., quantum state space
and classical state space):

(A)

General basic structure[A C A] B(H)

pure state space GP(A*)
C*-mixed state space & (A*)
W*-mixed state space & (Ax)

(

pure state space &P (Tr(H)
C*-mixed state space &™(Tr(H)
W*-mixed state space &™(Tr(H

(A1):Quantum basic structure[C(H) C B(H)|pm)
(
)

o
Q
=

+
-

3

(Ay):Classical basic structure[Cy(2) € L>(Q, V)| p(r2(0.w)

pure state space €2
C*-mixed state space M1()
W*-mixed state space L~1H (Q,v)

\

In what follows, we shall explain the above classification (A):

2.2.1 Quantum basic structure[C(H) C B(H) C B(H)J;

In quantum system, the basic structure[A C A C B(H)] is characterized as

[C(H) C B(H) C B(H) (2.7)
That is, we see:
- (B): Quantum basic structure:[C(H) C B(H) C B(H)] ~
Tr(H)
Tdual
C c
G(H) subalgebra-weak-closure B(H) subalgebra B(H) (28>
pre-dual
Tr(H)
- 4

Before we explain “compact operators class C(H)” and “trace class F(H)”, we have to prepare
“Dirac notation” and “CONS” as follows.
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Definition 2.5. [(i):Dirac notation] Let H be a Hilbert space. For any u,v € H, define |u){(v| € B(H)
such that

(lu)(v))w = (v,w)u (VYw € H) (2.9)
Here, (v| [ resp. |u) ] is called the “Bra-vector” | resp. “Ket-vector”].

[(ii):ONS(orthonormal system), CONS(complete orthonormal system)] The sequence {e;}32, in a Hilbert

space H is called an orthonormal system (i.e., ONS), if it satisfies
L (k=)
ek, €j) = :
@) e ={ g 20
In addition, an ONS {e;}72, is called a complete orthonormal system (i.e., CONS), if it satisfies

(f2) (z,ex) =0 (Vk =1,2,...) implies that = 0.

Theorem 2.6. [The properties of compact operators class C(H )] Let C(H)(C B(H)) be the compact
operators class. Then, we see the following (C;)-(Cy) ( particularly, “(Cy)«> (C3)” may be regarded

as the definition of the compact operators class C(H)(C B(H)) )
(Cy) T € C(H). That is,

e for any bounded sequence {u,}>, in Hilbert space H, {Tu,}>?, has the subsequence

which converges in the sense of the norm topology.
(C2) There exist two ONSs {e;}72, and {f;}32, in the Hilbert space H and a positive real sequence

{6132 (where, limg oo A = 0 ) such that

T = Z Aklex) (frl (in the sense of weak topology) (2.10)
k=1

(C3) C(H)(C B(H)) is a C*-algebra. When T'(€ C(H)) is represented as in (Cs), the following
equality holds

Il = max A (2.11)

(C4) The weak closure of C(H) is equal to B(H). That is,

C(H) = B(H) (2.12)
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Theorem 2.7. [The properties of trace class Tr(H )] Let Tr(H)(C B(H)) be the trace class. Then,
we see the following (3D4)-(Dy)( particularly, “(D1)<> (D3)” may be regarded as the definition of the
trace class Tr(H)(C B(H)) ).

(D)) T € Tr(H)(C C(H) C B(H)).

(D2) There exist two ONSs {e}72, and { fr}22, in the Hilbert space H and a positive real sequence
{152, (where, > 77 | Ap < 0o ) such that

T = Z Alex) (frl (in the sense of weak topology)
k=1

(D3) It holds that

C(H) =Tr(H) (2.13)
Here, the dual norm || - ||e()- is characterized as the trace norm || - |7, such as
1T llre =D M (2.14)
k=1

when T'(€ Tr(H)) is represented as in (Dj),

(Dy) Also, it holds that

TJr(H)* = B(H) in the same sense, Tr(H) = B(H). (2.15)

Remark 2.8. Assume that a Hilbert space H is finite dimensional, i.e., H = C", ie., C" = {z =
<1

)
| 2z, € C,k=1,2,...,n}. Put
Ln
M (C,n) = The set of all (n x n)-complex matrices
and thus,

A=A=B(C")=C(H)=Tr(H)= M(C,n) (2.16)

However, it should be noted that the norms are different as mentioned in (C3) and (Dj).
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2.2.2 Quantum basic structure[C(H) C B(H) C B(H)] and State space;

Consider the quantum basic structure:
[C(H) € B(H) € B(H)]

and see the following diagram:

-

and

- (E): Quantum basic structure and State space ~
S (Tr(H)) c 6™(Tr(H)) Cc Tr(H)
C*-pure state C*-mixed state
Tdual
C(H) S s [B(H)] —=—[B(H)
subalgebra-weak-closure subalgebra
pre-dual
(2.17)
&"(Tr(H)) C Tr(H)
W*-mixed state
_/
In what follows, we shall explain the above diagram.
Firstly, we note that
C(H) =Tr(H), Jr(H)" = B(H) (2.18)
S"™(Tr(H)) =& (Tr(H))
={p=> Mlen)eal : {ea}pyis ONS, > A, =1\, >0}
n=1 n=1
Also, concerning the pure state space, we see:
S"(Tr(H))
={p=le)el : llellm =1} = Tri,(H) (2.20)
Therefore, under the following identification:
S Tr(H) > [uul o weH  (Ju]=1) (221)
we see,
S*(Tr(H))={ue H : ||u| =1} (2.22)

where we assume the equivalence: u = eu (0 € R).

18
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Definition 2.9. Define the trace Tr : Tr(H) — C such that

Te(T) = i(en, Te,) (VT € Tr(H)) (2.23)

n=1

where {e,}7°, is a CONS in H. It is well known that the Tr(7") does not depend on the choice of

n=1

CONS {e, }5°,. Thus, clearly we see that
oot (1] F ) gy = () (0] F) = (wFu) - (Ml = 1, F € B(H)) (2:24)
Remark 2.10. Assume that a Hilbert space H is finite dimensional, i.e., H = C". Then,

M (C,n) = The set of all (n x n)-complex matrices

That is,
fu e o
F= ffl fo f?” e M(C,n) (2.25)
fui fua o Fon
As mentioned before, we see
A=A=B(C")=C(H)=Tr(H)=M(C,n) (2.26)

and further, under the following notations:

fiu 0 o 0
‘J'rfl((:") = {diagonal matrixF = 0 f22 ‘ fur >0, Xn:fkk = 1}
(j 0 fr;n h=t
fll o --- 0
Trf(Ccm) = {F = O f:22 e Irl (C™) ‘ frr =1 (for some k = j),=0 (k # ])}
00

We see,

mixed state space: Tri(C") = {UFU* . FeTr? (C"), U is a unitary matrix} (2.27)

pure state space: Trt,(C") = {UFU* . F e Tl (C"), U is a unitary matrix} (2.28)
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2.3 Classical basic structure[Cy(Q2) C L=(Q,v) C B(L*(Q,v))]
2.3.1 Classical basic structure[Cy(Q2) C L>®(Q,v) C B(L*(Q,v))]

In classical systems, the basic structure[A C A C B(H)] is restricted to the classical basic

structure:
[Co(Q) C L®(Q,v) C B(L*(Q,v))]

And we get the following diagram:
~—— (A): Classical basic structure: [Co({2) € L=(,v) C B(L*(Q,v))] —————~

dual
g \ oo g 2
CO(Q) subalgebra-weak-closure L (97 V) subalgebra B(L (Q’ V>) (229)
lpre—dual
LY(Q,v)
N /

In what follows, we shall explain this diagram.

2.3.1.1 Commutative C*-algebra Cy(f2) and Commutative W*-algebra L>(Q,v)

Let €2 a locally compact space, for example, it suffices to image €2 as follows.

R(= the real line), R?*(= plane), R"(= n-dimensional Euclidean space),

[a, b](= interval), finite setQ(= {w1,...,wn})

(with discrete metric dp)

where the discrete metric dp is defined by dp(w,w’) =1 (w # '), =0 (w = ).

Define the continuous functions space Cy(2) such that

Co(R2) ={f:Q— C| f is complex-valued continuous on €2, lim f(w) =0} (2.30)

w—00

where “lim,,_,o f(w) = 0" means

(B) for any positive real € > 0, there exists a compact set K(C 2) such that

{wlweQ\ K [f(w)]>e =0
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Therefore, if {2 is compact, the, the condition “lim, o, f(w) = 07 is not needed, and thus, Cy(2) is
usually denoted by C'(€2). In this note, even if © is compact, we often denote C(€2) by Cy(2).

Defining the norm || - ||¢,() in a complex vector space C(£2) such that
1 £lleo(e) = max | f(w)] (2.31)
we get the Banach space (CO(Q), Il - HCO(Q)).

Let €2 be a locally compact space, and consider the o-finite measure space (2, Bq, ), where, Bg

is the Borel field, i.e., the smallest o-field that contains all open sets. Further, assume that

(C) for any open set U C €, it holds that 0 < v(U) £ oo

&Note 2.1. Without loss of generality, we can assume that € is compact by the Stone-Cech compacti-
fication. Also, we can assume that v(2) = 1.

Define the Banach space L"(€2,v) (where, r = 1,2,00) by the all complex-valued measurable

functions f : €2 — C such that

Ifllzr ) < o0

The norm || f|| -, is defined by
1/r
[fg | f(w)|" v(dw) (when r = 1,2)
1l = (2.32)
ess.sup| f(w)] (when r = 00)
we
where

ess.sup,cq|f(w)| =supfa e R | v({w e @ |f(w)|=a}) >0}

L™(2,v) is often denoted by L"(2) or L"(€2, B, V).

Remark 2.11. [C(Q2) C L>=(Q,v) C B(L*(Q2,v))] Consider a Hilbert space H such that
H = L*(Q,v)
For each f € L>(Q), define Ty € B(L*(Q2,v)) such that

LQ(Q’V>5¢—>Tf(¢):f'¢€L2(Qay)
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Then, under the identification:

L>(Q) > f <«— T;€ B(L*(Qv)) (2.33)

identification

we see that
feL>() C B(L*(Q,v))
and further, we have the classical basic structure:
[Co(©) € L¥(9) € BIA(Q,v))] (2.34)

This will be shown in what follows.

Riese theorem (cf. [I08]) says that
Co(2)* = M(2)(= the set of all complex-valued measures on (2 ) (2.35)

Therefore, for any F' € Cy(Q2), p € Co(2)* = M(Q2), we have the bi-linear form which is written by

the several ways such as

) = o (0 F) ey = ey (0 F) oy = [ Fllpla) (2.36)

Also, the dual norm is calculated as follows.

lollewey = sup{lo(E) | Flleyey = 1} = sup | /

[1Fllcy =1
— sup(|Re(p(E)) = Relp(EDP + |Tm{p(D)) ~ Im(s()) )”2
=llpllxe (2.37)

where, Z¢ is the complement of =, and Re(z)="‘“the real part of the complex number 2", Im(z)="“the
imaginary part of the complex number 2”.

Further, we see that
LY(Q,v)* = L™(Q,v) in the same sense, LY(Q,v) = L™(Q,v),
Also, it is clear that
Co(Q2) € L™(Qv)

For any f € L*>®(Q,v), there exist f, € Co(2),n = 1,2,.. such that
v({w € Q| limy o fulw) # f(w)} =

|fo(W)| < | fllze@uy) (Vw e Q,Vn=1,2,3,...)
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Therefore, we see

Jm [(6.(F = f)0) ) 1< lim | 1nl) = J@)] [6@)Pulde) =0 (76 € 1(0,0))
Hence,

the weak closure of Cy(f2) is equal to L>(,v)

Then, we have the classical basic structure:

[Co(2) € L=(Q) € B(L*(,v))] (2.38)
Theorem 2.12. [Gelfand theorem (¢f. [100]) ] Consider a general basic structure:
A CACB(H)

where it is assumed that A is commutative. Then, there exists a measure space (2, Bg, ) (where
) is a locally compact space) such that

A=Cy(Q), A=L>Q,v), B(H)= B(L*(Q,v))

where (2 is called a spectrum.

2.3.2 Classical basic structure[Cy(Q2) C L®(Q,v) C B(L*(,v))] and State
space

Consider the classical basic structure [Co(2) € L>*(Q,v) € B(L*(Q,v))]. Then, we see the

following diagram:

- (D): Classical basic structure and State space ~N
ML(Q) € Mua(Q) < MQ)
(=) (probability measure)
C*-pure state C*-mixed state
Tdual
Co@)] ——=m [1%()]  ——= | BL*(Q)
subalgebra subalgebra
weak-closure
l pre-dual
(2.39)
Ll (Q,v) C L'(Q,v)
(probability density function)
W*-mixed state
- /
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In the above, the mixed state space &™(Cy(2)*) is characterized as

S™(Co()") ={p € M(Q) = p =0, lpllwe) =1}
={p € M(Q2) : p is a probability measure on 2 }
:3M+1 (Q) (2.40)

Also, the pure state space GP(Cy(§2)*) is

&"(Co(2)7)
={p =6,, € GP(Co(2)") : by, is the point measure at wy(€ ), wy € O}
=M",(Q) (2.41)

Here, the point measure d,, € M({) is defined by
| 1@)nld) = fen) (VF € Cofe))
Therefore,
MEL(Q) = &P(Cy(2)7) 3 4., o WwE Q (2.42)
Under this identification, we consider that
&7 (Co()7) =
Also, it is well known that
LY(Q,v)* = L™(Q,v)

Therefore, the W*-mixed state space is characterized by

@) = e @) s 120, [ fplds) = 1)
Q
= the set of all probability density functions on {2 (2.43)

Remark 2.13. [The case that Q is finite: Cy(2) = L>(Q,v), M(Q2) = L'(Q,v) ] Let Q be a finite set
{w1, we, ...,wy, } with the discrete metric dp and the counting measure v. Here, the counting measure
v is defined by

v(D) = t[D](= “the number of the elements of D”)
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Then, we see that
Co(Q) ={F :Q— C| Fisa complex valued function on Q} = L>(Q, v)

And thus, we see that

k=1 k=1

and
fe LIH(Q, V) — Xn:f(wk) =1. f(wg) >0
k=1
In this sense, we have the following identifications:
Mia(Q) = L1, (Qv)  (or, M(Q) = LY(Q,v))

After all, we have the following identification:

Co(Q)=L®Q)=C" M((Q)=L'(Q)=C" (2.44)
where the norm || - ||y in the former is defined by
21
29 n
2]l cor) = ,max B Vz=| .| €C (2.45)
Tn

and the norm || - [|yq) in the latter is defined by

21
lzlaeey = 1l Vz=] | €C (2.46)
k=1 .
’rn
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2.4 State and Observable—the primary quality and the sec-
ondary quality—

2.4.1 In the beginning

Our present purpose is to learn the following spell (= Axiom 1) by rote.

— (A): Axiom 1(pure measurement)(cf. This will be able to be read in E2.7) | —~

With any system S, a basic structure [A C A]p) can be associated in which measurement
theory of that system can be formulated. In [A C 7{] B(H), consider a I/*-measurement

MZ(O:(X, F, F),S[p]) <or, C*-measurement MA(O:(X, F, F),S[p]) > That is, consider
e a IV*-measurement MZ(O, S[p]) < or, C*-measurement My (O:(X, F, F),S[p}) ) of an ob-
servable O=(X,J, F) for a state p(€ GP(A*) : state space)
Then, the probability that a measured value x (€ X) obtained by the W*-measurement
Mz (0, Sy)) ( or, C*-measurement My (O=(X,J, F), S},) ) belongs to = (€ F) is given by
P(F(E)(= a-(p, F(E))7)

(if F'(Z) is essentially continuous at p, or see Definition 214 ).

\ J

The “learning by rote” urges us to understand the mathematical definitions of

(t1) Basic structure[A C A]p ), state space &P(A*)
(#2) observable O=(X,J, F), etc.

In the previous section, we studied the above (f;), that is, we discussed the following classification:

(B) General basic structure[A C A|p )
state space [6P(A*),&™ (A*),6" (A.)]

( Quantum basic structure[C(H) C B(H)]pm)
state space [6P(Tr(H)),6™(Tr(H))=6"" (Tr(H))]

Classical basic structure[Cy(€2) € L*(£2, )] pr2(0,))
. state space [Q,M4+1(02),L>(Q,v)]

In this section, we shall study the above (f), i.e.,

“Observable”
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Recall the famous words: “the primary quality” and “the secondary quality” due to John
Locke, an English philosopher and physician regarded as one of the most influential of Enlightenment

thinkers and known as the “Father of Classical Liberalism”. We think the following correspondence:

{ [state] < [the primary quality] (2.47)

[observable] «+— [the secondary quality]

And thus, we think
e These (i.e., “state” and “observable”) are the concepts which form the basis of dualism.

Also, the following table (which may include my fiction ) promotes the better understanding of

quantum language as well as the other world-views( i.e., the conventional philosophies).

Table 2.1:  Observable - State - System in world-views (c¢f. Table B-T)

World description\ Quantum language H observable ‘ state ‘ system ‘
Plato idea / /
Aristotle / eidos hyle
Locke secondary quality primary quality /
Newton / state point mass
statistics / parameter population
quantum mechanics observable state(~ wave function) particle

#Note 2.2. It may be understandable to consider
“observable” =*“the partition of word”=*“the secondary quality” (2.48)

For example, Chapter 1 (Figure 1.2) says that ( fe, fh) is the partition between “cold” and “hot”.
f c f h

0 10 20 30 0 50 60 70 80 90 100

Chapter 1 (Figure I.7): Cold or hot?
Also, “measuring instrument” is the instrument that choose a word among words. In this sense, we
consider that “observable”= “measurement instrument”. Also, The reason that John Locke’s sayings

“primary quality (e.g., length, weight, etc.)” and “secondary quality (e.g., sweet, dark, cold, etc.)” is
that these words form the basis of dualism.
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2.4.2 Dualism (in philosophy) and duality (in mathematics)

The following question may be significant:

(C1) Why did philosophers continue persisting in dualism?

As the typical answer, we may consider that

(Cy) “T” is the special existence, and thus, we would like to draw a line between “I” and “matter”.

But, we think that this is only quibbling. We want to connect the question (C;) with the following

mathematical question:

(C3) Why do mathematicians investigate “dual space”?

Of course, the question “why?” is non-sense in mathematics. If we have to answer this, we have no

answer except the following (D):

(D) If we consider the dual space A*, calculation progresses deeply.

Thus, we want to consider the relation between the dualism and the dual space such as

[the primary quality] +— the state in the dual space A* (2.49)
[the secondary quality] <— the observable in C* algebra A (or, W*-algebra A) '
Thus, we consider that the answer to the (C;) is also “calculation progresses deeply”.
2.4.3 Essentially continuous
In §27T7) we introduced the following diagram:
s (E):General basic structure and state space ~
SPA*) C @A) C A*
C*—purestate C*-mixed state
Tdual
—— [ B(H)
subalgebra-weak-closure subalgebra
l pre-dual
(2.50)
W*-mixed state
- /

In the above diagram, we introduce the following definition.

28
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Definition 2.14. [Essentially continuous (cf. ref. [37] ) ] An element F(€ A) is said to be
essentially continuous at py(€ GP(A*)), if there uniquely exists a complex number « such that

(Fy) if p, (¢ &"(A,)) weakly converges to py(€ &P(A*)) (That is, limy, o0 7. (pmG)A =
A (po,G>A (VG € A(C A) ), then lim,,_,o I (pn,F>ﬁ =«

Then, the value po(F) (= 4 (,00, F)I) is defined by the «

Of course, for any po(€ GP(A*)), F(€ A) is essentially continuous at py.
This “essentially continuous” is sometimes used in th case that po(€ &™(A*)).

Remark 2.15. [Essentially continuous in quantum system and classical system]

I]: Consider the quantum basic structure [C(H) C B(H)|pu). Then, we see

(C(H))" =Tr(H) = B(H).

Thus, we have p € GP(C(H)*) C Tr(H), F € C(H) = B(H), which implies that

p(G) = ey~ (P, F))B(H) = Tr(H) (,07 F))B(H) (2.51)

Thus, we see that “essentially continuous” < “continuous” in quantum case.
11]: Next, consider the classical basic structure [Co(2) € L*(Q,v) C B(L*(Q,v))]. A function F
(e L>(£2,v)) is essentially continuous at wy (€ @ = &P(Cp(2)*)), if and only if it holds that

(Fs) if p,(€ L (2, v) satisfies that

lim [ G(w)pn(w)r(dw) = G(wp) (VG € Cy(Q2))

n—o0 0

then there uniquely exists a complex number « such that

lim /Q F(w)pn (w)(dw) = a (2.52)

n—o0

Then, the value of F(w) is defined by «, that is, F'(wg) = a.
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/\;/

w1 5

(©,v)
Figure 2.1: not essentially continuous at wy,  essentially continuous at ws

[ITI]: In quantum system, as seen in Supplement (§ 22475), we see that

(i) if 7o, — |e)(e| in the sense of weak* toplology of Tr(H) (where T,, > 0 and ||T,,||5r) = 1),

then T,, — |e)(e| in the sense of norm || - ||5-(z) toplology.
On the other hand, in classical system, it is clear that

(ii) even if p, — 4, in the sense of weak* toplology of M(Q) (where p, € L'(Q,v) C M(Q),
pn > 0 and [[py|la) = 1), it is not guaranteed that p, — dy, in the sense of norm || - [|a)

toplology.

We think that the theoretical difficulty of classical systems is due to the above reason.

2.4.4 The definition of “observable (=measuring instrument)”

In this section, we introduce “observable”, which is also said to be “measuring instrument” or “POVM
) )
(=positive operator valued measure space)”.

Definition 2.16. [Set ring, set field, o-field] ~ Let X be a set ( or locally compact space). The
3"( C2¥ =P(X) ={A| A C X}, the power set of X) (or, the pair (X, J)) is called a ring ( of
sets), if it satisfies that

(a) : O(=“empty set”) € T,
b):Z,eF (i=12..)=|)ZeF [|=eT

i=1 i=1
(0)151,5263":>El\5263" (Where, El\EQZ{x’l'EEl,$¢EQ})

Also, if X € F holds, the ring F(or, the pair (X, F)) is called a field (of sets).
And further,

(d) if the formula (b) holds in the case that n = oo, a field F is said to be o-field. And the pair
(X, F) is called a measurable space.
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The following definition is most important. In this note, we mainly devote ourselves to the
W*-observable.

Definition 2.17. [Observable,measured value space]  Consider the basic structure

[ACAC B(H)]

(G1):C*- observable

A triplet O=(X, R, F) is called a C*-observable (or, C*-measuring instrument ) in A, if it
satisfies as follows.

(i) (X,R) is a ring of sets.
(ii) amap F': R — A satisfies that
() 0SFE) <1 (VE€R), FO) =0,

(b) for any p(€ GP(A*)), there exists a probability space (X, R, P,) such that (where, R
is the smallest o-field such that R C R) such that

A (p, F<E>)A =P,(E  (VEeR (2.53)

Also, X [resp. (X, T, P,)] is called a measured value space [resp. sample probability space |.

(G2):W*- observable
A triplet O=(X,J, F) is called a 1¥*-observable (or, IV*-measuring instrument ) in A, if it
satisfies as follows.

(i) (X,9) is a o-field.

(ii) amap F:JF — A satisfies that

(@) 0S F(E) (VEeF), F(0)=0, F(X) =1
(b) for any p(e & (A,)), there exists a probability space (X, 7, P;) such that

. (p, F(E))ﬁ = PE) (V=€) (2.54)

The observable O=(X, ¥, F') is called a projective observable, if it holds that

FEEZ=FE) (V=e7)

In this note, we aways assume Hypothesis 219 below:

Definition 2.18. Let p € G™(A*), and (X,J, F) be a W*-observable in A. ¥, = {Z € F| F(Z)
is essentially continuous at p }. The probability space (X,F, P,) is called its sample probability
space, if it holds that
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(81) & is the smallest o-field that contains F,.

(f2)

o (P F@)=FRE (=T, (2.55)

Concerning the C*-observable, the sample probability space clearly exists. On the other hand,
concerning the W*-observable, we have to say something as follows. As mentioned in Remark 215,
in quantum cases ( thus, A* = Tr(H) = A, ), the (#1) and (f) clearly hold. However, in the
classical cases, we do not know whether the existence of the sample probability space follows from
the definition of the W*-observable. Thus, in this note, we do not add the condition (f) in the
definition of the W*-observable.

Hypothesis 2.19. [Sample probability space|. In the above situation, the existence of the sample
probability space is always assumed.

2.4.5 Supplement

Concerning Remark 215 [I1I], we add Lemma A and Theorem B as follows.
Lamma A Let H be a Hilbert space. Put B(H) :={T | T : H — H is a bounded linear operator}.
Let C(H)(C B(H)) be a class of all compact operators. Let T'(H)(C B(H)) be a trace class. Note
that it holds that

C(H)"=Tr(H), TJr(H)"=DB(H)

Let e € H such that |le||y = 1. Let T' € Tr(H) such that
T>0, [Tl — 1
Put € := 1 — (e, Te). Then, it hold that
1T = le)elllarm < 26+ 2Ve
Proof. Put P = |e)(e|, then, we see that

IT = le)(elllzrmy = [|(I = P+ P)T(I = P+ P) = Pllgran)
<|[(I = P)T(I = P)||spmy + (I = P)TP|lgr(zry + [|PT(I — P)lge(ar) + | PTP — Py
Z:J1 —|— JQ + Jg + J4
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Next, we estimate each J;(i = 1,2,3,4) as follows.

Ji = Tr[(I — PYT(I — P)] = Tr[T] — Tr[PT(I — P)] — T+[(I — P)TP)] + Tr[PTP]
=Tr[T|—Tr[PTP]=1— (e|Te) =¢

since Tr[PT(I — P)] =0 =Tr[(I — P)TP]. Putting { = Te — (e|Te)e(€ H), we see that ({]e) = 0.
Thus, we see, by the definition of trace, that

£
€]l

T(5) < Tr(T) =1

e+ e

Hence,
€11 = (€1€) = (€]Te — (elTe)e) = (€|Te) < (€]T€)*(e|Te)'/* < Velléllnv/1 e
which implies that [|£]|g < /€. Therefore,
Jo = (I = P)T Pz = €]l - llellar = €]l < Ve
since (I — P)TP = (I — P)T|e)(e| = |£)(e|. Similarly, we see
Jy < /e
Also, since PTP — P = ({e|Te) —1)P = —€P,
Jy = ||PTP — Pllgr) < €
Therefore, we see that
1T — le)(elllgrimy < J1 + Jo + Js + Jy < 2e 4+ 2V/€

[l
Theorem B Let H be a Hilbert space. Put B(H) := {T | T : H — H is a bounded linear
operator}. Let C(H)(C B(H)) be a class of all compact operators. Let T'(H)(C B(H)) be a trace
class. Note that it holds that

C(H)"=Tr(H), Jr(H)"=B(H)
Let e € H such that |le||y = 1. Let T, € Tr(H)(n = 1,2, ...) such that
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If T,, — |e)(e| in the sense of weak* topology in Tr(H), then it hold that
Tim 1T, — le) el = 0
Proof. Since we assume that T,, — |e)(e| in the sense of weak* topology in Tr(H ), then
(elTue) — 1 = Tr{(Ty — le){eDledel] — 0 (n —> o0)

Thus Lemma A is applicable. This completes the proof. O
Remark C The above proof was taught by Prof. Takeshi KATSURA ( Dept. math. Keio university).
[ am thankful to him.
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2.5 Examples of classical observables

We shall mention several examples of classical observables. The observables introduced in Exam-
ple 2220-Example 2223 are characterized as a C*- observable as well as a W*- observable.

In what follows (except Example 2-20), consider the classical basic structure:

[Co(Q) C L>®(Q,v) C B(L*(Q,v))]

Example 2.20. [Existence observable | Consider the basic structure:
[ACAC B(H)
Define the observable O(*) = (X, {(, X}, FV) in W *-algebra A such that:
FEYN@)y =0, FEY(X)=1T (2.56)

which is called the ezistence observable (or, null observable).

Consider any observable O = (X, 7, F) in A. Note that {#), X} C F. And we see that

Thus, we see that (X, {0, X}, F©®9) = (X, {0, X}, F), and therefore, we say that any observable
O = (X, T, F) includes the existence observable O

#Note 2.3. The above is associated with Berkley’s words:
(#1) To be is to be perceived (by George Berkeley(1685-1753))
which is peculiar to dualism: This is opposite to Einstein’s saying in monism :
(#2) The moon is there whether one looks at it or not. (i.e., Physics holds without observers.)

in Einstein and Tagore’s conversation. (cf. Note I11),

Example 2.21. [The resolution of the identity /; The word’s partition] Let [Co(€2) € L>®(Q,v) C
B(L?(2,v))] be the classical basic structure. We find the similarity between an observable O and
the resolution of the identity I in what follows. Consider an observable O = (X, J, F') in L>(£2) such
that X is a countable set (i.e., X = {x1,29,...}) and F = P(X) = {E | E C X}, i.e., the power set
of X. Then, it is clear that
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(i) F({zy}) >0 forall k= 1,2, ..

(i) > i [F{zeb)](w) =1 (Vwe ),

which imply that the [F({zx}) : k = 1,2,..] can be regarded as the resolution of the identity
element I. Thus we say that

e An observable O ( = (X,7,F) ) in L*(2) can be regarded as

“ the resolution of the identity [/

[F({a1 D)) F (s )(@) [F({z3}](w)

Q
100
Figure 2.2: 0= ({x17$2’x3}’ 2{:61,:1:2,&:3}7 F)

In Figure 2.2, assume that € = [0, 100] is the axis of temperatures ( °C), and put X = {C(="“cold”),
L (=“lukewarm” = “not hot enough”), H(=%hot”) }. And further, put f,, = fo, fu, = Jfr,
fzs = fu. Then, the resolution {f.,, fu,, fus} can be regarded as the word’s partition C(="“cold”),
L(="“lukewarm”=‘“not hot enough”), H(="hot”) .

Also, putting

St(: 2X) = {@, {xl}’ {x2}7 {x3}7 {xla IQ}? {1‘2, w3}’ {xh :133}, X}

and

=

=

—~
&

~—
I

0, [F(X)(w) = for(w) + far (W) + fos(w) =1

{z1)](w) = fo, (), [F({z2D)](w) = fo,(w), [F({zs})](w) = fos(w)
{z1, 22D)](W) = for (W) + frn (W), [F({z2, 23H)](W) = fo, (W) + fay(w)

F({z1, zsH)](w) = for (W) + fa (W)

then, we have the observable (X, F(= 2%), F') in L>([0, 100]).
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Example 2.22. [Triangle observable | Let [Co(Q2) C L>®(Q,v) C B(L*(Q,v))] be the classical basic
structure.  For example, define the state space Q by the closed interval [0,100] (C R). For each
n € NiJ¥ = {0, 10,20, ...,100}, define the (triangle) continuous function g, : 2 — R by

(0 (0= w=n-10)
—n—10
" % (n—10 € w < n) -
—% (n<w<n+10)
| 0 (n + 10 < w £ 100)
1 90 gio 920 g30 940 g50 geo gro gs8o 990 g100

Figure 2.3: Triangle observable

Putting Y = N1J° and define the triangle observable O* = (Y,2Y, F'2) such that

[FEO)w) =0,  [FA(Y)](w) =1

[FAM)w) =Y galw) (VT €2'18")

nel’

Then, we have the triangle observable 0% = (Y (= N%), 2¥, F2) in L*°([0, 100]).

Example 2.23. [Normal observable]

Figure 2.4: Error function

Consider a classical basic structure [Co(Q) C L*>°(2,v) C B(L?*(2,v))]. Here, Q = R(= the real line)

or, ) = interval [a,b] (C R), which is assumed to have Lebesgue measure v(dw)(= dw). Let o > 0,
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which is call a standard deviation. The normal observable Og,=(R, Bg, G,) in L>°(Q, v) is defined
by

1 z—w)?
G @) = 7= / e~“%7dr (V2 € Br(Borel field), Yw € Q(= R or [a, b]))
Vixex =

This is the most fundamental observable in statistics.

The following examples introduced in Example 224 and Example 2225 are not C*- observables
but W*- observables. This implies that the W*-algebraic approach is more powerful than the C*-
algebraic approach. Although the C*-observable is easy, it is more narrow than the W*- observable.

Thus, throughout this note, we mainly devote ourselves to W*-algebraic approach.

Example 2.24. [Exact observable | Consider the classical basic structure: [Cy(Q2) € L*(Q2,v) C
B(L?(Q,v))]. Let Bq be the Borel field in Q, i.e., the smallest o-field that contains all open sets.
For each = € B, define the definition function y. : 2 — R such that

1 (weZ)

X=(W) = (2.58)

0 (w¢=)
Put [F&)(Z)])(w) = x=(w) (E € Bg,w € Q). The triplet O™ = (Q, B, F™) is called the ezact
observable in L>®(€, v). This is the W*-observable and not C*-observable, since [F®*®(Z)](w) is not
always continuous. For the argument about the sample probability space (cf. Definition 2718 ), see

Example 2-33.

Example 2.25. [Rounding observable] — Define the state space © by € = [0,100]. For each n €
N1°={0, 10, 20, ..., 100}, define the discontinuous function g, : Q@ — [0, 1] such that
0 (O=w=sn-5)

gow)=32 1 (n—5<w=n+)5)
0  (n+5<w < 100)

190 J10 920 950 gso 990  g100

0 10 20 30 40 50 60 70 80 90 100

Figure 2.5: Round observable
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Define the observable Orxp = (Y(=NiJ), 2Y, Gryp) in L>®(£, v) such that

[Grno(D)](w) =0, [Gran(Y)](w) =1
[GroM)w) =Y gn(w) (VT €27 = 2"

nel’

Recall that g, is not continuous. Thus, this is not C*-observable but W*-observable.
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2.6 System quantity — The origin of observable

In classical mechanics, the term “observable” usually means the continuous real valued function
on a state space (that is, physical quantity). An observable in measurement theory (= quantum
language ) is characterized as the natural generalization of the physical quantity. This will be

explained in the following examples.

Example 2.26. [System quantity] Let [Co(Q2) C L=(Q2,v) C B(L?*(,v))] be the classical basic
structure. A continuous real valued function f: 2 — R ( or generally, a measurable R"-valued
function f : Q — R® ) is called a system quantity (or in short, quantity) on €. Define the projective
observable O = (R, Bg, F') in L>°(2,v) such that

1 whenw e f1(2)

[FE)(w) = N (V= € Bg)
0 whenw ¢ f71(2)

Here, note that

For=Jim Y 5P ()| @) = [ @) (2.59)

Thus, we have the following identification:

7 > 0= (R,Bg,F) (2.60)

(system quantity on Q) (projective observable in L (Q,v))

This O is called the observable representation of a system quantity f Therefore, we say that

(a) An observable in measurement theory is characterized as the natural generalization of the

physical quantity.

Example 2.27. [Position observable , momentum observable , energy observable |  Consider New-
tonian mechanics in the classical basic algebra [Cy(2) € L>(Q2,v) C B(L*(R2,v))]. For simplicity,

consider the two dimensional space
Q =R, x R,={(¢,p) = (position, momentum) | ¢,p € R}

The following quantities are fundamental:

(f1) :q: Q= R, q(¢,p) =q (V(q,p) € Q)
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(f2) D: Q =R, pla,p) =p (V(g,p) € Q)

(f3) € : Q2 = R, €(q, p) =[potential energy | + [kinetic energy |
2

=U(g)+ 5~ (ap) Q)

(Hamiltonian)

where, m is the mass of a particle. Under the identification (2-60), the above (), (f2) and (f3) is

respectively called a position observable, a momentum observable and an energy observable.
Example 2.28. [Hermitian matrix is projective observable | Consider the quantum basic structure
in the case that H = C", that is,

[B(C") € B(C") € B(C")]

Now, we shall show that an Hermitian matrix A(€ B(C™)) can be regarded as a projective observable.

For simplicity, this is shown in the case that n = 3. We see (for simplicity, assume that x; # x(if

J7#k))

I 0 0
A=U"|0 z, 0|U (2.61)
0 0 XT3

where U (€ B(C?)) is the unitary matrix and zj € R. Put

[1 0 0] 00 0
Fa{z1})=U* [0 0 0| U, Fa({xa})=U" [o 1 o} U,

0 0 0] 00 0

[0 0 0] 00 0
FA({$3}>:U* 0 0 O0|U FA(R\{x1,1‘2,1‘3}): 0 0 0],

0 0 1] 00 0

Thus, we get the projective observable O4 = (R, Bg, Fla) in B(C?). Hence, we have the following
identification”:

A — OA = (R, BR, F4) (262)

(Hermitian matrix) (projective observable )

2For example, in the case that ©; = x4, it suffices to define

1 0 0 0 0 O
Fa{lm) =U* [0 1 0| U, Fa{ash)=U* |0 0 0
0 0 0 0 0 1

0 0
U FA(R\{LEhIg}) = [0 0
0 0

0
0
1

4]_ For further imformation see my homepagd
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Let A(e B(C")) be an Hermitian matrix. Under this identification, we have the quantum mea-
surement Mp(cny (04, Sj,), where

2 n
p=lwyw], w=|.]eC"|uw|=1
Wy,

Born’s quantum measurement theory (or, Axiom 1 (§2.7) ) says that

(1) The probability that a measured value z(€ R) is obtained by the quantum measurement
Mp(c)(Oa, Spp) is given by Tr(p - Fa({x})) (= (w, Fa{z})w) ).

(for the trace: “Ir”, recall Definition 2°9).

Therefore, the expectation of a measured value is given by

/Rx(w,FA(dx)w} = (w, Aw)

(2.63)
Also, its variance (§%)? is given by
(537 = [ (0= o, Ao Fa(des) = (A, ) = [ Aw)
= [I(4 = (w, Aw))w||* (2.64)
Example 2.29. [Spectrum decomposition] Let H be a Hilbert space. Consider the quantum basic
structure
[C(H) C B(H) C B(H)].

The spectral theorem (c¢f. [I08]) asserts the following equivalence: ((a)<>(b)), that is,

(a) T is a self-adjoint operator on Hilbert space H

(b) There exists a projective observable O = (R, Bg, F') in B(H) such that

T = /OO AF(dN) (2.65)

Since the definition of “unbounded self-adjoint operator” is not easy, in this note we regard the (b)

as the definition. In the sense of the (b), we consider the identification:

self-adjoint operator ' +—

spectrum decomposition O = (R, Bg, F)
identification

(2.66)
42
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This quantum identification should be compared to the classical identification (2-60).
The above argument can be extended as follows. That is, we have the following equivalence:

((c)&(d)), that is,

(c) Ty, Ty are commutative self-adjoint operators on Hilbert space H

~

(d) There exists a projective observable O = (R? Bge, ) in B(H) such that

T1 :/ )\1G<d)\1d)\2), T2 :/ )\QG(d/\ld)\Q) (267)
R2 R2
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2.7 Axiom 1 — No science without measurement

Measurement theory (= quantum language ) is formulated as follows.

[ASaemT) [AxiomJ] [inguistic Copenhagen interpretation]
® | measurement theory‘ := | Measurement |+ ‘ Causality ‘—F’ Linguistic Copenhagen interpretation
(=quantum language) (cf. B2.7) (cf. §83) (cf. §BM)
a kind of spells (a priori judgment) manual to use spells

Now we can explain Axiom 1 (measurement).

2.7.1 Axiom 1 for measurement

With any system S, a basic structure [A C A C B(H)] can be associated in which measurement
theory of the system can be formulated. A state (or precisely, pure state) of the systemS is represented

by an element of state space &P(A*). An observable (= measuring instrument) is represented by a

C*-observable O = (X,J, F) in A ( or, W*-observable O = (X, F, F) in A ).

(A1) An observer takes a measurement of an observable [O] for a state p, and gets a measured value

z(e X).

In a basic structure [A C A C B(H)|, consider a W*-measurement Mz (0=(X, ¥, F), S|, ( or,
F), Sp) )

C*-measurement M (O=(X,

Preparation 2.30. Consider

e a IWV*-measurement MZ(O, S[p}) (or, C*-measurement My (O:(X, FF), S[p]) ) of an observ-
able O=(X,JF, F) for a state p(€ GP(A*) : state space)

Note that
(As) W*-measurement Mz(0,S;) --- O is W*- observable , p € GP(A*)
2 C*-measurement My (0,S) -+ Ois C*- observable , p € GP(A*)

In this lecture, we mainly devote ourselves to W *-measurements.
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(B): Axiom 1(measurement) pure type ~

-

(This can be read under the preparation to this section )

With any system S, a basic structure [A C A]p) can be associated in which measurement
theory of that system can be formulated. In [A C AJ B(H), consider a I//*-measurement

MZ(O:(X, F, F),S[p]) <01r7 C*-measurement MA(O:(X, F, F),S[p]) > That is, consider

e a IV*-measurement MZ(O, S[p]) < or, C*-measurement My (O:(X, F, F),S[p}) ) of an ob-
servable O=(X,J, F) for a state p(€ GP(A") : state space)
Then, the probability that a measured value = (€ X) obtained by the W*-measurement
Mz (0, S,) ( or, C*-measurement M, (O=(X,J,F), S|)) ) belongs to = (€ ¥F) is given by
p(F(E)(= a-(p, F(E))7)

(if F(Z) is essentially continuous at p, or see Definition 214 ).

/

This axiom is a kind of generalization (or, a linguistic turn) of Born’s probabilistic interpretation
of quantum mechanics. ® That is,

(the law proposed by Born)
quantum mechanics (Born’s quantum measurement )

linguistic turn

(physics)
(a kind of spell)

measurement theory(Axiom 1) (2.68)

(metaphysics, language)

ANote 2.4. The above axiom is due to Max Born (1926). There are many opinions for the term
”probability”. For example, Einstein sent Born the following letter (1926):

(f1) Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real
thing. The theory says a lot, but does not really bring us any closer to the secret of the ”old
one.” I, at any rate, am convinced that He does not throw dice.

From a viewpoint of quantum mechanics, I want to believe that both Born and Einstein are right.
That is because I assert that quantum mechanics is not physics.

2.7.2 A simplest example

Now we shall describe Examplel™T ( Cold or hot?) in terms of quantum language (i.e., Axiom]

SRef. [6]: Born, M. “Zur Quantenmechanik der StoBprozesse (Vorliufige Mitteilung)”, Z. Phys. (37) pp.863-867
(1926).
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Example 2.31. [(continued from Examplel“T) The measurement of “cold or hot" for water in a cup |
Consider the classical basic structure:

[Co(€) © L=(,v) € B(L*(2,v))]

Here, Q2 = the closed interval [0,100](C R) with Lebesgue measure v. The state space &P(Cy(€2)*)
is characterized as

&P (Co(Q)) = {5, € M(Q) | w € Q} ~ Q = [0, 100]

fc fh

0°C 10°C 20°C 30°C 40°C 50°C 60°C 70°C 80°C 90 °C 100 °C

Figure 2.6: Cold? Hot?

In Example [T, we consider this [C-H]-thermometer O = (f., f), where the state space 2 = [0, 100],
the measured value space X = {c, h}. That is,

1 (0 £ w = 10)
fc(w) - 706_6w (10 é w é 70) ) fh(w) =1- fc(w)
0 (70 < w < 100)
Then, we have the (cold-hot) observable O, = (X,2%, F,;) in L>(£2) such that
[Fen(@))(w) =0, [Fen(X))(w) =1

[Een({eD](w) = fe(w), [Fen({h})](w) = fa(w)

Thus, we get a measurement Mpec(q)(Ocn, Sis,)) ( or in short, Mo ) (O, Siy). Therefore, for exam-
ple, putting w = 55 °C, we can, by Axiom 1 (§2.7), represent the statement (A;) in Example [T as
follows.

(a) the probability that a measured valuex(€ X={c, h}) obtained by measurement

0 [Fen(0)](55) = 0
(3 S [Fen({c})](55) = 0.25

MLOO(Q)(OCh, S[w(:55)]) belongs to set () is given by (F ({h1)](55) = 0.75
{c,h} [Fen({c, h})](55) =

Or more precisely,
(b) When an observer takes a measurement by [[C-H]-instrument)]
measuring instrumentO.,=(X,2X ,F.;)
for [water in cup] with ~ [55 °C] | the probability that measured value
(system(measuring object)) (state(=w € Q) )

{ I 1 is obtained is given by { fr(55) = 0.75 }
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2.8 Examples: Classical measurements (urn problem, etc.)

2.8.1 linguistic world-view — Wonder of man’s linguistic competence

The applied scope of physics physics (realistic world-description method) is rather clear. But the
applied scope of measurement theory is ambiguous.
What we can do in measurement theory (= quantum language) is

(a1): Use the language defined by Axiom 1 ( §2.7)

(a)

(ag): Trust in man’s linguistic competence

Thus, some readers may doubt that
(b) Is it science?

However, it should be noted that the spirit of measurement theory is different from that of physics.

2.8.2 Elementary examples—urn problem, etc.

Since measurement theory is a language, we can not master it without exercise. Thus, we present

simple examples in what follows.

Example 2.32. [ The measurement of the approximate temperature of water in a cup (continued from

ExampleZ22 [triangle observable |)]  Consider the classical basic structure:
(Col) € I2(2,v) € B(IX(,v)

where Q0 = “the closed interval [0, 100]” with the Lebesgue measure v.

Let testees drink water with various temperature w °C (0 £ w < 100). And you ask them “How
many degrees( °C) is roughly this water?” Gather the data, ( for example, h,(w) persons say n °C
(n = 0,10,20,...,90,100). and normalize them, that is, get the polygonal lines. For example,
define the state space € by the closed interval [0,100] (C R) with the Lebesgue measure. For each
n € NI%° = {0, 10, 20, . .., 100}, define the (triangle) continuous function g, : Q — [0, 1] by

0 (0= w<=n-—10)
—n—10
) % (n—10=w=n)
In\W) = ~n+10
—% (n<w<n+10)
0 (n+ 10 < w < 100)
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1 goo 9100

0 10 20 30 40 50 60 70 80 90 100
Figure 2.7: Triangle observable

(a) You choose one person from the testees, and you ask him/her “How many degrees( °C) is
“about 40 °C”

: 27 °1:
roughly this water?”. Then the probability that he/she says { “about 50 °C”

]

} is given by

This is described in terms of Axiom 1 ( §2.7) in what follows.
Putting Y = N1 define the triangle observable 0% = (Y, 2¥,G#) in L*°(Q) such that

[GEM)(w) =0,  [G*(V))(w) =1
[GAD)(w) =) gn(w) (VI € 2Y96° v € Q = [0, 100])

nel’

Then, we have the triangle observable 02 = (Y (= N}%),2Y G#) in L>=([0,100]). And we get a
measurement MLOO(Q)(OA7 Sis.1)- For example, putting w=47 °C, we see, by Axiom 1 ( §2.7), that

(b) the probability that a measured value obtained by the measurement M Loo(g)(OA, Sl(=47))
. [ about d0°C ). . [G2({401)](47) = 0.3
1 about 50 °C | BV DY 1@ ((501))(47) = 0.7

Therefore, we see:

statement (a)| —— |statement (b) (2.69)

translation
(ordinary language) (quantum language)

/1]

Example 2.33. [Exact measurement] Consider the classical basic structure:

[Co() € L=(Q,v) € B(L*(Q,v))]
Let Bg be the Borel field. Then, define the exact observable O™ = (X (= Q), F(= Bq), F©) in
L>(€, v) such that

[FO(E)(w) = ya (@) = (e

Let 4., ~ wo(€ Q). Consider the exact measurement Mo, (O, Sis.,))- Here, Axiom 1 ( E2.7)

says:
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(a) Let D(C ) be arbitrary open set such that wy € D. Then, the probability that a measured

value obtained by the exact measurement M LOO(QJ/)(O(exa), S[(;uo}) belongs to D is given by
Co(Q)* ((5UJO, XD)LOO(Q’V) =1

From the arbitrariness of D, we conclude that

(b) a measured value wy is, with the probability 1, obtained by the exact measurement My« (q,,)
(O(cxa) S )
; [5'“0} .

though (X, F, [ (.)](wp)) is not a probability space.
Further, put

Fuo ={E€F : wy ¢ “the closure of ="\ “the interior of ="}

Then, when = € &F,,, F(Z) is continuous at wy. And, F is the smallest o-field that contains F,,.
Therefore, we have the probability space (X, J, P, ) such that

Ps,(E) =[FE)(w)  (VE € Fu)
that is,

(c) the exact measurement Mpe(q,) (O S5 1) has the sample space (X, 7, Bs,,) (= (Q, Bq,

«o
P, )), though the uniqueness is not guaranteed.

Example 2.34. [Urn problem]  There are two urns U; and Us. The urn U; [resp. Us] contains 8
white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Table 2.2, Figure 2.7).

Table 2.2: urn problem

Urn\ w-b|  white ball black ball
Urn Uy 8 2
Urn Us 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
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w1

Figure 2.8: Urn problem

In measurement theory, the statement (a) is formulated as follows: Assuming

Uy --- “the urn with the state w,”

Uy --- “the urn with the state wy”

define the state space Q2 by Q = {w;, w2} with the discrete metric and the counting measure v (i.e.,
v({wi}) = v({w}) = 1). That is, we assume the identification;

Ui mw, U= w,
Thus, consider the classical basic structure:
(Co() € L=(Q,v) € BLA(Q,v))]

Put “w” = “white’ “b” = “black”, and put X = {w,b}. And define the observable O( = (X =
{w7 b}a 2{w,b}’ F)) n LOO(Q) by

[F({w})](wr) = 0.8, [F({6})](w1) = 0.2,
[F({w})](wz) = 0.4, [F({6})](w2) = 0.6.

Thus, we get the measurement My (o) (0, Sj5,,.)). Here, Axiom 1 ( §2.7) says that

(b) the probability that a measured value w is obtained by Mze)(0O, Sjs,,) is given by
F({b})(wz) = 0.4

Therefore, we see:

statement (a) | —— |statement (b) (2.70)

translation
(ordinary language) (quantum language)
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ANote 2.5. [L>®(Q,v), or in short, L*°(2)] In the above example, the counting measure v (i.e.,
v({w1}) = v({wz}) = 1) is not absolutely indispensable. For example, even if we assume that

v({wi}) =2 and v({wa}) = 1/3, we can assert the same conclusion. Thus, in this note,

L>(€Q,v) is often abbreviated to L>(().

ANote 2.6. The statement (a) in Example 22374 is not necessarily guaranteed, that is,
When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
is not guaranteed. What we say is that

the statement (a) in ordinary language should be written by the measurement theoretical state-
ment (b)

It is a matter of course that “probability” can not be derived from mathematics itself. For example,
the following (f1) and (f2) are not guaranteed.

(#1) From the set {1,2,3,4,5}, choose one number. Then, the probability that the number is even is
given by 2/5

(f2) From the closed interval [0, 1], choose one number x. Then, the probability that = € [a, ] C [0, 1]
is given by |b — a

The common sense — “probability” can not be derived from mathematics itself — is well known as
Bertrand’s paradox (cf. §9.11). Thus, it is usual to add the term “at random” to the above (#;) and
(#2). In this note, this term “at random” is usually omitted.

Example 2.35. [Blood type system] The ABO blood group system is the most important blood
type system (or blood group system) in human blood transfusion. Let U; be the whole Japanese’s
set and let Uy be the whole Indian’s set. Also, assume that the distribution of the ABO blood group

system [O:A:B:AB| concerning Japanese and Indians is determined in (Table 223).

Table 2.3: The ratio of the ABO blood group system

J or INABO blood group O A B AB
Japanese U 30% | 40% | 20% | 10%
Indian U, 30% | 20% | 40% 10%

Consider the following phenomenon:
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(a) Choose one person from the the whole Indian’s set Uy at random. Then the probability that

O 0.3

, . A L 0.2

the person’s blood type is B is given by 0.4
AB 0.1

In what follows, we shall translate the statement (a) described in ordinary language to quantum
language. Put Q = {w;,ws} and consider the discrete metric (2,dp). We get consider the classical

basic structure:
[Co(2) € L=(,v) € B(L*(Q,v))]
Therefore, the pure state space is defined by
SP(Co(€)") = {dun, dur }
Here, consider

0o, -+ “the state of the whole Japanese’s set U (i.e., population)”®

dw, -+ “the state of the whole India’s set Ui (i.e., population)”,
That is, we consider the following identification: (Therefore, image Figure 229):

Ul ~ 60.117 U2 ~ 5&)2

U1%5wl U2%6w2

Japanese Indian

[3:4:2:1]

[3:2:4:1]

Figure 2.9: Population(=system)aurn

Define the blood type observable Opr = ({0, A, B, AB}, 2{0-ABAB} ' [31) in L>(€), v) such that

[Fer({OD](wr) = 0.3, [Fer({A})](wi) = 0.4
[Fer({B})](w1) = 0.2, [Fr({AB})](w1) = 0.1 (2.71)

4Note that “population” = “system” (cf. Table 2.1 ).
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and,

[Fer({O})](wz) = 0.3, [Fer({A})](w2) = 0.2
[Fer({B})](w2) = 0.4, [Fer({AB})](wz) = 0.1 (2.72)

Thus we get the measurement M LOO(Q’V)(OBT7 S[&Q]). Hence, the above (a) is translated to the fol-

lowing statement (in terms of quantum language):

O
(b) The probability that a measured value g is obtained by the measurement
AB
Mo,y (O, S[(ng}) is given by
o (duns For({0])) =) = [For({OD)(w2) = 03
o@* { 9uns FBT({A}) 120 (00) = [FBT({A})](w02) = 0.2
Co () 5W27FBT({B})>L°° o) = [Fer({B})](w2) = 0.4
| o (s Far({ABY) ) 1m() = [Far({AB)](w2) = 0.1 |

ANote 2.7. Readers may feel that Example 2234-Example 238 are too easy. However, as mentioned in
(a) of Sec. 871, what we can do is

{ to be faithful to Axioms
[ ]

to trust in Man’s linguistic competence

If some find the other language that is more powerful than quantum language, it will be praised as
the greatest discovery in the history of science. That is because this discovery is regarded as beyond
the discovery of quantum mechanics.
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2.9 Simple quantum measurement (Stern=Gerlach experi-
ment )

2.9.1 Stern=Gerlach experiment

Example 2.36. [Quantum measurement( Schtern—Gerlach experiment (1922))]
Assume that we examine the beam (of silver particles(or simply, electrons) after passing through
the magnetic field. Then, as seen in the following figure, we see that all particles are deflected either

equally upwards or equally downwards in a 50:50 ratio. See Figure 2.10.

\S/ e

electron e

state w = {alJ

2/ N \ N ©

Screen

Figure 2.10: Stern—Gerlach experiment (1922)

Consider the two dimensional Hilbert space H = C?, And therefore, we get the non-commutative
basic algebra B(H), that is, the algebra composed of all 2 x 2 matrices. Thus, we have the quantum

basic structure:
[C(H) € B(H) C B(H)] = [B(C?) C B(C?) C B(C?)]

since the dimension of H is finite.

The spin state of an electron P is represented by p(= |w){w|), where w € C? such that ||w| = 1.

aq

Put w = ( where, ||w|* = |1 |* + > =1).

Define O, = (Z,2%, F,), the spin observable concerning the z-axis, such that, Z = {1, ]} and

=y o R@n=[y (2.73)

ro-[y o] manm=g Y.

Here, Born’s quantum measurement theory (the probabilistic interpretation of quantum mechan-

ics) says that
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(1) When a quantum measurementMpg(c2)(0O, Si,)) is taken, the probability that
(w, F*({1Hw) = |au|?
(w, F*({{})w) = |as|?

/I\

! ] is obtained is given by

a measured value [

That is, putting w (= {Zl] ), we says that
2

When the electron with a spin state state p progresses in a magnetic field,

the probability that the Geiger counter [ © } sounds

©

wowl ) O[] = ol
1 2 _O O_ _O[g_ 1
is give by
[0 0] [ a4
N P P i

Also, we can define O = (X,2%, F'?), the spin observable concerning the r-axis, such that,
X = {1, o} and

P = Vs 1) FLb= |1 T e

And furthermore, we can define OY = (Y,2Y, FY), the spin observable concerning the y-axis, such
that, Y ={1,,},} and

P =205, Vh) P = TR @2.75)

where 1 = /—1.

Here, putting

Sy = F({th) — E({1), S, =E{1th - F{{}). 5. =F({1) - E{})

we have the following commutation relation:

S,S, — 8.5, = 2iS,, S.S,—S,S, =2iS,, S,5,—S,S, =2iS. (2.76)
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2.10 de Broglie paradox in B(C?)

Axiom 1(measurement) includes the paradox ( that is, so called de Broglie paradox “there is
something faster than light”). In what follows, we shall explain de Broglie paradox in B(C?), though
the original idea is mentioned in B(L*(R)) (c¢f. §93, and refs.[Td, I01]). Also, it should be noted

that the argument below is essentially the same as the Stern=Gerlach experiment.

Example 2.37. [de Broglie paradox in B(C?)] Let H be a two dimensional Hilbert space, i.e.,

H = C?. Consider the quantum basic structure:

[B(C*) € B(C?) C B(C?)]

Now consider the situation in the following Figure 2.11.

half mirror 1

u=Js (fi+f2)m 4=
NCLRRE ._.. coursel \/Efl ) Di(= (If) ()
photon P| "= (photon detector)

course2| Vol fo

\'J Dy(= ([ f2)(f2]))

(photon detector)
Figure 2.11:  [Dy + D] = observable O

Let us explain this figure in what follows. Let f;, fo € H such that
2 0 2
ioblee aefec

Put

:f1+f2
V2

Thus, we have the state p = |u){u| (€ &(B(C?))).
Let U(€ B(C?)) be an unitary operator such that

1 0
U= |:0 ei7r/2:|
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and let ® : B(C?) — B(C?) be the homomorphism such that
®(F)=UFU  (VF e B(C?)
Consider the observable O = ({1,2}, 2% F) in B(C?) such that

F{1}) = [flhl FA2Y) = [f2)(f2]
and thus, define the observable ®0; = ({1,2},2{1%} & F) by

OF(E) = U*F(EU (V= C {1,2})
Let us explain Figure 2T1. The photon P with the state u = \%( fi+ f2) ( precisely, |u)(u| ) rushed
into the half-mirror 1

(A1) the f; part in u passes through the half-mirror 1, and goes along the course 1 to the photon
detector Dj.

(Ag) the fy part in u rebounds on the half-mirror 1 (and strictly saying, the fo changes to v/—1fs,

we are not concerned with it ), and goes along the course 2 to the photon detector Ds.

Thus, we have the measurement:
Mpc2)(®Oy, Siy) (2.77)

And thus, we see:

measured value 1

(B) The probability that a [measure d value 2

} is obtained by the measurement Mpgc2)(®Oy, Siy)
is given by

{Tr(p : <I>F({1}))} _ {(u, ‘PF({l})uq
Tr(p-@F({2}))]  [{w, ®F({2})u)

This is easy, but it is deep in the following sense.

(C) Assume that
Detector D; and Detector D, are very far.

And assume that the photon P is discovered at the detector D;. Then, we are troubled if
the photon P is also discovered at the detector D,. Thus, in order to avoid this difficulty,
the photon P (discovered at the detector D;) has to eliminate the wave function % f2 in an

instant. In this sense, the (B) implies that

there may be something faster than light
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This is the de Broglie paradox (c¢f. [I4, [0T]). From the view point of quantum language, we give up

to solve the paradox, that is, we declare that

Stop to be bothered!

(Also, see [89]).

ANote 2.8. The de Broglie paradox (i.e., there may be something faster than light ) always appears
in quantum mechanics. For example, the readers should confirm that it appears in Example 236
(Schtern-Gerlach experiment). I think that

e the de Broglie paradox is the only paradox in quantum mechanics
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Chapter 3

The linguistic Copenhagen interpretation
(dualism and idealism)

Measurement theory (= quantum language ) is formulated as follows.

[AsaemT) [Asaom—7) [nguistic Copenhagen interpretation]
e |measurement theory‘ :=| Measurement |+ ‘ Causality ‘—i—‘ Linguistic Copenhagen interpretation
(=quantum language) (cf. &270) (cf. §83) (cf. §821)
a kind of spell(a priori judgment) manual to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic Copenhagen
interpretation)!

Since we dealt with simple examples in the previous chapter, we did not need the linguistic Copen-
hagen interpretation. In this chapter, we study several more difficult problems with the linguistic
interpretation. Also, the linguistic Copenhagen interpretation may be called “the linguistic Copen-
hagen interpretation” since we believe that it is the true colors of so called Copenhagen interpretation
(¢f. Section 1.1.1).

3.1 The linguistic Copenhagen interpretation

3.1.1 The review of Axiom 1 ( measurement: §2.7)

In the previous chapter, we introduced Axiom 1 (measurement ) as follows.

29



3.1 The linguistic Copenhagen interpretation

(A): Axiom 1(measurement) pure type ~

(¢f. It was able to read under the preparation to §2.1) )

With any system S, a basic structure [A C A]p) can be associated in which measurement
theory of that system can be formulated. In [A C AJ B(H), consider a I//*-measurement

MZ(O:(X, F, F),S[p]) <or, C*-measurement MA(O:(X, F, F),S[p]) > That is, consider
e a IV*-measurement M;(O, S[p]) < or, C*-measurement My (O:(X, F, F),S[p}) ) of an ob-
servable O=(X,J, F') for a state p(€ GP(A*) : state space)
Then, the probability that a measured value = (€ X) obtained by the W*-measurement
I\/IX(O,SM) ( or, C*-measurement My (O:(X, F, F),S[p}) ) belongs to = (€ ¥F) is given by
P(F(E)(= a-(p, F(2))z)

(if F(Z) is essentially continuous at p, or see Definition 214 ).
- )
Here, note that

(B;) the above axiom is a kind of spell (i.e., incantation, magic words, metaphysical
statement), and thus, it is impossible to verify them experimentally.

In this sense, the above axiom corresponds to “a priori synthetic judgment” in Kant’s philosophy
(cf. [79]). And thus, we say:

(By) After we learn the spell (= Axiom 1) by rote, we have to exercise and lesson the spell (= Axiom
1). Since quantum language is a language, it may be unable to use well at first.

It will make progress gradually, while applying a trial-and-error method.
However,

(Cy) if we would like to make speed of acquisition of a quantum language as quick as possible, we
may want the good manual to use the axioms.

Here, we think that

(Cy)  the linguistic Copenhagen interpretation
= the manual to use the spells (Axiom 1 and 2)

3.1.2 Descartes figure (in the linguistic Copenhagen interpretation)

In what follows, let us explain the linguistic Copenhagen interpretation.
The concept of “measurement” can be, for the first time, understood in dualism. Let us explain
it. The image of “measurement” is as shown in Figure 3.1.
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observer measuring instrument system
(I{(=mind)) {(body, eye, etc.) (matter, measuring object)

— . — _' [Li]_]:—li_'!]'\-'.'-kl)li_'] I_ T .

[measured value] [state] N

I : (a) project light 1 I
AI "1 .
(B) perceive the reaction
I (i.e., the reflected light) I 'i.-‘__

Figure 3.1{Descartes Figure]:The image of “measurement(=(@)+())” in dualism

In the above,

(Dy) (a): it suffices to understand that “interfere” is, for example, “apply light”.
(b): perceive the reaction.

That is, “measurement” is characterized as the interaction between “observer” and “measuring ob-
ject”. However,

(D) In measurement theory, “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “(a) and (b)” in
Figure 3.1.
After all, we think that:

(D3) It is clear that there is no measured value without observer (i.e., brain). Thus, we consider
that measurement theory is composed of three key-words:

| measured value| observable (= measuring instrument ) . [state], (3.1)

(observer,brain, mind) (thermometer, eye, ear, body, polar star (¢f. Note B later)) (matter)

and thus, it might be called “trialism” (and not “dualism”). But, according to the custom, it
is called “dualism” in this note.

3.1.3 The linguistic Copenhagen interpretation [(E;)-(E7)]

The linguistic Copenhagen interpretation is “the manual to use Axiom 1 and 2”. Thus, there are
various explanations for the linguistic Copenhagen interpretations. However, it is usual to consider
that the linguistic Copenhagen interpretation is characterized as the following (E). And the most
important is

Only one measurement is permitted
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3.1 The linguistic Copenhagen interpretation

(E):The linguistic Copenhagen interpretation (=quantum language interpretation

With Descartes figure 81 (and (E;)-(E7)) in mind,
describe every phenomenon in terms of Axioms 1 and 2

(E1) Consider the dualism composed of “observer” and “system( =measuring object)”. And there-
fore, “observer” and “system” must be absolutely separated. If it says for a metaphor, we say
“Audience should not be up to the stage”. Therefore, self-referential propositions ( such as
"I think, therefore I am”) are excluded from quantum language.

(E2) Of course, “matter(=measuring object)” has the space-time. On the other hand, the observer
does not have the space-time. Thus, the question: “When and where is a measured value
obtained?” is out of measurement theory, Thus, there is no tense in measurement theory.
This implies that there is no tense in science.

(E3) In measurement theory, “interaction” must not be emphasized.

(E4) Only one measurement is permitted. Thus, the state after measurement (or,
wave function collapse, the influence of measurement) is meaningless. (cf. Projection Postu-
late 917)

(E5) There is no probability without measurement.

(Eg) State never moves,

and so on.
Also, since our assertion is

quantum language is the final goal of dualistic idealism (=*“Descartes=Kant
philosophy”)

(¢f. @ in Figure 0.1), we have to assert that

(E7) Many of maxims of the philosophers (particularly, the dualistic idealism ) can be
regarded as a part of the linguistic Copenhagen interpretation.

Some may think that the (E7) is unbelievable. However,

(F) Since the purpose of philosophies and that of quantum language are the same, that is, the
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non-realistic world view, it is natural to consider that
maxims of philosophers = the linguistic Copenhagen interpretation

Recall the following figure:

Figure 3.1. [=Figure 0.1 :The location of quantum language in the history of world-description]

- e (realistic) monism (i.e., without measurement axiom) _
Socrates | — |
Aristotle | relativity i

I
(0):Greek :I {monisii) — | theory *D (unsolved) i
philosophy ; % Newton [_ @ TOE:theory of |
% | = 1
Parmenides i || (realism) quantum —+  everything i
I .
Zeno, Plato I mechanics @ (quantum phys.) |
I ]
o 1o ® ‘ -
| [
Schola- Y @ ~ e e et e e e e :;
sticism |r- linguistic turn . »
| N :
I - quantization 1
1 @ statistics 4¢’® i
I applied math. system theory dualism x
| i
' classical mechanical worldview —MT) i
! i 1
i (nund-body dualism) [Cupernican TEVUlllti{Jllj } @ [‘!L‘,:quantum I
I H H 1 1
. [ Descartes @ [ Kant] et 18 =% | language | fl.
+ Splﬂﬂzas L‘:'Cke:--- = T@ quantum mechanica :
: epistemological worldview oo 1
! linguistid turn :
|
i (logic in philos.) '
: (logic, set theory) Wittgenstein - !
'| Boole. Frege, @ Sanssure _11EC]|u1]1(.:n] :
I ! Ly
1| Russell, Cantor i Zadeh e ’ i
: math. " logical worldview :
i
L - - (idealistic) dualism (i.e., with measurement axiom) -==d

In the above, we regard

©@—=0 =0 —=wW——w—0] (2

as a genealogy of the dualistic idealism. Talking cynically, we say that
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e Philosophers continued investigating “linguistic Copenhagen interpretation” (=“how to use
Axioms 1 and 2”) without Axioms 1 and 2.

For example, “Only one measurement is permitted” and “State never moves” may be related to
Parmenides’ words;

There are no “plurality”, but only “one”.
(3.3)

And therefore, there is no movement.

Thus, we want to assert that Parmenides (born around BC. 515) is the oldest discoverer of the
linguistic Copenhagen interpretation. Also, we propose the following table:

Table 3.1: Trialism (i.e., dualism ) in world-views (cf. Table 2-1)

Quantum language asured val bservabl state
guag measured value observable (system)
Plato / idea (cf. Note B1) /
edios
Aristotle / / (hyle)
. . /
Thomas Aquinas universale post rem | yniversale ante rem (universale in re)
. . ., /
Descartes [, mind, brain body (cf. Note &) (matter)
. primary quality
Locke / secondary quality (/)
state
Newton / / (point mass)
parameter
statistics sample space / (population)
. state
quantum mechanics measured value observable (particle)

ANote 3.1. In the above table, Newtonian mechanics may be the most understandable. We regard
“Plato idea” as “absolute standard”. And, we want to understand that Newton is similar to Aristotle,
since their assertions belong to the realistic world view(cf. Figure 0.1). Also, recall the formula (3-1),
that is, “observable” =“measuring instrument”=“body”. Thus, as the examples of “observable”, we
think:

eyes, ears, glasses, telescope, compass, etc.

If “compass” is accepted, “the polar star” should be also accepted as the example of the observable.
In the same sense, “the jet stream to an airplane” is a kind of observable (¢f. Section 8.1 (pp.129-
135) in [45] ). Also, if it is certain that Descartes is the first discoverer of “I”, I have to retract my
understanding of Scholasticism in Table B71. Although I have no confidence about Scholasticism, the
discover of three words (“post rem”, “ante rem”, “in re”) should be remarkable.
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3.2 Tensor operator algebra

3.2.1 Tensor product of Hilbert space

The linguistic Copenhagen interpretation (§3.1) says

“Only one measurement is permitted”

which implies “only one measuring object” or “only one state”. Thus, if there are several states,
these should be regarded as “only one state”. In order to do it, we have to prepare “tensor operator
algebra”. That is,

combine several into one
(A) “several states” > “one state”

by tensor operator algebra

In what follows, we shall introduce the tensor operator algebra.

Let H, K be Hilbert spaces. We shall define the tensor Hilbert space H ® K as follows. Let
{em | m € N = {1,2,...}} be the CONS (i.e, complete orthonormal system ) in H. And, let
{fn|n€N={1,2,...}} be the CONS in K. For each (m,n) € N2, consider the symbol “e,, @ f,”.
Here, consider the following “space”:

HeoK = {g = S e ® fo | llglliex =1 Y lmmlY? < oo} (3.4)

(m,n)eN2 (m,n)EN2

Also, the inner product (-, ) ygr is represented by

<€m1 ® fn1>6m2 ® fn2>H®K = <€m17€m2>H ’ <fn1=fn2>K

1 (ma,ny) = (ma,ng)
N { 0 (my,n1) # (mg,n2) (3.5)

Thus, summing up, we say

(B) the tensor Hilbert space H ® K is defined by the Hilbert space with the CONS {e,,®f,, | (m,n) €
N2}

For example, for any e = " °_| aype,, € H and any f =Y > 5, f, € H, the tensor e ® f is defined
by

eRf= > nbulem ® fn)

(m,n)eN2
Also, the tensor norm ||u||ggrx (U € H ® K) is defined by

[l rex = (@, @) rox
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Example 3.2. [Simple example:tensor Hilbert space C2®C?] Consider the 2-dimensional Hilbert space
H = C? and the 3-dimensional Hilbert space K = C3. Now we shall define the tensor Hilbert space
H® K = C?®C? as follows.

Consider the CONS {ey,es} in H such as

And, consider the CONS {f1.f2, f3} in K such as
1 0 0
fl =10 ) f2 = |1 y f2 = |0
0 0 1

Therefore, the tensor Hilbert space H ® K = C? @ C? has the CONS such as

e1®f1—[(1)]® ,61®f2—[(1)]® ,e1®f3—m®

OO = OO =

€2®f1_|:(1):|® , 62®f2—[(1)]® ,62®f3—[(1)]®

Thus, we see that
HoK=C®C’=C°

That is because the CONS {e; ® f; | i =1,2,3, j=1,2} in H ® K can be regarded as {gx | k =
1,2,...,6} such that

1 0 0
0 1 0
0 0 1
g1=e1® f1= 0 , 2=e1® fa= 0 g3 =e1® fz3= ol
0 0 0
0] 0] 0]
0] (07 (07
0 0 0
0 0 0
ga=e® fi= , g5 = €@ fo = 96 = e2® f3 =
1 0 0
0 1 0
0] 0] 1)
This Example B2 can be easily generalized as follows.
Theorem 3.3. [Finite tensor Hilbert space |
CMRC™® - @QC™ = CXk-1™ (3.6)
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Theorem 3.4. [Concrete tensor Hilbert space ]
L2<Ql, Vl) X L2(QQ, VQ) = LQ(Ql X QQ, A0 VQ) (37)

where, 11 ® 15 is the product measure.

Definition 3.5. [Infinite tensor Hilbert space | Let Hy, Hs, ..., Hy, ... be Hilbert spaces. Then, the
infinite tensor Hilbert space @,-, Hj can be defined as follows. For each k(e N), consider the

CONS {ef;};";l in a Hilbert space Hy. For any map b: N — N, define the symbol @)~ , ez(k) such
that

R =W g g P g ...
k=1

Then, we have:

{®ez(k) ) b:N—Nisa map} (3.8)
k=1
Hence we can define the infinite Hilbert space @), , Hy such that it has the CONS (BR).

3.2.2 Tensor basic structure

For each continuous linear operators F' € B(H),G € B(K), the tensor operator F®G € B(HRK)
is defined by

(FRG)(e® f)=Fe®Gf (VeeH, fe€K)

Definition 3.6. [Tensor C*-algebra and Tensor WW*-algebra | Consider basic structures

A1 C A, C B(Hy)] and [Ay, C Ay C B(H,)]

[I]: The tensor C*-algebra A; ® A, is defined by the smallest C*-algebra A such that
{F®G (€ B(Hi® Hy)) | F €A1, GE A} CAC B(H, ® H,)

[I1): The tensor W*-algebra A; ® A, is defined by the smallest W *-algebra A such that
{F®G (e B(Hi® Hy)) | F €Ay, GE A} CAC B(H, ® H,)

Here, note that AL @Ay = A @ As.
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Theorem 3.7. [Tensor basic structure | [I]: Consider basic structures
[A, C Ay C B(Hy)] and [Ay C Ay C B(H,)]
Then, we have the tensor basic structure:
A @Ay C AL ® Ay C B(H, ® Hy)]

[II}: Consider quantum basic structures [C(H,) C B(H,) C B(H,)] and [C(Hy) C B(H,) C B(H,)].

Then, we have tensor quantum basic structure:

[C(H,) € B(Hy) C B(H)] ® [C(Hy) C B(Hs) C B(H,)]
=[C(H, ® Hy) C B(H, ® Hy) C B(H, ® H,)]

[I11]: Consider classical basic structures [Co(2;) € L®(Qq,11) € B(L*(21,11))] and [Co(s) C
L>(Qy,v5) € B(L*(215))]. Then, we have tensor classical basic structure:

[Co(21) € L¥(n C 1) C B(L*(21,1))] @ [Co(Qa) © L¥(Qs C 1) € B(L*(a,12))]

:[00(91 X Qg) g LOO(Ql X QQ,Vl X 1/2) g B(LQ(Ql X QQ,Vl X 1/2))]

Theorem 3.8. The Q- , B(Hi) (€ B(Q,—, Hi)) is defined by the smallest C*-algebra that contains

F1®F2®---®Fn®l®[®---(EB(@Hk))
k=1
(VFy € B(Hy), k=1,2,...,n,n=1,2,...)

Then, it holds that

® B(Hy) = B(® Hy) (3.9)
k=1 k=1

Theorem 3.9. The followings hold:
©): preAr = QR or € (Q)AL)
k=1 k=1

(i) o e &"(AD) = Qo€ (R A))

k=1

(iii) = € &"(A}) = Q) o € S"(((R)Ar)")

k=1 k=1

ANote 3.2. The theory of operator algebra is a deep mathematical theory. However, in this note, we
do not use more than the above preparation.
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3.3 The linguistic Copenhagen interpretation — Only one
measurement is permitted

In this section, we examine the linguistic Copenhagen interpretation [(§3.1), i.e., “Only one mea-

surement is permitted”. “Only one measurement” implies that “only one observable” and “only one
state”. That is, we see:

only one observable (=measuring instrument)
[only one measurement| —>

(3.10)
only one state

ANote 3.3. Although there may be several opinions, I believe that the standard Copenhagen interpre-
tation also says “only one measurement is permitted”. Thus, some think that this spirit is inherited

to quantum language. However, our assertion is reverse, namely, the Copenhagen interpretation is
due to the linguistics interpretation. That is, we assert that

not “‘ Copenhagen interpretation ‘ == ‘ Linguistic Copenhagen interpretation ‘”

but “‘ Linguistic Copenhagen interpretation ‘ = ‘ Copenhagen interpretation "’

3.3.1 “Observable is only one” and simultaneous measurement

Recall the measurement Example 2231 (Cold or hot?) and Example 2232 (Approximate temper-
ature), and consider the following situation:

(a) There is a cup in which water is filled. Assume that the temperature is w °C (0 < w = 100).
Consider two questions:

“Is this water cold or hot?”

“How many degrees( °C) is roughly the water?”

This implies that we take two measurements such that
(£1): Mooy (Osn=({c, h},2{¢" F;), Sy) in ExampleZZ31

(f2) : Mpo(o) (0% =(Nyg’, 2Nis” G2, Sp]) in ExampleZZ32

MLOO(Q)<Och78[w}) \w C/ MLOO(Q) (OA? S[W})
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However, as mentioned in the linguistic Copenhagen interpretation,

“only one measurement” —-*“only one observable”

Thus, we have the following problem.

Problem 3.10. Represent two measurements Mpeo(q)(Oan=({c,h}, oteht Fp), Spy) and
M oo (0 (0% = (N}, oNis” G2, SL) by only one measurement.

This will be answered in what follows.

Definition 3.11. [Product measurable space] For each k =1,2,... n, consider a measurable (Xj,
F%). The product space X,_, X;, of X;, (k=1,2,...,n) is defined by

n

X Xp={(x1,22,...,20) |2 € Xy (k=1,2,...,n)}

k=1

Similarly, define the product X,_, Z of Zi(€ F%) (k= 1,2,...,n) by

n
k>flEk:{(x1,x2,...,xn)|mk €z (k=1,2,...,n)}

Further, the o-field X }_,J} on the product space X,_, X} is defined by
(1) X 7_ Ty is the smallest field including {X,_,Zx |Ex € Fr (k=1,2,...,n)}

( Xy Xi, K7 F%) is called the product measurable space. Also, in the case that (X, F) = (X, Fr)
(k=1,2,...,n), the product space Xzzl X} is denoted by X", and the product measurable space
( Xy Xi, K F) is denoted by (X7, F7).

Definition 3.12. [Simultaneous observable , simultaneous measurement] Consider the basic structure
A CAC B(H)]. Let p € GP(A"). For each k = 1,2,...,n, consider a measurement Mz (O} =
(Xk, Fs Fr), Spp) in A Let (X _; Xy, B, F) be the product measurable space. An observable

0 = ( Xper Xi, X7_ Ty, F\) in A is called the simultancous observable of {Oy : k=1,2,...,n}, if
it satisfies the following condition:

F(E1 xSy % - X Z,) = F1(Z1) - Fa(5a) -+~ Fo(E,) (3.11)
( V=g € Ty (k‘:1,2,...,n))

O is also denoted by Xr_ O, F = X}_, F. Also, the measurement M=( X _; O, Sj) is called
the simultaneous measurement. Here, it should be noted that

. . . n .
e the existence of the simultaneous observable X ,_; Oy is not always guaranteed.

though it always exists in the case that A is commutative (this is, A = L>(f2)).
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In what follows, we shall explain the meaning of “simultaneous observable”.

Let us explain the simultaneous measurement. We want to take two measurements M4(Oy,
Sip) and measurement My (O, Sj,). That is, it suffices to image the following:

(b)  [state]

p(e6P(A*))

observable —_— ’measured value ‘
—(X1,91,F)  Ma(O1.5y)) z1(€X1)
—

observable —_— ’measured value \
—(X2,F2,F3) Ma(©

7(02,5,) 72 (€X2)

However, according to the linguistic Copenhagen interpretation [§3.1), two measurements M (O,
Sip) and Mz(Os, Sy,)) can not be taken. That is,

The (b) is impossible

Therefore, combining two observables O; and Os, we construct the simultaneous observable
O, x Oy, and take the simultaneous measurement Mz(O; x Oy, Sj,) in what follows.

(c) —_— ’simultaneous observable \—> \measured value \
p(€6P(A%)) 01 %03 M7(01x02,51,)) (4] 22)(€X1 x X2)

The (c) is possible if O; x O, exists

Answer 3.13. [The answer to ProblemBT0] Consider the state space € such that = [0,100], the
closed interval. And consider two observables, that is, [C-H]-observable O, = (X={c, h},2%, F.;)
(in ExampleZ=3T) and triangle observable O% = (Y (=NiJ) 2¥ G2) (in ExampleZ32). Thus, we
get the simultaneous observable O, x 0% = ({¢,h} x NIQ o{ehxNi? o s G2 and we can take
the simultaneous measurement M) (Oc, X 0%, Si]). For example, putting w = 55, we see

(d) when the simultaneous measurement M )(Oq, X 0%, Sjss)) is taken, the probability

(c,about 50 °C) 0.125

that the measured value (c, about 60 OC) is obtained is given by 0.125 3.12
(h, about 50 °C) 0.375
(h, about 60 °C) 0.375

That is because

[(Fun x G®)({(c, about 50 °C)})](55)
=[F({c})](55) - [G2 ({about 50 °C})](55) = 0.25 - 0.5 = 0.125
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and similarly,

[(Fn x G®)({(c,about 60 °C)})](55) = 0.25- 0.5 = 0.125
[(Fo, x G®)({(h, about 50 °C)})](55) = 0.75 - 0.5 = 0.375
[(F., x G®)({(h,about 60 °C)})](55) = 0.75-0.5 = 0.375

ANote 3.4. The above argument is not always possible. In quantum mechanics, a simultaneous ob-
servable O; x Og does not always exist (See the following Example B4 and Heisenberg’s uncertainty
principle in Sec.24).

Example 3.14. [The non-existence of the simultaneous spin observables] ~Assume that the electron
P has the (spin) state p = |u)(u| € &(B(C?)), where

0]
‘e laj (where, [u| = (Jou|* + |as|*)!/* = 1)

Let O, = (X(= {1, 1}), 2%, F*) be the spin observable concerning the z-axis such that

Fam =y o Fan=|y Y

Thus, we have the measurement Mp(c2)(0, = (X, 2%, F7), Si,).
Let O, = (X, 2%, F'®) be the spin observable concerning the x-axis such that

§ 1/2 1/2 i 12 —1/2
P =1 e Fh = 1)

Thus, we have the measurement Mpc2) (0, = (X,2%, F*), S};))
Then we have the following problem:

(a) Two measurements Mp(c2)(0, = (X, 2%, F?), S|,)) and Mp(c2) (0, = (X, 2%, F*), S},)) are taken
simultaneously?

This is impossible. That is because the two observable O, and O, do not commute. For example,
we see
. i [0l [i/2 1721 [1/2 1)2

PO = Vs 1) o o = [ o]
And thus,

Fr{tHE ({1 # FE{tHF ({1
/1]
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The following theorem is clear. For completeness, we add the proof to it.
Theorem 3.15. [Exact measurement and system quantity] ~Consider the classical basic structure:
[Co(Q) C L>*(Q,v) C B(L*(Q,v))]

Let Of™ = (X, F, F) (ie., (X,F, F©) = (Q,Bg,x) ) be the exact observable in L®(%Q, v).
Let O; = (R, Bg,G) be the observable that is induced by a quantity g : @ — R as in Example
770 (system quantity). Consider the simultaneous observable 0% X Oy. Let (z,) (€ X x R) be
a measured value obtained by the simultaneous measurement M LOO(QJJ)(Oéexa) X 01, Sis.7). Then, we
can surely believe that * = w, and y = g(w).

Proof. Let Dy(€ Bg) be arbitrary open set such that w(€ Dy C Q=X). Also, let D;(€ Bg) be
arbitrary open set such that g(w) € D;. The probability that a measured value (x,y) obtained by

the measurement MLOO(Q’Z,)(O(()exa) X 04, Sj5,,}) belongs to Dy x Dy is given by X b, (w) "Xg-1(py) (w) =1.
Since Dy and D are arbitrary, we can surely believe that z = w and y = g(w). O]

3.3.2 “State does not move” and quasi-product observable

We consider that

“only one measurement” — “state does not move”
That is because
(a) In order to see the state movement, we have to take measurement at least more than twice.

However, the “plural measurement” is prohibited. Thus, we conclude “state does not move”

Review 3.16. [= Example Z34:urn problem| There are two urns U; and Uy. The urn U; [resp. Us]
contains 8 white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Figure 3.2).

Table 3.2: urn problem

Urn\_ w-b, white ball black ball
Urn Uy 8 2
Urn U,y 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
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wi (= Uy) wa (= Us)

Figure 3.2: Urn problem

In measurement theory, the statement (a) is formulated as follows: Assuming

Uy --- “the urn with the state w;”
Uy --- “the urn with the state wy”

define the state space Q2 by Q = {wy,ws} with discrete metric and counting measure v. That is, we
assume the identification;

Ul ~ Wi, U2 ~ W2,
Thus, consider the classical basic structure:

[Co(€) € L=(,v) € B(L*(2,v))]

Put “w” = “white’ “b” = “black”, and put X = {w,b}. And define the observable Owb( = (X =
{w, b}, Q{w’b},wa)) in L>(Q) by

[Fus({w})](wr) = 0.8, [Fup({01)](w1) = 0.2,

[Fus({w})](w2) = 0.4, [Fus({6})](w2) = 0.6. (3.13)

Thus, we get the measurement My q)(Oup, Sis,,))- Here, Axiom 1 ( E2.7) says that

(b) the probability that a measured value w is obtained by Mye(a)(Ouws, Sis,,,)) is given by
Fun({0})(w2) = 0.4

Thus, the above statement (b) can be rewritten in the terms of quantum language as follows.

(c) the probability that a measured value { ZU

] is obtained by the measurement My (q)(Oup,
Slwy]) is given by

fQ Fup({w})](w)de, (dw) = [Fup({w})](w2) = 0.4
olFun({b })](W)5w2(dw = [Fup({0})](w2) = 0.6

'11

Problem 3.17. (a) [Sampling with replacement|: Pick out one ball from the urn Us,, and recog-
nize the color (“white” or “black”) of the ball. And the ball is returned to the urn. And
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again, Pick out one ball from the urn U, and recognize the color of the ball. Therefore, we
have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)

It is a common sense that

(w,w) 0.16
the probability that (w,b) is given by 0.24
(b, w) 0.24
(b, b) 0.36

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Answer Issuffices to consider the simultaneous measurement Moo (O S w2]) (=Moo (@) (Ouwp X Oup, S

), where 02, = ({w, b} x {w, b}, 2twbbx{wbt F2 (= | x F,;)). The, we zglculate as follows.
Fiy({(w,w)})(w1) = 0.64, Fiop({(w,b)})(wr) = 0.16
Fp({(b,w)})(wr) = 0.16, Fpy({(0.0)})(wr) = 04

and

Foy({(w, w)})(w2) = 0.16, F2({(w,b)})(w2) = 0.24
F2({(b,w)}) (ws) = 0.24, F2,({(b,b)})(ws) = 0.36

Thus, we conclude that

Problem 3.18. (a) [Sampling without replacement|: Pick out one ball from the urn Us, and
recognize the color (“white” or “black”) of the ball. And the ball is not returned to the
urn. And again, Pick out one ball from the urn Us, and recognize the color of the ball.
Therefore, we have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)
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It is a common sense that

(w, w) 12/90

. (w, b) . 24/90

the probability that (b, w) is given by 24/90
(b, D) 30/90

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Now, recall the simultaneous observable (Definition312) as follows. Let Oy = (Xx, Fr, Fk)
(k=1,2,...,n ) be observables in A. The simultaneous observable O = (X,_, Xz, X} _ Fy, F) is
defined by

F(E1 X Ep X -+ X Zp) = F1(E1) Fa(Zn) - - Fo(E,)
(VEk e i, Vk = 1,2,...,n)

The following definition (“quasi-product observable”) is a kind of simultaneous observable:

Definition 3.19. [quasi-product observable | Let Oy = (X, F, Fy) (k =1,2,...,n ) be observables
in a W*-algebra A. Assume that an observable O, ,, = (Xzzl X, X Zzlff"k, Fio. ) satisfies

Flo. n(Xy X o X Xp1 XEp X Xpyq X - X X)) = Fr(Ex) (3.14)
(VEk E?k,Vk: 1,2,...,’@)

The observable Oy, = (XZ:1 X, &Zzlffk, Fio..) is called a quasi-product observable of
{0 | k=1,2,...,n}, and denoted by

qp n n qp
X Ok: (X X, Xlkzlgjk, X Fk)
k=1,2,....,n k=1 k=1,2,...,n

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-product
observable is not uniquely determined. Also, in quantum systems, the existence of the quasi-product
observable is not always guaranteed.

Answer 3.20. [The answer to Problem B717]  Define the quasi-product observable Owb()lfowb =
({w, b} x {w, b}, 2twobx{wbt " py, (= F,, Oiwab)) of Oy = ({w, b}, 2{w% ) in L>®(Q) such that

Fio({(w, w)})(w1) = 8507, Fia({(w,0)})(w1) = 89?2
Fial{(b,w)D)en) = 2o, Fia({(0,0)}) () = o
Fio({(w,0)})(ws) = 49X03, Fro({(w, b)})(w2) = 4;)6

6 x4 6 X5

Fia({(b,w)})(w2) = 0 Fia({(b,0)})(wa) =

Thus, we have the (quasi-product) measurement Mo )(O12, S)
Therefore, in terms of quantum language, we describe as follows.
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(
(b) the probability that a measured value E is obtained dy Mreo(q)(Ouws ()1? Ouwsp, S[%})
(

[ [Fra({(w, w)})](w2) = 55
[Fr2({(w, 0)P](w2) = %57
[Fr2({(b, w) )] (w2) = 57

| [Fa({(b,0)D)](w2) = 53

is given by

3.3.3 Only one state and parallel measurement

For example, consider the following situation:

(a) There are two cups A; and A, in which water is filled. Assume that the temperature of the
water in the cup Ay (k= 1,2) is wi, °C (0 £ wy = 100). Consider two questions “Is the water
in the cup A; cold or hot?” and “How many degrees( °C) is roughly the water in the cup As?”.

This implies that we take two measurements such that

(£1): M) (Oa=({c, h}, 21" F.p.), Spy) in ExampleZ31

(£2) © Mre(q) (0% =(N}°, oNig? , G5, Slws]) in ExampleZ32

Al AQ

Mo (2)(Och, Speon) \wl C 2 Q/ Mo (o) (02, Siwy)

However, as mentioned in the above,

“only one state” must be demanded.

Thus, we have the following problem.

Problem 3.21. Represent two measurements Mpeq)(On=({c,h}, 2" F,), S,)) and

Mo (o) (02 =(Nip°, oNIS” G4, Siw,)) by only one measurement.

This will be answered in what follows.
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Definition 3.22. [Parallel observable] For each & = 1,2,... n, consider a basic structure [A; C
A C B(H,)], and an observable Oy = (X, &y, Fi,) in Ag. Define the observable O = (X _, X, X _ 5y, F)
in ®;_, Ak such that

F(El X EQ X X En) = Fl(El) & Fg(EQ) KR Fn(En> (315)
VZ, € Fy (k': 1,2,...,”)
Then, the observable O = (X oy X, M3 Fy, F) is called the parallel observable in Q_; Ag, and

denoted by F = @7, Fi, O = ®7'_, O. the measurement of the parallel observable O = ®7_, Oy,

that is, the measurement M®Z:1ﬁk (6, Si®@7_, o)) 18 called a parallel measurement, and denoted
by M@gzlﬁk(®zz1 Ok, S[@Z:1 pk]) or ®Z=1 Mﬁk(oh S[Pk])'

The meaning of the parallel measurement is as follows.

Our present purpose is
e to take both measurements Mz (O1, Si,,1) and Mz (02, Sjp,))

Then. image the following:

_— — \measured value\

p1(EGP(AT)) 0, Mz, (01,50,7) 21(€X1)

_ — | measured value|

p2 (€67 (A3)) 0, Mz, (02,5(,,7) 72(€X2)

(b)

However, according to the linguistic Copenhagen interpretation (§3.1), two measurements can not
be taken. Hence,

The (b) is impossible

Thus, two states p; and p; are regarded as one state p; ® po, and further, combining two ob-
servables O; and O,, we construct the parallel observable O; ®0s, and take the parallel measurement
M, 07, (01 ® Oz, Sjp,0p,]) in what follows.

(c) — ‘parallel observable‘ > | measured value |
p1®pa (€GP (AT) RGP (AL)) 0,20, M7, 07, (01€02,5001@05]) (21,22)(€X1 x Xa2)

The (c) is always possible

Example 3.23. [The answer to Problem 32T ] Put ©; = Qy = [0, 100], and define the state space
0 x Q. And consider two observables, that is, the [C-H]-observable Oy, = (X={c, h},2% F,;) in
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C(Qy) (in ExampleZ3T) and triangle-observable O = (Y (=NiJ%),2Y G%) in L>(Q,) (in Exam-

100

pleZ32). Thus, we get the parallel observable O, ® 0% = ({c,h} x NIJ0 2fehbNo’ @ G2) in
L>(y x €2y), take the parallel measurement My (g, x,)(Ocn @ O2, Sj(w; ws)))- Here, note that

5w1 ® 5w2 - 5(w1,w2) ~ <W17w2)-
For example, putting (wy,ws) = (25,55), we see the following.

(d) When the parallel measurement My (q, x,)(Och ® 0%, Si(25,55)]) is taken, the probability

(¢, about 50 °C) 0.375
that the measured value Efl’ aalf)?)itt 65% OC)) is obtained is given by 8?;?
(h, about 60 °C) 0.125

That is because

[(Fo, © G2)({(c, about 50 °C)})](25, 55)
=[F.({cH](25) - [GA ({about 50 °C})](55) = 0.75 - 0.5 = 0.375

Thus, similarly,

[(Fun ® G2)({(c, about 60 °C)}))(25,55) = 0.75 - 0.5 = 0.375
[(F, ® G®)({(1, about 50 °C)})](25,55) = 0.25- 0.5 = 0.125
[(Fon ® G2)({ (1, about 60 °C)})](25,55) = 0.25 - 0.5 = 0.125

Remark 3.24.  Also, for example, putting (wy,ws) = (55, 55), we see:

¢, about 50 °C)

(

(
(e) the probability that a measured value EC’ about 60 °C
(

) | .
h, about 50 °C) is obtained by parallel measurement
h, about 60 °C)
0.125
P 0.125
MLOO(Q1 ><Q2)(Och & OA7 S[(55755)}) 1S given by 0.375
0.375

That is because, we similarly, see

[FLn({c})](55) - [G2 ({about 50 °C})](55) = 0.25 - 0.5 = 0.125
[Fon({c)](55) - [G2 ({about 60 °C})](55) = 0.25 - 0.5 = 0.125 516
[Fo,({h})](55) - [G*({about 50 °C})](55) = 0.75 - 0.5 = 0.375 (3.16)
[E., ({0 1)](55) - [G2 ({about 60 °C})](55) = 0.75- 0.5 = 0.375

Note that this is the same as Answer B3 (cf. Note B later).
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The following theorem is clear. But, the assertion is significant.

Theorem 3.25. [Ergodic property] For each k = 1,2, -- ,n, consider a measurement My (q)(O(:=
(X%, Tk, Fr)), Sis.)) with the sample probability space (Xj,J%, PY). Then, the sample probabil-
ity spaces of the simultaneous measurement M Loo(Q)(XZZl Op, Ss,)) and the parallel measurement

Moo (on) (®Z:1 Oy, S[®Z:15w]) are the same, that is, these are the same as the product probability

space
(X X, My, 50, Q) PY) (3.17)
k=1 et

Proof. It is clear, and thus we omit the proof. ( Also, see Note BH later.) O

Example 3.26. [The parallel measurement is always meaningful in both classical and quantum systems

| The electron P, has the (spin) state p; = |uy)(ui| € &P(B(C?)) such that
w = (5] otere, ol = G+ 18 = 1)

Let O, = (X(= {1,1}),2%, F*) be the spin observable concerning the z-axis such that

Fam =y o Fan=g 1]

Thus, we have the measurement Mp(c2)(0, = (X, 2%, F7), Sp,,)).
The electron P has the (spin) state py = |us) (us| € &P(B(C?)) such that

“:%]Wmﬂw=wmwmmﬂ>

Let O, = (X, 2%, F*) be the spin observable concerning the z-axis such that

. 1/2 1/2 v 172 =172
ram =\ 1o =[5 )

Thus, we have the measurement Mpc2)(0, = (X, 2%, F*), S|,,))

Then we have the following problem:

(a) Two measurements Mpc2)(0. = (X,2%,F?),S},,)) and Mp2)(0, = (X,2%,F*),S},,) are

taken simultaneously?
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This is possible. It can be realized by the parallel measurement
Mp(c2)enes)(0: ® 0. = (X x X, 27 F* @ F7), Sjpqp)

That is,

(b) The probability that a measured value is obtained by the parallel measurement

NN N N
==
= —
N N N N

MB(C2)®B((C2)(Oz & OZ, S[p®p}) is given by

(u, F=({11)u) (u, F*({1})u) = p1ps

(u, F=({THu) (u, F* ({1 })u) = pr(1 = p2)

(u, F*({{ Hu) (u, F*({1}u) = (1 = p1)ps

(u, F*({{ Hu) (u, F* ({1 H)u) = (1 = p1)(1 = p2)

where p1 = |a1[?,  p2 = 2(|ar[* + Qras + a1as + |as]?)

#Note 3.5. Theorem BZ4 is rather deep in the following sense. For example, “To toss a coin 10 times”
is a simultaneous measurement. On the other hand, “To toss 10 coins once” is characterized as a
parallel measurement. The two have the same sample space. That is,

“spatial average” = “time average”

which is called the ergodic property. This means that the two are not distinguished by the sample
space and not the measurements (i.e., a simultaneous measurement and a parallel measurement). How-
ever, this is peculiar to classical pure measurements. It does not hold in classical mixed measurements
and quantum measurement.
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Chapter 4

Linguistic Copenhagen interpretation of
quantum systems

Measurement theory (= quantum language ) is formulated as follows.

[B=caom-] [Bxiom—J] [inguistic Copenhagen interpretatiod]
e |measurement theory‘ :=| Measurement |+ ‘ Causality ‘—i—‘ Linguistic Copenhagen interpretation
(=quantum language) (cf. BZ) (cf. §83) (cf. 8§&M)
a kind of spell(a priori judgment) manual to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic Copenhagen
interpretation)!

In this chapter, we devote ourselves to the linguistic Copenhagen interpretation [§3.1) for general (or,
quantum) systems.

4.1 Kolmogorov’s extension theorem and the linguistic Copen-
hagen interpretation

Kolmogorov’s probability theory (cf. [80] ) starts from the following spell:
(#) Let (X,J, P) be a probability space. Then, the probability that a event = (€ &) happens is
given by P(Z)

And, through trial and error, Kolmogorov found his extension theorem, which says that
(1) “Only one probability space is permitted”
which surely corresponds to

(1) “Only one measurement is permitted” in the linguistic Copenhagen
interpretation (33.1)

83



4.1 Kolmogorov’s extension theorem and the linguistic Copenhagen interpretation

Therefore, we want to say that
(#) Parmenides (born around BC. 515) and Kolmogorov (1903-1987) said about the same thing

(cf. Parmenides’ words (3:3)).
Let A be a set (called an index set). For each A € K, consider a set X,. For any subsets
A CAy(C /A\), TA, A, 1S the natural map such that:

TAL,Ag © )\>§\ X)\ — )\>§\ X/\. (41)
€Ng €A1

Especially, put mp = 7, ;. Consider the basic structure

A CAC B(H)

For each \ € /A\7 consider an observable (X, Fy, F)) in A. Note that the quasi-product observable O
= (Xyaa X, XawTa, Fy) of { (X0, T, Fy) | A e A} is characterized as the observable such that:

Fi(mpy(B0) = FA(Ey)  (VEx € F,, VA€ D), (4.2)

though the existence and the uniqueness of a quasi-product observable are not guaranteed in general.
The following theorem says something about the existence and uniqueness of the quasi-product
observable.

Let A be a set. For each \ € K, consider a set X,. For any subset A; C Ay( C K), define the

natural map ma, A, : Xaea, Xa — Xaea, Xa by

X Xy 3 (Za)rens = (Za)ren, € X Xy (4.3)
AEA2 AEA,

The following theorem guarantees the existence and uniqueness of the observable. It should
be noted that this is due to the the linguistic Copenhagen interpretation (§3.1), i.e., “only one

measurement is permitted”.

Theorem 4.1. [ Kolmogorov extension theorem in measurement theory ( cf. [33, B3] ) | Consider the

basic structure
A CACB(H)

For each A € /A\, consider a Borel measurable space (X,,F)), where X, is a separable complete
metric space. Define the set iPo(/A\) such as TO(/A\) ={AC A | A is finite }. Assume that the family
of the observables { Ox = ( Xy ea Xo, XoeaFn, Fa ) | A€ Po(A) } in A satisfies the following

“consistency condition”:
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~

e for any Ay, Ay € Po(A) such that A; C As,

FA2 (WX3,A2 (E’Al)) = FAI (EAI) (VEAI € )\5\ :T)\)

Then, there uniquely exists the observable 67\ = (>< red X Xoea I ﬁf\) in A such that:

ﬁ/’i(ﬂ'xl(EA)) = FA(EA> (VEA € >\>€<A ?)\, VA € ?O(K))
Proof. For the proof, see refs.[33, B3|

Corollary 4.2. [Infinite simultaneous observable | Consider the basic structure

(A CAC B(H)

(4.4)

Let A be a set. For each A € K, assume that X, is a separable complete metric space, F, is its
Borel field. For each A € K, consider an observable O, = (X, ), F)) in A such that it satisfies the

commutativity condition, that is,

Fkl (Ekl)Fk2 (Ekz) = sz (Ekz)Fkl (Ekl) (VEIH € 97’617 VEkz € S:kw k1 7é k2)

(4.5)

Then, a simultaneous observable 0= ( Xz Xo, X, 35, F= X \ei F>) uniquely exists. That is,

for any finite set Ag(C A), it holds that

F(X 2)x( X X))= X R(E) (Y2 eF,VreA)
AEAg AeA\Ag AEAQ

Proof. The proof is a direct consequence of Theorem Z1. Thus, it is omitted.

Remark 4.3. Now we can answer the following question:
(B) Why is Kolmogorov’s extension theory fundamental in probability theory ?
That is, I can assert the following chain:

(Linguistic Copenhagen interpretation)

Only one measurement is permitted‘

(Kolmogorov’s extension theorem Z-1 in quantum language ) (Kolmogorov’s extension theorem)

— | The existence of measurement | — | The existence of sample space‘

/1]
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4.2 The law of large numbers in quantum language

4.2.1 The sample space of infinite parallel measurement .-, M4;(O =
(X7 3:’7 F)DS[p])

Consider the basic structure

[ACACB(H)
<that is, [C(H) € B(H) C B(H)], or [Co(Q) € L¥(,v) C B(L2(Q,y))]>

and measurement Mz(0 = (X, F, F'), S[,)), which has the sample probability space (X, T, P,)

Note that the existence of the infinite parallel observable O (= Q. 0) = (XN, K27,
F(= Q52 F)) in an infinite tensor W*-algebra @), A is assured by Kolmogorov’s extension theo-
rem (Corollaryd=2).

For completeness, let us calculate the sample probability space of the parallel measurement

Mg (0, i@z, ») in both cases (i.e., quantum case and classical case):

Preparation 4.4. [I]: quantum system: The quantum infinite tensor basic structure is defined by
[C(@p2 H) € B(®FL H) € B(®;2,H))
Therefore, infinite tensor state space is characterized by
&P (Tr(@p2, H)) C 6™ (Tr(@72, 1)) = & (Tr(®, H)) (4.6)
Since Definition 217 says that § = F, (Vp € &P(Tr(H))), the sample probability space

(XN, M }Z,F, Pgwx ,) of the infinite parallel measurement Mg g (®72,0 = (XN, X2, 7,
®k = 17F), Sigx , ;) is characterized by

P®2°=1P(El X g X re X Ep X ( X X)) = X Tr(H) <p7F(Ek)>B(H) (47)
k=n+1 k=1
(VEp €T =3, (k=12,...,n),n=1,2,3--+)
which is equal to the infinite product probability measure @) _, P,

[I1]: classical system: Without loss of generality, we assume that the state space 2 is compact, and
v(2) =1 (¢f. Note 271). Then, the classical infinite tensor basic structure is defined by

[Co(x321Q) © L¥(x32,Q, ®2,v) © B(L* (2,9, @;2,1v))] (4.8)

Therefore, the infinite tensor state space is characterized by

S (Co(xi2a ) (~ 521 ) (4.9)
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Put p = §,,. the sample probability space (X, X~ F, Pgee . ) of the infinite parallel measurement
MLoo(Xzilg@zo:lV)(@zilO = (XN, X2, F, ®k=17F), S@i’;lp}) is characterized by
Poo (B XZaX---xZ,x( X X)) =
1 0(Z1 ? (k=n+1 ) k=

[F'(Zx)](w) (4.10)

1

Ve, €eF =9, (k=1,2,...,n),n=1,2,3---
p

which is equal to the infinite product probability measure @) _, P,.
[I11]: Conclusion: Therefore, we can conclude

() in both cases, the sample probability space (X, X/~ F, Pge ) is defined by the
infinite product probability space (XY, X ° F Q> P,)

Summing up, we have the following theorem ( the law of large numbers ).

Theorem 4.5. [The law of large numbers | Consider the measurement M7(O = (X, J, F'), Sj,)) with
the sample probability space (X,J, P,). Then, by Kolmogorov’s extension theorem (Corollarya?),

we have the infinite parallel measurement:
Mg 7(@72,0 = (X, B2, T, @32, F), Sigee , 41)

The sample probability space (XN, X7 F, Pgy ») is characterized by the infinite probability space
(XN, X2 F, Qi P,). Further, we see

(A) for any f € L'(X, P,), put

Dy = {(Il,xQ,...) eXN| lim flxy) + f(xe) + -+ + f(zn) B

n—00 n

( where, E(f)= [y f(x)P,(dx))

Then, it holds that

Peye, p(Dy) =1 (4.12)
That is, we see, almost surely,
[ F(@)Py(da) | = | lim, o Lottt ) (4.13)
(population mean) (sample mean)

Remark 4.6. [Frequency probability | In the above, consider the case that

ro=x@={y P23 ceo
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Then, put
Dy ={my. ) e x| i AELBESIZREM _pal gy
(where, #[A] is the number of the elements of the set A)
Then, it holds that
Py, o(Dy,) =1 (4.15)

Therefore, the law of large numbers (Theorem 4°5) says that

(1) the probability in Axiom 1 ( 2.7) can be regarded as “frequency
probability”

Thus, we have the following opinion:

G. Galileo - --the originator of the realistic world view

(42)

J. Bernoulli ---the originator of the linguistic world view

4.2.2 Mean, variance, unbiased variance

Definition 4.7. [population mean, population variance, sample mean, sample variance]:

Consider the measurement Mz(O = (R, Bg, F), S,)). Let (R, Bg, P,) be its sample probability
space. That is, consider the case that a measured value space X = R.

Here, define:
population mean(up) : E[Mz(0 = (R, BgF), S,))] = /a:Pp(dx)(: 1) (4.16)
R
population variance((c§)?) : V[Mz(0O = (R, BrF), S},))] = /(:1: — 1) P,(dz) (4.17)
R

Assume that a measured value (x1, z9, 3, ..., z,)(€ R™) is obtained by the parallel measurement
®Z:1MZ(07 S[p]). Put

_5w1+5:p2+...+5

sample distribution(v,) : v, - e My (X)
— N\ Bron r1taxet+--tx,, _
sample mean(f,) : E[®;_M4(0,S),)] = L - (=n)

- /R v (dz)

sample variance(s,) : V[®}_;Mz(0, S|,))] =

~ [~ ()

(1 R+ (2 4
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(x1 — )2+ (z2 — )2 + - + (z2 — [0)?
n—1

unbiased variance(u?) : U[®}_;Mz(0, S|,))] =

n

- [ =t

n—1

Under the above preparation, we have:

Theorem 4.8. [Population mean, population variance, sample mean, sample variance] Assume that a
measured value (21, x2, 3, - - - )(€ RY) is obtained by the infinite parallel measurement @,-, M7z(0 =
(R, Br, F'), Siy)- Then, the law of large numbers (Theoremé3) says that

. Tt xet--+xy _
= lim =: [t = sample mean
n—oo n
_ P2 _ ., P\2 . EAY
(4-17) = population variance(cg) = lim (1= po)" + (w2 = po)]" + - + (2 = 115)
n—00 n
BT e 0 e G Tt 1 i G Bt

n—00 n

(4716) = population mean(ug)

=: sample variance

Example 4.9. [Spectrum decomposition] Consider the quantum basic structure
[C(H) € B(H) € B(H)]

Let A be a self-adjoint operator on H, which has the spectrum decomposition (i.e., projective ob-

servable) O4 = (R, Bg, F4) such that

A /R ()

That is, under the identification:

self-adjoint operator: A <—  spectrum decomposition:04 = (R, Bg, F4)

identification

the self-adjoint operator A is regarded as the projective observable O4 = (R, Bg, Fl1). Fix the state
pu = |u)(u| € & (Tr(H)). Consider the measurement Mgy (O0 4, Sjjuy(u)))- Then, we see

population mean (g, ) : EMpr)(Oa, Sjuyuy)] = /R)\(u, Fy(d\)u) = (u, Au) (4.18)

population variance((08")?) : V[Mpm) (04, Sjuyuy)] = /R()\ — (u, Au))*(u, Fa(d\)u)
= [[(A = (u, Au))ul]” (4.19)
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4.2.3 Robertson’s uncertainty principle

Now we can introduce Robertson’s uncertainty principle as follows.

Theorem 4.10. [Robertson's uncertainty principle (parallel measurement) (¢f. [96]) | Consider
the quantum basic structure [C(H) C B(H) C B(H)]. Let A; and As be unbounded self-adjoint
operators on a Hilbert space H, which respectively has the spectrum decomposition:

Oa, = (R, By, Fi,) to Oa, = (R, B, Fa,)

Thus, we have two measurements Mp)(0a,,S),,]) and Mp#)(Oa,, Sy,), Where p, = |u)(u|
€ GP(C(H)*). To take two measurements means to take the parallel measurement:
Mpcn)(Oay, Sppu)) ® Mp(eny (O, Spp,)), namely,

MsmesH) (04, ® Oay, Spuspd])

Then, the following inequality (i.e., Robertson’s uncertainty principle ) holds that

oy 4y Z 5 S, (Avds = Ag A (V) (ul = pus [l = 1)

where o) and o%) are shown in (£19), namely,

{Uﬁ{i [(Ava, Avu) = [(u, Ara) 272 = [ (A1 = (u, Ay Ju
o = [{Asu, Agu) — |(u, Ayu) P = [|(Az — (u, Ay u|

Therefore, putting [A;, As] = AjAs— Az Ay, we rewrite Robertson’s uncertainty principle as follows:

[Avul| - | Azull = [|(Ar = (u, Ayu))ull - [[(A2 = (u, Agu))ul] = [(u, [Ar, AoJu)|/2 (4.20)
For example, when A; (= Q) [resp. Az(= P) | is the position observable [resp. momentum observable
| (i.e., QP — PQ = hy/—1), it holds that

pu Pu > ]'h
Proof. Robertson’s uncertainty principle (4-20) is essentially the same as Schwarz inequality, that
is,
[(u, [Ar, AoJu)| = [(u, (A1 Az — Az Ay)u)|

= (o (A1 = {u, Ay (A — {u, As)) = (A = {u, Asu))(Ay — {u, Ayu)) )|
<2/ (Ar — {u, Ayuh)ul] - [|(Az — (u, Agu))u]
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4.3 Heisenberg’s uncertainty principle

4.3.1 Why is Heisenberg’s uncertainty principle famous?

Heisenberg’s uncertainty principle is as follows.

Proposition 4.11. [Heisenberg's uncertainty principle (c¢f. [21]:1927) |

(i) The position x of a particle P can be measured exactly. Also similarly, the momentum p of a
particle P can be measured exactly. However, the position z and momentum p of a particle
P can not be measured simultaneously and exactly, namely, the both errors A, and A, can
not be equal to 0. That is, the position x and momentum p of a particle P can be measured
simultaneously and approximately,

(ii) And, A, and A, satisfy Heisenberg’s uncertainty principle as follows.

A, - A, = h(= Plank constant/27=1.5547 x 107**Js). (4.21)

This was discovered by Heisenberg’s thought experiment due to y-ray microscope. It is
(A) one of the most famous statements in the 20-th century.

But, we think that it is doubtful in the following sense.

ANote 4.1. I think, strictly speaking, that Heisenberg’s uncertainty principle(Proposition 4.10) is mean-
ingless. That is because, for example,

(#) The approximate measurement and “error” in Proposition 4.10 are not defined.

This will be improved in Theorem E-16 in the framework of quantum mechanics. That is, Heisenberg’s
thought experiment is an excellent idea before the discovery of quantum mechanics. Some may ask
that

If it be so, why is Heisenberg’s uncertainty principle (Proposition 4.10) famous?
I think that

Heisenberg’s uncertainty principle (Proposition 4.10) was used as the slogan for advertisement
of quantum mechanics in order to emphasize the difference between classical mechanics and
quantum mechanics.

And, this slogan was completely successful. This kind of slogan is not rare in the history of science.
For example, recall “cogito proposition (due to Descartes)”, that is,

I think, therefore I am.

9]_ For further imformation see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

4.3 Heisenberg’s uncertainty principle

is also meaningless (cf. ref. [[74]). However, it is certain that the cogito proposition built the foundation
of modern science.

ANote 4.2. Heisenberg’s uncertainty principle(Proposition 4.10) may include contradiction (cf. ref.
[21]), if we think as follows

(#) it is “natural” to consider that
Aalc:|l‘_‘%l|7 Ap:|p_ﬁ|7
where

Position: [z : exact measured value (=true value), Z : measured value]
Momentum: [p : exact measured value (=true value), p : measured value]

However, this is in contradiction with Heisenberg’s uncertainty principle (4-21). That is because (4-21)
says that the exact measured value (z,p) can not be measured. Thus, the concept of "true value” is
nonsense.

4.3.2 The mathematical formulation of Heisenberg’s uncertainty princi-
ple

In this section, we shall propose the mathematical formulation of Heisenberg’s uncertainty prin-
ciple 411,

Consider the quantum basic structure:
[C(H) € B(H) € B(H)]
Let A; (i = 1,2) be arbitrary self-adjoint operator on H. For example, it may satisfy that
(A}, A (= A1 Ay — AyA)) = hy/—11

Let Oy4, = (R, B, Fi,) be the spectral representation of A;, i.e., A; = [; AF4,(d)), which is regarded
as the projective observable in B(H). Let py = |u){u| be a state, where u € H and |lu|| = 1. Thus,

we have two measurements:

by (4718
(B1) Mp (O, =R, B, Fa,), Sp)  —0 s (u, Ayu)
expectation

by (418
(BQ) MB(H)(OAQ ::(R737FA2)’ S[Pu}) L <U7A2u>

expectation
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(Vpu = [u)(u| € G"(C(H)"))

However, since it is not always assumed that A;A; — A A; = 0, we can not expect the existence of

the simultaneous observable O 4, X O4,, namely,

e in general, two observables O4, and O4, can not be simultaneously measured
That is,
(Bs) the measurement Mp()(0a, x O4,, Sj,,]) is impossible, Thus, we have the question:

Then, what should be done?

In what follows, we shall answer this.
Let K be another Hilbert space, and let s be in K such that ||s|| = 1. Thus, we also have two

observables O, :=(R, B, F4, ® I) and O 4,07 :=(R, B, F4, ® I) in the tensor algebra B(H ® K).
Put

the tensor state p,s = |u ® s)(u ® s
And we have the following two measurements:

by (BTR
(C)) Mo Omer, )~ (@ s, (A @ D)(u® s)) = {u, Ayw)
expectation

by (TR
(C2) Mpgrar(Omer, )~ (@ s, (A @ D)(u® 5)) = {u, Azu)
expectation

It is a matter of course that

and
(C3) Mpmex)(Oaer X Oayer, Spp,.)) is impossible.

Thus, overcoming this difficulty, we prepare the following idea:

Preparation 4.12. Let ﬁz (1 = 1,2) be arbitrary self-adjoint operator on the tensor Hilbert space
H ® K, where it is assumed that

o~

[Ay, Ay)(:= Ay Ay — AyA)) =0 (i.e., the commutativity) (4.22)
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Let O3 = (R, B, F; ) be the spectral representation of A\i, ie.A; = Je AF'; (d)), which is regarded
as the projective observable in B(H ® K). Thus, we have two measurements as follows:

(D1) Mpaer) (037, Sip..)) 2D s, A(u®s))

expectation

b ~
(D) Maer) (O, Spt)  ———s (@ s, Ay(u® s))

expectation

Note, by the commutative condition (422), that the two can be measured by the simultaneous
measurement Mprei)(07, % Oz,,5,.), where O3 x Oz = (R*,B* F; x Fy ).

Again note that any relation between A; ® I and A; is not assumed. However,

e we want to regard this simultaneous measurement as the substitute of the above two (Cy)
and (Cy). That is, we want to regard

(Dy) and (Dy) as the substitute of (C;) and (Cs)

For this, we have to prepare Hypothesis 4.9 below.

Putting

=)

i = :4.\@ — Az (24 I (and thus, A\Z = ]/\71 + Al X I) (423)
we define the A%ﬁ and Zﬁﬁuj such that

A = N(w@s)| = [|(A = A @ D(u@ s)| (4.24)
AR =l(Ni — (u@ s, Ni(u®s))(ues)|
—(Ai— Aol - (ues (4 - Ao D(ues)(ues)|

where the following inequality:
Pus Pus
AT > A (4.25)

1S common sense.

By the commutative condition (4-22), (4-23) implies that
[N, Ny + [Ny, A @I+ [AL @I, N = —[A, @ 1, Ay @ 1 (4.26)

Here, we should note that the first term (or, precisely, [(u ® s, [the first term](u ® s))| ) of (4-26)

can be, by the Robertson uncertainty relation (c¢f. Theoremf-10), estimated as follows:

QZ%; .Zfig > [(u® s, [Ni, No](u @ s))] (4.27)
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4.3.2.1 Average value coincidence conditions; approximately simultaneous measure-
ment

However, it should be noted that
In the above, any relation between A; ® I and 27; is not assumed.

Thus, we think that the following hypothesis is natural.

Hypothesis 4.13. [Average value coincidence conditions |. We assume that

(u® s, Nj(u®s)) =0 (Vu e Hyi=1,2) (4.28)
or equivalently,
(u®s, Ai(u®s)) = (u, Au) (Vu e Hyi=1,2) (4.29)

That is,

the average measured value of Mp(#er)(07, S5..)
—u® s A s)
=(u, A;u)
=the average measured value of Mgy (O4,, Sjp,1)
Vu € H,||u||lg =1,i=1,2)

Hence, we have the following definition.

Definition 4.14. [Approximately simultaneous measurement] Let A; and As be (unbounded) self-
adjoint operators on a Hilbert space H. The quartet (K, s, Aj, As) is called an approximately
simultaneous observable of A; and A,, if it satisfied that

(E1) K is a Hilbert space. s € K, ||s||x =1, A, and A, are commutative self-adjoint operators on
a tensor Hilbert space H ® K that satisfy the average value coincidence condition (428), that
is,

(u® s, A(u® s)) = (u, Au) (Vu e Hyi=1,2) (4.30)

Also, the measurement Mp(rer)(Oz % O ,Sj5,,) is called the approximately simultaneous mea-
surement of Mp()(0a,, Spp.]) and Mp)y(0a,, Spp.)-
Thus, under the average coincidence condition, we regard

(Dy) and (Dy) as the substitute of (C;) and (Cs)
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And
(Es) Aﬁﬁ”‘: (= |(4 — A @ )(u®s)||) and A%;S (= |(Ay — Ay @ I)(u® s)]||) are called errors of the

approximate simultaneous measurement measurement Mprgx) (07, x Oz ,55,.)

Lemma 4.15. Let A; and A be (unbounded) self-adjoint operators on a Hilbert space H. And
let (K, s, Ay, Ag) be an approximately simultaneous observable of A; and A,. Then, it holds that

A = A (4.31)
(w® s, [N, A @ (u®s) =0  (Vue H) (4.32)
(u@s,[A @I NJ(u®s)) =0 (Yue H) (4.33)

The proof is easy, thus, we omit it.

Under the above preparations, we can easily get “Heisenberg’s uncertainty principle” as follows.

Aus A’u,s _,b\us _b\us
Alz\ ' A?\}Q (: Aﬁl ’ Aﬁg ) Z

5 |(u, [A1, Ag]u)| (Vu € H such that ||u|| = 1) (4.34)

N | —

Summing up, we have the following theorem:

Theorem 4.16. [The mathematical formulation of Heisenberg's uncertainty principle] Let A;
and Ay be (unbounded) self-adjoint operators on a Hilbert space H. Then. we have the followings:

(i) There exists an approximately simultaneous observable(K, 8721,22) of A; and A,, that is,
s € K, ||s]lk = 1, A, and A, are commutative self-adjoint operators on a tensor Hilbert
space H ® K that satisfy the average value coincidence condition (428). Therefore, the
approximately simultaneous measurement Mprer)(Oz, X O3, ,S,.)) exists.

(ii) And further, we have the following inequality (i.e., Heisenberg’s uncertainty principle).
A AP (= B B = (A - A1 © D@ )] - (A - A @ Dug s)|

1
> §|<u, [Ay, AsJu)|  (Vu € H such that ||u|| =1) (4.35)

(iii) In addition, if AjAy — AyA; = hy/—1, we see that

ﬁus ﬁus p—
AR AR > h/2 (Yu € H such that [|u]| = 1) (4.36)

Ny

Proof. For the proof of (i) and (ii), see
e Ref. [27]: S. Ishikawa, Rep. Math. Phys. Vol.29(3), 1991, pp.257-273,
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As shown in the above (4234), the proof (ii) is easy (cf. [33, @0]), but the proof (i) is not easy (cf.
[@, B35]).

4.3.3 Without the average value coincidence condition

Now we have the complete form of Heisenberg’s uncertainty relation as Theorem E-T6, To be com-
pared with Theorem Z°T6, we should note that the conventional Heisenberg’s uncertainty relation
(= Proposition A11) is ambiguous. Wrong conclusions are sometimes derived from the ambigu-
ous statement (= Proposition I-IT). For example, in some books of physics, it is concluded that
EPR-experiment (Einstein, Podolosky and Rosen [I5], or, see the following section) conflicts with

Heisenberg’s uncertainty relation. That is,

[I | Heisenberg’s uncertainty relation says that the position and the momentum of a particle can

not be measured simultaneously and exactly.
On the other hand,

[IT ] EPR-experiment says that the position and the momentum of a certain “particle”can be

measured simultaneously and exactly.

Thus someone may conclude that the above [I] and [II] includes a paradox, and therefore, EPR-
experiment is in contradiction with Heisenberg’s uncertainty relation. Of course, this is a misunder-
standing. This “paradox”was solved in (27, B5]. Now we shall explain the solution of the paradox.

[Concerning the above [I]] Put H = L*(R,). Consider two-particles system in H ® H =
LQ(R%%%)
(or precisely, \u€><ue|) such that:

). In the EPR problem, we, for example, consider the state u, (€ H® H = L*(R¢, )

! ¢ w20 —ga (ateb)? | idlae) (4.37)

Ue(Qb C_IQ) = oo

where € is assumed to be a sufficiently small positive number and ¢(qi, ¢2) is a real-valued function.

Let Ay: LA(R?, ) — L*(R}, ) and Ay: LA(R?, V) — L*(R?, 1) be (unbounded) self-adjoint

(g1,92) (1,92 (q1,92) (
operators such that

ho

A = Ay = ——.
1 =41, 2 i@ql

(4.38)

Then, Theorem E-T6 says that there exists an approximately simultaneous observable(K s, Ay, As)

of A; and As. And thus, the following Heisenberg’s uncertainty relation (= Theorem A-16) holds,

| Ay, — Avuel| - || Aste — Asue|| > h/2 (4.39)
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[Concerning the above [II]] However, it should be noted that, in the above situation we assume

that the state u, is known before the measurement. In such a case, we may take another measurement

as follows: Put K = C, s = 1. Thus, ( H®H)® K = H®H, u® s = u® 1 = u. Define the

self-adjoint operators Aj : LY (R, ,,y) — LA(RY, ) and A, : LY (R, ,y) — L*(RY,, ) such that
—~ -~ ho
Al =b— a2, A2 = AQ = E (440)

Note that these operators commute. Therefore,
(#) we can take an exact simultaneous measurement of A; and A, (for the state w,).

And moreover, we can easily calculate as follows:

HA\lue — Aque|
. 2 1/2
:[// ((b . C]Q) o Q1) 27360—6—8;(Q1—QQ—a)2—8€12(Q1+Q2—b)2 . 61¢(Q17Q2) déhd(h} /
R2
[ 1 2 1/2
// b_q2 _QI) 27T606 80 5 (1—q2—a)?— (lll-i-q2—b)2 dqldQQ}
RQ

=2, (4.41)
and
| Ague — Asug|| = 0. (4.42)
Thus we see
| Ay, — Aquel| - || Asue — Asug|| = 0. (4.43)

However it should be again noted that, the measurement () is made from the knowledge of the state
Ue.

[[I] and [II] are consistent | The above conclusion (4743) does not contradict Heisenberg’s uncer-
tainty relation (4-39), since the measurement (f) is not an approximate simultaneous measurement
of A; and A,. In other words, the (K, s, A\l, A\Q) is not an approximately simultaneous observable of

Aq and A,. Therefore, we can conclude that
(F) Heisenberg’s uncertainty principle is violated without the average value coincidence condition

(c¢f. Remark 3 in ref.[27], or p.316 in [34]).

Also, we add the following remark.
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Remark 4.17. Calculating the second term (precisely , (u ® s, “the second term” (u ® s))) and the
third term (precisely , (u®s,“the third term” (u®s))) in (2-26), we get, by Robertson’s uncertainty
principle (4220),

QZ%S co(Ag;u) > |<U®S,[N1>A2®I](u®s))| (4.44)
2N o(Au) > [(u®@ s, [Ap], No)(u® s))] (4.45)

(Vu € H such that |Ju|| =1)
and, from (4-26), (427), (4-44),(4-45), we can get the following inequality

b\us b\us ﬁus . b\us .
Aﬁl . ANQ + ANQ co(Ap;u) + AFH o (Ag;u)
_Z)\us _b\us _ﬁus _b\us
>AG AR+ AR o(Apu) + AR o(Ag )
1
25 (u, A1, AgJu)|  (Yu € H such that |Ju|| = 1) (4.46)
Since we do not assume the average value coincidence condition, it is a matter of course that this
(4748) is more rough than Heisenberg’s uncertainty principle (4-35)

If a certain interpretation is adopted such that A%S and A%s mean “error:e(A;, u)” and “disturbance:n(As,
1 2

respectively, then the inequality (4-46), i.e.,

E(Ah U)TI(A% U) + €<A17 u)o-(AQ’ U’) + U(Ala U)U(A% U,) > |<u7 [Al’ A2]U’>|

N —

is called Ozawa’s inequality (cf. [B1]). He asserted that this inequality is a faithful description of

Heisenberg’s thought experiment ( due to 7-ray microscope ).
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4.4 EPR-paradox (1935) and faster-than-light

4.4.1 EPR-paradox

Next, let us explain EPR-paradox (Einstein—Poolside-Rosen: [I5, [T1]). Consider Two electrons
P, and P, and their spins. The tensor Hilbert space H = C? ® C? is defined in what follows. That

is,

(i.e., the complete orthonormal system {e,es} in the C?),
C2®C2:{ Z aijei@)ej ‘ Qij GC,’i,j: 1,2}
ij=1,2

Putu= > aye;®@e;jandv= 3 fije; ®e;. And the inner product (u,v)
ig=1,2 i=1,2

<u7 U>C2®(52 = Z Qij - 5i,j

ij=1,2

is defined by

2 ®(C2

Therefore, we have the tensor Hilbert space H = C? ® C? with the complete orthonormal system
{e1®e1,61 Reg,ea®er,e9 @ en}.

For each F € B(C?) and G € B(C?), define the F ® G € B(C?* @ C?) (i.e., linear operator
F®G:C*®C*— C?*®C?) such that

(FG) (u®v)=Fu® Gu
Let us define the entangled state p = |s)(s| of two particles P, and P, such that

s=—(e;1 ey — e Qeq)

V2

Here, we see that (s, s) = %<61®62—€2®61,€1®62—62®61> = %(1—1—1) =1, and thus,

c2 ®(C2 2 ®CQ

p is a state. Also, assume that

two particles P, and P, are far.
Let O = (X,2%, F?) in B(C?) (where X = {1,l} ) be the spin observable concerning the z-axis
such that

P =y o] Fan=[ Y
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The parallel observable O ® O = (X?,2% x 2% F* @ F?) in B(C? @ C?) is defined by

1
I

(F* @ P D) = F((th e F({th = | ol e cl) 8
(F* @ F)({(L, D} = F ({1} @ F*({1}) = 8 2_ ? cl) 8
(F* @ FH){(1, D} = F*({t}) @ F*({I}) = (1) 8 ? 8 ?_
(F* @ F)({(L D)) = FF({1) @ F({1}) = 8 ? “ 8 (1)

Thus, we get the measurement Mpg(c2gc2)(O®0, Sy,)) The, Born’s quantum measurement theory says

that

When the parallel measurementmeasurement Mp(c2gc2)(0 ® O, S)q) is taken,

(T, 1)
the probability that the measured value E*: B is obtained
)
(s, (F* @ F*)({(1, 1) })$) 2 =0
e atven by | (57O PICEDDS) s = 05
(s, (F* @ F*)({(1, D })$) coe = 0.5
(s, (F* @ F*){(1, 1)})$) oy = 0
That is because, F'*({1})e1 = e1, F*({l})ea = ea, F*({1})ea = F*({}})e1 = 0 For example,

(s, (F7 @ FH) {1, D H$) o0

:%«61 ®er—ex@er), (F*({1H @ F ({IN(e1®ex —e2a @ er))
1

C2@C2 - 5

1
:§<(€1 (059 €9 — €9 X 61),61 & 62>

Here, it should be noted that we can assume that the z; and the zo (in (z1,22) € { (1.,71.),
(12,42), (42 12), (32, 42)}) are respectively obtained in Tokyo and in New York (or, in the earth and

in the polar star).

(probability?) (probability )
(b) ()
T2 1 s T
o ® or o ®
Tokyo New York Tokyo New York

This fact is, figuratively speaking, explained as follows:
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e Immediately after the particle in Tokyo is measured and the measured value 1, [resp. [.] is

observed, the particle in Tokyo informs the particle in New York “Your measured value has to

be |, [resp. 1.]”

Therefore, the above fact implies that quantum mechanics says that there is something faster than

light. This is essentially the same as the de Broglie paradoz (c¢f. [T01]). That is,

e if we admit quantum mechanics, we must also admit the fact that there is

something faster than light (i.e., so called “non-locality”).

ANote 4.3. [Shut up and calculate]. The above argument may suggest that there is something faster
than light. However, when faster-than-light appears, our standing point is

Stop being bothered

This is not only our opinion but also most physicists’. In fact, in Mermin’s book [8Y], he said

(a) “Most physicists, I think it is fair to say, are not bothered.”
(b) If T were forced to sum up in one sentence what the Copenhagen interpretation says to me, it
would be “Shut up and calculate”

If it is so, we want to assert that the linguistic Copenhagen interpretation [§3.1) is the true colors of
“the Copenhagen interpretation”. That is because I also consider that

(c¢) If T were forced to sum up in one sentence what the linguistic Copenhagen interpretation says
to me, it would be “Shut up and calculate.”

ANote 4.4. It is difficult to actually perform EPR-experiment exactly in this form. Using the singlet
state po = [1s) (15| (€ SP(B(C? @ C?)*)), where

¢s:(€1®€2_€2®61)/\/§

In 1966, J.S.Bell proposed Bell’s inequality (which makes EPR paradox considerably easier to verify
experimentally). In 1982, Aspect, A. et al. actually carried out experimental verification and showed
that ‘there is something faster than light’, earning them the Nobel Prize in Physics for 2022 .
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Chapter 5

Fisher statistics (I): Measurement

Recall the following figure (Figure 0.2 in preface):

!
o ®
Greek phil. ~ 1 statistics
escartes-Kant! quantum Fisher,

W mechanics Baysian, ee s e

Analytic phil. D

(f_uzzy lggic) epistemology
Phil. of science g

~ i

~

discussed in ref. [[74] . discussed in this book

The following two problems are one of the most fundamental in science.

(1) Why does statistics work in our world?

(#2) Why does fuzzy logic work in our world?
These two are answered by @) and (3 in the Figure above such as
(b) both statistics and fuzzy logic hold since QL holds in our world.

Especially, the problem (#;) was, for the first time, solved in ref.[34]. In this chapter (and Chaps 6 an
7), I review (b) for statistics.

Also, it should be noted that

e theoretically, statistics is to be formulated within quantum language. However, the way in which
statistics can be understood using probability theory (= theory of random variables) is practical
and not to be dismissed.

5.1 Statistics is, after all, urn problems
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5.1.1 Population (=system) <> parameter (=state)

Let us start with the following Note (i.e. QL and statistics).

&Note 5.1.

The following is a part of Table 2T

dualism \ key-words || [A](= mind) [B](Med?gl;g do}f’;% Q) [C](= matter)
quantum mechanics observer measuring instrument | particle (system)
QL [measured value] [Observable] [state]
(scientific dualism) [z(€ X)] [O=(X,7,F) p(e GP(A*))
observer measuring instrument | particle (system)
classical QL [measured value] | [Observable] [state]
(scientific dualism) [z(€ X)] [O=(X,5,F) dw = w(€ Q)
person to try trial population
statistics* [sample] / [parameter]
(incomplete dualism) || [z(€ X)] / w(e Q)

Axiom 1 (in classical quantum language) says that

(#1) the probability that a measured (€ X) obtained by a measurement My (g ,)(0 = (X, ¥, F), S5, )
belongs to E(€ ¥F) is given by [F(Z)](wo).

Also, statistic say that

(f2) the probability that a sample z(€ X) obtained from a population with a parameter wy(€ ) is
given by P, (Z), if it holds P,(Z) = [F(Z)](wp) (Vw € Q,V= € F)

Thus, in statistics, the concept of ‘observable O = (X, J, F')’ does not appear on the surface. In this
sense, statistics does not belong to the class of dualism.

/1]

Example 5.1. The density functions of the Japanese male’s height and the American male’s height
are denoted by f; and f4, respectively. That is,

p number of Japanese males whose heights are from « to 3
fr(z)dz =
o total number of Japanese males

p Fa(x)d number of American males whose heights are from « to [
x)dr =
o 4 total number of American males

Let the density functions f; and fa be regarded as the probability density functions f; and f4 such
as
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the set of all Japanese males
the set of all American males
that his height is from «(cm) to S(cm) is given by

(A) From , choose a person at random. Then, the probability

Fulo, B))(wg) = [L f1(w)de ] ‘
([, D))(wa) = [ fa(x)da

Now, let us represent the statements (A1) and (As) in quantum language: Define the state space
Q by Q = {wy,wa} with the discrete metric dp and the counting measure v such that

v({ws}) =1, v({wa}) = 1.

<It does not matter, even if v({w,}) = a, v({wa}) =0 (a,b > 0)> Thus, we have the classical

basic structure:
Classical basic structure [Co(Q2) C L>(Q,v) C B(L*(Q,v))] .
The pure state space is defined by
S"(Co()") = {0, 0ua} = {ws,wa} = Q.
Here, we consider that

0w, -+ “the state of the set U, of all Japanese males”,

J

wa “the state of the set U, of all American males”,

and thus, we have the following identification (that is, Figure 51):

Ulzfst, U2%5w14

UgwéwA

All American male

All Japanese males

in this urn U,

in this urn U

Figure 5.1: Population &~ urn ( <> state )

The observable O;, = (R, B, F},) in L>(2, v) is already defined by (A). Thus, we have the measure-
ment Mze)(On, Sis,)) (w € Q = {ws,wa}). The statement(A) is represented in quantum language
by
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(B) The probability that a measured value obtained by the measurement

MEZEZ;Egzz g[:i])) ] belongs to an interval [a, () is given by

oo (Buss Fulo ) ) e = [Fi(lax, 8))] ()
o (Quas P[0 8)) ) s = [P )] (wa)

Therefore, we get:

statement (A) | ———— |statement (B)

translation
(ordinary language) (quantum language)

5.1.2 Normal observable
Counsider the classical basic structure:
[Co(2) € L>*(Q,v) € B(L*(Q,v))],

where 2 = R (=the real line) with the Lebesgue measure v. Let ¢ > 0 be a standard deviation,
which is assumed to be fixed. Define the measured value space X by R (i.e., X = R ). Define the
normal observable Og, = (X (=R), Bg,G,) in L>®(Q, v) such that

Gol@Nw) = —— [ exp | = e —w)? | do 5.1
Loo] -5

B 2mo

(VE € By (= Bg), Yw € Q(=R))

where By is the Borel field. For example,

e 5 dy = 0, 683..., e 22 dx = 0.954...,

\/27r<72 — \/27r02 2%

1.960 2.58¢0

e 2a2 dr=0.95
V2ro? J_1.960 V2mo? J 2580

e 202 dr=0.99

1 _x
— 202
Yy \/27r026 :
—20 0] 20 >z

Figure 5.2: Error function
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Next, consider the parallel observable @;_, O¢, = (R™, Bgn, Q),_, G») in

L (Q™, v®™) and restrict it on
K={(ww,...,w) € Q" |weQ}ZQ"). (5.2)

This is essentially the same as the simultaneous observable 0" = (R”, Bgn, X,_, G5) in L®(Q).
That is,

_x L /:k exp {— %(mk — w)Q} dzy, (5.3)

_kzl 2ro
(VEk S BX(: BR), Yw € Q(: R))

Then, for each (z1,x9, - ,x,) € X"(=R"), define
—_ 1+ T2+ -+ Ty

Tn

n
(11 —Tp)2 + (22 — Tn)? + -+ + (2, — Tp)?
n—1

2
Un: )

5.2 Fisher’s maximum likelihood method and Born’s mea-
surement

In this section, we consider the reverse relation between Fisher ( =inference) and Born ( =measure-

ment)

5.2.1 Inference problem (Statistical inference)

Before we mention Fisher’s maximum likelihood method, we exercise the following problem:

Problem 5.2. [Urn problem (=Example234), A simplest example of Fisher's maximum likelihood
method]

There are two urns U; and Us. The urn U; [resp. Us] contains 8 white and 2 black balls [resp. 4
white and 6 black balls].
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Figure 5.3: Pure measurement (Fisher’s maximum likelihood method)

Here consider the following procedures (i) and (ii).

(i) One of the two (i.e., Uy or Us) is chosen and is settled behind a curtain. Note, for completeness,
that you do not know whether it is U; or Us.

(ii) Pick up a ball out of the unknown urn behind the curtain. And you find that the ball is white.

Here, we have the following problem:

(iii) Infer the urn behind the curtain, Uy or Uy ?

The answer is easy, that is, the urn behind the curtain is U;. That is because the urn U; has more

white balls than U,. However, though easy, it includes the essence of Fisher maximum likelihood
method.

5.2.2 Fisher’s maximum likelihood method in measurement theory

We begin with the following notation:

Notation 5.3. [Mz(O, Sy,j)]:  Consider the measurement Mz (O=(X,J, F), S|,)) formulated in
the basic structure [A C A C B(H)]. Here, note that

(A1) In most cases that the measurement My (O=(X, T, F), S|,)) is taken, it is usual to think that
the state p (€ &P(A*)) is unknown.

That is because

(As) the measurement My (O, S,)) may be taken in order to know the state p.

Therefore, when we want to stress that

we do not know the state p.

The measurement Mz (O=(X,JF, F'), S|;) is often denoted by
(As) Mg (O=(X, 5, F), Su)

Furthermore, consider the subset K(C G”(A*)). When we know that the state p belongs to K, My
(0=(X,T,F), Sp) is denoted by Mz(0O, Siy(K))). Therefore, it suffices to consider that

M7(O, Spy) = Mz(0O, S (&7 (A"))))-
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Using this notation Mz(O, Sp,j), we characterize our problem (i.e., inference) as follows.

Problem 5.4. [Inference problem]

(a) Assume that a measured value obtained by Mz (O=(X,J, F), Si(K))) belongs to =(e J).
Then, infer the unknown state [] (€ )

or,

(b) Assume that a measured value (z,y) obtained by Mz(O=(X xY,F X G, H), S.,(K))) belongs
to 2 x Y (2 € F). Then, infer the probability that y € I'.

Before we answer the problem, we emphasize the reverse relation between “inference” and “mea-
surement”.

The measurement is “the view from the front”, that is,

measurement

Moo (0)(0,S[)

(B1)  (observable [O], state [w(€ )]) measured value [z(€ X)]

On the other hand, the inference is “the view from the back”, that is,

inference

(B2)  (observable [O], measured value [z € Z(€ F)])
Moo (0)(0,51)

state [w(€ Q)]
In this sense, we say that

the inference problem is the reverse problem of measurement.

Therefore, it suffices to image Fig. 5.4.

(measuring object) | p (measurement) .
\unknown state\ - _— \measured value \
: (measuring instrument) probabilistic (output)
| (observer)

inference

Figure 5.4: The image of inference

In order to answer the above problem b4, we shall describe Fisher maximum likelihood method

in measurement theory.
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5.2 Fisher’s maximum likelihood method and Born’s measurement

Theorem 5.5. [(Answer to Problem b4 (b)): Fisher's maximum likelihood method (the general case)]
Consider the basic structure

obtained by a measurement My (O=(X x

Assume that a measured value(z,y)
(2 € F). Then, there is reason to infer that the

YV, 5 G, H),S(K)) belongs to = x Y
probability P(I') that y € I' is equal to

po(H(E x I))
— =2 T
P(T) = (VI € 9),
where py € K is determined by.

po(H(E X ¥)) = mapx p(H(E x Y)). (5.4)

Proof. Assume that p;,ps € K and p1(H(E X Y)) < po(H(ZE x Y)). By Axiom 1 (measurement:
§2.1)

(i) the probability that a measured value(z,y) obtained by a measurement M4 (O, S},,1) belongs to
= x Y isequal to p;(H(ZE xY))

(ii) the probability that a measured value(x,y) obtained by a measurement Mz(O, Sj,,)) belongs to
= x Y is equal to po(H(Z X Y))

Since we assume that p1(H(Z X Y)) < po(H(Z x Y)), we can conclude that “(i) is less likely than
(ii)”. Thus, there is a reason to infer that [*] = ws. Therefore, the py in (54) is reasonable. Since
the probability that a measured value(z,y) obtained by Mz(O, Sj,,) belongs to = x I' is given by
po(H(= x T')), we complete the proof of Theorem 573. O

Theorem 5.6. [(Answer to b4 (a)): Fisher's maximum likelihood method in classical case]
(i): Consider a measurement My q)(O =(X, T, F), Sy (K))). Assume that we know that a mea-
sured value obtained by a measurement M) (O, Sij((K))) belongs to = (€ J).

(a) Then, there is a reason to infer that the unknown state state [*] is wo (€ §2) such that

[F(2)](wo) = max[F(Z)](w). (5.5)

wes

Or more generally,

(b) if it holds that [F(Z)](w;) < [F(Z)](ws), then wy should be chosen.

1 ]_0 ’ For further imformation see my homepagd
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(ii): Assume that a measured value zy (€ X) is obtained by a measurement My« (q)(0 =(X,J, F),
S (K)). Define the likelihood function f(z,w) by
: [F(Z)](w)
r,w) = inf lim — . 5.6
f(z,w) wieK [Eax,[p(a)}(w1)¢o,z—>{x} [F(:)](wl)] (5:6)
Then, there is a reason to infer that [¥] = wy(€ K) such that f(xq,wp) = 1.
F(E)](w)
0 : Q
Wo
Figure 5.5: Fisher maximum likelihood method
Proof. Consider Theorem 53 in the case that
A CAC B(H)] = [Co() € L=(@) € BIL*(®))
Thus, in the measurement Mz (O=(X x Y,F X G, H), S.,(K))), consider the case that
Fixed O1=(X,F, F), any 0,=(Y,§,G),
0=0; x 0y, = (X xY,FXG F xG), py=0dy,
Then, we see
[H (2)](wo) x [G(I')](wo)
P(I) = = [G(D)](wo) (VI €9). (5.7)
[H (Z)](wo) > [G(Y)](wo)
And, from the arbitrariness of Oy, there is a reason to infer that
[*] - 50.) (identi;;:ation w[))
[

ANote 5.2. The linguistic Copenhagen interpretation says that the state after measurement is nonsense.
In this sense, the readers may consider that

(#1) Theorem b6 is also nonsense
However, we say that

(#2) in the sense of (5-7), Theorem 56 should be accepted.
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or
(#3) as far as classical systems are concerned, it suffices to believe in Theorem b6
However, in the quantum case, the above discussion is related to the famous paradox concerning the
Schrodinger cat. This is solved in Sec. U2 ‘the wavefunction collapse’, which is one of the most

important results in this book.

Answer 5.7. [The answer to Problem b2 by Fisher's maximum likelihood method)]
You do not know the urn behind the curtain is. Assume that you pick up a white ball from the

urn. Which urn do you think is more likely, U; or Uy ?

Figure 5.6: Pure measurement (Fisher’s maximum likelihood method)

Answer: Consider the measurement My (0= ({w, b}, 21" F),S},)), where the observable

Ouwp = ({w, b}, 2198 F,) in L=(9) is defined by
[Fus({w})](w1) = 0.8, [Fus({0})](w1) = 0.2
[Fus({w})](w2) = 0.4, [Fus({0})](w2) = 0.6 (5.8)
Here, we see:
max{ [Fup({w})](w1), [Fus({w})](w2)}

= max{0.8,0.4} = 0.8 = Fyp({w})](w:).

Then, Fisher’s maximum likelihood method (Theorem 5) says that
[*] = W1.
L

Therefore, there is a reason to infer that the urn behind the curtain is Uj.

ANote 5.3. As seen in Figure 5.4, inference (Fisher maximum likelihood method) is the reverse of

measurement (i.e., Axiom 1 due to Born). Here note that
’ For further imformation see my homepagd ‘
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(a) Born’s discovery “the probabilistic interpretation of quantum mechanics” in [6] (1926)

(b) Fisher’s great book “Statistical Methods for Research Workers” (1925)

Thus, it is surprising that Fisher and Born investigated the same thing in the different fields in the
same age. Throughout this book, I emphasize that Fisher’s maximum likelihood method is the most
fundamental method of in statistics.

5.3 Examples of Fisher’s maximum likelihood method

All examples mentioned in this section are easy for the readers who studied the elementary of statis-

tics. However, it should be noted that these are the consequences of Axiom 1 (measurement:§2.7).

Example 5.8. [Urn problem] Each urn Uj, Us, Us contains many white balls and black balls as:

Table 5.1: urn problem

w-b\_ Urnl Urn Uy Urn Uy Urn Us
white ball 80% 40% 10%
black ball 20% 60% 90%

Here,

(i) one of three urns is chosen, but you do not know it. Pick up one ball from the unknown urn.
And you find that its ball is white. Then, how do you infer the unknown urn, i.e., Uy, Uy or
Us ?

Furthermore,

(ii) And further, you pick up another ball from the unknown urn in (i). And you find that its ball
is black. That is, after all, you have one white ball and one black ball. Then, how do you infer

the unknown urn, i.e., Uy, Uy or Uz ?

In what follows, we shall answer the above problems (i) and (ii) in measurement theory. Consider

the classical basic structure:
[Co(Q) C L=(Q,v) C B(LZ(Q, v))].
Put

0w, (R wj) <— [the state such that urn Uj is chosen] (j =1,2,3)
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Thus, we have the state space  ( ={w;,ws, w3} ) with the counting measure v. Furthermore, define
the observable O = ({w, b}, 2" F) in C(Q) such that

P({w})(wr) = 038, F({w})(wn) = 0.4, P({w})(ws) = 0.1
P({b})(wr) = 0.2, P({b}) () = 0.6, P({b})(ws) = 0.9.

[}

Answer to (i): Consider the measurement Mze()(O, Sp), by which a measured value “w” is

obtained. Therefore, we see

[F{w})](w) =08 = mg)z{[F({w})](w) = max{0.8, 0.4, 0.1}.
Hence, by Fisher’s maximum likelihood method (Theoremb.6) we see that

[*] = W.

Thus, we can infer that the unknown urn is U;.
Answer to (ii): Next, consider the simultaneous measurement M e q)( Xile = (X2, 2X*

F=X i:l F), Sp), by which a measured value (w, b) is obtained. Here, we see
[F({(w,hD)w) = [Fwh](w) - [FHOH]w),
thus,
[F({(w,b)))(wr) = 0.16, [F({(w,b)})](wz) = 0.24, [F({(w,b)})](ws) = 0.09.
Hence, by Fisher’s maximum likelihood method (Theorembh®), we see that
[*] = wa.
Thus, we can infer that the unknown urn is Us. Il

Example 5.9. [Normal observable(i): = R] As mentioned before, we again discuss the

normal observable in what follows. Consider the classical basic structure:
[Co(Q) C L>(Q,v) C B(L*(Q,v))] (where Q=R).

Fix ¢ > 0, and consider the normal observable O, = (R, Bg,G,) in L*(R) (where Q@ = R) such
that
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(VE e Bg, VueQ=R)

Thus, the simultaneous observable X;_; O¢, (in short, 0%, ) = (R® Bys, G3) in L®(R) is defined
by

[G?’ (B1 X Zp x Z3)|(1) = [Go(Z1)](1) - [Go ()] (1) - [Go(Zs)] (1)
(21— p)? + (22 — p)? + (23 — p)?
27‘(0 ///_1 XEo XZ3 eXP 20? ]

X dl’ldl‘gdﬂfg

(VEk € Bp, k=1,2,3, VueQ=R)

Thus, we get the measurement Mo ®) (0%, , S,)) Now we consider the following problem:

(a) Assume that a measured value (29,29, 29) (€ R?) is obtained by the measurement My (g) (O, ,

Si)- Then, infer the unknown state [*](€ R).

Answer(a) Put

1 1

— =1,2,3).
N”L N] (Z 773)

Assume that N is sufficiently large. Fisher’s maximum likelihood method (Theoremb®) says that

the unknown state[ * | = g is found in what follows.

[G2(Z21 x Zp X Z3)] (1) = fggg[Gi(El X Zy X =3)](p)

Since N is sufficiently large, we see

! (29 — p10)® + (2§ — po)* + (2§ — p1o)?
————exp| — : ]
(V2mo)3 20
=max |——— exp| — (@f — p)* + (w3 — p)* + (x5 — p) ]]
per L(/2mo)3 202
That is,
() = 0)” + (25 — po)” + (3 — po)” _r,flelurgl{ — p)? + (25 — p)? + (23 — p)*}.

Therefore, solving %{- -+ } =0, we conclude that

2 + 29 + 29
Ho= =37

]
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[Normal observable(ii)] Next consider the classical basic structure:
[Co() € L=(Q,v) € B(L*(Q,v))]  (where Q=R xRy)
and consider the case:
e we know that the length of the pencil p satisfies that 10 < p < 30.
And we assume that

(4) the length of the pencil p and the roughness o of the ruler are unknown.

That is, assume that the state space Q = [10,30] xRy (={p € R |10 < p <30} x {c € R |0 > 0})
Define the observable O = (R, B, G) in L*([10,30] x R ) such that

[GE)(p,0) = [Go(E)(1n) (V2 € By, V(n,0) € 2=[10,30] x Ry).
Therefore, the simultaneous observable 0% = (R?, By,, G*) in C([10,30] x R} ) is defined by

[G*(E1 x B2 x Z3)](w,0) = [G(ED)](1 0) - [G(E)](, 0) - [G(Es)] (1, 0)

1 N2 N2 N2
:m/ exp| = e (962202”) + (o = ) Jdzidrada;
ZE1XEoXEg

(VEp € By, k=1,2,3, VY(u,0) € Q=][10,30] x Ry)

Thus, we get the simultaneous measurement Mpeo((10,30)xRr +)(03, Spy). Here, we have the following

problem:

(b) When a measured value (22,29, 23) ( € R3) is obtained by the measurement

Mo (10,30 xR ) (OF, Sp), infer the unknown state [](= (uo, 00) € [10,30] x R}), i.e., the length

1o of the pencil and the roughness oy of the ruler.

Answer (b) By the same way of (a), Fisher’s maximum likelihood method (Theoremb6) says that
the unknownstate [ * | = (g, 0¢) such that
1 (21 = 1o)* + (w5 — po)* + (25 — M0)2]

———— exp| - 27

(V2rao)?
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- {_( 2;)3 expf = (x32;2u)2 + (28— up]} o
Thus, solving %{} =0, Z{---} =0 we see
10 (when (29 4+ 23 + 29)/3 < 10 )
po =14 (20 +23+29)/3  (when 10 < (29 + 23+ 29)/3 £ 30) (5.10)

0 (when 30 < (29 + 23 + 29)/3)

3
00 = /{2 — 1) + (2 — )% + (a) — 0)2}/3

where

f= (2} + 29+ 29)/3. O

Example 5.10. [Fisher's maximum likelihood method for the simultaneous normal measurement]. Con-
sider the simultaneous normal observable O = (R", Bg,G") in L>*(R x R;) (such as defined in
formula (5:3)). This is essentially the same as the simultaneous observable O" = (R", Bgn, X ,_, G)

in L=(R x R, ). That is,

G)(E) X Eg X -+ X Ep)](w) =

(X ;

1 1 9
e — ——(x — dx
k=1+/270 /Ek Xp[ 202( ’ M)] ’

(V2R € By (= Bg), Vw = (u,0) € (=R x R,))

X [G(ED)(w)

1

3
I Xs

Assume that a measured value = (1, 22, . .., #,)(€ R") is obtained by the measurement Mz rxr,)(O" =
(R™, B, G"),Sp). The likelihood function Ly (i, 0)(= L(x, (1, 0)) is equal to
1 D e (s — 1)
L.(,0) = ——— exp| — =k=1 ,

or, in the sense of (b6),

1

22:1(9%_11)2]

exp| — L
. (V2mo)n 20
La(p0) = — exp| — Dhtl @) (5-11)
(Vo (@) P %(2)2

(Vo = (71,29, ...,7,) ER", Vw=(u,0) €Q2=RxRy)

Therefore, we get the following likelihood equation:

L, (u,0) OL,(p, 0)
RN T e it R A 12
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which is easily solved. That is, Fisher’s maximum likelihood method (Theoremb®) says that the

unknown state [¥] = (i, 0) (€ R x R, ) is inferred as follows.

1+ 2o+ . —|-£Bn

= fi(r) =

(5.13)
\/Zk (@ — )) (5.14)

5.4 Moment method: useful but artificial

Let us explain the moment method (c¢f. [35]) which is used as frequently as Fisher’s maximum
likelihood method. Consider the measurement M, (O =(X,3,F), S[p}), and its parallel measurement
R Ma(0 = (X, F,F), S) (= Maa( ;10 == (X", 5", ®_, F), Siwp_ ). Assume that the
measured value (z1, a, ..., z,)(€ X") is obtained by the parallel measurement. Assume that n is

sufficiently large. By the law of large numbers (Theorem 475), we can assure that

Ozy + 02y + -+ g,
+ 47; - )

M1 (X) 3 yn( = = p(F(-)) € Mo (X). (5.15)
Thus,
(A) in order to infer the unknown state p(€ GP(A*)), it suffices to solve the equation (515)

For example, we have several methods to solve the equation (b15) as follows.

(B1) Solve the following equation:
[ (-) = P(F () ey = min{[vn () = p21(F ()l | pr(€ (A7)} (5.16)

(B2) For some fi, fa,-- -, f € C(X) (= the set of all continuous functions on X), it suffices to find
p(€ &P(A*)) such that A(p) = min,, cera)) A(p1), where

-y [ @mtie) - [ nienre))

:Zn:‘fk(xl)-ka(@) o+ fr(wn) / Fule dﬁ))‘
k=1

n

(Bs) In case of the classical measurement My« q) (0 = (X,F, F), S|,)) (putting p = 6,), it suffices

to solve

(d)](w)},

| (\ES CRESEey AN e -

n
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or, it suffices to solve
( eehte e [ () ) =
fa(z1)+fo(x2)++fo(2n) fX f2 df)]( )
o) bmlaalebhnlen) _ [ () [P(dE)] (w) =
(B4) Particularly, in the case that X = {&, &, ,&m} is finite, define fi, fo,-- , f € C(X) by
1 (£=¢&)
Je(€) = Xy () = { 0 (&# &)
d.) such that
“+ X, (Tn)
W [ g ©ntF ()

and, it suffices to find the p(
.1'1) + X{gk}<l‘2) +

i ’X{sk}(
=y [l S =] | = 0

The above methods are called the moment method. Note that
(Cq) Tt is desirable that n is sufficiently large, but the moment method may be valid even when

n=1.
(Cy) The choice of f is artificial ( on the other hand, Fisher’ maximum likelihood method is natural)

Problem 5.11. [=Problem 52: Urn problem: by the moment method)]
You do not know the urn behind the curtain. Assume that you pick up a white ball from the urn

Which urn do you think is more likely, U; or U,

Ur~w
0000® ) —EF
0000e =
Figure 5.7: Inference(by moment method)
’ For turther imformation see my homepage
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Answer: Consider the measurement Mywq)(O= ({w, b}, 21" F) S,)). Here, recall that the
observable O, = ({w, b}, 28w F,,) in L>=(Q) is defined by

—

Fup({w})](wr) = 0.8,
Fup({w})](w2) = 0.4,

—

Fup({b})](wr) = 0.2
Fup({6})](w2) = 0.6

—
—

Since a measured value “w” is obtained, the approximate sample space ({w, b}, 2{"% 1) is obtained

as

n({w}) =1, n{b}) = 0.
[when the unknown state [*] is w;]
(516) = |1 — 0.8 + |0 — 0.2] = 0.4.
[when the unknown state [*] is ws]
(516) = |1 — 0.4] + [0 — 0.6 = 1.2,

Thus, by the moment method, we can infer that [*] = wy, that is, the urn behind the curtain is Uj.

[IT1] The above may be too easy. Thus, we add the following problem.

Problem 5.12. [Sampling with replacement|: As mentioned in the above, assume that “white ball”
is picked. and the ball is returned to the urn. And further, we pick “black ball”, and it is returned
to the urn. Repeat this, after all, assume that we get

C(w” , le” , Léb” , (Cw” , (Lb” , Llw” , ((b’? ,
Then, we have the following problem:

(a) Which urn is behind the curtain, U; or U, ?

Answer: Consider the simultaneous measurement My ) (x;_,0= ({w, b}, 2wt T F), Si)
And assume that the measured value is (w, b, b, w, b, w, b). Then,

[when [%] is wy]
(516) = [3/7 — 0.8] + [4/7 — 0.2] = 52/70.
[when [*] is wo]

(516) = |3/7 — 0.4] + |4/7 — 0.6 = 10,/70.
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Thus, by the moment method, we can infer that [*] = ws, that is, the urn behind the curtain is Us.

]

Example 5.13. [The most important example of moment method] Putting 2 = R x R, = {w =

(u,0) | € R0 > 0} with Lebesgue measure v, consider the classical basic structure
[Co(Q) € L=(Q,v) € B(L*(Q,v))].
Assume that the observable Og = (X (= R), By, G) in L>®(Q, v) satisfies that

/ £G(d)) (1, 0) = / (€ — WG (dO)) (. 0) = 0
(Vw = (1, 0) € A=R x R,))

Here, assume that a measured value (1, 22, 23)(€ R?) is obtained by the simultaneous measurement

X i:l Mo ()(Og, Sp). That is, we have the 3-sample distribution 5 such that

Oz, + 02y + 0oy
V3 = 3 € M+1 (R)

Put f1(€) =&, fo(€) = €2. Then, by the moment method (5-17), we see:

0= | [ et - [ ciaenc
:kz; | (22)" + (x;)k + ()" /R G810

I —+ T + T3 (ZEl)Z + (3172)2 + (5(73)2
[l 3 (@4,
Thus, we get:
T + To + Ty
3
o @)+ (522))2 + (23)* 2
(xl _ x1+:c32+xn )2 + (x2 _ x1+x32+xn)2 + (x3 _ x1+2732+xn)2

3 Y

which is the same as the (5-10) concerning the normal measurement.

#Note 5.4. Consider the measurement Mpeo(q)(O=(X, 2X F), Si), where X = {x1,29,..., z,} is
finite. Then, we see that

“Fisher’s maximum likelihood method” =“moment method”
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Answer : Assume that a measured value z,,(€ X) is obtained by the measurement

Mz(0=(X,2%, F), Sp).
[Fisher’s maximum likelihood method]:
(a) Find wo(€ ) such that

[F({2m})](wo) = max[F({zm})](w).

[Moment method]:

(b) Since we get the approximate sample probability space (X,2%,4d,, ), we see

0= [F{z D) + - +10 = [F{zmaD)]@)] + 1 = [F({zn})](W)]
+|0—[F({93m+1})]( )+ 410 = [F({zn})](W)]
=[F{zp)]w) + -+ [F({zm-1D](w) + [F({zm})](w)
+[F({:vm+1})]( )+ [F({za})]l(w)
=1 =2[F({zn})](w).

Thus, it suffice to find wo(€ ) such that
1= 2[F({zn})](wo) = min(1 — 2[F ({zy })}(w))-

Thus, Fisher’s maximum likelihood method and the moment method are the same in this case.

5.5 Monty Hall problem in Fisher’s maximum likelihood
method

Monty Hall problem is as follows”.

Problem 5.14. [Monty Hall problem; High school puzzle]

You are on a game show and you are given a choice of three doors. Behind one door is a car,
and behind the other two are goats. You choose, say, door 1, and the host, who knows where the
car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you a choice of sticking to door 1 or switching to door 2 ? What should

1This section is extracted from the fO”OMI]‘DgE“
(a) Ref. [35]: 5. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University Press Inc. 2006.

(b) Ref. [@0]: S. Ishikawa, “Monty Hall Problem and the Principle of Equal Probability in Measurement Theory,”
Applied Mathematics, Vol. 3 No. 7, 2012, pp. 788-794. doi: 10.4236/am.2012.37117.
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you do ?

|
l é é |
door door door J I

No. 1 No. 2 No. 3 Q:P\ @\J

Figure 5.8: Monty Hall problem

i i 1)

the door 3 has a goat

You choose door 1

Answer: Put = {w;,wy, w3} with the discrete topology dp and the counting measure v. Thus

consider the classical basic structure:
Co(9) € L™(Q,v) € BLX(S,v).
Assume that each state §,,, (€ &7(C(Q)*)) means
dw,, < the state that the car is behind the door m (m =1,2,3)
Define the observable O; = ({1,2,3},2{423} F}) in L>(Q) such that

[Fi({1D)](w) = 0.0, [F({2H)](wr) =05, [F({3})](w1) = 0.5,
[F({1)](w2) = 0.0, [FA({2D](w2) = 0.0, [F({3})](w2) = 1.0,
[F({1))(ws) = 0.0, [F({2D](ws) = 1.0, [Fi({3})](ws) = 0.0, (5.18)

where it is also possible to assume that F({2})(w1) = o, Fi({3})(w1) =1 —a (0 < a < 1). The
fact that you say “the door 1” clearly means that you take a measurement Mpe)(O1,Sp). Here,

we assume that

a) “a measured value 1 is obtained by the measurement My (q)(O1, S}y)”

& The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement Mpec(q)(O1, Sp) 7

& The host says “Door 2 has a goat”
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c) “measured value 3 is obtained by the measurement My (q)(O1, Sp) ”

& The host says “Door 3 has a goat”

Recall that, in Problem 514, the host said “Door 3 has a goat” This implies that you get the mea-
sured value “3” by the measurement Mo () (01, Sj). Therefore, Theorem b6 (Fisher’s maximum

likelihood method) says that you should pick door number 2. That is because we see that

max{[F1({3})](w1), [FL({3})](w2), [FL({3})](w3)} = max{0.5, 1.0, 0.0}
= 1.0 = [F({3})](w2),

and thus, there is a reason to infer that the unknown state [*] is equal to d,,. Thus, you should
switch to door 2. This is the first answer to Problem 514 (Monty-Hall problem). O]

ANote 5.5. Examining the above example, the readers should understand that the problem “What is
measurement ?” is an unreasonable demand. Thus,

we have to abandon the realistic approach, and accept the metaphysical approach.

In other words, we assert that

the concept of measurement is metaphysical.

Also, for a Bayesian approach to Monty Hall problem, see Chapter [4.

Remark 5.15. [The answer by the moment method] In the above, a measured value “3” is obtained
by the measurement My(q)(0=({1,2,3},2(123} F), S;). Thus, the approximate sample space
({1,2,3},2{1:23} 1)) is obtained such that vy ({1}) =0, 11 ({2}) = 0, v1({3}) = 1. Therefore,

[when the unknown [*] is w]
(516) = [0 — 0] + 0 — 0.5] + |1 — 0.5] = 1,
[when the unknown [*] is ws]
(b16) =0 —=0[+ |0 =0+ |1 =1 =0,
[when the unknown [*] is ws]
(b168) = [0 = 0[+ [0 —=1] + 1 - 0] = 2.

Thus, we can infer that [*] = wy. That is, you should change to the Door 2. O
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5.6 The two envelope problem — High school student puzzle

This section is extracted from the following:

Ref. [64]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics
( arXiv:1408.4916v4 [stat.OT] 2014 )

Also, for a Bayesian approach to the two envelope problem, see Chapter IZ.

5.6.1 Problem (the two envelope problem)

The following problem is the famous “two envelope problem( cf. [R5] )”.

Problem 5.16. [The two envelope problem]

The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope B). You
know one envelope contains twice as much money as the other, but you do not know which contains
more. That is, Envelope A [resp. Envelope B] contains V; dollars [resp. V3 dollars]. You know that

(a) w=1/20r, {£=2
Define the exchanging map @ : {Vi, Vo} — {Vi, Va} by

L[ (o=,
W (ifr=1h)

Assume that
(b) You choose randomly (by a fair coin toss) one envelope.

And you get z; dollars (i.e., if you choose Envelope A [resp. Envelope B, you get V; dollars [resp.
V5 dollars] ). And the host gets Z; dollars. Thus, you can infer whether T, = 2x; or 7 = /2.

Now the host says “You are offered the options of keeping your x; or switching to my z,”. What
should you do ¢

T TTTTTT T, TG T TGS

A B

s PR

ARRRRBRRRLY
ARTTRRRRRRS
ATRTRRRRRES
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b v i 7 7 7 i T T
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5.6 The two envelope problem — High school student puzzle

Figure 5.9: Two envelope problem

[(P1):Why is it paradoxical 7]. You get o« = x;. Then, you reason that, with probability 1/2, 7 is
equal to either a/2 or 2c dollars. Thus the expected value (denoted E i} o () at this moment) of
the other envelope is

Eother(@) = (1/2)(@/2) + (1/2)(2a) = 1.25a (5.19)

This is greater than the « in your current envelope A. Therefore, you should switch to B. But
this seems clearly wrong, as your information about A and B is symmetrical. This is the famous
two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

The grass is always greener "
on the other side
Mg A

5.6.2 Answer: the two envelope problem 5.16

Consider the classical basic structure
[Co(2) € L=(Q,v) € B(L*(Q,v))],

where the locally compact space € is arbitrary, that is, it may be R = {w | w > 0} or the one point
set {woyor Q={2" |n=0,£1,£2,...}. Put X =R, = {z | 2 > 0}. Consider two continuous (or

generally, measurable ) functions Vi : Q — R, and V4 : Q — R,. such that
Vo(w) =2V (w) or, 2Vh(w) = Vi(w) (Yw € Q).

For each k = 1,2, define the observable Oy, = (X (=R, ), (= Bg, : the Borel field), Fy) in L>(€2,v)
such that

~ 1 (if Vi(w) € E)
[Fi(E)](w) = { 0 (if Vi(w) ¢ Z)

(Vw € Q,V= € F = Bg, ie., the Bore field in X(= Ry))

Furthermore, by the hypothesis (b), define the observable O = (X, F, F') in L*(2,v) such that

F(E) = %(mz) FRE) (Ee9). (5.20)
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That is,
1 (if i(w) € 2, Va(w) € E)
=iy ) 12 (fVi(w) €5, Va(w) ¢ E)
FEIW) =93 172 (ifVi(w) €2, Vw) € D)
0 (ifVi(w) €5, Valw) € 5)
(Vw € Q,V=Z € F =By i.e., = is a Borel set in X(=R,) )

Fix a state w(€ ), which is assumed to be unknown. Consider the measurement My, (0O =

(X,TF,F),SL)). Axiom 1 {§2.7) says that

Vi(w)

(A;) the probability that a measured value { V; ()

} is obtained by the measurement Mz (q ) (O

L 1/2
= (X,T,F), Sy) is given by { 1§2 } :

If you switch to { KTEZ; }, your gain is { %EZ; : “223 iu_)w } Therefore, the expectation of
switching is

(Va(w) = Va(w))/2 4+ (Vi(w) — Va(w))/2 = 0.

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.17. The condition (a) in Problem b6 is not needed. This condition plays a role to

confuse the essence of the problem.

5.6.3 Another answer: the two envelope problem H.16
For the preparation of the following section (§ 5.6.4), consider the state space {2 such that
Q=R,
with Lebesgue measure v. Thus, we start from the classical basic structure
[Co(Q) € L=(Q,v) C B(L*(Q,v))].
Also, putting Q = {(w,2w) | w € R}, we consider the identification:

~

Qow — (w,2w) € 2 (5.21)
(identification)

Furthermore, define V; : Q(=R,) — X(=R,) and V5 : Q(=R,) — X(=R,) such that

V(w) =w, Va(w)=2w (Vw € Q).
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And define the observable O = (X (=R, ), (= Bg, : the Borel field), F) in L>(£, v) such that

1 (fwes 2wes)
reg-{ 12 (1222 282 enwes
0 (ifwé?s, 2wées)

(1] [1] [1]

Fix a state w(€ ), which is assumed to be unknown. Consider the measurement

Moo, (0 = (X, T, F),S)). Axiom 1 ( measurement: §2.7) says that

il =V(w)=w . .
(As) the probability that a measured value { = Vh(w) = 2w } is obtained by
.. 1/2
Moo (0, (0 = (X, T, F), Sy) is given by { 1/

Va(w

If you switch to { Vi (w

% }, your gain is { Va(w) = “;l(w) } Therefore, the expectation of switching
2

is
(Va(w) = Vi(w))/2 + (Vi(w) — Va(w))/2 = 0.

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.18. The readers should note that Fisher’s maximum likelihood method is not used in

the two answers ( in §5.6.2 and §5.6.3). If we try to apply Fisher’s maximum likelihood method to

Problem 516 ( Two envelope problem), we get into a dead end. This is shown below.

5.6.4 Where do we mistake in (P1) of Problem 5.16 ?
Now we investigate the question:

Where do we mistake in (P1) of Problem 516 ¢

Let us explain it in what follows.

Assume that
(a) a measured value « is obtained by the measurement My~ (q,,)(0 = (X, F, F), Siy)

Then, we get the likelihood function f(«,w) such that

[F(E)KW)] _{ (1) (w=a/2o0r a)

fla,w) = inf lim ( elsewhere )

w1 €Q [E—>{x}7[F(E)](w1);£O [F(Z)](w)

Therefore, Fisher’s maximum likelihood method says that
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(B1) unknown state [*] is equal to /2 or «

(If [*] = /2 [resp. [#] = o], then the switching gain is (/2 — @) [resp. (2a — )] )

However, Fisher’s maximum likelihood method does not say

“the probability that [*] = a/2"=1/2
(B2) “the probability that [¥] = o”=1/2
“the probability that [*] is otherwise”=0

Therefore, we can not calculate as (5-19):

1 1
(a/2—a)><§+(2a—a)><§:1.2504

(5.0)  (a.20) Uz 2=Re)
Figure 5.10: Two envelope problem

(Cy) Thus, the sentence “with probability 1/2” in [(P1):Why is it paradoxical ?] is wrong.
Hence, we can conclude :
(Cq) Fisher’s mazimum likelihood method is invalid for Problem 5.16.
After all, we see
(D) If “state space” is specified, there will be no room to make a mistake.

since the state space is not declared in [(P1):Why is it paradoxical 7].
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Remark 5.19. The condition (b) in Problem 5.16 is indispensable. Without this condition, we can
not difine the observable O = (X, F, F') by the formula (5.23), and thus we can not solve Problem
5.16. However, it is usual to assume the principle of equal weight (i.e., no information is interpreted

as a fair coin toss ), or more precisely,

(8) the principle that, in the absence of any reason to expect one event rather than another, all

the possible events should be assigned the same probability

Under this hypothesis, the condition (b) may be often omitted. Also, we will again discuss the
principle of equal weight in Chapters 9 and 18.
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Chapter 6

Confidence interval and hypothesis
testing

The following is the standard teaching schedule for university statistics courses.

@

D confidence interval
i statistical hypothesis testing
merence -, ANOVA, etc.

likelihood method
moment method

x2, t-disribution, F-distribution

In the previous chapter, we are concerned with () (inference) in quantum language. In this chapter,
we discuss ) (confidence interval and statistical hypothesis testing). This chapter is an extract from
papers (refs. [47, AR, A9], etc.). As mentioned in Preface, the main purpose of this book is to assert
that

(#) Statistics is the part you write on the calculation paper when you think in quantum language."

However, this field (e.g., @) is far from my area of expertise, and moreover, I have done no more
than the above-mentioned “arxiv thesis (non-peer-reviewed)”. As statistics is a vast discipline, it
is impossible to achieve this objective with this book alone. Therefore, my real aim is to convince
readers that “from the pure theoretical point of view, statistics should be formulated in QL”. And to
have each reader write papers showing that various methods of statistics can be described in quantum
language. If you are an expert in this field (a graduate student), you have an overwhelming advantage
over me. I wrote this and the next chapter for those people.

6.1 Review; Estimation and testing problems in conven-
tional statistics

In this section, conventional statistical methods (confidence intervals with random variables, tests)
are reviewed. And, in the next section 62, these are described in terms of quantum language. I
assert, from the theoretical point of view, that statistics should be described in quantum language

and the style of using random variables is seen as a type of powerful computational technique.

T don’t mean it in a negative nuance. I consider Einstein and Fisher to be the true geniuses.
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6.1 Review; Estimation and testing problems in conventional statistics

6.1.1 The theory of random variables

Let a triplet (S, Bg, P) be a probability space (i.e., P(S) = 1). A measurable function X : S — R
is called a random variable. And, let {X;}°, be independent and identically distributed random

variables on S such that [¢|X;(s)]*P(ds) < oo (i =1,2,...).

Definition 6.1. [population mean, population variance, sample mean, sample variance]”:

Define the population mean p and the population variance o2 (or, standard deviation o) by

/SX

p= i(
02:/5()(

s)P(ds) (1=1,2,...), (population mean)
i(s) — p)*P(ds) (1=1,2,...), (population variance)

which are usually assumed to be unknown Further, define

X1(s) + Xa(s) + ... + Xy (s)

X, (s) = . (sample mean)

SSn(s) = (Xi(s) = X(5))* + (Xa(s) = X(5))* + .. + (Xn(5) — X(5))?
& S;(S) (sample variance)

Sns ﬁ) (unbiased sample variance)

/1]

It is well-known that the law of large numbers (c¢f. Sec. A-2) says that,

Xi1(8) + Xa(s) + ... + Xy(s)

p=lim - = Tim X,(s), o)
e ((s) = K+ (Xals) = K+ (X(s) = K
n—o0 P 1
_ fim S9n(8) _ ppy, S5als) -

6.1.2 Normal distribution

Our aim is to study formulas (6-1) and (6-2) for a not very large n. To do so, we start by summarizing

our knowledge of the normal distribution as follows.

2This should be compared to Definition 47

132 For further imformation see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 6 Confidence interval and hypothesis testing

#Note 6.1. In this chapter, we devote ourselves to the normal distribuions. Thus, we think as follows
(¢f. Note 2717):

e population ~ system
(statistics)  (QL)

e parameter (=(population mean p, standard deviation o)) ~ state
(statistics) (QL)

Review 6.2. Normal distribution N (u,o?):
Let X : S — R be a random variable with normal distribution (with ‘population mean’ pu, ‘population
variance’ 02, i.e., N(u,0?)), that is, X : S — R has the following distribution: it holds that

U — 2
6@ = = [Lexpl = U lau (63)
(V2 € Br,Vw = (u,0) e Q=R xR;,i=1,2,...)

Also,

1 o 22 1 20 22
_— e 202dx = 0.683... e 202dx = 0.954...
V 27‘(’0’2 / ’ V2mo? /20’ ’

1.960 22 1 2.580 22
e 207 dr=0.95 / e 202dx=0.99
vV 27r02 ~1.960 V2mo? J_258¢
Z(a)o

e 202d:13 1 -2«

V 271'0'2 —Z(a)o

_(w—w)?
e 202

L — 20 /Qﬁéus on+o0 [+ 20 >x

T 9534V

Figure 6.1: Normal distribution N(u, o)
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2(0.025)=1.96
z(0.005)= 2.58

o zla)o 20
-~ 68.3% —
- 95.4% —

Figure 6.2: Normal distribution N(0,0)

y= \/ﬁ ST Y 2(0.025)=1.96
Standard normal ={0:005 2.5
distribution

Figure 6.3: Standard normal distribution N(0,1)

Therefore, from a statistical point of view, what we need to do is to answer the following problem.

Problem 6.3. In statistics, we are interested in the case that {X;}3°, is a sequence of independent random
variables with the normal distribution. And we focus on the following problems:

(#1) Population mean (Confidence interval and Hypothesis testing)
e Study the statistical meaning of “u ~ X, (s) (for a not very large n)” in (E1) !
(Or, approximate p using {X1(s), Xa(s), ..., Xa(s)}!)

(#2) Population variance (Confidence interval and Hypothesis Testing)
SSn(s)

e Study the statistical meaning of “o? ~ (for a not very large n)”in (62) !
(Or, approximate o using {X1(s), Xa(s), ..., Xa(s)}!)

This will be done in the next subsection. To discuss (#1) and (f2) in detail, we consider that {X;}°;
is a sequence of independent random variables with the normal distribution (with ‘population mean’ pu,
‘population variance’ o2).

6.1.3 (Student) t-distribution, yx*-distribution

Review 6.4. [Student’s t-distribution pg ) with n degrees of freedom (precisely, probability density function
(t)
pn’)]
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The Student’s t-distribution pg ) with n degrees of freedom is defined by

" ~ I'((n+1)/2) 22\~ (n+1)/2
) = ) (1)

(T is Gamma function, i.e., I'(z) = [;~t*~'e'dt)

n

05 - _ . Normal
(t) N= " distribution
pn (x) 04 A
AN \/"]l 5

n=1
— o %‘:\:::-“_‘:—-—-—- 4
T o Y — Y T x Statistician William &1
= Al =2 die A 203 4 B Sealy Gosset, (1876~1937)
(student) t-distribution Prh”m known as "Student” (Wiki)

Student’s t-distribution pq(f ) with n degrees of freedom
Also note that

n—oo

n—oo \/nml(n/2)
1 e_é,
V2T

2\ —(n+1)/2
lim p®(z) = lim I'((n+1)/2) (1 9;) (n+1)/

thus, if n > 30, it can be regarded as the normal distribution N(0,1) with mean 0 and the standard
deviation 1.

Also, define the map ¢, : [0,1] — [0,00), n = 1,2, ..., such that

[o¢]
| #wia=a
tn(a)

For example, we see,

t5(0.025) = 2.571, £5(0.005) = 4.032
t6(0.025) = 2.447,  £6(0.005) = 3.707

(6.5)

Review 6.5. The x2-distribution (= x2-probability density function) with n degree of freedom is defined
by

9 xn/2—le—x/2

px (z) = T (n2) (z >0), (6.6)

where I is the Gamma function.
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X?probability density function

with n degree of freedom

0.1 ! b — n=20

0 27 19.0 x

Figure 6.5 2 distribution p} (x) and y = p?f (x)

The following Lemma is fundamental.

Lemma 6.6. Let X;, X», ..., X;, be independent random variables (on a probability space (S, Bg, P)Uvith
the normal distribution N(p,0?). Also, recall the notations X, = 3" | X;, S5, = S0 (Xi — X,)?,

~n i=1
U= SSn

n—1

(i) (we want to know p when o is known)

Define the random variable Z : S — R such that Z = f;\;ri: Then it holds that

7 —

X, —u
S~ N

where N(0,1) is the standard normal distribution.

(ii) (we want to know g when o is unknown)

Define the random variable T : S — R such that T = 57\;5, where U = 4/ 5 S +. Then, it holds that

Xo—p @

i = —v
U/~ Pnmt
(t)

where p,” | is the Student’s t-distribution with n — 1 degrees of freedom.

(iii) (we want to know o)
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Define the random variables K; : § — R (i = 1,2) such that K; = Y. (£i#)2 and Ky =

—_ ea
S (Fi=X2)2 Then, we see

n n _
X;— N2 o» X;—X\2 e
T S O et
i=1 i=
(when we know 1) (when we do not know )

2
where pY is the y?-distribution with n degrees of freedom.

Proof. See [I03]. /1]

#Note 6.2. The above is the most important theorem in statistics. It should therefore be called a
'theorem’ in common sense. The reason we call it a ‘Lemma’ in this book is that I will use it in the
proof of Theorem 69, which is one of the most important theorems in QL.

6.1.4 Answer to Problem 6.3 about “u ~ X,(s)”; Confidence interval
and Hypothesis Testing

6.1.4.1 (when o is known)
Recall our problem (i.e., Problem 63 (f;)):

(1) Confidence interval and Hypothesis Testing
e Study the statistical meaning of “u ~ X, (s)”!

Fix o = 0.0025 and thus, 2(0.0025) = 1.96 (¢f. Figure 63). Then, Lemma 66 (i) says that

(A) the probability that a sample (X;(s), Xa(s),..., Xpn(s)) satisfies that |%| < 2(0.0025) = 1.96 is
given by 0.95

That is,

(B) [95%-Confidence interval]

the probability that u belongs to the (confidence) interval [X,(s) — 1.960/y/n, X ,,(s) + 1.96%] is
0.95, that is,
— o - o
Xn(s) —196—= < pu < X, 1.96—
(5) = 1967 < < X, (s) + 1967

6.1.4.2 (when o is unknown)

Recall Lemma 66 (ii). Fix o = 0.0025, n = 6, thus t5(0.0025) = 2.571 (¢f. (¢f. (formula (635))) and
U=,/55% \/11(X—X6 X = =1 ZZ 1 X;. Lemma 6.8 (ii) says that

(C) the probability that a sample (X1(s), Xa(s), ..., X¢(s)) satisfies that ]XG(S 7| < 6(0.0025) ~ 2.571 is
given by 0.95 (¢f. formula (63)).

That is,
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(D) [95%-Confidence interval]
the probability that u belongs to the (confidence) interval [Xg(s) — 2.571U/v/6, X4(s) + 2.571%] is
0.95, that is,

- U
< Xe(s) +2.571—

— U
Xg(s) —2.571
6(s) 7

7S

Let’s think about the next.

(E) [95%-Statistical hypothesis testing]

Coco (your dog’s name) said that

(b1) Xn(s) = po ( called Null hypothesis).

However, you believe the (f2) to be wrong. How can you convince Coco that the above (b;) is wrong?

[Answer]: Assume the (by), which is called the null hypothesis. Let {Xi, Xs,..., Xs} be the sample (e.g.,
n=6). Then you can check the following.

6
> . X;
|£ — po| < 2_5711

6 V6
Then, Lemma 6.6 says that

(D) If it is true, there is a possibility that Coco is true. However, it is not true, as this would be a very
rare occurrence, (b;) should be considered wrong.

Random valiable
method

S5S,(s)

6.1.5 Answer to Problem 6.3 “o ~ =

”: Hypothesis Testing

Next we study the statistical understanding of “o = Sif(ls) ” in Problem 63. Of course, ¢ is unknown.
Recall Lemma 66 (iii), which says that

(1) Let X1, Xa, ..., X,, be independent random variables with the normal distribution N(u,0?). Then, it
holds that

n

X;—X\2
Z( o ) ™ Pna

=1

For example, assume the following data:

(F) n=10, X =990, U?=0.250
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Then, Lemma 66 (iii) and Figure 6.5 say that

(n —1)U?

270 < gy

<19.0,

A simple calculation says that
0.118 < 0* < 0.833

2

Thus we can estimate the population variance o such as

(G) the probability that it holds that 0.118 < o2 < 0.833 is given by 0.95

6.2 Confidence and testing problem in QL terms

This section concentrates on rewriting the ’conventional statistical methods described in the previous
section’ in the language of quantum language.

I belonged to a mathematics department and was somewhat familiar with probability theory (=theory
of random variables). However, when I learned about quantum mechanics, I was surprised to find out
that quantum mechanics understands probability without using random variables. It is hoped that readers
reading this section will experience the same surprise that the author once experienced.

6.2.1 Review of Fisher’s maximal likelihood method

Consider the classical basic structure:
[Co(Q) € L(Q,v) € B(L*(Q,v))]

Consider a classical measurement My (q,)(0 = (X, F, F'), S|,))- It is usual to consider that the state wp is
unknown. And, we can usually estimate the unknown state wg by a measured value as follows.

[Fisher’s maximal likelihood method (c¢f. Sec. 5.2)]:
Consider a classical measurement Mz (q,)(0 = (X, F, F), S|,))- Assume that you know a measured value
belongs to Zo(C F, max{[F(Zp)](w)|w € 2} # 0). Then, Fisher’s maximal likelihood method says that the

state wq is predicted to satisfy the following

(A) [F'(Z0)](wo) = maxyea[F(Zo)](w)]
1
[F'(Z0)](w)
0 Q
wo

Fisher maximum likelihood method (c¢f. Figure5.5)
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6.2 Confidence and testing problem in QL terms

This is the most fundamental result in inferential statistics. However, as mentioned in the previous
section, the most applicable result in inferential statistics is the theory of random variables. This section
therefore attempts to rewrite the inference problem with random variables in QL terms.

6.2.2 Confidence interval and testing problems by QL
Definition 6.7. [Normal observable]. Define the state space @ = R x Ry with the Lebesgue measure v.
Consider the classical basic structure:

[Co(R) C L>®(Q,v) C B(L*(Q,v))] (where Q =R x R})

The normal observable O¢ = (R, Bg, G) (= (X,F,G)) in L®(Q(= R x R,)) is defined by

6@ = 6@ ) = o= [ exol ~ 5 e (67)

(V2 € Br(= the Borel field in R)), Vw = (u,0) € Q=R xRy)

Definition 6.8. [Simultaneous normal observable]. Let n be a natural number. Let Og = (R, Bg,G) be
the normal observable in L>°(R x Ry ). Define the n-th simultaneous normal observable O¢, = (R", By, G")
(= (X™,3",G™)) in L>*(R x Ry) such that

(G (Xk 1ER)](@) = X4 [G(ER)] (@)
T} / /exp L= 1 1)’ |dzidxs - - - day,. (6.8)

k 1Hk

(VEp € Br(k=1,2,...,n), Yw=(u,0) e Q=RxR,)

/1]

Thus, we have the simultaneous normal measurement Mgy, )(0g = (R", By, G™),
S((u,0))- Consider the maps i : R" — R, ss,, : R" — R and 7 : R” — R such that

T1+ T2+ -+ 2Ty

n
n

ssp () = ssp(x1, @2, ..., Tpn) = Z(:ck —7a(z))* (Vz = (21,29,...,2,) € R?) (6.10)

(z) =n(ry, 2, ..., op) = (Vx = (z1,z2,...,2,) € R™) (6.9)

o(r) =0(x1,22,..., Ty \/Zk L n—li A))? (Vo = (r1,22,...,2,) € R") (6.11)

The following Theorem is fundamental.

Theorem 6.9. Consider the normal simultaneous measurement My ®yr,)(Xi—10c = (R", By, G"),

S

u =

jo.00)])- Also, we use the notations: @ = (21, %2, ...,an) € R, Ty = 230 2, 88 = Y1t (w7 — Tn)?,

SSn
n—1"
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(i) (we want to know gy when og is known)

Define the map z : R®™ — R such that z = fg/_\‘/”% Then it holds that

Moo ®xr,)(2(06) = (R, Br, G"([z] ' (-))), Si(ue.00)) ~ N(0,1)

where N(0,1) is the standard normal distribution.

(ii) (we want to know po when op is unknown)

Define the map t : R"” — R such that ¢t = 9””/ \/’@ Then it holds that

MLOO(RXR.»,.)(t(OG) = (]R7 BR? Gn([t]il())% S[('LLO,O'())]) ~ pzfl

where p _; is the x2-distribution with n degrees of freedom.

(iii) (we want to know og)
Define the maps k; : R — R (i = 1,2) such that k; = Y"1 | (£o£2)2 and ko = > (£22)2, Then,

g0 g0
Wwe see

e (when we know i)
Mo mxry)(k1(0c) = (R, Br, G"([k1] 7' ())), Si(uo.00)]) ~ P »
e (when we do not know )
Moo mxr,) (k2(0a) = (R, Br, G™([k2] 7' (), S|(uo,00)]) ~ Ph_1

where p%Q is the y2-distribution with n degrees of freedom.

Proof. This is a direct consequence of Lemma 6.8. ///

6.2.3 Measurement theoretical answer to Problem 6.3 “u ~ X ,,(s)”; Con-
fidence interval and Hypothesis Testing

6.2.3.1 (when o is unknown)

In this section, [Answer to Problem 63 “u ~ X,(s)” in Sec. 6.14] will be rewrote in terms of QL (
using Theorem 6Y). Consider the normal simultaneous measurement Myeoryr,)(Xj=;0c = (R", Bg, G"),
Si(po,00)))- Also, we use the notations: z = (z1,22,...,2,) € R, T, = %ZLI Ty $Sp = Yoy (v — Tn)?,
u = /2*%. Recall Theorem 69 (ii). Fix a = 0.0025, n = 6, thus ¢5(0.0025) = 2.571 (cf. Figure 6.4) and

U= \/7 A/ i (#imT6) 1(%_%)2 %Z?:1 xi-

(B) (we want to know ug when oq is unknown)

Define the map t : R" — R such that ¢ = Eu"/?/‘%) Then, Theorem 6Y (ii) says that

2

Moo ®xr ) (t(0a) = (R, Br, G™([t] " ())), Si(uo.00)]) ~ PX

2
where p¥ is the x2-distribution with 5 degrees of freedom.

This implies that
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6.3 Random valuable vs. measurement

(C) the probability that a measured value (z1, 2, ..., 2g) by Mo rxr,) (X2 Oc = (R", Bg, G"), S(

satisfies that | Ze()—#o < t6(0.0025) ~ 2.571 is given by 0.95
U/V6

110,00)])

That is,

(D) [95%-Confidence interval]
the probability that ug belongs to the (confidence) interval [Tg(s) — 2.571u/v/6,Zg(s) + 2.571%] is
0.95, that is,

< p < Tg(s) + 2.571—= (6.12)

Te(s) — 2.571 NG

Sl

Let’s think about the next.

(E) [95%-Statistical hypothesis testing]

Coco (your dog’s name) said that
(b2) ZTpn ~ po ( called Null hypothesis).

However, you believe the (b2) to be wrong. How can you convince Coco that (b2) is wrong?

[Answer]: Assume the (by), which is called the null hypothesis. Let {x1,z2,...,26} be the measured value
(e.g., n=6). Then you can check the following.

g

26—1 Li
== <2571

Then, Theorem 69 says that

(F) If it is true, there is a possibility that Coco is true. However, it is not true, as this would be a very
rare occurrence, (b;) should be considered wrong.

sl

Measurement
theory

6.3 Random valuable vs. measurement
In this chapter, I discussed the relation among following three:

(81) Mpoe(.1)(0O = (R, Bg, G), S|(4,0))): normal measurement, O = (R, Bg, (): observable, (u,0): state,
multidimension— My (q,)(0" = (R", Bg, G"), S|u,0))

(#2) (R, B, [G(")](#, o)) : normal sample space (= normal ditsribution) with a parameter (u, o)
multidimension— (R", BE, [G™(-)](k, 7))

(#3) Xpuo 0 S — R: random variable such that P({s € §: a1 < X, 5(s) < az}) = [G([ar, a2])](p, 0)
multidimension— Consider X, , : S — R (i = 1,2,...,n) are independent
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In Sec. 61 (the arguments in statistics), we devote ourselves to (f2) and (f#3). And in Sec. 62 (the arguments
in measurement), we devote ourselves to (#1) and (f3). The above is illustrated as follows

sample space, distribution

(f2)

(f1)

andom varjable easurement
I(:no observable with observable)

(Fisher’s maximal likelihood method is available)

Random variable and measurement

Figure 6.6 (Compare Definition 4.7 to Definition B1)

The above says that

(b) statistics is the part you write on the calculation paper when you think in quantum language

Looking above, one might think, from the theoretical point of view, that measurement theory is superior
to traditional statistics. For example, the random variable method is impotent for Fisher’ maximal likelihood
method. However, note that the random variable method is handy in this chapter, and thus, Theorem 69
is proved by Lemma B6. Thus, I believe that the random variable method will never go out of date.

However, statistics is a vast field and it is predictable that it cannot be covered by the methods of
measurement theory alone. This is something that can only be done by actually trying. I therefore hope
that many readers will give this a go.

Remark 6.10. (i): Tests on two or more types of measurements can be done in the same way (using the
F distribution). Namely, it suffices to start from

M oo (0,00) (OF = (R, BE, G11), Spuy 00) @) Mo (0,00 (05% = (R, B, G52), Sjyig,00))

(ii): Just to be clear, I am not rejecting the 'random variables method’. I believe that the 'random variables
method’ is as important as ever, even with the formulation of statistics by measurement theory. As I have
said many times, my argument is the following.
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6.3 Random valuable vs. measurement

. ., . Greek phil. ~ statistics
Analytic p}."l‘ Descartes-Kant quantum Fisher,
(fuzzy logic)

epistemology W mechanics Baysian, ee e e

Phil. of science

For this, the formulation of statistics by measurement theory is needed.

ANote 6.3. (i): See Note 277. That is,

144

e population = system,

e parameter (=(population mean p, standard deviation o)) ~ state

This illustrates the difficulty of using the term ‘population’.

(ii): If the test is carried out several times in succession, errors are said to add up and multiplicity
issues occur. In measurement theory, the linguistic Copenhagen interpretation says “Only one mea-
surement is possible”. Therefore, in measurement theory, multiplicity issue is a matter of principle.and
thus, it is recommended that multiple testing is not carried out. I am a layman and don’t know all
the details, but I believe that computers can help us get around multiplicity issues, since the linguistic
Copenhagen interpretation does not require an analytical solution.

(iii): As illustrated in Figure 6.6, the discussion of the random variable method can automatically
be replaced by a discussion of measurement theory. Therefore, the discussion of analysis of variance
(F-distribution) should be left as an exercise for the reader.
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Chapter 7

Mixed measurement theory (DBayesian
statistics)

Quantum language (= measurement theory ) is classified as follows.

pure type

(1)
(ﬂ) measurement theory
(=quantum language) {

classical system : Fisher statistics
quantum system : usual quantum mechanics

classical system : including Bayesian statistics, Kalman filter

mixed type
yp quantum system : quantum decoherence

(#2)

In this chapter, we study mixed measurement theory, which includes Bayesian statistics.

Statisticians Thomas Bayes
= ﬁaonam Fisher -

"A genius who

almost single-
handedly created
the foundations for
modern statistical
science”,

1890-1962

"M 1701-1761 1

7.1 Mixed measurement theory(DBayesian statistics)

7.1.1 Axiom( 1 (mixed measurement)

In the previous chapters, we studied Axiom 1 (pure measurement: §2.7), that is,

[(pure)Axiom 1jj [Axaom_2)] [inguistic Copenhagen interpretation)
‘ pure measurement theory ‘ = ‘ pure measurement ‘—&-’ Causality ‘ +‘ Linguistic Copenhagen interpretation ‘
(=quantum language) (cf. B220) (cf. §83) (cf. §BM)
a kind of spells (a priori judgment) manual to use spells

(7.1)

145



7.1 Mixed measurement theory(DBayesian statistics)

In this chapter, we shall study “Axiom(™) 1 (mixed measurement)” in mixed measurement theory, that

is,
((mixed) Axiom (™) 1 [Axiom—7) [inguistic Copenhagen interpretation]
‘ mixed measurement theory |:= ‘ mixed measurement ‘—l—‘ Causality ‘—l—‘ Linguistic Copenhagen interpretation ‘
(=quantum language) (cf EZI) (cf. §83) (cf. §B1)

a kind of spells (a priori judgment) manual to use spells

(7.2)

In the previous chapters, we mainly discussed pure measurements listed in Review 9.1, especially W*-

measurement (Aj).

Review 7.1. [=Preparation 230].

(A1) W*-measurement Mz (0= (X, ¥, F), Si,)), where O= (X, 5, F) is a W*-observable in A, and p(e
SP(A*)) is a pure state. Here, ”W*-measurement Mz (O, S,))” is also denoted by

" measurement”’” M+ (O. S[p])” ,or  “measurement M (O. S[p])” ,

(Ag) C*-measurement MA(O: (X, 3, F), S[p]), where O= (X,J,F) is a C*-observable in A, and p(€
GP(A*)) is a pure state. Here, ”C*-measurement M, (O, S},)” is also denoted by

”measurement® M, (O. SM)” ,or “measurement Mg (O. SM)” .

In this chapter, we introduce four “mixed measurements” as follows.

Preparation 7.2.

(B1) W*-mixed measurement Mz (0= (X, 5, F), S,j(wo)), where O= (X, F, F) is a W*-observable in A,
and wo(€ & (A,)) is a W*-mixed state. Here, ” W *-mixed measurement M+ (O, Sy (wo))” is also

denoted by
”W*-mixed measurement"”" M (O. Sp(wo))”, or
”mixed measurement Mz (O. Sy (wo))”

By) C*-mixed measurement M—(O= (X, F, F), Si(po)), where O= (X, T, F) is a W*-observable in A,
A [+]
and po(€ &™(A*)) is a C*-mixed state. Here, ”C*-mixed measurement M (O, Sp,j(po))” is also

denoted by
”C*-mixed measurement”’” Mz(O. S[*}(po))”, or

”mixed measurement Mz(O. Sp,(po))”
Although we mainly devote ourselves to the above two, we add the followings.

(B3) W*-mixed measurement My (O= (X, ¥, F), Sp,j(wo)), where O= (X, J, F) is a C*-observable in A,
and wo(€ & (A,)) is a W*-mixed state. Here, ” W *-mixed measurement My (O, Spy(wo))” is also

denoted by

For further imformation see my homepagd
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?W*-mixed measurement®” MA( F[*] (wo))”, or

0.
"mixed measurement My (O. §[*] (wo)) ’
(B4) C*-mixed measurement My (0= (X, F, F), S[*}(po)), where O= (X, J, F) is a C*-observable in A,

and po(€ &™(A*)) is a C*-mixed state. Here, ”C*-mixed measurement My (O, Sp,j(po))” is also
denoted by

? C*-mixed measurement®” My (O. E[*] (po))”, or

”mixed measurement My (0.Sp,(po))”

We now give Axiom(™ 1 for mixed measurements. We will discuss (C1) mainly, and (Cy) when necessary.

- ©:Axiom™ 1 (mixed measurement) ~

Let O= (X, T, F) be an observable in A

(C1): Let wg € @m(ﬁ*). The probability that a measured value obtained by W*-mixed measurement
M7 (0= (X, 5, F), Sij(wo)) belongs to = (€ F) is given by

(w0, FE)g (= wo(F(E)

(Cq): Let pg € &™(A*). The probability that a measured value obtained by C*-mixed measurement
M4 (0= (X,F,F), Si(po)) belongs to E (e F) is given by

w0, FE)g (= (FE))
- /

As we learned Axiom 1 by rote in pure measurement theory,

we have to learn Axiom 1 by rote, and exercise a lot of examples
The practices will be done in this chapter.
Remark 7.3. In the above Axiom(™) 1, (Cy) and (Cs) are not so different.
(#1) In the quantum case, (C1)=(C3) clearly holds, since &™(Tr(H)) = & (Tr(H)) in (217).
(#2) In the classical case, we see

D)= [, wo(w)v(dw
L}Fl(Q.V)B’lUO po(D) fD o(w)v(dw) p0€M+1(Q)

Therefore, in this case, we consider that
Moo (.0) (0=(X, F, F), Sy (wo)) = Mpee ) (O=(X,F, F), S}1(po))
Hence, (C1) and (C3) are not so different. In oder to avoid the confusion, we use the following notation:
WH-state wo (€ & (A,) is written by Roman alphabet (e.g., wo,w, v, ...)
C*-state py (€ & (A*) is written by Greek alphabet (e.g., po, p, -..)

/1]
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7.2 Simple examples in mixed measurement theory

7.2 Simple examples in mixed measurement theory
Recall the following wise sayings:
experience is the best teacher, or custom makes all things

Thus, we exercise the following problem.

Review 7.4. [Answer b7 to Problem 52 by Fisher's maximum likelihood method)]
You do not know the urn behind the curtain. Assume that you pick up a white ball from the urn. Which
urn do you think is more likely, Uy or Us ?

Ulzwl

0000e —
(oJoJele) )

Figure 7.1 (= [Figure 5.6: ): Pure measurement (Fisher’s maximum likelihood method)

Answer Consider the state space 2 = {w1,ws} with the discrete topology and the measure v such that

v({wih) =1, v({we}) =1 (7.3)

In the classical basic structure [Co(Q2) € L>(Q,v) C B(L*(Q,v))], consider the measurement M) (0=
({w, B}, 2{W:B}, Fwg), S4), where the observable Owp = ({W, BY,2IW:B}Y Fy, ) in L°(Q) is defined by

[Fwp({W}H)](w1) = 0.8, [Fwp({B})](w1) = 0.2
[Fws({WH](w2) = 0.4, [Fws({B})](w2) = 0.6. (7.4)

Here, we see:

max{[Fwp({W})(w1), Fws({W})|(w2)}
— max{0.8,0.4} = 0.8 = Fiyg({W})](w1).

Then, Fisher’s maximum likelihood method (Theorem 56) says that
[*] = wi.

Therefore, there is a reason to infer that the urn behind the curtain is Uj. O
Thus, we exercise the following problem.

Problem 7.5. [mixed measurement M (q,)(0 = (X, T, F), Sy(w))]
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/7 o
U1 W 7
100p% = N
[eYeYoYeX | —_— S S
000O0e®

Figure 7.2: Mixed measurement (Urn problem)
(f1) Assume an unfair coin-tossing (7,,1-,) such that (0 < p < 1): That is,

the possibility that “head” appears is 100p%
the possibility that “tail” appears is 100(1 — p)%

If “head” [resp. “tail”’] appears, put an urn U;(=w;) [resp. Us(=ws)] behind the curtain.
Assume that you do not know which urn is behind the curtain, U; or Uy). The unknown urn
is denoted by [*](€ {w1,ws}).

This situation is represented by w € L (Q,v) (with the counting measure v), that is,

w(w) = { p (fw=uw)

1-p (fw=wy)

(f2) Consider the “measurement” such that a ball is picked out from the unknown urn. This
“measurement” is denoted by My~ q,.)(0, Si(w)), and called a mixed measurement.

Then, we have the following problems:

(a) Calculate the probability that a white ball is picked from the unknown urn behind the curtain
!

And further,

(b) when a white ball is picked, calculate the probability that the unknown urn behind the curtain
is U1 !

We would like to remark

e the term ”subjective probability” is not used in the above problem.

Answer: Assume that the state space) = {wi,ws} is defined by the discrete metric with the
following measure v:

v({wi}) =1, v({ws}) = 1. (7.5)

Thus, we start from the classical basic structure:

Co() € LX) € BILAQ0))], (7.6)
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in which we consider the mixed measurement My )(O= ({W, B}, 2tW-B} F), S}, (w)). Here, the
observable Oy 5 = ({W, B}, 2W-B} i) in L=(9) is defined by

[Fws({WH](w1) = 0.8, [Fwp({B})|(w1) = 0.2
[Fws({W})|(ws) = 0.4, [Fws({B})](w2) = 0.6. (7.7)

Also, the mixed state wy € L (2, v) is defined by
wo(w1) = p, wo(ws) =1 —p. (7.8)

Then, by Axiom™ 1, we see

(a): the probability that a measured value x (€ {W, B}) is obtained by My« q) (0= ({W, B}, 2{W:5}
F), Spy(w)) is given by

P({e}) = s (10, FaD) iy = [ [FUI@) - wn(e(d)
— pIP{ah)wn) + (1 - p)F({)]e2)

[ 08p+0.4(1—p) (when xz=W) (7.9)
1 02p+0.6(1 —p) (when x = B) '
The question (b) will be answered in Answer [ T3. O

ANote 7.1. The following question is natural. That is,

(#1) In the above (i), why is “the possibility that [*] = wy is 100p% - - -7 replaced by “the probability
that [ %] = wy is 100p% ---7 7

However, the linguistic Copenhagen interpretation says that
(#2) there is no probability without measurements.

This is the reason why the term “probability” is not used in (i). However, from the practical point of
view, we are not sensitive to the difference between “probability” and “possibility”.

Example 7.6. [Mixed spin measurement Mpc2)(0 = (X = {1,1},2%, F?), Sy(w))]  Consider the
quantum basic structure:

[B(C?) € B(C*) € B(C?)]
And consider a particle P; with spin state p; = |a)(a| € &?(B(C?)), where

o
o= 2] e Clall = o + Py =)

And consider another particle P, with spin state py = |b)(b| € &°(B(C?)), where

b= n] e e Coi=qae+ papye =1

Here, assume that
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“ e s “ 1 a particle P, | . . D
e the “probability” that the “particle” P is { a particle P, } is given by { 1—p

That is,

state p | ————— |unknown state [x]| «————— |state ps
“probability” p “probability” 1—p

(Particle Py) (Particle P) (Particle Py)

Here, the unknown state [*] of Particle P is represented by the mixed statew (€ &™(Jr(C?))) such
that

w = ppr + (1 — p)p2 = pla)(a| + (1 — p)|b) (D]

Therefore, we have the mixed measurement Mpc2)(0, = (X,2%, F?), Sy(w)) of the z-axis spin
observable O, = (X, F, F¥), where

P =y o] Fan=[0 Y

And we say that

(a) the probability that a measured value { I } is obtained by the mixed measurement Mp(c2)(0. =
(X, 2%, F7), Spy(w)) is given by

reie (w0, F (1) ) mieny = pln P + (1= p) 61

reien (0, F (1)) mieny = plaal® + (1 = p) Bal?

Remark 7.7. As seen in the above, we say that

(a) Pure measurement theory is fundamental. Adding the concept of “mixed state”, we can con-
struct mixed measurement theory as follows.

‘ mixed measurement theory ‘:: ‘ pure measurement theory ‘—i— mixed state
M_pso () (O, Sp(w)) M0 (2)(0, Sjx) w

Therefore,
There is no mixed measurement without pure measurement

That is, in quantum language, there is no confrontation between “frequency probability” and “sub-
jective probability”. The reason that a coin-tossing is used in Problem [/~ is to emphasize that the
naming of “subjective probability” is improper.
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7.3 St. Petersburg two envelope problem

This section is extracted from the following:

Ref. [64]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics  (
arXiv:1408.4916v4 [stat.OT] 2014 )

Now, we shall review the St. Petersburg two envelope problem (cf. [I0]").

Problem 7.8. [The St. Petersburg two envelope problem] The host presents you with a choice
between two envelopes (i.e., Envelope A and Envelope B). You are told that each of them contains
an amount determined by the following procedure, performed separately for each envelope:

() a coin was flipped until it came up heads, and if it came up heads on the k-th trial, 2 is put
into the envelope. This procedure is performed separately for each envelope.

You choose randomly (by a fair coin toss) one envelope. For example, assume that the envelope is
Envelope A. And therefore, the host get Envelope B. You find 2™ dollars in the envelope A. Now
you are offered the options of keeping A (=your envelope) or switching to B (= host’s envelope ).
What should you do?

Envelope A Envelope B

Figure 7.3: Two envelope problem

[(P2):Why is it paradoxical?].
You reason that, before opening the envelopes A and B, the expected values F(z) and E(y) in A
and B is infinite respectively. That is because

1 1 1
IX 42X =4+22X — 4 =00
2 * 22 * 23 *
For any 2™, if you knew that A contained x = 2™ dollars, then the expected value E(y) in B
would still be infinite. Therefore, you should switch to B. But this seems clearly wrong, as your
information about A and B is symmetrical. This is the famous St. Petersburg two-envelope paradox
(i.e., “The Other Person’s Envelope is Always Greener” ).

ID.J. Chalmers, “The St. Petersburg Two-Envelope Paradox,” Analysis, Vol.62, 155-157, (2002)
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7.3.1 (P2): St. Petersburg two envelope problem: classical mixed mea-
surement

Define the state space  such that Q = {w =2% | k =1,2,---}, with the discrete metric and the
counting measure v. And define the exact observable O = (X, J, F') in L>(2, v) such that

X=0 F=2X={E|=2CX}

FE)]() = xo(w) = { : EZ ; g (VE € F.Vw € Q)

Define the mixed state w (€ L}H(Q, v), i.e., the probability density function on ) such that
wo(w) =27% (Vw=2"€ Q).
Consider the mixed measurement Mz« (q,)(0 = (X, F, F), Si(wp)). Axiom™ 1(Cy) [§7.1) says that

A) the probability that a measured value 2* is obtained by Mpe) (O = (X, F, F), Spy(wp)) is
@) [+]
given by 27%.

Therefore, the expectation of the measured value is calculated as follows.

E:i2k~2_k:oo
k=1

Note that you knew that A contained z = 2™ dollars (and thus, F = oo > 2™). There is a reason to
consider that the switching to B is an advantage.

Remark 7.9. After you get a measured value 2™ from the envelope A, you can guess (also see
Bayes theorem later) that the probability density function wy changes to the new w; such that
wy(2™) = 1,w(2¥) = 0(k # m). Thus, now your information about A : w; and B : wy is not
symmetrical. Hence, in this case, it is true: “The Other Person’s envelope is Always Greener”.

#Note 7.2. There are various criterions except the expectaion. For example, consider the criterion such
that

o . . . . 9 1
(#) “the probability that the switching is disadvantageous” < 3
Under this criterion, it is reasonable to judge that

m=1 —> switching to B
m=2,3,... = keeping A

153 For further imformation see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

7.4 Bayesian statistics is to use Bayes theorem

7.4 Bayesian statistics is to use Bayes theorem

Although there may be several opinions for the question “What is Bayesian statistics?”, we think
that

Bayesian statistics is to use Bayes theorem

Thus,

let us start from Bayes theorem.

The following is clear.

Theorem 7.10. [The conditional probability]. Consider the mixed measurement Mz(O= (X x
Y,F X G, H), Sl (w)), which is formulated in the basic structure

A CACB(H)

Assume that a measured value (z,y) (€ X X Y) is obtained by the mixed measurementMZ(O:
(X xY,5X G, H), S (w)) belongs to = x Y (€ F). Then, the probability that y € I' is given by

1)
xY))

ﬁ*(waH(
A (71}7 ‘I;I-(

[11] [1]

(VI € 9)

SN

Proof. This is due to the property (or, common sense) of conditional probability. ]

In the classical case, this is rewritten as follows.

Theorem 7.11. [Bayes' Theorem (in classical mixed measurement)]. Consider the simultaneous
measurement Mz (0= (X x V,FKX G, F x G), Sj,j(wp)) formulated in the classical basic structure
[Co(2) C L*°(Q,v) C B(L*(,v))]. Here the observable O15=(X x Y,F X G F x G) is defined by
the simultaneous observable of the two observables O1=(X,J, F') and O,=(Y, G, G). That is,

(FxG)ExT)=FE)-GI) (VE€FVeg). (7.10)

Assume that

(a) a measured value (z,y) (€ X X Y) obtained by the mixed measurement My (q)(O12= (X X
V,F G, F x G), Siy(wo)) belongs to = x Y (where, = € F).
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Then, the probability such that "y € I'” is given by
@) (wo, H(E X Y)) 1) f [F(E)](w) - wo(w)v(dw)
Here, putting
() Waew(w) = T ety (Y € Q).
we see:
(r1m) = /[G(F)](w)wnew(w)y(dw) (VI € 9). (7.12)
Q

Remark 7.12. [How to understand Bayes' Theorem] Bayes’ theorem [7TT is usually read as follows.

b’) If a measured value x (€ X) obtained by the mixed measurement My« (0= (X, F, F),
(©)
Siy(wo)) belongs to = (€ F), then, the following state collapse happens:

(Wo| 2 [Wnew]

pre-state ~  post-state

The above (d) superficially contradicts the linguistic Copenhagen interpretation, which says
A state never moves.

In this sense, the above (b) or (b') (i.e., Bayes’ theorem) is convenient and makeshift.

Answer 7.13. [Bayes' Theorem (=Problem /5 and the answer to (c2)) |

Assume that the state space Q@ = {wq,ws} is defined by the discrete metric with the following measure
v

v({w}) =1, v({we}) = 1. (7.13)
Thus, we start from the classical basic structure:
[Co(@) € L¥(Qv) € BLA(Q, )], (7.14)

in which we consider the mixed measurement My )(O= ({W, B}, 2tW-P} F), S}, (w)). Here, the
observable Oy 5 = ({W, B}, 2W:B} i) in L=(9) is defined by

Fs (W h)](wr) = 08, Fs({BD)(w1) = 0.2,
[Ews({W})](ws) = 0.4, [Fws({B})](w2) = 0.6, (7.15)

Also, the mixed state wy € L1 (Q,v) is defined by
wo(wy) = p, wo(wy) =1 —p. (7.16)

Then, by Axiom™ 1, we see
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(a): the probability that a measured value = (€ {W, B}) is obtained by Mo (0= ({W, B}, 2{W-B},
F), Spy(w)) is given by

P({z}) = e (wo, F({z})) 1o L[F({x})](w)‘wo(w)f/(dw)

= plF({zH)l(w) + (1 —P)[ {z})](w2)
_ { 0.8p+0.4(1 —p) (when z=W)

0.2p +0.6(1 — p) (when z = B) (7.17)

[ W*-algebraic answer to Problem [75(c3) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement Mpec(q)(O, Sp(wo)), a new mixed state
Whew(€ LY(Q2)) is given by

0.8p (when w = wy)
Waew () = FOW)@wow) | 082 0.4(1—p) 1
. JolFEW ) (w)wo(w)v(dw) 0.4(1 — p)

08p 1 04(1 —p) (Whenw=ws)

[ C*-algebraic answer to Problem 75 (cz) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement Mp)(O, S (o)), a new mixed state
pnew(G M-H (Q)) is given by

Drow = F{W}Hpo _ 0.8p 0.4(1 — p)
T IFEW D (w)po(dw) — 0.8p+0.4(1L—p) T 0.8p+0.4(1—p)
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7.5 Two envelope problem (Bayes’ method)

This section is extracted from the following:

ref. [64]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics  (
arXiv:1408.4916v4 [stat.OT] 2014 )

Problem 7.14. [ (=Problemh.T6): the two envelope problem ]

The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope B). You
know one envelope contains twice as much money as the other, but you do not know which contains
more. That is, Envelope A [resp. Envelope B] contains V; dollars [resp. V3 dollars]. You know that

(a) %:1/2 or, %:

Define the exchanging map @ : {Vi, Vo} — {Vi, V4} by

LW (ifz=13)

You choose randomly (by a fair coin toss) one envelope, and you get x; dollars (i.e., if you choose
Envelope A [resp. Envelope B], you get V; dollars [resp. V5 dollars] ). And the host gets 7; dollars.
Thus, you can infer that Z; = 2z or ZT; = z1/2. Now the host says “You are offered the options of
keeping your x; or switching to my z;”. What should you do?

Envelope A Envelope B

Figure 7.4: Two envelope problem

[(P1):Why is it paradoxical?]. You get a = 1. Then, you reason that, with probability 1/2, 7 is
equal to either /2 or 2a dollars. Thus the expected value (denoted E i} (e) at this moment) of
the other envelope is

Eother(@) = (1/2)(0/2) + (1/2)(20) = 1.250 (7.18)

This is greater than the « in your current envelope A. Therefore, you should switch to B. But
this seems clearly wrong, as your information about A and B is symmetrical. This is the famous
two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).
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7.5.1 (P1): Bayesian approach to the two envelope problem
Consider the state space () such that
Q=Ry(={weR|w>0})
with Lebesgue measure v. Thus, we start from the classical basic structure

[Co(Q) € L™(Q,v) € B(L*(Q,v))]

Also, putting Q = {(w,2w) | w € R}, we consider the identification:

-~

Q>w — (w,2w) € Q (7.19)
(identification)

Further, define V; : Q(=R,) = X(=R,) and V5 : Q(= R;) — X (= R,) such that
N(w) =w, Ww)=2w (Vw € Q)

And define the observable O = (X (= R,), (= Bg, : the Borel field), F) in L>({,v) such that

Ry),
1 (ifweE 2wek)
R A
0 (ifwég= 2w¢gBx)
X(=R+)

(5,0)  (a,2a) " Q=0=Ry)

Figure 7.5: Two envelope problem

Recalling the identification : Q> (w,2w) ¢+ w € Q = R, assume that
po(D) = / wo(w)dw (VD € Bo = Bg,)
D

where the probability density function wg : Q(~ R+) — RJF is assumed to be continuous positive
function. That is, the mixed state po(€ M1 (2(=R,))) has the probability density function wy.
Axiom™) 1[(§7.1) says that
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B

+) that a measured value obtained by the mixed measure-

(A1) The probability P(Z) (2 € Bx = Bg
,F, F), Sp(po)) belongs to Z(€ Bx = By, ) is given by

ment My (g4, (0 = (

P(E) = / [F(E)](w)polde) = / [F(2)) (w)wo(w)dw
_ /ﬁ wO(Z/ 2 +w°2(x) dr (V= € Bg,) (7.20)

Therefore, the expectation is given by

/ xP(dx) = %/Ooox- (wo(x/Q)/2 + wo(a:))dx = ;/ zwo(z)dx (7.21)

R+ @+

Further, Theorem 711 ( Bayes’ theorem ) says that

(A2) When a measured value « is obtained by the mixed measurement Mze (g e (0 = (X, T, F),
Si(po)), then the post-state ppost(€ M1(€2)) is given by

wo(a/2)
a 2
p ost — o 5(5,0)
p h( 2/2) + w()(OZ) 2

wo ()

wo (/2
0(2/ ) + wp(a)

O(a,20) (7.22)

a— S
5 oo .
}, then you change { N S5 }, and thus you get the switching gain

Therefore, the expectation of the switching gain is calculated as follows:

/((_%Mo(a:(%m g )P(do‘)

Ry =55+ wp () M + wo(a)
:/R (_%)M +a.@ da =0 (7.23)

Therefore, we see that the swapping is even, i.e., no advantage and no disadvantage.
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7.6 Monty Hall problem (The Bayesian approach)

7.6.1 The review of Problem5.14 ( Monty Hall problem in pure mea-

surement)

Problem 7.15. [Monty Hall problem (The answer to Fisher’s maximum likelihood

method) |

You are on a game show and you are given the choice of three doors. Behind one door is a
car, and behind the other two are goats. You choose, say, door 1, and the host, who knows

where the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, He now gives you the choice of sticking with door 1 or switching to door 27

What should you do?

v v v
door door door
No. 1 No. 2 No. 3

Figure 7.6: Monty Hall problem

Answer:

consider the classical basic structure:

Put Q = {wy,ws,ws} with the discrete topology dp and the counting measure v. Thus

[Co(Q) € L(Q,v) € B(L*(Q,v))]

Assume that each state d,,, (€ &P(Cy(£2)*)) means

Ow,, < the state that the car is behind the door 1

(m=1,2,3)

Define the observable O; = ({1,2,3},2!23} 1) in L>®(Q) such that

160

[F1({2})](w1) = 0.5,
[F1({2})](w2) = 0.0,
[F1({2})](ws) = 1.0,

[F1({3})](w1) = 0.5,
[F1({3}))(w2) = 1.0,

[F1({3})](ws) = 0.0, (7.24)
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where it is also possible to assume that Fi({2})(w1) = a, F1({3})(w1) =1—a (0 < a < 1). The fact
that you say “the door 17 means that we have a measurement M Loo(Q)(Ol7 S[*})' Here, we assume

that

a) “a measured value 1 is obtained by the measurement M) (O1, Si)”

& The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement Mpec(q)(O1, Sp) 7

& The host says “Door 2 has a goat”

c) “measured value 3 is obtained by the measurement M) (01, Sp) ”

< The host says “Door 3 has a goat”

Since the host said “Door 3 has a goat? this implies that you get the measured value “3” by the
measurement Mzeq)(O1, Sp). Therefore, Theorem 56 (Fisher’s maximum likelihood method) says

that you should pick door number 2. That is because we see that

max{[F1({3})](w1), [F1({3})](w2), [F1({3})](w3)} = max{0.5, 1.0, 0.0}
=10 = [F({3})](w2)

and thus, there is a reason to infer that [*] = §,,. Thus, you should switch to door 2. This is the

first answer to Monty-Hall problem. O

7.6.2 Monty Hall problem in mixed measurement

Next, let us study Monty Hall problem in mixed measurement theory (particularly, Bayesian

statistics).

Problem 7.16. [Monty Hall problem(The answer by Bayes’ method) ]

Suppose you are on a game show, and you are given the choice of three doors (i.e., “number
17 “number 27 “number 37). Behind one door is a car, behind the others, goats. You pick a
door, say number 1. Then, the host, who set a car behind a certain door, says

(£1) the car was set behind the door decided by the cast of the distorted dice. That is, the
host set the car behind the k-th door (i.e., “number k”) with probability pj (or, weight
such that p1 +p2 +p3 =1, 0 < p1,pa,ps < 1).

And further, the host says, for example,

(b) the door 3 has a goat.
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He says to you, “Do you want to pick door number 2?” Is it to your advantage to switch your
choice of doors?

Answer: In the same way as we did in Problem T3 (Monty Hall problem:the answer by Fisher’s
maximum likelihood method), consider the state space Q0 = {w;, ws, w3} with the discrete metric dp

and the observable O;. Under the hypothesis (f1), define the mixed state vy ( € My1(€2)) such that
Vo = 10w, + P20uw, + P30u,
namely,
w{wi}) =p1, wl{we}) =p2, vo({ws}) = ps
Thus we have a mixed measurement Mz (O1, S (0)). Note that
a) “measured value 1 is obtained by the mixed measurement M) (O1, Su(10))”

<> the host says “Door 1 has a goat”

b) “measured value 2 is obtained by the mixed measurement M) (O1, Sy (10))”

& the host says “Door 2 has a goat”

c) “measured value 3 is obtained by the mixed measurement Mz (q)(O1, S(v0))”

&> the host says “Door 3 has a goat”

Here, assume that, by the mixed measurement M) (01, Sp(10)), you obtain a measured value 3,
which corresponds to the fact that the host said “Door 3 has a goat” Then, Theorem 711 (Bayes’

theorem) says that the posterior state vy (€ M41(£2)) is given by
y . Fl({g}) X
ost — T 4 Srads\
b (vo, F1({3}))

That is,
g D2
Vpost \ 1AW = : y  Vpost (W = »  Vpost(1W = 0.
) = g () = 2 i)

Particularly, we see that

(#2) if p1 = p2 = ps = 1/3, then it holds that Vo ({w1}) = 1/3, vVpost ({w2}) = 2/3, vpost({ws}) =0,
and thus, you should pick Door 2.

ANote 7.3. It is not natural to assume the rule (#;) in Problem 716. That is because the host may
intentionally set the car behind a certain door. Thus we think that Problem /18 is temporary. For
our formal assertion, see Problem [17 latter.
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7.7 Monty Hall problem (The principle of equal weight)

7.7.1 The principle of equal weight— The most famous unsolved prob-
lem

Let us reconsider Monty Hall problem (Problem T4, Problem(/15) in what follows. We think

that the following is one of the most reasonable answers.

Problem 7.17. [Monty Hall problem (The principle of equal weight) |

Suppose you are on a game show, and you are given the choice of three doors (i.e., “number
17 “number 27 “number 37). Behind one door is a car, behind the others, goats.

(f2) You choose a door by the cast of the fair dice, i.e., with probability 1/3.

According to the rule (f,), you pick a door, say number 1, and the host, who knows where
the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

He says to you, “Do you want to pick door number 2?” Is it to your advantage to switch your
choice of doors?

Answer: By the same way of ProblemZ T3 and ProblemZ 16 (Monty Hall problem), define the
state space Q0 = {wy,ws, w3} and the observable O = (X, F, F'). And the observable O = (X, F, F) is
defined by the formula (Z1T). The map ¢ : Q@ — Q is defined by

p(wr) = wa,  Plwr) =ws,  Plws) =wi
we get a causal operator ® : L®(Q2) — L>®(Q) by [®(f)](w) = f(o(w)) (Vf € L=(), Yw € Q).
Assume that a car is behind the door k (k = 1,2,3). Then, we say that

1,2 Mo @) (O, Siw,])
(a) By the dice-throwing, you get | 3,4 | ,then, take a measurement | Mpe(q)(PO, Sy,,;)
5,6 Mo () (220, Sy )

We, by the argument in Chapter 10 (¢f. the formula (8:7))?, see the following identifications:
Moe() (2O, Spy)) = Mroe(@) (0, Sig(eon))s Moo ) (920, Syg) = Mroe() (0, Sig2(n))-

Thus, the above (a) is equal to

1,2 Mo (9)(O, Siuy)
(b) By the dice-throwing, you get | 3,4 | then, take a measurement | Mp(q)(O, Sig,))
5,6 M) (0, Sis2(wy)

2Thus, from the pure theoretical point of view, this problem should be discussed after Chapter 11
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Here, note that $ (8w, + 0p(wy) T 0p2(wy)) = 3 (0w, + 0w, +0uy) (V= 1,2,3). Thus, this (b) is identified

with the mixed measurement Mz (q)(O, Sij(ve)) , where
1
Ve = g((swl + 0w, + 6w3)

Therefore, Problem [T is the same as Problem [I6. Hence, you should choose the door 2. O]

ANote 7.4. The above argument is easy. That is, since you have no information, we choose the door by
a fair dice throwing. In this sense, the principle of equal weight — unless we have sufficient reason to
regard one possible case as more probable than another, we treat them as equally probable — is clear
in measurement theory. However, it should be noted that the above argument is based on dualism.

From the above argument, we have the following theorem.

Theorem 7.18. [The principle of equal weight] Consider a finite state space €, that is, =
{wi,wa,...,wy}. Let O = (X,F, F) be an observable in L>°(Q,v), where v is the counting measure.
Consider a measurement My ) (O, Sp). If the observer has no information for the state [*], there

is a reason to that this measurement is identified with the mixed measurement Mpeq)(O, Spj(w.))

< or, MLOO(Q)(O,S[*](I/e)) >, where
wolwr) = 1/n (h=1,2,..n)  or  ve— - S 4,

Proof. The proof is a easy consequence of the above Monty Hall problem (or, see [B3, BY]). O

#Note 7.5. Concerning the principle of equal weight, we deal the following three kinds:

(§1) the principle of equal weight in Remark 519

(#2) the principle of equal weight in Theorem TR
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7.8 Averaging information ( Entropy )

R

As one of applications (of Bayes theorem), we now study the “entropy (cf. [002])” of the mea-

surement. This section is due to the following refs.

(2) Ref. [31]: S. Ishikawa, A Quantum Mechanical Approach to Fuzzy Theory, Fuzzy Sets and
Systems, Vol. 90, No. 3, 277-306, 1997, doi: 10.1016/50165-0114(96)00114-5

(#) Ref. [j |: S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University
Press Inc_ 2006

Let us begin with the following definition.

Definition 7.19. [Entropy (cf. [31, B5]) ] Assume
Classical basic structure [Cy(Q) C L>®(Q,v) C B(L*(Q,v))]

Consider a mixed measurement My (q,) (O = (X, 2%, F), Spy(wp)) with a countable measured value
space X = {x1,2,...}. The probability P({z,}) that a measured value x,, is obtained by the mixed

measurement M) (O, Spj(w)) is given by

P({zn}) = /Q[F({In})](W)wo(w)V(dW) (7.25)

Further, when a measured value z,, is obtained, the information I({z,}) is, from Bayes’ theorem

/17, is calculated as follows.

o @ P
1) = | R o) TR o

(
Therefore, the averaging information H (Mpe(q)(O, Sij(wo))) of the mixed measurement My q) (O,

wo(w)v(dw)

Sp(wp)) is naturally defined by

H (Mg ()(0, Sy (wo))) = > P({zn}) - I({zn}) (7.26)
n=1

Also, the following is clear:

[ee]

H (Mg (2)(0, Sy (wo))) ZZ/Q[F({%})](C«)) log[F'({n})](w)wo(w)v (dw)

n=1

=D P({za})log P({xa}) (727)

Example 7.20. [The offender is man or female? fast or slow?]  Assume that
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(a) There are 100 suspected persons such as {s1, S, ..., S100}, in which there is one criminal.
Define the state space Q = {wy,ws, ..., w100} such that
statew, - - - the state such that suspect s, is a criminal (n=1,2,...,100)
Assume the counting measure v such that v({wy}) = 1(Vk = 1,2,---,100) Define a male-observable

Om - (X = {ym)nm}a 2X7 M) in LOO(Q) by

M (Dl = ) = { 7 (12000

[M({rm})](wn) = ma, (wn) = 1 = [M({ym})](wn)
For example,

Taking a measurement Mo (q)(Om, Sjw,;)) — the sex of the criminal 5,7 —, we get the measured

value n,, (=female).

Also, define the fast-observable Oy = (Y = {y;, n¢},2Y, F) in L>=(2) by

n—1

F{yeDl(wn) = furlwn) = —55—
[F({ne)(wn) = far(wn) =1 = [F({ye})|(wn)

According to the principle of equal weight (=Theorem [I8 ), there is a reason to consider that a
mixed state wy (€ L1,(€)) is equal to the state w, such that wy(w,) = we(w,) = 1/100 (Vn). Thus,

consider two mixed measurement Mpee (o) (Om, Sij(we)) and Mpe(qy(Os, Spg(we)). Then, we see:

H (Mo ()(Onm, Spy(we))) = /mym w)we(w)v(dw) log/mym Ywe (w)v(dw)

/mm& wn)r(de) 10g. [, (@) fhvla)

11 .
= —510g5—510g2 log,2 =1 (bit)“.
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Also,
H (M0 (Or, Sp (1)) = /Qf@(w)bgf@(wﬁmeﬁ4dw)
Pl o )= [ g8 | e
_AMWWMW*§AMMWMMW)
1 1

#g/Am&NM+1:— +1=10.278---(bit)
0

2log, 2

e

Therefore, as eyewitness information, “male or female” has more valuable than “fast or slow”.
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7.9 Fisher statistics:Monty Hall problem [three prisoners
problem)]

This section is extracted from the following:

Ref. [63]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners Problem
( ArXiv:1408.0963v1 [stat.OT] 2014 )

It is usually said that

Monty Hall problem and three prisoners problem are

so-called isomorphism problem

But, we think that the meaning of “isomorphism problem” is not clarified, or, it is not able to be
clarified without measurement (or, the dualism).

Therefore, in order to understand “isomorphism”, we simultaneously discuss the two

. { Monty Hall problem

three prisoners problem

7.9.1 Fisher statistics: Monty Hall problem [resp. three prisoners prob-
lem]

Problem 7.21. (=ProblemT5: [Monty Hall problem]).

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door A;’
“Door Ay} “Door As”). Behind one door is a car, behind the others, goats. You do not know

what’s behind the doors

However, you pick a door, say “Door A;”, and the host, who knows what’s behind the doors,

opens another door, say “Door Aj) which has a goat.

He says to you, “Do you want to pick Door A5?” Is it to your advantage to switch your

choice of doors?
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Prob

lem 7.22. [three prisoners problem].

Three prisoners, A;, A, and Az were in jail. They knew that one of them was to be set free
and the other two were to be executed. They did not know who was the one to be spared,
but the emperor did know. A; said to the emperor, “I already know that at least one the
other two prisoners will be executed, so if you tell me the name of one who will be executed,
you won’t have given me any information about my own execution”. After some thinking,

the emperor said, “Aj will be executed.” Thereupon A; felt happier because his chance had

increased from to This prisoner A;’s happiness may or may

1 1
3(=Num{A,A2,A3}]) 2(=Num{A;,A2}])"

not be reasonable?

“ Az will be executgd’

>
o

(Emperor)

=C 1)

=0
=)

7.9.2

The answer in Fisher statistics: Monty Hall problem [resp. three
prisoners problem)]

Let rewrite the spirit of dualism (Descartes figure) as follows.
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observer system
(I(=mind)) (matter)

l_ VN j [observable] l_ AN j

[measured jvalue]
(®interfere

<
<

®perceive a reactio

| |
| I
| |
| |
| |
I I

— — — 5

. i For further imformation see my homepagé
Descartes Figure 7.7: The image of “measurement(=(2)


http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

7.9 Fisher statistics:Monty Hall problem [three prisoners problem)]

In the dualism, we have the confrontation
44 29
observer<—>system

as follows.

Table 7.1: Correspondence: observer - system

Problems\ dualism || Mind(=I=Observer) | Matter(=System) |
Monty Hall problem you Three doors

Three prisoners problem Prisoner A; Emperor’s mind

In what follows, we present the first answer to Problem (21 (Monty-Hall problem) 1 i

Problem 722 (Three prisoners problem)
classical pure measurement theory. The two will be simultaneously solved as follows. The spirit of

dualism (in Figure 7.7) urges us to declare that

“observer
“observer

~
~
~
~

you” and “system = three doors” in Problem 21
prisoner A;” and “system = emperor’s mind” in Problem 22

@ |
Put Q = {w1, ws, w3} with the discrete topology. Assume that each state 4, (€ GP(C(2)*)) means

0w, < the state that the car is behind the door A,,
0w, < the state that the prisoner A,, is will be executed

(m=1,2,3) (7.28)

Define the observable O; = ({1,2,3},2{423} F}) in L>(Q) such that

[Fi({1)](ws) = 0.0, [F({2D](ws) = 1.0,  [Fi({3})](ws) = 0.0, (7.29)

where it is also possible to assume that F;({2})(w;) = o, F1({3})(w1) =1 —a (0 < a < 1). Thus

we have a measurement M Loo(g)(Ol, SM), which should be regarded as the measurement theoretical
. you say “Door Ay”
representation of the measurement that “Prisoner Ay asks to the emperor |

Here, we assume that

a) “measured value 1 is obtained by the measurement Mpzec(q)(O1, Sp)”
[ the host says “Door A; has a goat” |

= . .
the emperor says “Prisoner A; will be executed”

b) “measured value 2 is obtained by the measurement M) (O1, Spy) ”
[ the host says “Door A, has a goat” |

= . .
| the emperor says “Prisoner Ay will be executed”
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c) “measured value 3 is obtained by the measurement My (q)(O1, Sp) ”
the host says “Door Az has a goat”
the emperor says “Prisoner Az will be executed”

Recall that [ the host said “Door 3 has a goat ]

the emperor said “Prisoner Az will be executed”
o you
This implies that [ Prisoner A,

Note that

} get the measured value “3” by the measurement Mz (O1, Spy)-

[F1({3})](we2) = 1.0 = max{0.5, 1.0, 0.0}
= max{[F1({3})](w1), [FL({3})](w2), [F1({3})](w3)}, (7.30)

Therefore, Theorem 66 (Fisher’s maximum likelihood method) says that

(By) In Problem 721 (Monty-Hall problem), there is a reason to infer that [*] = §,,. Thus, you
should switch to Door As,.

(By) In Problem (Three prisoners problem), there is a reason to infer that [*] = d,,. However,
there is no reasonable answer for the question: whether Prisoner A;’s happiness increases. That

is, Problem 22 is not within Fisher’s maximum likelihood method.
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7.10 Bayesian statistics: Monty Hall problem [three prison-
ers problem]

This section is extracted from the following:

Ref. [63]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners Problem
( arXiv:1408.0963v1 [stat.OT] 2014 )

7.10.1 Bayesian statistics: Monty Hall problem [resp. three prisoners
problem]

Problem 7.23. [(=ProblemZI6)Monty Hall problem (the case that the host throws the dice)].

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door A;”
“Door A, “Door A3z"). Behind one door is a car, behind the others, goats. You do not know

what’s behind the doors.

However, you pick a door, say “Door A;”, and the host, who knows what’s behind the doors,

opens another door, say “Door A3 which has a goat. And he adds that

(#1) the car was set behind the door decided by the cast of the (distorted) dice. That is, the host
set the car behind Door A,, with probability p,, (where py+pa+p3=1,0 <p1,ps,p3 <1

).

He says to you, “Do you want to pick Door A5?” Is it to your advantage to switch your

choice of doors?

Problem 7.24. [three prisoners problem)].

Three prisoners, Ay, A, and Az were in jail. They knew that one of them was to be set free

and the other two were to be executed. They did not know who was the one to be spared,
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but they know that

(#2) the one to be spared was decided by the cast of the (distorted) dice. That is, Prisoner A,,
is to be spared with probability p,, (where py+ps+p3s=1,0<p;,po,ps <1).

but the emperor did know the one to be spared. A; said to the emperor, “I already know
that at least one the other two prisoners will be executed, so if you tell me the name of one
who will be executed, you won’t have given me any information about my own execution”.

After some thinking, the emperor said, “Az will be executed.” Thereupon A; felt happier

‘o - . 1 1 'S Dris g
because his chance had increased from g—mmr—r—-37 10 s=ma; A,y - 1 s prisoner Ay’s

happiness may or may not be reasonable?

“As will be executgd”

>
T

N —

(Emperor)

=0
=)
=)

7.10.2 The answer in Bayesian statistics: Monty Hall problem [resp.
three prisoners problem)]

In the dualism, we have the confrontation

“observer<+—system”
as follows.

Table 7.2: Correspondence: observer - system

Problems\ dualism H Mind(=I=Observer) ‘ Matter(=System) ‘

Monty Hall problem you Three doors
Three prisoners problem Prisoner A Emperor’s mind

Let Q = {w1,wq,ws} be a state space with the discrete metric. Each pure state 4, (€ &P(C(Q2)*))

means as follows.

0w, < The state such that a car is behind the door A,,
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[resp. 4., < the state such that a prisoner A,, is pardoned ]
(m=1,2,3) (7.31)

The observable O, = ({1,2,3},2{23} F}) is defined by

[Fi({1D)](ws) = 0.0, [F({2D))(ws) = 1.0,  [F1({3})](ws) = 0.0, (7.32)
Thus we have a mixed measurement M) (O1, Si(10)). Note that

a) “measured value 1 is obtained by the measurement Moo (q)(O1, Sp)”
the host says “Door A; has a goat”
the emperor says “Prisoner A; will be executed”

b) “measured value 2 is obtained by the measurement M) (O1, S}y) ”
the host says “Door A, has a goat”
the emperor says “Prisoner A, will be executed”

c) “measured value 3 is obtained by the measurement Mo (01, Sp) ”
the host says “Door Az has a goat”
the emperor says “Prisoner Az will be executed”

Here, assume that, by the statistical measurement Mzeq)(O1, Sp(10)), you obtain a measured value
the host said “Door A3 has a goat”

3, which corresponds to the fact that the emperor said “Prisoner Az is to be executed” Then,
Bayes” theorem [ZT1 says that the posterior state vpes (€ M7 (€)) is given by
Vst = Fi({3}) x o (7.33)
T (w F({3))

That is,

Vpost({wr}) = 2 - pose({w2}) = g, Vpos({ws}) = 0. (7.34)

5+ 5 +po

Then,

(I1) In Problem 723,

if Vpost ({w1}) < Vpost({w2}) (i-e., p1 < 2ps), you should pick Door A,

if Vpost ({w1}) = Vpost({w2}) (i-e., p1 = 2p2), you may pick Doors A; or Ay
if Vpost ({w1}) > Vpost ({w2}) (i-e., p1 > 2ps), you should not pick Door A
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(I2) In Problem 24,

if vo({w1}) < Vpost({w1}) (i-e., p1 < 1 —2py), the prisoner A;’s happiness increases
if vo({w1}) = vpost ({wr1}) (i.e., p1 =1 — 2py), the prisoner A;’s happiness is invariant
if vo({wi}) > vpost({w1}) (i-e., p1 > 1 — 2psy), the prisoner A;’s happiness decreases
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7.11 Equal probability: Monty Hall problem [three prison-

ers problem]

This section is extracted from the following:

ref. [63]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners Problem

( ArXiv:1408.0963v1 [stat.OT| 2014 )

Problem 7.25. [(=ProblemZ16)Monty Hall problem (the case that you throws the dice)].

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door A;}
“Door A, “Door A3z"). Behind one door is a car, behind the others, goats. You do not know

what’s behind the doors. Thus,

(81) you select Door Ay by the cast of the fair dice. That is, you say “Door Ay” with probability

1/3.

The host, who knows what’s behind the doors, opens another door, say “Door A3} which has
a goat. He says to you, “Do you want to pick Door A7 Is it to your advantage to switch

your choice of doors?

Problem 7.26. [three prisoners problem( the case that the prisoner throws the dice)].

176

Three prisoners, Ay, A, and Az were in jail. They knew that one of them was to be set free
and the other two were to be executed. They did not know who was the one to be spared,

but the emperor did know. Since three prisoners wanted to ask the emperor,

(#2) the questioner was decided by the fair die throw. And Prisoner Ay was selected with

probability 1/3

Then, A; said to the emperor, “I already know that at least one the other two prisoners

’ For further imformation see my homepagd
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will be executed, so if you tell me the name of one who will be executed, you won’t have

given me any information about my own execution”.  After some thinking, the emperor
said, “As will be executed.” Thereupon A; felt happier because his chance had increased
from L

SENam[ AT A A 1O 2(=Num[%{A1,A2}])' This prisoner A;’s happiness may or may not be
reasonable?

“Asz will be executgq”

o

p—
7

(Emperor)

L
=—=C \)>)

= /)

l———\f/ -y
T
—= O

Answer By Theorem [ I8(The principle of equal weight), the above Problems 25 and is
respectively the same as Problems and in the case that p; = py = p3 = 1/3. Then,

(A1) In Problem77H, since Vpost({w1}) = 1/3 < 2/3 = Vpest ({w2}), you should pick Door As,.

(Ay) In ProblemlZ 28, since vo({w1}) = 1/3 = vpost({w1}), the prisoner A;’s happiness is invariant.

Therefore,
(By) ProblemZZ5 [Monty Hall problem ( the case that you throw a fair dice)]

Vpost ({w1}) < vpose({wa}) (e, pr =1/3 <2/3 = 2py),
thus, you should choose the door A,

(B2) Probleml7Z8 [three prisoners problem ( the case that the emperor throws a fair dice)],

vo({wi}) = vpess({wi}) (e, pr = 1/3 =1 —2py),

Thus, the happiness of the prisoner A; is invariant

177
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ANote 7.6. These problems (i.e., Monty Hall problem and the three prisoners problem) continued
attracting the philosopher’s interest. This is not due to that these are easy to make a mistake for high

school students, but

these problems include the essence of “dualism”.
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7.12 Bertrand’s paradox( “randomness” depends on how
you look at)

Theorem7T8(the principle of equal weight) implies that
e the “randomness” may be related to the invariant probability measure.

However, this is due to the finiteness of the state space. In the case of infinite state space,
“randomness” depends on how you look at

This is explained in this section.

7.12.1 Bertrand’s paradox(“randomness” depends on how you look at)

Let us explain Bertrand’s paradox as follows.

Counsider classical basic structure:
Co() € L=(Q,m) € B(LA(Q,m))]

We can define the exact observable O = (2, Bq, Fg) in L>(§2,m) such that

[FE(E)](w) = xz(w) = { (1) EZ ; g;
(Vw € Q, Z€ Bg)

Here, we have the following problem:

(A) Can the measurement My m)(Og, Si(p)) that represents “at random” be determined uniquely?

This question is of course denied by so-called Bertrand paradox. Here, let us review the argument

about the Bertrand paradox (cf. [26, B3, 51]). Consider the following problem:

Problem 7.27. (Bertrand paradox) Given a circle with the radius 1. Suppose a chord of the circle
is chosen at random. What is the probability that the chord is shorter than /37
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X2
A

™1

\

L1

Figure 7.8: Bertrand’ paradox

Define the rotation map 79, : R? — R? (0 < # < 27) and the reverse map Tyey : R? — R? such

rot
that

o .. _ |cos® —sinb| |z _ 01 =
Trorr = [Sinﬁ COSQ:| [xJ’ Trever = [1 0 |9

Problem 7.28. (Bertrand paradox and its answer) Given a circle with the radius 1.

X2
A

™~

N\

L1

Figure 7.9: Bertrand’ paradox
Put Q = {l | [ is a chord}, that is, the set of all chords.

(B) Can we uniquely define an invariant probability measure on Q7

Here, “invariant” means “invariant concerning the rotation map Tr(’Ot and reverse map Trey” .
In what follows, we show that the above invariant measure exists but it is not determined

uniquely.
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(Pic.1) (Pic.2)

A‘ :

Figure 7.10: Two cases in Bertrand’ paradox

[The first answer (Pic.1(in Figure 7.10))]. In Pic.1, we see that the chord [ is represented by
a point («, §) in the rectangle O = {(a,f) | 0 < a < 27, 0 < § < 7/2(radian)}. That is, we have
the following identification:

Q(= the set of all chords) D la 5 = +— (a,8) € Q(C R?).

identification

_ Measj4] _ Meas[4]
~ Measio,) w2
(VA € Bg,), where “ Meas” = “ Lebesgue measure”. Transferring the probability measure 14 on

Note that we have the natural probability measure nu; on €2; such that v;(A)

to 2, we get p; on ). That is,

M+1(Q) S P — v € M+1(Ql)

identification

(#) It is clear that the measure p; is invariant concerning the rotation map Tet and reverse map

Iro
Trev-

Therefore, we have a natural measurement My ) (Op = (2, Ba, Fg), Si(p1)). Consider the
identification:

O2OE5 <+ {(o,B) € : “the length of [(4 5" < V3l c oy

identification

Then, Axiom™) 1 says that the probability that a measured value belongs to = V3 18 given by

=V3
=m1({l(ap) = (a,8) € Q| “the length of ln 5" < V3})
~ Meas[{(a,3) |0 < a <27, 7/6 <8 < 7/2}]
~ Meas[{(a,) | 0<a <21, 0<8<7/2}]

[P i) = [ 1 pia)
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C2mx (m/3) 2
2 3
[The second answer (Pic.2(in Figure 7.10))]. In Pic.2, we see that the chord [ is represented
by a point (x,y) in the circle Qy = {(x,y) | 2* + y* < 1}.
That is, we have the following identification:

Q(= the set of all chords) 3 [,y = +— (z,y) € Qa(C R?).

identification

We have the natural probability measure v on s such that v5(A) = 1\1\/11::;[;?]] = MeiS[A] (VA € Bg,).
2

Transferring the probability measure v, on 5 to 2, we get py on ). That is,

M_H(Q) > P2 — Vo € M+1(QQ)

identification

(#) It is clear that the measure p, is invariant concerning the rotation map TreOt and reverse map

Trev-

Therefore, we have a natural measurement Moo, (O = (2, B, Fi), Si(p2))-
Consider the identification:

QODE,5 <+— {(z,y) € : “thelength of [ 5" < V3} C O

identification

Then, Axiom™ 1 says that the probability that a measured value belongs to = V3 18 given by

=v3
=vs({l(wy) = (z,y) € Qo | “the length of [, )" < V3})
_Meas[{(z,y) [1/4<2*+y*<1}] 3

T 4’

JFeE ) plde) = [ 1 pafa)

Conclusion 7.29. Thus, even if there is a custom to regard a natural probability measure (i.e., an

invariant measure concerning natural maps) as “random”, the first answer and the second answer

say that

(#) the uniqueness in (B) of Problem .28 is denied.
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Axiom 2—causality

Measurement theory has the following classification:

(A) measurement theory
(=quantum language)

pure type
(A1)

classical system : Fisher statistics
quantum system : usual quantum mechanics

. classical system : including Bayesian statistics, Kalman filter
mixed type

(A2)

quantum system : quantum decoherence

This is formulated as follows.

( (Bl):‘ pure measurement theory‘

(=quantum language)

[[pure)Axiom 1] [Axaom ] [inguistic Copenhagen interpretation]
= ’ pure measurement ‘ + ‘ Causality ‘—l—’ Linguistic Copenhagen interpretation
(cf. EZ7) (cf. §83) (cf. §8-0)
a kind of spell(a priori judgment) the manual to use spells

(Ba) :‘ mixed measurement theory ‘

(=quantum language)
[(mixed) Axiom(™) 1| [Bxaiomd] [nguistic Copenhagen interpretation)

= ’ mixed measurement ‘—l—‘ Causality +‘ Linguistic Copenhagen interpretation
(cf. BZ.1) (cf. §53) (cf. §50)

a kind of spell(a priori judgment) the manual to use spells

[Axiom 2]

In this chapter, we devote ourselves to the last theme | Causality |, which is common to both (B;) and (Bs).

(cf §53)

8.1 The most important unsolved problem—what is causal-

ity?

The importance of “measurement” and “causality” should be reconfirmed in the following famous maxims:

183



8.1 The most important unsolved problem—what is causality?

(C1) There is no science without measurement.
(Ca) Science is the knowledge about causal relationship.

They should be also regarded as one of the linguistic Copenhagen interpretation in a wider sense.

8.1.1 Modern science started from the discovery of “causality.”

When a certain thing happens, the cause always exists. This is called causality. You should just

remember the proverb of
“smoke is not located on the place which does not have fire.”

It is not so simple although you may think that it is natural. For example, if you consider

This morning I feel good. Is it because that I slept sound yesterday? or is it because I go to favorite

golf from now on?

you may be able to understand the difficulty of how to use the word “causality”. In daily conversation, it is
used in many cases, mixing up “a cause (past)”, “a reason (connotation)”, and “the purpose and a motive
(future).”

It may be supposed that the pioneers of research of movement and change are

Heraclitus(BC.540 -BC.480): “Everything changes.”

Parmenides (born around BC. 515): “Movement does not exist.”
(Zeno’s teacher)

though their assertions are not clear. However, these two pioneers (i.e., Heraclitus and Parmenides ) noticed
first that “movement and change” were the primary importance keywords in science(= “world description”)

, Le., 1t 1s

[The beginning of World description |

Heraclitus(BC.540 -BC.480)
=[The discovery of movement and change | =
Parmenides(born around BC. 515)

However, Aristotle(BC384-BC322) further investigated about the essence of movement and change, and
he thought that

all the movements had the “purpose.”

For example, supposing a stone falls, that is because the stone has the purpose that the stone tries to go

downward. Supposing smoke rises, that is because smoke has the purpose that smoke rises upwards. Under
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the influence of Aristotle, “Purpose” continued remaining as a mainstream idea of “Movement” for a long
time of 1500 years or more.

Although “the further investigation” of Aristotle was what should be praised, it was not able to be
said that “the purpose was to the point.” In order to free ourselves from Purpose and for human beings to
discover that the essence of movement and change is “causal relationship”, we had to wait for the appearance

of Galileo, Bacon, Descartes, Newton, etc.
Revolution to “Causality” from “Purpose”

is the greatest history-of-science top paradigm shift. It is not an overstatement even if we call it “birth of

modern science”.

the birth of world description the birth of modern science

«“. 2
purpose .
Movement > Causality

(Heraclitus, Parmenides, Zeno) Aristotle :(' About 1500 years) ( Galileo, Bacon, Descartes, Newton)

#Note 8.1. I cannot emphasize too much the importance of the discovery of the term: ”causality”.
That is,

(#) Science is the discipline about phenomena can be represented by the term ”causality”. (i.e., "No
smoke without fire” )

Thus, I consider that the discovery of ”causality” is equal to that of science.

8.1.2 Four answers to “what is causality?”

As mentioned above, about “what is an essence of movement and change?”, it was once settled with the

word “causality.” However, not all were solved now. We do not yet understand “causality” fully. In fact,

Problem 8.1. Problem:
“What is causality?”
is the most important outstanding problems in modern science.

Answer this problem!

There may be some readers who are surprised with saying like this, although it is the outstanding problems

in the present. Below, I arrange the history of the answer to this problem.

185 ’ For further imformation see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

8.1 The most important unsolved problem—what is causality?

(a) [Realistic causality]: Newton advocated the realistic describing method of Newtonian mechanics
as a final settlement of accounts of ideas, such as Galileo, Bacon, and Descartes, and he thought as

follows. :

“Causality” actually exists in the world. Newtonian equation described faithfully this “causal-

ity”. That is, Newtonian equation is the equation of a causal chain.

This realistic causality may be a very natural idea, and you may think that you cannot think in addition to

this. In fact, probably, we may say that the current of the realistic causal relationship which continues like
“Newtonian mechanics— Electricity and magnetism— Theory of relativity— ---”
is a scientific flower.

However, there are also other ideas, i.e., three “non-realistic causalities” as follows.

(b) [Cognitive causality]: David Hume, Immanuel Kant, etc. who are philosophers thought as follows.

We can not say that “Causality” actually exists in the world, or that it does not exist in the
world. And when we think that “something” in the world is “causality”, we should just believe

that the it has “causality”.

Most readers may regard this as “a kind of rhetoric”, however, several readers may be convinced in “Now
that you say that, it may be so.” Surely, since you are looking through the prejudice “causality”, you may

look such. This is Kant’s famous “Copernican revolution”, that is,
“recognition constitutes the world.”

which is considered that the recognition circuit of causality is installed in the brain, and when it is stim-
ulated by “something” and reacts, “there is causal relationship.” Probably, many readers doubt about the
substantial influence which this (b) had on the science after it. However, in this book, I adopted the friendly
story to the utmost to Kant.

(¢) [Mathematical causality(Dynamical system theory)]: Since dynamical system theory has de-
veloped as the mathematical technique in engineering, they have not investigated “What is causality?”

thoroughly. However,
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In dynamical system theory, we start from the state equation (i.e., simultaneous ordinary differ-

ential equation of the first order) such that

and, we think that

(#) the phenomenon described by the state equation has “causality.”

This is the spirit of dynamical system theory (= statistics ). Although this is proposed under the confusion
of mathematics and world description, it is quite useful. In this sense, I think that (c¢) should be evaluated

more.

(d) [Linguistic causal relationship (MeasurementTheory)]: The causal relationship of measure-

ment theory is decided by the [Axiom 2 (causality; §8.3) of this chapter. If I say in detail,:

Although measurement theory consists of the two Axioms 1 and 2, it is the Axiom 2 that is

concerned with causal relationship. When describing a certain phenomenon in quantum language

(i.e., a language called measurement theory) and using Axiom 2 (causality; §8.3) , we think that

the phenomenon has causality.

Summary 8.2. The above is summarized as follows.

a) World is first
b)

¢) Mathematics(buried into ordinary language) is first

(
(b) Recognition is first
(
(d) Language (= quantum language) is first
Now, in measurement theory, we assert the next as said repeatedly:

Quantum language is a basic language which describes various sciences.
Supposing this is recognized, we can assert the next. Namely,

In science, causality is just as mentioned in the above (d).

This is my answer to “What is causality ?”. I explain this in detail in the following.
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8.1 The most important unsolved problem—what is causality?

ANote 8.2. Consider the following problems:
(f1) What is time (space, causality, probability, etc.) 7

There are two ways to answer.

(a): To show the definition of XX
(#2) The answer of ”What is XX 77
(b): To show how to use the term ”XX”

In this note, the answer to the question () is presented from the linguistic point of view (b).
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8.2 Causality—Mathematical preparation

8.2.1 The Heisenberg picture and the Schrodinger picture

First, let us review the general basic structure (cf. §2°1°3 ) as follows.

e (A): General basic structure and State spaces ~

GP(A*) C GM(AY) C A
C*-pure state C*-mixed state
Tdual 89
= N

subalgebra-weak-closure subalgebra

l pre-dual
C A,

&"(AL)

W*-mixed state

N

N

Remark 8.3. [A. C A*] : Consider the basic structure [A C A]p). For each p € A,, F € A(C A C
B(H)), we see that

5. (2 F) ] < ClIF N = CIF I 8.3)
Thus, we can consider that p € A*. That is, in the sense of (8:3), we consider that
Al C A

When p(€ A,) is regarded as the element of A*, it is sometimes denoted by p. Therefore,

- (p, F)Z = . (ﬁ, F)A (VF € A(C A)) (8.4)

Definition 8.4. [Causal operator (= Markov causal operator)]  Consider two basic structures:
[.Al g ﬁl g B(Hl)] and [.AQ g ﬁg g B(HQ)]

A continuous linear operator ®; 7 : Ay — A is called a causal operator(or, Markov causal operator ,
the Heisenberg picture of “causality”), if it satisfies the following (i)—(iv):

(i) FoEAy Fo=20= O19F, =0
(i) @121z, = Iz (where, I (€ Ay) is the identity)

(iii) there exists the continuous linear operator (®12)x : (A1)« — (A2)« such that

(a) s (01,@1,2F2>711 (). ((‘I>1,2)*P1,F2)7{2 (Vo1 € (A1)s, V2 € A3) (8.5)

(b) (®12)+(6"((A1).)) € & ((A2).) (8.6)
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This (®1,2)« is called the pre-dual causal operator of @ 5.

(iv) there exists the continuous linear operator @7 5 : A7 — A5 such that
@ g (re®i2R); = (¥ F2),, (o1 =F1€ (S AD VR EA)  (87)
(b)  (P12)"(67(A7)) € 6™(A3) (8.8)
This @7, is called the dual operator of @1 5.
In addition, the causal operator @1 is called a deterministic causal operator , if it satisfies that

(©12)"(6"(A7)) € &"(A3) (8.9)

ANote 8.3. [ Causal operator in Classical systems] Consider the two basic structures:
[Co(21) € L*(,11)]B(m,) and [Co(Q2) C L™ (Q2, v2)| B

A continuous linear operator ®; 9 : L*(2) — L>(£;) called a causal operator, if it satisfies the
following (i)—(iii):

(1) foeL®(Q), f220= P12f/220

(ii) ®121l9 = 17 where, 1x(wg) =1 (Vwi € Qi k= 1,2)

(iii) There exists a continuous linear operator (®12)« : L*(1) — L'(Q2) (and (®1,2)s : L1 (1) —
L%, () ) such that

/Q (@1 2f2)(w1) p1(wi)vi(dwr) = A fa(w2) [(®1,2)«p1](w2)v2(dws)
(Vp1 € LY(Q1),Vfz € L®(Q))

This (®1,2)« is called a pre-dual causal operator of ¢ .

(iv) There exists a continuous linear operator ®7, : M(Q1) — M(Q2) (and @75 @ My1(1) —
M41(€2) ) such that

L1() <p1, CI)1’2F2>L"°(Ql) = M(Q2) (qfi?ﬁl’ F2)CO(QQ) (Vp1 = p1 € M($1),VF> € Co(£22))

where, p1(D) = [, p1(wi)vi(dwi) (VD € Bg,). This (®12)* is called a dual causal operator
of @1,2.

In addition, a causal operator ®12 is called a deterministic causal operator, if there exists a
continuous map ¢12 : {21 — (2o such that

[@12f2](w1) = fa(p12(w1)) (Vfo € C(Q),Vwr € Q1) (8.10)

This ¢1,2 : 1 — (o is called a deterministic causal map. Here, it is clear that

0~ Gp(CO(Ql)*) > (5w1 (1)—*> 5(2512(0.)1) S GP(CO(QQ)*) ~ Q9
12
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P10 f: / \ P

Ql QQ

w1 = ¢1,2(W1)

Figure 8.1: Deterministic causal map ¢1 2 and deterministic causal operator ®1 2

Theorem 8.5. [Continuous map and deterministic causal map]  Let (Q1,Bq,,v1) and (Q2,Bgq,,v2) be

measure spaces. Assume that a continuous map ¢1 : {21 — €2y satisfies:
Dy € 'BQQ, 1/2(D2) =0 = I/l(gﬁi%(Dg)) = 0.

Then, the continuous map ¢ : ; — €y is deterministic, that is, the operator ®;5 : L®(Q,12) —

L (€, 1) defined by (R10) is a deterministic causal operator.

Proof. For each p; € L*(Q4,v1), define a measure pg on (2, Bg,) such that
paDa)= [ B lde)) (9D € Bay)
¢12(D2)
Then, it suffices to consider the Radon-Nikodym derivative (cf. [I0R]) [®1 2].(p;) = dpa/drs. That is because
Dy € Bg,, (D) =0 — V1(¢1_7%(D2)) =0 = j2D2)=0 (8.11)

Thus, by the Radon-Nikodym theorem, we get a continuous linear operator [®1 o]« : L*(Q1, 1) — L1(Qa,v2).
O

Theorem 8.6. Let ®;9: L®(2) — L>(€) be a deterministic causal operator. Then, it holds that

D12(f2-92) = P12(f2) - P12(g92)  (Vf2, Vg2 € L7(82))

Proof. Let fa, g2 be in L™>(Qs). Let ¢12 : 1 — Q2 be the deterministic causal map of the deterministic

causal operator ®1 2. Then, we see

[@12(f2 - g2)l(w1) = (f2 - g2)(P1,2(w1)) = fa(P1,2(w1)) - g2(P1,2(w1))
=[@12(f2)](w1) - [P1,2(92)](w1) = [P12(f2) - P12(g2)](w1)  (Vwi € 1)

This completes the theorem. ]
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8.2.2 Simple example—Finite causal operator is represented by matrix

Example 8.7. [Deterministic causal operator, deterministic dual causal operator, deterministic causal map |
Define the two states space €21 and €25 such that 2; = Q2 = R with the Lebesgue measure v. Thus we have

the classical basic structures:
[Co(Q) C L*®°(Q,v) C B(L*(Q,v))] (k=1,2)
Define the deterministic causal map ¢12 : £21 — {22 such that
wy = P12(w1) = 3(w1)® +2 (Vw1 € 9 =R)
Then, by (8-11), we get the deterministic dual causal operator ®7 , : M(1) — M(€22) such that
D1 90w; = O3(u;)242 (Vwr € )

where 4.y is the point measure. Also, the deterministic causal operator®; » : L>(22) — L*°(£1) is defined

by

[@12(f2)](w1) = faB(w1)® +2)  (Vf2 € Co(€2),Vwr € )

Example 8.8. [Dual causal operator, causal operator] Recall Remark 2713, that is, if Q (= {1,2,...,n}) is

finite set ( with the discrete metric dp and the counting measure v,), we can consider that
Col@) = L) =C",  M(Q) =L () =C",  Mar() = LL,(20)
For example, put 1 = {w},w? wj} and Qy = {wi, w3}. And define p;(€ M, (1)) such that
p1 = aléw} + agéw% + agéwf (0 =< aj,a2,a3 < 1,a1 +ag +az =1)
Then, the dual causal operator @ 5 : My1(€21) — M41(€22) is represented by
12(p1) =(c11a1 + ci2a2 + 01303)5w% + (e2101 + ca2a2 + 023a3)5wg
(0=¢y = Li%’ =1)

=1

and, consider the identification:M () ~ C3, M(Qs) ~ C2, That is,

a1
M(Ql) = a15w1 + a25w2 + a35w3 — Qg | € C3
1 1 L (identification) o3
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b1 2
M(Q ) 0 -
(Q2) 3 b1 w3 + B2 wj (jdenmtion) [62 ©

Then, putting

] 5(p1) = B1d,; + P20, = [gl] 7
2

aq
p1 = aldw% + Oég(sw% + 043(5%% = |ay
(0%}

write, by matrix representation, as follows.

a1
51] _ [611 c12 013]

3
1) = Q2
172(p ) [52 C21 C22 C23

Next, from this dual causal operator ®] 5 : M(£21) — M(£22), we shall construct a causal operator ®1 :

Co(22) — Cp(£1). Consider the identification:Co(1) ~ C3, Cp(£2s) ~ C2, that is,

fl (W%) f (wl)
Co() 2 fi1 — fi(w?)| e C3, Co(2) 3 fo — [ 22 } e C?
(identification) Filwd) (identification) fo(w3)

Let f € Co(€2), fi = ®12f2. Then, we see

filw}) o on | [2()
K| == ot = o | [A4)
fifw) w en JTT

Therefore, the relation between the dual causal operatorq)’l‘z and causal operator®; 5 is represented as the

the transposed matrix.

Example 8.9. [ Deterministic dual causal operator, deterministic causal map, deterministic causal operator
]  Consider the case that dual causal operator ®7, : M(21)(=C3) — M(Q2)(=C?) ha s the matrix

representation such that
=m0 L Zl
L2 = T 1 0 0] |2
as

In this case, it is the deterministic dual causal operator. This deterministic causal operator ®1 2 : Cp(£22) —

Co(£21) is represented by

fi(wi) 0 1
fi (w%) =fi=C12(fe)=|1 0 [;28:%3]
fi(w?) 10 2152

with the deterministic causal map ¢ : 01 — Q9 such that

¢1,2(W%) = ng ¢1,2(w%) = w%v ¢1,2(W%) = W%
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8.2.3 Sequential causal operator — A chain of causalities

Let (T, <) be a finite tree, we discuss the infinite case, i.e., a tree like semi-ordered finite set such
that “t; < t3 and ty < t3” implies “t; <ty or t5 < ¢;”. Assume that there exists an element ¢ty € T,
called the root of T', such that t, <t (Vt € T') holds.

Put T2 = {(t1,t2) € T? : t; < to}. An element ¢y € T is called a root if to < t (Vt € T') holds.
Since we usually consider the subtree T,, ( C T') with the root ty, we assume that the tree has
a root. In this chapter, assume, for simplicity, that 7" is finite (though it is sometimes infinite in
applications).

For simplicity, assume that 7 is finite, or a finite subtree of a whole tree. Let T' ( = {0, 1,..., N})
be a tree with the root 0. Define the parent map m : T\{0} — T such that 7(t) = max{s € T': s < t}.
It is clear that the tree (7'= {0,1,..., N}, <) can be identified with the pair (7"={0,1,..., N}, 7 :
T\ {0} — T). Also, note that, for any ¢t € T \ {0}, there uniquely exists a natural number h(t)
(called the height of t ) such that 7" (¢t) = 0. Here, 7%(t) = n(n(t)), 73(t) = w(72(t)), etc. Also,
put {0,1,...,N}i = {(m,n) | 0 < m < n < N}. In Fig. 10.2, see the root ty, the parent map:
m(ts) = m(ty) = to, w(te) = 7w(ts) = t1, w(t1) = 7(ts) = w(t7) = to

. y T ly
to T~ ‘% ¢

‘W\ te ’

7y ts

Figure 8.2: Tree: (T = {to,t1,....,tz},m: T\ {to} = T)

Definition 8.10. [Sequential causal operator; Heisenberg picture of causality] =~ The family {®,, 4, :
- - - Py — . . e
A, — Atl}(thmeTE ( or, { Ay, —° Atl}(tl,tg)eTz ) is called a sequential causal operator, if it

satisfies that
(i) For each t (€ T), a basic structure [A, C A, C B(H,)] is determined.

(ii) For each (t1,t;) € T2, a causal operator ®y, ;, : A;, — Ay, is defined such as @, 1, Py, 1, = P, 1
(V(t1,t2), V(ta, t3) € T2). Here, ®;; : A; — Ay is the identity operator.
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. Py,
o / \Z
W
0 ‘% -Aﬁ 5
Do 4.

Figure 8.3: Heisenberg picture( sequential causal operator)

Definition 8.11. (i): [pre-dual sequential causal operator : Schrodinger picture of causality |  The
sequence { (@, 1,)x : (As)w — (ﬁtl)*}(tlh)gﬁ is called a pre-dual sequential causal operator of
{q’tl,tg : ‘ZtQ — ﬁtl}(tl,tg)ETE .

(ii): [Dual sequential causal operator : Schrodinger picture of causality ] A sequence {®; , :

At = Af Haeyers is called a dual sequential causal operator of {®;, 4, : Ay, — Atl}(tl,tg)eTg-

@/Lflz 2’3*—> i A
(®01), (A @ (P32« (Ay). o A*Q* o~ Aj
(7‘»0)*/ \ 15)x /J' AN .
@0,6)»@46)* (As )« \Ek)fi Ag A5
(‘I)o,7)* (ﬁ7>* ‘1)07 Az
(i):pre-dual sequential causal operator (ii):dual sequential causal operator

Figure 8.4: Schrodinger picture ( dual sequential causal operator)

Remark 8.12. [The Heisenberg picture is formal; the Schrodinger picture is makeshift ] The
Schrodinger picture is intuitive and handy. Consider the Schrodinger picture{®; , : A; —
A% Hean)erz- For C™-mixed state p, (€ &™(Ay)) (L., a state at time ¢;),

e ("-mixed state p;, (€ &™(A},)) (at time t5(> t1)) is defined by

_ *
th - q)tl,tgptl

However, the linguistic Copenhagen interpretation says “state does not move”, and thus, we consider
that

the Heisenberg picture is formal

the Schrodinger picture is makeshift
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8.3 Axiom 2 —Smoke is not located on the place which does
not have fire

8.3.1 Axiom 2 (A chain of causal relations)

Now we can propose Axiom 2 (i.e., causality), which is the measurement theoretical representation

of the maxim (Smoke is not located on the place which does not have fire ):

- (C): Axiom 2 (A chain of causalities) ~

(Under the preparation to this section, we can read this)
For each t(€ T="“tree”)), consider the basic structure:
[A, C A, C B(H,)]

Then, the chain of causalities is represented by a sequential causal operator {®; ,, :
‘At2 - ‘Atl}(tl,tz)ETé'

NG Y,

ANote 8.4. Axiom 2 (causality) as well as Axiom 1 (measurement) are a kind of spells. There are
several spells concerning ”motion”. For example,

(#1) [
(#2) [
(#3) [Hegel]: dialectic (Thesis, antithesis, synthesis)
(#4) 1

(#1)—(t3) are non-quantitative, but (f4) is quantitative. Everybody agrees that these ((f1)—(#4)) move
the world.

Aristotle]: final cause

Darwin]: evolution theory (survival of the fittest)

aw of entropy increase

8.3.2 Sequential causal operator—State equation, etc.

In what follows, we shall exercise the chain of causality in terms of quantum language.

Example 8.13. [State equation] Let 7' = R be a tree which represents the time axis. For each
t(€ T), consider the state space §2; = R"™ (n-dimensional real space). And consider simultaneous

ordinary differential equation of the first order

%(t) ; UQ(w1<t>,W2(t), . 7wn(t>7 t) (8.12)
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which is called a state equation . Let ¢+ : Qy — Q,, (f1 = t2) be a deterministic causal
map induced by the state equation (812). It is clear that ¢p,1,(dt 1,(Wh)) = Gy 1(wr,) (wy, €

Q4,1 <ty < t3). Therefore, we have the deterministic sequential causal operator {®y, ¢, : L>(§,) —

L)} eoyer2-

Example 8.14. [Difference equation of the second order] Consider the discrete time T° =
{0,1,2,...} with the parent map 7 : 7'\ {0} — T such that n(t) = ¢t —1 (vt = 1,2,...). For
each t(e T'), consider a state space €2; such that 2, = R ( with the Lebesgue measure). For example,

consider the following difference equation, that is, ¢ : €2y x ;11 — €15 satisfies as follows.
Wtag = gzﬁ(wt, wt+1) = w + W1 + 2 (Vt S T)

Here, note that the state w;,o depends on both wyy; and w; (i.e., multiple markov property). This
must be modified as follows. For each t(€ T') consider a new state space @t = x Q1 =RxR.

And define the deterministic causal map ggt,tﬂ : Qt — §~2t+1 as follows.

(Wer1, Wiro) = gt,tJrl(wta Wip1) = (Wep1, We + w1 + 2)

(V(wt,th) S Qt,‘v’t S T)

Therefore, by Theorem &3, the deterministic causal operator CAISt,tH : Loo(ﬁtH) — Lw(ﬁt) is defined
by

[&)t,t+1f~;€]<wta Wei1) = ﬁ(wt+17 Wt + W1 + 2)
(V(wr, wegr) € Qi Vfy € L¥(Q4in),VE € T\ {01))

Thus, we get the deterministic sequential causal operator {§t7t+1 : LOO(SNLH) — Loo(ﬁt>}teT\{0}.

ANote 8.5. In order to analyze multiple markov process and time-lag process, such ideas in Example
814 are needed.
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8.4 Kinetic equation (in classical mechanics and quantum
mechanics)

8.4.1 Hamiltonian ( Time-invariant system)

In this section, we consider the simplest kinetic equation in classical system and quantum system.

Consider the state space  such that 2 = R?, that is,
R? =R, x R,={(q,p) = (position , momentum ) | ¢,p € R} (8.13)

Hamiltonian H(q, p) is defined by the total energy, for example, as the typical case (m: particle

mass), we consider that

[Hamiltonian (= H(q,p))]
2
=|kinetic energy(= 2p—)] + [potential energy(= V(q))] (8.14)
m

8.4.2 Newtonian equation(=Hamilton’s canonical equation)

Concerning Hamiltonian H(q,p), Hamilton’s canonical equation is defined by

dp _ _ H(a,p)
dt dq
Hamilton’s canonical equation = (8.15)
dg _ H(gp)
dt op
And thus, in the case of (8714), we get
dp _ _ Hap) _ _ OV(gp)
dt dq dq
Hamilton’s canonical equation = (8.16)
dg _ 9¥(gp) _ p
dt op m
which is the same as Newtonian equation. That is,
d%q 9V (q,p)
m—— = [Mass] x [Acceleration] = ———~%(= Force
© 1 = [Mass] | | = T (= Force)

Now, let us describe the above (8716) in terms of quantum language. For each t € T'= R, define

the state space §2; by
Q=0 =R*=R, x R,={(q,p) = (position , momentum ) | ¢,p € R} (8.17)

and assume Lebesgue measure v.
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Then, we have the classical basic structure:

(Co() C L®(Q) € B(LA())]  (teT =R)

The solution of the canonical equation (8716) is defined by
Qtl > Wiy — ¢t1,t2 (wtl) = Wi, € th (818)

Since (RI8) determines the deterministic causal map, we have the deterministic sequential causal

operator {®y, s, : L>(2,) = L)}, ap)er2 such that
[(I)tl,tz(ftQ)](wtl) = ft2(¢t17t2 (wt1)> (vftz € LOO(QZ)athl € Qt17t1 < t2) (819)

8.4.3 Schrédinger equation (quantizing Hamiltonian)

The quantization is the following procedure:

( hv/=18
total energYE quantumization ot
. . . _hd
quantization" ¢ momentum p antamization V104 (8.20)
position ¢ ﬁ q
\ quantumization
Substituting the quantumization (8720) to the classical Hamiltonian:
P
E=H =—4V
(@,p) = 5~ +V(q)
we get
0 h 0 h? 02
AW—-1—=Hg ——V=—— — 1V 8.21
v-lg =3, \/_—mq) om i (q) (8.21)
And therefore, we get the Schrodinger equation:
ou(t, q) h 0 h? 92
hv/—1 =H(q, ——=—)u(t,q) = ———==u(t % t 8.22
Vv By (¢, \/—_18q)u< ) 5 anU( ,q) +V(q)ult,q) (8.22)

Putting u(t,-) = u; € L*(R) (Vt € T = R) we denote the Schrodinger equation (822) by

Learning the (820) by rote, we can derive Schrodinger equation (822). However, the meaning of “quantumization”
is not clear.
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8.4 Kinetic equation (in classical mechanics and quantum mechanics)

Solving this formally, we see

up = eﬁiﬁtug (Thus, the state representation is |ug){u;| = |e%tu0)(eﬁ%tuo| ) (8.23)

where, ug € L*(R) is an initial condition.

Now, put Hilbert space H; = L?*(R) (Vt € T = R), and consider the quantum basic structure:
[C(L*(R)) € B(L*(R)) € B(L*(R))]
The dual sequential causal operator { @7, ,, : Tr(Hy,) — Tr(Hz,)} i, 1)erz 1s defined by
* i(t2*1‘/1) i(7ﬁ2*t1) *
07, 4, (p) = eV pehvT (Vp € Tr(Hy,) = (B(Hy))« = €(Hy,)") (8.24)
And therefore, the sequential causal operator {®y, 4, : B(Hy,) = B(Hy, )}, p)erz 1s defined by

— 3

upp(A) = e T AT 0T (A € B(H,)) (8.25)

Also, since
@7, 4, (6"(C(Hy,)") € 6°(C(Hy,)),

the sequential causal operator {®y, 1, : B(Hy,) — B(Hy )}, ap)erz 18 deterministic. Since we deal

with the time-invariant system, putting ¢ = t5 — t;, we see that (825) is equal to

=K 4 H 4
At = @t(AO) = ehv—1 Aoeh\/jl (826)
And thus, we get the differential equation:
dA, = —ot e%tAoehiﬁt + — e%tAoeﬁjcflt ot

At hy/—1 hv/—1 hv/—1

—K H 1
— A+ A — A,H — HA 8.27
i/—1 0 ' hy—=1 hv—1 < ¢ t> (8.27)

which is just Heisenberg’s kinetic equation. In quantum language, we say that

e Heisenberg’s kinetic equation is formal, and Schrodinger equation is makeshift,

though the two are usually said to be equivalent.
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8.5 Exercise:Solve Schrodinger equation by variable separa-
tion method

Consider a particle with the mass m in the box (i.e., the closed interval [0, 2]) in the one dimen-
sional space R. The motion of this particle (i.e., the wave function of the particle) is represented by
the following Schrodinger equation
292

“amag @D +Vo(@ve ) (inH = L*(R))

0
lhadj(% t) =

where

0 (0<¢<2)
oo ( otherwise )

Volg) = {

Vo(q)

Y(q,t)

Figure 8.5: Particle in a box

Put
P(q,t) =T()X(q) (0<¢<2).

And consider the following equation:

h?o?

.0

o(q,t).

Then, we see

') . X"q) = K(= constan
T~ 2mX(g) o

Then,

o(q,t) =T(t) X (q) = Csexp(iKt) (C’l exp(in/2mK/h q) + Cyexp( — in/2mK/h q)>
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8.5 Exercise:Solve Schrodinger equation by variable separation method

Since X (0) = X(2) = 0 (perfectly elastic collision), putting K = 25" we see

8m

in*m?ht

¢(q,t) =T (t)X(q) = Csexp( )sin(nmq/2)  (n=1,2,..).
Assume the initial condition:
¥(q,0) = ¢y sin(mq/2) + co8in(2mq/2) + c3sin(3wq/2) + - - - .

where [ |1(q,0)[?dg = 1. Then we see

(g, )
w2 hit A ht 97 ht
=c exp(/”;m )sin(mq/2) + o exp(Z Fm )sin(2mq/2) + ¢ eXp(Z T

)sin(3mwq/2) + - - - .
And thus, we have the time evolution of the state by

pr= [0 ON DG (€ 8(Tr(H)) € B(H)) (V¢ > 0)
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8.6 Random walk and quantum decoherence

8.6.1 Diffusion process

Example 8.15. [Random walk]  Let the state space Q be Z = {0,£1,+2,...} with the counting
measure v. Define the dual causal operator ®* : M, 1(Z) — M 1(Z) such that

0i—1+ dit1

*(0;) = 5

(ieZ)

where §()(€ M1(Z)) is a point measure. Therefore, the causal operator ® : L®(Z) — L®(Z) is
defined by

[@(F)](7) = Fe—1) ;L Fi+l) (VF € L®(Z),Vi € Z)

and the pre-dual causal operator ®, : L'(Z) — L'(Z) is defined by

[@..(f)]() = fi-1) ; Fi+l) (Vf € LY(Z),Vi € Z)

Now, consider the discrete time 7" = {0,1,2,..., N}, where the parent map = : T\ {0} — T is
defined by 7(t) =t —1 (t = 1,2,...). For each t(€ T), a state space §2; is define by Q; = Z. Then,
we have the sequential causal operator {® (= @) : L=() — L¥(Qrgw)) brer\ (0}

8.6.2 Quantum decoherence: non-deterministic causal operator

Consider the quantum basic structure:
[C(H) € B(H) € B(H)]
Let P = {P,}>2, be the spectrum decomposition in B(H), that is,
P, is a projection (i.e., P, = (P,)? ), and, i P,=1
Define the operator (Vp), : Tr(H) — Tr(H) such that
(Up)s(Ju)(u|) = Z\Pu (Pou|  (Yue€ H)
Clearly we see

(v, (Up), (Ju)(u])v ZlPu (Pu|)v Z| P >0 (Yu,v e H)
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8.6 Random walk and quantum decoherence

and,

Tr((We)(|u) (ul))

=Te(Y [Puu){Poul) = Y Y ew PP = Y 1 Paull® = [[ul® (Vu € H)

n=1 n=1 k=1

where {ej}72, is CONS in H.
And so,

(Wp).(TrE, (H)) © Tria(H)

Therefore, Vp(= ((Vp).)*) : B(H) — B(H) is a causal operator, but it is not deterministic. In

this note, a non-deterministic (sequential) causal operator is called a quantum decoherence.

Remark 8.16. [Quantum decoherence] For the relation between quantum decoherence and quantum
Zeno effect, see § 10.4. Also, for the relation between quantum decoherence and Schrédinger’s cat,
see § 10.5.

In tis note, we assume that the don-deterministic causal operator belongs to the mixed measure-

ment theory. Thus, we consider that quantum language (= measurement theory ) is classified as

follows.
( ; classical system : Fisher statistics
ure e
P ( A })fp quantum system : usual quantum mechanics
1
(A) measurement theory
(=quantum language) od t classical system : including Bayesian statistics, Kalman filter
mixed type
( A )}’I quantum system : quantum decoherence
\ 2
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8.7 Leibniz-Clarke Correspondence: What is space-time?

This section is published in the following:

e ref. [65]: S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypothesis,

McTaggart’s paradoz, etc. are clarified in quantum language
Open Journal of philosophy, Vol. 8, No.5 , 466-480, 2018, DOI: 10.4236/0jpp.2018.85032
(https://www.scirp.org/Journal/PaperInformation.aspx?PaperD=87862)

e ref. [66]; S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypothesis,
McTaggart’s paradoz, etc. are clarified in quantum language; [Revised version] ; Keio Reseach
report; 2018; KSTS/RR-18/001, 1-15 (https://philpapers.org/rec/ISHLCB)
(http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18001.pdf])

The problems (“What is space?” and “What is time?”) are the most important in modern science
as well as the traditional philosophies. In this section, we give the quantum linguistic answer to these
problems. As seen later, our answer is similar to Leibniz’s relationalism concerning space-time. In this

sense, we consider that Leibniz is one of the discoverers of the linguistic Copenhagen interpretation

8.7.1 “What is space?” and “What is time?”)

8.7.1.1 Space in quantum language
( How to describe “space” in quantum language)

In what follows, let us explain “space” in measurement theory (= quantum language ).

For example, consider the simplest case, that is,
(A) “space” =R, ( one dimensional space)

Since classical system and quantum system must be considered, we see

(B1): a classical particle in the one dimensional space R,

(B)

(B2): a quantum particle in the one dimensional space R,

In the classical case, we start from the following state:
(g,p) = (“position”, “momentum”) € R, x R,

Thus, we have the classical basic structure:

(Cl) [CO(R(] X Rp) C LOO<Rq X Rp) C B(L2(Rq X Rp)]
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8.7 Leibniz-Clarke Correspondence: What is space-time?

Also, concerning quantum system, we have the quantum basic structure:
(Co) [C(L*(R,) € B(L*(R,) € B(L*(R,)]

Summing up, we have the basic structure
B (Cy): classical [Co(R, x R,) C L®(R, x R,) C B(L*(R, x R,)]
(C) [ACAC B(H)
(Cy): quantum [€(L*(R,) C B(L*(R,) C B(L*(R,)]

Since we always start from a basic structure in quantum language, we consider that

How to describe “space” in quantum language

< How to describe [(A):space] by [(C):basic structure] (8.28)

This is done in the following steps.

Assertion 8.17. [The linguistic Copenhagen interpretation concerning ”space”|
How to describe “space” in quantum language

(Dy) Begin with the basic structure:

[ACAC B(H)

(Ds) Next, consider a certain commutative C*-algebra Ag(= Cp(€2)) such that

|

Ay C

(D3) Lastly, the spectrum 2 (=~ &P(A,)) is used to represent “space”.

For example,
(E1) in the classical case (Cy):
[Co(Ry x R,) © L¥(R, x Ry) © B(L*(R, X Ry))]
we have the commutative Cy(RR,) such that
Co(R,) € L=(R, x R,)

And thus, we get the space R, as mentioned in (A)
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(E2) in the quantum case (Cy):
[C(L*(Ry) € B(L*(R,)) € B(L*(R,))]
we have the commutative Cy(RR,) such that
Co(Ry) € B(L*(R,))
And thus, we get the space R, as mentioned in (A)

8.7.1.2 Time in quantum language
( How to describe “time” in quantum language)

In what follows, let us explain “time” in measurement theory (= quantum language ).

This is easily done in the following steps.

Assertion 8.18. [The linguistic Copenhagen interpretation concerning ”time”]
How to describe “time” in quantum language

(F1) Let T be a tree. For each t € T, consider the basic structure:

[A, C A, C B(H,)]

(F2) Next, consider a certain linear subtree 77(C T'), which can be used to represent “time”.

8.7.2 Leibniz-Clarke Correspondence

The above argument urges us to recall Leibniz-Clarke Correspondence (1715-1716: ¢f. [l]), which

is important to know both Leibniz’s and Clarke’s (=Newton’s) ideas concerning space and time.

(G) [The realistic space-time]
Newton’s absolutism says that the space-time should be regarded as a receptacle of a

“thing.” Therefore, even if “thing” does not exits, the space-time exists.

On the other hand,

(H) [The metaphysical space-time]
Leibniz’s relationalism says that

(H;) Space is a kind of state of “thing”.
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8.7 Leibniz-Clarke Correspondence: What is space-time?

(Hg) Time is an order of occurring in succession which changes one after another.

Therefore, I regard this correspondence as

Newton (=~ Clarke)| <—

V8. (linguistic view)

(realistic view)

which should be compared to

[Einstein] ~ ¢—  [Bol]

(realistic view) (linguistic view)

Again, we emphasize that Leibniz’s relationalism in Leibniz-Clarke correspondence is clarified in

quantum language, and it should be regarded as one of the most important parts of the linguistic

Copenhagen interpretation of quantum mechanics.

#Note 8.6. Many scientists may think that
Newton’s assertion is understandable, in fact, his idea was inherited by Einstein. On the other,
Leibniz’s assertion is incomprehensible and literary. Thus, his idea is not related to science.

However, recall the classification of the world-description (Figure 0.1):

(space-time in physics)

() : Newton, Clarke --~‘realistic space—time‘
(realistic world view) “What is space-time?”

;

(successors: Einstein, etc.)

(space-time in measurement theory)

linguistic space-time

(i.e., spectrum, tree)

: Leibniz
linguisti 1d vi -
(linguistic world view) “How should space-time be represented?”

in which Newton and Leibniz respectively devotes himself to (1) and (2). Although Leibniz’s assertion

is not clear, we believe that

e Leibniz found the importance of “linguistic space and time” in science,

Also, it should be noted that

(#1) Newton proposed the scientific language called Newtonian mechanics,
on the other hand,
Leibniz could not propose a scientific language

After all, we conclude that

(t2) the cause of philosophers’ failure is not to propose a language.

Talking cynically, we say that

(#3) Philosophers continued investigating “linguistic Copenhagen interpretation” (=“how to use Ax-
ioms 1 and 2”) without language (i.e., Axiom 1(measurement:§2.7) and Axiom 2(causality:§8.3)).
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#Note 8.7. I want to believe that “realistic” vs. “linguistic” is always hidden behind the great disputes
in the history of the world view (cf. ref. [59]). That is,

’realistic world view‘ e ’ linguistic world View‘
o (idealistic)

For example,

Table 8.1 : The realistic world view vs the linguistic world view

Dispute \ R vs. L R:= the realistic world view L:= the linguistic world view
Greek philosophy Aristotle Plato
Problem of universals] Nominalisme(William of Ockham) Realismus(Anselmus)
Space-times Clarke( Newton) Leibniz
Quantum mechanics Einstein (cf. [IH]) Bohr (cf. [H])

It is usally said that the Problem of universals is not easy to understand. The reason is that the
two problems ( i,e., " Trialism in Table B-1” and "realistic view or linguistic view” in Table 871) were
simultaneously discussed and confused in the history.

8.8 Zeno’s paradox and Motion function method (in classi-
cal system)

Zeno’s paradox is humanity’s oldest unsolved scientific problem. Thus, numerous challenges have
therefore been made to solve Zeno’s paradox. For example,

(i) solving it with Newtonian mechanics.
(ii) Solving it in the framework of relativity.

(iii) solving it in the framework of quantum mechanics, etc.
Why were these challenges not generally approved?

The reason, I think, is that Newtonian mechanics, relativity, quantum mechnincs are not a theory of
everyday science. And thus, I would like to consider that

(#) to solve Zeno’s paradox < to discover a theory of everyday science (i.e., classical QL ), and
clarify Zeno’s paradox in classical QL

Thus let us prove Zeno’s paradox in classical QL as follows.
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8.8 Zeno’s paradox and Motion function method (in classical system)

8.8.1 Zeno’s paradox (e.g., flying arrow)

D =S X T

distance speed time

If we obey the motion function method, we can easily solve Zeno’s paradoxes (e.g., Flying arrow) as
follows.

Answer 8.19. (=Answer 2.11 in ref.[74]) Under the motion function method, we discuss “Fly-
ing arrow” as follows.

e Consider the motion function z(t), that is, for each time ¢, the position z(t) of the arrow is
corresponded. It is obvious that

(#) "for each time ¢, the position x(t) of the arrow is corresponded” does not imply that the
motion function z(t) is a constant function.

Therefore, the arrow is not necessarily at rest.

=

Y

8.8.2 The Schrodinger picture and the Heisenberg picture are equivalent
in the classical system

(The general case (the Schrédinger picture and the Heisenberg picture are equivalent) will be dis-
cussed in section 91..)

According to Leibniz, “time” is just a “parameter” that can be conveniently created. Let’s
introduce “parallel time” and “Series time. Here, parallel time represents the time lapse of a dice
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throw or the law of large numbers, etc.(cf. ref. [71]). Let Q(C RY) (where N is assumed to be
sufficiently large natural number) be a compact space, and let B(€ P(2)) be the Borel field of
Q. (2,B(2),r) be measure space such that v(2) = 1. Assume that v(D) > 0 for all open set
D(C Q) such that D # (). Thus we consider the W*-algebraic basic structure [C(2) C L*>*(Q,v) C
B(L>(£2,v))]. Consider a classical dynamical system (€2, ¢, +,). Assune that t1,t, € T' = [0, 1] such
that 0 <, <ty <1, amap ¢, 4 (-) : 2 —  is bi-continuous and satisfies the following condition:

(ﬂl) hmtzﬁtl ¢t1,t2 (w) =W (w € Q)
(ﬁQ) [¢t2,t3 © ¢t1,t2](w) = ¢t2,t3 <¢t1,t2 (w)) = gbthtg(w) (W € Qv 0<t <ty <t3< 1)

As mentioned before
(K) there exists a homomorphism ®;, 4, : L>(Q) — L*>(Q2) such that

[(I)thtz (th)](wtl) = Gts (¢t1,t2 (wtl)) (thl S Qa\V/th S LOO(Q))v

Consider the following time series (i.e., the case that N =3, Q; =Q,i=0,1,2,3)

(L)

O=(X,F,F) ® O=(X,F,F) ® O=(X,F,F) ® O=(X,F,F)
J/state space J/state space J/state space J/state space
®0,1 01,2 2,3
— — —
[WO(zdwo )]

where O = (X, F, F') is arbitrary observable in L>(€2).
[(i) Schrédinger pictures ( a state moves) :Parallel time)] of (L):

Figure ( the case that N =3; Q=Q;, i=0,1,2,3)

Q| 0= (X,F,F)
¢o,0: identity map

: 0=(X,5,F) bo2 = $1,2° @01
5 ¢0,3 = ¢2,3 o ¢1,2 o ¢0,1

ey
0
o
s Q) 0= (X,7,F)
bo,3 Q] 0= (X,F,F)

Assume that the state wy(€ §2) at time to(= 0) evolves in time to become ¢4, (wo) (k =0,1,...,N)
as follows:
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(43) state ¢, (wo) = wo at time tg = 0/n(=0)
state ¢oy, (wo) at time t; = 1/n
state ¢o 4, (wo) at time t5 = 2/n

state ¢oy, (wo) at time ty = k/n

state ¢4, (wo) at time ¢, =n/n =1
And assume:

(M) At e?{ch time to(= 0),t1(= 1/n), ... tx(= k/n), ..., t,(= 1), measurement Mc(o) (O = (X, F, F), Sigy.,, (wo)))
is taken.

That is, putting 7,, = {to(=0),t1(= 1/n),--- ,t,(= 1)}, we take the tensor product exact measure-
ment:

&) Mc)(0 = (X, F, F), Sigo,,, (won)
tkeTn
=Mc@m) ® Op, = QTn %(QTn>7 ® F)7S[(¢0,tk(w0))tk€Tn]>
tp €Ty tr€Ty

Then, we see that, for any =, C X (k =1,2,...,n),

(N) the probability that the measured value belongs to x¥_ =}, is given by

k%O[F(Ek)](%,tk (wo))

[(ii) Heisenberg picture ( observable moves: (Series time)]

Figure ( the case that N =3;Q=CQ,;, i=0,1,2,3)

O0=(X,%,F) o O0=(X,%,F) o O0=(X,%,F) ® O0=(X,%,F)
LOO(Q()) (L Loo<Ql) (L LOO<QQ) (i Loo(Qg)
[wo

As mentioned in the above, assume that the state wy(€ §2) at time to(= 0), and T, = {to(=
0),t1(=1/n), -+ ,tp_1(= (n — 1)/n), to(=1)}. Assume that, at each to(= 0),t1(=1/n), - ,t,_1(=
(n—1)/n),t,(=1), an observable O = (X, P(X), F) is set.

(b4) the observable O(= (X,J, F')) at time ¢,(= 1) is identified with the observable ®; ,: O(=
(X, T, @y, 1, F)) at time ¢,_4. At time ¢,_;, we originally have an observable O, and the
product of this O and ®,, ,;,O gives the observable at time ¢,,_;:

O X ((ptn—lytno) ( = (X27 & i::[?? F\nfl))
Similarly, the observable it time ¢, 5 is represented by

O x (q)tn—z,tn—l(o X ((I)tn—l,tno))) ( = (Xga X 2:197 F\n72>)
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Further, the observable at time ¢,_3 is represented by,
0 X (@4, 2(0 X (1, p, 1 (0 % (B1,,1,0))) (= (X", B}, F, Fros))

Iteratively, after all, the observable at time ¢t is represented by,

~

Oto =0 x (q)to,tl(' o (O X <¢tn737tn72 (O X (q)tn727tn71(o X (¢tn711tno)))>> T ))
= (Xn+1> X Zii?, F\O)

Thus, we get the measurement MLOO(Q)(atO,S[WO]) at time ¢t = 0. Therefore, putting =, C X (k =
1,2,...,n), we see that

(O) the probability that its measured value belongs to x¥_, =}, is given by [F\O(Eo X2 XX Z,)](wo)

Here, we see

[Fo(Zo X 1 % -+ X Z,)](wo)

=[F(Z0))(wo) X P,y 0o F1(E1 % -+ % )] (wo)

=[F(Z0)|(wo) X [F1(E1 x -+ X E)](w1)

= X [F(E0)](@0s,(«0))
Here, note that (N)=(O) holds. Thus, we can conclude that

(P) Schrodinger and Heisenberg pictures are equivalent in the classical system

8.8.3 Derivation of the motion function method from (classical) quan-
tum language

In the above, we see that the Schrodinger picture (N) and the Heisenberg picture (O) are equivalent
in classical system. From here, consider the case of exact observables, i.e.,

0= (X,?,F) = (97‘3(9)7E§2) = OEQ

where B(€2) is the Borel field, [Eq(Z)](w) = 1(w € 2),=0(w ¢ ).
Put T'= [0, 1]. And further, consider the infinite tensor product exact measurement

® ML"O(Q) (OEQ = (Q, 3<Q)7 EQ)? S[(bo,t(wo)})

teT

:MLOO(QT)(® Op, = (QTv B(QT)v ® Eq), S[(d’o,t(wo))teﬂ)

teT teT

Thus we see
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(Q) When the tensor product exact measurement My qr)y (&),cr Op, = (QF, B(QT), Eqr), Si(4.1(wuy)eer])
is taken, the probability that the measured value (z;)ier(€ Q) belongs to any open set which
includes (w;)ier(€ Q) is 1. In the same sense, the measured value (z;)er(€ QF) is surely
equal to (¢o(wo))ter

Ty = ¢o(wo) /

-

> T<: [07 1])

In general, define the position map P’ : Q(= X) — X’ such that

Q(= X) > [state] & [position] (= X")
Then, the motion function m : T'— X’ can be written as follows.

m(t) = P'(¢o+(wo)) (VteT)
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Chapter 9

Simple measurement and causality

By chapter 10, we have learned all of quantum language, that is,

( (ﬁl):’ pure measurement theory‘

(=quantum language)
[(pure)Axiom 1] [Asaem—7) [linguistic Copenhagen interpretation)]

= ’ pure measurement ‘ + ’ Causahty‘—l—’ Linguistic Copenhagen interpretation
(cf. BZI) (cf. §83) (cf. §80)

a kind of spells (a priori judgment) manual to use spells

(f2) :’ mixed measurement theory ‘

(=quantum language)

[(mixed) Axiom(™) 1| [Bxaomd] [inguistic Copenhagen interpretation]
= ’ mixed measurement ‘ + ’ Causality ‘+’Linguistic Copenhagen interpretation
(cf. §) (cf §%3) (cf §51)
a kind of spells(a priori judgment) manual to use spells

However, what is important is
e to exercise the relationship of measurement and causality.
Since measurement theory is a language, we have to note the following wise sayings:

e FExperience is the best teacher, or Custom makes all things.

9.1 The Heisenberg picture and the Schrodinger picture

In Sec. B®2, T discussed the Schrodinger picture and the Heisenberg picture are equivalent in the
classical system, In this section I discuss the Schrodinger picture and the Heisenberg picture in

quantum systems.
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9.1 The Heisenberg picture and the Schrédinger picture

9.1.1 State does not move — the Heisenberg picture
We consider that

“only one measurement” = “state does not move”

That is because

(a) In order to see the state movement, we have to take measurement at least twice. However, the

“plural measurement” is prohibited. Thus, we conclude “state does not move”.
We are tempted to think that this is associated with Parmenides’ words:

There 1s no movement, (9.1)

which is related to the Heisenberg picture. This will be explained in what follows.

Theorem 9.1. [Causal operator and observable] Consider the basic structure:
[Ar C A, C B(H,)]  (k=1,2).

Let @45 : As — A; be a causal operator, and let Oy = (X,F, F,) be an observable in Aj,. Then,
D150, = (X, T, 1 2F5) is an observable in A,.

Proof. Let = (€ F). And consider the countable decomposition {Z,Zs,...,=,,...} of 2 ( ie.,

== U 2 €F,n=1,2,..),2,NZ, =0 (m#n) > Then we see, for any pi(€ (A1)«),

o0

(.A ) <p17 q)l 2F2<LJ1 ))Zl - (Zl)* ((q)1,2>*p17 FQ(L_Jl En)>ﬁ2
Z ( (1312 PlaFQ Zin ) Z(A (,01><I>1,2F2(5n)>ﬁ2
—1
Thus,®, 205 = (X, F, 1 5F3) is an observable in A O

Let us begin with the simplest case. Consider a tree T' = {0,1}. For each t € T, consider the

basic structure:
And consider the causal operator @ : A, — Ap. That is,

— 0,1

‘AO — Zl (92)
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Chap. 9 Simple measurement and causality

Therefore, we have the pre-dual operator (®¢). and the dual operator @ ;:

(o). = () Ay A (93)
;1) 0,1

If &, : A, — Ap is deterministic, we see that
Ay 2 &(Ag) 3 p —— Ppap € 67(A) C AL (9.4)
0,1

Under the above preparation, we shall explain the Heisenberg picture and the Schrédinger picture

in what follows.

Assume that
(A;) Consider a deterministic causal operator ®q; : A — Ay.
(Ay) astate py € GP(Af) : pure state
(A3) Let Oy = (X1,d4, F1) be an observable in A

Then, we see:

Explanation 9.2. [the Heisenberg picture] The Heisenberg picture is just the following (a):
(al) To identify an observable O; in A, with an ®(10; in Ao . That is,

= $o,1
104 (ON

(in Ao) identification (in A7)
Therefore,

(a2) a measurement of an observable O; (at time ¢ = 1) for a pure state py (at time t = 0) € GP(AY)
is represented by

Mz, (20,101, Sjpy))-

Thus, Axiom 1 ( measurement: §2.7) says that

(a3) the probability that a measured value belongs to Z(€ ¥F) is given by
A (ﬂo;q)o,l(Fl(E)))zO- (9.5)

Explanation 9.3. [the Schrédinger picture]. The Schrodinger picture is just the following

(b):

217

For further imformation see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

9.1 The Heisenberg picture and the Schrédinger picture

(b1) To identify a pure state ®j,po(€ &P(A})) with po(€ &P(Ag)), That is,

@*
Aj D SP(Af) 3 pg ———— O 1po € GP(A}) C Aj
identification ’

Therefore, Axiom 1 ( measurement: §2.7) says that

(b2) a measurement of an observable O, (at time ¢t = 1) for a pure state py (at time t = 0) € GP(A})
is represented by

Mﬁl (Ol, S[@alpo]).

Thus,

(b3) the probability that a measured value belongs to =Z(€ ¥F) is given by

A (@3,1007 F1(5>>7117 (9.6)

which is equal to
A (,007 Do,1(F1 <E>)>ﬁ0- (9.7)

In the above sense (i.e., (96) and (97) ), we conclude that, under the condition (A;),

the Heisenberg picture and the Schrodinger picture are equivalent.

That is,

M7, (®0,101, Sa)) (idmmﬁon) Mz, (O1, Siaz , po)) (9.8)
(Heisenberg picture) (Schrédenger picture)

Remark 9.4. In the above, the conditions (A;) is indispensable, that is,
(A;) Consider a deterministic causal operator ®q; : A — Ay

Without the deterministic conditions (A;), the Schrodinger picture can not be formulated completely.
That is because @ po is not necessarily a pure state. On the other hand, the Heisenberg picture is

always formulated. Hence we consider that

the Heisenberg picture is formal

the Schrodinger picture is makeshift
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Chap. 9 Simple measurement and causality

9.2 The wave function collapse ( i.e., the projection postu-

late )
Spread out ﬁ Collapsed .
wavefunction > p wavefunction
~ g
/
/ . > J
o ‘\-_

The lingistic interpretation says that the post measurement state is meaningless. However, con-
sidering a tricky measurement, we can realize the wave function collapse. In this section, we shall

explain this idea in the following paper:

e Ref. [65] Linguistic Copenhagen interpretation of quantum mechanics; Projection Postulate,
JQIS, Vol. 5(4) , 150-155, 2015

9.2.1 Problem: How should the von Neumann-Liiders projection pos-
tulate be understood?

Let [C(H), B(H)]p(m) be a quantum basic structure. Let A be a countable set. Consider the projec-
tion valued observable Op = (A, 2*, P) in B(H). Put

Py, = P({\}) (VA e ) (9.9)
Axiom 1 says:

(A1) The probability that a measured value A (€ A) is obtained by the measurement Mgy (Op :=(A, 2%, P),
Sip)) is given by

Tr, (pPao)(= (u, Pagu) = | Pyull®),  (where p = |u)(ul) (9.10)

Also, the von Neumann-Liiders projection postulate ( in so called Copenhagen interpretation, cf.

[T04, R3]) says:
(Ay) When a measured value Ay (€ A) is obtained by the measurement
Mg (Op :=(A, 2%, P), S,), the post-measurement state ppost is given by

Ppost = PA0|U><U|P)\0
pos [ Proull®
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9.2 The wave function collapse ( i.e., the projection postulate )

And therefore, when a next measurement Mp ) (Op :=(X, T, F), S[Pposﬂ) is taken (where Op
is arbitrary observable in B(H)), the probability that a measured value belongs to Z(€ JF) is
given by

— PAOU — P)\Ou
T F=)( = F(= 9.11
oo FE) (= (e FETESD) (9.11)

Problem 9.5. In the linguistic Copenhagen interpretation, the phrase: “post-measure- ment state”
in the (As) is meaningless. Also, the above (=(A1)+(Asz)) is equivalent to the simultaneous mea-
surement Mp(g)(Op x Op, S};), which does not exist in the case that Op and Op do not commute.

Hence the (As) is meaningless in general. Therefore, we have the following problem:
(B) Instead of the Op x Op in Mp)(Op x Op, S|,), what observable should be chosen?

In the following section, I answer this problem within the framework of the linguistic Copenhagen

interpretation.
9.2.2 The derivation of von Neumann-Liiders projection postulate in
the linguistic Copenhagen interpretation

Consider two basic structure [C(H ), B(H)]pm) and [C(H ® K), B(H ® K)|puek)- Let {Px| A € A}
be as in Section 11.2.1, and let {e)}rea be a complete orthonormal system in a Hilbert space K.

Define the predual Markov operator ¥, : Tr(H) — Tr(H ® K) by, for any u € H,

Vo (lu)(ul) = 1D (Pu@e))(d (Pue) (9-12)

AEA AEA
or
W (fu)(ul) :Z|PAU®€A><PAU®€,\| (9.13)
AEA

Thus the Markov operator ¥ : B(H ® K) — B(H) ( in Axiom 2) is defined by ¥ = (¥,)*.
Define the observable Og = (A, 2%, G) in B(K) such that

GHAD = lex)ea] (A ep)

Let Op = (X, J, F') be arbitrary observable in B(H). Thus, we have the tensor observable O ® O¢g
= (X xA,FX2Y F® Q) in B(H ® K), where X 2% is the product o-field.

Fix a pure state p = |u)(u| (v € H,|lul|g = 1). Consider the measurement Mp)(V(Op ®
O¢), Si)). Then, we see that
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(C) the probability that a measured value (z, A) obtained by the measurement Mg (¥(Op ® Og),
Sip)) belongs to = x {Ag} is given by

T, [(Ju) (u) U (F(E) @ GHA})] = 1) ([ ul, U(F(E) © G{A})) g
=rvom (L)), F(2) @ GH{Ao}) por) = Traer [(T(Ju) () (F(E) @ G({Ad}))]
=Tt [(| ) (Pru @ ex)) (D (Pru® ex))(F(E) @ fexg) (ex])]

A€EA AEA
:<P)\0’LL, F(E)P)\OU> (VE c S'r)

( In a similar way, the same result is easily obtained in the case of (9-13)).

Thus, we see the following.
(Dy) if 2= X, then

Tr, [(Ju) () W(F(X) @ G({Xo}))] = (Pagu, Payu) = || Proul? (9.14)

(D2) in case that a measured value (x, \) belongs to X x {\¢}, the conditional probability such that

x € Z is given by

P)\OU
[[Pxoull

<P)\OU,F(E)P)\OU> < _ < P/\Ou

IERAE Boal £ E) ) (=e) (9.15)

where it should be recalled that Op is arbitrary. Also note that the above (i.e., the projection
postulate (D)) is a consequence of Axioms 1 and 2.

Considering the correspondence: (A) < (D), that is,
Mgy (Op, Sip) (or, meaningless Mgy (Op x Op, Siy) ) & Mpm) (¥ (Op ® O¢), Sp)s

namely,

(10.10) < (10.14), (10.11) < (10.15)

there is a reason to assume that the true meaning of the (A) is just the (D). Also, note the taboo

phrase “post-measurement state” is not used in (Ds) but in (As). Hence, we obtain the answer
of Problem 934 (i.e., ¥(Op ® O¢) ).

Remark 9.6. So called Copenhagen interpretation may admit the post-measurement state (cf. [24]).

Pyg lu){u| Py, .
=020 which

Thus, in this case, readers may think that the post-measurement state is equal to B2
0
is obtained by the (D) ( since O is arbitrary). However, this idea would not be generally approved.
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9.3 de Broglie’s paradox (non-locality=faster-than-light)

That is because, if the post-measurement state is admitted, a series of problems occur, that is,
“When is a measurement taken?”, “When does the wave function collapse happen?”, or “How fast
is the wave function collapse?”, which is beyond Axioms 1 and 2. Hence, the projection postulate

“postulate”. On the other hand, in the linguistic Copenhagen interpretation,

is usually regarded as
the projection postulate is completely clarified, and therefore, it should be regarded as a theorem.

Recall the Wittgenstein’s words: “The limits of my language mean the limits of my world”.

Postulate 9.7. [Projection postulate, cf. ref. [55]] As mentioned in the above, the statement (Aj)
(= von Neumann-Liiders projection postulate) is wrong. However, in the sense of the (Dj), the

statement (A,) is often used. That is, we often say:

(E) when a measured value Ay (€ A) is obtained by the measurement Mp(z)(Op :=

(A, 2%, P), S)), the post-measurement state ppost is given by

P>\0 |u> <U|P>\0

= 9.16
ppOSt ||P>\Ou||2 ( )

9.3 de Broglie’s paradox (non-locality=faster-than-light)

In this section, we explain de Broglie’s paradox in B(L*(R)) (¢f. §210: de Broglie’s paradox in
B(C?) ).
PUttlng q= (q17 q2, QS) € RB) and
0? o? 0?
Vi= =+ ==+ ==
o of o

we consider Schrédinger equation (concerning one particle):

o (qut) = _—hQVMV t ¢ (9.17)

where m is the mass of the particle, V' is a potential energy.
For simplicity, we discuss one dimensional case R, and consider the Hilbert space H = L*(R, dq).

Putting H, = H (t € R), consider the quantum basic structure:

[C(H) € B(H) C B(H)].

Equation 9.8. [Schrodinger equation]. There is a particle P (with mass m) in the box (that is, the
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closed interval [0,2](C R)). Let py, = |¢1,) (¥1,| € GP(C(H)*) be an initial state (at time ty) of the
particle P. Let p; = |¢:) (14| (to <t < t1) be a state at time ¢, where ¥y = ¢(-,t) € H = L*(R, dq)
satisfies the following Schrodinger equation:

initial state: (-, tg) = 1y,
o (9.18)
ihg(a.1) = | 3 e+ Va0 wla.0)

20
V=ee

V=2 V
V=2 ‘ ﬁ
V=0
0

L=2 a

Consider the same situation in §10.5, i.e., a particle with the mass m in the box of closed interval

[0,2] in one dimensional space R.

Vo(q)

Y(q,t)

\
A

0 2

Figure 9.1(1)(time o)
Now let us partition the box [0, 2]] into [0, 1]] and [1,2]. That is, we change V;(q) to Vi(q), where

0 (0<g<])
@) =1 o El - ?S 2 (9.19)
oo ( otherwise )
Vi(g)
balg, ) [
o\ V(4 >

Figure 9.1(2)(partition)
Next, we carry the box [0,1] [resp. the box [1,2] to New York (or, the earth) [resp. Tokyo (or, the
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polar star)].

New York Tokyo
¢2(Qa 2(:1
wl (Q7 tl /\
0 1 a+1 a+2

Figure 9.1(3)(time ¢;)

Here, 1 < a. Solving the Schrédinger equation (9-18), we see that

wl('vtl) + 1/}2('7751) = Uto,tlwto

where U, @ L*(Ry,) — L*(Ry,) is the unitary operator. Define the causal operator @, :
B(L*(Ry,)) — B(L*(Ry,)) by

(I)to,tl (A) = Utz,tlAUto,tl (VA € B(LZ(th)))
Put T = {to,t1}. And consider the observable O = (X = {N,T.EF},2%X F) in B(L*(Ry,)) (where
“N”=New York, “T”=Tokyo, “E”=elsewhere ) such that

1 0<¢g<1

FUNDIO ={ ¢ oete + FUTDI0 = {
FUEDI@) = 1 - [FUNDI(0) - FUTDI(@).

1 a+1<g<a+2
0 elsewhere

Y

Hence we have the measurement Mp(r2(r,,)) <<I>t0,t10, 5[\wto><wzou>-

Conclusion 9.9.
In Heisenberg picture, we see, by Axiom 1 ( measurement: §2.7), that

N
(A7) the probability that a measured value | 7' | is obtained by the measurement
E

M (L2 (®e,)) (‘I)to,tl o S[\zptowto\]) is given by

<ut0? CIleo t1 ({N} uto fo ’;pl %tl)‘ dq
<ut07 q)to t1 ({T}) > faajl |¢2(Q7 tl) |2dq
<ut07 q)toil ({E}) >
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Also, In Schrodinger picture, we see Axiom 1 ( measurement: §2.7), that

N

(Ay) the probability that a measured value | 7' | is obtained by the measurement
E

Ma(r2(r,y) <O’ S[Q:O,tluwtoxwtonl) is given by

Tr( @7 4, ([th10) (Y1) - F({N})> = (Uso.sVt0, FUNDUsg,,%010) = [y 11(a, t1)[?dg
T (@1, ([910) (Wtal) - FUTH) = Ut s ras FATH Uy, 10) = [ 1oa(a,t1)[dg
Tr q)zﬁo,tl(lwto><¢to|) : F({E})) = <Ut07t1wto’F({E})Ut07t1wto> =0

Note that the probability that we find the particle in the box [0,1] [resp. the box [a + 1,a + 2]] is
given by [i, [¢1(q,t1)[?dg [resp. [g |v2(q,t1)|?dg]. That is,

(A1)=(A2)

Remark 9.10. In the above, assume that we get a measured value “N”, that is, we open the box
[0,1] at New York. And assume that we find the particle in the box [0,1]. Then, in the sense of

Postulate 9.7, we say that at the moment the wave function ¢, vanishes. That is,

New York Tokyo
) “Vanish’
V1(q, 1
0 1 a+1 a+2

Figure 9.1(4) (The wave function after measurement)

where

/ (g, )
%(CL tl) - Hw/1<7t1)H

Thus, we may consider “the collapse of wave function” such as

1(5 1) + (- 1) i (t) (9.20)

the collapse of wave function

Also, note that New York [resp. Tokyo} may be the earth [resp. the polar star}. Thus,

e the above argument (in both cases (A;) and (Ay)) implies that there is something faster than

light.
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9.4 Quantum Zeno effect

This is called “the de Broglie paradox”(¢f. [I4, T0T]). This is a true paradox, which is not clarified

even in quantum language.

9.4 Quantum Zeno effect

This section is extracted from

e Ref. [46]: S. Ishikawa; Heisenberg uncertainty principle and quantum Zeno effects in the
linguistic Copenhagen interpretation of quantum mechanics

( arXiv:1308.5469 [quant-ph[ 2014 )
9.4.1 Quantum decoherence: non-deterministic sequential causal oper-
ator

Let us start from a review of Section 862 (quantum decoherence). Consider the quantum basic

structure:
[C(H) € B(H) € B(H)].
Let P = [P,]22, be the spectrum decomposition in B(H), that is,

P, is a projection, and, Z P, =1.
n=1
Define the operator (Vp), : Tr(H) — Tr(H) such that
(Up)w(|u)(ul) Z\Pu (Pou|  (Yue H).

Clearly we see

(, (Up),(|u)(u|)v Z|Pu (P,u|)v i| P ?>0  (Yu,v € H)
and -
Tr((Wp).(|u) (u]))
:Tr(i | Pou)(P,ul) ii |(ex, Pau) Z |Poul® = |jul®*  (Vu € H)
Hence - o
(Wp)«(Trt, (H)) € Trya(H).
Therefore,
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(2) ¥p(= ((¥p).)*): B(H) — B(H) is a causal operator, but it is not deterministic.

In this note, a non-deterministic (sequential) causal operator is called a quantum decoherence.

Example 9.11. [Quantum decoherence in quantum Zeno effect ¢f. [&3]]. Further consider a causal
operator (V%) : Tr(H) — Tr(H) such that

iHAL _iHAL

(U (lu)(ul) = e F u)(e™ " u|  (Vue H),
where the Hamiltonian J is, for example, defined by
_h2 82
= [Smag V@

Let P = [P,]22, be the spectrum decomposition in B(H), that is, for each n, P, € B(H) is a

projection such that
Y P=1
n=1
Define the (Vp), : Tr(H) — Tr(H) such that
(Up)w(|u)(ul) Z\Pu (Pou| (Yue H).

Also, we define the Schrédinger time evolution (¥5?), : Tr(H) — Tr(H) such that

1HAt 1HAL

muy(e” houl (Yue H),

(U5")(Ju)(ul) = |e”

where H is the Hamiltonian (8721). Consider t = 0, 1. Putting At = %, H = Hy = H,, we can define
the (QD( )) : Tr(Hy) — Tr(H;) such that

N N
(@57)+ = ((T)u()),
which induces the Markov operator &Y : B(H,) — B(H,) as the dual operator ®{ = ((®{}),)*
01 - 1 0 P 0,1 0,1 /)

Let p = |¢) (1| be a state at time 0. Let Oy :=(X,F, F) be an observable in B(H;). Then, we see

p=1v) (Y|

B(Hy)|+— |B(Hy)
Fe))

0,1 01 :=(X,5,F)

Thus, we have a measurement:
N
M) (263 1, i)

(or more precisely, MB(HO)(q)é{\PO =(X, T, @5{?17), Siwye) )- Here, Axiom 1 ( §2.7) says that
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(A) the probability that the measured value obtained by the measurement belongs to Z(€ &) is
given by

Tr([) (0] - B4y F(2)). (9.21)

Now we shall explain “quantum Zeno effect” in the following example.

Example 9.12. [Quantum Zeno effect]

Hot soup is hard to cool down when you see it.

Let ¢ € H such that |[¢|| = 1. Define the spectrum decomposition
P =[P(=[0)@]), A(= 1 - P)]. (9.22)
And define the observable Oy :=(X,J, F') in B(H;) such that
X = {x1, 20}, F =2
and

F({z}) = [0)@l(= P),  F({z2}) =1 = [0){l(= Po).

Now we can calculate (921)(i.e., the probability that a measured value z; is obtained) as follows.

(a20) = (1, (Ug™). () )N (J90) ()
> (1, eV ) (1, ern )|V
~ (1= (I = 1. C0P) =1 (V= o) (9.23

Thus, if N is sufficiently large, we see that

N
M (i) (25 01, Sty o) = M) (@101, iy )
(where ®; : B(H;) — B(H)y) is the identity map)

= M) (01, Spu )

Hence, we roughly say in Schrodinger picture that
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the state |1) (1| does not move.

Remark 9.13. The above argument is motivated by B. Misra and E.C.G. Sudarshan [88]. However,

the title of their paper: “The Zeno’s paradox in quantum theory” is not appropriate. That is because

(B) the spectrum decomposition P should not be regarded as an observable (or moreover, measure-

ment).

The effect in Example 912 should be called “brake effect” and not “watched pot effect”.

9.5 Schrodinger’s cat, Wigner’s friend and Laplace’s demon

9.5.1 Schrodinger’s cat and Wigner’s friend

Let us explain Schrodinger’s cat paradox in the Schrédinger picture.

Problem 9.14. [Schrédinger’s cat]

(a) Suppose we put a cat in a cage with a radioactive atom, a Geiger counter, and a poison gas
bottle; further suppose that the atom in the cage has a half-life of one hour, a fifty-fifty chance
of decaying within the hour. If the atom decays, the Geiger counter will tick; the triggering
of the counter will get the lid off the poison gas bottle, which will kill the cat. If the atom

does not decay, none of the above things happen, and the cat will be alive.

poilson gas

. GeigeT counfer

@ radioactiv¢ atom

Figure 9.2: Schrodinger’s cat

Here, we have the following question:

(b) Assume that, after one hour, you look at the inside of the box. Then, do you know whether
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the cat is dead or alive after one hour ?

Of course, we say that it is half-and-half whether the cat is alive. However, our problem is

Clarify the meaning of “half-and-half”

L)

Ay
P

ANote 9.1. [Wigner’s friend]: Instead of the above (b), we consider as follows.

(b’) after one hour, Wigner’s friend look at the inside of the box, and thus, he knows whether the
cat is dead or alive after one hour. And further, after two hours, Wigner’s friend informs you of
the fact. How is the cat ?

This problem is not difficult. That is because the linguistic Copenhagen interpretation says that ”the
moment you measured” is out of quantum language. Recall the spirit of the linguistic world-view (i.e.,
Wittgenstein’s words) such as

The limits of my language mean the limits of my world

and

What we cannot speak about we must pass over in silence.

THE LIMITS OF MY ; j
 ANGUAGE Whereof one cannot ;;J:z:':ah;tt]ebr:oszlent
MEAN THE LIMITS ‘

OF MY WORLD (Ludwig Wittgenstein)

(1889-1951)

9.5.2 The usual answer

Answer 9.15. [The first answer to Problem 914 (i.e., The pure state, Projection Postulate 0-7)].
Put q= (Q117 412, 913, 921, 422, 423, - - - , dn1; dn2; QH3) € R?m. And put

0? 0? 0?
2 _
Vi = 8%21 " 8%22 - 8%23.
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Consider the quantum system basic structure:
[C(H) C B(H) C B(H)] ( where H = L*(R3",dq) ).

And consider the Schrédinger equation (concerning n-particles system):

ihgu(at) = | X0 52V + Via,t)] v(a,)
(9.24)

Yo(q) = ¥(q,0) : initial condition

where m; is the mass of a particle P;, V' is a potential energy.

If we believe in quantum mechanics, it suffices to solve this Schrodinger equation (9-24). That is,

(A1) Assume that the wave function ¢(-,60?) = Upgp2¢ after one hour (i.e., 60% seconds) is calcu-

lated. Then, the state pgoz (€ Trh (H)) after 60* seconds is represented by

peoz = |Pe02) (V602 | (9.25)
(where 1pgp2 = (-, 60%)).
Now, define the observable O = (X = {life, death}, 2%, F') in B(H) as follows.

(Ag) that is, putting

Vife(C H) = {u € H | “ the state ||2|L>T|1;|” & “cat is alive”}
u

Vieath (S H) = the orthogonal complement space of Ve
={ue H|(u,v)=0 (Vve& V)l

define F'({life})(€ B(H)) is the projection of the closed subspace Vjjf, and F({death}) =
I — F({life}),

Here,

(A3) Consider the measurement Mgy (0 = (X,2%, F), Sipgoz)). The probability that a measured

{ lif
value

e . . L
doath } is obtained is given by

Tr(H) P602>F<{life})>B(H) = (Ye02, F'({life})1pgp2) = 0.5
Tr(H) \ P602, F({death})>B(H) = (Ye02, F'({death})vgp2) = 0.5
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Therefore, we can assure that

1
Yoz = 7(¢nfe + Ydeath)- (9.26)

(where ¥yige € Viie: [Vnigell =1 Ygeath € Vdeath: ¥deatnll = 1)

Hence. we can conclude that

(A4) the state (or, wave function) of the cat (after one hour ) is represented by (926), that is,

“Fig.(f1)"+ “Fig.(#2)”

V2
Fig. (1) ~ vite Fig. (ﬂz YPdeath
I
‘poikon gas
poiso gas click!
. Geiger counteq Gelger counte
@ radioactive ftom l“ radloactlve tom

Figure 9.3: Schrodinger’s cat(half and half)

And,

(As) After one hour (i.e, to the moment of opening a window), It is decided “the cat is dead” or

“the cat is vigorously alive.” That is,

13 7 1
half-dead ( = 5(’1/)life + Ydeath) (Vlife T wdeath‘)>
in the sense of Postulate 977 ( precisely speaking, by the misunderstanding of Postulate 9-7),

“alive” (= |V}ife) (V1ifel)

the collapse of wave function “d ead”(

to the moment of opening a window .

= Wdeath> (wdeath )
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9.5.3 The answer using decoherence

Answer 9.16. [The second answer to Problem 9.14)].

In quantum language, the quantum decoherence is permitted. That is, we can assume that

(B1) the state pg,. after one hour is represented by the following mixed state

, 1
Peo2 = 2 <|¢life><¢life| + |¢death><¢death|>

That is, we can assume the decoherent causal operator ®g g2 : B(H) — B(H) such that
(Po.602)(p0) = Poge-

Here, consider the measurement M) (0 = (X, 2%, F), S;pj)), or, its Heisenberg picture M gz (P 6020 =
(X, 2%, @602 F), Sipp]). Of course we see:

- life
(By) The probability that a measured value [ death

M () (Po,6020 = (X, 2%, g 602 F), Spp]) is given by

is obtained by the measurement

Tr(H) PO»CI)O,GOQF({hfe}))B(H) = <¢ég27F({hfe})¢602> =05
Tr(H) | L0, @0,602F({death})>B(H) = Wéoza F({death})vgp2) = 0.5

Also, “the moment of measuring” and “the collapse of wave function” are prohibited in the

linguistic Copenhagen interpretation, but the statement (Bs) holds in quantum language. Il

9.5.4 Summary (Laplace’s demon)

Summary 9.17. [Schrédinger’s cat in quantum language]
Here, let us examine

Answer9.T5 :(A;) v.s. Answer9. 16 :(B,)
(Cy) the answer (Aj) may be unnatural, but it is an argument which cannot be confuted.
On the other hand,

(Cy) the answer (Bj) is natural, but the non-deterministic time evolution is used.

Since the non-deterministic causal operator (i.e., quantum decoherence) is permitted in quantum

language, we conclude that
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(C3) Answer U.16:(B,) is superior to Answer 9.15:(A,).

For the reason that the non-deterministic causal operator (i.e., quantum decoherence) is permitted

in quantum language, we add the following.

e If Newtonian mechanics is applied to the whole universe, Laplace’s demon appears. Also, if
Newtonian mechanics is applied to the micro-world, chaos appears. This kind of supremacy of
physics is not natural, and thus, we consider that these are beyond “the limit of Newtonian

mechanics”
And,

e when we want to apply Newton mechanics to phenomena beyond “the limit of Newtonian
mechanics”, we often use the stochastic differential equation (and Brownian motion). This

approach is called “dynamical system theory”, which is not physics but metaphysics.

beyond the limits

’Newtonian mechanics\ —
physics linguistic turn

dynamical system theory:; statistics‘ (9.27)

metaphysics

In the same sense, we consider that quantum mechanics has “the limit”. That is,
e Schrodinger’s cat is beyond quantum mechanics.
And thus,

e When we want to apply quantum mechanics to phenomena beyond “the limit of quantum
mechanics”, we often use the quantum decoherence. Although this approach is not physics but

metaphysics, it is quite powerful.

beyond the limits

> | quantum language

metaphysics

quantum mechanics ‘
physics

linguistic turn
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ANote 9.2. If we know the present state of the universe and the kinetic equation (=the theory of
everything), and if we calculate it, we can know everything (from past to future). There may be a
reason to believe this idea. This intellect is often referred to as Laplace’s demon. Laplace’s demon is
sometimes discussed as the super realistic-view (i.e., the realistic-view over which the degree passed).
Thus, we consider the following correspondence:

b d the limit
cyona Tae s Laplace’s Demon (9.28)

physics ?

Newtonian mechanics‘ —
physics super realistic-view

This should be compared with the formula (9-27).

9.6 Wheeler’s Delayed choice experiment: *“ Particle or wave
?7” is a foolish question

This section is extracted from

(1) [62] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradoz in the quan-

tum linguistic Copenhagen interpretation, arxiv:1407.5143[quantum-ph], (2014)

9.6.1 “Particle or wave ?” is a foolish question

In the conventional quantum mechanics, the question: “particle or wave?” may frequently appear.
However, this is a foolish question. On the other hand, the argument about the “particle vs. wave”

is clear in quantum language. As seen in the following table, this argument is traditional:

Table 9.1: Particle vs. Wave in several world-views (¢f. Table 21 )

’ World-views \ P or W H Particle(=symbol) ‘ Wave(= math. represent ) ‘
Aristotle hyle eidos
Newton mechanics point mass state (=(position, momentum))
Statistics population parameter
Quantum mechanics particle state (~ wave function)
Quantum language system (=measuring object) state

In Table 9.1, Newtonian mechanics (i.e., mass point <> state) may be easiest to understand. In
view of this table, we understand “particle” and “wave” are not contradictory concepts, so that it is

possible to think
(A1) “Particle or wave” is a foolish question.

On the other hand
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(Ay) we have Wheeler’s delayed choice experiment on “particle or wave”.
So let me answer the interesting question:

(A3) How is Wheeler’s delayed choice experiment described in quantum mechanics ?

9.6.2 Preparation

Let us start from a review of Section 210 (de Broglie paradox in B(C?)). Let H be a two

dimensional Hilbert space, i.e., H = C2. Consider the basic structure
[B(C?) € B(C?) € B(C?).

Let fi1, fo € H such that

Put

i+ f2
ol

Thus, we have the state p = |u)(u| (€ &P(B(C?))). Let U(€ B(C?)) be an unitary operator such

that
1 0
U= |:0 6i7r/2j| )

and let @ : B(C?) — B(C?) be the homomorphism such that

u =

®(F)=UFU  (VF € B(C?).
Consider two observable O; = ({1,2},22}, F) and O, = ({1,2},2!1?},G) in B(C?) such that
FA1Y) = f)AL FE2)) =[] and  G{1}) = [g){a],  G({2}) = [92)(92]

where

Ji— 2 f1+f2'
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9.6.3 de Broglie’s paradox in B(C?) (No interference)

half mirror 1

u= 75 (fi+f2) ._.. course 1 \/Lifl mirror 1
Photon P | "
course 2 % fo \L@ fi
N T
4 A y—_-
\ L 2Ly D= (D)
mirror 2 (photon detector)
4,

Dy(= (If1)(A])
e (photon detéctor)

Figure 9.4(1). [D; + Dy]=Observable O
Now we shall explain, in the Schrodinger picture, Figure 9.4(1) as follows. The photon P with

the state u = \%(ﬁ + f2) ( precisely, p = |u){u| ) rushed into the half-mirror 1,

(By) the fi part in u = \/Li( f1+ f2) passes through the half-mirror 1, and goes along the course 1.
And it is reflected at the mirror 1, and goes to the photon detector D;.

(By) the fy part in u = \/Lﬁ(f 1+ f2) rebounds on the half-mirror 1 (and strictly saying, the f, changes
to v/—1f2, we are not concerned with it ), and goes along the course 2. And it is reflected at
the mirror 2, and goes to the photon detector Ds.

This is, in the Heisenberg picture, represented by the following measurement:
Mp(c2) (205, Spp)) (9-29)

Then, we see:

a measured value 1
a measured value 2

[ riiafo) =l 2] =

(C) the probability that [ } is obtained by Mp(c2)(®Oy, Sy,)) is given by

%} (9.30)
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Remark 9.18. [Projection postulate] By the analogy of Section 11.2 ( The projection postulate ),
Figure 9.4(1) is also described as follows. That is, putting e; = Lﬂ and ey = {ﬂ (e C?), we have
the observable Op = ({1,2},2{4% E) in B(C?) such that E({1}) = |e;){e; and E({1}) = |e1)(e;.

Hence,

half mirror 1

“:%(h*ﬁ)'-_. course 1 5 f1®e1 wirror 1
Photon P | "=
course 2 %ﬁ@eg \%fl@el
V=1 V-1
= Ja®e — f2®e
N2 LRy by (o) s fe) )
mirror 2 (photon detector)

\/%f1®e1

Di(= (05 @ [er)(ex]))
(photon detector)

Figure 9.4(1"). [D1 + D5]=0; ® O

Thus, using the Schrodinger picture, in the above figure we see:

v—1
fi®er + —2f2®62

7

1 1
u=—(f1 + f =
2( ! 2> time evolution \/5

which may imply that spacetime and quantum entanglement are related.

9.6.4 Mach-Zehnder interferometer (Interference)

Next, consider the following figure:
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half mirror 1

u=3(fi4f2) "\, course 1 Zh {iirror 2
Photon P | " N
course 2 % fa \%f 1
| vlg . 0
N2 ) D= (l92)g2]))
mirror 1 half mirror 24 " (photon detector)
Lh— Sk

Di(= (lg:)(g1))
(photon detector)

Figure 9.4(2). [Dy + D5]=0ObservableQ,

Now we shall explain, by the Schrodinger picture, Figure 9.4(2) as follows. The photon P with
the state u = \/Li( fi1+ f2) (precisely, p = |u)(u| ) rushed into the half-mirror 1,

(Dy) the f; part in u = \/Ai(f 1 + f2) passes through the half-mirror 1, and goes along the course
1. And it is reflected at the mirror 1, and passes through the half-mirror 2, and goes to the
photon detector D;.

(D2) the f part in u = \%( fi+ f2) rebounds on the half-mirror 1 (and strictly saying, the f, changes
to v/—1f2, we are not concerned with it ), and goes along the course 2. And it is reflected at

the mirror 2, and further reflected in the half-mirror 2, and goes to the photon detector D.

This is, by the Heisenberg picture, represented by the following measurement:

Mp(c2)(9?Oy, Sj,j). Then, we see:

a measured value 1
a measured value 2

i) = [ivanr] = o] 031

(E) the probability that [ ] is obtained by Mpc2)(®?Oy, Sj,)) is given by

9.6.5 Another case

Consider the following Figure 9.4(3).
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half mirror 1

u=-(fi+f2) = 1 mirror 2
V2 . 1 f
—2 5t OIS el Di(= ([f1){f:])
Photon P | " (photon detector)
course 2 % fa
V1 .
\ Rk .
mirror 1 half mirror 2
L,

DQ(: (’f2><f2‘))

e (photon detector)

Figure 9.4(3). [Ds + D;] =ObservableO;

Now we shall explain, by the Schrédinger picture, Figure 9.4(3) as follows. The photon P with
the state u = \/Lé( fi + f2) ( precisely, p = |u)(u| ) rushed into the half-mirror 1,

(F1) the f; part in u = %(fl + f2) passes through the half-mirror 1, and goes along the course 1.
And it reaches to the photon detector D;.

(Fg) the f; part inu = \/Lé( fi+ f2) rebounds on the half-mirror 1 (and strictly saying, the f, changes
to v/—1f5, we are not concerned with it ), and goes along the course 2. And it is again reflected

at the mirror 1, and further reflected in the half-mirror 2, and goes to the photon detector Ds.

This is, in the Heisenberg picture, represented by the following measurement:
Mp(c2) (2*Of, Spy))- (9.32)

Therefore, we see the following:

measured value 1

measured value 2

Mp(c2)(9?Oy, Sp) is given by
{Trmcw({l}))] _ [wvu,F({l})UUuq _ Pwvu, mq _ H
Tr(p - ©2F({2})) (UUu, F({2})UUu) (UUu, fa)|? 3

Therefore, if the photon detector D; does not react, it is expected that the photon detector D,

(G) The probability that { 1 is obtained by the measurement

reacts.
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9.6.6 Conclusion

The above argument is just Wheeler’s delayed choice experiment. It should be noted that the
difference among Examples in §9.6.3 (Figure 9.4(1))- §9.6.5 (Figure 9.4(3)) lies in the observables

(= measuring instrument ). That is,

§9.6.3 (Figure 9.4(1)) > @Oy
Heisenberg picture

§9.6.4 (Figure 9.4(2)) > D20,
Heisenberg picture

§9.6.5 (Figure 9.4(3)) 20,

Heisenberg picture

Hence, it should be noted that

(H) Wheeler’s delayed choice experiment —“after the photon P passes through the half-mirror
1, one of Figure 9.4(1), Figure 9.4(2) and Figure 9.4(3) is chosen” — can not be described

paradoxically in quantum language.

Hence, Wheeler’s delayed choice experiment is not a paradox in quantum language, or in the sense

of Wittgenstein’s words (i.e., the spirit of the linguistic world view):
What we cannot speak about we must pass over in silence.

However, it should be noted that the non-locality paradox (i.e., “there is something faster than

light”) is not solved even in quantum language.

ANote 9.3. What we want to assert in this book may be the following:

(#) everything (except “there is something faster than light”) can not be described paradoxically in
quantum language

9.7 Hardy’s paradox: total probabilty is less than 1

In this section, we shall introduce the Hardy’s paradox (cf. ref.[I9]) in terms of quantum lan-

guage".
Let H be a two dimensional Hilbert space, i.e., H = C2. Let f1, f2, g1, g2 € H such that
o 1} _/_{0} o hith o, h—f
fl fl |:O ) f2 f2 11 9N 91 \/5 ) g2 9o \/§

IThis section is extracted from

(#) [62] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the quantum linguistic
Copenhagen interpretation, arxiv:1407.5143[quantum-ph],( 2014)
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9.7 Hardy’s paradox: total probabilty is less than 1

Put

u:f1\~/|—§f2(:g1)

Consider the tensor Hilbert space H ® H = C?> ® C? and define the state p such that

fitf
\/§ )

/:f1+f2
V2

p=lueu)us |

U=u®@u ®

As shown in the next section (e.g., annihilation (i.e., fi ® fi — 0), etc.), define the operator P :
C? ® C? — C? ® C? such that

Plonnfi® i+ ainfi® fo+anfo® fi + asfo ® fo)
= —apfi® fo—anfo® fi + anfo® f

Here, it is clear that

P a1 fi ® fi+ apnfi @ fo+ o fo @ fi + oo fo @ f2)
=apfi® fotanfo® fi+anfa® fo

hence, we see that P? : C?> ® C?2 — C? ® C? is a projection. Also, define the causal operator
U : B(C?® C?) — B(C2® C?) by

U(A)= PAP  (Ae B(C*®C?)
Here, it is easy to see that ¥ : B(C? @ C2) — B(C2? ® C?) satisfies
(Ay) U(A*A) >0 (VA€ B(C?® C?))
(Az) W(I) = P

Since it is not always assured that W(I) = I, strictly speaking, the ¥ : B(C? @ C2) — B(C2 ® C?) is

a causal operator in the wide sense.

9.7.1 Observable O, ® O,

Consider the following figure
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Positron ’\/ii(f{ + f5)
V-1 f mirror 2

half mirtor 1/ N\

"1 e V=1 s
course 1 SVollk

half mirror 1 V271 V2
%(fl—w:f)\course 1 %fl lirror 2 Dy (= (lg1)(911)
Electron H*s N Nif 1o annihilatig n,ﬁf{ (De;ector)
JI mirror 1 half mirrop ¥’
course 2 Wf 2 ifl no annihilation,
Lh
= < Di= (a8 (ash)
N ) T - <) (Detector)
mirror 1 half mirror 2 Ds(= (|g1){q1]))
(Detector)
|, Di(=(192){9a]))
~ (Detector)

Figure 9.5(1). Electron P and Positron P’ are annihilated at ®

In the above, Electron P and Positron P’ rush into the half-mirror 1 and the half-mirror 1’

respectively. Here, “half-mirror” has the following property:

o cn=1 SHICEEES

pass through half-mirror

o v = r=n

be reflected in half-mirror, and x+/—1
Assume that the initial state of Electron P [resp. Positron P'] is B f1 + Bafa [resp. 51 f] + 55 f5].

Then, we see, by the Schrodinger picture, that

(Bufr + Bafa) @ (BLfL + Bofs) = BiBifir @ fi + BiBofi @ fo + BoBBifoa @ f1 + BaBBafoa ® fo

—
(half-mirror)

BB @ fi+ V=1B1B L @ [y + V=181 fo @ f1 — BoBofo @ f5

\
7

(annihilation(i.e., fi ® f] =0))

\/—_1516§f1 ® fo+ \/—_1525”2 ® fi — Pafayfa @ fo

(second half-mirror)

— B185f1 ® fo — Bafifo @ fi + Bafyfa ® fo
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The above is written by the Schrodinger picture W, : Tr(C2 ® C2) — Tr(C2 ® C2). Thus, we have
the Heisenberg picture (i.e., the causal operator ) ¥ : B(C? ® C2) — B(C2® C2) by ¥ = (U,)*.
Define the observable Oy, = ({1,2} x {1,2},2(02>{(12} H_yin B(C?® C2) by the tensor observable
O, ® Oy, that is,

~

flgg({(l, 1)}) = ‘91 ® 91><91 & 91|7 Hgg({<1>2)}) = ’91 ® 92><91 ®gg\,
Hyy({2. D)) = lg2 @ 1) (g2 @l Hyg({(2,2)}) = |92 ® 92){g2 ® g2

Consider the measurement:
Mpc2ec) (P04, Si) (9.33)
Then, the probability that a measured value (2,2) is obtained by M B(@@@)(@G, Sip1) is given by

(u® u, PHyy({(2,2)})P(u )

(fi=f)@h—fo) @ ft @i+ fo® fo)l
16
AR/ —[iQf—f®@fi+®fr Q®fit®fi+ fa® fo)? _ 1
16 16
Also, the probability that a measured value (1,1) is obtained by M B(@@@Q)(@Ggg, Sip1) is given by

(u®u, PHy,({(1,1)}) P(u@u))
H(fi+ )@ (fit+ o), i® fat fo® f1i+ fo® f2)?
16
A+ Q@ fa+a@fi+r®fo, i@ fo+ fo@ fi+ f2® f2)]? _ 9

16 16
Further, the probability that a measured value (1,2) is obtained by M B(@@@z)(\/ff@gy, Sip) is given by

(u®u, PHyy({(1,2)}) P(u® u))
H(fi+ )@ (fi—fo), 1i® fat+ fa® fi+ fa® f2)]?

16
hefi-heh+heh-—Ffef eh+theoh+theof)? 1
- 16 16
Similarly,
~ 1
(u®u, PHoy({(2,1)}) Pu®u)) = ¢

Remark 9.19. Note that
L + 0 + L + L_3 <1
16 16 16 16 4

which is due to the annihilation. Thus, the probability that no measured value is obtained by the

measurement M B(@2®Cz)(\/ﬁ6, S[ﬂ) is equal to }t.
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9.7.2 The case that there is no half-mirror 2’

Consider the case that there is no half-mirror 2’ the case described in the following figure:

Positron P%(f{ + f3)

vV—1 pr
=Y course 2'°—7=f5

half mirbor 1/

mirror 2’

N\

V=L g
. half mirror 1 COUTSE : Rk , N
UL conrse 151 irror 2 Dy (= ([/D{fD)
Electron H*" 1\ N.if no annihilatid n,\—l2 fi (D;tector)
VI mirroh’
course 2 Wf 2 ifi no annihilation,
\ﬁfl ! ’ N/ £
v Efg . v Di(= (1/5)(f3])
‘ T (Detector)
mirror 1 half mirror 2 Do(= (|g1){51]))
(Detector)
Di(= (Ig2)(g2)
> (Detector)

Figure 9.5(2). Electron P and Positron P’ are annihilated at ®

Define the observable Ggf = ({1,2} x {1,2}, 2{1.2x{1.2} ﬁgf) in B(C?*® C?) by the tensor observ-
able O, ® Oy, that is,

~ ~

Hgf<{(1 D}) =g ® fi){g1 ® fil, Hgf({(Lz)}) = |91 ® f2) {91 ® fal,

Hye({2,1)1) = g2 @ fi){g2 ® fil,  Hyp({(2.2)}) = lg2 ® f2) (g2 @ fol

Since the causal operator ¥ : B(C2 ® C2) — B(C2 ® C2) is the same, we get the measurement:
Mp(czacz) (P0yy, Sp) (9.34)
Then, the probability that a measured value (2,2) is obtained by M B(@@Cz)(@f)gf, Sip1) is given by

(uw® u, PHyp({(2,2)}) P(u®w))

:’<(f1—fz)®f27f1®f2+f2®f1+f2®f2>\2 0
8

Also, the probability that a measured value (1, 1) is obtained by M B(@@Cg)(@ﬁg £,9[5) s given by

(u®u, PHyp({(1,1)}) P(u®u))
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9.7 Hardy’s paradox: total probabilty is less than 1

(h+R) M ASH+LOA+LO P 1

8 8

Further, the probability that a measured value (1, 2) is obtained by M B(@@@)(@Gg £,5[5)) 1s given by

(u @ u, PHyp({(1,2)}) P(u® u))
(h+f)@f hi®fh+fheh+hof)? 4

16 8

Similarly,

(u® u, PHyp({(2,1)}) P(u®w))
(A-f)@h®fh+hoh+hof)? 1

8 8

Remark 9.20. It is usual to consider that “Which way pass problem” is nonsense. It should be
noted that, in the Heisenberg picture, the observable (= measuring instrument ) does not only include

detectors but also mirrors.
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Chap. 9 Simple measurement and causality

9.8 quantum eraser experiment
Let us explain quantum eraser experiment(cf. [T05]). This section is extracted from

(2) [62] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradoz in the quan-

tum linguistic Copenhagen interpretation, arxiv:1407.5143[quantum-ph],( 2014)

9.8.1 Tensor Hilbert space

Let C? be the two dimensional Hilbert space, i,e., C? = { {Zl

ol ol

Here, define the observable O, = ({—1,1},2{~1} F,) in B(C?) such that

1 | 21,20 € C}. And put

Z2

VR e R

Here, note that

E({1a = 5 +e), E({1Der= (o1 +e)

F({-1)er = e~ ), F{-1}er = 5(—e1 )

Let H be a Hilbert space such that L?(R). And let O = (X, F, F) be an observable in B(H). For

example, consider the position observable, that is, X = R, F = B, and

(qe=Zed)

rEl0-{, LEEes

Let u; and uy (€ H) be orthonormal elements, i.e., ||u1||g = |Juallg = 1 and (uy, uz) = 0. Put
U = U1 + QalUo

where «; € C such that |a;|?> + |as|? = 1. Further, define 1y € C* ® H ( the tensor Hilbert space of
C? and H) such that

= aie; @ up + azes @ uy

where a; € C such that |aq|* + |aa]? = 1.
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9.8 quantum eraser experiment

9.8.2 Interference

Counsider the measurement:

Mac2em) (02 ® O, Sjyyw)) (9.35)
Then, we see:

(A1) the probability that a measured value (1,z)(€ {—1,1} x X)) belongs to {1} x Z is given by

(v, (F({1}) @ F(2))¥)
=(a1e1 @ U + azes @ ug, (F({1} @ F(Z)))(ane1 @ ug + ages ® ug))

<a1€1 X (51 -+ [6515) X Uz, a1(€1 + 62) & F(E)Ul + Cl/2(€1 + 62) & F(E)u2>

1
2
1 — — _ — _ —
§(|a1|2<u1, F(2)ur) + ol (us, F(2)us) + @ (ur, F(S)us) + ondia(us, F(:)u1)>
1

— (laa 2w, F(E)ur) + ozl (uz, F(E)ua) + 2Real part](@as (ur, F(2)uz))

where the interference term (i.e., the third term) appears.
Define the probability density function p; by

B O FEN .
[piwda= TAGHE LD G

Then, by the interference term (i.e., 2[Real part](@;as(uy, F(Z)uz)) ), we get the following graph.

Y4

Figure 9.6(1): The graph of p;

Also, we see:

(Ag) the probability that a measured value (—1,z)(€ {—1,1} x X) belongs to {—1} x = is given by

(0, (F:({-1}) @ F(2))¢)
:<a161 X (51 + [6515) & Ua, (Fx({—l} & F(E)))(a161 X Ul -+ (651D X UQ))

1 _ —
:§<041€1 X U1 + Qg€ & U2, 041(61 — 62) X F(:)U1 + 062(—61 + 62) & F(:)u2>
1
2

<|0z1|2<u1, F(E)ur) + o] (us, F(E)uz) — @ras(ur, F(E)us) — ards{us, F(E)u1>>
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_% (\oc1|2<ul, F(2)uy) + |ag)®(ug, F(Z)uy) — 2[Real part](ayos(us, F(E)u2>)>

where the interference term (i.e., the third term) appears.

Define the probability density function py by

0, (F({-1) @ FE)Y) =
dq = V=eJ
L= e e (=9
Then, by the interference term (i.e., —2[Real part](@;as(us, F(ZE)us)) ), we get the following graph.

T T

Figure 9.6(2): The graph of po
9.8.3 No interference
Consider the measurement:
MB((C2®H)<O:E ® 0O, S[W)W’H) (9.36)

Then, we see

(A3) the probability that a measured value (u,z)(€ {1,—1} x X) belongs to {1, —1} x = is given by

(¥, (I ® F(2))¢)
(ane; @ uy + ages @ ug, (I @ F(Z)) (e ® ug + ages @ ug))

:<061€1 X Ui + Q€9 (9 Ug, X167 X F(E)Ul + Q9€o & F(E)UQ>
=lou [*(ur, F(E)ur) + |aa|*(us, F(Z)us)

where the interference term disappears.

Define the probability density function ps by
[ m@da= .10 FE)W) (Eed)

Since there is no interference term, we get the following graph.

D3 = p1 + P2

b1

Figure 9.6(3): The graph of ps = p1 + p2
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9.8 quantum eraser experiment

Remark 9.21. Note that

(As) = (A1)+(Az)

no interference interferences are canceled

This was experimentally examined in [[05].
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Chapter 10

Realized causal observable in general
theory

Until the previous chapter, we studied all of quantum language, that is,

(ﬁl):‘ pure measurement theory‘

(=quantum language)
[(pure)Axiom 1]
= ‘ pure measurement ‘ + ‘ Causality “f“ Linguistic Copenhagen interpretation

(cf. BZ) (cf. §83) (cf. §BD)

the manual to use spells

[Bxiom—J] [Guantum linguistic Copenhagen interpretation)

a kind of spell(a priori judgment)

(#2) :‘ mixed measurement theory ‘

(=quantum language)

[(mixed) Axiom(™) 1| [Bxiom 7] [quantum linguistic Copenhagen interpretation]
= ‘ mixed measurement ‘ —i—‘ Causality ‘—i—‘ Linguistic Copenhagen interpretation
(cf. §icm) (cf. §%3) (cf. §51)

a kind of spell(a priori judgment) the manual to use spells

As mentioned in the previous chapter, what is important is

e to exercise the relationship of measurement and causality

In this chapter, we discuss the relationship more systematically.

10.1 Finite realized causal observable

In dualism (i.e., quantum language), Axiom 2 (Causality) is not used independently, but is always

used with Axiom 1 (measurement), just as George Berkeley (A.D. 1685- A.D.1753) said :

(A1) To be is to be perceived.

ANote 10.1. Note that Berkeley’s words is opposite to Einstein’s words:

251
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(#3) The moon is there whether one looks at it or not.

in Einstein and Tagore’s conversation.

In this chapter, we devote ourselves to finite realized causal observable. The readers should

understand:

e ‘“realized causal observable” is a direct consequence of the linguistic Copenhagen interpretation,

that is,

Only one measurement is permatted.

Now we shall review the following theorem:
Theorem 10.1. [=Theorem YT:Causal operator and observable] Consider the basic structure:
[Ar CAr C B(H)]  (k=1,2)

Let @5 : Ay — A; be a causal operator, and let Oy = (X, JF, F3) be an observable in As. Then,
®,50, = (X, F, P, »F) is an observable in A,;.

Proof. See the proof of Theorem OT [

In this section, we consider the case that the tree ordered set T'(ty) is finite. Thus, putting
T(to) = {to,t1,...,tn}, consider the finite tree (7'(ty), < ) with the root ¢y, which is represented by
(T={to,t1,...,tn},m: T\ {to} — T) with the the parent map . .

Definition 10.2. [(finite)sequential causal observable]  Consider the basic structure:
Ar € Ax © B(Hy)] (€ T(to) = {to,t1,+++ ,tu})

in which, we have a sequential causal operator {®;, ,, : Ay, — ﬁtl}(tm)gﬁ (cf. Definition B7I1 )

such that

(i) for each (ty,t2) € Té, a causal operator @y, 4, : A, — A, satisfies that Dy 1, Pry 1y = Doy 1,
(V(t1,ta), V(ta, t3) € T2). Here, @y - A; — Ay is the identity.

q)23 T
_ =[Asz: O
‘Iiy[“% 0y <[ 5 : O3
(I)O L ‘Z ) O @2’4 [Z4 . 04]
B / A1+ 0] ‘%5_
[.AQ : O(]] ‘}6 [ﬁt‘) . 06] [\A5 . 05]
(I)077 [.Z7 : 07]

Figure 10.1 : Simple example of sequential causal observable
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Chap. 10 Realized causal observable in general theory

For each ¢t € T, consider an observable O,=(X,, ¥, ;) in A,. The pair [{O;}ser, {4, 4, - Ay, —
ztl}(tth)eTz ] is called a sequential causal observable, denoted by [Or] or [Orq,)]. That is, [Or]
= {Othter, {Ptss + Ay = Auti t2)eT? ]. Using the parent map = : T\ {tx} — T, [O7] is also

Tr(t) t

denoted by [O7] = [{O}er, {Ar —— Ar(t) her\f10}))-

Now we can show our present problem.

Problem 10.3. We want to formulate the measurement of a sequential causal observable[Or] =
{Ot}ier, { Pty 1, = Ar, — Atl}(tl,tQ)eTg ] for a system S with an initial state p;, (€ GP(A},)).

How do we formulate this measurement?

Now let us solve this problem as follows. Note that the linguistic Copenhagen interpretation says

that
only one measurement (and thus, only one observable) is permitted

Thus, we have to combine many observables in a sequential causal observable[Or| = [{O;}er,

{4, + As, — ‘Ztl}(tl,tz)GTg |. This is realized as follows.

Definition 10.4. [Realized causal observable]

- q>7r t),t —
Let T(to) = {to, tl, e ,tN} be a finite tree. Let [OT(to)] = [{Ot}tETa {(Dw(t),t . .At L) -Aw(t)}teT\{to}
| be a sequential causal observable.
For each s (€ T'), put T, = {t € T | t 2 s}. Define the observable O,;=(X e, Xi, M yer, Fy, Fy) in
Ag such that

0, (if s €T\ 7(T))

O
I

~ (10.1)
OSX<><t€ﬂ.—1({s}) @W(t)’tot) ( if s € 7T(T> )

(In quantum case, the existence of O is not always guaranteed) And further, iteratively, we get
the observable Oto = (Xyer Xy, XierFy, Fto) in A,;,. Put Oto = OT (to)-

The observable 6T(t0) = (Xyer Xy, X ierFy, ]*A}O) is called the (finite) realized causal observable of
the sequential causal observable[Orqy)] = [{O¢}rer, {Pr()s : A, — Zﬂ(t)}teT\{tO} ].

Summing up the above arguments, we have the following theorem:
In the classical case, the realized causal observable OT(tO) = (Xier Xy, X erFy, Fto) always exists.
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ap
#Note 10.2. In the above (I01), the product “x” may be generalized as the quasi-product “X”.
However, in this note we are not concerned with such generalization.

Example 10.5. [A simple classical example |  Suppose that a tree (" = {0,1,...,6,7},7) has an
ordered structure such that 7(1) = 7(6) = n(7) =0, 7(2) =7(5) =1, 7(3) = 7(4) = 2.

P23 [12(05) 1 Oy

T
(1)24 LOO Q4

‘@0/,1 [L2(S2) : O4] Dy 5
[1(0) : Oo] " [15(0y) : Oy \rm%) - 0s)

/\

Qo7 [L(2) : Of]
Figure 10.2 : Simple classical example of sequential causal observable
Consider a sequential causal observable [Or| = [{O; }ier, {L‘X’(Qt)@"g“ L>(Qr 1)) e\ fop)]- Now,

we shall construct its realized causal observable (A)T(to) = (Xier Xy, X er Ty, EO) in what follows.

Put
0,=0, andthus F,=F (t=3,4,56T).
First we construct the product observable 0, in L>(£)y) such as
0y = (X3 x X3 x X4, F, RF; KF, Fy)  where Fy = Fy X( X &y, F)),

t=3,4

Iteratively, we construct the following:

[ [}
L>() L®()P 2 L®()
Fy X q)0,6ﬁ6 X ®0,7ﬁ7 Fy X @1,5ﬁ5
= (] ~ [ ~
2 0,1 7 1,2 7
(Fox®o,6 F6 X Po,7 Fr x Do,1 Fy) (Fix®1,5F5xP1 o) (Fox®2 3 F3x®o 4 Fy)

That is, we get the product observable 61 = (szlXt, &L%,F\I) of Oy, @17262 and @1,565, and
finally, the product observable

60 = (X::()Xta &Z:O?taﬁ()(: FO X ( X (I)O,tﬁt))

t=1,6,7
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of Og, @07161, @07666 and @0,767. Then, we get the realization of a sequential causal observable

[{O¢}rer, {L=(%) Py L®(Qr)) beer\foy)- For completeness, Fp is represented by
ﬁo(onEl><52><53><54><E5><E6><E7)]
—Fy(Zp) X s <F1(El) X @15 F5(Z5) % @1 (Fa(Z2) X @5F5(Zs) @2741:’4(34)))
X o6(F5(Zg)) x Po7(F7(Z7)) (10.2)

(In quantum case, the existence of 60 in not guaranteed). ]

Remark 10.6. In the above example, consider the case that O, (t = 2,6,7) is not determined. In
this case,it suffices to define O; by the existence observable Ogexj):(Xt, {0, X}, Ft(eXi)). Then, we see
that

Fo(Zo x Ty X Xo X B3 X 54 x T X Xg x X7)
—Fy(Zo) x P, (Fl(El) X By 5 F5(Z5) X Bpo <¢2,3F3(53) X @274F4(E4)>) (10.3)

This is true. However, the following is not wrong. Putting 7" = {0,1,3,4,5}, consider the [Op/] =
{Ot}ters { Pty o+ L(Rt,) = L=(Q4y) } 4y a0)e(ryz. |- Then, the realized causal observable 6T/(0) =
(Xyer X, Xy Ty, ﬁé) is defined by

F\é(EQ X 21 X Eg X =4 X 55) = F()(Eo)
X (I)O,l <F1(51> X @175F5(E5) X @1’4F4<E4) X (I)173F3(53) X @174F4(E4)) (104)

which is different from the true (I0-2). We may sometimes omit “existence observable”. However, if

we do so, we omit it on the basis of careful cautions.

Thus, we can answer Problem I3 as follows.

Problem 10.7. [=Problem 03] (written again)
We want to formulate the measurement of a sequential causal observable[Or] = [{O;}er, {®s, 4, :
Aty = Au Fay t)erz | for a system S with an initial state py, (€ SP(A})).

How do we formulate the measurement 7

Answer: If the realized causal observable 6t0 exists, the measurement is formulated by

measurement My, (O, Sior))

Thus, according to Axiom 1 ( measurement: §2.7), we see that
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(A) The probability that a measured value (z;);e7 obtained by the measurement Mz, (GT, Sipey])
belongs to =(€ X ;erJ;) is given by

Al <pt07ﬁto(§)>ﬁto (10.5)

The following theorem, which holds in classical systems, is frequently used.

Theorem 10.8. [The realized causal observable of deterministic sequential causal observable in classical

systems | Let (T'(to), <) be a finite tree. For each t € T'(t(), consider the classical basic structure
[Co(2) C L=(Q4, 1) C B<L2(Qt7 )]

Let [Or] = [{Oitier, {Pr o + L2(R,) — L=(Q4,) } e, t)erz ] be deterministic causal observable.
Then, the realization (A)to = (Xier Xy, Myer s, ﬁ’to) is represented by

~

Oto = >< ®t0,tot
teT
That is, it holds that

[Fio (X Z )(wiy) = X @41 Fo(Z0)](wry) = té[Ft(Et)](d)to,twto)

teT teT

(VWtO c QtO,VEt € fTrt)

Proof. It suffices to prove the simple classical case of Example [0, Using Theorem K6 repeatedly,
we see that
FO = FO X ( X (I)(),tFt)
t=1,6,7

:FO X ((1)071?1 X q)O,GF\G X @077ﬁ7) = F() X (@071F\1 X @076F6 X (1)0’7F7)

=< X CI’O,tFt> X (@071]31) = ( X ‘I)o,tFt> X g1 (F1 X (t_>§5q)1,tﬁ;t))

t=0,6,7 t=0,6,7

:( X (I)O,tFt) X ¢0,1(t2§5®1,tﬁt) = < X (I)O,tFt) X q)0,1((1)1,2ﬁ2 X ‘1)1,5]/55)

t=0,1,6,7 t=0,1,6,7

= X (I)o,tFt X (I)O,1<(I)1,2ﬁ2> = X (I)O,tFt X (I)O,l(q)l,2(F2 X ( X (I)Z,tﬁt)))
t=3,4

t=0,1,5,6,7 t=0,1,5,6,7

7
=X (I)O,tFt
t=0

This completes the proof. O
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10.2 Double-slit experiment and projection postulate
10.2.1 Interference
For each ¢ € T = [0, 00), define the quantum basic structure

[C(H:) € B(H:) € B(H,)],

where H; = L*(R?) (Vt € T).
Let ug € Hy = L*(R?) be an initial wave-function such that (ko > 0, small o > 0):

1 " x? 1 y?
iy P (Z v 2a2> g P ( N ﬁ)

where the average momentum (p?, p9) is calculated by

ot = ([ oo 00A2,0), de. [ (00 Wy(y’ D000 1) = (k. 0).

That is, we assume that the initial state of the particle P is equal to |u0>(u0|.

Uo(ﬂ%y) ~ wx(x,O)wy(y,O) =

Picture 10.9. MB(H0)<(I)O,t202 = (]R, Br, (I)O,tzF2>> SHUO><UO|])

O /i\
N
IS
—
o
Y
8
>
S

t=1t t =1

Figure 10.3(1) Potential V (x,y) = oo on the thick line, = 0 (elsewhere)

Thus, we have the following Schrodinger equation:

0 h? 92 h? 0?
? atut(‘ruy> ut(‘rvy)? 2Im Or2 2may +v< )
Let s,t be 0 < s <t < oco. Thus, we have the causal relation: {®;, : B(H;) — B(Hs)}o<s<t<oo
where
O, A= T A (VA€ B(H,) = B(L*(R?)))
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Thus, (Poz, )« (ug) = ul 4 uf in Picture 12.9,

Let Oy = (R, Bg, F3) be the position observable in B(L*(R?) such that
1 (r,y) eRxE
0 (z,y) e RxR\Z
Hence, we have the measurement Mpgy)(®o 1,02 = (R, Br, Pot, F2), Sfju)(uof])- Axiom 1 ( measure-

ment: §2.7) says that

(A) the probability that a measured value a € R by Mp(z,)(P0,0, Sjugy(uo|) belongs to (—oo,y] is

given by
Yy

(10, (Bo s F((—00, 4]) Jun) = / pr(y)dy

—0o0

#Note 10.3. Precisely speaking, we say as follows. Let A, € be small positive real numbers. For each
keZ={k|k=0,£1,£2,43,,,,, }, define the rectangle Dy, such that

DOZ{(x7y) € R? ‘ .’L'<b},
Di={(z,y) eR*|b<z,(k—1DA<y<kA}, k=123,..
Dp={(z,y) eR*|b<z,kA<y<(k+1A}, k=-1,-2-3, ..

Thus we have the projection observable 08 = (Z,2% F£) in L?(R?) such that

Then it suffices to consider

e for each time t,, = to + ne(n = 0,1,2,...), the projection observable 02A is measured in the sense
of Projection Postulate 9-7.

10.2.2 Which-way path experiment

Picture 10.10. Which-way path experiment: A measured value by Mpg2g2))(Poy, (¥(Og ®
D41,6,02)), Sfjuo) (uo))) Pelongs to {1} x (—o0, y]
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Y Y
]
/L.
_é:< . - | o)
\;
t=0 t=t t=t
Figure 10.3(2) Potential V (x,y) = oo on the thick line, = 0 (elsewhere)

Next, let us explain the above figure. Define the projection observable O = ({1, 1}, 2{"¥} F) in
B(L*(R?)) such that

1 y>0

Aen {420
D) = 1 - [RED].y)

According to Section 11.2 ( Projection postulate ), consider the CONS {e;,es} (€ C?). Define the
predual operator W, : Tr(L?(R?)) — Tr(C* ® L*(R?)) such that

W (fu)(ul) = [(ex @ Fr({THu) + (2 © Fi({{})u))((ex @ Fr({T})u) + (e2 © Fi({{})u)|

Then we have the causal operator ¥ : B(C? @ L*(R?)) — L*(R?) such that ¥ = (U,)*. Define the
observable Og = ({1,1},2{"} @) in B(C?) such that

G{1}) = len{al, G} = [ea) (e

Hence we have the tensor observable Og ® @4, 1,02 in B(C* ® L?(R?)), and hence, the measurement

Mpr2®2)) (Pos, (¥(Og ® @4, 1,02)), Sfugyuol))- Then, Axiom 1 ( measurement: §2.7) says that

(B) the probability that a measured value (A, y) € {1, 1} xR by Mp(r2®2))(Po s, (¥ (0c®@Py, +,02)), Sfjug) (uol])
belongs to {1} x (—o0,y] is given by

<ﬁx®mﬂm—mwmﬂ>=1/ym@My
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ANote 10.4. Precisely speaking, in the above case, it suffices to consider the following procedure (1)
and (ii):
(i) for time t¢;, the projection observable O; is measured in the sense of Projection Postulate 9.7

ii) for each time t,, = to +ne(n = 0,1,2,...), the projection observable O% is measured in the sense
) proj 2
of Projection Postulate 7.
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10.3 Wilson cloud chamber in double slit experiment

In this section, we shall analyze a discrete trajectory of a quantum particle, which is assumed one of the
models of the Wilson cloud chamber ( i.e., a particle detector used for detecting ionizing radiation). The
main idea is due to. [2R, 29, (1991, 1994, S. Ishikawa, et al.)].

10.3.1 Trajectory of a particle is non-sense

We shall consider a particle P in the one-dimensional real line R, whose initial state function is u(z) €
H = L?(R). Since our purpose is to analyze the discrete trajectory of the particle in the double-slit
experiment, we choose the state u(x) as follows:

1/vV2,2 € (—3/2,—-1/2) U (1/2,3/2)
u(z) = (10.6)
0, otherwise

1/v/2

\

-3/2 -1/2 0 1/2 3/2 z

Figure 10.4 The initial wave function u(z)

Let Ay be a position observable in H, that is,
(Agv)(x) = zv(x) (Vz e R, (for v € H = L*(R)

which is identified with the observable O = (R, Bg, E4,) defined by the spectral representation: Ay =
fR xEa,(dz).
We treat the following Heisenberg’s kinetic equation of the time evolution of the observable A, (—oo <
t < o0) in a Hilbert space H with a Hamiltonian 3 such that H = —(h?/2m)9%/0x? (i.e., the potential
V(z) = 0), that is,
L dA;
—zhﬁ =HA — AH, —oo<t<oo, where A4g=A (10.7)

The one-parameter unitary group U, is defined by exp(—itA). An easy calculation shows that

¥ « ht d
At = Ut AUt = Ut SUUt =x + %% (108)
Put t =1/4, h/m = 1. And put
1 d .
A= Ay(= x), B=A =2+ @%) = Ui/, A0U1ja = ®g,17240
Thus, we have the sequential causal observable
position observable: Ag position observable: Ag

B(H)y) A B(Hy4)

0,1/4 I

initial wave function:ug
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10.3 Wilson cloud chamber in double slit experiment

However, Ao(= A) and @ ;,,A0(= B) do not commute, that is, we see:

1d 1d )
AB—BA—x(x—i-Ii%)—(:r—i—zz_%):r—z/él#o

Therefore, the realized causal observable does not exist. In this sense,

the trajectory of a particle is non-sense

10.3.2 Approximate measurement of trajectories of a particle

In spite of this fact, we want to consider “trajectories” as follows. That is, we consider the approximate
simultaneous measurement of self-adjoint operators {A, B} for a particle P with an initial state u(zx).
Recall Definition 414, that is,

Definition 10.11. (=Definition &-14). The quartet (X, s, E, ]§) is called an approximately simultaneous
observable of A and B, if it satisfied that

(A1) K is a Hilbert space. s € K, ||s||x =1, A and B are commutative self-adjoint operators on a tensor
Hilbert space H ® K that satisfy the average value coincidence condition, that is,

u®s, Au®s)) = (u, Au), (u®s, Bu®s)) = (u, Bu) (10.9)
(Vu € H, |Jullg =1)

Also, the measurement Mp(pg k) (07 x Op,S5,,)) is called the approximately simultaneous measurement
of MB(H)(oAa S[pu}) and MB(H)(OBa S[pu])7 where

Pus = lu@s)(u®@s|  ([[s}k =1)
And we define that

(Ag) A%S (= (A—A®I)(u®s)|) and A%S (= |(B=B®I)(u®s)|) are called errors of the approximate
1 2

simultaneous measurement measurement M B(H® K)(O 1 X 0] B S[ﬁus])

Now, let us constitute the approximately observable (K, s, E, E) as follows.
Put

K=L*Ry), sy == (%)1/4 Xp ( - M|2y|2>

where wy is assumed to be wy =4, 16, 64 later. It is easy to show that [[s||f2,) =1 (i.e., [s[[x =1 ) and
(s,As) = (s,Bs) =0 (10.10)
And further, put

~

A=ARI+2I®A

~ 1
B:B®I—§I®B

Note that the two commute (i.e., AB = BA ). Also, we see, by (I0-10),

(@5, Au®s)) = (u®s, (AT +2I® A)(u® s)) = (u, Au) (10.11)
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(u@s, Au®s)) = (u®s, (BoI—2I® A)(u®s)) = (u, Bu) (10.12)
(Yue H,i=1,2)

Thus, we have the approximately simultaneous measurement Mp (g K)(O 1% 0g, S[ﬁus]), and the errors are
calculated as follows:

b = A% = (A= A@ D(ues)| = ||2(1 @ A)(we s)| = 2| As| (10.13)
O1/q = A%’j =||(B-Bau®s)|=(1/2)|(I ® B)(u®s)| = (1/2)|Bs|| (10.14)
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10.3 Wilson cloud chamber in double slit experiment

By the parallel measurement ®£]:1 Mprek)(03 % Og,Sj5,,]), assume that a measured value:

(r,a). (@2a9), -+ (@, o)

is obtained. This is numerically calculated as follows.

wy =4

R L Ly
NN
A\

Wy = 16
LI B (VT RV Y AR
t=1/4 w{gﬁ-,‘i.;‘,}\-, ,-f.- 7 %‘1’&5‘:‘.“"" ,'-w',&);,j" =i 8 =0.064
ha ol \ LB
|" -IEF'[.'I'
"0 (0 el R VO T i [ R N A, WY Tl =30 |
t=0 -3 SUT _. j SUT = fp = 0.353
wy = b4
T T T = f
t=1/4 by % 0.708
O I O T ko balnd AR
t=0 & =0.176

Figure 10.5: The lines connecting two points (i.e., z; and z}.)(k = 1,2, ...)

Here, note that dp(= d1/4) and dg are depend on w.

ANote 10.5. For the further arguments, see the following refs.

(#1) [28]: S. Ishikawa, Uncertainties and an interpretation of nonrelativistic quantum theory, Inter-
national Journal of Theoretical Physics 30, 401-417 (1991)
doi: 10.1007/BF00670793

(#2) [29]: Ishikawa, S., Arai, T. and Kawai, T. Numerical Analysis of Trajectories of a Quantum
Particle in Two-slit FExperiment, International Journal of Theoretical Physics, Vol. 33, No. 6,
1265-1274, 1994
doi: 10.1007/BF00670793
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Chapter 11

Fisher statistics (II): Causality

Measurement theory (= quantum language ) is formulated as follows.

[A}nr)m I] [AXIOH‘ 2]
‘measurement theory‘ :=| Measurement | + | Causality
(=quantum language) (cf. B270) (¢f. §83)

a kind of spell(a priori judgment)
[guantum linguistic Copenhagen interpretation|
+ ‘ Linguistic Copenhagen interpretation
(cf. §57)

Vv
manual how to use spells

In Chapter 5 (Why does Fisher statistics work in our world? (I)), we discussed “inference” in relation
to “measurement”. In this chapter, we discuss “inference” in the relation to both “measurement” and
“causality”. Then, we are naturally lead to the general theory of regression analysis.

11.1  “Inference = Control” in quantum language

It is usually considered that

e statistics is closely related to inference
e dynamical system theory is closely related to control

However, in this chapter, we show that

“Inference” = “control”

In this sense, we conclude that statistics and dynamical system theory are essentially the same.

265



11.1 “Inference = Control” in quantum language

11.1.1 Inference problem (statistics)

Problem 11.1. [Who is the high school student who saved the drowning girl?] Let Q =
{w1, w3, ...,w100} be a set of all students of a certain high school. Define h : Q — [0,200] and w :  — [0, 200]
such that

h(wy) = “the height of a student w,” (n=1,2,...,100)

w(wy) = “the weight of a student w,” (n=1,2,...,100) (11.1)

For simplicity, put, N = 5. For example, see the following.

Table 11.1: Height and weight

Height- Weight \_ Student| w; | we | w3y | w4 | ws
Height (h(w) cm) 150 | 160 | 165 | 170 | 175
Weight(w(w) kg) 65 | 55 | 75 | 60 | 65

Assume that:

(a1) The principal of this high school knows the both functions h and w. That is, he knows the exact data
of the height and weight of all students.

Also, assume that:

(ag) Some day, a certain student helped a drowned girl. But, he left without reporting the name. Thus,

all information that the principal has is as follows:

(i) he is a student of the principal’s high school.

(ii) his height [resp. weight] is about 170 cm [resp. about 60 kg].
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(iii) Assume that the height and weight of high school students follow independent normal distri-
butions N(pu1,01) and N(usg,02), and further, assume that oy/0; = V2 though it may not be

natural.

Now we have the following question:
(b) Under the above assumption (a;) and (ag), how does the principal infer who he is.

This will be answered in Answer 3. ///

To answer this problem, we must prepare the following Theorem.

Theorem 11.2. Let (T={to,t1, ..., tn},m : T\ {to} — T) be a tree. Let Or =(Xyer Xy, X erdy,
ﬁto) be the realized causal observable of a sequential causal observable [{O(= (X, F¢, Fy)) her, {(I)Tr(t)ﬂf :

L2(Qu) — L*(Qr()) beer\{to} |- Thus, we have a measurement

MLOO(QzO)((/ST:(tzT Xta & tET?ta F\to)v S[*])

Assume that a measured value obtained by the measurement belongs to B (e X terFt). Then, there is a

reason to infer that

[*]:wtov

where wy, (€ €,) is defined by

~

[Fo (E)](wy) = max [F, (E)](w)-

W€y

/1]

The proof is a direct consequence of Axiom 2 (causality; §9.3) and Fisher maximum likelihood method

(Theorem 66). Thus, we omit it.

Answer 11.3. [(Continued from Problem [T (Inference problem)) Regression analysis] Let (7= {0, 1,2}, 7 :

T\ {0} — T) be the parent map representation of a tree, where it is assumed that

m(1l) =7(2) = 0.
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Put Qo = {w1,w2,...,ws}, Q1 = interval [100, 200], Q5 = interval [30,110]. Here, we consider that
QoDwp e a state such that “the girl is helped by a student w,,” (n=1,2,...,5)

For each ¢ (€ {1,2}), the deterministic map ¢ : Qo — € is defined by ¢g1 = h (height function), ¢g2 = w
(weight function). Thus, for each ¢ (€ {1,2}), the deterministic causal operator ®g; : L> () — L*>(Qp) is
defined by

(o fil(w) = fildor(w))  (Vw € Qo,Vfr € LF(Ch)).

i%/LOO(Ql)
L>(€)
‘@\LOO(QQ)

0,2

For each t = 1,2, let Og,,=(R, Bg, G,) be the normal observable with a standard deviation o; > 0 in

L>®(€). That is,

1 _(@—w)?
G (2)](w) = / ¢ dz (VE € By, Vw e ).

\/2mo?
Thus, we have a deterministic sequence observable [{Og,, }t=1,2, {®o+ : L>(Q:) —
L>(0) }+=1,2]. Its realization @T = (R?, Fpe, ﬁo) is defined by

~

[Fo(E1 x E2)](w) = [01Go,[(w) - [P0,2Go, ] (w) = [Go, (E1)](¢0,1(w)) - [Goy (B2)](d0,2(w)).
(VEl,EQ S BR, Yw e Qy = {wl,wg, . ,w5})

Let N be sufficiently large. Define intervals =1,Z9 C R by

1 1 1 1
=) = [165 — 165+ — Ey = (65— =65+ | -
. 65 — - 65+N], ) [65 N,65+N}

The measured data obtained by a measurement M Loo(QO)(@T, Spy) is
(165,65) (€ R?).

Thus, measured value belongs to =1 X Z5. Using regression analysis (Theorem [I1°6) is characterized as

follows:

(#) Find wy (€ Qo) such as

[Fo({E1 x E3)](wo) = fggg[ﬁo({a x Hp)](w).
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Since N is sufficiently large,

1 (21 — h(w))* (22 —w(w))?
S - - drrd
(8) :o?é%)}é (27)20202 exp| 207 203 Jdzrdw,
=1 XE2
(165 — h(w))? (65 — w(w))?
— gé%)}; OXP [ 20% 20% }

165 — h(w))? - 2
g (65 B (65— wiw)
weN 20’1 40’1

—When w = wy, minimum 2(165 — 170)% + (65 — 60)? is attained

] ( (aiii) says that 20% = 03 )

—The student is wj.

Therefore, we can infer that the student who helps the girl is wy. O

11.1.2 Control problem (dynamical system theory)

Adding the measurement equation ¢ : R? — R to the state equation, we have dynamical system theory

(I12). That is,

(i) : 20 — y(w(t), t,ei(t), B) ---( state equation)

‘ dynamical system theory ‘ = (initial w(0)=a) (11.2)

(ii) : z(t) = g(w(t),t, e2(t)) .-+ ( measurement)

where a, B are parameters, ej(t) is noise, ez(t) is measurement error.

The following example is the simplest problem concerning inference.

Problem 11.4. [Control problem and regression analysis] We have a rectangular water tank filled with water.

—

(t)

<—€4>

Figure 11.1: Water tank

Assume that the height of water at time ¢ is given by the following function w(t):

d
di: = Bo, then w(t) = wo + Ot, (11.3)
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11.1 “Inference = Control” in quantum language

where wg and 6 are unknown fixed parameters such that wg is the height of water filling the tank at the
beginning and 6 is the increasing height of water per unit time. The measured height z(t) of water at time

t is assumed to be represented by
z(t) = wo + 0t + e(t),

where e(t) represents a noise (or more precisely, a measurement error) with some suitable conditions. And

assume that as follows:
2(1) =19, 2(2) =30, 2(3)=4T. (11.4)
Under this setting, we consider the following problem:
(c1) [Control]: Settle the state (wp,#) such that measured data ([1-4) will be obtained.
or, equivalently,
(c2) [Inference]: when measured data ([°4) is obtained, infer the unknown state (wp,6).

This will be answered in Answer IR.

/1]

Note that
(c1)=(c2)
from a mathmatical point of view. Thus we consider :

(d) Inference problem and control problem are the same problem. And these are characterized as the

reverse problem of measurements. Thus, the three are essentially the same.

measurement

control

inference.

Thus, statistics, measurement theory, dynamical system theory, control theory are essentially the same.

Remark 11.5. [Remark on dynamical system theory (c¢f. [35]) ] Again recall the formulation (IT-2) of

dynamical system theory, in which
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(#) the noise e1(t) and the measurement error ex(t) have the same mathematical structure (i.e., stochastic

processes).

This is a weak point of dynamical system theory. Since the noise and the measurement error are different,
I think that the mathematical formulations should be different. In fact, confusions between noises and
measurement errors frequently occur. This weakness is clarified in quantum language, as shown in Answer

TTX.

11.2 Regression analysis in classical quantum language

See Note [T below on the use of the term ‘regression analysis’.

The following theorem is a slight extension of Theorem 112

Theorem 11.6. [Regression analysis |  Let (T'={to,t1, ..., tn},m : T\ {to} — T) be a tree. Let
© be a (locally) compact set (i.e., parameter space), which is regarded as a kind of state space. For
each (€ ©), consider a sequential causal observable [{O;}ier, {@fr(t) o0 L) = L°(Qr) beer\fto} 1

Let 6% =(Xyier X, X crF, ﬁt%) be the realized causal observable of a sequential causal observable
[{O¢}ier, {(I)fr(t),t D L(%) = L%°(Qr(t)) e \{to} |- Consider a measurement,

MLw(QzO)(G%:(té Xy, M erdy, ﬁt‘?))a Si) (0 €0)

which can be identified with the following.

Mooy, x@)(ag}:(té, X, WierFe, F)), Siaq ve))

Assume that a measured value obtained by the measurement belongs to = (e X terFt). Then, there
is a reason to infer that

[ * ](: [*907 *9]) = (wtov 90)7
where (wy,,00) (€ 4, x ©) is defined by

[ﬁto (E)](wto’ ‘90) = (wﬂ?Elgiz ><e[ﬁto (g)](wv 9)

/1]

The proof is a direct consequence of Axiom 2 (causality; §9.3) and Fisher’s maximum likelihood method
(Theorem 66). Thus, we omit it.

The above is too general, so consider the simple case as follows.

Corollary 11.7. [The simple form of Theorem 16|
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Put T = {0,1,2,3},

0
O=(X1.5F) P12 00=(X2.52. 1)

L2 () L=(€2,)

‘%03()(333,1’3)

0,3 L00<Q3)

0
(I)O,l

Oo=(Xo0,%0,F0)
L>()

Thus, we get the realized causal observable:

69T:( X Xi, &teT\rﬂ,ﬁtﬂ) in L>=(€)

teT

where
Bl = Fo(Z0)[(@05F5(Z5)) (0, ((F(E0) (#1,Fo(22))) )]

Counsider a measurement

MLw(QtO)(G%:(thXﬂ gtEngtaﬁﬁ]))S[*]) (9 c @)

which can be identified with the following.

MLW(QtOXG)(a%:( X Xta X teT‘rftv ﬁteo)a S[(*Q,*@)])

teT

Assume that a measured value obtained by the measurement belongs to = (¢ Xierd:). Then,
there is a reason to infer that

[*](: [*QO7 *@]) = (wtme(})?

where (wy,, 0p) (€ 4, x O) is defined by

o~

[Fto (:)](wtoa 90) = (w,@?&l%iz XG[FtO (:)] (w> 9)

/1]

#Note 11.1. (i): In ordinary statistics books, regression analysis seems to be explained by solving
specific examples. Therefore, no general definition of regression analysis seems to have been written.
Even in quantum language, a general definition of regression analysis is difficult to find. Speaking
only of mood, I might say:

(#) Regression analysis is a powerful statistical technique that uses Axiom 2 in Sec. B3 (e.g.,
Theorem 016 (or Theorem M1-7) )

However, this [definition] is not a definition. See the next chapter for specific problems with regression
analysis.
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(#1) Why is statistics in such an ambiguous situation?
As many readers will already be aware, the reason is simple:

(f2) statistics has no axioms, on the other hand, QL has Axioms 1 (measurement) and Axiom 2 (
causality).

(ii): Also, it should be noted that there is a consistent spirit of the linguistic Copenhagen interpretation
of ‘measurement only once’ in Theorem [IT6.

Answer 11.8. [(Continued from Problem -4 (Control problem)) Regression analysis] Put Qy = Q; =
)y = Q3 =R. and put

$o1

Qo 3 wy |—>WO+9:leQl
P12

O 2wy |—>W1+HZWQ€QQ
$23

Qs D woy |—>LLJ2+9:W3693
Thus we see:

®f o9 P4
0O0=(X0,%0,F0) 0,1 O1=(X1,%1,F1) 1,2 O2=(X2,F2,F») 2,3 O3=(X3,%3,F3)
L> () L>() L>(€s) L>(82s)

where Og = (Xo, Fo, Fp) is the existence observable (cf.Definition 2-20), so, it can be neglected. Also,
Oy = 01 = Oy = O3 is the normal observable O¢, with a standard deviation o, i.e., Og,=(R, Bg, G,)
where

1 _e=w)?
CoENw) = = /_ ¢ = dr (VE € Ba,Vuw € Q).

Q(= Qo) o ) Qg
A W= .
47T\
)
19_
Wo
0 1 | 3 V t

Figure 11.2 Problem: Find the equation w = 6t 4+ wy of the dashed line
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We have the deterministic sequential causal observable:

[{O:}i=1,2,3, { Pr(ye + L°(%) = L¥(Qr)) breq,2,33]-

And thus, we have the realized causal observable Oy = (R3,?R3,F\O) in L>(Q) such that (using
Theorem M)

0(Z1 X Eg X E3)](wo) = [Po1(Go(Z1)P12(Co(Z2)P23(Go(Z5))))] (wo)

[
=[@01G,(Z1)](wo) - [P0,2G4(Z2)](wo) - [P0,3G(Z3)](wo)
=[G (Z1)(¢0,1(w0)) - [Go(Z2)](Po2(w0)) - [G(Z3)](P0,3(wo))
=[G (Z1)[(wo +0)) - [Go(Z2)|(wo + 20)) - [G(Z3)](wo + 30))

(VEl,EQ,Eg € 3R7 VCL)O,Q € QO X @)
Our problem (i.e., Problem 1T4) is as follows,

(#1) Find the parameter (6,wy) (i.e.,Mgoo(qy)( 6%, Slw]) ) that is most likely to yield the measured
value (1.9,3.0,4.7).

For a sufficiently large natural number N, put

=1 =19 1194—1:—30 13()—i—1 =3 = 4.7 147—1—1
o = . N N , g = . N N , 03 = . N 2R

Fisher’s maximum likelihood method (Theorem 56)) says that the above (#;) is equivalent to the
following problem

(#2) Find (wo, ) (€ Qo x ©) such that

[ﬁo(El X Hy X Eg)]((x}o,e) = %ﬂa%[ﬁo(El X Hg X Eg)]
wo,

Since N is assumed to be sufficiently large, we see

(#2) = max [ﬁ0(51 X Zy x Z3)|(wo, 0)

(wo G)EQQ
(11*<W0+9))2+(I2*(W0+29))2+(T3*(W0+39))2]
:> max 202
(wo0,0)€Q0 4 /271'02

Z1XEoXZE3
X dl’ldIQd,I‘g

=—> max ex J/ (202
Jmax p(—=J/(207))

= min J
(wO,e)EQQ

where
J= (1.9 — (wo+0))? + (3.0 — (wo + 20))* + (4.7 — (wo + 30))*.

. { (1.9 — (wo + 0)) + (3.0 = (wo + 20)) + (4.7 — (wo + 30)) = 0
(1.9 — (wo +0)) +2(3.0 = (wo +26)) + 3(4.7 — (wo + 30)) =
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—  (wo,0) =(04,1.4)
Therefore, in order to obtain a measured value (1.9, 3.0, 4.7), it suffices to put

(wo,0) = (0.4, 1.4).

For completeness, note that,

e From a theoretical point of view,

“inference” = “control”

Thus, we conclude that statistics and dynamical system theory are essentially the same.

measurement

control

inference.
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Chapter 12

Least-squares method and Regression
analysis

Although regression analysis has a history of great achievements, it seems to have been wrongly
understood in essence. For example, the fundamental terms in regression analysis (e.g., “regression”,
“least-squares method”, “explanatory variable”, “response variable”, etc.) are historical conventions,
and do not express their roles adequately in the regression analysis. In this chapter, we show that the
least squares method acquires a right position in quantum language as follows.

describe by

The least squares method‘ ‘Regression analysis
quantum language

(Section T2T) (Section C22)

natural ‘ Generalized linear model ‘ (8)

(Section T2-3)

generalization

In this story, the terms “explanatory variable” and “response variable” are clarified in the framework
of quantum language. To develop a general theory of regression analysis, it suffices to work with
Theorem [16. However, from a practical point of view, we need the above scheme (). This chapter
is extracted from

Ref. [60]: S. Ishikawa; Regression analysis in quantum language
arxiv:1403.0060[math.ST], (2014)

12.1 The least squares method

Let us start from a simple explanation of the least-squares method. Let {(a;, x;)}!; be a sequence

in the two dimensional real space R2. Let ¢(?1%2) : R — R be the simple function such that
R3>a— z=¢PP) (a) = Ba+ By €R. (12.1)

where the pair (3, 82)(€ R?) is assumed to be unknown. Define the error o by
1 n 1 n
2 S BB (N2 = = - . 2
(B, B) = — D (i = 6 @) = = 3 (i = (Brai + ))?). (12.2)

- n <
i=1 =1
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12.1 The least squares method

Then, we have the following minimization problem:

Problem 12.1. [The least squares method)].

Let {(as,2;)}7_, be a sequence in the two dimensional real space R?.
Find the (5o, 1) (€ R?) such that

o*(Bo, /1) = min (B, 51)< = min 1 Z(mz — (Bra; + ﬁo))2>, (12.3)

(Bo,B1)€ER? (Bo,B1)ERZ T )

where (S, 51) is called “sample regression coefficients”.

= Fa+ By

Least squares method

This is easily solved as follows. Taking partial derivatives with respect to [y, (51, and equating

the results to zero, gives the equations (i.e., “likelihood equations”),

802(607 51) o &

95, = Zzl(xz —Bo—Prai) =0, (i=1,..,n), (12.4)
%ﬁ?ﬂl) = g;(xi—ﬁo—ﬁlai)ai =0, (i=1,..,n). (12.5)
Solving it, we get that
s Sar 5 Sar_ o L X S s2
= P Po=7T — P (= - ;(fﬁi — (Brai + Bo)) ) = Sar = 2, (12.6)
where
&:a1+"'+a”, j_:$1+...+xn, 127
6 = (aq 35)2 + n + (a, — a)z’n L (21— T)% + n + (2 — @2’ o)
5 = (01 = @) (@1 =)+ + (a0 — @) (20 — 7). 129
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ANote 12.1. [Applied mathematics]. Note that the above result is in (applied) mathematics, that is,
e the above is neither in statistics nor in quantum language.

The purpose of this chapter is to add a quantum linguistic story to Problem 1271 (i.e., the least-squares
method).

12.2 Regression analysis in quantum language

12.2.1 The simplest problem

Let us start from the simplest problem.

Problem 12.2. [The simplest problem].
[(I): Applied math]

Let {(a;, z;)}"; be a sequence in the two dimensional real space R?.

~ o-I-

Calculate and find 74 !

Find the 5, (€ R) such that

n

; . 1
o*(fo) = min, o () ( = Join, ;(w ~ 6)?),

Of course, it is easy. That is,

Bo = (%)
[(IT): The argument in QL]

It should be noted that this problem is similar to the inference problem of the simultaneous normal
measurement (in Example 510): Mo mxr, (0" = (R™, B, G"),S}), where

[G™(E] X Zg X -+ X Zp)](w)
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12.2 Regression analysis in quantum language

“[(X G)(E1 x Z2 x - x Z]w) = X [GEN )

no 1
X /: Xp{ 202( K u)} k

(VEk € By (= Bg), YVw = (1,0) € (=R x Ry))

Recall that Fisher’s maximum likelihood method (Theoremb6) says that the unknown state [x| =
(u,0) (€ R x Ry) is inferred as follows.

(131+$2+ R

p=p(x) : (xx)
\/Zk (2 — 7i(2))?

[(III): The purpose of this chapter|
The above (i.e., (x)=(%x)) is easy. However, our purpose of this chapter is to investigate a quantum
linguistic understanding of Problem 021 just like the above [(T) and [(IT)].

12.2.2 Regression analysis in quantum language
Put T'=1{0,1,2,--- ,i,--- ,n}. And let (7,7 : T\ {0} — T) be the parallel tree such that

@) =0 (Yi=1,2,---,n). (12.10)
o
0 ‘T/ 2
N

Figure 12.1: Parallel structure

#Note 12.2. In regression analysis, we usually deal with “classical deterministic causal relation”. Thus,
Theorem I0-¥ is important, which says that it suffices to consider only the parallel structure.

For each i € T', define a locally compact space §2; such that

Qp = R? = {5 _ [g‘j . Bo, B € ]R}, (12.11)
QZ-:R:{M : meR} (i=1,2-,n) (12.12)

where the Lebesgue measures m; are assumed.
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Assume that
a; €R (i=1,2,---,n), (12.13)

which are called explanatory variables in the conventional statistics. Consider the deterministic causal map
Yo, : Qo(= R?) — Q;(= R) such that

Qo =R*3 B = (Bo, f1) — Ya,(Bo, B1) = Po + Prai = i € % =R (12.14)
which is equivalent to the deterministic causal operator W, : L>(€;) — L*°(€p) such that
[\Pai(fi)](wo) = fi(wtli (U)Q)) (Vfl S LOO(Ql)a Vwo € Qo,Vi €1,2,--- 7”)' (1215)

Thus, under the identification: a; < 14, < V,,, the term “explanatory variable” means a kind of causal
relation U, .

Vo U(=R) Yoo 10, (=R))
(= R) Yorr = ) Lo(Op(= RY) 2L (Q(=R)
s (=R) W (= B))

Figure 12.2: Parallel structure (Causal map v,,, Causal operator ¥, )

For each i = 1,2,--- ,n, define normal observables O;=(R, Br, G, ) in L (Q;(= R)) such that

. 1 (z —p)? - _
Gy ()] (1) = ”m/exp [— s ]dm (VE € Bp, Vi € Qi(=R)) (12.16)

where o is a positive constant.
Thus, we have the observable Of'=(R, Bg, ¥,,G,) in L>®(Qo(= R?)) such that

. 1 (2 = (B + aiB))?
2o (G @) = (G N = s / exp [ L) g, (12.17)

[1]

(VE € Bp, VB = (Bo. 1) € Qo(= R?)

Hence, we have the simultaneous observable X, Op'=(R™, Brn, X o W, Gy) in L®(Q(= R2)) such that

n n

(X W0, Go) (X Z0)(8) = X ([#0Co)E)(H))

i=1 i= =

1
:1/ o /exp [_ i1 (i — (Bo + aiﬂl)h}dxl s

(v2ro?)n) 202
X o1 B
:/ p(ﬂoﬂl,a)(xbx%'“ ,:L'n)dCL'l"-d.'En. (1218)
X" =

(v X E; € By, V8 = (B, 1) € Q(=R?))
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12.2 Regression analysis in quantum language

Assuming that o is a variable, we have the observable O = (R"(: X),Bgrn(=9), F) in L>°(Qy x Ry) such
that

n n

[F(X E)(B,0) = [(i>n<1 Vo, Go)( X E))(B)  (VE; € Br,¥(B,0) € R* (= Qo) x Ry). (12.19)

i=1 i=1

Problem 12.3. [Regression analysis in quantum language]
1

Z2
Assume that a measured value x = | | | € X = R" is obtained by the measurement Mo (q,xr,)(0 =

Ty,
(X, 3, F), S((8y,81,0)])- (The measured value is also called a response variable.) And assume that we do not
know the state (So, £1,02).
Then,

e Infer the £y, 51,0 from the measured value = = (x1, z2,...,2,) € R™.

That is, represent (8o, 81,0) by (Bo(z), Bi(x),5(x)) as functions of z.

Answer : Taking partial derivatives with respect to By, 81, 02, and equating the results to zero, gives the
log-likelihood equations. That is, putting

L(Bo, 1, 027731,1'2) <, y) = log <p(ﬁo751,a)(x1a L2, 7$n))a

(where “log” is not essential), we see that

oL &

=0 = ; (i = (Bo +aif1)) = 0 (12.20)

oL =

95 =0 = D alei—(Bo+aip) =0 (12.21)
1 i=1

oL n 1 <

52=0 =535+ %4;(1‘1 — Bo — frai)* =0 (12.22)

bo@) =7~ fi(@)a =7~ "a, fi(a) =" (12.23)

and

n n
2
Sax Sax \2 Sax
=S¢5 — 28az—— + Saa(—)° = Sgg — . (12.24)
aa Saa aa
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Note that the above (2-23) and (I224) are the same as (I26). Therefore, Problem 273 (i.e., regression
analysis in quantum language) is a quantum linguistic story of the least squares method (Problem I271).

Remark 12.4. Again, note that
(A) the least squares method (I276) and the regression analysis (12°23) and ([2-24) are the same.

Therefore, a small mathematical technique (the least squares method) can be understood in a grand story
of regression analysis in quantum language. The readers may think that

(B) Why do we choose “complicated (Problem 12-3)” rather than “simple (Problem 1271)” approaches ¢
Of course, such a reason is unnecessary for quantum language ! That is because
(C) the spirit of quantum language says
FEverything should be described by quantum language.

However, this may not be a kind answer. The reason is that the grand story has a merit such that statis-
tical methods (i.e., the confidence interval method and the statistical hypothesis testing) can be applicable.
The discussion of ‘confidence interval and hypothesis testing’ is omitted in this book, see refs. [bX, 60].

12.3 Generalized linear model

Put T'=1{0,1,2,--- ,4,--- ,n}, which is the same as the tree (I2-10), that is,

r(i)=0 (Vi=1,2---,n). (12.25)
o
0 L2
PN

Figure 12.3: Parallel structure

For each ¢ € T, define a locally compact space §2; such that

Bo

QO - Rm+1 - {ﬁ - B:l : /BO)ﬁlu o ’5m S R} (1226)
B

Qi:R:{m : uieR} (i=1,2,--,n). (12.27)
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12.3 Generalized linear model

Assume that
aj €R  (i=1,2--,n, j=1,2--,m (m+1<n)). (12.28)

which are called explanatory variables in the conventional statistics. Consider the deterministic causal map
Ya;y : Qo(=R™L) — Q;(= R) such that

Qo =R"™ 5 8= (60,51, ,Bm) —

Yaww(Bos Br -+ Bm) = Bo+ > Bjas; = pi € % =R (12.29)
j=1
(i=1,2,--,n)
Summing up, we see
. - - (1 a1 a2 - aim]| ¢, -
Bo Yana(Bo: Bre B |y b [
b1 Vaze (B0 B15 -+ 5 Bm) | as g - CLgm p1
ﬁ = /8‘2 — 77ba3. (507 Bl: T 76777,) = 1 agl G4y Qam . 6.2 (1230)
_6m_ _wan. (/807 617 Ty Bm)_ _1 anl Gna - Gp _/Bm_
which is equivalent to the deterministic Markov operator ¥,,, : L*(9;) — L () such that
Waio (f)l(wo) = fi(Yais(wo)) (Vfi € L2(Qi), Vwo € Qo,Vi€1,2,--,n). (12.31)

Thus, under the identification: {aj;}j=1,...m © W¥a,, the term “explanatory variable” means a kind of
causality.

L*((=R))

Figure 12.4: Parallel structure(Causal relation ¥,,, )
Therefore, we have an observable O*=(R, Bg, ¥,,,G,) in L>(Qo(= R™ 1)) such that

Wi (Go (ENIB) = [(Go (E)](asa ()
1 (2= o+ S 06
“ ]k e

(VE S Bvaﬁ - (607617 e 75771) S QO(E Rm+1))

Hence, we have the simultancous observable X;_; O%*=(R", Bgn, X ¥, G,) in L®(y
(= R™*1)) such that

(12.32)

n

(X W0, Co)(X Z)(9) = X ([%aaCo)E0)H)

1= =1 =1
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557 dzy - - - dxy,. (12.33)
o

_(\/2771702)"/ o /exp [— iz (@i = (Bo + o2y aisy))’
"

=1

(v '>:<1 E’L S BR"7VB = (1807617 o 76771) € QO(E Rm+1))

Assuming that o is a variable, we have an observable O = (]R”(: X),Bgrn(=9), F) in L*>°(Qo x Ry) such
that

n n

[F(X 20)(5,0) = [(X W, Go)(X Z](5)

i=1

=1
n

(Vv '><1 Z; € Brn,V(B,0) € R™M (= Q) x Ry). (12.34)

1=

Thus, we have the following problem.

Problem 12.5. [Generalized linear model in quantum language]
T
T2

Assume that a measured value x = | € X = R" is obtained by the measurement Moo xr,)(0 =
Tn

(X,F, F), S[(ﬂo,ﬂ1,~~~,ﬁm,a)]>- (The measured value is also called a response variable.) And assume that we

do not know the state (8o, 1, , Bm, 02).

Then,

Infer By, B1, -+ , Pm, o from the measured value x = (z1,z2,...,2,) € R"
or
Represent (5o, B1,- -+, Bm,0) by (30(x),31(x), o+, Bm(x),6(x)) as functions of x.

The answer is easy, since it is a slight generalization of Problem 02-3. Also, it suffices to follow ref.
[8]. However, note that the purpose of this chapter is to propose Problem I275 (i.e, the quantum linguistic
formulation of the generalized linear model) and not to give the answer to Problem IZ75.

Remark 12.6. As a generalization of regression analysis, we also see measurement error model (cf. §5.5
(117 page) in ref. [B5]), That is, we have two different generalizations such as

D : ‘ generalized linear model‘

‘Regression analysis | ——— (12.35)
generalization ®: ‘measurement €rror model‘

However, we believe that (D is the right way of generalization.
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Chapter 13

Equilibrium statistical mechanics

In this chapter, we study and answer the following fundamental problems concerning classical equi-
librium statistical mechanics:

(A) Is the principle of equal a priori probabilities indispensable for equilibrium statistical mechanics?
(B) Is the ergodic hypothesis related to equilibrium statistical mechanics?

(C) Why and where does the concept of “probability” appear in equilibrium statistical mechanics?

Note that there are several opinions for the formulation of equilibrium statistical mechanics. In
this sense, the above problems are not yet answered. Thus we propose the measurement theoretical
foundation of equilibrium statistical mechanics, and clarify the confusion between two aspects (i.e.,
probabilistic and kinetic aspects in equilibrium statistical mechanics), that is, we discuss

the kinetic aspect (i.e, causality) --+ in Section 31
the probabilistic aspect (i.e., measurement) --- in Section 32

And we answer the above (A) and (B), that is, we conclude that
(A) is “No”, but, (B) is “Yes”.

and further, we can understand the problem (C).
This chapter is extracted from the following;:
[@T] S. Ishikawa, “Ergodic Hypothesis and Equilibrium Statistical Mechanics in the Quantum

Mechanical World View,” WJM, Vol. 2, No. 2, 2012, pp. 125-130. doi: 10.4236/wim.2012.22014,
or ref. [?].

13.1  Equilibrium statistical mechanical phenomena con-
cerning Axiom 2 (causality)
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13.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

13.1.1 Equilibrium statistical mechanical phenomena

Hypothesis 13.1. [ Equilibrium statistical mechanical hypothesis ]. Assume that about N(~10%* ~

6.02 x 10%® ~ “the Avogadro constant”) particles (for example, hydrogen molecules) move in a box
with about 20 liters. It is natural to assume the following phenomena (1) — (4):

(1) Every particle obeys Newtonian mechanics.

(2) Every particle moves uniformly in the box. For example, a particle does not halt in a corner.

(3) Every particle moves with the same statistical behavior concerning time.

(4) The motions of particles are (approximately) independent of each other.

X
S/

rfx'/ p N 7/
.

’
1
Yo b A e g

particles,

x,‘o o b » Ve d

/e(%"/'/“*

0221

~

= -y

PR P D DV IV N W

(13.1)

ANote 13.1. Let me illustrate the above (2) — (4) with a simple ‘metaphor’. Suppose that 100 kinder-
garten children play on swings, slides and sand in a kindergarten yard during a one-hour lunch break.

Assume, however, that there are enough swings, slides and sandboxes for all of them and that there
is no queueing time. The, the above (2) — (4) can be illustrated by the following ‘metaphor’.

(2) All the kindergartners are bored and change their play one after the other. For example, one
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of the preschoolers played as follows

(#) |Swing|— ’ Slide ‘ — ’ Sand Shde — |Swing | — | Sand | — | Swing

(5min) (3min) (6min) (7min) (9min) (8min) (9min)
— | Sand | — | Swing
(6min) (7min)

For example, no children play only on the swings during the lunch break.

(3) All the children have the same preferences. Therefore, the total duration of each of the three
play activities is the same for all children. For example, every child are as follows.

Total time spent playing on the swings 30min
Total time spent playing on the slides 18min
Total time spent playing in the sandpit 12min

(9) All children play with a spirit of ”independence and self-respect”. In other words, they are
rarely influenced by the play of other children. For example, they do not act in groups, such
as playing on the swings, then the slide, with other close friends.

You can read the following by imagining this(2)—(4). .

In what follows we shall devote ourselves to the problem:

(D) how to describe the above equilibrium statistical mechanical phenomena (1) — (2)
in terms of quantum language ( =measurement theory).

13.1.2  About (») in Hypothesis 13.1

In Newtonian mechanics, any state of a system composed of N( ~ 10%*) particles is represented

by a point (g, p) (E (position, momentum) = (Gin;, @2n, @3n, Pin, P2ns Pn)r—y ) in a phase (or state)
space R, Let H : R — R be a Hamiltonian such that

ﬂ{((qln, G2ns G3n> Pins Pons pgn)nNzl) = momentum energy + potential energy

N
p n
Z Z 2 - ]+U<<QIn>q2naq3n)£1V:1)' (132)
k=1,2,3

- x particle’s mass
n—=

Fix a positive £ > 0. And define the measure v,, on the energy surface Q, (= {(q,p) € RN | H(q,p) =
E}) such that

v, (B) = /B IVH(q,p)|  dmen—1 (VB € Bq,, the Borel field of Q)

where

V(g p i PN (9 oy 2
_ 1,2,3 apkn ann

and dmgy_1 is the usual surface Lebesgue measure on . Let {1 } _o<t<oo be the flow on the energy
surface €2, induced by the Newton equation with the Hamiltonian 3, or equivalently, Hamilton’s
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canonical equation:

At Open’ dt  Oqen’
(k=1,2,3, n=1,2,...,N).

(13.3)

Liouville’s theorem (cf.[81]) says that the measure v, is invariant concerning the flow {7} <tcoo-
Defining the normalized measure 7, such that 7, = —Z—_ we have the normalized measure space

_ v (Qg)?
(QE739E7VE)'
Putting A = Cy(£2,) = C(£2,) (from the compactness of 2,,), we have the classical basic structure:
[C(Q,) C L™(Q,,v,) C B(L*(Q,,v,))]

E’TE E’TE

Thus, putting 7 = R, and solving the (14.3), we get w, = (¢(t),p(t)), dt.0, = VE_,,, Pf,. t20uwe, =
e, 1y(wey) (Vi € £ ), and further we define the sequential deterministic causal operator {®y, ;, :

L=(Q,) = L) by ayerz (cf. Definition B4).

13.1.3 About (2) in Hypothesis T3.1

Now let us begin with the well-known ergodic theorem (cf. [81]). For example, consider one
particle P;. Put

Sp, ={w € Q, | astate w such that the particle P, stays around a corner of the box }

Clearly, it holds that Sp, € Q.. Also, if ¥f(Sp,) C Sp, (0 =Vt < 00), then the particle P, must
always stay a corner. This contradicts (2). Therefore, (2) means the following:

(2) [Ergodic property]: If a compact set S(C Q,,S # 0) satisfies 7 (S) C S (0 <Vt < 00), then
it holds that S = 2.

The ergodic theorem (cf. ref. [81]) says that the above (2)' is equivalent to the following equality:

a+T
[, st = i 7 [ s o (13.9)

(state) space average) (time average)

Va e R,Vf e C(Q,), Ywye€Q,)

After all, the ergodic property (2) (< (I34) ) says that if T" is sufficiently large, it holds that

|t g [ s (13.5)

Put m, (dt) = %. The probability space ([o, & + T, Bja,a+1), M) (or equivalently, ([0,77], By,
r) ) is called a (normalized) first staying time space, also, the probability space (£2,,Bq_,7,) is
called a (normalized)second staying time space. Note that these mathematical probability spaces are
not related to “probability” (Recall the linguistic Copenhagen interpretation [(§3.1.3) :there is no
probability without measurement).

m
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13.1.4 About (3) and (») in Hypothesis 13.1

Put Ky = {1,2,...,N(=10*")}. For each k ( € Ky), define the coordinate map m;, : Q,( C
RY) — RS such that

(W) = 7.(q, ) =7k ((q1n, Q2> @3> Pins P2ns P3n) 1)
=(G1ks G2k 93k P1ks D2ks D3k) (13.6)

fOI‘ all W = (Q>p) = (QIna 92n; 43n; Pin, p2n7p3n)7]:[:1 S QE( C RGN)- AlSO) fOI‘ any Subset K ( g KN:
{1,2, ..., N (21024)}), define the distribution map DY) : Q, ( € R®N) — M, (R®) such that
1
Dit" = 77 2 Omtan (¥(a.p) € 2 (CRY))

keK

where f[K] is the number of the elements of the set K.
Let wo(€ ) be a state. For each n (€ Ky), we define the map X“° : [0, 7] — R® such that

X5 (t) = ma(pf (wo)) (VL €10,T7]). (13.7)

And, we regard {X“°}_ as random variables (i.e., measurable functions ) on the probability space
([0, T, Bjo,r), 7). Then, (3) and (4) respectively means

@) { X} | is a sequence with the approximately identical distribution concerning time. In other
words, there exists a normalized measure p, on R® (ie., p, € M7, (R®)) such that:

m({t €[0,T] : X;°(t) € E})= p,(E) (13.8)
(VE € Bo,n=1,2,...,N)

(@' { X} is approzimately independent, in the sense that, for any K, C {1,2, ..., N(~10*)}
such that 1 < §[Ky] < N ( that is, ﬂ[g‘)] ~0 ), it holds that

m,({t €[0,T]: X;°(t) € Ex(€ Bgs), k € Ko})

~ X m,({t €[0,T]: X°(t) € Zx(€ Bgs)}).

ke Ky

Here, we can assert the advantage of our method in comparison with Ruelle’s method (cf.ref.
[98]) as follows.

Remark 13.2. [About the time interval [0,7]]. For example, as one of typical cases, consider the
motion of 10?4 particles in a cubic box (whose long side is 0.3m). It is usual to consider that “averaging
velocity” =5 x 10*m/s, “mean free path”=10""m. And therefore, the collisions rarely happen among
#[Ko] particles in the time interval [0,7], and therefore, the motion is “almost independent”. For
example, putting #[Ky] = 10°, we can calculate the number of times a certain particle collides with

Ky-particles in [0,T] as (1077 x }gfé)_l X (5x 10%) x T ~ 5 x 107° x T. Hence, in order to expect

that (3)' and (1) hold, it suffices to consider that T' ~ 5 seconds. /]
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Also, we see, by (I37) and (T33), that, for Ko(C Kpy) such that 1 < §{Ky] < N,
m,({t €[0,T] : X;°(t) € Zx(€ Bpe), k € Ko})
=m,({t € [0,T] : m(Vf (wo) € Zx(€ Bre), k € Ko})
=m,({t € [0,T] : Pf (wo) € ((Wk)keKo)_l(kX Zk)})

7, (T )rero) (X Ep))

keKo

Q

(ﬁE © ((Wk)kel(())_l)( X Ej). (13.9)

keKy

Particularly, putting Ky = {k}, we see:

m,({t € [0.T] : X°(t) € )= (7, om;)(E)
(VE € Bps). (13.10)

Hence, we can describe the (3) and (4) in terms of {m} in what follows.

Hypothesis 13.3. [3) and (») ]. Put Ky = {1,2, ..., N(=10*)}. Let K, F, v, v, 7 : Q, — RS
be as in the above. Then, summing up (3) and (1), by (I39) we have:

(E) {m :Q, — RO} is approximately independent random variables with the identical distribu-
tion in the sense that there exists p, (€ M7, (R%)) such that

® pp (= “product measure” )~ 7, o (1) kex,) (13.11)
keKy

for all Ko C Ky and 1 £ §[Ky] < N.

Also, a state (g, p)(€ €2,) is called an equilibrium state if it satisfies Dg?]’f)%pE.

13.1.5 Ergodic Hypothesis

Now, we have the following theorem (cf.ref. [A1]):

Theorem 13.4. [Ergodic hypothesis]. Assume Hypothesis T373 ( or equivalently, (3) and (1) ). Then,
for any wy = (¢(0),p(0)) € 2, it holds that

(DY (=)~ ({t € [0,7] © Xeo(t) € E})
(VZ € Bgs, k =1,2,..., N(~10*)) (13.12)

for almost all ¢. That is, 0 < m..({t € [0,T] : (I3:12) does not hold}) < 1.
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Proof. Let Ky C Ky such that 1 < #[Ky] = Ny < N (that is, M}(O]%O%MKO} ). Then, from

Hypothesis A, the law of large numbers (c¢f. ref. [80]) says that
DM omt (mp,) (13.13)
for almost all time ¢. Consider the decomposition Ky = {Kxy, K(9), ..., Kp)}. (e, Ky = UZL K,

KoyNKgy=0 (I1#1")), where {{Kpl=No (I =1,2,...,L). From (I612), it holds that, for each k
(=1,2,...,N (=10*)),

L
(at)p(r) _ 1 (a(t)p())
DM =5 > _lEKw] x Dig ")
=1
1 L
NZ XpENV Oﬂ—k1<%pE )7 (1314>
=1

for almost all time ¢. Thus, by (I3710), we get (I3712). Hence, the proof is completed.

We believe that Theorem 1374 is just what should be represented by the “ergodic hypothesis” such
that

“population average of N particles at each t”

=“time average of one particle”.

Thus, we can assert that the ergodic hypothesis is related to equilibrium statistical mechanics (¢f. the
(B) in the abstract). Here, the ergodic property (2)’ (or equivalently, equality (T33)) and the above
ergodic hypothesis should not be confused. Also, it should be noted that the ergodic hypothesis does
not hold if the box ( containing particles ) is too large.

Remark 13.5. [The law of increasing entropy]. The entropy H(q,p) of a state (¢, p)(€ Q) is defined
by

H(q,p) = klog[v, ({(d,p)) € Q, : D¥P~ D)

where
k = [Boltzmann constant]/([Plank constant]*" N!)

Since almost every state in 2, is equilibrium, the entropy of almost every state is equal klogv,(£2,).
Therefore, it is natural to assume that the law of increasing entropy holds.

13.2  Equilibrium statistical mechanical phenomena con-
cerning Axiom 1 ( Measurement)

In this section we shall study the probabilistic aspects of equilibrium statistical mechanics. For
completeness, note that

(F) the argument in the previous section is not related to “probability”
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13.3 Conclusions

since Axiom 1 (measurement; §2.7) does not appear in Section I371. Also, Recall the linguistic
Copenhagen interpretation (§3.1.3) : there is no probability without measurement. Note that the
(T3712) implies that the equilibrium statistical mechanical system at almost all time ¢ can be regarded
as:

(G) a box including about 10%* particles such as the number of the particles whose states belong
to = ( € Bgs) is given by p,(Z) x 10%.

Thus, it is natural to assume as follows.

(H) if we, at random, choose a particle from 10?* particles in the box at time ¢, then the probability
that the state (qi,qo,q3, p1, D2, p3) (€ R®) of the particle belongs to = ( € Bgs) is given by

Pp(E)-

In what follows, we shall represent this (H) in terms of measurements. Define the observable Oy =
(R®, Bgs, Fp) in L>(£2,) such that

[Fo(2)(g;p) = [Dﬁ‘g;f)](g)( _ Bk Wﬁ%) € E}]>

(VZ € Bgs,¥(q,p) € Q,( € R*Y)). (13.15)

Thus, we have the measurement Mpe(q,)(Og := (R®, Bgs, Fy), S| . Then we say, by Axiom 1

5%((10470)})
(measurement; §2.7) , that

(I) the probability that the measured value obtained by the measurement My (q,)(Og := (R, Bgs,
Fy), S[‘Swt(%,voﬂ) belongs to Z(€ Bgs) is given by p,(Z). That is because Theorem 14.4 says that

[FO(E)](¢t<QO7p0>> ~ PE (E) (almOSt every time t)'

Also, let U7 : L>(§2,) — L>®(€2,) be a deterministic Markov operator determined by the continuous
map ¢¥f : Q. — Q. (¢f Section I312). Then, it clearly holds ¥FOy = Op. And, we must take
a Mrq, (0o, Sigetr) p(t))) for each time t1,t,... 2y, ..., t,. However, the linguistic Copenhagen
interpretation [§3.1.3) :( there is no probability without measurement) says that it suffices to take the

. n
simultaneous measurement MC(QE)( X 11 Oo, S[é(q(O),p(O»])'

Remark 13.6. [The principle of equal a priori probabilities |. The (H) (or equivalently, (I)) says
“choose a particle from NNV particles in box”, and not “choose a state from the state space §2,”. Thus,
as mentioned in the abstract of this chapter, the principle of equal (a priori) probability is not related
to our method. If we try to describe Ruele’s method [98] in terms of measurement theory, we must
use mixed measurement theory (cf. Chapter [d). However, this trial will end in failure.

13.3 Conclusions

Our concern in this chapter may be regarded as the problem: “What is the classical mechanical
world view?” Concretely speaking, we are concerned with the problem:

“our method” vs. “Ruele’s method [98] ( which has been authorized for a long time )”

And, we assert the superiority of our method to Ruele’s method in Remarks 1372, 375, [36.
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Chapter 14
Reliability in psychological tests

In this chapter, we shall introduce a measurement theoretical approach to a problem of analyzing scores
of tests for students. The obtained score is assumed to be a sum of a true value and a measurement
error. It is also subject to a systematic error (=noise) depending on his/her health or psychological
condition at the test. In such cases, mixed measurements are convenient since these two errors (i.e.,
measurement error and systematic error) in measurement theory can be characterized in different
mathematical structures. As a result, we show that

“reliability coefficient” = “correlation coefficient”
in a clear formulation. This chapter is extracted from the following.

[76] K. Kikuchi, S. Ishikawa, “Psychological tests in Measurement Theory,” Far east journal
of theoretical statistics, 32(1) 81-99, (2010) ISSN:-"0972-0863

14.1 Reliability in psychological tests

14.1.1 Preparation

In this section, let us consider reliability of psychological tests for a group of students. We discuss
examples from measurement theoretical characterization of tests to measure mathematical ability of
students. Let © := {61,0,,...,0,} be a set of students, say, there are n students 61, 6,,...,0,. Define
the counting measure v, on © such that v.({6;}) =1 (i = 1,2,...,n). The © will be regarded as a
state. For each 6; (€ ©), we define 1y, (€ L (0, 1.)) by 15,() =1 (if = 6;), =0 (if 6 # 6;). Recall
that © can be identified with the {1y, | #; € ©} under the identification: © 3 6; <> 1y, € {14 | 0 € O}.
For simplicity, we shall begin with the test for one student 6; (€ ©). Let (g, Fq,, dw) be the Lebesgue

measure space where Qg = R.
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14.1 Reliability in psychological tests

Example 14.1. (Test in mathematics for a student ;) Let © := {01,6,,...,0,} be a state space
which is identified with the set of the students. The mathematical ability of the student 6; (€ ©)
is assumed to be represented by a statistical state ®,(1p,) (€ L1,(Qr,dw)) (i = 1,2,...,n) where
P, : LY(O,v,) = LY(Qg,dw) is a pre-dual Markov causal operator of ® : L>°(Qg, dw) — L>®(0,v.).

0=1{1,|0c0O

q)*(101) (I)*(lez) Q]R
Let O := (Xg, Tx,, F) be an observable in L>®(Qg,dw). Axiom™) 1 (in §711) asserts that

(A) the probability that the score (measured value) of the student 6; (€ ©) obtained by the mixed
measurement Moo, 4.)(0, S (P« (1s,))) belongs to a set = (€ Fx,) is given by

L1(Qp,dw) (®.(1p,), F(E)>L°°(QR,dw) ( = / [F(E)](w) [@«(10,)](w) dw)-

Qr

Remark 14.2. In the above, readers may have a question
(B) What is the unknown pure state [] in Sp, ?

Imaging the deterministic causal map v : © — Qg, we may consider that
b =000 = [ wl(1a))(w) do.
Qr

Also, note that the [x] does not play an important role in this chapter since Bayes’ theorem 11 is

not used.
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Remark 14.3. It should be kept in mind that the variance o? of the ability of 0; (€ ©) (i =

1,2,...,n) is not constant, that is to say, we do not assume that o7 = o7 (Vi,Vj):

ot im [ - de (=12 ),
Qg
where y; is an expectation of ®,(1p,):

» ::/Q w[Bu (1)@ dw (i =1,2, .. n).

14.1.2 Group measurement (= parallel measurement)

(14.1)

(14.2)

The above example is the test for a student 0; (€ ©). Keeping this in mind, we will next consider

the test for a group of n students. Let Qf = R", and let (2, Fon, dw") be a n-dimensional Lebesgue

measure space. Furthermore, let O := (Xg, Ix,, F) and My~ 40) (0, Sp(®4(16,))) (1 =1,2,. ..

0

be as in above example. Here, we consider a parallel measurement M Loo(Qﬁ7dwn)(6, S (p)) where

0:= (XR, Fxn, F) is an observable in L>®(Q2, dw"). If
[F(E1 x B x - X Ep)](wr, w3, -, wn) = [FED](@1) - [F(Es)](wa) - [F(En)] (wn),
and
plwr,wa, .y wn) = [@u(lg,)](wi) - [Pu(lay)](w2) - - [P (10,)](wn),
then, the parallel measurement M Lw(Qﬁ’dwn)(G, Si(p)) is denoted by
®9,e0M o0 (0z,du0) (O, Sy (P (19,))).
In addition, we introduce the following notations concerning tensor product:
Q1 L®(Qg, dw) = L®(Qp, dw™) and ®7_, L'(Qr,dw) = L' (Qf, dw™).

By the way, we introduce the test observable.

L>®(Qg, dw), if F, satisfies the following no-bias condition:

/X z[Fr(dr)|(w) =w (Yw € Qg).

Definition 14.4. [Test observable] The O, = (Xg,Fx,,F;) is called a test observable in

(14.3)
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Recall that the normal observable (c¢f. Example 224 ) and the exact observable (¢f. Example
275 ).

For each 6; (€ ©), we use the notation Mgi to the test for 6; (€ O) (the measurement of the test
observable O, for the statistical state ®,(1y,)):

ME = M~ (0 ) (Or, Spy (B4 (16,))). (14.4)

T

Now we are ready to consider the test for a set of the n students in our measurement theory.

Definition 14.5. [Test, Group test] Let © := {60;,60,,...,60,}, Xg = Qg =Rand @, : L},(0,r,) —
LY, (O, dw) be as in Example T41. Let O, := (Xg, Fx,, F;) be a test observable in L (Qg, dw).
The measurement Mo (q, duw)(Or, Spj(Ps(1g,))) is called a test for a student §; (€ ©) and symbolized

by Mg)T for short. And the measurement
®9,coM (625, (Or, Sy (®+(16,))) (o1 in short, @g,coMy)), (14.5)

is called a group test and symbolized by M%T for short.

Axiom™) 1 (in §7-11) says that

(C) the probability that the score (x1,22,...,2,) (€ Xg) obtained by the group test ®g,coM L (g,dw)

(0-, Sy (®4(14,))) (or in short, M§ ) belongs to the set X, Z; (€ Fxn) is given by

X oo (@a(10) Fr () o) ( — P(XE) =X pi(zz-)). (14.6)

0,€0 i=1 i=1

Here, (Xg,Fx,, P;) is a sample probability space of Mgz. Let W : Xg — R be a statistics (i.e.,
measurable function). Then, Emg [W], the expectation of W, is defined by

8M§ W] = / Wz, za,...,2y,) ﬁl(dxl dxg - - dx,).
T Xp J X

Definition 14.6. Let O, := (Xg, Fx,, ;) be a test observable in L™ (Qg, dw).
(i: Score of 6;) Let Mpoc(ag.duw)(Or, Sy (Ps(1p,))) (or in short, Mgi) be a test for a student 6; (€ O).

Here, we consider the expectation of z; (€ Xg) and its variance.
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1. AV[M ] EM(i)[.CEi],

2. Var[l\/l ] &y v [(mz - AV[I\/IE;)T])Q]

ii: Scores of n students) Let ®g,coMrqp.dw)(Or, S ( Py (1, or in short, ME ) be a group test.
7 ( R ) [] @ O~

Here, we consider the expectation of %(:Bl + x5+ -+ 4 z,) and its variance.

1
1. Av[Mg | :== Epmg [ﬁ(ml + Tyt xn)},

n

2. Var[Mg ] := EM& [% Z(mk - AV[M%])Q].

From the no-bias condition (T4-3), we get
AvMﬁQ]:}hdMgg]:ul;aﬂ@*lﬂﬂuﬁdw::uh (14.7)
R
AV[MG | = Z Av[Mg)] = Av[Mg | = Z Av] Z [ = (14.8)

where Op := (Xg, Fxz, E) is an exact observable in L™ (g, dw).

14.1.3 Reliability coefficient

When we suppose the group test, we can consider the reliability coefficient which can be repre-

sented by a proportion of variance of mathematical abilities to obtained variance.

Definition 14.7. [Reliability coefficient] Let O, := (Xg, Fx,, F;) [resp. Op := (Xgr, Fx., F)] be a

test observable [resp. an exact observable| in L™ (Qg, dw). And, let
M. = ®g,coM Lo (9g.dw)(Or, Sy (P (16,)))
be a group test. The reliability coefficient RC[M%T] of the group test M%T is defined by

Now let us consider the measurement error. First, when the ability (true value) is w (€ ), the

measurement error A, is as follows:

A= /X (o [FT(dx)](w))l/ C (we ) (14.9)
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Note that the error A, (Vw € Q) depends on w (€ ) in general, that is, we do not assume that
A, = Ay (Yw, V' € Q). Next, for each 0; (€ ©), the error A; for the student 6; (€ ©) is as follows:

A= (/X A, [@.(19)] (@) do)
_ (/Q (/X (- w)? [FT(dx)](w))[QD*(lgi)](w)dw)m (i=1,2,....n). (14.10)

Finally, the group average of the student 6;’s error A; (i = 1,2,...,n) is as follows:

( ZAQ) 2 (14.11)

From what we have seen, we can get the following theorem.

Theorem 14.8. (i: The variance Var[Mg)T]) Let Mg)T = Mpoo(p,du) (Or, Sy (P4(1p,))) be the

measurement of test observable O, for the statistical state ®,(1p,). Then, we see
Var[M§)] = Var[M) ] + A2, (14.12)

(ii: The variance Var[M%T]) We consider the group test M%T = ®g,co Mgl =
®g,c0 ML (n,dw)(Or, Si(P4(1s,))). And, we obtain the following:

Var[Mg | = Var[M§ ]+ A2, (14.13)
Proof. Let j; be an expectation of ®,(1,). Then, we see
VarMg = [ ([ (o ] . 1)) s
= [ womrmtal@ o [ ([ @ ol F ) @) d
o /X 2 =)o ) [F ())(0)) [0 (1))

— Var[M{) 1+ AL

From the above formula, it follows that the group average of Var[Mg)T] becomes

n

g | = [-oof (fooof 53w I ] en) X 00
- Z / K / R(” Tt = ) [ (d))()) [ (1) () o

:—Z/Q @.(10))(w) do
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i1 z / ( / (@ = ) [Fo{dn)) () ) [@. (1g)] () d

14.2 Correlation coefficient: How to calculate the reliability

coefficient

. . T . ® Var[M ]
In the previous section, we define the reliability coefficient RC[Mg | := m However, from the
measured data (z1,2,...,2,) (€ X{), we can not get the variance of mathematical abilities of n

students Var[Mg ] directly (though we can calculate the Var[Mg ]). Thus, we focus on the problem
how to estimate the reliability coefficient. Here we consider one typical method, say the split-half

method.

Split-half method: This method is appropriate where the testing procedure may in some fashion be
divided into two halves and two scores obtained. These may be correlated. With psychological

tests, a common procedure is to obtain scores on the odd and even items.
Now we introduce the measurement theoretical characterizations of the split-half method.
Definition 14.9. [Group simultaneous test] Let © := {6,,0s,...,0,}, Xg = Qr = R and P,
LY, (0,v.) = L1 (Qr, dw) be as in Example 1271. Let O,, := (Xg, Fx,, Fr,) and O, = (Xg, Fx,, Fr,)
be test observables in L*({2g, dw). The measurement

®0iEeMLm(QR7dUJ)(OTl X 07275[*]((1)*(101')))7

is called a group simultaneous test of O, and O, and it is symbolized by MO X0, for short.

Axiom™) 1 (in §711) says that

(A) the probability that the score ((x1,2?%), (z3.23),...,(x},22)) (€ X2") obtained by the group

simultaneous test ®g,coMree(q,dw)(Or X Oy, Sp(Ps(1y,))) (or in short, Mgrlon) belongs to
the set X|_ (2} x Z2) (€ Fxzn) s given by

X (@ 10). (B % Fo)(E % )i o (= B(X(ELXED)). (1414)
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Here note that (X2", Fxzn, P») is a sample probability space. Let Wa : X2" — R be a statistics (i.e.,

measurable function). Then, Emg (W3], the expectation of W, is defined by
O7y XOry
8M® [WQ] = W(.T%,%%,SU%,(IZ%,..., Lys n) P2<d.771 dxl d.132d132 dxidxi)

Orq XOr.
1 2 X7
R

We use the following notations:

1 n
[— xﬂ (k=1,2),
071><O72 n I

() AVOME o] = &y

n

1
- Z ah - AV o ] (k=1.2),

(ii) Var® [M% xO.,

07—1 XOrgy [

n

1
(i) CoviM3, co,) 1= Eagg o, [ 20001 = AVIIME, o)

x (2 = AVIIME o )],

It is clear that AvMG o ] = AVIMG ] =Av[MG,] (k=1,2).

Definition 14.10. [Equivalency of test observables] We call that test observables O,, := (Xgr, Fx,, Fr,)
and O,, := (Xgr, Fxy, Fr,) in L®(Qg, dw) are equivalent if it holds

AL = AD (v e Qp), (14.15)
where AL 1= ([ (v = w)? [F, (dz)) () /2 (see (129)).

In case that test observables O,, = (Xg, Fxz, Fr,) and O, 1= (Xg, Fxy, Fry) in L®°(Qp, dw) are
equivalent and O, x O,, is a product test observable in L>(Qg, dw), it holds that

Var[Mg ] = VarV[M§ 0,1 = Var® [M§ x0,,] = Var[Mg_]. (14.16)

In consequence of these properties, we introduce the correlation coefficient of the measured values
(zf,23,...,2)) (€ XB) and (22, 22,...,2%) (€ X&) which are obtained by the group simultaneous

®
test Mg o, -

Theorem 14.11. [The reliability coefficient and the correlation coefficient in group simultaneous tests]
Let O,, and O,, be equivalent test observables in L>®(Qg, dw). And let O,, x O,, be a product test
observable in L*>°(Qg, dw). Let M%Tk = Rg;eoM (g duw) (Ory
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S (@4(14,))) (k= 1,2) and Mgﬁxom = ®g,coeM(O;, x O, Sp(P4(1p,))) be group tests as above

notations. Then we see that

® ® COV[M%TI XOTQ]
RCME | =RC[ME | = (14.17)
: 2 \/Var[M%ﬁ] : \/Var[l\/[®
Proof. From the (I423), we get the following:
CoVM3, o, = Ewg o [ D (et = AVOIME o (a2 — AVIME, o))
= /Q . /Q (/X . /X % . (z; — Av 1)[|V|o,1x072])(33? - AV(Z)[ng xofg])
x X [E, (dl) E(da?)] >) X [®,(19)] (1) e
_ %Z /Q /X /X £} — AVIME ) (2% — Av[ME, )
X [Py ()] () [P ()] () ) [@.(15,)] () de)
=22 (L (=g, @i
x /X (2 = AV[M3, ]) [Fr (da?)] (@) ) [@.(19,)) () d)
_ 1 Z/Q w — AVIMS, )2 [, (19,))(w) dw = Var[MZ, . (14.18)
Then, we see that
Cov[Mg o, ] Var[Mg | Var[Mg ]
1= 72 ) 14.19
\/ Var[M%Tl] : \/ Var[M%T ] " Varl [M® xoTQ] " Var® [M®T xofz] ( )
]

14.3 Conclusions

In this chapter, we introduce the measurement theoretical understanding of psychological test and the
split-half method which estimate reliability. Measurement theoretical approach show the following

COI‘I‘GSpODdGHCQS:

split-half method +— group simultaneous test.
M3, xo,, = ®o,eoMree(0z,du) (Or X Ory, Spy(P4(14,)))
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And further, we show the well-known theorem:
“reliability coefficient” = “correlation coefficient”

in Theorem MT411.
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Chapter 15

How to describe “belief”

Recall the spirit of quantum language (i.e., the spirit of the quantum mechanical world view), that is,
(#) every phenomenon should be described in quantum language.

Thus, we consider that even “belief” should be described in quantum language. For this, it suffices to
consider the identification:
“belief” = “odds by bookmaker”

This approach has a great merit such that the principle of equal weight holds.

This chapter is extracted from Chapter 8 in

Ref. [35]: 5. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Univer
sity_Press Inc. 2006.

15.1 Belief, probability and odds

For instance, we want to formulate the following “probability”:
(A) the “probability” that Japan will win the victory in the next FIFA World Cup.

This is possible (cf. [35]), if “parimutuel betting (or, odds in bookmaker)” is formulated by Axiom (™
1 ( mixed measurement ). The purpose of this chapter is to show it, and further, to propose the

principle of equal weight, that is,

(B) the principle that, in the absence of any reason to expect one event rather than another, all the

possible events should be assigned the same probability.

whose validity has not been proven yet. It is one of the most important unsolved problems in

statistics.
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15.1 Belief, probability and odds

In Chapter 8, we studied the mixed measurement: that is,

[(mixed)Axiom(™) 1] [Bxaem 7]
mixed measurement theory‘ = ’mixed measurement ‘ +| Causality
(=quantum language) (cf. BZI) (cf. §83)

a kind of spells (;priori judgment)
[ouantum Tnguistic Copenhagen interpretation|
+ ’ Linguistic Copenhagen interpretation ‘ (15.1)
(cf. 8§6T)

manual to use spells

The purpose of this chapter is to characterize “belief” as a kind of mixed measurement.

15.1.1 A simple example; how to describe “belief” in quantum language

We begin with a simplest example (¢f. Problem 5 ) as follows.

Problem 15.1. [= Problem [75; Bayes' method] Assume the following situation:

(C) You do not know which the urn behind the curtain is, U; or Us, but the “probability”: p and
1—p.

Here, consider the following problem:

Assume that you pick up a ball from the urn behind the curtain.
(i): What is the probability that the picked ball is a white ball ?

U

L 4]

(ii): If the picked ball is white, what is the probability that the urn behind the curtain is Uy ?

Figure 15.1:( Mixed measurement)

Answer 15.2. (=Answer 7.13)
Put Q = {wy,ws} with the discrete metric and the counting measure v., thus, note that Cy(2)

= C(Q) = L*>*(Q,v). Thus, in this chapter, we devote ourselves to the C*-algebraic formulation:
Define the observables O = ({W,B}, 2{W:B} F) and Oy = ({U,,U,}, 21UnP2} Gy) in C(Q) by

F{W})(wi) =08, F({B})(w1) = 0.2, F({W})(ws) = 0.4, F({B})(wz) = 0.6
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Gu({UiD(wr) = 1, Gu({U2})(w1) = 0, Gu({U1})(w2) = 0, Gy ({Ua})(w2) = 1

Here “W” and “B” means “white” and “black” respectively. Under the identification: U; ~ w; and
Us =~ ws, the above situation is represented by the mixed state p(p ) (€ M,1(Q2)) such that

prior

Pﬁff?or = POu, + (1 — p)du,,

where ¢, is the point measure at w. Thus, we have the mixed measurement:

@ (0 x Oy := ({W,B} x {Uy, Uy}, 2B} s ) Sy (pP)).- (15.2)

pprlor
Axiom(™) 1 gives the answer to the (i) in Problem 5.1 as follows.

(D) the probability that a measured value (,y) obtained by the mixed measurement M¢ ) (O X
Ou, Sy (ppmor)) belongs to {W} x {Uy, Us} is given by

(@ (P hoes FAW ) )y = 0.8p + 0.4(1 — p).

Since a white ball is obtained, Answer 713 (=Bayes’ theorem ) says that a new mixed state
Pt (€ M41(2)) s given by

(» _ ({W})pprlor 0.8p 0.4(1 — p)

Ppost = Jo[FUW D) (w )Ppmr(dw) T 08p + 0.4(1—p) " 08p+04(1—p) " (15.3)

Hence, the answer of the (ii) is given by

0.8p
0.8p + 0.4(1 — p).

w02k, Gu({UL)) ey =

By an analogy of the above Problem I51 ( for simplicity, we put: p = 1/4), we consider as
follows.

Assume that there are 100 people. And moreover assume the following situation (E) such that,
for some reasons,

(F) 25 people believe ( or vote) that [«] = U; (i.e., Uy is behind the curtain)
75 people believe ( or vote) that [*] = Uy (i.e., Us is behind the curtain)

That is, we have the following picture instead of Figure IH1:
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15.1 Belief, probability and odds

Figure 15.2: Belief ( or voting )

U 1 (% w1 )
IIII \\\\
0000® 1= KL ) | —
0000e® S =

25 people believe that [x] = Uy, 75 people believe that [x] = Us.

Now, we have the following problem:
Problem 15.3. Consider Situation (E) and Situation (C) ( p=1/4, 1 —p=3/4). Then,
(F1) Can Situation (E) be understood like Situation (C) 7
or, in the same sense,

(F,) Can Situation (E) be formulated in mixed measurement (i.e., Axiom™) 1)? That is, can
Situation (E) be described in quantum language ?

15.1.2 The affirmative answer to Problem 15.3

Since 100 people know the situation of the urn (i.e., Figure T52, the assumption (E) ) implies
(G)(=Figure 053), that is,

(25 people (in 100 people) believe that [*] = U,
(G1): 20 people guess (or bet) that a white ball will be picked
(G2): 5 people guess (or bet) that a black ball will be picked
75 people (in 100 people) believe that [x] = U

N { (Gs): 30 people guess (or bet) that a white ball will be picked
\ (Gy): 45 people guess (or bet) that a black ball will be picked

—

(G)

Figure 15.3: The odds in bookmaker
U1 (% wl)
0000e® - s -
0000® = —
25 people believe that [x] = Uj. 75 people believe that [x] = Us.
(G1): 20 people guess that a white ball will be picked.(G3): 30 people guess that a white ball will be picked.
(G2): 5 people guess that a black ball will be picked. (Ga): 45 people guess that a black ball will be picked.

Assume that a white ball is picked in the above figure. Then, the above (G3) and (G,4) are vanished
as follows.
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Figure 15.4: A white ball is picked

S
0
&

0000® > &S <
0000e = >
25 people believe that [x] = Uj. 75 people believe that [x] = Us.

(G1): 20 people guess that a white ball will be picked.(G3): 30 people guess that a white ball will be picked.
—{Go):Hpeople guess that-a black ball-will be picked.(Go): 15 people guess-that-a black ball will be picked.

After all, we get the following figure:

Figure 15.5: After all, we get the new odds

UI(% Wl)
0000® - (] ) |-
0000® < —

40 % people believe that [x] = Uy, 60 % people believe that [x] = Us.

Thus we see that

(prlor state) (a white ball is plcked (post state)

———[Fig 55 154

2 3
36W1+36WQ

Considering the mixed measurement (i.e., the (I52) in the case that p = 1/4):

Mc)(0 x Oy = ({W,B} x {Uy, Uy}, 2tV B Gy S (o)) (15.5)

pprlor

we see that the above (T54) is the same as the Bayesian result (T5-3).
Note that the measurement (T535) is interpreted as

(H) choose one person from the 100 people at random, and ask him/her “Do you guess that a white
ball (or, a black ball) will be picked from the urn behind the curtain, and its urn is U; or Uy ?”

In what follows, let us explain it. Consider the product observable Ox Oy of O = ({w, B}, 2{W.B}
F) and Oy = ({Uy, Uy}, 210012} Gyy) in C(©) (where © = {6, 0s, ...,0100}) such that

[F{WH)(01) [F({BY](0:) = 1/5, (k ey 25)
[F({W})](6r) [F({B})](6x) = 3/5, (k= 26,27, ...,100) (15.6)
(G ({UL )] (6r) [Go({U1))(0k) = 0, (k= 1,2,...,25)

Q) T
| |

4/5,
2/5,
L,
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15.2 The principle of equal odds weight

Gu({UDI(6) =0, [Gu({U=)](0) =1, (k = 26,27, .., 100) (15.7)

And put vy = (1/100) 3,2, 35, (€ M;1(©)). Then, the above measurement (H) is formulated by
Mcie)(O x Oy = ({W,B} x {Uy, U}, 2P0} o Gy, Sy (wo)) (15.8)
which is identified with the measurement (ITh5H) under the deterministic causal operator ® : C'(2) —

C(©) such that ®*(dp,) = o, (K =1,2,...,25), = d,, (k = 26,27,...,100). That is, we see, symboli-
cally,

P

(T58): the Schrodinger picture

(H)=(051R): the Heisenberg picture

identification

Thus, as a particular case of the above arguments, we can answer Problem 16.3 such that
(I,) Situation (E) can be understood like Situation (C).
That is,

(I) Situation (E) can be formulated in mixed measurement (i.e., Axiom™ 1).  In the same sense,
Situation (E) can be described in quantum language.

15.2 The principle of equal odds weight

From the above arguments, we see that

Proclaim 15.4. [The principle of equal weight] Consider a finite state space {2 with the discrete metric,
that is, Q@ = {wy,wa, ..., wp}. Let O = (X, F, F) be an observable in C(£2). Consider a measurement
Mc) (O, Spp). If the observer has no information for the unknown state [x], there is a reason to
assume that this measurement is also represented by the mixed measurement M¢ (o) (O, Sp(pprior))
where

1 n
Porior = — > . (15.9)
k=1
Explanation. In betting, it is certain that everybody wants to choose an unpopular w;. Thus, I
believe that everybody agrees with Proclaim I5h4. Also, it should be noted that

(J) the term “probability” can be freely used within the rule of Axiom 1 or Axiom(™ 1.

The reason that the justice of the (B: the principle of equal weight) is not assured yet is due to the
lack of the understanding of the (J).

ANote 15.1. In this book, we dealt with the following three kinds:

(#1) the principle of equal weight in Remark 519

(f2) the principle of equal weight in Theorem 7T
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(#3) the principle of equal weight in Proclaim 154

which are essentially the same.

In order to promote the readers’ understanding of the difference between Theorem [ I8 and
Proclaim 0574, we show the following example, which should be compared with Problem 514 and
Problem 717

Problem 15.5. [Monty Hall problem (=Problem 5.14; The principle of equal weight)

]

You are on a game show and you are given a choice of three doors. Behind one door is a car,
and behind the other two are goats. You choose, say, door 1, and the host, who knows where the
car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you a choice of sticking to door 1 or switching to door 2 7 What should

you do ?
Lo |
door door door J |
No. 1 No. 2 No. 3 |

Figure 15.6: Monty Hall problem

Proof. It should be noted that the above is completely the same as Problem b14. However, the
proof is different. That is, it suffices to use Proclaim 154 and Bayes theorem (By). That is, the
proof is similar to Problem /16 . O
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Chapter 16

Appendix (Practical logic)

Now I think that this chapter should be written in ref. [GY]

Recall the following:
:
© ©

Analytic phil. Graak phil, ~.. statistics
YUC P Descartes-Kantt |, quantum Fisher,

(fuzzy l‘_}gic) epistemology ')}/ mechanics Baysian, ee s e
Phil. of science : / _

J/

discussed in ref. [(74] . discussed in this book

where

[74]: S. Ishikawa, History of Western Philosophy from a persective of quantum theory— Intro-
duction to theory of everyday science— 2023. Shiho-Shuppan Publisher, 425 p.

In our work, ‘practical logic’ is defined by the logic defined in QL ( and not the mathematical logic
defined by mathematical axioms).
Concerning "practical logic” , I believe I have completed it in the next.

(8) ref. [70]. Ishikawa, S., (2021) Fuzzy Logic in the Quantum Mechanical Worldview ; Related
to Zadeh, Wittgenstein, Moore, Saussure, Quine, Lewis Carroll, etc. Journal of applied math-

ematics and physics, Vol. 9, No.7, 1583-1610, DOI:10.4236/jamp.2021.97108

(https://www.scirp.org/journal/paperinformation.aspx?paperid=110830])
Or, see ref [74] Chap. 11.

In this chapter, I show my old result (in refs. [30, B1]) concerning ‘fuzzy logic’, which is not satisfac-
tory. This work is memorable for me because the 1990s was the time when I changed my research
focus from quantum mechanics to fuzzy logic.

By the time I had finished writing these papers [30, B1, B4], T was convinced that the ‘quantum
mechanical worldview’ had surpassed the ‘mechanistic worldview’.

Readers may skip this chapter as it is written solely from my old feelings.
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16.1 Marginal observable and quasi-product observable

16.1 Marginal observable and quasi-product observable

Definition 16.1. [quasi-product product observable | Let Oy = (X%, F, F)) (k= 1,2,...,n ) be
observables in a W*-algebra A. Assume that an observable Qi ,, = (><Z:1 X, X Zzlffk, Fio.n)

satisfies

Flo. n(X1 X oo X Xjo1 X Zp X X1 X - x X)) = Fp(Eg). (16.1)
(V=2 € Fp, Ve =1,2,...,n)

The observable O, ,, = (><Z:1 Xy, M Ty, Fia.n) is called a quasi-product observable of {Oy | k =
1,2,...,n}, and denoted by

ap n ap

X Ok:<>< Xk, IXZ:lgjk, X Fk)
k=1,2,....,n k=1 k=1,2,...,n
Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-product
observable is not uniquely determined. Also, in quantum systems, the existence of the quasi-product

observable is not always guaranteed.

Definition 16.2. [Image observable, marginal observable] ~Consider the basic structure [A C A C
B(H)]. And consider the observable O = (X, J, F') in A. Let (Y, §) be a measurable space, and let
f: X — Y be a measurable map. Then, we can define the image observable f(O) = (X, F, Fo f™1)
in A, where F o f~! is defined by

(Fof )T =F( () (TeH).

Image observable

0 (.\'.!}'.}-') £(0) (}'.9.(:’(— f-'[_r*(-}})

frX oY

[Marginal observable] ~Consider the basic structure [A C A C B(H)]. And consider the observable
Oon = (X Xiy W7 Tk, Fia.,) in A. For any natural number j such that 1 < j < n, define
Fl(é)n such that

Fl(%)n(EJ) = F12...n(X1 X X Xjfl X E] X Xj+1 X X Xn) (VEJ € gj])
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Then we have the observable O%)n = (X;, 3, F 1(5)”) in A. The O%)n is called a marginal observable

of Oya.,, (or, precisely, (j)-marginal observable ). Consider a map P; : Xp Xp = X ; such that

n
kXI ) (ZL’I,JZQ, vy Ly ,l’n) =T € Xj.

Then, the marginal observable O%) _n 1s characterized as the image observable Pj(O12._ ).

The above can be easily generalized as follows. For example, define O§122)n = (X1 x Xy, F1 X Fy,
F1(212)n) such that

FSP (21 xZ) = FUP (21 x Ey x Xy x - x X)) (V21 € F1,VEs € Fo).

— 12..n

Then, we have the (12)-marginal observable O%mn = (X1 x Xo, F1 X Ty, F1(212)n) Of course, we also
see that Fis_, = Fa>™.

The following theorem is often used:

Theorem 16.3. Consider the basic structure

[ACAC B(H).
Let O; = (X1, F, F1) and Oy = (X3, Fo, Fy) be W*-observables in A such that at least one of them
is a projective observable. <So, without loss of generality, we assume that O, is projective, i.e.,

Fy = (Fy)? ) Then, the following statements (i) and (ii) are equivalent:

qp
(i) There exists a quasi-product observable O15 = (X; x X5, F; X Fy, F} X Fy) with marginal
observables O; and O,.

(ii)) O; and O commute, that is, F1(Z1)Fo(ZEs) = Fo(Z9)F1(Z;) (V2 € F1,V=0 € Fy).

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of the quasi-product observ-
able O1 of O; and O, is guaranteed.

Proof. See refs. |3, B0, B4].

16.2 Properties of quasi-product observables

Consider the measurement Mz(O10=(X1 x Xy, F1 W Ty, Fi5), S,)) with the sample probability space
(Xl X XQ, ffl X 3:2’A* (p, FIZ())Z) Put

Repil =2 [012] =
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16.2 Properties of quasi-product observables

(VEl < 3’1,\752 S ?2)

where Z°¢ is the complement of = {z € X | z ¢ Z}. Also, note that

s (P, Fiz(Z1 % )7 + - (0 Fiz2(Z1 % Z5)) 7 = - (0, Y )(E1)) 7
A (p, Fio(=§ X E;))j+A* (,0, Fia(Z] x Ez))ﬁ = A (P> Fle)(Ei))Z
a+ (p, Fia(Z5 % 55)) 7 + - (p, Fia (1 ¥ 55)) 7 = - (0, FY (25))z
A (ps F12(E1 x 29)) 7 + - (0, F12(E5 x E5)) 7 = a= (p, F1(22)(E§)>Z

We have the following lemma.

Lemma 16.4. [The condition of quasi-product observables] Consider the general basic structure
[A CAC B(H).

Let O; = (X1,31, F1) and Oy = (X, Fs, F5) be observables in C'(2). Let Oy = (X1 x Xo,F; X
Fy, Fio=F; qprQ) be a quasi-product observable of O; and O,. That is, it holds that

F=FYY  F=F2.

Then, putting aleE2 = 4 (p, Fia(Z1 X EQ))X = p(F12(Z1 X Z)), we see

L (A=) % = } (16.2)

and

X m

max{0, p(F1(Z1)) + p(F2(22)) — 1} S «
min{p(F1(Z1)), p(F2(Z2))}
(VEl € ?1,VEQ € ?Z,VP S GP(A*)) (163)

Conversely, for any ajlxg? satisfying (I6-3), the observable Q5 defined by (I62) is a quasi-product

observable of O; and O,. Also, it holds that

p(F(E1 X E3)) =0 <= 04;1“2 = p(F1(Z1))

= p(F1(51)) = p(F2(E2)). (16.4)
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/ =/

Proof. Though this lemma is easy, we add a brief proof for completeness. 0 < p(F((Z] x =5)))
<1, (V=] € F1,E, € F) we see, by ([62) that

0<a,"? <1

01+ aleEQ —p(F1(E1)) — p(Fa(E2)) =1
0< p(Fy(Es) —a) ™ <1
0< p(F(E1) —a, " <1

which clearly implies (I6-3). Conversely if « satisfies (I6-3), then we easily see (I6:2). Also, (16-4)

is obvious. This completes the proof. l

Let O12 = (X1 x Xo, F1 KTy, F12:F1(;§F2) be a quasi-product observable of O; = (X1, ¥, F}) and
Oy = (X3, T, F) in A. Consider the measurement M(012 =(X; x X5, Ty @?2,F12:F1§§F2), Sil))-
And assume that a measured value(zy,x2) (€ X7 X X3) is obtained. And assume that we know that

x1 € Z1. Then, the probability (i.e., the conditional probability) that xs € =5 is given by

p_ PE(E1 %X Z)) p(F12(Z1 X 55))

p(F1(Z1)) p(F12(Z1 X Z2)) + p(F12(E1 x Z5))

And further, it is, by (I6-3), estimated as follows.

max{0, p(F1(Z1)) + p(F2(E2)) — 1}
p(F12(Z1 x E2)) + p(F12(Z1 % E5))
min{p(F(

p(Fra(Z1 X s

A

Ps

1)), p(F2(22))}
+ p(F12(Z1 x Z5))

[1]

~—
~—

Example 16.5. [Example of tomatoes] Let Q = {w;,ws,....,wn} be a set of tomatoes, which is
regarded as a compact Hausdorff space with the discrete topology. Consider the classical basic

structure
CH(Q) € L(0,v) € BIEX(Q, ).
Consider yes-no observables Ogp = (Xgp, 2570, Fip) and Ogyw = (Xgw, 255V, Fyy) in C(Q) such that

Xpp = {yRDa nRD} and Xqy = {ySWa nSW}v

where we consider that “yzp” and “ngp” respectively mean “RED” and “NOT RED”. Similarly, “ysw”
and “ngy” respectively mean “SWEET” and “NOT SWEET".

For example, the wy is red and not sweet, the ws is red and sweet, etc. as follows.
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16.3 Implication — the definition of “=-"

N N

—_—

Ywa
Yro '

Nrp
# Yow
New Ysw

Nrp
Ysw

Mgw

Tomatoes ( Red or Sweet? )

Next, consider the quasi-product observable as follows.

qp
O12 = (Xgp X Xgw, 25807 XsW =[x o)
That is,

epl(YRD:Ysw)} _ [F'({(yro, Ysw) D] (wk)
Rep ™01 = | (o o) D) F({ (s o) D)
a{(yRD,ysw)} [FRD({yRD})] -
[FSW({ySW})] - a{(yRDvySW)} 1 + (6

a{(yRDyysw)} ,
{rDwsW)} [Fro({yro })] — [Fsw({ysw})]
(mpsn) (Wk) satisfies the (16:3). When we know that a tomato wy, is red, the probability P

[F'({ (yn, nsw)})](wc)]

where o

that the tomato wy, is sweet is given by

P = [F({ (Yo, ysw) )] (w)

— [F({(yRDaysw)})](wk)
[F({(yro, ysw) )] (wr) + [F({(Yro, nsw) })] (wr) [Fro({¥ro })] (W)

Since [F'({(yro, ysw) Pl (wi) = v, (wy), the conditional probability P is estimated by
max{0, [F1({yno })](wi) + [Fo({yswDllwr) =1}
[Fro ({ymo })] (wr) N

A

min[Fy ({ysw )] (wr), [F2({ysw )] (wr)}
[Fro ({ro })] (wr)

16.3 Implication — the definition of “=-"

16.3.1 Implication and contraposition

N N

—_—

1 Yrp pp Tpn
Yro ‘ B
New Ysw Jsw SW

Tomatoes ( Red or Sweet? )
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In Example 65, consider the case that [F'({(ysp, nsw)})](w) = 0. In this case, we see

F({ (ro, Ysw) })](w)
F'({ (Yros ysw) DI(w) + [F({ (yros nsw) )] (w)

Therefore, when we know that a tomato w is red, the probability, that the tomato w is sweet, is equal

to 1. That is,

= 1.

“IF{(yaps nsw) Hl(w) =07 <= [“Red” = “Sweet”

Motivated by the above argument, we have the following definition.

Definition 16.6. [Implication] Consider the general basic structure

[ACACB(H).

Let O12 = (X3 X X5, F1 KTy, F12:F1(;?F2) be a quasi-product observable in A. Let p € GP(A*),
=, € 1, 2y € Fy. Then, if it holds that

p(F12(E1 x (53))) = 0.
This is denoted by

—  [0%; )] (16.5)

O(l);E
(0155 =1] M- (Ora. 1)

Of course, this (I6-H) should be read as follows.

(A) Assume that a measured value (z1,22)(€ X7 x X3) is obtained by a measurement

Moo (@) (O12, Sk). When we know that z; € =, then we can assure that z, € Z,.

The above argument is generalized as follows. Let Oz, = ( X Z:l X, X Z:1?k, Fio.n= x F)
k=1,2,....,n
be a quasi-product observable in A. Let Z; € F; and =, € JF;. Then, the condition
w (0 P50 (B ¢ (55))) 5 =0
(where Z°¢= X \ E) is denoted by
[O(i) . :,] — [O(j) .= ] (16 6)
12..m) =i 12..m7 =j :
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Theorem 16.7. [Contraposition] Let O = (X7 X Xy, F1 X T, F12:F1§§F2) be a quasi-product
observable in A. Let p € GP(A*). Let Z; € Fy and =5 € Fy. If it holds that

O(l);E — 0(2);5 , 16.7
[ 12 1] M;(Om,S[p])[ 12 2] ( )

then we see:

1) —e 2) —¢
[052); =1 <~ [0(12)5 :2]-

M7(O12,5,))

Proof. The proof is easy, but we add it. Assume the condition (I6-7). That is,
A (f% Fia(Z1 x (X2 \ EZ)))?{ =0.
Since Z; x ¢ = ()¢ x 25, we see 4+ (p, F12((Z5)° x Z5))z = 0. Therefore, we get

1 —c 2 —cC
[O§2)§ =9 <~ [OB; :2] =

M7(O12,5,))

16.4 Combined observable — Only one measurement is per-
mitted

16.4.1 Combined observable — only one observable
The linguistic Copenhagen interpretation says

“Only one measurement is permitted”

= “only one observable” = “the necessity of the combined observable”

Thus, we prepare the following theorem.

Theorem 16.8. [The existence theorem of classical combined observables](cf.refs.[30, B5]) Consider

the classical basic structure
[Co(2) € L=(Q,v) € B(L*(Q,v))].

And consider observables 012:(X1 X XQ, S'rl &?2, F12) and 023: (XQ X Xg, ?2 &9:3, FQg) in LOO(Q, I/).
Here, for simplicity, assume that X;={z} 22 ... 2]"} (i = 1,2, 3) is finite, and that F; = 2%i. Further

19

assume that

O§22) = Og? (That iS, FlQ(Xl X 52) = FQg(EQ X Xg) <\V/EQ & 2X2))
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/ 012

Then, we have the observable O193=(X; x X5 x X3,F) x Fy x F3, Fia3) in L>(2) such that

Oy = Oz, Ofy = Ons.
That is,
FU2(Z1 X By X X3) = F1p(51 X Zy), F (X1 X By X Zg) = Fys(Zp X Eg). (16.8)
(V=1 € F1,V=5 € T, V=3 € F3))
The Oq93 is called the combined observable of O;5 and Oss.

Proof. Oj3 = (X1 X Xy x X3, F1 X Fy x Fy, Flo3) is, for example, defined by

[Fios({(z1, 2, 25) })](w)
[ [Fr2({(z1, 22)})](w) - [Fas({(z2, z3)})](w)

[F12(X1 x {z2})](w)
([Fi2(X1 % {z2})](w) # 0 and )

([F12(X1 x {z2})](w) = 0 and )
(Vw € Q,V(x1, 29, 23) € X7 X Xy X X3)

This clearly satisfies (I6-8). O

Counter example 16.9. [Counter example in quantum systems] Theorem I6-8 does not hold in the

quantum basic structure
[C(H) € B(H) € B(H)].

For example, put H = C", and consider the three Hermitian (n x n)-matrices Ty, Ty, T3 in B(H)
such that

N =TT, T3 =1T5T,, T\T5 #T5T;. (16.9)
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16.5 Syllogism and its variants

For each k = 1,2, 3, define the spectrum decomposition Oy = (X, Fi, F) in H (which is regarded

as a projective observable) such that
Xk
where X, = R, F, = Bgr. From the commutativity, we have the simultaneous observables
012201 X 02 = (X1 X Xz,ﬁtl X ?2,F12 = F1 X Fg)
and

023202 X 03 = (XQ X Xg,?g X ?3,F23 = F2 X Fg)
It is clear that
Of) =0F (thatis, Fis(X1 x ) = Fa(Ss) = Fys(Zx x X3) (V2 € F)).

However, it should be noted that there does not exist the observable O193=(X; X X5 x X3, F; K Fy X
Fs3, Fia3) in B(H) such that

Oglz? = 042, 0522? = Ops.

That is because, if Q123 exists, Theorem 163 says that O; and O3 commute, and it is in contradiction

with the (I69). Therefore, the combined observable Q93 of O3 and Oy3 does not exist.

16.5 Syllogism and its variants

16.5.1 Syllogism and its variations: Classical systems

Next, we shall discuss practical syllogism (i.e., measurement theoretical theorem concerning im-

plication (DefinitionI66) ). Before the discussion, we note

(¢) Since Theorem 068 (The existence of the combined observable) does not hold in quantum

system, (cf. Counter Examplel69), syllogism does not hold.

On the other hand, in classical system, we can expect that syllogism holds. This will be proved in

the following theorem.
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Let 0123 = (Xl X X2 X Xg, 351 X 3’2 X ?3, Flzgzgé)kzl’g’ng) be an observable in LOO<Q) Fix w € Q
=1 € F, 25 € Fy, Z3 € F3 Then, we see the following (i)

i) — ().
(i). (practical syllogism)
Oy = — 00y Zs], [O0LE — Oy =
03535 Z1] MLOO(Q)(OD&S[W])[ 123: Z2),  [Ofas Z2 MLOO(Q)(OH&S[W])[ 123} 23]
implies
13) /= = 13) = =¢
Rep = [0() — | Fizg (B x Za)l(w) [Figg (51 x Z5)(w)
[Fia (25 x E3)[(w)  [Fip" (5] x E5)}(w)

That is, it holds:

Chap. 16 Appendix (Practical logic)

Theorem 16.10. [Practical syllogism in classical systems]  Consider the classical basic structure

[Co(Q) € L=(Q,v) € B(L*(Q,v))].

1) . = 3) .=
[O123; =4 MLoo(g)(:O;p, S) [Ofa3; 3] (16.11)
(ii).
Olby; = = O], [00hE = O E
O, <= Oyl O], == (Ol
implies
- FUI(E x 23)|w) [FUD(Z) x 29)|(w)
Repzlx_g[o(l?))]: [Fia3 1= 123 121 % =3
BTG ES x Zy)l(w) [FH9 (55 x 29))(w)
e, [FSQJ,(EMgw)—aMg
[FaE)]w) —as e, 1—as o — [FiRE)] - [FA(Es)]
where
max{[Fis(E2)](w), [Fis(Z1)](w >+[ F)(Es)](w) — 1}
< a2 (w) < min{[FH(E)](W), [F5(Es)](w)}- (16.12)
(iii).
05=] = [0%Es], [0,

323

3) .=
1235 =2 — [O723; Z3]
Mpeo () (0123,5w)) Moo (0)(0123,5.)
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implies
(13) /= - (13) /= =c
Ren=Es 1003 _ [l (B1 x Za)l(w)  [Fi <:1x:3>]<w>]
PO = 2 s =) (P s < 2)]w)
_ az, =, (@) FIAED|(w) - oz, o, () ]
[FAE(w) — 0g o, (@) 1= ag 2 (@) — [FR)(E)](w) — [Fia(Es)] (@)
where
max{0, [Fi3(E1)](w) + [Fis(Zs)](w) — [Fah(Z2)](w)}
< oz, (w) £ min{[FR(E)](w), [Fi(Zs))(w)}

Proof. (i): By the condition, we see

0= [F53 (E1 X E9))(w) = [Fias(E1 x 5 x Z5)](w) + [Fias(Z1 x =5 x E5)](w)
0 = [Fi33 (Z2 x Z5)](w) = [Fras(Z1 X S x Z5)](w) + [Faa(E5 x Ea x =5)](w)
Therefore,
0 = [F123(E1 x B3 x Zy)|(w) = [F123(E1 x E5 X Z9)](w)
0 = [F123(E1 x 2 x E5)}(w) = [F123(2] x Z2 x E5)](w)
Hence,
[F53 (21 x Z9)](w) = [Fiaa(E1 x Bz x Z9)](w) + [Flas (E1 x E§ x Z5)](w) = 0.
Thus, we get, (I6-11).
For the proof of (ii) and (iii), see refs. [0, B4. O

Example 16.11. [Continued from Example T65] Let O; = Ogyw = (Xgw, 2%V, Fyy) and O3 = Ogp,
= (Xup, 2570, Fyp) be as in Example I65. Putting Xup = {yrp, re}, consider the new observable

Oy = Onp = (Xgp, 270 Fip). Here, “yrp” and “ngp” respectively means “ripe” and “not ripe”. Put

Rep[01] = [[Fow({ysw (@), [Fow ({nw })] (wr)]
Rep[O,] = [[FRP({pr})](wk), [FRP({”RP})](Wk)}
Rep[O3] = [[FRD<{yRD}>](Wk)a [FRD({HRD})KWQ]

Consider the following quasi-product observables:

qp
O12 = (Xsw X Xgp, 2XswxXrp Firo=FswX Fyp)
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qp
023 = (Xgp X Xgp, 2XRPXXRD oo [1 X ).

Let wy, € . And assume that

0(1); — 0(2); ’
[ 123 {ysw}] MLOO(Q)(OH&S[%])[ 123 {yRP}]
[0522)35 {yre }] = [0532)3, {yan}]. (16.13)

Moo () (0123,5)4,))
Then, by Theorem I610(i), we get
Reptou] [ {amnd < ol Fullion) x (o))

[Fis({nsw} X {ymo P (@) [Fis({nsw} X {nao})](wr)

_ { [Fow ({ysw )] (wr) 0 ]
[Fro ({yno P (wWk) = [Fsw({ysw )] (wr) 1= [Frao({yro })](wr) ]

Therefore, when we know that the tomato wy is sweet by measurement Mpe()(O123, S, ), the

probability that wy is red is given by

[Fus({ysw} X {¥an})](wi) P (Lo D) wr) _ (16.14)

[Fis({ysw} X {yro DI(wr) + [Fia({ysw} X {neoP)l(wr)  [Fro({yro})](wr)

Of course, (T6-13) means

Ltsweet” i C(Ripe” L(Ripe” i L(Redﬂ

“Sweet” = “Red”
However, this result is not useful in the market. We want a statement like
“Red” = “Sweet”

This will be discussed in the following example.

Example 16.12. [Continued from Example 165] Instead of (I6-13), assume that

ol — ol Ofvz} . olvs}, (16.15)
b Mo (On2Sps,,) L Mpse() (0586,

When we observe that the tomato w, is “Red” we can infer, by the fuzzy inference M LOO(Q)(013,

Ss.,,1), the probability that the tomato w,, is “Sweet” is given by

[Fi3({ysw} X{yno})](wn)

= Fa(on] X o))+ [Frs({swr} X (e Non)
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which is, by (I6:3), estimated as follows:

max{ [Fre({Yre D](wn)  [Fow({ysw})] + [Fro({yro})] — 1} <Q
[Fro ({yro })] (W)’ [Frn ({yro })](wn) N

in [st({ysw})] (wn)
= i @) (16.16)

Note that (T6-15) implies (and is implied by)
“Ripe” = “Sweet” and “Ripe” = “Red”
And note that the conclusion (I616) is somewhat like
“Red” = “Sweet”

Therefore, the estimation (T6-16) may be useful in markets. ///

Red
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Chapter 17

Postscript: QL is the theory of everyday
science

17.1 QL=the theory of everyday sience=Statistics of the
Future

In this report, I discussed | LCI(green box) | in the following figure:

Figure 0.1 : The location of QL in the history of western philosophy

(realistic) monism (i.e., without measurement axiom) _

Socrates :_ T = '
Aristotle | relativity -
(0):Greek :I {(monisii) I |_> theory »D (unsolved) :
philosophy ; % Newton l_@ @ TOE:theory of |
Parmenides : {realism) quantum —  everything :
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|
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|
I
I
I
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I
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math. logical worldview
L - - (idealistic) dualism (i.e., with measurement axiom) p—

327



17.2 My dream: Two sciences

( For |the red part (HWP) | see refs. [59, [74])
And I conclude that

QL = the theory of everyday sience = Statistics of the Future.

That is because I believe that Zeno’s paradox is still considered to be unsolved because the theory

of everyday science is not generally recognized (cf. Sec. BR).

17.2 My dream: Two sciences

Therefore, my dream is the following figure will be realised

Three major modern scientific theories

Teory 9f relativity quantum mechanics statistics
Now
future oL
TOE
Theorv of evervthing Quantum language

the thory of everyday science
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Furthermore, I believe this has been the dream of Western philosophy for 2500 years. That is, I
believe that the following is the simplest history of Western history (~ Figure 0.1).

Figure 17.1 : The world’s shortest history of Western philosophy

If the present is not known, history is not known
("History is an unending dialogue between the present and the past.” (cf. ref. [9].)

The world's shortest hisory of western philosophy

| think therefore | am

\

TOE QL

Quantum language

Theory of everything

[ am not provoking, I am stating the obvious.
Indeed, the cogito proposition is generally regarded as the first proposition of philosophy.
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My aim is to deepen refs.[l74, /5], and I hope that you, the reader, will be a good competitor to me.

Shiro ISHIKAWA
December in 2023
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