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Abstract Recently I proposed “QL (=quantum language)” (or, “the linguistic Copenhagen in-
terpretation of quantum theory” ), which was not only characterized as the metaphysical and linguistic
turn of quantum mechanics but also as the scientific understanding of Descartes=Kant epistemology.
Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to
describe classical systems as well as quantum systems. In this research report, quantum language is
seen as a fundamental theory of statistics and reveals the true nature of statistics. I hope the readers

to enjoy the beautiful world of dualistic idealism.

The following diagram sums up my point:
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Preface QL (=Quantum language), a language for talking
science

QL (=Quantum language) is a mathematical abstraction of the language of quantum mechan-
ics. I argue throughout this book that quantum language is the most powerful language of science,
that is, it is not only the language of quantum mechanics but also the language of classical systems
(i.e., everyday science). This language is located as illustrated in the following figure. This implies
that quantum language is the scientific destination of dualistic idealism, and also, from a scientific
perspective, the history of western philosophy can be almost regarded as the history of the pursuit
of scientific language (i.e., Socrates’ absolutism, cf. ref. [80]).

0.1 Two aspects (QM ®, QLQD) of quantum theory
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For [linguistic turn @?] and [@)], see Note 0.1 (vi).

?
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I concluded that

rom a scientific perspective (i.e. from the standpoint of the perfection of Socrates’ absolutism
A) £ ientifi ti i.e. f the standpoint of th fecti fS tes’ absoluti
(cf. ref. [B3, 76, BO])), ‘progress’ can be introduced into the history of Western philosophy.

That is,

(A”) If “to make progress” is defined by “to come near quantum language” (i.e., “becoming more
and more like quantum language”)" we can say that the time series [ ©-0O-0- W @ W
] can be regarded as progress, that is,
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Progress of dualistic idealism

Or, almost equivalently, this means that Socrates’ dream has come true by QL (cf. ref. [R0])

Aristotle Thomas Aquinas Descartes Kant Wittgenstein

Note 0.1 Some additional information on is provided below. Here, QM: quantum mechanics,
QL: quantum language, RQM: relativistic quantum mechanics, QIS: quantum information sci-
ence,

(i) The main theme of this book is the following:

the classical mechanical wordview dualisation the quantum mechanical wordview

(ii) For a detailed discussion of the main stream of western philosophy history [ ©-0-®- -
©- @ ], see ref. [76].
(iii) Roughly speaking, I (not a philosopher) think
e realistic: ‘thing’ first, ‘theory (& language)’ later. (e.g., Newtonian mechanics)
e idealistic: ‘theory (= language)’ first, ‘thing’ later. (e.g., statistics)
However, when we normally use Newtonian mechanics or statistics, we are not particularly
aware of the above difference. Therefore, this book does not emphasize the difference between
‘idealism’ and ‘realism’ too strongly (see Note Z-7). For example, quantum language is idealism

and quantum mechanics is realism, but if one knows quantum language, one can use quantum
mechanics freely.
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(iv)

(vii)

I think that

the Copenhagen interpretation the linguistic Copenhagen interpretation

the linguistic Copenhagen interpretation

the linguistic Copenhagen interpretation

° =|QSI'in © ‘ + ’ classical QL in ©

Thus, we can use quantum mechanics if we know the linguistic Copenhagen interpretation with-
out knowing the Copenhagen interpretation. Rather, we consider the linguistic Copenhagen
interpretation to be the true Copenhagen interpretation. That is, I consider that there was no
so-called Copenhagen interpretation?.

The linguistic turn [(27] in Figure 0.1 does not mean that Kantian philosophy (~ ”Copenhagen
interpretation”) influenced analytic philosophy (Wittgenstein). QL clarified the relation between
Kantian epistemology and analytic philosophy such as

(D:epistemology — ‘Copenhagen interpretation‘ —_— O:QL
linguisticlturn @7 l
®):analytic philosophy | «—— o ’Axiom 1 (measurement) ‘
(cf. ref. [80)).

If we close our eyes to the historical background and think about it from a purely theoretical
point of view, I don’t think mathematical logic and analytic philosophy are completely related
(cf. ref. [76]). That is because I believe that no worldview can come from mathematics. On the
question of whether the most important key word in analytic philosophy is ‘logical’ or ‘scientific’,
I take side of ‘scientific’. (I think that mathematical logic is a language of mathematics, not
science). I think that

mathematics - - - logic

° . classical mechanical worldview - - - causality
science

quantum mechanical worldview - - - measurement + causality

&)

Since my interest is science, not mathematics, I have marked ‘7’ as in —.
?

If QL is seen as a philosophy, its slogan is "From ‘Be logical!” to ‘Be scientific!””. Through
the problems of the flagpole and Hempel’s ravens, Hempel cast doubt on ‘Be logical!” (cf. ref.
22, 53, 7).

I am not familiar with RQM (=relativistic quantum mechanics) and ‘ TOE in ‘

0.2 Socrates’s dream come true!

Let me say a few words about Socrates’ absolutism (cf. ref. [R0]).

2As discussed in Sec. B0, I think that there are a lot of ‘so-called Copenhagen interpretations’, that is, the
established Copenhagen interpretation does not exist. On the other hand, the linguistic Copenhagen interpretation is
expected to be uniquely determined.
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We adopt the general convention of considering Socrates as the founder of philosophy. Therefore, we
have:

Socrates (absolutism: pursuit of truth) vs. Protagoras (relativism: mastering rhetoric)

"Man is the T know that
measure of

& all things." 1 know nothing

~ Socrates ~

In ancient Athens, it was customary for citizens to gather in the agora, a public square, to freely
debate. So how did one ”"win an argument”?

e Protagoras, the relativist, responded to this question by saying ”improve your rhetoric skills”
e Socrates, the absolutist, said ”speak the truth”
If I were in the agora, I would probably agree with Protagoras, but that’s not where philosophy

begins. So Socrates’ disciples pursued the question, ”What is absolute truth?” This pursuit has
continued through

e Plato, Aristotle, Augustine, Anselm, Thomas Aquinas, Descartes, Kant, and Wittgenstein,

and has formed the mainstream of Western philosophical history. However, despite being pursued by
the most brilliant geniuses of every era for the past 2,500 years, no clear answer has yet been found.
That’s why some people, like Rorty (the flag bearer of neo-pragmatism), say, ”Let’s give up on the
pursuit of truth here.” If Rorty says something like that, I would think that Rorty’s opinion is correct,
but still, the stubborn pursuit of true If so, I think everyone would agree with the following:

e The most important problem in Western philosophy is the completion of Socratic absolutism, i.e.,
the end of the mainstream (Plato, Aristotle, Augustine, Anselm, Thomas Aquinas, Descartes,
Kant, Wittgenstein).

And my answer is as follows.

e Next for Wittgenstein is QL, which is the perfection of Socratic absolutism.

Aristotle Thomas Aquinas

Some readers might be thinking:

e Why are there no names like Spinoza, Hegel, Nietzsche, Husserl, Heidegger, Sartre etc?

‘ For further information see my homepagé
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The reason is simple: their achievements are not scientific (=QL). That does not mean that they are
philosophically inferior to QL philosophers. However, the spirit that permeates the mainstream of
Western philosophy is ”scientific.”

Thanks to QL we can say ‘what Wittgenstein wanted to say’ as follows.

¢ What we cannot speak about in QL, we must pass over in silence.

0.3 The purpose of this paper *
Note that says that QL is structured as shown in the following diagram.

Figure 0.2: Several fields of QL (i.e., quantum mechanical worldview

The four disciplines (Analytic philosophy, Descartes-Kant epistemology, quantum mechanics and
statistic) are not separate disciplines but four aspects of quantum language as follows.

1
A G!@t' hi,  '© =
nalytic phil. o )
— o duantum s;;:strlisetrl.cs statistical

3 = i L N ]
Phil. of science (Y thechanics  Baysian, mechanics

_ + Copenhagen interpretation
(= Greek phil. ~ Descartes-Kant epistemology )

_
1

discussed in refs. (63, 76} discussed in Tefs. (62, B3]

Figure 0.2: The relation among Analytic philosophy, Descartes-Kant epistemology, quantum mechan-
ics and statistic

And
Figure 0.3 : [QL] = [QM(=QIS)] | [classical QL(=everyday science)]

3This book was written under the assumption that it is a 3nd edition of my book [64]. However, the name ”linguistic
Copenhagen interpretation” is more often used these days than the name ”linguistic interpretation”.  Therefore, I
have used ”linguistic Copenhagen interpretation” as the title of this book. With the change of title, it is no longer
possible to add [3nd edition] to the book title. Also, ref. [6Z] is used as a draft of this book.
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i.e., M(—OIS
oL (=QIS)

lassical QL (= everyday science)

Quantum Language( QL)

quantum computer (nature)
o quantum information
science (QIS) claSS|ca| Q L

=quantum mechanics(=0M)] (= everyday sience )

I]F[l'

Figure 0.3: [QL] = [QIS(=QM)] | [classical QL]

Thus, the purpose of this book is to assert that

(#1) Statistics can be formulated in QL (= measurement theory)
Or, more precisely,

(#2) When thinking in quantum language, the results of statistics can be used for the computational part.”
And thus, I would like to assert that

e For the question ‘“Why does statistics work in our world?’, I would like to answer ‘That is because QL
works in our world’.

or equivalently,

e classical QL is the theory of everyday science.

Our argument is not common sense. Common sense would dictate that ”the fundamental spirit of science
is a mechanistic worldview”. But our claim is that

(A1) “the fundamental spirit of science is a quantum-mechanical worldview”.
or equivalently,
(A2) “QL is a language of science”.

where we mean that ‘science=non-relativistic science’.

4As statistics is a vast discipline, it is impossible to achieve this objective with this book alone. Therefore, my real
alm is to convince readers that “statistics can be formulated in QL”. And to have each reader write papers showing
that various methods of statistics can be described in quantum language. Many readers may be more familiar with
statistics than I am, so they may have found Chapter 6, for example, insufficient. If so, I would like to see this
deepened further. As this is an area of ’quick wins’, I think readers could write many papers on it.
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Chapter 1

Nobody understands quantum mechanics
(by R. Feynman)

Dr. R. P. Feynman (one of the founders of quantum electrodynamics) said the following wise words:(f1)
and ()"

(#1) There was a time when the newspapers said that only twelve men understood the theory of
relativity. I do not believe there ever was such a time. There might have been a time when only
one man did, because he was the only guy who caught on, before he wrote his paper. But after
people read the paper a lot of people understood the theory of relativity in some way or other,
certainly more than twelve. On the other hand, I think I can safely say that nobody understands
quantum mechanics.

and

(#2) We have always had a great deal of difficulty understanding the world view that quantum me-
chanics represents. ------ I cannot define the real problem, therefore I suspect there’s no real
problem, but I'm not sure there’s no real problem.

As Feynman says, the ‘lofty essence’ of quantum mechanics may have to be left to the geniuses of the
future.

!The importance of the two (f1) and (f2) was emphasized in Mermin’s book [04].



1.1 Outline of quantum language

However, there are many aspects of quantum mechanics. In particular, the perspective of viewing
quantum mechanics as a fundamental theory of ‘everyday science’ can double the range of applications

. progress . . .
of quantum mechanics such as (8)————(@19 in [Figure 0.1 in Preface, that is,

Copenhagen Linguistic
@ . . Copenhagen
:interpretation
@ interpretation
QM
quantum progress ® |QL QM(=QIS)
mechanics classical QL
— -
. quantum mechanical
imcomplete worldview

language of science

As will be discussed in Sec. BT, I think that there are a lot of ‘so-called Copenhagen interpretations’,
that is, the established Copenhagen interpretation does not exist. In this sense, I think QM is
incomplete, and the linguistic Copenhagen interpretation in QL [[D)] is the only correct Copenhagen
interpretation. This is precisely what we are trying to do in this publication.

1.1 Outline of quantum language

The quantum language is a mathematical abstraction of the language of quantum mechanics. I argue
throughout this book that quantum language is the most powerful language of science, that is, it is
not only the language of quantum mechanics but also the language of everyday science.

1.1.1 Von Neumann’s quantum theory

FRIRCETN [ARTNARES
I MATHEMAIILS

Mathematical
Foundations of
(uantum Mechanics

1903-1957

Various ‘interpretations = of quantum mechanics have been proposed. Examples include the
Copenhagen interpretation and the many-worlds interpretation. Furthermore, there are various
‘versions = of the Copenhagen interpretation.

The ‘linguistic Copenhagen interpretation ~ of this book is a kind o ‘Copenhagen interpretation
derived from von Neumann ’ s formulation of quantum mechanics on Hilbert spaces (cf. ref. [I10]).
Throughout this book, I argue that the linguistic Copenhagen interpretation is the true Copenhagen
interpretation.

Von Neumann had the widest coverage of any mathematician of his time, integrating pure and
applied sciences and making major contributions to many fields, including mathematics, physics,
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Chap. 1 Nobody understands quantum mechanics (by R. Feynman)

economics, computing, and statistics. He was not a genius who specialized only in mathematics and
physics, but an all-round genius.
From this fact we are tempted to expect the following.

(#1) the ‘quantum theory’ generated from the linguistic Copenhagen interpretation (which is called
‘quantum language’) is a very large theory that includes not only quantum mechanics of physics
but also classical statistics.

Or, more generally, we may say
(f2) Quantum language is the scientific realization of the dualistic idealism of philosophy.

In this book, I devote myself to proving (#;). (For (f2), see my previous book [76]). Quantum
language consists of two axioms (measurement and causality) and the linguistic Copenhagen inter-
pretation. I first prove ‘von Neumann-Liiders projection postulate’ in QL. This is a solution in QL,
and whether it is a physical solution is undecided, but the theorem allows quantum language to be
discussed without being plagued by various paradoxes (e.g., Schrodinger’s cat, etc.).

Also, recall that there are no axioms in statistics. This fact means that we do not yet have
‘theoretical statistics’. However, if we consider that ‘quantum language for classical systems =
theoretical statistics’, we can then introduce an ‘elegant understanding ~ into statistics. The aim of
this book can therefore be seen as a proposal for theoretical statistics.

Throughout this book, I assert that

e Von Neumann’s formulation of quantum mechanics should not be confined in
physics, but should be regarded as a fundamental theory of science.

3 For further information see my homepagé
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1.1 Outline of quantum language

1.1.2 Classification of quantum language

Quantum language (= measurement theory ) is classified as follows.

( . . .
classical system : Fisher statistics
pure type .
( Al) quantum system : usual quantum mechanics
(A) measurement theory
(=quantum language) classical system : including Bayesian statistics
mixed type and Kalman filter
(AQ) quantum system : quantum decoherence

Here, we have two kinds of quantum languages, i.e., pure measurement theory and mixed measure-
ment theory (or, statistical measurement theory). The former is formulated as

[Asaam—)

[(pure)Axiom 1] (deterministic)
(Al) ‘ pure measurement theory ‘ = ’ pure measurement ‘—&— Causality
(=quantum language) (cf. BZ1) (cf. §E3)

a kind of spells (a priori judgment)

—&-‘ Linguistic Copenhagen interpretation
(¢f. §E)

manual to use spells

and the latter as

[(mixed)Axiom!™) 1] [Bxom 7]
(Ag) ‘mixed measurement theory ‘ = ‘ mixed measurement ‘—i— Causality
(=quantum language) (cf. BE) (cf. §E3)

a kind of spells (a priori judgment)

+‘ Linguistic Copenhagen interpretation
(cf. §67)

manual to use spells

4 For further information see my homepagé
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1

.1.3 Axiom 1 (measurement) and Axiom 2 (causality) in (A;)

Let us sketch what is implied in the most fundamental case of pure measurement theory (A;). This
scheme involves two axioms, Axiom 1 for measurement and Axiom 2 for causality.

-

(B):Axiom 1 (measurement) pure type ~

(This can be read in §2.7 )

With any system S, a basic structure [A C A]p) can be associated in which measure-

ment theory of the system can be formulated. In [A C Alpp, consider a W*-measurement
MZ(O:(X, FF), S[p]) ( or, C*-measurement My (O:(X, FF), S[p]) ) That is, consider

x a W*-measurement MZ(O,SM) ( or, C*-measurement My (O:(X, T, F),S[p]) ) of an ob-
servable O=(X,JF, F') for a state p(€ GP(A*) : state space)

Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O,SM) ( or, C*-measurement My (O:(X, F, F),S[p}) ) belongs to = (€ F) is given by

P(F(E))(= a-(p, F(E))z) (1.1)

(if F'(Z) is essentially continuous at p, or see (2-55) in Definition 2718 ).

dualism 113cm (heght)

110cm
X ’ 46Kg (weight)
r.y - 5 4 98 (blood pressure)
s measure

i “/\ value ‘ "

b | [parametrize —=

~ . [parameftrize ——

% 1 e
g T thing=system S

Max Born (1882-1970)
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1.1 Outline of quantum language

e (C): Axiom 2 (causality) ~

(This can be read in §9°3)

Let T be a tree (i.e., semi-ordered tree structure). For each t(€ T), a basic structure [A; C
Al B(n,) is associated. Then, the causal chain is represented by a W*- sequential causal operator

{ P, 1, ZtQ — Ztl}(tl,tQ)GTé ( or, C*- sequential causal operator {®y, 1, : Ay, — ‘Atl}(tl,tg)GTé )

Tt
t — 3
2

ty Vw\ t4
- h
tO \ ‘% t5

Tt
™~

Later Figure 9.2: Tree: (T = {to,t1,....tz}, 7 : T\ {to} = 1)

Causality

EP
\_ J

Note that

(Dy) the two axioms are a kind of spells (i.e., incantation, magic words, metaphysical statements),
so that it is impossible to verify them experimentally.

Therefore,

(D2) what we should do is not to understand the two, but to learn the spells (i.e., Azioms 1 and 2)
by rote.

Of course, the “learning by rote” requires us to understand mathematical definitions of the followings:

e basic structure [A C f_l]B(H), state space GP(A*), observable O=(X, F, F), etc.

#Note 1.1. If metaphysics did something wrong in the history of science, it is because metaphysics
attempted to answer the following questions seriously in ordinary language:

(#1) What is the meaning of the keywords (e.g., measurement, probability, causality) ?

Although the question (f1) looks attractive, it is not productive. What is important is to create a
language to deal with the keywords. So we replace (f1) by

6 For turther information see my homepagd
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(#2) How are the keywords (e.g., measurement, probability, causality) used in quantum language 7

The problem (#;) will now be solved in the sense of (f2).

ANote 1.2. Metaphysics is an academic discipline concerning propositions in which empirical validation
is impossible. Lord Kelvin (1824-1907) said

Mathematics is the only good metaphysics.
Here we step forward:
(#) Quantum language is another good metaphysics.

William Thomson (=Lord Kelvin), was a British mathematician, mathematical physicist. Absolute
temperatures are stated in units of kelvin in his honor.

1.1.4 The linguistic Copenhagen interpretation

Many theories have the following form.

‘Theory‘: Axiom (=Principle) —i—’lnterpretation

For example, in our society, too, it is not enough for a law to have a text alone; the law only
works when there is a set of interpretations of it.

Axioms 1 and 2 are the most fundamental. But they are not all. That is,

Axioms 1 and 2 are all of quantum language. Therefore,

(1) after learning Axioms 1 and 2 by rote, we need to brush up our skills to use them through trial
and error.

Here, let us recall a wise saying
e Faxperience is the best teacher, or custom makes all things
and our experience

e A manual helps us to master the rules quickly.
Thus, we define as follows.

the linguistic Copenhagen interpretation

:?)the manual how to use Axioms 1 and 2.7
Def(1

2Also, in Chap. B, we introduce another definition:
the linguistic Copenhagen interpretation

D:f:(2) common knowledge in the world of dualistic idealism
€

I prefer it to Def(1). However, I am devoted to Def(1) here, since Def(1) is understandable.

7 ‘ For further information see my homepagé
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Although the linguistic Copenhagen interpretation is composed of many statements, the simplest
and best representation may be as follows.

(E):The linguistic Copenhagen interpretation )

(This will be explained in §37)
Only one measurement is permitted.

We can also choose apparently opposite viewpoints concerning the linguistic Copenhagen inter-
pretation, though they look a bit too extreme.

(E;1) Through trial and error, we can do well without the linguistic Copenhagen interpretation.

(E2) All that are written in this book are a part of the linguistic Copenhagen interpretation.

They are viewpoints obtained from the opposite standpoints. In this sense, there is a reason to
regard this book as something like a cookbook.

#Note 1.3. You may have the following questions.
(fo) Why is Newtonian mechanics (or statistics) without a stated ‘interpretation’?
This question is profound. I think as follows.

(#1) in the case of Newtonian mechanics, the interpretation is almost self-evident.
That is, in Newtonian mechanics, we can do well without explicit interpretation.

(f2) In the case of statistics, the distinction between ‘axiom ~ or ‘mathematics = is blurred. And
thus, the boundary between ‘Axiom’ and ‘Interpretation’ is not clear.
Thus, in statistics, the term ‘interpretation’ is not usually used.

If so, the following problem is the most fundamental and important in the field of theoretical statistics:

(b) Rewrite statistics in the following format:

Statistics | = ‘ Axiom (=Principle) ‘+‘Interpretation‘

This problem is important. I think that statistics is generally regarded as a kind of applied mathemat-
ics, because the problem (b) is not yet answered. In this book, this problem (b) will be automatically
solved since “statistics C QL” will be studied.

8 ‘ For further information see my homepagé ‘
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1.1.5 Remarks
Let’s take some precautions.

Remark 1.1. (i): It is easier to think that use of two phrases (‘the Copenhagen interpretation’ and
‘linguistic Copenhagen interpretation’) should be defined as follows.

(41) the phrase ‘so-called Copenhagen interpretation’ is used in QM (quantum mechanics) in () in
Figure 0.1 (in Preface)

(42) the phrase ‘the linguistic Copenhagen interpretation’ is used in QL (quantum language) in (c)
in (in Preface)

However, I think that the linguistic Copenhagen interpretation is the true Copenhagen interpretation.
Therefore, in this book, I frequently use the term ‘Copenhagen interpretation’ in the sense of the
linguistic Copenhagen interpretation.

(ii): As mentioned in Preface, my purpose is to propose the theory of everyday science (= classical

QL) such as
QM(=QIS)
classical QL (= everyday science)

Quantum Language (=QL)

=
el

quantum computer (nature) * k w D D
o quantum information 3
science (QIS) classical QL

=quantum mechanics(=0M)] (= everyday sience )

Figure 1.1(=Figure 0.3) : [QL] = [QM(=QIS)] | [classical QL(everyday science)]

Therefore, my true purpose may be to introduce ‘Copenhagen interpretation’ to classical QL. To
do this, it is necessary to have a good knowledge of the Copenhagen interpretation of quantum
mechanics.

Remark 1.2. QL (i.e., the linguistic Copenhagen interpretation) has various advantages, two of
which are mentioned here.

(#1) About classical QL (i.e., A is commutative, especially, statistics):
Statistics is a very useful theory with a wide range of applications, but it lacks beauty, as the
theory is regarded as ’a piece of applied mathematics’. But, seeing [statistics C classical QL],
we can regard statistics as the theory of dualism.
That is, I believe that

9 For turther information see my homepagd
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statistics such as ‘statistics C classical QL’ is ‘true statistics’
Therefore, we can completely solve the problem (b) in Note 13

(82) About quantum QL:

Von Neumann-Liiders projection postulate can be proved in quantum QL. I believe that this

implies that the linguistic Copenhagen interpretation is the true interpretation of quantum
mechanics. That is, I believe that

the linguistic Copenhagen interpretation is ‘true Copenhagen interpretation’

1.2 Example: Bald man paradox

Axioms 1 and 2 mentioned later may be too abstract to use quantum language now. So, let me

show a simple example. The following example may promote your understanding of QL without the
knowledge of Axioms 1 and 2.

ANote 1.4. Readers may ask the following question:

(1) Where does the (linguistic) Copenhagen interpretation lie in the above?

This question is similar to

(#2) Where does the (linguistic) Copenhagen interpretation lie in statistics (and theory of probabil-
ity)?

In other words, the (linguistic) Copenhagen interpretation is quite difficult to find in classical QL. In
most cases of classical systems, without the (linguistic) Copenhagen interpretation, we can do well.
However, somewhat difficult problems (e.g. the Monty Hall problem, Zeno’s paradox, Kolmogorov’s
extension theorem (cf. Sec. B71) cannot be solved without the Copenhagen interpretation. For
example, the next question is quite educational for the current reader.

(#) What measurement is assumed in the Monty Hall problem? (cf. Sec. 531)

Example 1.3. [Bald man paradox]

For simplicity, consider the basic structure C(f2), where the state space 2 = the closed interval
[0,1)(C R : real line).

Let’s assume that the maximum number of hairs on the head of adult men is 150 000(= 1.5 X
10°). Let M be a set of all adult men. For any m;(€ M), define his ‘bald rate w(m;)’ by

Number of hairs on Mr. m;’s head.
1.5 x 10°

Put Q = [0, 1]. Define the ‘bald observable’ O = ({Y, N}, 2t¥"N} Fp) in C(Q) such that

w(m;) =1

0 (0<w<0.3)
[Fe({YPlw) =q 3w—% (03<w<0.7)
1 (0.7 < w < 1.0)

Fe({ND](w) =1 - [Fp({YDl(w) (0<w<T)

10
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Fs({N}) Fs ({Y})

| | I | |
w(m)  wlm,) w(m,) w(m,) w(m,) w(m) w(m,)

1t QT S S
e & © & & @&

my m, rhz
Figure 2: Bald observable Op = ({Y, N}, 28¥"M ) in C(]0, 1))

Further, suppose that there are 100 respondents, and furthermore, the following question is asked to
them

(Gyp) Is Mr. m; (with the bald rate w(m;)) bald or not?

Assume that the results of the responses are as follows.

100[Fp({Y })](w(m;)) respondents say “Yes, Mr. m; is bald”

(Ga)
100[1 — F({Y'})](w(m;)) respondents say “No, Mr. m; is not bald”

[NOJ VES]| ---
v & & Y &
YES|[NO| YES] - YES| [YES
-—-.., ,.-- \' uﬁﬂ ’ ! w ‘i?‘ - EEm

a "Tnnn!

This can be probabilistically interpreted as follows.

(G3) When a respondent is randomly selected out of 100, the probability that this respondent answer

“yes” to question (D) is p1 = [Fp({Y }P)](w(m,))).
(Here, note that ‘probability‘ can be created by ‘ratio’ + ‘at random’)

which is equivalent to

(G4) Consider the measurement Mc) (O = ({Y, N}, 2N Fg), Siyon)- Then, the probability
that a measured value Y is obtained is given by [Fp({Y})](w(m;)).

Remark 1.4. I think the above argument is almost identical to ‘Zadeh’s Fuzzy set’ argument (cf.
ref. [[T5];(1965)), which is one of the most cited papers of the 20th century. I therefore believe
that the ‘bald man paradox’, unresolved for 2500 years, has been resolved by Zadeh. Zadeh’s late
paper [TI16](2008) is written some criticisms of fuzzy theory by Kalman and others fairly. Obviously,
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his fuzzy theory can never beat statistics. For fuzzy theory to be generally accepted, it must be
formulated within QL (a theory more powerful and beautiful than statistics). This has been my
policy since the beginning when I proposed QL (c¢f. [29, B0, B, B3]). However, these papers of
mine did not move public opinion, but they did not give up. In this paper, I present the following
illustration several times and hope that my arguments will be accepted by the reader.

® ® ©® Chap.14
Analytic phil. statistics g
‘se® fuzzy logic, quantum Fisher, otstioal ,_

Phil. of science " mechanics Baysian,

_ + Copenhagen interpretation
(= Greek phil. ~ Descartes-Kant epistemology )

Figure 0.2: Several fields of QL (i.e., quantum mechanical worldview
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Chapter 2

Axiom 1 — measurement

Quantum language (= measurement theory ) is formulated as follows.

[AYlnrn ’)}

[Asciom 1] (deterministic)
. ‘measurement theory‘ := | Measurement |+ | Causality
(=quantum language) (cf. BZ1) (cf. §U3)

a kind of spells (a priori judgment)

[guantum linguistic Copenhagen interpretation|

+‘ Linguistic Copenhagen interpretation
(cf. §8°1)

manual to use spells

Measurement theory says :

e Describe every phenomenon based on Axioms 1 and 2 through the linguistic Copenhagen inter-
pretation !

In this chapter, we introduce BAxiom 1 for measurement. Axiom 2 for causality will be explained in
Chapter 9.

2.1 The basic structure [A C A C B(H)]; General theory

The Hilbert space formulation of quantum mechanics is due to von Neumann. I cannot emphasize
too much the importance of his work (cf. ref. [IT0]). In this section, we introduce the mathematical
results concerning the Hilbert space without proofs. For the proofs, see, for example, ref. [[U6].

2.1.1 Hilbert space and operator algebra

Let C be the set of all complex numbers. Let H be a complex Hilbert space with an inner product
(-,-), where the inner product (-,-) : H x H — C satisfies that

13



2.1 The basic structure [A C A C B(H)]; General theory

(i) (u,u) >0 (Vu € H), (i) (u,u) =0 < u=0,

(i) (u, aquy + agug) = ag{u,uq) + ag{u,us) (Yu,ur,us € H,Vay,ay € C),

(iv) (ui,uq) = (ug,uy) (i-e.,, conjugate complex) (Vuy,us € H)

And, defining the norm ||ul| (or, ||ul|z) by ||ul = [(u, u)|*/?, we get a Banach space (H, || - ||). It
is well known that the parallelogram law (i.e., 2(||z[|* + ||y||*) = ||z — y||* + ||z + y||*) holds. Define
B(H) by

B(H)={T :H — H | T is a continuous linear operator}. (2.1)
B(H) is regarded as a Banach space with the operator norm || - || g(sy, where
1Tl 5oy = Sup ITz|m (VT € B(H)). (2.2)
z||lg=1
¥ \ = Hermite matrix
(4 it
|\: i -]J
Mathematice (& gaid
Foundationsof - -|‘_z-: L)
{uantum Mechanics bod ey ’,.w:‘l:. o : '
Let T' € B(H). The dual operator T* € B(H) of T is defined by
(T*u,v) = (u, Tv) (Yu,v € H).
The followings are clear.
(T*) =T, (T\Ty)" =T,T7.
Furthermore, the following equality (called the “C*-condition”) holds:
17T = |TT*| = |T|* = |T"* (YT € B(H)). (2.3)

When T' = T* holds, T is called a self-adjoint operator (or, Hermitian operator).
Let T,(n e N={1,2,---}),T € B(H). The sequence {7}, is said to converge in the sense of
the (operator) norm topology to T, that is, n — lim, ., 7, =T, if

Tim [T, = Ty = 0.
Also, the sequence {T,,}22, is said to converge weakly to T, that is, w — lim,, o, T,, = T, if
lim (u, (7, — T)u) =0 (Vu € H). (2.4)
n—o0

Thus, we have two convergences (i.e., norm convergence and weakly convergence) in B(H)".

L Although there are many convergences in B(H ), in this note we confine ourselves to the two.

14 bor turther intormation see my homepagéd
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Chap. 2 Axiom 1 — measurement

Definition 2.1. [C*-algebra and W*-algebra] A(C B(H)) is called a C*-algebra, if it satisfies that
(A1) A(C B(H)) is the closed linear space in the sense of the operator norm || - || g(a).
(Ag) A is #-algebra, that is, A(C B(H)) satisfies that

L, Fhe A= F -F, e A, FeA=F'cA

Also, a C*-algebra A (C B(H)) is called a W*-algebra, if it is weakly closed in B(H).

2.1.2 Basic structure [A C A C B(H)] ; General theory

Definition 2.2. Consider the basic structure [A C A C B(H)] ( or, denoted by [A C Alpm )
That is,

e A(C B(H)) is a C*-algebra, and A(C B(H)) is the weak closure of A.

Note that 1W*-algebra A has the pre-dual Banach space A, (that is, (A,)" =A ) uniquely. There-
fore, the basic structure[A C A C B(H)] is represented as follows.

e (B): General basic structure:[A C A C B(H)] ~

‘A*

T dual

- > —=— [B(H) (2.5)
subalgebra-weak-closure subalgebra
lpre—dual
A,
- /

2.1.3 Basic structure [A C A C B(H)| and state space; General theory

The concept of “state space” is fundamental in quantum language. This is formulated in the dual
space A* of C*-algebra A ( or, in the pre-dual space A, of W*-algebra A).
Let us explain it as follows.

Definition 2.3. [State space, mixed state space| Consider the basic structure:

[ACACB(H).

15 For further information see my homepagé
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2.1 The basic structure [A C AC B(H )]; General theory

Let A* be the dual space of the C*-algebra A. The mixed state space &™(A*) and the pure state
space GP(A*) are respectively defined by

(a) &™(A") ={pe A [ llplla- =1,p =0 (ie., p(T*T) = O(VT € A))}

(b) &P(A*) = {p € &™(A*) | p is a pure state}.
Here, p(€ &™(A*)) is a pure state if and only if

p=api+ (1 —a)p, pr,p2 € E"(A"),0<a<l= p=pi=p

®
@ ®
&™(A") &7(A%)

The mixed state space ™ (A*) and the pure state space G”(A*) are compact spaces (cf. ref.[IT4]).
Assume that A, is the pre-dual space of A. Then, another mixed state space gm(f_l*) is defined by

(¢) 8" (A) = {p € A |llplz. = 1,p = 0 (i.c., p(T*T) = O(VT € A))}

That is, we have two “mixed state spaces”, that is, C*-mixed state space G&"(A*) and W*-mixed
state space & (A,).

The above arguments are summarized in the following diagram:

s (C): General basic structure and State spaces ~

GP(AY) C GM(AY) C A*

C*-pure state C*-mixed state
dual
c — c (2.6)
- ——[B(H)
subalgebra-weak-closure subalgebra
pre-dual

—m — —
S (A, CA.

W*-mixed state

N /

Remark 2.4. In order to avoid the confusions, three “state spaces” should be explained in what
follows.

16 ‘ For turther information see my homepagd ‘
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Chap. 2 Axiom 1 — measurement

Fisher statistics - --pure state space:SP(A*): most fundamental
(D) state spaces C*-mixed state space:&™(A*) : easy,ic
Bayes statistics - --
W*-mixed state space:S' (A,): powerful, useful

In this note, we mainly devote ourselves to the W*-mixed state&" (A,) rather than the C*-mixed
state&™(A*), though the two play the similar roles in quantum language.

2.2 Quantum basic structure [C(H) C B(H) C B(H)] and
State space

Let me show you a concluding classification in advance concerning quantum and classical state
spaces as follows.

(A)

General basic structure[A C AJ B(H)

pure state space SP(A*)
C*-mixed state space &™(A*)
W*-mixed state space & (A.)

(

pure state space GP(Tr(H)(~H))
C*-mixed state space &™(Tr(H))(=Tr4+1(H))
W*-mixed state space &™(Tr(H))(=Tr41(H))

(A1):Quantum basic structure[C(H) C B(H)] g
(=
)

(A,):Classical basic structure[Cy(2) € L*=(Q, V)] g(r2(0,))

pure state space (2

C*-mixed state space M41(Q)

W*-mixed state space L%, (Q,v)

In what follows, we shall explain the above classification (A).

2.2.1 Quantum basic structure [C(H) C B(H) C B(H)]

In quantum systems, the basic structure[A C A C B(H)] is characterized as

[C(H) € B(H) € B(H)]. (2.7)

That is, we see:

17 For further information see my homepagé
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2.2 Quantum basic structure [C(H) C B(H) C B(H)| and State space

(B): Quantum basic structure:[C(H) C B(H) C B(H)]

( - )
Tr(H)
Tdual
= C
¢ (H) subalgebra~weak-closure/ B (H) subalgebra B <H) (2 . 8)
pre-dual
Tr(H)
- 4

Before we explain “compact operators class C(H)” and “trace class Tr(H)”, we have to prepare
“Dirac notation” and “CONS” as follows.

Definition 2.5. [(i):Dirac notation] Let H be a Hilbert space. For any u,v € H, define |u){(v| € B(H)
such that

(Ju)(v)w = (v,wyu (Yw € H). (2.9)

Here, (v| [ resp. |u) | is called the “Bra-vector” | resp. “Ket-vector”].

(v]|u) = (v,u) = Brag + Prog

[(i1):ONS(orthonormal system), CONS(complete orthonormal system)] The sequence {e;}32, in a Hilbert
space H is called an orthonormal system (i.e., ONS), if it satisfies

Vv _ 1 (k=7
@) e ={ o 20
In addition, an ONS {ex}72, is called a complete orthonormal system (i.e., CONS), if it satisfies

(f2) (z,ex) =0 (Vk =1,2,...) implies that z = 0.

Theorem 2.6. [The properties of compact operators class C(H)] Let C(H)(C B(H)) be the compact
operators class. Then, we see the following (C;)-(Cy) ( particularly, “(Cy)<> (C3)” may be regarded
as the definition of the compact operators class €(H)(C B(H)) ).

(C1) T € C(H). That is,

18 For further information see my homepagé
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e for any bounded sequence {u,}>; in Hilbert space H, {Tu,}>2; has the subsequence
which converges in the sense of the norm topology.

(Cy) There exist two ONSs {e;}7°, and {fi}7>, in the Hilbert space H and a positive real sequence
{132 (where limg_,oo Ay = 0 ) such that

T = Z Axlex) (frl (in the sense of weak topology) (2.10)
k=1

(Cs) C(H)(C B(H)) is a C*-algebra. When T'(€ C(H)) is represented as in (Cs), the following
equality holds

1Ty = max Ay (2.11)

k=1,2

(C4) The weak closure of C(H) is equal to B(H). That is,

C(H) = B(H) (2.12)

Theorem 2.7. [The properties of trace class Tr(H)] Let Tr(H)(C B(H)) be the trace class. Then,
we see the following (D;)-(Dy4)( particularly, “(D;)<«> (D2)” may be regarded as the definition of the
trace class TJr(H)(C B(H)) ).

(Dy) T € Tr(H)(C C(H) C B(H)).

(Dg) There exist two ONSs {ex}32; and {fx}32, in the Hilbert space H and a positive real sequence
{152, (where Y72 | A, < 0o ) such that

T = Z Axlex) (frl (in the sense of weak topology)
k=1

(D3) It holds that

C(H)" =Tr(H). (2.13)
Here, the dual norm || - |le(m)+ is characterized as the trace norm || - ||z, such as
ITlre =) Ak, (2.14)
k=1

when T'(€ Tr(H)) is represented as in (Ds).
(D4) Also, it holds that

Jr(H)" = B(H) in the same sense, Jr(H) = B(H). (2.15)

19 For further information see my homepagé
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2.2 Quantum basic structure [C(H) C B(H) C B(H)| and State space

Remark 2.8. Assume that a Hilbert space H is finite dimensional, i.e., H = C", ie., C" = {z =
21

2l s eC k=12 .0} Put
Zn
M (C,n) = The set of all (n x n)-complex matrices
and thus,

A=A=B(C") =C(H)=Tr(H)= M(C,n). (2.16)

However, it should be noted that the norms are different as mentioned in (C3) and (Ds).

2.2.2 Quantum basic structure [C(H) C B(H) C B(H)] and State space

Consider the quantum basic structure:
[C(H) € B(H) € B(H)],

and see the following diagram:

- (E): Quantum basic structure and State space ~

SP(Tr(H)) c 6™ (Tr(H)) C Tr(H)

C*-pure state C*-mixed state
Tdual

C(H)| —————|B(H)| ———|B(H)
subalgebra subalgebra
weak-closure
l pre-dual (217)

&"(Tr(H)) c Tr(H)
W*-mixed state

\_ J

In what follows, we shall explain the above diagram.
Firstly, we note that

C(H) =Tr(H), TJr(H)* = B(H) (2.18)
and

S™(Tr(H)) =&" (Tr(H))

=3 Mol L) sONS . YA =1, > 0)
n=1 n=1
— T (H). (2.19)

20 For further information see my homepagé ‘
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Also, concerning the pure state space, we see:

&"(Tr(H))
={p=le)lel : llellm =1} = Tri, (H).

Therefore, under the following identification:

we see

S (Tr(H)) 3 Ju)(ul <= weH  ([Jul =1),

identification

&"(Tr(H)) ={ue H : |ul| =1},

where we assume the equivalence: u ~ ¢“u (0 € R).

Definition 2.9. [Tr: trace]. Define the trace Tr : Tr(H) — C such that

To(T) =) (en, Ten) (VT € Tr(H)),

n=1

(2.20)

(2.21)

(2.22)

(2.23)

where {e,}>, is a CONS in H. It is well known that the Tr(7") does not depend on the choice of
CONS {e, }°°,. Thus, clearly we see that

o (1000l F) gy = Tr(lu) (] - F) = (u, Fuy - (YJull = 1, F € B(H)).

Remark 2.10. Assume that a Hilbert space H is finite dimensional, i.e., H = C". Then,

That is,

M(C,n) = The set of all (n X n)-complex matrices

fll f12 fln
L ] FS V()
fnl fn2 fnn

As mentioned before, we see

21

A=A=B(C")=C(H)=Tr(H) = M(C,n),

(2.24)

(2.25)

(2.26)

‘ For turther information see my homepagd ‘
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2.2 Quantum basic structure [C(H) C B(H) C B(H)| and State space

and further, under the following notations:

fiu 0 - 0 )
‘J'rfl((C"):{diagonal matrixF' = O f:22 ‘fkkz(), kakzl}
0 0 f;m =
fii 0 o 0
moren = {r=| " 2 M emnen
0 0

| fon =1 (for some k= j),= 0 (k # j) .
we see
mixed state space: Tr 1(C") = {UFU’k . FeTr? (C"), U is a unitary matrix} (2.27)

pure state space: Trt,(C") = {UFU* . F e TrPf(CM), U is a unitary matrix} (2.28)

22 For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 2 Axiom 1 — measurement

2.3 Classical basic structure [c,(Q) c L12@Q,v) C B(L2(Q,v))]

2.3.1 Classical basic structure [Cy(Q) C L®(Q,v) C B(L*(Q,v))]

In classical systems, the basic structure[A C A C B(H)] is restricted to the classical basic structure:
[Co(Q) € L=(Q,v) C B(L*(Q,v))].

And we get the following diagram:

) S— (A): Classical basic structure: [Cy(Q2) C L>(Q,v) C B(L*(Q,v))] ———————~

M(Q)
Tdual
g o0 g 2
CO(Q) subalgebra~weak—closure/ L (Q’ V) subalgebra B(L (Q’ V)> (229>
lpre—dual
LY(Q,v)
N J

In what follows, we shall explain this diagram.

2.3.1.1 Commutative C*-algebra Cy(12)

Let €2 a locally compact space, for example, it suffices to image €2 as follows.

R(= the real line), R?*(= plane), R"(= n-dimensional Euclidean space),
[a, b](= interval), finite set Q(= {w1,...,wn})

(with discrete metric dp)

where the discrete metric dp is defined by dp(w,w’) =1 (w # '), =0 (w = ).
Define the continuous functions space Cy(§2) such that

Co() ={f:Q— C| f is complex-valued continuous on €2, lim f(w)= 0}, (2.30)

w—r00
where “lim,, o, f(w) = 0” means

(B) for any positive real € > 0, there exists a compact set K(C 2) such that

{wlweQ\K,|f(w)|>e}=0.

Therefore, if 2 is compact, the condition “lim,, . f(w) = 0” is not needed, and thus, Cy(2) is usually
denoted by C(€2). In this note, even if Q is compact, we often denote C(Q2) by Cy(€2). Defining the

norm || - ||¢y(e) in a complex vector space Cy(§2) such that
1 flleoe) = max | f(w)], (2.31)

23 For further information see my homepagé ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

2.3 Classical basic structure [Co(2) C L*(Q,v) C B(L*(Q,v))]

we get the Banach space (CO(Q), II - ||CO(Q)>.

Let Q be a locally compact space, and consider the o-finite measure space (€2, Bg,v), where Bg
is the Borel field, i.e., the smallest o-field that contains all open sets. Furthermore, assume that

(C) for any open set U C €2, it holds that 0 < v(U) = o .

&Note 2.1. Without loss of generality, we can assume that § is compact by the Stone-Cech compacti-
fication. Also, we can assume that v(2) = 1.

Define the Banach space L"(€2,v) (where r = 1,2,00) by the all complex-valued measurable
functions f : 2 — C such that

£l < o0

The norm || f||zr () is defined by

|:IQ |f(w)]" v(dw) " (when r = 1,2)

1fllzr @) = (2.32)

ess.sup| f(w)] (when r = o0)
we

where
ess.sup,cq|f(w)| =sup{fa e R | v({w e Q : |f(w)| = a}) > 0}.
L"(Q,v) is often denoted by L"(2) or L™ (€, Bg,v).

Remark 2.11. [Cy(Q) C L>=(Q,v) C B(L*(Q,v))] Consider a Hilbert space H such that
H = L*(Q,v)
For each f € L>(Q), define T} € B(L*(2,v)) such that
LQ,0) 36— Ty(6) = - 6 € LXQ,).
Then, under the identification:

L>*(Q) > f <«— T;€ B(L*(Qv)), (2.33)

identification

we see that
feL=(Q)C B(L* (),
and further, we have the classical basic structure:
[Co(Q) € L=(Q) € B(L*(Q,v))). (2.34)

This will be shown in what follows.

24 For further information see my homepagé
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Riesz theorem (cf. ref. [[14]) says that
Co(2)" = M(Q2)(= the set of all complex-valued measures on € ). (2.35)

Therefore, for any F € Cy(Q2), p € Co(Q)* = M(Q), we have the bi-linear form which is written by
the several ways such as

E) = o (0 F) ey = sy (0 F )y = [ FleIpla) (2.30)

Also, the dual norm is calculated as follows.

Iplleo)s = supflp(F) | | Flloge) =1} = sup !/

[[Fllcy@)=1
= sup (1Re(p(2)) ~ Relp(E)F + [Im(p(T) - zmpwm|f”
—Ilolhc)- (2:37)

where =° is the complement of =, and Re(z)="“the real part of the complex number 2”7, Im(z)="“the
imaginary part of the complex number z”.

2.3.1.2 Commutative W*-algebra L>(Q,v)

Furthermore, we see that
LY(Q,v)* = L™(Q,v) in the same sense, LY(Q,v) = L™(Q,v),
Also, it is clear that
Co(22) C L=(Q,v).
For any f € L>*(Q,v), there exist f, € Co(2),n = 1,2, .. such that
v({w € Q] limy o fr(w) # fw)} =
ol € I limn (Vo € Q¥ =1,2,5,..)

Therefore, we see

lim (9, (f = £2)6) o 1< Jim | 1fw) = f@)] - lolew) Pulde) =0
n o n—oo
(Vo € L*(Q.v))
Hence,
the weak closure of Cy(Q2) is equal to L>®°(Q,v).
Then, we have the classical basic structure:

[Co(Q) C L>®(Q) C B(L*(Q,v))]. (2.38)

25 ‘ For further information see my homepagé ‘
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2.3 Classical basic structure [Co(2) C L*(Q,v) C B(L*(Q,v))]

Theorem 2.12. [Gelfand theorem (c¢f. ref. [T06]) ] Consider a general basic structure:
A CACB(H),

where it is assumed that A is commutative. Then, there exists a measure space (£, Bg, v) (where
Q) is a locally compact space) such that

A=Co(Q), A=L>(Q,v), B(H)=B(L*Q,v)),

where 2 is called a spectrum.

2.3.2 Classical basic structure [Cy(Q2) C L>®(Q,v) C B(L*(Q,v))] and State
space

Consider the classical basic structure [Co(Q2) C L>(Q,v) € B(L*(,v))]. Then, we see the
following diagram:

- (D): Classical basic structure and State space ~

ML(Q) © Ma(@)  C© MQ)

(~Q) (probability measure)
C*-pure state C*-mixed state
Tdual
. . (2.39)
Co(Q) | ———— L*(Q)| ———— | B(L*(Q))
subalgebra subalgebra
weak-closure
l pre-dual
1 1
L7 ,(Q,v) C L (Q,v)
(probability density function)
W*-mixed state
- /

In the above, the mixed state space &™(Cy(2)*) is characterized as

S™(Co()") ={p e M(Q) = p = 0,]lpllye) =1}
={p € M(Q) : pis a probability measure on ) }
=M 1(2). (2.40)

Also, the pure state space GP(Cy(€2)*) is

&"(Co(€))")
={p =0, € GP(Co(2)") : by, is the point measure at wy(€ Q),wy € O}

26 ‘ For further information see my homepagé
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=M, (). (2.41)

Here, the point measure 0., € M(€2) is defined by

/ F(@)3 (dw) = flwo)  (VF € Co()).
Therefore,

M2, (Q) = GP(Co(Q)*) 36, > weQ (2.42)

identification

Under this identification, we consider that
&"(Co())7) = .
Also, it is well known that
LY(Q,v)* = L™(Q,v).

Therefore, the W*-mixed state space is characterized by

L () = {f € LHQ) : [0, /f v(dw) =1}
= the set of all probability density functions on €. (2.43)

Remark 2.13. [The case that Q is finite: Cy(Q2) = L>®(Q,v), M(Q) = L'(Q,v) ] Let Q be a finite set
{w1,we, ...,wy, } with the discrete metric dp and the counting measure v. Here, the counting measure
v is defined by

v(D) = #[D](= “the number of the elements of D”).
Then, we see that
Co(Q2) ={F:Q — C| F is a complex valued function on Q} = L>(Q,v).

And thus, we see that

pEM4(Q) <— p—ZPk(ka Zpk—lpk>0)
k=1

and

FELL(Qv) <= > flwr) =1 flw)=0.
k=1

In this sense, we have the following identification:

Mi(Q) = L5, (20) (or, M(2) = L'(,0)).
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2.4 State and Observable — the primary quality and the secondary quality

After all, we have the following identification:

Co(2) =L=(Q) =C" M(Q) = L(Q) =C™ (2.44)
Here the norm || - ||¢,(q) in the former is defined by
21
29 n
2]l co) = max B V= .| €C" (2.45)
Tn
and the norm || - [|a(o) in the latter by
21
Izl =D laxl  Vz= || eCm (2.46)
k=1 :
Ln

2.4 State and Observable — the primary quality and the
secondary quality

2.4.1 Mind-matter dualism (= mind-body dualism), Descartes, John
Locke

"1 think,
therefore f‘

IamI

John Locke (1632-1704)

IS non-sense

father of British empiricism

Our present purpose is to learn the following spell (= Axiom 1) by rote.
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Chap. 2 Axiom 1 — measurement

- (A): Axiom 1 (pure measurement)

(This can be read in )

With any system S, a basic structure [A C Algp) can be associated in which measure-

ment theory of the system can be formulated. In [A C Alg), consider a W*-measurement
MI(O:(X, F,F), S[p]) ( or, C*-measurement My (O:(X, F,F), S[p]) ) That is, consider

* a W*-measurement MZ(O,SM) ( or, C*-measurement MA(O:(X, F, F),S[p}) ) of an ob-
servable O=(X,JF, F') for a state p(€ SP(A*) : state space)

Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O,SM) ( or, C*-measurement My (O:(X, F, F),S[p}) ) belongs to = (€ F) is given by

P(F(E)(= a-(p, F(Z))7) (2.47)

(if F(Z) is essentially continuous at p, or see (Z255) in Definition 2718 ).

A dualism T13cm (heght)
X 46Kg (weight)

27 .| 08 (blood pressure)
- measured |
i 3 “/\ value 2 "

et O

1
=

b

.
T thing=system S

Max Born (1882-1970)

The “learning by rote” urges us to understand the mathematical definitions of
(#1) Basic structure[A C A]p(m), state space &F(A*)

(#2) observable O=(X,J, F), etc.

In the previous section, we studied the above (f;), that is, we discussed the following classification:

(B) General basic structure (A C A|pm
state space [6P(A*),6™ (A*),6" (A.)]

( Quantum basic structure[C(H) C B(H)]pm)
state space [6P(Tr(H)),6™(Tr(H))=6""(Tr(H))]

Classical basic structure[Cy(€2) € L*®(2, V)] pr2(0,))
L state space [Q,M41(2),L>°(Q,v)]

In this section, we shall study the above (f), i.e.,

“Observable”

Recall the famous words: “the primary quality” and “the secondary quality” due to John Locke,
an English philosopher and physician regarded as one of the most influential Enlightenment thinkers

29
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and known as the “Father of Classical Liberalism”. We think the following correspondence:

{ [state] +— [the primary quality]

[observable] «— [the secondary quality] (2.48)

And thus, we think

e “state” and “observable” are the concepts which form the basis of dualism.

Also, the following table (which may include my fiction ) promotes the better understanding of
quantum language as well as the other world-views( i.e., the conventional philosophies).

Table 2.1 :Dualism and monism in world-views

[B](Mediating of A and C)

dualism \ key-words [A](= mind) (body) [C](= matter)
Plato
(philosophical dualism) actual world Idea Idea world
Aristotle / / hyle
(philosophical monism) [eidos]
Descartes ] bod
(philosophical dualism) mind oy matter
particle(point mass)
Newton / / [state]
(scientific monism) w(e N)
Locke . . .
(philosophical dualism) brain secondary quality primary quality
quantum mechanics observer measuring instrument | particle (system)
QL [measured value] [ObSGI‘V&ble] [State]
(scientific dualism) [z(€ X)] [O=(X,7,F) p(e GP(A*))
observer measuring instrument | particle (system)
classical QL [measured value] | [Observable] [state]
(scientific dualism) [z(€ X)] [O=(X,5,F) dw = w(€ Q)
person to try trial population
statistics [sample] / [parameter]
(incomplete dualism) || [z(€ X)] / w(e Q)

T:Statistics (supposedly dualistic) was formulated in the form of monism under the influence of Newtonian mechanics.

In the end, statistics is neither monism nor dualism, but is regarded as a type of applied mathematics, which it is to
this day (¢f. Sec. B).

Although I am not familiar with "ontology”, I want to consider that "keyword” exists in each
world-view.

#Note 2.2. It may be understandable to consider

“observable” = “the partition of word”=“the secondary quality” (2.49)

30
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For example, Chapter 1 (Figure 1.2) says that ( fes fh) is the partition between “cold” and “hot”.

fc fh

40 50 60 70 80 90 100

0 10 20 30

[Figure 1.2 in Chapter 1]: cold or hot?

Note that “measuring instrument” is the instrument that chooses a word among words. In this sense,
we consider that “observable” = “measuring instrument”. Note also that John Locke’s words “primary
quality (e.g., length, weight, etc.)” and “secondary quality (e.g., sweet, dark, cold, etc.)” come from
dualism.

”

2.4.2 [Essentially continuous

In §27172 we introduced the following diagram:

s (E):General basic structure and state space ~

&P (A¥)

C*—purestate

c G™AY)

C*-mixed state

c A*

_L_%_i_%

subalgebra

subalgebra

(2.50)

weak-closure

pre-dual
—m — —

G (A, CA.
W*-mixed state

\_ J

In the above diagram, we introduce the following definition.

Definition 2.14. [Essentially continuous (cf. ref. [&1] ) ] An element F(€ A) is said to be essentially
continuous at po(€ &™(A*)), if there uniquely exists a complex number « such that

(F1) if p, (€ & (A.)) weakly converges to po(€ &™(A*)) (That is, lim, o7, <pn,G)A =
A (Po, G)A (VG € A(C A) ), then lim,,_,o i (pn, F)Z =«

Then, the value po(F') (= 4= (po, F>ﬁ) is defined by a.

Of course, for any po(€ &™(A*)), F(€ A) is essentially continuous at py.
This “essentially continuous” is chiefly used in the case that po(€ GP(A*)).
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Remark 2.15. [Essentially continuous in quantum system and classical system]
[I]: Consider the quantum basic structure [C(H) € B(H)]pu). Then, we see

Thus, we have p € &P(C(H)*) C Tr(H), F € C(H) = B(H), which implies that
)

c
p(G) = e <P,F B(H) = Tr(H) (/), F))B(H). (2.51)

Hence, we see that “essentially continuous” < “continuous” in quantum case.
[I1]: Next, consider the classical basic structure [Co(Q2) € L*(Q,v) C B(L*(Q,v))]. A function F
(€ L>(Q,v)) is essentially continuous at wy (€ 2 = &P(Cy(2)*)), if and only if it holds that

(Fs) if pn(€ L1 (2, v) satisfies that

lim /S)G(w)pn(w)u(dw) = G(wo) (VG € Co(Q2)),

n—oo

then there uniquely exists a complex number « such that

lim [ F(w)pn(w)r(dw) = a. (2.52)

n—o0 0

Then, the value of F'(w) is defined by «, that is, F(wy) = «a.

0 (Q,v)

(] W2

Figure 2.1: not essentially continuous at wy,  essentially continuous at ws

2.4.3 The definition of “observable (=measuring instrument)”

In this section, we introduce “observable”, which is also said to be “measuring instrument” or “POVM
(=positive operator valued measure space)”.

Definition 2.16. [Set ring, set field, o-field] Let X be a set (or locally compact space). The
3”( C2X¥ = P(X) = {A | A C X}, the power set of X) (or, the pair (X,5)) is called a ring (of
sets), if it satisfies that
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(a) : O(=“empty set”) € T,
b):ZeF (i=12..)=|)EeF [|=eF
=1 =1

(c): 21,50 € F=5E=,\Z2€TF (where 21 \Zs={z |z €=, ¢E})

Also, if X € F holds, the ring F(or, the pair (X, JF)) is called a field (of sets).
And further,

(d) if the formula (b) holds in the case that n = oo, a field F is said to be o-field. And the pair
(X, F) is called a measurable space.

The following definition (due to Davies, E.B. (c¢f. ref. [2])) is most important. In this note, we
mainly devote ourselves to the W *-observable.

Definition 2.17. [Observable, measured value space]  Consider the basic structure

A CAC B(H).

(G1): C*- observable
A triplet O=(X, R, F') is called a C*-observable (or, C*-measuring instrument ) in A, if it satisfies
as follows.

(i) (X,R) is a ring of sets.
(ii)) amap F: R — A satisfies that
() 0SFE) <T (Y=eR), F(D) =0,

(b) for any p(€ &P(A*)), there exists a probability space (X, R, P,) such that (where
R is the smallest o-field such that R C R) such that

As (107 F(E)>A = P,(Z) (VEeR) (2.53)

Also, X [resp. (X, T, P,)] is called a measured value space [resp.sample probability space].

(G2): W*- observable B
A triplet O=(X, JF, F) is called a W*-observable (or, W*-measuring instrument ) in A, if it satisfies
as follows.

(i) (X,F) is a o-field.

(ii) amap F:JF — A satisfies that

(a) 0SF(E) (VEe9), F(0) =0, F(X)=1
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(b) for any p(e s" (A.)), there exists a probability space (X,J, P;) such that

. (p, F(E))Z =PZ) (V=€) (2.54)

The observable O=(X, JF, F') is called a projective observable, if it holds that
F(2)? = F(2) (V= e F).

Also, an image observable of O is defined by

Image observable

0= (X,9.F) 10) = (¥.8.6(= FI())

fiX =Y

In this note, we aways assume Hypothesis 219 below:

Definition 2.18. Let p € G™(A*), and (X,J, F) be a W*-observable in A. F, = {Z € F| F(Z)
is essentially continuous at p }. The probability space (X,F, P,) is called its sample probability
space, if it holds that

(f1) & is the smallest o-field that contains F,.

(#2)

W (PFE);=PE)  (EeT,) (2.55)

Concerning the C*-observable, the sample probability space clearly exists. On the other hand,
concerning the W*-observable, we have to say something as follows. As mentioned in Remark 213,
in quantum cases ( thus, A* = Tr(H) = A, ), the (#1) and (f;) clearly hold. However, in the
classical cases, we do not know whether the existence of the sample probability space follows from
the definition of the W*-observable. Thus, in this note, we do not add the condition (f) in the

definition of the W*-observable.

Hypothesis 2.19. [Sample probability space]. In the above situation, the existence of the sample
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probability space is always assumed.

2.5 Examples of observables

We shall mention several examples of observables. The observables introduced in Example 2Z-20—FExample
273 are characterized as a C*- observable as well as a W*- observable. In what follows (except Ex-
ample P2200), consider the classical basic structure:

[Co(Q) € L=(Q,v) C B(L*(Q,v))].

Example 2.20. [Existence observable | Consider the basic structure:
[A CAC B(H).
Define the observable O = (X, {, X}, F(>V) in W *-algebra A such that
FEY@) =0, FOEU(X) =1, (2.56)

which is called the ezistence observable (or, null observable).
Consider any observable O = (X, F, F') in A. Note that {0, X} C F. And we see that

F(0)=0, F(X)=1I.

Thus, we see that (X, {0, X}, F©)) = (X, {0, X}, F), and therefore, we say that any observable
O = (X, T, F) includes the existence observable O

ANote 2.3. The above is associated with Berkley’s words:
(f1) To be is to be perceived (by George Berkeley(1685-1753))
which is peculiar to dualism: This is opposite to Einstein’s saying in monism :
(f2) The moon is there whether one looks at it or not. (i.e., Physics holds without observers.)

in Einstein and Tagore’s conversation. (cf. Note [ITT).

Example 2.21. [The resolution of the identity I; The word's partition] Let [Co(2) € L>®(Q,v) C
B(L*(Q,v))] be the classical basic structure. We find the similarity between an observable O and
the resolution of the identity I in what follows. Consider an observable O = (X, J, F') in L*(2) such
that X is a countable set (i.e., X = {x1,22,...}) and F = P(X) = {E | E C X}, i.e., the power set
of X. Then, it is clear that

(i) F({xx}) >0forall k=1,2,..
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(i) 2 [Fzblw) =1 (Vw e ),

which imply that the [F({zx}) : k = 1,2,...] can be regarded as the resolution of the identity
element I. Thus, we say that

e An observable O ( = (X,J,F) ) in L*°(Q) can be regarded as

“the resolution of the identity 1"

(P({z1 1)) (F({z2})] ) [F({za})](w)

0 100 &

Figure 2.2: O = ({x1, 29, 23}, 2{7v7273} )

In Figure 272, assume that € = [0, 100] is the axis of temperatures ( °C), and put X = {C(="“cold”),
L (=“lukewarm” = “not hot enough”), H(=“hot”) }. And further, put f,, = fo, fu, = Ji,
frzs = fu. Then, the resolution {f.,, fu,, fzs} can be regarded as the word’s partition C(=“cold”),
L(="“lukewarm”=“not hot enough”), H(=“hot”) .

Also, putting

?(: 2X) = {Q)v {1’1}, {I2}7 {l‘3}’ {xh x2}7 {x27 5(73}, {Il’ x3}7 X}

and

F@)(w) =0, [FX)](w) = fo, (@) + far (@) + fas(w) =1

F({z}))(w ) for (@), [F({z2}))(w) = fop (W), [F({z3})](w) = fos(w)
F({ay, 2:)I(w) = far (W) + far (W), [F({22, 23}))(w) = far (W) + fas (W)
F({a1, 23})](w) = far (W) + fos (@)

then, we have the observable (X, F(= 2%), F) in L*>([0, 100]).

[
[
[
[

Example 2.22. [Triangle observable | Let [Co(2) C L*°(Q,v) C B(L?(Q,v))] be the classical basic
structure.  For example, define the state space 2 by the closed interval [0,100] (C R). For each
n € NiJ® = {0, 10,20, ...,100}, define the (triangle) continuous function g, : 2 — R by

;

0 (0= w<=n-—10)
—n—10
@) vono o 7;0 (n—10 S w < n) (257
—% (n<w<n+10)
0 (n 410 < w < 100)
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Figure 2.3: Triangle observable

Putting Y = N1 and define the triangle observable 0% = (Y,2Y, F2) such that

[FEO)w) =0,  [FA(Y)](w) =1
[FAM)w) =D galw) (VT € 2"

nel’

Then, we have the triangle observable 02 = (Y (= N1%), 2¥ F2) in L>([0, 100]).

Example 2.23. [Normal observable] Consider a classical basic structure [Cy(§2) C L*(Q,v) C
B(L*(Q,v))]. Here, Q = R X RY, where R={pu: p e R}, Rt ={c € R:0 >0}. Q=R XR"
is assumed to have Lebesgue measure v(dw)(= dp X do). The normal observable O=(R, Bg, G) in

L>(Q,v) is defined by

- B 1 7(12_:2)2 N
CENW) = o= / e

(V= € Br(Borel field), Vw = (u,0) € Q(=R X R"))

This is the most fundamental observable in statistics.

Y

Figure 2.4: Error function
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et

DEURSCHE BUNOESRANE

The following examples introduced in Example and Example 2225 are not C*- observables
but W*- observables. This implies that the W*-algebraic approach is more powerful than the C*-
algebraic approach. Although the C*-observable is easy, it is narrower than the W*- observable.
Thus, throughout this note, we mainly devote ourselves to W*-algebraic approach.

Example 2.24. [Exact observable | Consider the classical basic structure: [Co(2) C L®(Q,v) C
B(L*(R2,v))]. Let Bq be the Borel field in €, i.e., the smallest o-field that contains all open sets.
For each = € Bg, define the definition function x. : 2 — R such that

1 (weZz)
X=(w) = (2.58)

0 (w¢=)
Put [F(&)(Z))(w) = x=(w) (Z € Bg,w € Q). The triplet O™ = (Q, By, F&) is called the ezact
observable in L>® (€, v). This is the W*-observable and not C*-observable, since [F(®®(Z)](w) is not

always continuous. For the argument about the sample probability space (c¢f. Hypothesis 219 ), see
Example 2733.

Example 2.25. [Rounding observable] = Define the state space © by Q = [0,100]. For each n €
N10°={0, 10, 20, ..., 100}, define the discontinuous function g, : Q@ — [0, 1] such that
0 (O0Z2w=n-5)
gow)=2 1 (n—5<w=n+)5)
0 (n+5<w=100)

1 90 g10 920 950 gso 990 g100

0 10 20 30 40 50 60 70 80 90 100

Figure 2.4: Round observable

Define the observable Opxp = (Y (=N1), 2Y Grup) in L(£, v) such that
[Gran(M)(w) =0, [Grn(Y)](w) =1
[Grsn(D)](@) =Y galw) (v €27 = 2M5")

nel’

Recall that g, is not continuous. Thus, this is not C*-observable but W*-observable.
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2.6 System quantity — The origin of observable

In classical mechanics, the term “observable” usually means the continuous real valued function
on a state space (that is, physical quantity). An observable in measurement theory (= quantum
language ) is characterized as a natural generalization of the physical quantity. This will be explained
in the following examples.

Example 2.26. [System quantity] Let [Co(Q2) C L=(Q,v) C B(L*(Q,v))] be the classical basic
structure. A continuous real valued function f : Q@ — R ( or generally, a measurable R"-valued

function f: 2 — R ) is called a system quantity (or in short, quantity) on €. Define the projective
observable O = (R, Bg, F') in L>*(2,v) such that

1 whenw e f1(2)
[FE)(w) = - (VE € Bg)
0 whenw ¢ f71(2)

Here, note that

N2

~ n n n+1
= i — |F (= = [ AF(dA : 2.59
= tim 3 |7 (15 5] @ = [arae (2.59)
Thus, we have the following identification:
f — 0= (R,Bg,F) (2.60)
(system quantity on Q) (projective observable in L™ (Q,v))

This O is called the observable representation of a system quantity f Therefore, we say

(a) An observable in measurement theory is characterized as the natural generalization of the
physical quantity.

Example 2.27. [Position observable, momentum observable, energy observable] Consider Newtonian
mechanics in the classical basic algebra [Cy(€2) € L>®(Q,v) C B(L™(2,v))]. For simplicity, consider
the two dimensional space

Q =R, x R,={(¢g,p) = (position, momentum) | ¢,p € R}.

The following quantities are fundamental:

(1) :q: Q= R, 9(¢,p) =q¢ (V(g;p) € Q)
(f2) p: Q= R, plg,p) =p (V(¢,p) € )
(3) :€: Q@ > R, €(q,p) =[potential energy | + [kinetic energy ]

2

=U(q) + 2p—m (V(g,p) € Q)

(Hamiltonian)

where m is the mass of a particle. Under the identification (260), the above (#1), (#2) and (£3) are
called a position observable, a momentum observable and an energy observable, respectively.
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Example 2.28. [Hermitian matrix is projective observable | Consider the quantum basic structure
in the case that H = C", that is,

[B(C") € B(C") € B(C")]

Now, we shall show that an Hermitian matrix A(€ B(C"™)) can be regarded as a projective observable.
For simplicity, this is shown in the case that n = 3. We see (for simplicity, assume that x; # x;, (if

J#k))

I 0 0
A=U"|0 =, 0|U, (2.61)
0 0 T3

where U (€ B(C?)) is the unitary matrix and z;, € R. Put

1 00 0 00
Fa{z ) =U* [0 0 0| U, Fa({az}) =U* [o 1 0} U,

0 0 0] 000

[0 0 0] 0 0O
FA({Hfg}):U* 0 0 0|U FA(]R\{xl,a:g,xg}): [0 0 0].

0 0 1] 000

Thus, we get the projective observable O4 = (R, Bg, Fa) in B(C?). Hence, we have the following
identification?:

A > 04 = (R, Bg, Fa). (2.62)

(Hermitian matrix) (projective observable )

Let A(e B(C")) be an Hermitian matrix. Under this identification, we have the quantum mea-
surement Mp(cny(O4, Sjp), where

p=lwyw], w=|.|eC"|w|=1
Wn
Born’s quantum measurement theory (or, Axiom 1 (§2.7) ) says :

(#) The probability that a measured value z(€ R) is obtained by the quantum measurement
Mp(cn)(Oa, Sy) is given by Tr(p - Fa({z})) (= (w, Fa({z}Hw) ),

2For example, in the case that x; = xo, it suffices to define

100 000 000
Fal{z ) =00 1 0|U, Fa({zs})=U*[0 0 0| U FaR\{z1,25})= [0 0 0
0 0 O 0 0 1 0 0 1

And, we have the projection observable O4 = (R, Bg, Fa).
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(for the trace: “Ir”, recall Definition 279).
Therefore, the expectation of a measured value is given by

/Rm<w,FA(da:)w> = (w, Aw). (2.63)

Also, its variance (§%)? is given by

(64)* = /R(x —(w, Aw))w, Fa(dz)w) = (Aw, Aw) — [{w, Aw)|?
= (A = (w, Aw))w||*. (2.64)

Example 2.29. [Spectrum decomposition] Let H be a Hilbert space. Consider the quantum basic
structure

[C(H) C B(H) C B(H)].

The spectral theorem (cf. ref. [[T4]) asserts the following equivalence: ((a)< (b)), that is,
(a) T is a self-adjoint operator on Hilbert space H

(b) There exists a projective observable O = (R, Bg, F') in B(H) such that

T = /Oo AF(dN). (2.65)

o0

Since the definition of “unbounded self-adjoint operator” is not easy, in this note we regard the (b)

as the definition. In the sense of the (b), we consider the identification:
self-adjoint operator 7' <—  spectrum decomposition O = (R, Bg, F') (2.66)

identification

). The above
<(d)), that is,

This quantum identification should be compared to the classical identification (26
argument can be extended as follows. That is, we have the following equivalence: ((c)

(c) Ty, Ty are commutative self-adjoint operators on Hilbert space H

~

(d) There exists a projective observable O = (R? Bg:, G) in B(H) such that

T1 :/ )\1G<d)\1d)\2), T2 :/ )\ZG(d)\]_d)\Q) (267)
R2 R2
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2.7 Axiom 1 — No science without measurement

Measurement theory (= quantum language ) is formulated as follows.

[Asaomd]

[Esom 1] (deterministic)
® | measurement theory‘ := | Measurement |+ | Causality
(=quantum language) (cf. BZI) (cf. §E3)

a kind of spells (a priori judgment)

[quantum Iinguistic Copenhagen mterpretatlon]

—i—’ Linguistic Copenhagen interpretation
(cf. §B&D)

TV
manual to use spells

Now we can explain Axiom 1 (measurement).

2.7.1 Axiom 1 for measurement

With any system S, a basic structure [A C A C B(H)] can be associated in which measurement
theory of the system can be formulated. A state (or precisely, pure state) of the system S is represented

by an element of state space &P(A*). An observable (= measuring instrument) is represented by a
C*-observable O = (X, J, F') in A ( or, W*-observable O = (X, 5, F) in A ).

(A1) An observer takes a measurement of an observable [O] for a state p, and gets a measured value
z(e X).

In a basic structure [A C A C B(H)], consider a W*-measurement MX(O:(X, FF), S[p}) ( or,
C*-measurement MA(O:(X, ,F),SM) )

Preparation 2.30. Consider

e a IW*-measurement MZ(O, S[,,}) <or, C*-measurement M4 (O:(X, F,F), S[p]) ) of an observ-
able O=(X,F, F) for a state p(€ GP(A*) : state space)

Note that
(As) W*-measurement M;(O, S[p]) .-+ O is W*- observable , p € GP(A*)
2 C*-measurement M4(O, Sy,)) --- O is C*- observable , p € GP(A*)

In this lecture, we mainly devote ourselves to W*-measurements.

Here we introduce the following axiom.
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-

N

(B): Axiom 1 (measurement) pure type ~

With any system S, a basic structure [A C A]p) can be associated in which measure-

ment theory of the system can be formulated. In [A C Alpp, consider a W*-measurement
MZ(O:(X, FF), S[p]) ( or C*-measurement My (O:(X, F,F), S[p]) ) That is, consider

* a W*-measurement MZ(O,SM) (or, C*-measurement MA(O:(X, F, F),S[p]) ) of an 0b-
servable O=(X,F, F) for a state p(€ GP(A*) : state space)

Then, the probability that a measured value = (€ X) obtained by the W*-measurement
Mz(0, S,;) (or C*-measurement My (O=(X,F, F),S|,)) ) belongs to = (€ ¥F) is given by

P(F(E))(= a-(p, F(E))z) (2.68)

(if F(Z) is essentially continuous at p, or see (Z55) in Definition ).

dualism 113am (heght)
) 46Kg (weight)
o 4 08 (blood pressure)
r r: _-I" Qregia;:red ,‘ . - 1
_;, Ty N paramefrlzi_f,..f
s

1

DIxE
g

S "thing=system S

Max Born (1882-1970)

_/

of

This axiom is a kind of generalization (or, a linguistic turn) of Born’s probabilistic interpretation
quantum mechanics. ® That is,

(the law proposed by Born)

quantum mechanics (Born’s quantum measurement )

linguistic turn

(physics)
(a kind of spell)

measurement theory(Axiom Tl (2.69)

(metaphysics, language)

ANote 2.4. Recall a part of Mable 21 as follows.

a part of Table 2.1

3Ref. [B): Born, M. “Zur Quantenmechanik der StoBprozesse (Vorliufige Mitteilung)”, Z. Phys. (37) pp.863-867

(1926).
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2.7 Axiom 1 — No science without measurement

Idualism \ key-words [A](= mind) [B](Med?{)lzg do;? and ©) [C](= matter)
quantum mechanics observer measuring instrument | particle (system)
QL [measured value] [observable] [state]
(scientific dualism) [z(e X)] [0 =(X,5,F)] p(e GP(A*))
observer measuring instrument | particle (system)
classical QL [measured value] | [Observable] [state]
(scientific dualism) [z(e X)] 0= (X,5,F)] dw ~ w(€ Q)
person to try trial population
statistics [sample] / [parameter]
(incomplete dualism) || [z(€ X)] / w(e Q)

In the above, let’s compare classical QL and statistics as follows. The classical QL has a measurement
M(O=(X, 5, F), S(5,])> on the other hand, statistics has no measurement, but it is usually assumed

that statistics starts from (X, F, P,), i.e., the sample probability space with a parameter d,, ~ w(€ Q).
That is,

quantum language statistics

MO=(X.5.F). § (X7, P.()]
(0=( ): Sip)) ) Elimination of observable O ( L)

scientific dualism applied math

where (X, F, P, (-)) is a probability space with a parameter w(e Q)
The elimination of an observable O implies the elimination of dualism.

ANote 2.5. The above axiom is due to Max Born (1926) (cf. ref.[i]). There are many opinions for the
term ”probability”. For example, Einstein sent Born the following letter (1926):

(#1) Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real
thing. The theory says a lot, but does not really bring us any closer to the secret of the ”old
one.” I, at any rate, am convinced that He does not throw dice.

From a viewpoint of quantum mechanics, I want to believe that both Born and Einstein are right.
That is because I assert that quantum mechanics is not physics.

ANote 2.6. In Chaps. 11 and 12 of ref. [76], I discussed the following.

The question "What is a proposition?’ is always the most important question for languages. In
mathematics, the followings are equivalent

44
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Chap. 2 Axiom 1 — measurement

(#1) What is a proposition in mathematics?

(#2) What is a set?

This is answered in axiomatic set theory (e.g., Zermelo-Fraenkel set theory. Thus, a proposition in
mathematics is always an analytic proposition.

Our interest is the problem: “what is a proposition in QL?” In ref. [76], I answered as follows

(b1) a proposition in QL which is defined by a sentence like Axiom 1 is a QL proposition (i.e., a
proposition in QL).

That is because a sentence like Axiom 1 can be judged true or false by experimentation (cf. Sec. E=2:
the law of large numbers ). Thus, I can say that

(b2) In QL, Popper’s falsifiability is not needed. That is, Popper’s falsifiability is automatically
included in QL propositions

2.7.2 A simplest example

Example 2.31. [The measurement of “Cold or Hot” for the water in a cup] Let testees drink
water with various temperature w °C (0 £ w = 100). And assume: you ask them “Cold or Hot ?”
alternatively. Gather the data, ( for example, g.(w) persons say “Cold”, gn(w) persons say “Hot”)
and normalize them, that is, get the polygonal lines such that

_ gC(W)
Jelw) = the numbers of testees
gn(w)
= 2.
fh(w) the numbers of testees ( 70)
And
1 (0 £ w £10)
flw)y=¢ B2 (10Sw=70) ,  filw)=1-f(w)
0 (70 = w £ 100)

I

0 10 20 30 40 50 60 70 80 90 100
Figure 1.2: Cold or hot?
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2.8 Classical simple examples (urn problem, etc.)

[NO] VES] -_-

Hot or not? \o/ ‘, u: "J [

)

IYESI;.|;|_N0|F|YES [NOJ¥ES -
N N N 7 \: YES oo
RERER.

il 1] 1] ll

Therefore, for example,
(C1) You choose one person from the testees, and you ask him/her whether the water (with 55
°C) is “cold” or “hot” ?. Then the probability that he/she says { cold

C(hot”
£.(55) = 0.25
fn(55) = 0.75

} is given by

In what follows, let us describe the statement (C;) in terms of quantum language (i.e., Axiom 1).

Define the state space €2 such that £ = interval [0,100](C R(= the set of all real numbers)) and
measured value space X = {¢,h} ( where “¢” and “h” respectively means “cold” and “hot”). Here,
consider the “|C-H]-thermometer” such that

; } with probability [

(Cy) for water with w °C, [C-H]-thermometer presents { jzc ()
h

H]-thermometer is denoted by O = (f., f5)

Note that this [C-H]-thermometer can be easily realized by “random number generator”.
Here, we have the following identification:

(Cs) (C1) == (Ca)

Therefore, the statement (C;) in ordinary language can be represented in terms of measurement
theory as follows.

(C4) When an observer takes a measurement by [[C-H]-instrument] for
measuring instrumentO=(fc, f},)

[water] with ~ [55°C] | the probability that measured value [ ; }
(System (measuring object)) (state(=w € Q) )

f.(55) = 0.25 }

is obtained is given by [ fu(55) = 0.75
h — U.

2.8 Classical simple examples (urn problem, etc.)
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Chap. 2 Axiom 1 — measurement

2.8.1 linguistic world-view — Wonder of man’s linguistic competence

The applied scope of physics (realistic world-description method) is rather clear. But the applied
scope of measurement theory is ambiguous. What we can do in measurement theory (= quantum
language) is

(a1): Use the language defined by Axiom 1 ( §2.7)

()

(az): Trust in man’s linguistic competence
Thus, some readers may have a question:
(b) Is it science 7

However, it should be noted that the spirit of measurement theory is different from that of physics.

ANote 2.7. [Realistic worldview vs. Idealistic (=linguistic) worldview| I am not a philosopher,
thus, my use of the terms ‘realistic worldview’ and ‘idealistic worldview’ may differ from their use in
philosophy. Generally, it is said:

Realistic worldview - --Object first, theory second.
Idealistic worldview - --Theory first, object second.

In this book, I think as follows.

(#1) Realistic worldview:
There is a one-to-one correspondence between theory and object.

realistic theory ‘ — ‘ object ‘

e.g., Newtonian mechanics, theory of relativity, quantum mechanics,...

(#2) Idealistic (=linguistic) worldview
idealistic theory is applicable to many objects

(— [objet ]

idealistic theory‘ — L —

—

\

e.g., statistics (= dynamical system theory), which is applicable to economics, medicine, etc.

Consequently, philosophical arguments can be avoided if we understand ‘realisticaprecise’ and ‘idealisticarough’
though this may be misleading. If so, readers may find it fruitless to expect much from scientific ide-

alism. However, the theme of this book is ‘classical QL’ in ’scientific idealism’.

Recall the following [Figure 0.3 in Preface:
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2.8 Classical simple examples (urn problem, etc.)

in Preface: [QL] = [QIS] |J [classical QL]
Quantum Language (= QL)

quantum l':;);'nputer (nature) SJ* k w D DF”

o quantum information
science (QIS) classical QL

=quantum mechanics(=0M)] (= everyday sience )

2.8.2 Elementary examples — urn problem, etc.

Since measurement theory (= QL) is a language, we can not master it without exercise. Thus,
we present simple examples in what follows.

Example 2.32. [The measurement of the approximate temperature of water in a cup (continued from
Example 2227 [triangle observable])]  Consider the classical basic structure:

[OO(Q> C LOO(Q7V) - B(L2(Q>V))] )

where 0 = “the closed interval [0,100]” with the Lebesgue measure v.

Let testees check water at various temperature w °C (0 = w < 100). And you ask them “What is
the approximate temperature ( °C) of this water ?” Gather the data, (for example, h,(w) persons
say n °C (n = 0,10,20,...,90,100), and normalize them to get polygonal lines. For example,
define the state space €2 by the closed interval [0,100] (C R) with the Lebesgue measure. For each
n € NJ9° = {0, 10, 20, . .., 100}, define the (triangle) continuous function g, : Q — [0, 1] by

(0 (0<w<n—10)
—n—10
S U
gn<w): w—n-+10 (
10
(

w=n+10)
n+10<w<100)

Figure 2.5: Triangle observable

48 ‘ For turther information see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 2 Axiom 1 — measurement

(a) You choose one person from the testees, and you ask him/her “What is the approximate
“about 40 °C” }

%} 3 ‘?77 o7
temperature ( °C) of this water ?”. Then the probability that he/she says { “about 50 °C”

g10(47) = 0.25 ]

is given by { Fso(47) = 0.75

This is described in terms of Axiom 1 ( §2.7) in what follows.

Putting Y = N1 define the triangle observable 0% = (Y, 2Y,G#) in L*°(Q) such that
(GE@)w) =0,  [G*(V)lw) =1
[GAD)(w) =) gn(w) (VT € 2V Vw € Q = [0,100])

nel’

Then, we have the triangle observable 02 = (Y (= N13%) 2¥ G2) in L>([0,100]). And we get a
measurement M Lw(g)(OA, Sis.)- For example, putting w=47 °C, we see, by Axiom 1 ( §2.7), that

(b) the probability that a measured value obtained by the measurement M Loo(g)(OA, Slw(=a7)]) 18
about 40°C 1.~ . [G2({40})](47) = 0.3
about 50 °C | EVUPY | 1aa 50147y = 0.7 |

Therefore, we have the following translation:

statement (a)| ——— |statement (b) (2.71)

translation
(ordinary language) (quantum language)

/1]

Example 2.33. [Exact measurement] Consider the classical basic structure:
[Co(2) € L(Q,v) € B(L*(Q,v))] -

Let Bg be the Borel field. Then, define the exact observable O*® = (X (= Q), F(= Bq), F©¥) in
L>(€, v) such that

[FED(E) (W) = xe(w) = (VZ € Bo)

0 (wé¢E)

Let 4., ~ wo(€ Q). Consider the exact measurement Mg, (O, Sis.,))- Here, Axiom 1 ( §2.7)
says:

(a) Let D(C ) be arbitrary open set such that wy € D. Then, the probability that a measured
value obtained by the exact measurement Mze g, (O, Sis.,)) belongs to D is given by

Co()* (5w07 XD)L"O(QW) =L

From the arbitrariness of D, we conclude that
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(b) a measured value wy is, with the probability 1, obtained by the exact measurement Mo (q,,)
(O(exa)7 S[5w0])'

Furthermore, put
Fuo ={2€F : wy ¢ “the closure of =7\ “the interior of =" }.

Then, when = € F,,, F(Z) is continuous at wy. And, F is the smallest o-field that contains F,,.
Therefore, we have the probability space (X, F, Pgwo) such that

P, (Z) = [F(E)](wo) (V2 € )
that is,

(c) the exact measurement MLOO(Q7V)<O(exa),S[5wO]) has the sample space (X,J, P, ) (= (2, Baq,
Pgwo))'

Example 2.34. [Urn problem]  There are two urns U; and Us. The urn U; [resp. Us] contains 8
white and 2 black balls [resp. 4 white and 6 black balls]

Table 2.2: urn problem

Urn\_w-b|  white ball black ball
Urn Uy 8 2
Urn U, 4 6

0O000e
O0o000e

Figure 2.6: Urn problem

Here, consider the following statement (a):
(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.

In measurement theory, the statement (a) is formulated as follows: Assuming

Uy --- “the urn with the state w,”

Uy --- “the urn with the state wy”
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define the state space Q by Q = {wy,ws} with the discrete metric and the counting measure v (i.e.,
v({wi1}) = v({w2}) = 1). That is, we assume the identification:

U1 ~ Wi, U2 = Wo.
Thus, consider the classical basic structure:

Put “w” = “white” “b” = “black”, and put X = {w,b}. And define the observable O( = (X =
{w,b}, 21" F)) in L=(Q) by

[F({w})](wr) = 0.8, [F({6})](w1) = 0.2,
[F({w})](w2) = 0.4, [F({6})](w2) = 0.6.

Thus, we get the measurement My« q)(O, Sps,,,)). Here, Axiom 1 ( §2.7) says that

(b) the probability that a measured value w is obtained by Mze(0)(0, Sj5,,)) is given by F'({w})(ws) =
0.4.

Therefore, we see:

statement (a)| ——— |statement (b) (2.72)

- translation
(ordinary language) (quantum language)

ANote 2.8. [L>®(Q,v), or in short, L*°(2)] In the above example, the counting measure v (i.e.,
v({wi}) = v({w2}) = 1) is not necessarily indispensable. For example, even if we assume that
v({wi}) =2 and v({w2}) = 1/3, we can obtain the same conclusion. Thus, in this book, L>(,v). is
often abbreviated to L ()

ANote 2.9. The statement (a) in Example 2734 is not necessarily guaranteed, that is,
When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
is not guaranteed. What we say is that

the statement (a) in ordinary language should be written by the measurement theoretical state-
ment (b).

It is a matter of course that “probability” can not be derived from mathematics itself. For example,
the following (f1) and (f2) are not guaranteed.

(#1) From the set {1,2,3,4,5}, choose one number. Then, the probability that the number is even is
given by 2/5.

(#2) From the closed interval [0, 1], choose one number . Then, the probability that x € [a,b] C [0, 1]
is given by [b — al.
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2.8 Classical simple examples (urn problem, etc.)

The common sense — “probability” can not be derived from mathematics itself — is well known as
Bertrand’s paradox (cf. §9.12). Thus, it is usual to add the term “at random” to the above (f1) and
(#2). In this note, this term “at random” is usually omitted.

Example 2.35. [Blood type system] The ABO blood group system is the most important blood
type system (or blood group system) in human blood transfusion. Let U; be the whole Japanese’s
set and let Uy be the whole Indian’s set. Also, assume that the distribution of the ABO blood group
system [O:A:B:AB]| concerning Japanese and Indians is determined in Table 273:

Table 2.3: The ratio of the ABO blood group system

J or INABO blood group O A B AB
Japanese U, 30% | 40% | 20% 10%
Indian U, 30% | 20% | 40% 10%

Consider the following phenomenon:

(a) Choose one person from the whole Indian’s set U, at random. Then the probability that the

0 0.3

, . A L 0.2
person’s blood type is B is given by 04
AB 0.1

In what follows, we shall translate the statement (a) described in ordinary language to quantum
language. Put Q = {w;,ws} and consider the discrete metric (2,dp). We get consider the classical
basic structure:

(Co(9) C L(2,v) € BIL*(9,1))] .
Therefore, the pure state space is defined by
SP(Co(€)") = {0un, 0w }
Here, consider

dw; -+ “the state of the whole Japanese’s set U (i.e., population)”™

dwy -+ “the state of the whole India’s set U (i.e., population)”,
That is, we consider the following identification: (Therefore, image Figure 271):

Ul ~ 6w17 U2 ~ 5&)2

4Note that “population” = “system” (cf. Table 21 ).
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Ulzéwl U2%5w2

Japanese Indian

[3:4:2:1]

[3:2:4:1]

Figure 2.7: Population(=system)~urn

Define the blood type observable Ogr = ({0, A, B, AB}, 2{0-ABAB} ' [30) in [>(, v) such that

[Fer({O})](w1) = 03, [For({A})](w1) = 0.4,

[FBT({B})](Wl) =0.2, [FBT({AB})]<W1) = 0.1, (2.73)
and

[Fer({O0})](w2) = 0.3, [Fer({A})](w2) = 0.2,

[Fer({B})](w2) = 0.4, [Fer({AB})](w2) = 0.1. (2.74)

Thus, we get the measurement Mpe(q,)(Opr, Sjs,,)). Hence, the above (a) is translated to the
following statement in quantum language:

(b) The probability that a measured value is obtained by the measurement

= e O

Mo () (OB, Sjs,,]) 18 given by

Co()* | Owes FBT({O}) ) L) = [FBr({O})](w2) = 0.3
Co(@)* { Owns FBT({A}) ) o (00) = [FBT({A})](w2) = 0.2
Co()* | Ows, FBT({B}) ) Loy = [FBr({B})](w2) = 0.4
v (Ouns For({ABY) ) 1e(au) = [For ({ABY)

ANote 2.10. Readers may feel that Example 2232-Example 2235 are too easy. However, as mentioned
in (a) of Sec. 2871, what we can do is

{ to be faithful to the Axioms
[ ]

to trust in man’s linguistic competence
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2.9 Simple quantum examples (Stern=Gerlach experiment)

If some find another language that is more powerful than quantum language, it will be praised as
the greatest discovery in the history of science. That is because the discovery allows us to go beyond
quantum mechanics.

2.9 Simple quantum examples (Stern=Gerlach experiment)
2.9.1 Stern=Gerlach experiment

Example 2.36. [Quantum measurement (Stern—Gerlach experiment (1922))]

Assume that we examine the beam (of silver particles or simply, electrons) after passing through
the magnetic field. Then, as seen in the following figure, we see that all particles are deflected either
upward or downward at the ratio of 50:50. See Figure 2.10.

\\\\i////////@@

electron e

state w = {alJ

2/ N \ Iy ©

Screen

Figure 2.8:  Stern-Gerlach experiment (1922)

Consider the two dimensional Hilbert space H = C2?, And therefore, we get the non-commutative
basic algebra B(H), that is, the algebra composed of all 2 x 2 matrices. Thus, we have the quantum
basic structure:

[€(H) € B(H) € B(H)] = [B(C*) € B(C*) € B(C?)]
since the dimension of H is finite. The spin state of an electron P is represented by p(= |w)(w|),
where w € C? such that ||w|cz = 1. Put w = [Zl} ( where ||w|[22 = |aa|* + |aw|* =1 ). Define O,
2

= (Z,2% F.,), the spin observable concerning the z-axis, such that, Z = {1, |} and

R =y o mwn=[ 5 ro=[) o mean=[5 . en

Here, Born’s quantum measurement theory (the probabilistic interpretation of quantum mechanics)
says :
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f) When a quantum measurement Mpc2)(0O, Sp,) is taken, the probability that

(0, 5
(w, F*({1Hw) = |aa|?
(w, F*({{Hw) = |ao|?

a measured value [ I } is obtained is given by

That is, putting w = {Zl] , We say :
2

When the electron with a spin state p progresses in a magnetic field,

©

the probability that the Geiger counter [ ® } sounds is given by

N
[al 52} 0 8 3; :‘041’2
TN e B e W

Remark 2.37. We can define O° = (X, 2%, F'%), the spin observable concerning the z-axis, such
that, X = {14, ).} and

P = |y vl =20 T (2.76)

And furthermore, we can define 0¥ = (Y,2Y, F¥), the spin observable concerning the y-axis, such
that, ¥ = {1,, 1,} and

FY({t,}) = {_1{/22 iﬁ} P = E//g _12/22} : (2.77)

where 1 = /—1.

Here, putting

Sp = (1) = B({1)), Sy = B,({1H = F,({4}). 5. = F({1h) = E({4}),

we have the following commutation relation:

S,S. — 8.8, = 2iS,, 8.8, —S,S.=2iS,, 5.5, —S,5, =2iS.. (2.78)

2.10 A simple example (de Broglie paradox) in B(C?)
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2.10 A simple example (de Broglie paradox) in B(C?)

2.10.1 de Broglie paradox in B(C?)

Axiom 1 (measurement) includes the so-called de Broglie paradox “there is something faster than
light”. In what follows, we shall explain de Broglie paradox in B(C?), though the original idea is
mentioned in B(L?(R)) (c¢f. 8103, and refs.[[3, 007]). Also, it should be noted that the argument

below is essentially same as the one for the Stern=Gerlach experiment.

Example 2.38. [de Broglie paradox in B(C?)] Let H be a two dimensional Hilbert space, i.e.,
H = C?. Consider the quantum basic structure:

[B(C?) € B(C*) € B(C?)].

Now consider the situation in the following Figure 2.11.

half mirror 1

u=-L(fi+f2)n L
%-_.. coursel \/§f1 ) Di(= (If) ()
photon P| "= photon detector)

course? 7

Q(Dz(: (| f2){f2l)

photon detector)

Figure 2.9: [Dy + D] = observable O

Let us explain this figure in what follows. Let f1, fo € H such that
_ |1 2 _ 10 2

Put

fi+ fa
75

Thus, we have the state p = |u)(u| (€ &P(B(C?))). Let U(€ B(C?)) be an unitary operator such

that
10
U= |:O eiw/2:| )
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and let ® : B(C?) — B(C?) be the homomorphism such that
O(F)=U*FU  (VF € B(C?).
Consider the observable O = ({1,2},2{12} F) in B(C?) such that

FA1}) = /)AL FE2}) = [f)(fl,
and thus, define the observable ®0; = ({1,2},2{12} & F) by
OF(E)=U'F(E)U  (VEC{1,2)).

Let us explain Figure 9. The photon P with the state u = \/Li(fl + f2) (precisely, |u)(u|) rushed
into the half-mirror 1,

(A1) the f; part in u passes through the half-mirror 1, and goes along the course 1 to the photon
detector D;.

(Ag) the fy part in u rebounds on the half-mirror 1 (and strictly saying, the fy changes to v/—1f5),
and goes along the course 2 to the photon detector D.

Thus, we have the measurement:
Mp(c2)(®Oy, Si)- (2.79)
And thus, we see:

measured value 1
measured value 2

Mpc) (®Oy, Syy) is given by
S - - e - )
This is easy, but it is deep in the following sense.

(B) The probability that a } is obtained by the measurement

S

Tr(p- @F({2}))  [{u, ®F({2})u)

(C) Assume that
detector Dy is significantly separated from detector D,.

And assume that the photon P is discovered at the detector D;. Then, we are troubled if
the photon P is also discovered at the detector D,. Thus, in order to avoid this difficulty,
the photon P (discovered at the detector D;) has to eliminate the wave function % f2 in an

instant. In this sense, the (B) implies that

there may be something faster than light.
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2.10 A simple example (de Broglie paradox) in B(C?)

This is the de Broglie paradox (cf. refs. I3, I07]). From a viewpoint of quantum language, we give
up to solve the paradox, that is, we declare

Stop to be bothered !

ANote 2.11. The de Broglie paradox (i.e., there may be something faster than light ) always appears
in quantum mechanics. For example, the readers should confirm that it appears in Example 2236
(Stern-Gerlach experiment). I think that

e the de Broglie paradox is the only paradox in quantum mechanics

)

The readers will find that the other paradoxes ( see "paradox” in the index of this lecture note) in

quantum mechanics are solved in this note.
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Chapter 3

Linguistic Copenhagen interpretation
(dualism and idealism)

Quantum language (=QL=measurement theory) is formulated as follows.

[AsaomT) [Bxaom]
. ’measurement theory‘ := | Measurement |+ | Causality
(=quantum language) (cf. E270) (cf. §E3)

a kind of spell(a:;riori judgment)
[inguistic Copenhagen interpretation]
+ ’ Linguistic Copenhagen interpretation
(cf. §8D)

manual to use spells

QL says that

e Describe every phenomenon using Axioms 1 and 2 (by a hint of the linguistic Copenhagen
interpretation)!

Since we dealt with simple examples in the previous chapter, we did not need the linguistic Copenhagen
interpretation. In this chapter, we study several more difficult problems with the linguistic interpreta-
tion. Also, the linguistic Copenhagen interpretation may be called “the Copenhagen interpretation”
since we believe that it is the true form of so - Copenhagen interpretation.

29



3.1 Linguistic Copenhagen interpretation

3.1 Linguistic Copenhagen interpretation

This section was written with reference to ref. [I76].

Everything we call real If I were forced to sum up in one sentence
is made of things that what the Copenhagen interpretation says

cannot be regarded to me, it would be "Shut up and calculate!"
as real

N. Bohr (1885-1962) - (David Mermin)

Founder of the Copenhagen interpretation B Stap being hothered!

3.1.1 What is the linguistic Copenhagen interpretation?

In the previous section, an overview of quantum language [Axiom 1 (measurement) and Axiom 2
(causality)] was outlined.

(A)

(=measurement theory(=MT)) [Axiom 1] [Axiom 2]
quantum language(=QL) :\ measurement\jt\ causal relation\

(=language of science)

4, (linguistic) Copenhagen interpretation | (3.0)

[the manual to use Axioms 1 and 2]

In this section, the “Copenhagen interpretation ((linguistic) Copenhagen interpretation)” will be
explained. Of course, as stated in Sec. [T, I believe that the linguistic Copenhagen interpretation
is the true Copenhagen interpretation.

Before doing so, let us reiterate the following.

(By) Axioms are a kind of incantation (spell, magic word, metaphysical statement) and cannot be
experimentally verified

Further,

(B2) Quantum language is a language, and you may not be able to use it well at first. You can only
acquire the ability to use it through practice and trial and error.

ANote 3.1. (i): In Mermin’s book [44], he said

e If I were forced to sum up in one sentence what the Copenhagen interpretation says to me, it
would be “Shut up and calculate”

e Stop being bothered!

Also, D. Howard said in ref. [P4]:
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61

e Even within the Copenhagen School, there was a wide range of opinion on the Copenhagen
interpretation. For example, there was disagreement about “wave function collapse” which is
supposed to be the central theme of the Copenhagen interpretation. (See ref. [6Y] (or, Sec. (2
in this book) for my opinion on “wave function collapse.”)
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Figure 3.1: Schrodinger’s cat

This means that
“What is the Copenhagen interpretation?” has not yet been resolved

We believe that this is one of the most important unsolved problems in science. Thus, I can say
that one of the purposes of this book is to answer the unsolved problem: “What is the Copenhagen
interpretation?”.

(ii): Among the different schools of thought on the 'Copenhagen Interpretation’, the following is

interesting:

e ‘Copenhagen interpretation’ is a manual on how to use quantum mechanics formulated in the
von Neumann style (i.e., the Hilbert space formulation of quantum mechanics (cf. ref. [I0]).

Our ‘linguistic Copenhagen interpretation’ is a mathematical generalization of this (cf. ref. |35, &1]).
I assert that the linguistic Copenhagen interpretation is the true Copenhagen interpretation. That
is, we assert that the Copenhagen interpretation is justified in philosophy (i.e., language) and not in
physics.

Thus. in this book, “Copenhagen interpretation” is identified with “linguistic Copenhagen interpre-
tation”.

(iii): Saying the same thing over and over again, my opinion is as follows.

e as mentioned in Note 0.1 (in Preface), I want to consider that QM in @@ and QIS in (¢) (in [Figuré
(1 in Preface) are essentially the same.

Thus, I think that the Copenhagen interpretation in QM of (@ is not necessary. The linguistic
Copenhagen interpretation is all that is needed.

/1]
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3.1 Linguistic Copenhagen interpretation

(C) Tt is essential to acquire a habitual thinking to master the axioms (Axioms 1 and 2). For this,
as Mermin says, it may be sufficient to just ‘Shut up and calculate’. But in order to master
the quantum language as quickly as possible, you will need a good manual for mastering the
axioms (Axioms 1 and 2).

Thus, we get the following definition,

Definition 3.1. [Linguistic Copenhagen Interpretation (=Copenhagen Interpretation)] We have

two definitions as follows:

(C;)  Linguistic Copenhagen Interpretation
:= Manual for using spells (= Axioms 1 and 2)
def.
However, there is another way of thinking about it. In the case that we do not know Axioms 1
and 2, the Copenhagen Interpretation may have to be considered. Thus we have another definition

as follows.

(Cy)  Linguistic Copenhagen Interpretation

= common knowledge in the world of dualistic idealism

(To be more specific, it is a memo that records things that are obvious in the world of dualistic
idealism, but not obvious to our normal senses.)

Although (Cy) is easy to understand, I rather prefer (C,); therefore, in this paper, I would like
to consider (Cz) as the main one. If (Cy) cannot be used alone, then (Cy) is used as an auxiliary.

/1]

ANote 3.2. (i) I believe that our Copenhagen interpretation is more closely related to dualistic idealism
(=mind-body dualism) than to quantum mechanics. And I am convinced that this Copenhagen
interpretation is the true Copenhagen interpretation. In the above, note that we have two definitions
of the Copenhagen interpretations in QL such that

QL | =|two Axioms —|—‘ Copenhagen interpretation‘

That is, ”Which comes first, |two Axioms | or ‘Copenhagen interpretation ‘?”. It is clear that (C)
is due to the assumption that comes first. On the other hand, (Cs3) is due to the

assumption that ‘ Copenhagen interpretation ‘ comes first. Surprisingly, as seen in the following section

(e.g., Parmenides, Descartes, etc.), most of the rules in the Copenhagen Interpretation were discovered
before the discovery of quantum mechanics. I therefore prefer the latter definition, but it may not be
a matter determined by my preferences.

(ii) I believe that
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Chap. 3 Linguistic Copenhagen interpretation (dualism and idealism)

(#1) main objective of the philosophy of science = to create a language of science (i.e., quantum
language).

If so, then the closest (non-physical and idealistic) theory that has so far come to the aims of the
philosophy of science is statistics. However, statistics is not regarded as a major area of philosophy
of science. The reason for this are described in Note 1. That is,

(#2) in statistics, the concept of ‘Idea’ (= observable) has been erased (cf. Note 274).

3.1.2 Descartes figure

Now, let’s go on to explain the (linguistic) Copenhagen Interpretation.
Since Axiom 1 includes the term “measurement”, the concept of “measurement” should be, at
first, understood in dualism (i.e., “observer” and “measuring object”) as illustrated in Figure B372.

Figure 3.2. [Descartes Figure] Image of “measurement(=@)+(®))” in dualism

observer measuring instrument system
(I{=mind)) (body, eye, ctc.) (matter, measuring object)
-~ [observable] - .'-
r [Illn_-: L.-.nr] \'.'llul_-] E.‘_lt_'_] '\
(a) project light 1
. | < B I
:f}_‘ perceive the reaction
I ' (i.e., the reflected light) l 3 I

|Descartes Figuref: Image of "measurement(=(a)+(b))” in dualism

Figure 3.2: Descartes Figure

In the figure, “measurement” is characterized as interaction between “observer” and “system” (matter
or object to be measured, measuring object), composed of

(D1) (2) projection of light onto the object (i.e., someone, not necessarily an observer, shines the
light.)
(b) perception of the reaction of the object (i.e., the observer receives the reaction.)

However, I want to emphasize that the interaction cannot be represented by kinetic equations.
Therefore,

(D2) in measurement theory (= quantum language), we use the term “measurement” instead of
“Interaction”. Therefore, we won’t say the above (D;) outright.
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3.1 Linguistic Copenhagen interpretation

After all, we think that

(D3) there is no measured value without observer.

Thus, measurement theory is composed of three keywords:

observable
‘measured value| , |(/~ measuring instrument) |,
(observer, brain, mind) (telescope, thermometer, eye, (matter, measuring object)

ear, body, polar star)

In view of the above figure, it might be called “ternary relation (or, trialism)” instead of “dualism”.
But, following the convention, we use “dualism” throughout this book.

&Note 3.3.

(i) Descartes’ dualistic idealism has the following form:

[A](mind) <— [B(body, sensory organ)] —  [C|(matter)

(medium)
The following is a part of Mable 2T
dualism \ key-words || [A](= mind) [B}(Medisgf)g dO;)A and ©) [C](= matter)
quantum mechanics observer measuring instrument | particle (system)
QL [measured value] [Observable] [State]
(scientific dualism) || [z(€ X)] 0= (X,T,F)] p(e GP(A*))
observer measuring instrument | particle (system)
classical QL [measured value] [observable] [state]
(scientific dualism) || [z(€ X)] 0= (X,5,F) 0w ~ w(€ N)

(ii)The most important issue in philosophy is said to be the mind-body problem. That is,

(#) Clarify the relationship between ‘mind’, ‘body’ and ‘matter’?

Mind-bod
pnjblemv Body Matter
-? ﬁ\
f Consists of

Spiritual i

Physical
o) S

essence
b

physics
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Chap. 3 Linguistic Copenhagen interpretation (dualism and idealism)

I assert that this problem can be completely solved by Axiom 1. That is because Axiom 1 says the
relationship between ‘mind (~measured value)’, ‘body (~observable)’ and ‘matter(~system)’. Or see
Sec. 12.8 in ref. [76].

(iii) The concept of “observable” (which can be identified with “measuring instrument”) is not easy.
For example, telescopes, glasses and eyes are a type of measuring instrument. A directional magnet
is, of course, a measuring instrument. If so, then the polar star is also a type of measuring instrument.

%,

/1]

3.1.3 The linguistic Copenhagen interpretation [ (E()-(E7) ]

The (linguistic) Copenhagen interpretation is “a manual for using Axiom 1 (measurement) and
Axiom 2 (causality). If that were the case (if it were a manual), wouldn’t we have to list all
sorts of miscellaneous things and “there would be no end to the explanations”? Even car driving
manuals are endless in detail. There is no such thing as a complete rulebook for baseball or soccer,
either. The author believes that the (linguistic) Copenhagen interpretation may have such a fear ( cf.
Wittgenstein’s paradox in ref. [[76]). However, I think that a Copenhagen Interpretation that covers
the problems we are likely to encounter in practice is possible.

Now, below [(Eq)—(E7)], I will briefly explain the Copenhagen interpretation. The most important
of these, and especially important, is,

(E;) Only one measurement is permitted.

(E) The linguistic Copenhagen interpretation

With Descartes figure below and the following (E;)-(E;) in mind,
describe every phenomenon in terms of Axioms 1 and 2!

observer measuring instrument system
(I{=mind)) (body, eye, ctc.) (matter, measuring object)
I_ _' [observable] ]_ A _I
[||||_-.'|-I|l'1_'| \'-'lllil.‘} [:at.;nt-_} .;{*' {;\
{a) project light 1 / \
I < ' | A\ I
- \')(r_
(B) perceive the reaction ¥/ \
I (i.e., the reflected light) (5,6" \ I

l l
| I I I
i 1 |

[|Descartes Figuref: Image of "measurement(=(a)+(5))" in dualism
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3.1 Linguistic Copenhagen interpretation

Descartes figure

(Eo) (i) If you don’t measure it, you don’t know anything. Don’t talk about things that cannot be
measured. This seems to be Berkeley’s saying “To be is to be perceived.” On the other hand,
Einstein, a monistic realist of the anti-Copenhagen interpretation, said “The moon is there
even when we are not looking”.

Einstein denied the Copenhagen interpretation
If £ it

George Berkeley
To be is

to be perceived
(1685-1753)

I like to think
the moon is there even
if I am not looking at it

(ii) [Popper’s Falsifiability in the linguistic interpretation; (cf. Sec 12.4 in ref. [78]]

Popper’s Falsifiability is usually explained as follows. In order to guarantee the objectivity
of a scientific theory, there must be a possibility that the hypothesis will be disproved by
experiment or observation. That is, truth must always be subjected to experiments that
deny its truth. And if the denying experiment is confirmed, then the truth must be rejected.
As mentioned in Note , recall that ”QL proposition” = ”measurement”. Therefore, the
importance of Popper’s Falsifiability cannot be over-emphasised in QL.

(E;) Consider the dualism composed of “observer” and “matter (= object to be measured)”, where
"observer” and “matter (= measuring object)” must be absolutely separated. Figuratively
speaking, “Audience should not go on stage”, or

SYstem (matter)

observer (I{

”the observer cannot measure the observer himself”

or
“The measurement is not dependent on the observer”

That is, the following qualia problem is non-sense.
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Chap. 3 Linguistic Copenhagen interpretation (dualism and idealism)

subjectivity problem
A -~

® & "I think,

e r’% therefore
i )
@ o

Is the pink I'm feeling
the same as the pink iS non-sense

you're feeling?

Iam

To be more specific, the words “I”, “Here”, “Now” are forbidden . Hence, "I think, therefore
I am” is non-sense.

#Note 3.4. Consider the followings:

(#1) I measure my body temperature with a thermometer.

(#2) I feel my body feverish.

and

(b1) The doctor measures my body temperature with a thermometer.

(b2) The doctor feels my body feverish.

In terms of measurement, (1) and (b;) are the same. On the other hand, (#2)and (b2) are different.
Thus, in the strictest sense, we consider that (#2) cannot be regarded as a measurement. However,
the (b2) seems to be a measurement. This example will help you understand that cogito proposition
“I think, therefore I am” in Chapter 8.

(E2) Space and time are not the most basic words in QL (i.e., in science).

QL agrees to Leibniz’s relationalism concerning space-time (Sec.97). That is,

(#) [The metaphysical space-time]
I think that Leibniz’s relationalism says that

(#1) Space 8 is a kind of state space GP(A*) ( Recall Axiom 1 in Sec, T1°3)
a parameter is regarded as a state ( cf. Sec. 1272 )

(f2) Time T is an order of occurring in succession which changes one after another. That
is, T is a kind of tree T'(i.e., semi-ordered tree structure). ( Recall Axiom 2 in Sec,
1°3).

(#3) “Causality precedes time” (cf. Note B4)

Therefore, if “thing ” does not exits, the space-time does not exist.
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3.1 Linguistic Copenhagen interpretation
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Also, QL (i.e., Axiom 1 and 2 in Sec, T1-3) says nothing about observer’s time and place.
Therefore, observer’s space-time does not exist.

there is no tense in QL.

If QL is seen as a mind-matter dualism, then space-time can be considered to belong to
‘matter (=thing)’. That is, we see:

observer ([ —mind)) system (matter
|— T ;_‘ o —.] f.\hﬁ--nuhif'-] [_ A 1
| !".LIIL""“II|\“|u"‘l]'-lllb-!f\-rl'- I I
| —————— |
| | (SIpeTceive & Teac 'IIII,I I
| | | I
| | I |
| | | |
i No i | thereis |
|s_[:n':u:t=.'—t|n1e | | space-time: |

Observer's space-time does not exist

Thus, the question: “When, where and by whom was the measured value obtained?” is out of
the scope of QL. Thus, words such as “now,” “here,” and “I” should not be used in a scientific
proposition. If you are going to use it, you need to be very careful.

The “tense” is a treasure trove of word play (c¢f. Augustinus “Only the present exists”,
McTaggart’s paradox, Russell’s five-minute hypothesis in ref. [[78]).

In measurement theory, “observable(=measuring instrument =~ body)” is the most important
than “measured value(~mind)” and “state(~matter)” in (D3). The prototype of observables
is Plato’s Idea. Also, statistics is not philosophical because it does not have “observables”. 1
would like to remind you of the following written in Note 274.

quantum language statistics
M(0=(X, 2%, F), S (X, 2%, Py(-
(O=( — ) 5) ) Elimination of observable O ( - o)
dualistic science applied math

Only one measurement is permitted. The post-measurement state (as it is disturbed by
the measurement) is not meaningful. Therefore, only one measurement can be made. I like
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to think that this was discovered by Parmenides and Kolmogorov (¢f. Chap. 2 in ref.[76]).

Only one measurement is permitted

waight=height

#Note 3.5. This is particularly essential in quantum measurements. In classical measurements
where the measurement object is large, (E4) can sometimes be neglected, considering that the

influence of the measurement is small. In principle, however, (E4) is common to both classical
and quantum systems.

~"Iam
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For the virtual wave function collapse, see Sec. 12, or

e ref.[6d] S. Ishikawa, Linguistic Copenhagen interpretation of quantum mechanics; Pro-
jection Postulate, JQIS, Vol. 5, No.4, 150-155, 2015, : 10. jqis. .

(lhttp ://www.scirp.org/Journal/PaperInformation. aspx?PaperID=62464J)

ANote 3.6. This virtual wave function collapse in ref.[59] is powerful as follows. The Schrédinger
cat is the most famous paradox in quantum mechanics. However, we are not bothered by this
paradox since the state after measurement is not described in quantum language.

(E5) There is no probability without measurement. Also, the measurement cannot be measured.
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3.1 Linguistic Copenhagen interpretation

There is no logic without measurement. See [Figure 0.1 in Preface such as

‘statistics ( probability) ‘ L
P Tm— Chaps. 5~9
no probability without measurement @
—= ‘ QL (= Measurement theory) ‘
@

‘ Analytic philosophy (logic) ‘

Chaps.11,12 i f. (8
no logic without measurement (Chaps.11,12 in ref. [75])

(Eg) There is one state and it never moves. Therefore, there is no time (time is just an ordered pa-
rameter (cf. Axiom 2 in Sec.93)). Therefore, we always use the Heisenberg picture (basically
we do not use the Schrodinger picture), ete. It is still surprising that Parmenides mentioned
almost all of the Copenhagen interpretations 2500 years ago (cf. Sec. 2.3 in ref. [78]).

Parmenides

AR .
L,

Everything does not change.

There is no motion

and no change.

Time does not exist.
There exists only "one”,
and not “many”.

( BC.515 - unknown )

and so on.
If we believe that quantum language is the final destination of dualistic idealism (cf. (@1) and

@ in (in Preface)), it seems natural to think as follows

(E7) Explanations of the (linguistic) Copenhagen interpretation (Eq) to (Eg) are not sufficient (cf.
Wittgenstein’s paradox in Sec. 12.2 of ref. [[76]). As with national laws and sports rules, the
Copenhagen interpretation cannot be described completely. They must be amended whenever
inadequacies are exposed. Many philosophers’ aphorisms (especially dualistic idealism) can be
seen as expressions of the Copenhagen interpretation. For example, the following Wittgenstein
sayings can be regarded as Copenhagen interpretations.

e What we cannot speak about in QL, we must pass over in silence.

e The limits of QL means the Limits of our world
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THE LIMITS OF MY

N
LANGUAGE Whereof one cannot speak, thereof

IS jone must be Si[e‘nlt.
(Ludwig Wittgenstein)

(1889-1951)

though these may be more appropriately described as the ‘spirit of QL’ rather than the
‘Copenhagen Interpretation’.”

(Eg) As we saw above, there is a strong affinity between the Copenhagen interpretation and ” quotes
from philosophers”. As we saw above, there is a strong affinity between the Copenhagen
Interpretation and the ”quotes of the (epistemological) philosophers”. This is not surprising,
since the goal of both was to establish the "doctrine of dualistic idealism.” Without knowing
the above diagram, it is not surprising that some philosophers have dismissed epistemology
as metaphysics, as Wittgenstein did.

Thus, we think that

® ® ©@ Chap.14
Analytic phil. tatisti
| i t statistics giatistical
coe fuzzy logic, , QUMM — Fisher. ~ S e e 0

Phil. of science “# mechanics  Baysian,

_ + Copenhagen interpretation
(% Greek phil. ~ Descartes-Kant epistemology )

Also, I think that there is no 'perfect Copenhagen Interpretation’, in the same sense that there is
'no perfect manual’.

ANote 3.7. — (i): Historically, the Copenhagen interpretation is closely related to the ‘projection
postulate’ (i.e., ‘the problem of wave-function collapse’). Thus we must solve the following Problem:

(a) Why does the wave function contract after a measurement?

If T answer ”by the Copenhagen interpretation, the post-measurement state is meaningless”, the reader
will be disappointed. And thus, the reader should then cautiously ask the following question.

! As mentioned in ref. [76], I think the only thing Wittgenstein said in "TLP (= ref. [I13])” was the spirit of QL.
Since he is a philosopher, it is natural for him to talk about “spirit.”
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(b) Why does the wave function appear to contract after a measurement?

This will be answered in Sec. 10.2.

(ii): Readers may ask:
(#) Is there a perfect ‘linguistic Copenhagen interpretation’?

I cannot say for sure either way, however, I say that it is possible to offer ‘the linguistic Copenhagen
interpretation’ that is satisfactory from a practical point of view. The various extraordinary situations
discussed in the philosophy of mind are useful in refining the Copenhagen interpretation. However, it
is not ”precision” but ”ease of use” that is important to the manual. Again see Figure 0.1 in Preface,
and confirm that we are not in physics but in dualistic idealism.

(iii): Some may say that the Heisenberg cut should be added in the linguistic Copenhagen interpre-
tation. At present, I am reluctant to make this suggestion, since it is closely connected to Axiom 1.
But it may not be a matter determined by my preferences.

(iv): The projection postulate does not belong to the linguistic Copenhagen interpretation. This is
proved from the linguistic Copenhagen interpretation (cf. Sec.IU2).

ANote 3.8. Kolmogorov’s probability theory (cf. ref. [85] ) starts from the following spell:

(#1) Let (X,J,P) be a probability space. Then, the probability that an event Z(€ F) happens is
given by P(Z).

Through trial and error, Kolmogorov found his extension theorem, whose spirit says

(t2) Only one probability space is permitted.

This surely corresponds to the linguistic Copenhagen interpretation “Only one measurement is per-
mitted.” That is,

(the most fundamental theorem) (the linguistic Copenhagen interpretation)
. (correspondence)
Probability theory — ‘ Quantum language
(Only one probability space is permitted) (Only one measurement is permitted)

In this sense, we want to say

(#4) Kolmogorov is one of the main discoverers of the linguistic Copenhagen interpretation.”

Therefore, I am optimistic to believe that the linguistic Copenhagen interpretation “Only one mea-
surement is permitted” can be acquired, through trial and error, if we start from Axioms 1 and 2. In
fact, I myself acquired skill of linguistic Copenhagen interpretation with this method. So, I consider,
as mentioned in (E;), that we can theoretically do well without the linguistic Copenhagen interpreta-
tion. Also, one of our purposes may be to assert the superiority of Axioms 1 and 2 to the above spell

(#1)-

2Since the mainstream of philosophy is dualistic idealism, it is not surprising that many philosophers have stated
something similar to the ’linguistic Copenhagen interpretation’. However, it is surprising that the mathematician
Kolmogorov said something similar: “Only one measurement is possible.”
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3.2 Tensor operator algebra

3.2.1 Tensor product of Hilbert space

Recall that the linguistic Copenhagen interpretation says

“Only one measurement is permitted”

which implies “only one measuring object” or “only one state”. Thus, if there are several states,
these should be regarded as “only one state”. In order to do it, we have to prepare “tensor operator
algebra”. That is,

combine several into one N
4

one state”

(A) “several states”

by tensor operator algebra

In what follows, we shall introduce the tensor operator algebra.

Let H, K be Hilbert spaces. We shall define the tensor Hilbert space H ® K as follows. Let
{em | m € N = {1,2,...}} be the CONS (i.e., complete orthonormal system ) in H. And, let
{fu|neN={1,2,...}} be the CONS in K. For each (m,n) € N? consider the symbol “e,, @ f,,”.
Here, consider the following “space”:

HoK={g= Y anaen®fu|llglnon =1 D lomml’" < o0} (3.)

(m,n)eN? (m,n)eN?

Also, the inner product (-, ) ggr is represented by

<€m1 ® fn1>em2 ® fn2>H®K = <€m17€m2>H ’ <fn1>fn2>K

1 (ma,ng) = (ma,ng)
_{ 0 (m1,n1) # (ma, ng) (3.2)

Thus, summing up, we say

(B) the tensor Hilbert space H ® K is defined by the Hilbert space with the CONS {e,,®f,, | (m,n) €
N2}

For example, for any e = " °_| aypen, € H and any f =Y | 5, fn € H, the tensor e ® f is defined
by

€®f: Z O‘mﬁn<€m®fn)

(m,n)€EN?
Also, the tensor norm ||u||gex (U € H ® K) is defined by

[l rex = (@, @) o]
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Example 3.3. [Simple example: tensor Hilbert space C* @ C3] Consider the 2-dimensional Hilbert
space H = C? and the 3-dimensional Hilbert space K = C3. Now we shall define the tensor Hilbert
space H ®@ K = C* ® C? as follows. Consider the CONS {ey, s} in H such as

- e

And, consider the CONS {f1.f2, f3} in K such as

1 0 0
flz 0 ) f2: 1 ) f2: 0
0 0 1

Therefore, the tensor Hilbert space H ® K = C? @ C3 has the CONS such as

1 1 1 0 1 0
€1®f1=[0]® 0], 61®f2=[0]® 1 ,€1®f3=[0]® 0],

_0_ _0_ _1_

0 1 0 0 0 0

e2 ® f1 = 1@ 0], e2® fo= 1| ® 1l ,e2® f3 = 1@ 0

0 0 1

Thus, we see that
HoK=C®C=C°

That is because the CONS {e; ® f; | i =1,2,3, j=1,2} in H ® K can be regarded as {gx | k =
1,2,...,6} such that

1 0 0
0 1 0
0 0 1
n=a®@fi= |1, g=a®f= |l a=adf= |,
0 0 0
10] 10] 10]
[0] (0] (0]
0 0 0
0 0 0
pu=edfi=|/1, s=adf=|.96=2® =],
0 1 0
10] 10] 1]
This Example B3 can be easily generalized as follows.
Theorem 3.4. [Finite tensor Hilbert space |
C"®C™®- - ®@C™ = CXh=1 (3.3)
Theorem 3.5. [Concrete tensor Hilbert space ]
L2(Q1, Vl) X LQ(QQ, 1/2) = LZ(Ql X Qg, K VQ) (34)

where, 11 ® 15 is the product measure.
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Definition 3.6. [Infinite tensor Hilbert space | Let Hy, Hs, ..., Hy, ... be Hilbert spaces. Then, the
infinite tensor Hilbert space @,-, Hj can be defined as follows. For each k(e N), consider the

CONS {%}j’; in a Hilbert space Hy. For any map b: N — N, define the symbol @)~ , ez(k) such
that

R =V g g P ...
k=1

Then, we have:

{éez(k) ) b:N— Nis amap} (3.5)

k=1

Hence we can define the infinite Hilbert space .-, Hy such that it has the CONS (B3).

3.2.2 Tensor basic structure

For each continuous linear operators F' € B(H),G € B(K), the tensor operator FRG € B(HRK)
is defined by

(FRG)(e® f)=Fe®Gf (VeeH, feK)

Definition 3.7. [Tensor C*-algebra and Tensor W *-algebra | Consider basic structures

[A1 € A1 C B(H1)] and [A; C Ay C B(Hy)]

[I]: The tensor C*-algebra A; ® A, is defined by the smallest C*-algebra A such that
{F®G (€ B(Hi® Hy)) | F €Ay, GE A} CAC BH, ® H,)

[11]: The tensor W*-algebra A, ® A is defined by the smallest W *-algebra, A such that
{F®G (e B(Hi® Hy)) | F €Ay, Ge A} CAC BH, @ H,)

Here, note that A; ® Ay = A @ As.

Theorem 3.8. [Tensor basic structure | [I]: Consider basic structures
A1 C A C B(H,)] and [A; C Az C B(Hy)]
Then, we have the tensor basic structure:
[Al® Ay C A ®Ay C B(H, ® Hy))

[I1]: Consider quantum basic structures [C(H;) € B(H;) € B(H;)] and [C(Hy) C B(Hy) C B(H,)).
Then, we have tensor quantum basic structure:

[C(Hy) € B(H,) € B(H,)]® [C(H2) C B(Hy) C B(H;)]
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—[€(H, ® H,) C B(H, ® Hy) C B(H, ® H,)]

[I11]: Consider classical basic structures [Co(2;) € L®(Qq,11) € B(L*(21,11))] and [Co(s) C
L>(Qy,v5) € B(L*(Q315))]. Then, we have tensor classical basic structure:

[Co(Q1) € L=( € 1) € B(L*(Q1,11))] ® [Co(Qa) C L®(Qy € 1) € B(L*(Q,11))]

:[Co(Ql X Qg) Q LOO<Ql X QQ,Vl X 1/2) Q B(L2<Q1 X QQ,Vl X 1/2))]

Theorem 3.9. The Q- , B(Hx) (C B(Q,—, Hi)) is defined by the smallest C*-algebra that contains

F1®F2®---®Fn®l®[®---(EB(@H@)
k=1
(VF, € B(Hy), k=1,2,...,n,n=1,2,..)
Then, it holds that
R B(H) = BR) 1) (3.
k=1 k=1

Theorem 3.10. The followings hold:
i) : oA = R or € (A
k=1 k=1

(i) px € ™ (A7) = @) o € S (R AN)")

(iii) = o € &(A]) = Q) o € S (R Ar)")

k=1 k=1

#Note 3.9. The theory of operator algebra is a deep mathematical theory. However, in this note, we
do not use more than the above preparation.

3.3 Exercise — Only one measurement is permitted

In this section, we examine the linguistic Copenhagen interpretation [§3.1), i.e., “Only one mea-
surement is permitted”. “Only one measurement” implies that “only one observable” and “only one
state”. That is, we see:

only one observable (=measuring instrument)
[only one measurement| = (3.7)
only one state
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#Note 3.10. Although there may be several opinions, I believe that the standard Copenhagen interpre-
tation also says “only one measurement is permitted”. Thus, some think that this spirit is inherited
to quantum language. However, our assertion is reverse, namely, the Copenhagen interpretation is
due to the linguistics interpretation. That is, we assert that

not “‘ Copenhagen interpretation ‘ == ‘ Linguistic Copenhagen interpretation "’

but “‘ Copenhagen interpretation ‘ <— ’ Linguistic Copenhagen interpretation "’

3.3.1 “Observable is only one” and simultaneous measurement

Recall the measurement Example 2231 (Cold or hot?) and Example 2232 (Approximate temper-
ature), and consider the following situation:

(a) There is a cup in which water is filled. Assume that the temperature is w °C (0 < w < 100).
Consider two questions:

“Is this water cold or hot?”

“How many degrees( °C) is roughly the water?”

This implies that we take two measurements such that

1): Mreo(q c,h}, 21" F), Sh,) in ExampleZ 3]
@(0 [w]

(f2) + Mpso(q) (02 =(N{J°, oNis’ G2, Sp) in ExampleZ:

M) (Och, Sp)) \w C/ Mroo (o) (0%, S

However, as mentioned in the linguistic Copenhagen interpretation,

2

“only one measurement” —>“only one observable”

Thus, we have the following problem.

Problem 3.11. Represent two measurements Mpeo(q)(Oan=({c,h}, 2lehrt ), S)) and
M o () (02 =(N13°, 2Mi8” G2) S,;) by only one measurement.

This will be answered in what follows.
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Definition 3.12. [Product measurable space] For each k =1,2,... n, consider a measurable (Xj,
F%). The product space X,_, X;, of X;, (k=1,2,...,n) is defined by

X Xy = {(z1,29,. .., 20) |2p € Xp (K=1,2,...,n)}
k=1

Similarly, define the product X,_, Z of Zi(€ F3) (k= 1,2,...,n) by

k>_<15k:{(x1,x2,...,xn)|xk €z (k=1,2,....n)}

Further, the o-field X}_ F; on the product space X,_; X} is defined by
(1) X _ Ty is the smallest field including {X,_,Zx |Exr € Fr (k=1,2,...,n)}

( Xy Xi, K7 ) is called the product measurable space. Also, in the case that (X, F) = (X, Fr)
(k=1,2,...,n), the product space X,_, X}, is denoted by X", and the product measurable space
( Xy Xi, K F) is denoted by (X7, F7).

Deﬁni_tion 3.13. [Simultaneous observable , simultaneous measurement] Consider the basic structure
A CAC B(H)]. Let p € G”(A*). For each k = 1,2,...,n, consider a measurement Mz (O =
(X, T, Fr), Spp) in A. Let ( Xr_ Xi, ®7_F%) be the product measurable space. An observable

~

O = ( Xpex Xi, X7 Ty, ]3) in A is called the simultaneous observable of {O; : k =1,2,...,n}, if
it satisfies the following condition:

F(E1 X Ey %X - X Zp) = F1(T1) - Fa(5a) -+~ Fo(E,) (3.8)
(Ve e Ty (k=1,2,....n))

0 is also denoted by Xy, Oy, F = X}, F,. Also, the measurement M=(X oy Ok, S} is called
the simultaneous measurement. Here, it should be noted that

e the existence of the simultaneous observable X _, Oy, is not always guaranteed.
though it always exists in the case that A is commutative (this is, A = L>®(Q)).

In what follows, we shall explain the meaning of “simultaneous observable”.

Let us explain the simultaneous measurement. We want to take two measurements M4(Oy,
Siy) and measurement Mz(O, S},)). That is, it suffices to image the following:

— — \measured value \

01=(X1,371,F1) MZ(OLS[P]) Il(EXl)
(b)
p(EGP(A%))
— _— ‘measured value ‘
OQZ(XQ,SFQ,FQ) MX(OQ’S[P]) IQ(EXQ)

However, according to the linguistic Copenhagen interpretation [§3.1), two measurements M (O,
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Sip) and Mz(Os, Sy,)) can not be taken. That is,

The (b) is impossible

Therefore, combining two observables O; and Oy, we construct the simultaneous observable
O; x Oy, and take the simultaneous measurement Mz(O; x Oy, Sj,) in what follows.

(c) —_— ’simultaneous observable \—> \measured value \
p(€6P (A*)) 01 %03 M7(01x02,50,)) (4] 22) (X1 x X2)

The (c) is possible if O; x O, exists

Answer 3.14. [The answer to Problem3™T1] Consider the state space €2 such that Q = [0, 100], the
closed interval. And consider two observables, that is, [C-H]-observable O, = (X={c, h},2%, F.;,)
(in Example2-31) and triangle observable 0® = (Y (=N19%), 2¥ G#) (in Example232). Thus, we
get the simultaneous observable O, x 0% = ({¢,h} x NI00 2{ehbNiE® [, 5 G2) and we can take
the simultaneous measurement M) (O X 0%, Sk). For example, putting w = 55, we see

(d) when the simultaneous measurement M) (O X 0%, Sis5)) is taken, the probability

(¢, about 50 °C) 0.125
that the measured value Ei’ 222?; (;% OC)) is obtained is given by 8;?2 (3.9)
(b, about 60 °C) 0.375

That is because

[(Fun x G®)({(c, about 50 °C)})](55)
=[F.,({c)](55) - [G* ({about 50 °C})](55) = 0.25 - 0.5 = 0.125

and similarly,

[(Fu, x G®)({(c,about 60 °C)})](55) = 0.25-0.5 = 0.125
[(F., x G®)({(h,about 50 °C)})](55) = 0.75- 0.5 = 0.375
[(Fa x G®)({(h, about 60 °C)})](55) = 0.75 - 0.5 = 0.375

ANote 3.11. The above argument is not always possible. In quantum mechanics, a simultaneous
observable O; x Oy does not always exist (See the following Example BTH and Heisenberg’s uncertainty
principle in §474).
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Example 3.15. [The non-existence of the simultaneous spin observables] Assume that the electron
P has the (spin) state p = |u)(u] € &(B(C?)), where

(0%
u= 2] Cohere, ful = (auf? + )2 = 1)

Let O, = (X(= {1,1}),2%, F?) be the spin observable concerning the z-axis such that

P =y o] Fan=[0 Y

Thus, we have the measurement Mp(c2)(0, = (X, 2%, F7), Si,).
Let O, = (X, 2%, F*) be the spin observable concerning the x-axis such that

i 1/2 1/2 . 12 —1/2
F<{T}):[1/2 1/2}’ F({i}):[—l/Q 1/21

Thus, we have the measurement Mp(c2)(0, = (X, 2%, F*), S|,)) Then we have the following problem:

(a) Two measurements Mp(c2) (0, = (X, 2%, F?), S|,)) and Mp(c2) (0, = (X, 2%, F*), S|,)) are taken
simultaneously?

This is impossible. That is because the two observable O, and O, do not commute. For example,
we see
. . 110 /2 1/2] [1/2 1/2

Py =[5 1) [o o = 13 0
And thus,

FETHE{TH) # FE{tH (1))
/1]

The following theorem is clear. For completeness, we add the proof to it.
Theorem 3.16. [Exact measurement and system quantity] Consider the classical basic structure:
[Co(Q2) € L=(Q,v) € B(L*(,v))]

Let Of™ = (X, F, F) (ie., (X,F, F©) = (Q,Bg,x) ) be the exact observable in L®(%Q, v).
Let O; = (R, Bg,G) be the observable that is induced by a quantity g : © — R as in Example

P75 (system quantity). Consider the simultaneous observable oge"a’ X 0y. Let (z,y) (¢ X xR) be
a measured value obtained by the simultaneous measurement M Lm(va)(Oéexa) X 01, Sis.7). Then, we

can surely believe that * = w, and y = g(w).

Proof. Let Dy(€ Bg) be arbitrary open set such that w(€ Dy C Q=X). Also, let D;(€ Bg) be
arbitrary open set such that g(w) € D;. The probability that a measured value (x,y) obtained by

the measurement MLOO(Q’Z,)(O(()exa) X 01, Sjs,,1) belongs to Dy x Dy is given by x,, (w) “X;-1(py) (w) =1.
Since Dy and D are arbitrary, we can surely believe that z = w and y = g(w). O]
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3.3.2 “State does not move” and quasi-product observable
We consider that
“only one measurement” — “state does not move”

That is because

(a) In order to see the state movement, we have to take measurement at least more than twice.
However, the “plural measurement” is prohibited. Thus, we conclude “state does not move”

Haraclitus Parmenides

V.
everything flows

there in no movement

For Heraclitus and Parmenides, see Sec. U1 or, more precisely, ref. [[76].

Review 3.17. [= Example 234:urn problem] There are two urns U; and U,. The urn U [resp. Uy]
contains 8 white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Figure 3.3).

Urn\_w-b white ball black ball
Urn Uy 8 2
Urn U, 4 6
w1 (% Ul)

0O000e
O0o000e

Figure 3.3: Urn problem
Here, consider the following statement (a):
(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.

In measurement theory, the statement (a) is formulated as follows: Assuming

Uy --- “the urn with the state w,”

Uy --- “the urn with the state wy”
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define the state space 2 by Q = {wy,ws} with discrete metric and counting measure v. That is, we
assume the identification;

Ul ~ Wi, U2 ~ W2,
Thus, consider the classical basic structure:
[Co(Q2) € L=(Q,v) € B(L*(,v))]

Put “w” = “white”, “b” = “black”, and put X = {w,b}. And define the observable Owb( = (X =
{w, b}, 2{w’b}, Fy.p)) in L*(Q) by

[Fup({w})](wr) = 0.8, [ =0.
[Fup({w})](w2) = 0.4, [Fup({6})](w2) = 0.6. (3.10)
Thus, we get the measurement My )(Oup, Sis,,))- Here, Axiom 1 ( 2.7) says that

(b) the probability that a measured value w is obtained by Mpe(a)(Ouws, Sis,.,)) is given by
Fup({b})(w2) = 0.4

Thus, the above statement (b) can be rewritten in the terms of quantum language as follows.

b } is obtained by the measurement M e (q)(Ouyp,

(c) the probability that a measured value [ v
Slws]) is given by

JolFur({w})](w)du, (dw) = [Fup({w})](ws) = 0.4
fﬂ wb<{ })](w)(Sw(dW = [Fus({b})](w2) = 0.6

S

Problem 3.18. (a) [Sampling with replacement]: Pick out one ball from the urn Us,, and recog-
nize the color (“white” or “black”) of the ball. And the ball is returned to the urn. And
again, Pick out one ball from the urn U, and recognize the color of the ball. Therefore, we
have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)

It is a common sense that

(w,w) 0.16

. (w,b) o 0.24

the probability that (b, w) is given by 0.24
(b, b) 0.36

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?
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Answer It suffices to consider the simultaneous measurement Mg (02, Si50,1) (= Moo (Ouwp
X Oup, Ss,,,1) ) where O, = ({w, b} x {w, b}, plwbhx{wbt " p2 (= [ x F,)). The, we calculate as
follows.

Fop({(w,w)})(w1) = 0.64, Faop({(w,0)})(w1) = 0.16
F2,({(b,w)})(w1) = 0.16, F2,({(b,b)})(w)) = 0.4
and
Foy({(w, w)})(wz) = 0.16, F({(w,0)})(ws) = 0.24
Fib({(b’w>})(u}2) = 0'24’ Fz%b({(bv b)})(WQ) = 0.36
Thus, we conclude that
(w, w)
(b) the probability that a measured value EZU’HZ)); is obtained by Mzee(q)(Ows X Oup, S[5w2]) is
(b.b)
[Fup({w})](wa) - [Fup({w})](ws) = 0.16
ven by | Po({w)les) [ (bD](ez) = 0.2
[Fup({0})](w2) - [Fup({w})](w2) = 0.24
[Fup({0})](w2) - [Fun({0})](w2) = 0.36

Problem 3.19. (a) [Sampling without replacement]: Pick out one ball from the urn Us, and
recognize the color (“white” or “black”) of the ball. And the ball is not returned to the
urn. And again, Pick out one ball from the urn U,, and recognize the color of the ball.
Therefore, we have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)

It is a common sense that

(w, w) 12/90
. (w, b) . 24/90

the probability that (b, w) is given by 24/90
(b,0) 30/90

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Now, recall the simultaneous observable (Definition313) as follows. Let Oy = (Xx, Fi, Fr) (k =
1,2,...,n ) be observables in A. The simultaneous observable O = (X, _, X3, X }_,F:, F) is defined
by

F(E1 X Sy X -+ X Zp) = F1(E1) Fa(Za) - - - Fo(E,)
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(VZ4 € T Vk =1,2,...,n)

The following definition (“quasi-product observable”) is a kind of simultaneous observable:

Definition 3.20. [quasi-product observable | Let Oy = (Xj, Iy, F}) (k =1,2,...,n ) be observables
in a W*-algebra A. Assume that an observable Oy, = (><Z:1 Xy, K7 Ty, Fio.,) satisfies

Fio n(X1 X o X X1 X Ep X X1 X - x X)) = Fi(Eg) (3.11)
(\V/Ek e F,Vk = 1,2,...,71)

The observable O ,, = (XZ:1 X, X7 Tk, Fia.,) is called a quasi-product observable of
{Or | k=1,2,...,n}, and denoted by

ap § n ap
X Ok: (X Xk, Xlkzlgjjﬁ X Fk)
k=1,2,...,n k=1 k=1,2,...,n

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-product
observable is not uniquely determined. Also, in quantum systems, the existence of the quasi-product
observable is not always guaranteed.

Answer 3.21. [The answer to Problem B718] Define the quasi-product observable owbgfowb =
(ﬁmb}x{ﬁabLZWquwﬂ,Fhﬁ:}%bgfhg)owab:({wJ&,ﬁw”;F)n1L“KQ)&mhthm

Eﬂﬂmwﬂﬂm):8£7, Hﬂﬂwﬁﬂﬂm)=8%2
Eﬂﬂawﬂxm):zgg, EAH&MDWQ=2§f
ﬂﬂ«mwan):4%3, Hxﬂwwﬂﬂm)=4%6
ﬂxﬂawan):6;4, EAHQMDWQ=6§f

Thus, we have the (quasi-product) measurement Mye(q)(O12, S|,]) Therefore, in terms of quantum
language, we describe as follows.

(
(b) the probability that a measured value E g is obtained by M Loo(g)(Owb(;?Owb, Sis,,]) 18
(

[ [Fio({(w, w)})](we) = %2 ]
[Fra({(w,b)})](w2) = 49%6

[Fra({(b,w)})](w2) = &L

given by
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3.3.3 Only one state and parallel measurement

For example, consider the following situation:

(a) There are two cups A; and Ay in which water is filled. Assume that the temperature of the
water in the cup Ay (k= 1,2) is wg °C (0 £ wy, = 100). Consider two questions “Is the water
in the cup A; cold or hot?” and “How many degrees( °C) is roughly the water in the cup A2?”.
This implies that we take two measurements such that

(£1): Mroo()(Osn=({c, h}, 2" F;), Siy) in ExampleZ-31

(#2) : Mpee(q) (02 =(N}J°, oNis’ G2, Slwp]) in Example2-32

Ay As
N VN

M) (Och, Sin]) N\w °C w ° Mooy (02, Siy))

However, as mentioned in the above,
“only one state” must be demanded.

Thus, we have the following problem.

Problem 3.22. Represent two measurements M) (Oa=({c, h}, 2{C’h},Fch),S[wl]) and
Moo () (02 =(N19, 2Ni8” G2), Sp,)) by only one measurement,

This will be answered in what follows.

Definition 3.23. [Parallel observable] For each & = 1,2,... n, consider a basic structure [A; C
Ay C B(H})], and an observable Oy, = (X, I, F},) in Aj. Define the observable O = (X,_, X;, K}_ F,, F)
in @y _, Ax such that
F(E xSy % X)) = FI(Z1) @ Fy(55) ® - @ Fy(E,) (3.12)
VEp € Ty (k=1,2,....n)

Then, the observable O = (X " Xi, X_ ., F) is called the parallel observable in ®k LA, and
denoted by F = ®" o1 Fres 0=Q" y—1 Ok. the measurement of the parallel observable 0= &i_; Ok,
that is, the measurement M®Zﬂ*k (O Si®r_, o)) is called a parallel measurement, and denoted

by M@gzlﬁk(®zzl Ok, S[@Z:1 pk]) or ®Z:1 Mﬁk(okv S[Pk])'
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The meaning of the parallel measurement is as follows.

Our present purpose is
e to take both measurements Mz (01, S,,)) and Mz, (Oz, S|,,))

Then. image the following:

— \measured value\

p1(EGP(AT)) 0. Mz, (01,50,7) 21(€X1)

(b)

_ S —— \measured value\

p2(EGP(AL)) 0, Mz, (02,5,,) z2(€X2)

However, according to the linguistic Copenhagen interpretation (§3.1), two measurements can not
be taken. Hence,

The (b) is impossible

Thus, two states p; and p; are regarded as one state p; ® po, and further, combining two ob-
servables O; and O,, we construct the parallel observable O; ®05, and take the parallel measurement
M7, 67, (01 ® Oz, Sy, 5p,)) in what follows.

(c) — ‘parallel observable‘ > | measured value |

p1©0p2(E6P (A7) RSP (A3)) 0,805 M7, 972, (01802:5051002)) (21 ,22)(€X1 % X2)

The (c) is always possible

Example 3.24. [The answer to Problem 322 | Put Q; = Qy = [0, 100], and define the state space

Q X Q3. And consider two observables, that is, the [C-H]-observable O, = (X={c, h},2%, F,,) in

C(©4) (in ExampleZ3T) and triangle-observable O = (Y (=N1J%),2Y G2) in L>(2,) (in Exam-
100

ple232). Thus, we get the parallel observable O, ® 0% = ({c, h} x NIJ0 2{ehbNe” ) @ G2) in
L>(Qy x Qy), take the parallel measurement Moo, x0,)(Ocn ® 0%, Sl(wiws)))- Here, note that

50.)1 &® 5@)2 - 5(0.)1,0.12) ~ (WLWQ)-
For example, putting (w1, ws) = (25,55), we see the following.
(d) When the parallel measurement MLOO(QIXQQ)(OC]—L ® 0%, S[(25,55)]) is taken, the probability

¢, about 50 °C) 0.375
c,about 60 °C) | . : o 0.375
h, about 50 °C) is obtained is given by 0.195
)

(
that the measured value E
(h, about 60 ° 0.125
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That is because

[(Fu, @ G2)({(c, about 50 °C)})](25, 55)
=[F({chH](25) - [G*({about 50 °C})](55) = 0.75- 0.5 = 0.375

Thus, similarly,

[(Fon ® G2)({(c, about 60 °C)}))(25,55) = 0.75 - 0.5 = 0.375
[(Fon ® G2)({(h, about 50 °C)})](25,55) = 0.25 - 0.5 = 0.125
[(Fon ® G2)({ (1, about 60 °C)})](25,55) = 0.25 - 0.5 = 0.125

Remark 3.25.  Also, for example, putting (wy,ws) = (55, 55), we see:

¢, about 50 °C

(
( )

(e) the probability that a measured value EC’ about 60 C)> is obtained by parallel measurement
( )

h, about 50 °
h, about 60 °
0.125
. 0.125
MLOO(Q1 XQQ)(OC}E ® OAy S[(55,55)}) Is given by 0.375
0.375

That is because, we similarly, see

[Fo({c))](55) - [G2({about 50 °C})](55) = 0.25 - 0.5 = 0.125
[Fo({c))](55) - [G*({about 60 °C})](55) = 0.25 - 0.5 = 0.125 (3.13)
[Fo,({h})](55) - [G*({about 50 °C})](55) = 0.75 - 0.5 = 0.375 ’
[Fo,({h})](55) - [G*({about 60 °C})](55) = 0.75 - 0.5 = 0.375
Note that this is the same as Answer B14 (cf. Note BI2 later).
The following theorem is clear. But, the assertion is significant.
Theorem 3.26. [Ergodic property] For each k = 1,2, -- ,n, consider a measurement M (q)(O(:=

(Xk, Tk, F1)), Ss,)) with the sample probability space (Xj,Fy, P¢). Then, the sample probabil-
ity spaces of the simultaneous measurement Mpec(q)( X r_, O, Sis.1) and the parallel measurement

Mooy (@ir—; Ok, S[®Z:15w]) are the same, that is, these are the same as the product probability
space

(>< X, X7_ 13”k,®Pk (3.14)

k=1
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3.3 Exercise — Only one measurement is permitted

Proof. It is clear, and thus we omit the proof. ( Also, see Note B7I% later.) O]

Example 3.27. [The parallel measurement is always meaningful in both classical and quantum systems
] The electron P; has the (spin) state p; = |uy){u;| € &P(B(C?)) such that

w= 5] Cohere, fall = ol + 1512 = 1)

Let O, = (X(= {1,1}), 2%, F*) be the spin observable concerning the z-axis such that

Fam =y o Fwb=l Y

Thus, we have the measurement Mp(c2)(0, = (X, 2%, F#), S},,)). The electron P, has the (spin) state
pa = |uz)(us| € &P(B(C?)) such that

U = [gz] (where, ||us|| = (|a2|2 + |ﬁ2|2)l/2 —1)

Let O, = (X, 2%, F) be the spin observable concerning the z-axis such that

. 1/2 1/2 i /2 —1/2

Thus, we have the measurement Mpc2)(0, = (X, 2%, F*), S|,,)) Then we have the following problem:

(a) Two measurements Mpc2)(0, = (X,2%, F?), Sp,,)) and Mpc2) (0, = (X, 2%, F7), S),,) are
taken simultaneously?

This is possible. It can be realized by the parallel measurement

MB((CQ)@B((C?)(Oz ® 0, = (X X X, 2X><X, F*® Fx), S[p®p])

That is,
(1, 1)
(b) The probability that a measured value EI’% is obtained by the parallel measurement
(\1/7 ‘L)
MB((CQ)@B((C?)(OZ ® 0., S[p®p}) is given by

(u, F=({T}Hu) (u, F*({1})u) = pips

(u, F=({THu) (u, F* ({1 })u) = pr(1 = p2)

(u, F*({$ D) (u, F*({1})u) = (1 — p1)ps

(u, F*({I D) {u, F*({I})u) = (1 = p1)(1 = p2)

where py = [an|?, p2 = j(Jon|? + @10z + 1@y + [a]?)
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89

#Note 3.12. Theorem is rather deep in the following sense. For example, “To toss a coin 10
times” is a simultaneous measurement. On the other hand, “To toss 10 coins once” is characterized
as a parallel measurement. The two have the same sample space. That is,

“spatial average” = “time average”

which is called the ergodic property. This means that the two are not distinguished by the sample
space and not the measurements (i.e., a simultaneous measurement and a parallel measurement). How-

ever, this is peculiar to classical pure measurements. It does not hold in classical mixed measurements
and quantum measurement.

L 63 (8 o) 63 G \ew) \ =)0
POEEHDEE )
DOHEBLBE!
D..@.@@@‘
INOVODB @
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Chapter 4

Linguistic Copenhagen interpretation of
quantum systems

Measurement theory (= quantum language ) is formulated as follows.

[AsaomT) [Bxaam—7)
e |measurement theory‘ := | Measurement | 4 | Causality
(=quantum language) (cf. &277) (cf §E3)

a kind of spells (a priori judgment)

[guantum linguistic Copenhagen interpretation|

+ ’Linguistic Copenhagen interpretation
(cf. §B)

Ve
manual to use Axioms, or common knowledge in dualistic idealism world

Measurement theory says :

e Describe every phenomenon based on Axioms 1 and 2 through linguistic Copenhagen interpre-
tation !

In this chapter, we discuss the linguistic Copenhagen interpretation [§3.1) generally, including quan-
tum systems. I believe that the linguistic Copenhagen interpretation is common to both classical and
quantum systems. The previous chapter and this chapter should not have been separated, but they
were separated due to page numbers.

4.1 Kolmogorov’s extension theorem and the linguistic Copen-
hagen interpretation

Kolmogorov’s probability theory (cf. ref. [85] ) starts from the following spell:

(#) Let (X, 3, P) be a probability space. Then, the probability that an event = (€ F) happens is
given by P(Z)

91



4.1 Kolmogorov’s extension theorem and the linguistic Copenhagen interpretation

All things are one

| Pa rmen i deS I Kolmogorov (1503-1987)
( B G 5 D [] = un kﬂOWﬂ One of founders of probabity
iy

theory

And, through trial and error, Kolmogorov found his extension theorem, whose spirit says
(#1) “Only one probability space is permitted”
which surely corresponds to

(12) “Only one measurement is permitted” in linguistic Copenhagen interpretation

(33.1)

Therefore, we want to say that

(#3) Parmenides (born around BC. 515) and Kolmogorov (1903-1987) said about the same thing.

C A), define the

Let A be a set. For each \ € K, consider a set X,. For any subset A; C Ay
natural map ma, o, 1 Xaea, X2 — Xaea, X by

X X, > (:L')\))\EA2 — (I)\)AGAl e X X, (41)
AEAL AEA

Especially, put my = 7, 3.

The following theorem guarantees the existence and uniqueness of the observable. It should be
noted that this is due to the linguistic Copenhagen interpretation (§3.1), i.e., “only one measurement
is permitted”.

Theorem 4.1. [Kolmogorov extension theorem in measurement theory (cf.ref. [32])]  Consider the
basic structure

[ACAC B(H). (4.2)

For each \ € A consider a Borel measurable » space (X, Fy), where X, is a separable complete
metric space. Define the set Po(A) such as Po(A) = {A C A | A is finite }. Assume that the family
of the observables { Oy = ( Xy ea X, XaeaFr, Fa ) | A€ Po(A) } in A satisfies the following
“consistency condition”:

e for any Ay, Ay € Po(A) such that A; C Ao,
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Fa, (ﬂ-/:ll,Ag (EA1)) = Fy, (EA1) <VEA1 € )\5\ St)\) (43)
1

Then, there uniquely exists an observable 67\ = (X red X Xaea I, ]?7\) in A such that

Fi(niY(2a)) = FA(Er) (VEx € X Ty, VA€ Po(A)). (4.4)

Proof. For the proof, see ref.[32]. O

Corollary 4.2. [Infinite simultaneous observable | Consider the basic structure
[A CAC B(H).

Let A be a set. For each A € K, assume that X is a separable complete metric space, F) is its
Borel field. For each A € A, consider an observable O, = (X, %y, F)) in A such that it satisfies the
commutativity condition, that is,

Fkl (Ekl)sz (Ekz) = FkQ (Ekz)Fkl (Ekl) (VEkl € gjku VEkQ S ‘rsza kl 7é k2> (45>

Then, a simultaneous observable 0= ( Xyex X, X reiTn F= X \ei F) uniquely exists. That is,
for any finite set Ag(C A), it holds that

F(X 2Z)x( X X\))= X R(E) (V2 €T, VAcA).
AEAQ /\GA\AO AEAQ

Proof. The proof is a direct consequence of Theorem Z71. Thus, it is omitted. ]

Remark 4.3. Now we can answer the following question:
(B) Why is Kolmogorov’s extension theory fundamental in probability theory 7

That is, I can assert the following chain:

(Linguistic Copenhagen interpretation)

Only one measurement is permitted‘

(Kolmogorov’s extension theorem B in quantum language )

— \The existence of measurement\

(Kolmogorov’s extension theorem)

— ‘The existence of sample Space‘

/1]

4.2 The law of large numbers in quantum language
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4.2 The law of large numbers in quantum language

4.2.1 The sample space of infinite parallel measurement

Cgbziﬂ,hﬂji(() - ()(’EF’}F)’f;M])

Consider the basic structure

A CAC B(H)
<that is, [C(H) € B(H) C B(H)], or [Co(Q) € L¥(,v) C B(L?(Q,ym)

and measurement M (O = (X, 7, F),Sy,) which has a sample probability space (X JF,P,). Note

that the existence of the infinite parallel observable O (= @2, 0) = (X", X2 7, F(= R F))
in an infinite tensor W*-algebra .-, A is assured by Kolmogorov’s extension theorem (Corollary
17). For completeness, let us calculate the sample probability space of the parallel measurement
Mg (0, i@z, ») in both cases (i.e., quantum case and classical case):

Preparation 4.4.
[I]: quantum system: The quantum infinite tensor basic structure is defined by

[C(®p2,H) € B(®pL, H) € B(®pL, H)).
Therefore, infinite tensor state space is characterized by
& (Tr(@p2, H)) C 6™ (Tr(® H)) = 6" (Tr(@p H)). (4.6)
Since Definition 17 says that § = JF, (Vp € &P(Tr(H))), the sample probability space

(XN, M L,F, Pge ,) of the infinite parallel measurement Mg pry (52,0 = (XN, X2, F
®k = 17F), Sigx= ;) is characterized by

Pgr p(E1 xSy x o x Zy x (X X)) = X _ <p7p(5k>>3(m (47)
k=n+1 k=1
(VEk E?:?p,(k: 1,2,...,71)’71,: 1’2,3)
which is equal to the infinite product probability measure ®Z:1 P

[I1]: classical system: Without loss of generality, we assume that the state space Q2 is compact, and
v(Q) =1 (¢f. Note 271). Then, the classical infinite tensor basic structure is defined by

[Co(x721Q) © L¥(X32,Q, ®32yv) © B(L*(x2,Q, ®2,v))]. (4.8)

Therefore, the infinite tensor state space is characterized by

& (Co(xi2a ") (~ % ). (4.9)

k=1

Put p = d,,. the sample probability space (XY, X > F, Pge . p) of the infinite parallel measurement
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Mpoe(xoe 0@ 1) (@52,0 = (XN, X2, F, @k =17°F), S\, p) is characterized by

Pgx ,(E1 xZyx - xZ, x ( X X))= X[F(E)](w) (4.10)
k=n+1 k=1
(V2 €eF=3,,(k=12,...,n),n=1,2,3--+)
which is equal to the infinite product probability measure @;_, P,.

[IIT]: Conclusion: Therefore, we can conclude

(£) in both cases, the sample probability space (X", X2 F, Pge= ) is defined by the infinite
product probability space (XN, X F, @, P,).

Summing up, we have the following theorem ( the law of large numbers ).

Theorem 4.5. [The law of large numbers ( originally due to J. Bernoulli ) | Consider the measure-
ment Mz(0 = (X, T, F), S},) with the sample probability space (X, J, P,). Then, by Kolmogorov’s
extension theorem (Corollary 7)), we have the infinite parallel measurement:

M®i":1ﬁ<®zo:10 = (XNv XI 20:1?7 ®20:1F)7 S[@;‘;l p])
The sample probability space (XN, X7, F, Pgy ») is characterized by the infinite probability space
(XN, X2, F, Qe P,). Furthermore, we see
(A) for any f € L'(X, P,), put

Dy ={(@1,25,..) € X | lim Jwy) + Jwa) +- - 4 S () = ()} (4.11)

n—00 n

( where E(f) = fX f(x)P,(dz) )
Then, it holds that

Pgye, o(Dy) = 1. (4.12)
That is, we see, almost surely,
[ F(@)Py(dz) | = [lim,, o, L& 2l /) (4.13)
(population mean) (sample mean)

Remark 4.6. [Frequency probability | In the above, consider the case that

(@) = xo(2) :{ : g;g (e
Then, put
D, = {(m. ) e x| i HIBESIEREM_ p ) (4.14)
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(where #[A] is the number of the elements of the set A)

Then, it holds that
Pge ,(Dy ) =1. (4.15)
Therefore, the law of large numbers (Theorem @) says that
(f1) the probability in Axiom 1 ( § 2.7) can be regarded as “frequency probability”

Thus, we have the following opinion:

G. Galileo - --the originator of the realistic world view

(#2)

J. Bernoulli - --the originator of the linguistic world view

the law of large numbers
J. Bernoulli (1654-1703)

4.2.2 Mean, variance, unbiased variance

Definition 4.7. [population mean, population variance, sample mean, sample variance]:
Consider the measurement Mz(O = (R, Bg, F),S};). Let (R, Bg, P,) be its sample probability
space. That is, consider the case that a measured value space X = R. Here, define:

population mean (11g) : EIM7z(0 = (R, BgF), S},)] = /Ra:Pp(dx)(z 1) (4.16)
population variance ((68)*) : V[Mz(O = (R, BrF), S,)] = /R(a: — u)?P,(dx) (4.17)

Assume that a measured value (x1, s, 23, ...,2,)(€ R™) is obtained by the parallel measurement
®Z:1MZ(O7 S[p]). Put

sample distribution (v,) : v, = (1/n) 25%. € M1(X)
sample mean (7i,,) : E[®}_1Mz(0, S|,))] = (1/n) Zx@

z/xun(dx)
R
sample variance (s2) : V[®p_M7(0,S,)] = (1/n) Z

=1
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- [ =)
unbiased variance (u) : U[®p_M7(0,S,)] = (1/(n — 1)) Z(xz —)?

-5 [@=npuidn)

n—1

/1]

Under the above preparation, we have:

Theorem 4.8. [Population mean, population variance, sample mean, sample variance] Assume that a
measured value (z1, Ta, 73, - - - )(€ RY) is obtained by the infinite parallel measurement &,-; M4(0 =
(R, Bg, F), Sjy). Then, the law of large numbers (Theorem &-3) says that

(4718) = population mean (ug) = lim (1/n) E x; =: [t = sample mean
n—oo
i=1

(4-1"7) = population variance (¢§) = lim (1/n) z:(xZ — uf)?

n—00 -
=1
n

= lim (1/n) Z(% — 7i)* =: sample variance

n—00 -
=1

Example 4.9. [Spectrum decomposition] Consider the quantum basic structure
[C(H) € B(H) € B(H)].

Let A be a self-adjoint operator on H, which has the spectrum decomposition (i.e., projective ob-
servable) O4 = (R, Bg, Fa) such that

A= / AFA(dN).
R
That is, under the identification:

self-adjoint operator: A <—  spectrum decomposition:04 = (R, Bg, F4)

identification

the self-adjoint operator A is regarded as the projective observable O4 = (R, Bg, Fls). Fix the state
= |u)(u| € &P(Tr(H)). Consider the measurement Mp(z)(Oa, Sjjuy(upy). Then, we see

population mean (45" ) : EM sz (0., Sy w)] = /R M, Fa(dA\)u) = (u, Au) (4.18)
population variance((64".)?) : V[Mp() (04, Sjuyup)]

_ /R (= (4, Au))(u, Fa(d\)u)

= [|(A — (u, Au))ul|® (4.19)
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4.3 Heisenberg’s uncertainty principle

4.2.3 Robertson’s uncertainty principle

Now we can introduce Robertson’s uncertainty principle as follows.

Theorem 4.10. [Robertson's uncertainty principle (parallel measurement) (cf. ref. [[07])] Consider
the quantum basic structure [C(H) C B(H) C B(H)]. Let A; and As be unbounded self-adjoint
operators on a Hilbert space H, which respectively has the spectrum decomposition:

OA1 :(R,BR,FAl) to OAlz(R,BR7FA1).

Thus, we have two measurements Mp()(04,,S),]) and Mp (04, Sp,1), where p, = |u)(u| €
GP(C(H)*). To take two measurements means to take the pamllel measurement Mp(cn)(0a,, Sjpa))
® Mgy (0a4,, Sjp,]), namely,

MB(H)®B(H)<OA1 ® OA27 S[ﬁu@ﬁu})'

Then, the following inequality (i.e., Robertson’s uncertainty principle ) holds that

= S l(u, (A1 Ay — AAp)u)| (Y[u)(u| = pu, lullu =1),

| —

UAI 0-A2

Pu Pu : ’
where o/)* and 0% are shown in (4-19), namely,

{ oty = [{Avu, Avu) — | (u, A )" = [| (A = (u, Avu))u
oty = [{Azu, Au) — |(u, Agu) )" = [[ (A2 = (u, Agu))u|

Therefore, putting [A;, As] = Aj Ay — Az Aq, we rewrite Robertson’s uncertainty principle as follows:
[Avull - [|Azull = [[(Ar = (u, Ayw))ul| - [[(A2 = (u, Agu))ull = [{u, [A1, AsJu)[/2. (4.20)

For example, when A; (= Q) [resp. As(= P) | is the position observable [resp. momentum observable
| (i.,e., QP — PQ = hy/—1), it holds that

1
oG 0P 2 571.

Proof. Robertson’s uncertainty principle (2-210) is essentially the same as Schwarz inequality, that
is,
[(u, [Ar, AsJu)| = [(u, (A142 — Az Ay )u)|

=t (A1 = o, Av)) (Ao = G, Asu)) = (As = {u, Ag) (s = (u, Ay)) )|
<2||(A1 — (u, Ayu))u|| - (A2 — (u, Asu))ull. ]

4.3 Heisenberg’s uncertainty principle
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4.3.1 Why is Heisenberg’s uncertainty principle famous ?

Heisenberg’s uncertainty principle is as follows.

Proposition 4.11. [Heisenberg's uncertainty principle (cf. ref. [20]:1927) ]
(This will be justified as Heisenberg’s uncertainty relation (= Theorem Z18) )

(i) The position = of a particle P can be measured exactly. Also similarly, the momentum p of a
particle P can be measured exactly. However, the position x and momentum p of a particle
P can not be measured simultaneously and exactly, namely, the both errors A, and A, can
not be equal to 0. That is, the position x and momentum p of a particle P can be measured
simultaneously and approximately,

(ii) And, A, and A, satisfy Heisenberg’s uncertainty principle as follows.

A, - A, = h(= Plank constant/27=1.5547 x 107**.Js). (4.21)

observer

Heisenberg's thought experiment
with y -ray microscope

It is generally said that the above were discovered by the following Heisenberg’s thought experiment
with ~-ray microscope.

This was discovered by Heisenberg’s thought experiment due to y-ray microscope. It is

(A) one of the most famous statements in the 20-th century.

But, we think that it is doubtful in the following sense.

ANote 4.1. I think, strictly speaking, that Heisenberg’s uncertainty principle (Proposition #1T) is
meaningless. That is because, for example,

(#) The approximate measurement and “error” in Proposition -1 are not defined.

This will be improved in Theorem 416 in the framework of quantum mechanics. That is, Heisenberg’s
thought experiment is an excellent idea before the discovery of quantum mechanics. Some may ask

If it be so, why is Heisenberg’s uncertainty principle (Proposition #-11) famous ?
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4.3 Heisenberg’s uncertainty principle

I think

Heisenberg’s uncertainty principle (Proposition #-11) was used as a slogan for advertisement
of quantum mechanics in order to emphasize the difference between classical mechanics and
quantum mechanics.

And, this slogan was completely successful. This kind of slogan is not rare in the history of science.
For example, the cogito proposition due to Descartes

I think, therefore I am.

is also meaningless (cf. ref. [[76]). However, it is certain that the cogito proposition built the foundation
of modern science.

ANote 4.2. Heisenberg’s uncertainty principle (Proposition &-11) may include contradiction (cf. ref.
[76]), if we think as follows

(#) it is “natural” to consider that
A$:|x_f‘7 Ap:|p_ﬁ’7
where

Position: [z : exact measured value (=true value), Z : measured value]
Momentum: [p : exact measured value (=true value), p : measured value]

However, this is in contradiction with Heisenberg’s uncertainty principle (4=211). That is because (221
says that the exact measured value (z,p) can not be measured.

IHeisenberg‘s uncertainty relation

A r’—\‘d.
g/\/:ﬁ%(jﬁx ApAx = h

impossible ta know exactly:
* where something is
* how fast it is going
What Is the definition of Ap lor. Ax)7?

4.3.2 The mathematical formulation of Heisenberg’s uncertainty princi-
ple

It was long believed that Robertson’s uncertainty relation (= Theorem A-10) was the mathematical

expression of Heisenberg’s uncertainty principle (= Proposition &-11). However, with Theorem &_16
later, the true nature of Heisenberg’s uncertainty principle was revealed at once.
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4.3.2.1 Preparation

In this section, we will propose the mathematical formulation (Theorem A-16) of Heisenberg’s uncer-
tainty principle (Proposition Z-11). Consider the quantum basic structure:

[C(H) € B(H) € B(H)].
Let A; (i = 1,2) be arbitrary self-adjoint operator on H. For example, it may satisfy that
[Al, AQ](iZ A1A2 — AQAl) = h\/ —11.

Let Oy, = (R, B, F4,) be the spectral representation of A;, i.e., A; = [; AF4,(d)), which is regarded
as the projective observable in B(H). Let py = |u){u| be a state, where u € H and |lu|| = 1. Thus,
we have two measurements:

(B1) Mp (O, =(R, B, Fa,), Spy)  ——bs (u, Ayu)

expectation

by (EI=R
(Bs) Mp(Ouy =(R, B, Fr,), Spp)  ——ds (u, Ayt

expectation

(Vpu = |u){ul € G(C(H)"))

However, since it is not always assumed that A;A4s — A3 A; = 0, we can not expect the existence of
the simultaneous observable O 4, X O4,, namely,

o in general, two observables O 4, and O, can not be simultaneously measured.
That is,
(Bs) the measurement Mp()(04, x O4,, Sj,,]) is impossible, Thus, we have a question:

Then, what should be done ¢

In what follows, we shall answer this. Let K be another Hilbert space, and let s be in K such that
|ls|| = 1. Thus, we also have two observables O, :=(R, B, F4, ® I) and O 4,07 :=(R, B, F4, ® I)
in the tensor algebra B(H ® K). Put

the tensor state pys = |u ® s){u ® s|.

And we have the following two measurements:

by (AT%
(£713)

expectation

(C1) MBHer) (001, Sipu.)) (u®s, (A1 @I)(u®s)) = (u, Aju)

(C2) MpamOmer Spn))  ——ly (u®'s, (A ® I)(u® 5)) = (u, Ayu)

expectation

It is a matter of course that

and
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(Cs) MpHek) (04,01 X Oayer, Sip,,)) is impossible.

Thus, overcoming this difficulty, we prepare the following idea:

Preparation 4.12. Let El (1 = 1,2) be arbitrary self-adjoint operator on the tensor Hilbert space
H ® K, where it is assumed that

o~

[Ay, Ay)(:= Ay Ay — AyA)) =0 (i.e., the commutativity) (4.22)

Let Oz = (R, B, F';) be the spectral representation of fAli, i.e.z& =[x AF7 (dA), which is regarded
as the projective observable in B(H ® K). Thus, we have two measurements as follows:

by (EIX
(L13)

expectation

(D1) MBrex) (07, Sp..1) (u® s, A(u®s))

by (I8
y (BI¥)

expectation

(D2) MBrex)(03,, Si..)) (u® s, A(u®s))

Note, by the commutative condition (227), that the two can be measured by the simultaneous
measurement Mprei) (07, X 07, Sp,.), where O3 x Oz = (R?,B? F; x Fy ). Again note that

any relation between A; ® I and A; is not assumed. However,

e we want to regard this simultaneous measurement as the substitute of the above two (Cy)
and (Cg). That is, we want to regard

(Dy) and (Dy) as the substitute of (C;) and (Cs)

For this, we have to prepare Hypothesis 4.9 below.

Putting

we define the A%_S and Z%Z_S such that

A = N(wes)| = [[(A = i@ D(u@s)| (4.24)
A =NV = we s, Ni(u® ) (ues)|
(A - A1) — (u@s, (A — A @ )(u®s)(uws)|.

Here the following inequality:

AR > A% (4.25)

N,
is well-known. By the commutative condition (4-22), (4-23) implies that

[Ny, No] + [N, A @I+ [AL @I, Ny] = —[A, ® I, Ay @ 1], (4.26)
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Here, we should note that the first term (or, precisely, |(u ® s, [the first term|(u ® s))| ) of (A26) can
be, by the Robertson uncertainty relation (c¢f. Theoremd1(), estimated as follows:

QZ%T ~Z]p§‘; > [{u® s,[N1, NaJ(u® s))]. (4.27)
4.3.2.2 Average value coincidence conditions; approximately simultaneous measure-

ment

However, it should be noted that
In the above, any relation between A; @ I and EZ 18 not assumed.

Thus, we think that the following hypothesis is natural.

Hypothesis 4.13. [Average value coincidence conditions]. We assume that

-~

(u®s,Ni(u®s)) =0 (Vue Hyi=1,2) (4.28)

or equivalently,

~

(u® s, Aj(u® s)) = (u, Aju) (Vu e Hyi=1,2) (4.29)
That is,

the average measured value of Mpmgx) (O3, Si,.))
=(u®s,A(u®s))
=the average measured value of Mp(#)(O4,, Sjp.))
(Vu € H,||ul|lg =1,i=1,2)

Hence, we have the following definition.

Definition 4.14. [Approximately simultaneous measurement] Let A; and Ay be (unbounded) self-
adjoint operators on a Hilbert space H. The quartet (K,s,A;, As) is called an approximately
simultaneous observable of A; and A,, if it satisfied that

(E1) K is a Hilbert space. s € K, [|s]|x =1, A, and A, are commutative self-adjoint operators on
a tensor Hilbert space H ® K that satisfy the average value coincidence condition (428), that
is,

-~

(u® s, Ai(u® s)) = (u, Aju) (Vu e Hyi=1,2) (4.30)

Also, the measurement Mp(rer)(Oz % Oz ,Sj5,,) is called the approximately simultaneous mea-
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surement of M) (O4,, Sjp.1) and Mp(r)(O4,, Sp.))-
Thus, under the average coincidence condition, we regard

(Dq) and (Dy) as substitutes of (C;) and (Cy).
And

(Bs) A% (= |(A; — A1 @ )(u®s)||) and AP (= ||(Ay — Ay ® I)(u® s)]||) are called errors of the
N1 N2
approximate simultaneous measurement Mpex) (07, X Oz ,545,.)

Lemma 4.15. Let A; and A, be (unbounded) self-adjoint operators on a Hilbert space H. And
let (K, s, Ay, As) be an approximately simultaneous observable of A; and A,. Then, it holds that

AR =A% (4.31)
(w® s, [Ny, Ay @ [(u® s)) =0 (Vu € H) (4.32)
(w@s,[A @I NoJ(u®s)) =0 (Vue H) (4.33)

The proof is easy, thus, we omit it.

Under the above preparations, we can easily get “Heisenberg’s uncertainty principle” as follows.

b\us . ﬁus _ _27:1;5 . _ﬁ:gs
AJV1 Aﬁg (= Ag, AN2) >

[(u, [A1, AsJu)|  (Yu € H such that ||ul| = 1) (4.34)

N | —

Summing up, we have the following theorem:

Heisenberg's uncertainty principle

v N
Ap L 8
< f Ax ApAx=h

impossible to know exactly:
* where something is
* how fast it is going
Hoeever, what is the definition of ,_\p or. Ax 7

Theorem 4.16. [The mathematical formulation of Heisenberg's uncertainty principle] Let A; and
Ay be (unbounded) self-adjoint operators on a Hilbert space H. In general, the simultaneous
measurement of A; and Asdoes not exists. However. we have the followings:

(i) There exists an approximately simultaneous observable(K] s, A\l, A\Q) of A; and A, that is,
s € K, |s|x = 1, A, and A, are commutative self-adjoint operators on a tensor Hilbert
space H ® K that satisfy the average value coincidence condition (42R).  Therefore, the
approximately simultaneous measurement Mpner)(O 7 % O3, ,S,.)) exists.
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(ii) And further, we have the following inequality (i.e., Heisenberg’s uncertainty principle).

|(u, [A1, AoJu)| (Vu € H such that |Ju|| = 1). (4.35)

(iii) In addition, if AjAy — AyA; = hy/—1, we see that

/P\us ﬁus _
Aﬁl -AﬁQ > h/2 (Vu € H such that ||u|| =1). (4.36)

Proof. For the proof of (i) and (ii), see
o Ref. [76]: S. Ishikawa, Rep. Math. Phys. Vol.20(3), 1991, pp.257-273,

As shown in the above (8233), the proof (ii) is easy (cf. refs. [85, G5]), but the proof (i) is not easy
(cf. refs. [@, BH]).

4.3.3 Without the average value coincidence condition

Now we have the complete form of Heisenberg’s uncertainty relation as Theorem 4-T6. To be com-
pared with Theorem Z-16, we should note that the conventional Heisenberg’s uncertainty relation
(= Proposition A7TT) is ambiguous. Wrong conclusions are sometimes derived from the ambigu-
ous statement (= Proposition 4-1T). For example, in some books of physics, it is concluded that
EPR-experiment (Einstein, Podolsky and Rosen [[4], or, see the following section) conflicts with
Heisenberg’s uncertainty relation. That is,

[I] Heisenberg’s uncertainty relation says that the position and the momentum of a particle can
not be measured simultaneously and exactly.

On the other hand, some may consider that

[IT] EPR-experiment says that the position and the momentum of a certain “particle” can be
measured simultaneously and exactly.

Thus someone may conclude that the above [I] and [II] includes a paradox, and therefore, EPR-
experiment is in contradiction with Heisenberg’s uncertainty relation. Of course, this is a misun-
derstanding. This “paradox” was solved in refs. [26, B5]. Now we shall explain the solution of the
paradox.

[Concerning the above [I]] Put H = L*(R,). Consider two-particles system in H ® H =

L*(R}, ,,))- In the EPR problem, we, for example, consider the state u. (€ H® H = L*(R¢, )

<0r precisely, |ue><ue|) such that

1
2meo

ue(q1, g2) = ¢ 52 (20 gz (@te=b)?  ida.e) (4.37)

where € is assumed to be a sufficiently small positive number and ¢(qi, ¢2) is a real-valued function.

Let Ay: LA(R?, ) — L*(R?, ) and Ay: LA(R?, ) — L*(R?, 1) be (unbounded) self-adjoint
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4.3 Heisenberg’s uncertainty principle

operators such that

ho
A= qi, Ay = —

= . 4.
iaql ( 38)

Then, Theorem AT says that there exists an approximately simultaneous observable (K s, El, A\2>
of Ay and As. And thus, the following Heisenberg’s uncertainty relation (= Theorem A—16) holds,

| A, — Aque| - || Asue — Asue|| > R/2. (4.39)

[Concerning the above [II]] However, it should be noted that, in the above situation we assume
that the state u, is known before the measurement. In such a case, we may take another measurement
as follows: Put K = C, s = 1. Thus, (H®H)® K = H®H, u®s = u®1 = u. Define the

self-adjoint operators A; : LY(RY, ) — L*(RE, ) and A, : LY(R?, ) — L*(RE, ) such that
~ ~ ho
A =b-— Ay = Ay = —. 4.40
1 q2;, 2 2 00 ( )

Note that these operators commute. Therefore,
(4) we can take an exact simultaneous measurement of ﬁl and A, (for the state u.).

And moreover, we can easily calculate as follows:

[ A — Ajuel|

[/ |- e -a)
RQ
b_ _ Ly (1 —a2—a)? = g3 (q1+42—b)?
//Rz QQ QI \/27T606 =

=2, (4.41)

2
e—ﬁ(ql—qz—a)Z—&%(q1+q2—b)2 @92\ o das

i|1/2

i| 1/2

and

| Ague — Ague|| = 0. (4.42)
Thus, we see
| Ay, — Ayuel| - || Asue — Asue|| = 0. (4.43)

However it should be again noted that, the measurement () is made from the knowledge of the state
Ue.

[[I] and [II] are consistent] The above conclusion (4-43) does not contradict Heisenberg’s uncer-
tainty relation (4-39), since the measurement (ﬁ) is not an approximate simultaneous measurement
of A; and A,. In other words, the (K s Al, Ag) is not an approximately simultaneous observable of
Aq and A,. Therefore, we can conclude that

(F) Heisenberg’s uncertainty principle is violated without the average value coincidence condition
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(c¢f. Remark 3 in ref.[26], or p.316 in ref. [35]).
Also, we add the following remark.

Remark 4.17. Calculating the second term (precisely , (u ® s, “the second term” (u ® s))) and the
third term (precisely , (u® s, “the third term” (u®s))) in (A-25), we get, by Robertson’s uncertainty
principle (4-20),

IR o(Agu) > (@ s, [N, Ay @ [)(u ® 5))| (4.44)
AR o (Arsu) > [(u @ s, [As], No](u® s))] (4.45)

(Vu € H such that ||ul| =1)
and, from (4°25), (420), (4-44),(4745), we can get the following inequality
A%‘S AP A%”; co(Apu) + A%; ~o(Ag;u)
EZ%S -Z%;S - Z%”; ~o(Ag;u) + Z%‘l‘g -0 (Ag;u)
1
2§|<u, [A1, AoJu)|  (Vu € H such that ||u|| =1). (4.46)

Since we do not assume the average value coincidence condition, it is a matter of course that this
(4748) is rougher than Heisenberg’s uncertainty principle (4-35)

If a certain interpretation is adopted such that A%S and A%S mean “error:e(A;, u)” and “disturbance:n(As,
1 2

respectively, then the inequality (4746), i.e.,

€(Ar, u)n(Ag,u) + €(Ar, u)o(Ag, u) + o( Ay, u)n(Ag, u) > =[(u, [A1, Asju)|

N —

is called Ozawa’s inequality (cf. ref. [96]). He asserted that this inequality is a faithful description
of Heisenberg’s thought experiment ( due to ~-ray microscope ).

#Note 4.3. After my discovery of Heisenberg’s uncertainty relation, I shifted my research focus to
fuzzy logic (¢f. Chap. [@). That is because I think that the theoretical study of EPR-paradox (in
the next section) will not make progress for the next 50 years. At the time, there were signs that
research on quantum computers was popular. However, the research on quantum computers is rather
technological, so I have no advantage because I cannot conduct experiments. See Sec. 12.1.2 [Zadeh
and Kalman; The problem of universals in 20th century| in ref. [76] for why I thought ‘fuzzy logic’
was promising.

4.4 EPR-paradox (1935) and faster-than-light
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4.4.1 EPR-paradox

Next, let us explain EPR-paradox (Einstein-Podolsky—Rosen: refs. [14, [07]). Consider Two elec-
trons P, and P, and their spins. The tensor Hilbert space H = C? ® C? is defined in what follows.
That is,

(i.e., the complete orthonormal system {e;, es} in the C?),

CQ®(C2:{ Z aijei®€j|ozij€@,i,j:1,2}.

ij=1,2
Putu= 3 aje;®e;jandv= 3 fie; ®e;. And the inner product (u,v), ., is defined by
ij=1,2 ig=1,2
<U7U>C2®C2 - Z al)] ’ /BZJ

i,j=1,2

Therefore, we have the tensor Hilbert space H = C? ® C? with the complete orthonormal system
{e1®e1,e1Re9,e9R¢€1,ea®ey}. For each F' € B(C?) and G € B(C?), define the F ® G € B(C*®C?)
(i.e., linear operator F @ G : C* ® C* — C? ® C? ) such that

(F®G)(u®v)=Fu® Gu.
Let us define the entangled state p = |s)(s| of two particles P, and P, such that

s=—(e1®ey —ea ®ey).

V2

Here, we see that (s, 3)C2®CQ = %(el ey —ey®e,e1 Qe —er® €1>C2® = %(1 +1) =1, and thus, p

c2
is a state. Also, assume that

two particles Py and P, are far away from each other.

Let O = (X,2%, F%) in B(C?) (where X = {1,]} ) be the spin observable concerning the z-axis
such that
. 110 . 100
P =y o Fen=o Y-

The parallel observable O ® O = (X?,2% x 2% F? @ F?) in B(C? @ C?) is defined by

(F & F)({( DD = Pt e Pt = | ol @ |, 8
(F e P = P e P = 0 e L)
(F e P 0D = A e b = b e [0
(F o F){L D) = P e b = |0 e[ 9

Thus, we get the measurement Mp(c2gc2)(0 ® O, S);). Born’s quantum measurement theory says :
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That is because, F*({1})e; = e1, F*({{})e2 = ea, F*({1})e2 = F*({}})e1 = 0. For example,

(s, (F2 @ FH) {1, D) D)$) o0

:%«61 ®ey—ea®@eq), (F*({1}H @ F*({I})(e1 ® e2 — e2 @ 1))

1 1
:§<(€1 ®ey —ea®er), 61 ® 6’2)@2@@2 =5

Cc2@C2

Here, it should be noted that we can assume that z; and x5 (in (x1,22) € { (T2, 12), (T2,42)s (32, T2
), (42,42)}) are respectively obtained in Tokyo and in New York (or, in the earth and in the polar
star).

(probability 1) (probability 1)
(b) (c)
T2 A \ T2
[ [ or o o
Tokyo New York Tokyo New York

After measurement ?

This fact is, figuratively speaking, explained as follows:

e Immediately after the particle (or, wave function) in Tokyo is measured and the measured
value 1, [resp. |.] is observed, the particle (or, wave function) in Tokyo informs the particle
(or, wave function) in New York “Your measured value has to be |, [resp. 1.}

Therefore, the above fact implies that quantum mechanics says that
there is something faster than light.
This is essentially the same as the de Broglie paradoz (cf. ref. [[07]). That is,

e if we admit quantum mechanics, we must also admit the fact that there is
something faster than light (i.e., so called “non-locality”).
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ANote 4.4. [Shut up and calculate]. The above argument may suggest that there is something faster
than light. However, when faster-than-light appears, our standing point is

Stop being bothered

This is not only our opinion but also most physicists’. In fact, in Mermin’s book [94], he said

(a) “Most physicists, I think it is fair to say, are not bothered.”

(b) If T were forced to sum up in one sentence what the Copenhagen interpretation says to me, it
would be “Shut up and calculate”

3

Boojums Al The

Wiy Throngh

Fomnrmiimleating Siener
T it Prwsati e

4 brasd Urraie

If it is so, we want to assert that the linguistic Copenhagen interpretation [§3.1) is the true colors of
“the Copenhagen interpretation”. That is because I also consider that

(c) As mentioned before, the Copenhagen interpretation is a manual to use Axioms 1 and 2. The
word ”manual” means that you can learn how to use [Axioms 1 and 2] by trial and error without
looking at a manual, and Dr. Mermin’s famous ”Shut up and calculate!” can be considered a
similar definition of the Copenhagen interpretation.

ANote 4.5. It is difficult to actually perform EPR-experiment exactly in this form. Using the singlet
state po = |1bs) (15| (€ &P(B(C? ® C?)*)), where

P = (61®62—62®61)/\/§

In 1966, J.S.Bell proposed Bell’s inequality (which makes EPR paradox considerably easier to verify
experimentally). In 1982, Aspect, A. et al. actually carried out experimental verification and showed
that ‘there is something faster than light’, earning them the Nobel Prize in Physics for 2022 .

John Steward Bell (1928-1990)'1
(Wiki)

More than half a century has passed since Bell’s discovery, but there has not been a single step forward
in this time. We are still waiting for the emergence of a genius of Einstein’s level.
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Chapter 5

Why does statistics work? : Fisher
statistics (I)

Recall the following figure (Figure 0.2 in preface):

® ® @ Chap.14
Analytic phil. -
‘see fuzzy logic, quantum  SEUSHES opigtical |

3 = i LN N
Phil. of science 0¥ mechanics  Baysian, Mechanics

_ + Copenhagen interpretation
(% Greek phil. ~ Descartes-Kant epistemology )

The following two problems are one of the most fundamental in science.

(#1) Why does statistics work in our world?

(#2) Why does fuzzy logic work in our world?
These two are answered by (9) and @ in the Figure above such as
(b) both statistics and fuzzy logic hold since QL holds in our world.

Especially, the problem (#;) was, for the first time, solved in ref.[33]. In this chapter (and Chaps 6 an
7), I review (b) for statistics.

Also, it should be noted that

e theoretically, statistics is to be formulated within quantum language. However, the way in which
statistics can be understood using probability theory (= theory of random variables) is practical
and not to be dismissed.

111



5.1 Statistics is, after all, urn problems

Though in this section, we devote ourselves to discuss “Statistics vs. Quantum language”, the outcome
of the loser and winner is easily predictable. That is because

“Statistics (with no axioms) vs. Quantum language (with axioms)”

5.1 Statistics is, after all, urn problems

5.1.1 Population (=system) <> parameter (=state)

Let us start with the following Note (i.e. QL and statistics).

&Note 5.1.

The following is a part of Table 21

dualism \ key-words || [A](= mind) [B](Med?g?)g do}f,? and ©) [C](= matter)
quantum mechanics observer measuring instrument | particle (system)
QL [measured value] | [Observable] [state]
(scientific dualism) [z(€ X)] [O=(X,5,F) p(e GP(A"))
observer measuring instrument | particle (system)
classical QL [measured value] | [Observable] [state]
(scientific dualism) [z(€ X)] [O=(X,7,F) dw ~w(e Q)
person to try trial population
statistics [sample] / [parameter]
(incomplete dualism) || [z(€ X)] / w(e N)

Axiom 1 (in classical quantum language) says that

(#1) the probability that a measured z(€ X) obtained by a measurement Mz (q ,)(0 = (X, F, F), s, 1)
belongs to Z(€ ¥F) is given by [F(Z)](wo)-

Also, statistic say that

(#2) the probability that a sample (€ X) obtained from a population with a parameter wo(€ §2) is
given by P,(E), if it holds P,(E) = [F(2)](wo) (Yw € Q,V= € F)

Thus, in statistics, the concept of ‘observable O = (X, J, F')’ does not appear on the surface. In this
sense, statistics does not belong to the class of dualism.

/1]
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Example 5.1. The density functions of the Japanese male’s height and the American male’s height
are denoted by f; and f4, respectively. That is,

/B £ () number of Japanese males whose heights are from a to
xr)ar =
o ! total number of Japanese males

/ p Fal@)d number of American males whose heights are from « to
x)dr =
o 4 total number of American males
Let the density functions f; and f4 be regarded as the probability density functions f; and f4 such
as

the set of all Japanese males
the set of all American males
that his height is from a(cm) to S(cm) is given by

Fn((o, B (ws) = [ fr(w)de ] .
[Fu(ler, ) (wa) = [ falz)dz

Now, let us represent the statements (A1) and (Ay) in quantum language: Define the state space
Q by Q = {wy,wa} with the discrete metric dp and the counting measure v such that

v({ws}) =1, v({wa}) = 1.

<It does not matter, even if v({ws}) = a, v({wa}) =b (a,b > 0)) Thus, we have the classical

basic structure:

(A) From , choose a person at random. Then, the probability

Classical basic structure [Co(Q2) C L>(Q,v) C B(L*(Q,v))] .
The pure state space is defined by
SP(Co(2)") = {0uw,s 0w, } = {ws,wa} = Q.
Here, we consider that
0w, -+ “the state of the set U; of all Japanese males”,

d

wa “the state of the set U, of all American males”,

and thus, we have the following identification (that is, Figure bT):

Ulzéuua U2z5w,4

All Japanese males

in this urn Uy in this urn Us

Figure 5.1: Population &~ urn ( <> state )
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The observable Oy, = (R, B, F},) in L>*(2, v) is already defined by (A). Thus, we have the measure-

ment Mzee)(On, Sps.)) (w € @ = {wys,wa}). The statement(A) is represented in quantum language
by

(B) The probability that a measured value obtained by the measurement

Mo (@) (On, Ste)) } : s o
belongs to an interval |a, §) is given b
MLOO(Q) (Oh7 S[wA]) g [ ) g Y

o (Bur Fullo ) ) (0 = [P )} (w)
o (Quas Ful[e 8)) ) 1=t = [Ful[ev )))(wa)

Therefore, we get:

statement (A) | ———— |statement (B)

- translation
(ordinary language) (quantum language)

5.1.2 Normal observable

Counsider the classical basic structure:
[Co(Q) € L*(Q,v) € B(L*(Q,v))],

where 2 = R (=the real line) with the Lebesgue measure v. Let o > 0 be a standard deviation,
which is assumed to be fixed. Define the measured value space X by R (i.e., X = R ). Define the
normal observable O, = (X (= R), By, G,) in L>®(Q, v) such that

@@M—I(&WPLWWﬂM (5.1)

2o 202

where By is the Borel field. For example,

1 22
e 202 dz = 0.683... e 22dx = 0.954...,
v 271'02 o vV 27r02 %
1.960 2.580 )
e 252 dr=0.95 ¥

e 202 dxr=0.99
\/27r<72 —1.960 \/27T02 —2.580

Figure 5.2: Error function
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Next, consider the parallel observable @;_, O¢, = (R™, Bgn, Q),_, G») in

L (Q™, v®™) and restrict it on
K={(w,w,...,w) € Q" |we QT O"). (5.2)

This is essentially the same as the simultaneous observable 0" = (R”, Bgn, X,_; G5) in L®(Q).
That is,
< Go(20)](w)

1 k=1

1 1 ,
= — ——(xp, — d 5.3
X = /Ek exp [ 52 (x, — w) } T, (5.3)

(V= € By (= By), Yw € Q(=R))

(X Go)(E1 x o x o x Ea))(w) =

Then, for each (z1,x9, - ,x,) € X"(=R"), define
Tyt Xyt Ty

mn
(1 —Tp)?> + (2 — Tp)? + - - + (1, — Tp)?
n—1

U2 =

n

)

5.2 The reverse relation between Fisher and Born
In this section, we consider the reverse relation between Fisher ( =inference) and Born ( =measure-

ment)

5.2.1 Inference problem (Statistical inference)

Before we mention Fisher’s maximum likelihood method, we exercise the following problem:

Problem 5.2. [Urn problem (=ExampleZ34), A simplest example of Fisher's maximum likelihood

method]
There are two urns U; and Us. The urn U; [resp. Us] contains 8 white and 2 black balls [resp. 4

white and 6 black balls].
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Figure 5.3: Pure measurement (Fisher’s maximum likelihood method)

Here consider the following procedures (i) and (ii).

(i) One of the two (i.e., Uy or Us) is chosen and is settled behind a curtain. Note, for completeness,
that you do not know whether it is U; or Us.

(ii) Pick up a ball out of the unknown urn behind the curtain. And you find that the ball is white.

Here, we have the following problem:

(iii) Infer the urn behind the curtain, Uy or Uy ?

The answer is easy, that is, the urn behind the curtain is U;. That is because the urn U; has more

white balls than U,. However, though easy, it includes the essence of Fisher maximum likelihood
method.

5.2.2 Fisher’s maximum likelihood method in measurement theory

We begin with the following notation:

Notation 5.3. [Mz(O, Sy,j)]:  Consider the measurement Mz (O=(X,J, F), S|,)) formulated in
the basic structure [A C A C B(H)]. Here, note that

(A1) In most cases that the measurement My (O=(X, T, F), S|,)) is taken, it is usual to think that
the state p (€ &P(A*)) is unknown.

That is because

(As) the measurement My (O, S,)) may be taken in order to know the state p.

Therefore, when we want to stress that

we do not know the state p.

The measurement Mz (O=(X,JF, F'), S|;) is often denoted by
(As) Mg (O=(X, 5, F), Su)

Furthermore, consider the subset K(C G”(A*)). When we know that the state p belongs to K, My
(0=(X,T,F), Sp) is denoted by Mz(0O, Siy(K))). Therefore, it suffices to consider that

M7(O, Spy) = Mz(0O, S (&7 (A"))))-

116
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Using this notation Mz(O, Sp,j), we characterize our problem (i.e., inference) as follows.

Problem 5.4. [Inference problem]

(a) Assume that a measured value obtained by Mz(0O=(X,TJ, F), S,j((K))) belongs to =(e ).
Then, infer the unknown state [] (€ )

or,

(b) Assume that a measured value (z,y) obtained by Mz(O=(X xY,F X G, H), S.4(K))) belongs
to 2 XY (2 € F). Then, infer the probability that y € T

Before we answer the problem, we emphasize the reverse relation between “inference” and “mea-
surement”.

The measurement is “the view from the front”, that is,

measurement

measured value [z(€ X)]
Mrec () (0,S[w))

(By)  (observable [O], state [w(€ )])

On the other hand, the inference is “the view from the back”, that is,

inference

state |w(e€ Q
Mpo0(0)(0,S[4) [ ( >]

(By)  (observable [O], measured value [z € Z(€ F))])

In this sense, we say that
the inference problem is the reverse problem of measurement.

Therefore, it suffices to image Fig. 5.4.

(measuring object)

; t
\unknown state\ R e ’measured value \
: (measuring instrument) probabilistic (output)
| (observer)
inference

Figure 5.4: The image of inference

In order to answer the above problem b4, we shall describe Fisher maximum likelihood method
in measurement theory.

| |
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Theorem 5.5. [(Answer to Problem 54 (b)): Fisher's maximum likelihood method (the general case)]
Consider the basic structure

[ACACB(H).

Assume that a measured value(z,y) obtained by a measurement Mz(O=(X x

)
V.5 G, H),S(K)) belongs to = x Y (£ € F). Then, there is reason to infer that the
probability P(I') that y € I' is equal to

_ p(HEXT))
PO = ey e
where py € K is determined by.
po(H(E % ¥)) = maas p(H(Z x Y)). (5.4)

Proof. Assume that p;,ps € K and p1(H(E X Y)) < p2(H(E x Y)). By Axiom 1 (measurement:
§2.7)

(i) the probability that a measured value(z,y) obtained by a measurement Mz(O, Si,,1) belongs to
= x Y isequal to p1(H(ZE x Y))

(ii) the probability that a measured value(x,y) obtained by a measurement M-(0O, Sj,,)) belongs to
= x Y is equal to po(H(ZE x Y))

Since we assume that p1(H(Z X Y)) < po( H(ZE X Y')), we can conclude that “(i) is less likely than
(i1)”. Thus, there is a reason to infer that [*] = wy. Therefore, the py in (574) is reasonable. Since
the probability that a measured value(z,y) obtained by Mz(O, Sj,,) belongs to = x I' is given by
po(H(= x T')), we complete the proof of Theorem 573. O

Theorem 5.6. [(Answer to b4 (a)): Fisher's maximum likelihood method in classical case]
(i): Consider a measurement M) (O =(X,J, F), Si((K))). Assume that we know that a mea-
sured value obtained by a measurement Mz (O, S (/) belongs to = (€ J).

(a) Then, there is a reason to infer that the unknown state state [*] is wo (€ ) such that

[F(2)](wp) = max[F(Z)](w). (5.5)

weN

Or more generally,

(b) if it holds that [F(Z)](w1) < [F(Z)](ws), then wy should be chosen.

(ii): Assume that a measured value zy (€ X) is obtained by a measurement M) (O =(X,JF, F),
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S ((K))). Define the likelihood function f(z,w) by

~ - [F(E)](w)
wiEK [59%[F(E)]l(gg7é0,5—>{x} W] ' (5.6)

Then, there is a reason to infer that ] = wy(€ K) such that f(zq,wp) = 1.
1

Wo

Figure 5.5: Fisher maximum likelihood method

Proof. Consider Theorem b3 in the case that
[ACAC B(H)] = [Co(Q) C L>(Q) C B(L*(Q)].

Thus, in the measurement Mz (o) (0=(X x Y,F X G, H), S.,(K))), consider the case that
Fixed O1=(X,F, F), any O0,=(Y,9,G),
0=0; x 0, = (X xY,FXG F xG), py= 0y

Then, we see

P(I') = = [G(M))(wo) (VI €9). (5.7)

And, from the arbitrariness of Oy, there is a reason to infer that

(] = 0w ( =  wo).

identification

]

#Note 5.2. The linguistic Copenhagen interpretation says that the state after measurement is nonsense.
In this sense, the readers may consider that

(#1) Theorem b is also nonsense

However, we say that

(#2) in the sense of (577), Theorem 56 should be accepted.
or

(#3) as far as classical systems are concerned, it suffices to believe in Theorem b6
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However, in the quantum case, the above discussion is related to the famous paradox concerning the
Schrodinger cat. This is solved in Sec. M2 ‘the wavefunction collapse’, which is one of the most
important results in this book.

Answer 5.7. [The answer to Problem b2 by Fisher's maximum likelihood method)]
You do not know the urn behind the curtain is. Assume that you pick up a white ball from the
urn. Which urn do you think is more likely, U; or Uy ?

Figure 5.6: Pure measurement (Fisher’s maximum likelihood method)

Answer: Consider the measurement M) (0= ({w, b}, 2t*% F),S},)), where the observable
OU}b = ({w7 b}? 2{w,b}7 wa) in LOO(Q) is defined by

[Fup({w})](wr) = 0.8, [Fun({0})](w1) = 0.2
[Fup({w})](wz) = 0.4, [Fun({6})](w2) = 0.6 (5-8)

Here, we see:

max{[Fup({w})](wi), [Fup({w})](w2) }
=max{0.8,0.4} = 0.8 = Fp({w})](w1).

Then, Fisher’s maximum likelihood method (Theorem h#) says that

[*] = W1.

Therefore, there is a reason to infer that the urn behind the curtain is Uj. O

ANote 5.3. As seen in [Figure 5.4, inference (Fisher maximum likelihood method) is the reverse of
measurement (i.e., Axiom 1 due to Born). Here note that

(a) Born’s discovery “the probabilistic interpretation of quantum mechanics” in ref. [G] (1926)

(b) Fisher’s great book “Statistical Methods for Research Workers” (1925)
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Thus, it is surprising that Fisher and Born investigated the same thing in the different fields in the
same age. Throughout this book, I emphasize that Fisher’s maximum likelihood method is the most
fundamental method in statistics. In quantum mechanics books, Born is always given a fair assessment.

However, I find it disappointing that Fisher’s maximum likelihood method is sometimes not given

its due credit in books on statistics.

ANote 5.4. Note B3 says that
(f1) a statement like Axiom 1 is a (comprehensive) proposition.
Now we have the following question:
(#2) Is a statement like Fisher’s maximum likelihood method a (comprehensive) proposition?

I think that it is a comprehensive proposition though I do not have a clear explanation. Also, see Sec.
o

5.3 Examples of Fisher’s maximum likelihood method

All examples mentioned in this section are easy for the readers who studied the elementary of statis-
tics. However, it should be noted that these are the consequences of Axiom 1 (measurement:§2.7).

Example 5.8. [Urn problem]| Each urn Uy, Us, Us contains many white balls and black balls as:

Table 5.1: urn problem

w-b\_ Urnl Urn Uy Urn Uy Urn Us
white ball 0% 40% 10%
black ball 20% 60% 90%

Here,

(i) one of three urns is chosen, but you do not know it. Pick up one ball from the unknown urn.
And you find that its ball is white. Then, how do you infer the unknown urn, i.e., Uy, U, or

Us?
Furthermore,

(ii) And further, you pick up another ball from the unknown urn in (i). And you find that its ball
is black. That is, after all, you have one white ball and one black ball. Then, how do you infer

the unknown urn, i.e., Uy, Uy or Uz ?
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In what follows, we shall answer the above problems (i) and (ii) in measurement theory. Consider
the classical basic structure:

[Co(©) € L=(Q,v) € B(L*(Q,v))].
Put
b, (R wj) <— [the state such that urn Uj is chosen] (j =1,2,3)

Thus, we have the state space  ( ={w1, ws, w3} ) with the counting measure v. Furthermore, define
the observable O = ({w, b}, 2"} F) in C(Q) such that

F({w})(w) = 03, F({w})(ws) = 0.4, F({w})(ws) = 0.1
F({b})(wr) = 02, F({b})(ws) = 0.6, F({b})(ws) = 0.9

()

Answer to (i): Consider the measurement Mo (O, Sp), by which a measured value “w” is
obtained. Therefore, we see

[F{w})](w) =0.8 = meag}zc[F({w})](w) = max{0.8, 0.4, 0.1}.
Hence, by Fisher’s maximum likelihood method (Theoremb6) we see that
[*] = wy.

Thus, we can infer that the unknown urn is U;. )
Answer to (ii): Next, consider the simultaneous measurement Mpze(q)( X,_; O = (X?, 2X*

F= Xizl F), Sp), by which a measured value (w, b) is obtained. Here, we see

[F({(w,hD)w) = [Fwh](w) - [FHB]w),

thus,

~

F({(w,0)})](wr) = 016, [F({(w,0)})](w2) =024, [F({(w,)})](ws) = 0.09.
Hence, by Fisher’s maximum likelihood method (Theorembh®), we see that
[*] = Wy.

Thus, we can infer that the unknown urn is Us. Il

Example 5.9. [Normal observable(i): = R] As mentioned before, we again discuss the
normal observable in what follows. Consider the classical basic structure:

(Co(Q) C L®(Q,v) € B(LX(Q,v))]  (where Q=R) .

Fix ¢ > 0, and consider the normal observable Og, = (R, Bg,G,) in L*(R) (where Q = R) such
that
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(V= € By, VueQ=R)

Thus, the simultaneous observable X;_, O, (in short, 0% ) = (R? Bgs, G2) in L®(R) is defined
by

[G3(~1 x By x Z3)|(1) = [Go(Z0)](1) - [Go(Z2)] (1) - [Go(Z3)] (1)
(w1 — 1) + (32 — p)? + (23 — p)?
270)3 ///IX_QX_3 expl = 202 ]

X dl’leEle'g
(V= € Br,k=1,2,3, VueQ=R)

Thus, we get the measurement Mo g)(OZ, , Si) Now we consider the following problem:

(a) Assume that a measured value (29, 29, 29) (€ R?) is obtained by the measurement Moo (g)(OF;_
Si)- Then, infer the unknown state [x](€ R).

Answer(a) Put

1 1
B = [a:?—N,x?+N] (i=1,2,3).

Assume that N is sufficiently large. Fisher’s maximum likelihood method (Theoremb8) says that
the unknown state[ * | = o is found in what follows.

[G2(Z1 x Za x Z3)] (1) = Iileag[Gi(El X Z9 X Z3)| (1)

Since N is sufficiently large, we see

1 exp| — (27 = po)* + (2§ — 50)2 + (2§ — MO)Q]
(V2mo)? 20
1 0_ )2 0 2 0_ )2
— max exp[ - (xl :u) + (5(72 /'L> + (ZL‘3 :u) ]]
per L(y/2mo)3 202
That is,
(21 = 1) + (' = 1o)® + (5 — pro)* = min { (& — 0)” + (& — )’ + (a3 — )’}

Therefore, solving %{ -} =0, we conclude that

0 0 0
r] + T9 + x5

Mo = 3

[Normal observable(ii)] Next consider the classical basic structure:
[Co(R2) C L>(Q,v) € B(L*(Q,v))] (where Q=R x R;)

and consider the case:
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e we know that the length of the pencil p satisfies that 10 < p < 30.
And we assume that

(#) the length of the pencil p and the roughness o of the ruler are unknown.

That is, assume that the state space Q = [10,30] xRy (={p € R |10 < 4 <30} x{c € R |0 > 0})
Define the observable O = (R, B, G) in L*([10,30] x R ) such that

[GE) (1, 0) = [Go(E)(1n) (V2 € By, V(p,0) € 2=[10,30] x Ry).
Therefore, the simultaneous observable 0% = (R?, By,, G*) in C([10,30] x R} ) is defined by
[G*(21 % B2 x Z3)](1, 0) = [G(ED)](w, 0) - [G(E))(1, o) - [G(Z5)] (e, 0)

1 zy — )+ (zg — ) + (23 — p)?
:—( 27T0)3/ eXp[—( ! M) ( 2202M) ( 3 M) ]dl‘ldl'gdl‘g
E]_XEQXEg

(V) € Bp.k=1,2,3, VY(u,0) € Q=][10,30] x R,)

Thus, we get the simultaneous measurement My ((10,30)x® +)(03, Sp). Here, we have the following
problem:

(b) When a measured value (22,29, z3) ( € R?) is obtained by the measurement

Mo (10,30 xR ) (0%, Sp), infer the unknown state [](= (uo, 00) € [10,30] x R}), i.e., the length
1o of the pencil and the roughness og of the ruler.

Answer (b) By the same way of (a), Fisher’s maximum likelihood method (Theoremb) says that
the unknownstate [ * | = (19, 00) such that

1 eXp[ . (l’? — /LO)2 + (l’g — MO)Q + (Q’Ig — NO)Q]
(V2moy)? 203
1 0_ )2 0_ )2 0_ 2
— max { eXp[ o (xl M) + (.732 :U’) + (‘T3 :u) ]} (59>
(1,0)€[10,30] xRy L (/2703 202
Thus, solving %{} =0, 55{---} = 0 we see
10 (when (29 4+ 23 + 29)/3 < 10 )
o =14 (20 +23+29)/3  (when 10 < (29 + 29+ 29)/3 £ 30) (5.10)
30 (when 30 < (29 4+ 25 +29)/3)
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o0 = /{2 — 1)? + (2 — )% + (a) — 0)2}/3

where
fi = (af + a5+ 23)/3. O

Example 5.10. [Fisher's maximum likelihood method for the simultaneous normal measurement]. Con-
sider the simultaneous normal observable Of = (R", B, G") in L®(R x R) (such as defined in
formula (5:3)). This is essentially the same as the simultaneous observable O" = (R", Bgn, X ,_, G)
in L>*(R x R;). That is,

n

(X G)Er x B x - x E)w) = X [GEW)

n 1 1
= X exp | — —(xp — u)?| dx
X /:k p[ 52 Tk u)] !

(VEL € By (= Bg), Vw = (1,0) € (=R x Ry))

Assume that a measured value = (1, %2, ..., #,)(€ R") is obtained by the measurement My @xr, (0" =
(R™, Bg, G"),S)- The likelihood function L, (i, 0)(= L(x, (11, 0)) is equal to
1 > ke (T — )’
L.(j,0) = ——— exp| — =k=1 ,
e

or, in the sense of (56),

1 e (mk—p)?

exp| L ]
. (V2mo)n 20
Lalps 0) = L oxp[ — Sk E@)) (5.11)
(Vara(a)r P 2% (1)
(‘v’x:(:cl,xg,...,xn)ER”’ VWZ(M,U)EQ:RXR+)
Therefore, we get the following likelihood equation:
aL(E 9 aLl- 5
OLaling) o OLeino) (5.12)
ou oo

which is easily solved. That is, Fisher’s maximum likelihood method (Theoremb®) says that the
unknown state [¥] = (i, 0) (€ R x R, ) is inferred as follows.

p=p) = DT T (5.13)

o= 0'(27) _ \/ZZ:l(mkn_ ﬁ(x))Q (514)
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5.4 Moment method: useful but artificial

Wikipedia)

Let us explain the moment method (cf. ref. [35]) which is used as frequently as Fisher’s maximum
likelihood method. Consider the measurement My (O = (X,F, F), S[p]), and its parallel measurement
R Ma(0 = (X, F,F), S) (= Maa( ;10 == (X", 5", ®y_, F), Siop_ ). Assume that the
measured value (z1, g, ..., x,)(€ X") is obtained by the parallel measurement. Assume that n is
sufficiently large. By the law of large numbers (Theorem A°5), we can assure that

R e
+ ;: - )

M1 (X) 3 un( -~ = p(F(-)) € Mo (X). (5.15)

Thus,
(A) in order to infer the unknown state p(€ GP(A*)), it suffices to solve the equation (571H)

For example, we have several methods to solve the equation (b15) as follows.

(B1) Solve the following equation:
[ () = p(EC)llnexy = min{[[n(-) = 1 (F()llaex) | p1(€ G°(A%))} (5.16)

(B2) For some fi, fa, -+, frn € C(X) (= the set of all continuous functions on X), it suffices to find
p(€ 67(A*)) such that A(p) = min,, eera)) A(p1), where

:;( [ @mtie) - [ nienre)

:i‘fk<xl)+fk($2) o frl(an) / fie 5))‘
k=1

n

(Bs) In case of the classical measurement My« q) (0 = (X,F, F), S|,)) (putting p = §,), it suffices
to solve

0— ‘fk r1) + fu(w ) + fi(@n) /fk )‘ (5.17)

k

or, it suffices to solve

( Llothlehbethl) _ £ (©[F(dS))(w) =
fae) oo bt falen) [ p (€)[F(dE))(w) =
| Lol thul)betbalen) _ [ (6)[F(d€))(w) =

126 ‘ For turther information see my homepagd



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 5 Why does statistics work? : Fisher statistics (I)
-, &m} is finite, define fi, fo,
_ { 1 (§=&)
0 (& &)

(B4) Particularly, in the case that X = {&;, &,
fk’(g) = X{Ek}(g)

and, it suffices to find the p(= ¢,) such that
(@1) + X,y (@2) + - + Xy (@)
e S R GLGCS)

Zn: ’X{sk}

k=1

-3 o 2 &=l e )| =0

n

The above methods are called the moment method. Note that
(Cy1) It is desirable that n is sufficiently large, but the moment method may be valid even when

n=1.
(Cy) The choice of f is artificial ( on the other hand, Fisher’ maximum likelihood method is natural).

Problem 5.11. [=Problem 52: Urn problem: by the moment method)]
You do not know the urn behind the curtain. Assume that you pick up a white ball from the urn.

Which urn do you think is more likely, U; or Uy ?

(

Fy
Fy

—

U1%w1 Z
ooooe ) —FF*
0000e =
Figure 5.7: Inference(by moment method)
Answer: Consider the measurement M) (0= ({w, b}, 20w¥ F) S,;). Here, recall that the
[Fun({0})](w1) = 0.2
b({0})](w2) = 0.6

observable O, = ({w, b}, 28w F,,) in L>(Q) is defined by

[Fup({w})](wz) = 0.4,

(A=)

[Ewp({w})](wr) = 0.8,
is obtained, the approximate sample space ({w, b}, 2{*?} 1) is obtained

Since a measured value “w
n({w}) =1,

v ({b}) =0.
‘ For further information see my homepagé
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[when the unknown state [*] is w;]

(516) = |1 — 0.8] + [0 — 0.2] = 0.4.
[when the unknown state [*] is ws]

(5T6) = |1 — 0.4] + [0 — 0.6 = 1.2,

Thus, by the moment method, we can infer that [*] = wy, that is, the urn behind the curtain is U;.
[IT] The above may be too easy. Thus, we add the following problem.

Problem 5.12. [Sampling with replacement|: As mentioned in the above, assume that “white ball”
is picked. and the ball is returned to the urn. And further, we pick “black ball”, and it is returned
to the urn. Repeat this, after all, assume that we get

L(w” , “b’? , “b?? , (Lw77 , ((b?’ , (Lw” , (Lb?? ,
Then, we have the following problem:

(a) Which urn is behind the curtain, U; or U, ?

Answer: Consider the simultaneous measurement My o) (xf_,0= ({w, b}, 2wd" T F), St)-
And assume that the measured value is (w, b, b, w, b, w, b). Then,
[when [*] is w;]

(516) = |3/7 — 0.8] + |4/7 — 0.2] = 52/70.
[when [%] is wo]
(518) = [3/7 — 0.4 + |4/7 — 0.6 = 10/70.

Thus, by the moment method, we can infer that [*] = ws, that is, the urn behind the curtain is Us.
m

Example 5.13. [The most important example of moment method] Putting 2 = R x R, = {w =
(u,0) | p € R0 > 0} with Lebesgue measure v, consider the classical basic structure

[Co(Q) € L=(Q,v) € B(L*(Q,v))].
Assume that the observable Og = (X (= R), Bg, G) in L®(€,v) satisfies that

/ £G(d)) (1, 0) = 1, / (€ — w?G(dO)) (.0) = 0
(Vo = (1, 0) € Q=R x R,))

Here, assume that a measured value (1, z9, v3)(€ R3) is obtained by the simultaneous measurement
X 2:1 M) (Og, Sp). That is, we have the 3-sample distribution 3 such that
Ozy + Ogy + 0z

V3 = 3 S M+1 (R)

128

‘ For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 5 Why does statistics work? : Fisher statistics (I)

Put f1(€) =&, fo(€) = €2. Then, by the moment method (5-17), we see:

0 =Z | [ uiae) - [ elcuene)

_yo [t e ) o)

T1+ 2o+ 21)% + (22)% + (23)?
:‘1 2 S—M“F‘(l) (22) (3)_(02_1_”2).
3 3
Thus, we get:
T+ T2+ Ty
B 3
o2 — (z1)* + (905)2 +(z3)* 2

_ (Il _ x1+:c32+xn )2 + (5132 _ x1+x32+xn>2 + (x3 _ x1+w32+xn)2

3 9

which is the same as the (5-10) concerning the normal measurement.

#Note 5.5. (i): Consider the measurement My () (O=(X, 2X F), Si), where X = {x1, z2, .

Sy T}
is finite. Then, we see that

“Fisher’s maximum likelihood method” =“moment method”

Proof : Assume that a measured value z,,(€ X) is obtained by the measurement
Mz(0=(X, 2%, F), Sp)-

[Fisher’s maximum likelihood method]:

(a) Find wp(€ Q) such that

[E'({zm }))(wo) = max[F({zm})](w).

we

[Moment method]:
(b) Since we get the approximate sample probability space (X,2%, 6, ), we see

0 = [F({z DI+ +10 = [F({zm-a})[(@)] + [1 = [F({zmn})](w)]
+10 = [F{{zma DIW)] + - +10 = [F({zn})](w)]
=[F({zP)lw) + -+ [F{zma DI(w) + [F({zn (W)
+ F{zma D) + -+ [F{zn})](w)
=1 = 2[F({zm})](w)-

Thus, it suffice to find wo(€ ) such that
1= 2[F({zm})](wo) = min(1 — 2[F ({zy })}(w))-
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Thus, Fisher’s maximum likelihood method and the moment method are the same in this case.

(ii): If we did not know Axiom 1 (in Sec. T2), we would not be able to answer the question, ”Which
is more essential, Fisher’s maximum likelihood method or the moment method?”

5.5 Monty Hall problem in Fisher’s maximum likelihood
method

Monty Hall problem is as follows".

Problem 5.14. [Monty Hall problem; High school puzzle]

You are on a game show and you are given a choice of three doors. Behind one door is a car,
and behind the other two are goats. You choose, say, door 1, and the host, who knows where the
car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you a choice of sticking to door 1 or switching to door 2 ? What should

you do ¢
%o |
door door door J |
No. 1 No. 2 No. 3 |

| = g

the door 3 has a goat
You choose door 1

Answer: (I believe that this answer is new, and the most fundamental in several answers of Monty
Hall problem. See (ix) in Sec. T67).

!This section is extracted from the followings:
(a) Ref. [35]: 5. Ishikawa. “Mathematical Foundations of Measurement Theory,” Keio University Press Inc. 2006.

(b) Ref. [@d]: S. Ishikawa, “Monty Hall Problem and the Principle of Equal Probability in Measurement Theory,”
Applied Mathematics, Vol. 3 No. 7, 2012, pp. 788-794. doi: 10.4236/am.2012.37117.
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Put Q = {wy,ws, w3} with the discrete topology dp and the counting measure v. Thus, consider
the classical basic structure:

[Co(Q) C L™(Q,v) C B(L*(,v))].
Assume that each state 4, (€ GP(C(€2)*)) means
dw,, < the state that the car is behind the door m (m =1,2,3)
Define the observable O; = ({1, 2,3}, 21123} [

) in
[F({1D))(wr) = 0.0, [F({2})](w1) =05, [F({3})](w1) = 0.5,
[FL({1))(w2) = 0.0, [F({2})](w2) = 0.0,  [F({3})](w2) = 1.0,
[F({1)](ws) = 0.0, [F({2D](ws) = 1.0, [Fi({3})](ws) = 0.0, (5.18)

where it is also possible to assume that F({2})(w1) = o, Fi({3})(w1)) =1 —a (0 < a < 1). The
fact that you say “the door 1” clearly means that you take a measurement Mye(q)(O1, Sp). Here,
we assume that

L>(Q) such that

a) “a measured value 1 is obtained by the measurement M) (O1, Si)”
& The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement M) (O1, Spy) ”
& The host says “Door 2 has a goat”

c) “measured value 3 is obtained by the measurement M) (01, Sp) ”
& The host says “Door 3 has a goat”

Recall that, in Problem b=T4, the host said “Door 3 has a goat” This implies that you get the mea-
sured value “3” by the measurement My (q)(O1, Sp). Therefore, Theorem 56 (Fisher’s maximum
likelihood method) says that you should pick door number 2. That is because we see that

max{[Fy({3))] (). [FL (3] (wa), [FL({3])](w3)} = max{0.5, 1.0, 0.0}
= 1.0 = [FA({3})](wa),

and thus, there is a reason to infer that the unknown state [*] is equal to d,,. Thus, you should
switch to door 2. This is the first answer to Problem 514 (Monty-Hall problem). O

ANote 5.6. Examining the above example, the readers should understand that the problem “What is
measurement ?” is an unreasonable demand. Thus,

we have to abandon the realistic approach, and accept the metaphysical approach.
In other words, we assert that
the concept of measurement is metaphysical.

Also, for a Bayesian approach to Monty Hall problem, see Chapter R and Chapter 8.
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Remark 5.15. [The answer by the moment method] In the above, a measured value “3” is obtained
by the measurement MLOO(Q)(O:({l,Q,S},2{1’2’3},F), Spy). Thus, the approximate sample space
({1,2,3},2{123} 1)) is obtained such that v;({1}) =0, 11 ({2}) = 0, v1({3}) = 1. Therefore,

[when the unknown [«] is w]

(BT8) = [0 — 0] + |0 — 0.5 + [1 — 0.5 = 1,
[when the unknown [*] is ws]
(616) =0 -0/ +]0—0]+ 1 —1| =0,
[when the unknown [*] is ws]
(b16) = [0 = 0]+ [0 — 1| + |1 = 0] = 2.

Thus, we can infer that [*] = wy. That is, you should change to the Door 2. O

5.6 The two envelopes problem — High school student puz-
zle

This section is extracted from the following:

Ref. [68]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics
( ArXiv:1408.4916v4 [stat.OT] 2014 )

Also, for a Bayesian approach to the two envelopes problem, see Chapter .

5.6.1 Problem (the two envelopes problem)

The following problem is the famous “two envelopes problem( cf. ref. [90] )”.

Problem 5.16. [The two envelopes problem]

The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope B). You
know one envelope contains twice as much money as the other, but you do not know which contains
more. That is, Envelope A [resp. Envelope B] contains V; dollars [resp. V5 dollars]. You know that

(a) w=1/20r, =2
Define the exchanging map 7 : {Vi, Vo} — {V1,V4} by

YTV (ifz=Th)

Assume that

(b) You choose randomly (by a fair coin toss) one envelope.
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And you get x; dollars (i.e., if you choose Envelope A [resp. Envelope B], you get V; dollars [resp.
V, dollars] ). And the host gets Z; dollars. Thus, you can infer whether T; = 2x; or T = x1/2.

Now the host says “You are offered the options of keeping your z; or switching to my x,”. What
should you do ¢

AT AT AT AT PSPPI I I IY FI
¢

A B

ARTRARRRYY

W

AR IR AL

BARARR TR TR
MAALRRRRN
AR AR R NR AN

PIFITIFII I I 77 7 A T |

Two envelopes problem

Figure 5.9: Two envelopes problem

[(P1):Why is it paradoxical ?]. You get @ = 1. Then, you reason that, with probability 1/2, 7; is
equal to either a/2 or 2a dollars. Thus, the expected value (denoted E ;1 o (0) at this moment) of
the other envelope is

Eother(@) = (1/2)(a/2) + (1/2)(2a) = 1.25a (5.19)

This is greater than the « in your current envelope A. Therefore, you should switch to B. But
this seems clearly wrong, as your information about A and B is symmetrical. This is the famous
two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

The grass is always greener I
on the other side
& g e

5.6.2 Answer: the two envelopes problem b.16

Consider the classical basic structure
[CO(Q> - LOO(Q7 V) - B<L2(Q7 V))]?

where the locally compact space (2 is arbitrary, that is, it may be R, = {w | w > 0} or the one point
set {wo} or Q@ ={2"|n=0,%&1,£2,...}. Put X =R, ={z |2 >0}. Consider two continuous (or
generally, measurable ) functions V; : Q — R, and V5 : Q — R,. such that

Vo(w) =2V (w) or, 2Vsh(w) =Vi(w) (Yw € Q).
For each k = 1,2, define the observable O, = (X (=R, ), (= Bg, : the Borel field), F) in L>(£2,v)

such that
[Fu(2)](w) :{ 1 (if Vi(w)

€E)
0 (if Vi(w) ¢

)

[11 [1]
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(Vw € Q,V= € F = Bg, ie., the Bore field in X(= R,))

Furthermore, by the hypothesis (b), define the observable O = (X, J, F') in L*(2,v) such that

F(E) = %(mz) FR(E) (VEe) (5.20)
That is,
1 (if iw) €5, Vh(w) € E)
= ) 12 (ifVi(w) €5, Va(w) € 2)
FEID=Y 12 (itviw) ¢2 Ww) ez
0  (ifVi(w)¢E, Va(w) ¢ E)
(Vw € Q,V=Z € T = By i.e., Zis a Borel set in X(=R,) )

Fix a state w(€ ), which is assumed to be unknown. Consider the measurement My (q,)(0 =
X, F F),S),). Axiom 1 (§2.7) says that
[w]

Vi(w)

(A;) the probability that a measured value { V; ()

} is obtained by the measurement Mz (q ) (O

L 1/2
= (X,T,F), Sy) is given by { 1§2 } :

If you switch to { %EZ% }, your gain is { %Ei; : “255; iiw } Therefore, the expectation of
switching is

(Va(w) = N1(w))/2 + (Vi(w) = V2(w))/2 = 0.

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.17. The condition (a) in Problem b6 is not needed. This condition plays a role to
confuse the essence of the problem.

5.6.3 Another answer: the two envelopes problem 5H.16

For the preparation of the following section (§ 5.6.4), consider the state space {2 such that
0O-R,
with Lebesgue measure v. Thus, we start from the classical basic structure
[Co(Q) € L=(Q,v) C B(L*(Q,v))].
Also, putting Q = {(w,2w) | w € R}, we consider the identification:

Qow — (w,2w) € Q (5.21)
(identification)
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Furthermore, define V; : Q(=R,) — X(=R,) and V5 : Q(=R,) — X (=R, ) such that
Viw) =w, Va(w)=2w (Vw € Q).
And define the observable O = (X (=R, ), (= Bg, : the Borel field), F) in L>(€,v) such that

(fweZz, 2we

- B (fweZ, 2wé¢
FENW =93 12 (fwé¢z we
(fwé¢ =, 2wd

(Vw € Q,VZ2 € F)

(11 [1] [1] [1]

— — N

Fix a state w(€ ), which is assumed to be unknown. Consider the measurement
Moo () (0 = (X, T, F), Sy). Axiom 1 ( measurement: §2.7) says that

(A3) the probability that a measured value { Vl Ewg } is obtained by
2

/2
/2

M) (O = (X, F, F), Siuy) is given by { :

If you switch to { ‘%EZ% }, your gain is { %EZ; : “ggzi } Therefore, the expectation of switching

(Va(w) = Vi(w))/2 4+ (Vi(w) — Va(w))/2 = 0.

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.18. The readers should note that Fisher’s maximum likelihood method is not used in
the two answers ( in §5.6.2 and §5.6.3). If we try to apply Fisher’s maximum likelihood method to
Problem 616 ( Two envelopes problem), we get into a dead end. This is shown below.

5.6.4 Where do we mistake in (P1) of Problem 5.16 ?
Now we investigate the question:

Where do we mistake in (P1) of Problem 516 ¢

Let us explain it in what follows.
Assume that

(a) a measured value « is obtained by the measurement Mz ,)(0O = (X, T, F'), S)

Then, we get the likelihood function f(«,w) such that

FENe)) { L =afzor)

fla,w) = inf lim ( elsewhere )

I e B 0 TFE o)

Therefore, Fisher’s maximum likelihood method says that
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(B1) unknown state [*] is equal to /2 or «
(If [%] = a/2 [resp. [*] = a], then the switching gain is (a/2 — «) [resp. (2o — )] )
However, Fisher’s maximum likelihood method does not say
“the probability that [*] = a/2"=1/2
(B2) “the probability that [*] = a”=1/2
“the probability that [*] is otherwise”=0

Therefore, we can not calculate as (b-19):

1 1
(a/2—a)><§+(2a—a)><§:1.25a

(5,0)  (a,2a) " Q=0=Ry)

Figure 5.10: Two envelopes problem

(Cy) Thus, the sentence “with probability 1/2” in [(P1):Why is it paradoxical 7] is wrong.
Hence, we can conclude :
(Cq) Flisher’s maximum likelihood method is invalid for Problem 5.16.
After all, we see
(D) If “state space” is specified, there will be no room to make a mistake.
since the state space is not declared in [(P1):Why is it paradoxical 7.
Remark 5.19. The condition (b) in Problem 5.16 is indispensable. Without this condition, we can
not define the observable O = (X, F, F') by the formula (5.23), and thus we can not solve Problem

5.16. However, it is usual to assume the principle of equal weight (i.e., no information is interpreted
as a fair coin toss ), or more precisely,

(8) the principle that, in the absence of any reason to expect one event rather than another, all
the possible events should be assigned the same probability

Under this hypothesis, the condition (b) may be often omitted. Also, we will again discuss the
principle of equal weight in Chapters 8 and 15. Also, see Note KA.
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Chapter 6

Confidence interval and hypothesis
testing

The following is the standard teaching schedule for university statistics courses.

@) confidence interval 8)
inference statistical hypothesis testing regression analysis
i
— | ANOVA, etc. — | least squares method
lﬁtggllggtdlgé%%%%d X2, t-distribution, F-distribution Chaps, 12713

In the previous chapter, we are concerned with () (inference) in quantum language. In this chapter,
we discuss ) (confidence interval and statistical hypothesis testing). This chapter is an extract from
papers (refs. [61, 67, b3], etc.). As mentioned in Preface, the main purpose of this book is to assert
that

(#) Statistics is the part you write on the calculation paper when you think in quantum language.”

However, this field (e.g., @) is far from my area of expertise, and moreover, I have done no more
than the above-mentioned “arxiv thesis (non-peer-reviewed)”. As statistics is a vast discipline, it
is impossible to achieve this objective with this book alone. Therefore, my real aim is to convince
readers that “from the pure theoretical point of view, statistics should be formulated in QL”. And to
have each reader write papers showing that various methods of statistics can be described in quantum
language. If you are an expert in this field (a graduate student), you have an overwhelming advantage
over me. This chapter emphasizes that in QL, it is exposed that ) and () above are more closely
related than in traditional statistics.

6.1 Review; Estimation and testing problems in conven-
tional statistics

In this section, conventional statistical methods (confidence intervals with random variables, tests)
are reviewed. And, in the next section 62, these are described in terms of quantum language. I
assert, from the theoretical point of view, that statistics should be described in quantum language
and the style of using random variables is seen as a type of powerful computational technique.

T don’t mean it in a negative nuance. I consider Einstein and Fisher to be the true geniuses.
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#MNote 6.1. I think that

(#1) the most surprising thing for mathematics students when they learn about quantum mechanics
is that the concept of 'random variables’ does not appear in quantum mechanics, even though
probability appears frequently in quantum mechanics.

And

(#2) the most surprising thing to physics students when they learn about probability theory in math-
ematics is the emphasis on 'probability = measure (= area)’ and, moreover, the invisible concept
of 'random variables’.

This chapter should help the reader to somewhat bridge the gap between the two (f2) and (#2) above.
After reading this chapter, readers will be convinced that the following.

(b1) physics is better at answering the question “What is probability?”
Born proposed Axiom 1 (§2.7) as the answer of ”What is measurement?”

On the other hand,

(b2) mathematics (i.e., stochastic variable method) is the superior method for calculating probabili-
ties.
In fact, if there had been no random variables method, Kolmogorov would not have been able
to perform such an enormous calculation.

There may be arguments for both positions, but this book is in position (b;) (=the quantum mechanical
worldview). Of course, the most demanding thing for researchers is to develop the ability to freely
cross-translate between Axiom 1 (§2.7) and random variables method. Readers are encouraged to
acquire the ability to cross-translate after reading this chapter.

6.1.1 The theory of random variables

Let a triplet (S, Bg, P) be a probability space (i.e., P(S) = 1). A measurable function X : S — R
is called a random variable. And, let {X;}°, be independent and identically distributed random
variables on S such that [¢|X;(s)]*P(ds) < oo (i =1,2,...).

Definition 6.1. [population mean, population variance, sample mean, sample variance]?:
Define the population mean p and the population variance o (or, standard deviation o) by

= /Xi(s)P(ds) (1=1,2,...), (population mean)
S

o = /(Xl(s) — 1) P(ds) (1=1,2,...), (population variance)
S

which are usually assumed to be unknown Further, define

_ Xi(s) + Xa(s) + ... + Xy(s)

yn(s)

(sample mean)

2This should be compared to Definition B=7
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SSa(s) = (X1(s) — X(8))? + (Xa(s) — X(5))* + ... + (Xn(s) — Xn(s))?

SS, .
(5) (sample variance)
n
SSh
(i) (unbiased sample variance)
n —_—

/1]

It is well-known that the law of large numbers (c¢f. Sec. A2) says that,

= lim Xi1(8) + Xa(s) + ... + Xy(s) _ lim X,,(s) 6.1)

n—00 n n—00

2 (X1(s) = Xu)® + (Xa(s) = Xn)? + - + (Xa(s) — X0)?

o = lim
n—oo n — 1
= i 25008) ) 55() (6.2)
n—o00 n—l n—00 n

6.1.2 Normal distribution

Our aim is to study formulas (6-1) and (65-2) for a not very large n. To do so, we start by summarizing
our knowledge of the normal distribution as follows.

#Note 6.2. In this chapter, we devote ourselves to the normal distributions. Thus, we think as follows
(¢f. Note Z4):

e population ~ system
(statistics)  (QL)

e parameter (=(population mean p, standard deviation o)) ~ state
(statistics) (QL)

Review 6.2. Normal distribution N (u,o?):
Let X : S — R be a random variable with normal distribution (with ‘population mean’ u, ‘pop-

ulation variance’ o2, i.e., N(u,0?)), that is, X : S — R has the following distribution: it holds
that

- 1 (u—p)?
= = - g .
G 0) = —= [ expl = (63)

(V= € Bg,Vw = (,0) e Q=R xR,,i=1,2,...)

Also,
! /J S2dy = 0.683 ! /% S2dy = 0.954
e 22dx = 0.683..., e 202dr = 0.954...,
Voro? )4 V2mo? J a2
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1.960 .2 2.580 22
/ e 2:2dxr=0.95 e 202 dxr=0.99
—1.960 V2rwo? J 2585

Z(a)o
/ e 202d1: 1— 2«

271'02

27r<72

—AO': a: ,u+a T 20 >

95.4

Figure 6.1:Normal distribution N (u, o)

z(0.025)=1.96
z(0.005)= 2.58

—20 g O zl@)o 20
— 68.3% —
- 95.4% —

Figure 6.2:Normal distribution N (0, 0)

2
y — 1, —& Y
y Vo e 2 z(0.025)=1.96
z(0.005)=2.58

Standard normal
distribution

68.3% -
95.4%

Figure 6.3:Standard normal distribution N (0, 1)

Therefore, from a statistical point of view, what we need to do is to answer the following problem.

Problem 6.3. In statistics, we are interested in the case that {X;}°; is a sequence of independent
random variables with the normal distribution. And we focus on the following problems:

(£1) Population mean (Confidence interval and Hypothesis testing)
e Study the statistical meaning of “u ~ X, (s) (for a not very large n)” in (61) !
(Or, approximate p using {X;(s), Xa($), ..., Xa(s)}!)
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(f2) Population variance (Confidence interval and Hypothesis Testing)

e Study the statistical meaning of “o? &~ Sni(ls) (for a not very large n)”in (62) !

(Or, approximate o using {X(s), Xa($), ..., Xa(s)}!)

This will be done in the next subsection. To discuss (#;) and (#3) in detail, we consider that {X;}°,
is a sequence of independent random variables with the normal distribution (with ‘population mean’
u, ‘population variance’ o?).

6.1.3 (Student) ¢-distribution, Yx*-distribution

Review 6.4. [Student’s ¢-distribution p,(f ) with n degrees of freedom (precisely, probability density
function p\))]

The Student’s t-distribution pq(f ) with n degrees of freedom is defined by

O(p) = - /72 -

@) =~ ) n

(T is Gamma function, i.e., I'(z) = [;7 " le " dt)

I((n+1)/2) ( a:2>—(n+1)/2

05 - ., normal

/n= ** distribution

p‘:](xj |
I ::'.' %\ |

L~

.

. 0 — 5 r T g Statistician William &3
= R akoels 6 s & 3 A 3 Sealy Gosset, (1876~1937)
(student) t-distribution pL[]{x] known as "Student” (Wiki)

Figure 6.4: Student’s t-distribution pg ) with n degrees of freedom

Also note that

I'((n+1)/2) (1 n xz)—(n+1)/2

1 2
= (& s

V21

thus, if n > 30, it can be regarded as the normal distribution N (0, 1) with mean 0 and the standard

deviation 1.
Also, define the map t, : [0,1] — [0,00), n = 1,2, ..., such that

8

vl

n(a)
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For example, we see,

£5(0.025) = 2.571, 5(0.005) = 4.032
t6(0.025) = 2.447,  4(0.005) = 3.707 (6.5)

Review 6.5. The y?-distribution (& x2-probability density function) with n degree of freedom is
defined by

) xn/?—le—x/Q

py (r) = 2 (n]2) (z >0), (6.6)

where I'is the Gamma function.

X?probability density function

1 -
aed | n=1 .
e with n degree of freedom
0.4
03 |
n=3 |
0.2
~.n=b
¥
I{ 4 n=10
011 /A S — n=20
001 —— A
o 10 15 20 2 a0

0 27 19.0

Figure 6.5:y? distribution pﬁQ (x) and y = pgf (x)

The following Lemma is fundamental.

Lemma 6.6. Let X;, Xy, ..., X, be independent random variables (on a probability space (S, Bg, P))
with the normal distribution N(u, 0?). Also, recall the notations X, = £ 3" | X;, 55, = > (X, —

X,)% U= /S5

(i) (we want to know p when o is known)

142
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Define the random variable 7 : § — R such that Z = Then it holds that

/\f
X —
ag/v/n

where N (0, 1) is the standard normal distribution.

7 —

~ N(0,1)

(ii) (we want to know u when o is unknown)

Define the random variable T : S — R such that T = where U = SS” . Then, it holds

U/ f ’
that —
Xo—p ©
T —
U/\/_ ~ Pn-1
where pfle is the Student’s t-distribution with n — 1 degrees of freedom.

(ili) (we want to know o)
Define the random variables K; : S — R (i = 1,2) such that K; = >0 (F5£)2 and Ky =

X i=1
S (2=%2)2 Then, we see

Xi_ 2 XZ—Y2 2
S T CTl N R D (=2

i=1 =

(when we know ) (when we do not know p)

where p%z is the y2-distribution with n degrees of freedom.

Proof. See ref. [I09]. /1]

#Note 6.3. The above is the most important theorem in statistics. It should therefore be called a
‘theorem’ in common sense. The reason we call it a ‘Lemma’ in this book is that I will use it in the
proof of Theorem 64, which is one of the most important theorems in QL.

6.1.4 Answer to Problem 6.3 about “u ~ X,(s)”; Confidence interval
and Hypothesis Testing

6.1.4.1 (when o is known)
Recall our problem (i.e., Problem 63 (f;)):

(#1) Confidence interval and Hypothesis Testing
e Study the statistical meaning of “u ~ X, (s)”!

Fix a = 0.0025 and thus, 2(0.0025) = 1.96 (c¢f. Figure 6.3). Then, Lemma 68 (i) says that

(A) the probability that a sample (Xi(s), Xa($), ..., X,,(s)) satisfies that |X"(S L < 2(0.0025) =
1.96 is given by 0.95
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That is,

(B) [95%-Confidence interval] o B
the probability that u belongs to the (confidence) interval [X,,(s) — 1.960/v/n, X,.(s) + 1.96\/%7]
is 0.95, that is,
— o - o
Xn(s) —1.96—= < nu < X, 1.96—
(5) = 196 < o < Xos) + 196 -

Q‘

6.1.4.2 (when o is unknown)

Recall Lemma 66 (ii). Fix o = 0.0025, n = 6, thus ¢5(0.0025) = 2.571 (¢f. (¢f. (formula (635))) and
U=,/ =/ iz (Xi=Xo)? 1(X X6)2 EZizl X;. Lemma 68 (ii) says that

(C) the probability that a sample (Xi(s), Xa(s),..., X6(s)) satisfies that |X6(S =] < 16(0.0025) ~
2.571 is given by 0.95 (c¢f. formula (673)).

That is,

(D) [95%-Confidence interval] - B
the probability that  belongs to the (confidence) interval [X(s)—2.571U/+/6, X(s) —1—2.571\%]

is 0.95, that is,

_ U - U
Xo(s) — 2.571—= < u < Xg(s) + 2.571—
6(5) Gk 6(5) 7

Let’s think about the next.

(E) [95%-Statistical hypothesis testing]

Coco (your dog’s name) said that
(b1) X,(s) ~ po ( called Null hypothesis).

However, you believe the (f2) to be wrong. How can you convince Coco that the above (b;)
is wrong?

[Answer|: Assume the (b;), which is called the null hypothesis. Let {X7, X5, ..., X¢} be the sample
(e.g., n=6). Then you can check the following.

> Xi g
== < 2.571—

Then, Lemma 66 says that

(D) If it is true, there is a possibility that Coco is true. However, it is not true, as this would be a
very rare occurrence, (by) should be considered wrong.
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S

6.1.5 Answer to Problem 6.3 “o ~ 2 Sf(f)”; Hypothesis Testing
Next we study the statistical understanding of “o ~ Sns+(ls)” in Problem 63. Of course, o is unknown.

Recall Lemma B6 (iii), which says that

(#) Let X, Xs,..., X,, be independent random variables with the normal distribution N(u,o?).

Then, it holds that
X; — X\2 2
Z ( ) ~ Ppo
o

For example, assume the following data:

(F) n=10, X =990, U?=0.250
Then, Lemma 66 (iii) and Figure 6.5 say that

(n—1)U?

2

2.70 < <19.0,

o
A simple calculation says that
0.118 < ¢ < 0.833

Thus, we can estimate the population variance o2 such as

(G) the probability that it holds that 0.118 < ¢% < 0.833 is given by 0.95

6.2 Confidence and testing problem in QL terms

This section concentrates on rewriting the ’conventional statistical methods described in the
previous section’ in the language of quantum language.

I belonged to a mathematics department and was somewhat familiar with probability theory
(=theory of random variables). However, when I learned about quantum mechanics, I was surprised
to find out that quantum mechanics understands probability without using random variables. It
is hoped that readers reading this section will experience the same surprise that the author once
experienced.
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6.2.1 Review of Fisher’s maximal likelihood method
Consider the classical basic structure:

[CO(Q) - LOO(Q7V) - B(L2(97V))]

Consider a classical measurement Mp~(,)(0 = (X, J, F), Si,). It is usual to consider that the
state wp is unknown. And, we can usually estimate the unknown state wy by a measured value as
follows.

[Fisher’s maximal likelihood method (¢f. Sec. 5:2)]:

Consider a classical measurement My ,)(0 = (X, J, F), S,]). Assume that you know a measured
value belongs to Zo(C F, max{[F(Zy)](w)|w € Q} # 0). Then, Fisher’s maximal likelihood method
says that the state wy is predicted to satisfy the following

(A) [F(Z0)](wo) = maxyea[F(Zo)](w)]
1
[F(Z0)](w)
0 @0 Q

Fisher maximum likelihood method (c¢f. Figure5.5)

This is the most fundamental result in inferential statistics. However, as mentioned in the previous
section, the most applicable result in inferential statistics is the theory of random variables. This
section therefore attempts to rewrite the inference problem with random variables in QL terms.

6.2.2 Confidence interval and testing problems by QL
Definition 6.7. [Normal observable]. Define the state space 2 = R x R} with the Lebesgue measure
v. Consider the classical basic structure:
[Co(Q) C L>(Q,v) C B(L*(Q,v))] (where Q =R x R})
The normal observable Og = (R, Bg,G) (= (X, F,G)) in L>®(2(= R x R, )) is defined by
- - 1 (z — p)?
GE)|(w) =GE)|(p,0) = exp| —
GE)w) = E@](n0) = = [ el
(VE € Bg(= the Borel field in R)), Vw = (p,0) € Q=R xR})

dz. (6.7)
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Definition 6.8. [Simultaneous normal observable]. Let n be a natural number. Let Og = (R, Bg, G)
be the normal observable in L>(R x R, ). Define the n-th simultaneous normal observable Of =
(R™, Bg,G") (= (X™,F",G")) in L*(R x Ry ) such that

[G”( e Z0)] (W) = X_ [GEW](w)
S0 / /eXp Db 129(5:2 1) |dzydzy - - - d,. (6.8)

(VEp € Br(k=1,2,...,n), Yw=(u,0) € Q=R xR,)
/1]

Thus, we have the simultaneous normal measurement My ryr,)(0% = (R?, Bg, G™),
Si(u,0))- Consider the maps 7z : R" — R, ss,, : R" — R and 7 : R” — R such that

T1+To+ -+ Ty

w(r) =m(r, 9, ... x,) = (V= (z1,29,...,2,) € R") (6.9)

$8p(x) = ssp(1, 9, ..., Xy) = Z(a;k —7(2))? (Vo = (z1,79,...,7,) €R?) (6.10)

o(r) =0(r1,29,...,2,) = \/Zzzl(xk — filz))? (Vo = (21, 29,...,2,) € R") (6.11)

The following Theorem is fundamental.

Theorem 6.9. Consider the normal simultaneous measurement My (rxr,) ( »,0¢ =
(R™, BR,G"), Si(uo,00)])- Also, we use the notations: = = (x1,29,...,2,) € R", T, = nzz L Ti,

SSn

§Sn = i (T — Tp)?, u = /2
(i) (we want to know o when o is known)

Define the map z : R® — R such that z = f’g;\% Then it holds that

Mo @iy (2(0c) = (R, Br, G"([z] (), Siuo.cy)) ~ N(0,1)
where N(0,1) is the standard normal distribution.
(ii) (we want to know p when og is unknown)

Define the map ¢ : R™ — R such that ¢ = i”/?/’g). Then it holds that

2
Moo @xk,) (t(Oc) = (R, Br, G"([t]” 1(')))75[(#0,00)]) ~ Ppo1
where p’,{il is the y2-distribution with n degrees of freedom.
(ili) (we want to know o)

Define the maps k; : R" — R (i = 1,2) such that ky = 377 (*#2)* and ky = 3 (%)%

o0
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Then, we see

e (when we know py)
Moo xiz ) (K1(Og) = (R, Br, G (k] ™ () Siuo.oo) ~ P
e (when we do not know 1)
M i) (R2(Oc) = (R, Br, G (ko] ™ ())): o) ~ Pis

where p%z is the y2-distribution with n degrees of freedom.

Proof. This is a direct consequence of Lemma B6. ///

6.2.3 Measurement theoretical answer to Problem 6.3 “y ~ X ,,(s)”; Con-
fidence interval and Hypothesis Testing

6.2.3.1 (when o is unknown)

2

In this section, [Answer to Problem B3 “u ~ X,(s)” in Sec. E14] will be rewrote in terms of
QL ( using Theorem 69). Consider the normal simultaneous measurement Mzeomyr,)(xj2,0q =
(R™, B, G"), Si(uo,00)))- Also, we use the notations: x = (21,23, ...,2,) € R", Ty = L 30 1y, 55, =
S (25 — Tn)? 1 = /== Recall Theorem 61 (if). Fix a = 0.0025, n = 6, thus #5(0.0025) = 2.571

(cf. Figure 6.4) and u = /% = Lz (Fi7Te ) xl_% =5 DI

(B) (we want to know pp when oy is unknown)

Define the map ¢ : R" — R such that ¢t = Eu"/;fﬁf Then, Theorem 69 (ii) says that

2

MLN(RXR+)(t(OG) = (R; BR; Gn([t]il<>>>7 S[(#o,ao)]) ~ p?’f
where pg‘Q is the y2-distribution with 5 degrees of freedom.
This implies that

(C) the probability that a measured value (z,s,...,26) by Mromxr,)(Xj2,0¢ = (R", By, G"),

Sl(uo,00)]) Satisfies that |16U‘;)\/‘°| < t6(0.0025) &~ 2.571 is given by 0.95

That is,
(D) [95%-Confidence intervall

the probability that 1 belongs to the (confidence) interval [Tg(s) —2.571u/v/6, Tg(s) +2.571 \/Lg]
is 0.95, that is,

To(s) — 2.571% < p < Tls) + 2.571% (6.12)

Let’s think about the next.

(E) [95%-Statistical hypothesis testing]
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Coco (your dog’s name) said that
(b2) T = po ( called Null hypothesis).

However, you believe the (b2) to be wrong. How can you convince Coco that (by) is wrong?

[Answer|: Assume the (b2), which is called the null hypothesis. Let {1, xs, ..., 26} be the measured
value (e.g., n=6). Then you can check the following.

o

V6

6
|¥ — o] < 2.571

Then, Theorem 69 says that

(F) If it is true, there is a possibility that Coco is true. However, it is not true, as this would be a
very rare occurrence, (by) should be considered wrong.

%o ‘_w .-+ null hypothesis

6.3 Random valuable vs. measurement

In this chapter, I discussed the relation among following three:

(#1) Mie(0,)(0 = (R, Bgr, G), Sj(ue)): normal measurement, O = (R, Bg,G): observable, (yu,0):
state,
multidimension— M) (0" = (R™, Bg, G"), Sju.01)

(t2) (R, Br,[G(")](1,0)) : normal sample space (= normal distribution) with a parameter (p, o)
multidimension— (R, BE, [G"(-)] (1, 0))

(#3) Xpo © S — R: random variable such that P({s € 5: a1 < X, (s) < as}) = [G(lo, a2])] (11, 0)
multidimension— Consider X} ,: S — R (i = 1,2, ...,n) are independent

In Sec. B0 (the arguments in statistics), we devote ourselves to (#2) and (f3). And in Sec. 62 (the
arguments in measurement), we devote ourselves to (f1) and (#3). The above is illustrated as follows
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sample space, distribution

(#1)

andqm Var't)a[b e leasurement
fno observable ?Wlt observable)
(Fisher’s maximal likelihood method is available)

Fioure 6.6 Random variable and measurement
& : (Compare Definition B2 to Definition B1)

The above says that

(b) statistics is the part you write on the calculation paper when you think in quantum language

Looking above, one might think, from the theoretical point of view, that measurement theory is
superior to traditional statistics. For example, the random variable method is impotent for Fisher’
maximum likelihood method. However, note that the random variable method is handy in this
chapter, and thus, Theorem 69 is proved by Lemma G66. As mentioned in Note 63, QL and random
variable method are not in a rivalry relationship. The most demanding thing for researchers is to
develop the ability to freely cross-translate between Axiom 1 (§2.7) and random variables method,
and the ability to use these differently.

Remark 6.10. (i): Tests on two or more types of measurements can be done in the same way (using
the F distribution). Namely, it suffices to start from

MLOO(QI:Vl)(O? (Rn B]l%a Gnl) [u1,01] ® ML°° (Q2,12) (On2 = (an Bﬁ? ng)> S[Mzﬂz})

(ii): Just to be clear, I am not rejecting the 'random variables method’. I believe that the 'random
variables method’ is as important as ever, even with the formulation of statistics by measurement
theory. As I have said many times, my argument is the following.
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® ® @) Chap.14
Analytic DhiL statistics
. . guantum : statistical |
sew fuzzy logic, Fisher. =i bo '‘ee e

Phil. of science "} mechanics  Baysian,

_ + Copenhagen interpretation
(%~ Greek phil. ~ Descartes-Kant epistemology )

For this, the formulation of statistics by QL is needed.

ANote 6.4. (i): See Note Z4. That is,

e population = system,

e parameter (=(population mean p, standard deviation o)) ~ state

This illustrates the difficulty of using the term ‘population’.

(ii): If the test is carried out several times in succession, errors are said to add up and multiplicity
issues occur. In measurement theory, the linguistic Copenhagen interpretation says “Only one mea-
surement is possible”. Therefore, in measurement theory, multiplicity issue is a matter of principle.and
thus, it is recommended that multiple testing is not carried out. I am a layman and don’t know all
the details, but I believe that computers can help us get around multiplicity issues, since the linguistic
Copenhagen interpretation does not require an analytical solution.

(iii): As illustrated in Figure 6.6, the discussion of the random variable method can automatically
be replaced by a discussion of measurement theory. Therefore, the discussion of analysis of variance
(F-distribution) should be left as an exercise for the reader.

6.4 Regression analysis

6.4.1 Simple regression analysis

PtR=Q=Q=0 =0 =03=...=Q,) and t; <ty < t3 < .. <t, (in R) (for simplicity, put
n = 3, and tl = 1,t2 = 2,t3 = 3)

Assume that Og, (= O; = O = O3) is the normal observable with a standard deviation o, i.e.,
O¢,=(R, Bg, G,) where

1 )2
o@D = s / S0 (V2 € By, Vw € ).
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6.4 Regression analysis

R=0Q=Q) R(=Q=MR(=Q2=10) R(=0Q=1>0Q;)

3.0—>

0 t(=1) to(=2) t5(=3) ¢

w.= 0t + wy
4.7\

1'9_‘:“”””””

wol|

Fi 12.2 Problem: Sol k 0 and
e inrtoheeerguat(i)0\171e al)l = Ié%v—‘lf—nwo %? thcéodashed line

Define the observable Op = (R3, Fgs, Fy) in L(€ x ©) such that

[Fo(21 x Z5 x 5)](wo, 0)
=[G, (Z1)](wo + 0)) - [G4(Z2)](wo + 20)) - [Go(Z3)](wo + 36))
(VEl,EQ,Eg € BR, V(WO,9> € Q() X @)

Our problem is as follows:

Problem 6.11. Consider the measurement My (q,xe)( 6T, Stwo])

(f1) Find the parameter (= state) (wp,f) € © x R that is most likely to yield the measured value
(1.9,3.0,4.7).

For a sufficiently large natural number N, put

== |19 119+1:—30 130+1 =3 = 4.7 147+1
o = . N N , g = . N N , 03 = . N Nl

Fisher’s maximum likelihood method (Theorem 58)) says that the above (#;) is equivalent to the
following problem

(f2) Find (wo,0) (€ Qg x O) such that

[FO(El X EQ X Eg)]((x}o,&) = (Hlaég[Fo(El X EQ X Eg)]
wo,

Since N is assumed to be sufficiently large, we see

(ts) = max [Fo(Z1 X S x Z3)](wo, 0)

(wo,@)GQo
1 - (ml—<wo+e>>2+<x2—(wo+2e>>2+<x3—<wo+3e>>2]
—> max 3 [ 202
(woﬂ)GQo \ /271'0'2

=1 X2 ><53
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X dl’ldl’gd,fg

— max exp(—J/(20°
Jmax p(—=J/(207))

= min J
(OJO,G)GQQ

where

J = (1.9 — (wo +0))* 4 (3.0 — (wo + 20))* + (4.7 — (wo + 36))2.

. { (1.9 — (wo +6)) + (3.0 — (wo + 20)) + (4.7 — (wo + 36)) = 0
(1.9 — (wo + 9)) + 2(3.0 — (CU() + 29)) + 3(47 — (wo + 39)) =

= (wo,0) =(0.4,1.4)
Therefore, in order to obtain a measured value (1.9, 3.0, 4.7), it suffices to put
(wo,d) = (0.4, 1.4).

(Regression analysis will be discussed again in Chapter 13.)

0

]

Remark 6.12. I am not denying the use of the terms “dependent variable” and “ explanatory

variable. 7 However, the reader should ask the following questions :

(#) Why does statistics use terms like ”dependent variable” or ”explanatory variable”?

The reason, I believe, is that statistics is applied mathematics and does not have scientific axioms.
On the other hand, QL starts from axioms, so OL are expected to use words within the axioms as

much as possible.
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Chapter 7

Practical logic

Recall the following:

1
A Glglt. hil |® @ Chap.14
AR statistics g

wee g ehanios ., edwncs'®'®®

Phil. of science “# rhechanics  Baysian,

_ + Copenhagen interpretation
(= Greek phil. ~ Descartes-Kant epistemology )

/
1

discussed in refs. (63, (76} discussed in Tefs. (62, 65]

The relation among Analytic philosophy, Descartes-Kant epistemology, quantum mechanics
and statistic

As mentioned in Preface 0.1, I think that

mathematics - - - logic
. classical mechanical worldview - - - causality
science . . .
quantum mechanical worldview - - - measurement + causality

And our interest is focused on the quantum mechanical worldview. Thus, ‘practical logic’ (i.e., ‘logic’
in science) must be created in ‘measurement + causality’. In our work, ‘practical logic’ is defined by
the logic defined in QL ( and not the mathematical logic defined by mathematical axioms). That is,
mathematicians do not necessarily make excellent scientists or philosophers.

Concerning "practical logic” , I believe I have completed it in the next.

155



7.1 My recent opinion

(#) ref. [75]. Ishikawa, S., (2021) Fuzzy Logic in the Quantum Mechanical Worldview ; Related
to Zadeh, Wittgenstein, Moore, Saussure, Quine, Lewis Carroll, etc. Journal of applied math-
ematics and physics, Vol. 9, No.7, 1583-1610, DOI:10.4236/jamp.2021.97108
(https ://www.scirp.org/journal/paperinformation. aspx?paperid=110830)

Or, see ref. [[76] Chap. 11.

In this chapter, T show my old result (in refs. [29, B0]) concerning ‘fuzzy logic’, which is not satisfac-
tory. This work is memorable for me because the 1990s was the time when I changed my research
focus from quantum mechanics to fuzzy logic.

By the time I had finished writing these papers [29, B, B3], I was convinced that the ‘quantum
mechanical worldview’ had surpassed the ‘mechanistic worldview’.

The logical aspects of quantum languages are mainly discussed in ref. [[/6]. Thus, readers may
skip Sections 2~/ 6, which are not related to the others in this book.

7.1 My recent opinion

When we study Newtonian mechanics, I consider that we speak ‘Newtonian mechanical language’.
Similarly, when we study QL (=quantum language), I consider that we speak QL. In this sense, I can
say that this book is written in quantum language (or, this book is a textbook for learning quantum
language).

Of course, QL has a lot of sentences. For example, consider the following two sentences:

(a) when the position of a particle m is measured, the measured value is x.
(b) when the momentum of a particle m is measured, the measured values is p.

But we says, by Theorem 416 [The mathematical formulation of Heisenberg’s uncertainty principle],
that

(c) ‘(a) A (b)”is not a sentence.
However, we say the following Proposition:

Proposition 7.1. Let € be a compact space. And fix wyo(€ ). Put

CFL = {Mcqoy ({7, F},27.G), Sp.p) | GUTY) € (@),
0< [GUTHIW) <1 (vw € Q)

Then, CFL is the class in which fuzzy logic holds, if we define
o [FGUTHI) = [1 - GUTH]w)
o [(G1 A G)UTH(w) = min {[Gr({TH](), [G>(TH]()] }.
o [(G1V G)UTH(w) = max {[G({TD](), [G:({TH](w)] }
/1
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For more precise arguments, see [[76].

I consider the directions described above to be promising. For example, I think the study of
analytic and comprehensive propositions within QL was insufficient in ref. [[/6] (Sec.12.1). Also see
ref. [I00] and Note 54.

ANote 7.1. T am not a philosopher, but I will state some philosophy. I consider the followings.

(f1) analytic philosophy claims “Be logicall” (cf. ref. [T13])

(f2) QL’s claim is “Be scientific!”

since ‘logic’ can be derived from QL as shown in the above. In fact, most scientists know statistics but
not mathematical logic. Thus, I think that (f1) is wrong. However, QL and analytic philosophy are
not entirely different.  As we saw in Figure 0.1 in Preface (or, ref. [76]), QL is an evolution of analytic
philosophy, since the relationship is that QL solves the problems posed in analytic philosophy. If QL
is seen as a philosophy, its slogan is ”From ‘Be logical!” to ‘Be scientific!””. Through the problems of
the flagpole and Hempel’s ravens, Hempel cast doubt on ‘Be logical!” (cf. ref. |76, 21, 22]).

7.2 Marginal observable and quasi-product observable

Definition 7.2. [quasi-product product observable |  Let Oy = (Xj, F}, Fy) (k= 1,2,...,n ) be
observables in a W*-algebra A. Assume that an observable Oy , = (><Z:1 X, Zzlffk, Fia. )
satisfies

Flo. n(X1 X oo X Xjo1 X Zp X X1 X - x X)) = Fp(Eg). (7.1)
(VEk e F.,Vk = 1,2,...,71)

The observable O, = (><Z:1 Xy, X7 Fr, Fio.,) is called a quasi-product observable of {Oy | k =
1,2,...,n}, and denoted by

qp " n qp
X Ok:<>< Xk, IZlkzlgjk, X Fk)
k=1,2,...,n k=1 k=1,2,...,n

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-product
observable is not uniquely determined. Also, in quantum systems, the existence of the quasi-product
observable is not always guaranteed.

Definition 7.3. [Image observable, marginal observable] ~Consider the basic structure [A C A C
B(H)]. And consider the observable O = (X, F, F) in A. Let (Y, §) be a measurable space, and let
f: X — Y be a measurable map. Then, we can define the image observable f(0) = (X, F, Fo f™1)
in A, where F o f~! is defined by

(Fof)I)=F(f () (€Y
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Image chsarvable

0= (X.5.F) (o) (}'.5.{':(5 ()

[Marginal observable] ~Consider the basic structure [A C A C B(H)]. And consider the observable
Owo = (X Xiy W7 Tk, Fio.) in A. For any natural number j such that 1 < j < n, define
Fl(g)n such that

F (E) = Flon(Xi X x X;u0 x Z; X Xjq x -+ x X)) (VE; €F)).

Then we have the observable 05]2)” = (X,,J;, F fg)n) in A. The Ogjz)n is called a marginal observable
of O1a., ( or, precisely, (j)-marginal observable ). Consider a map F; : Xp 1 Xp = X ; such that

n

X 3 (ZL’I,CL’Q, cey Ly ,l’n) =T € Xj.
k=1
Then, the marginal observable O%)n is characterized as the image observable Pj(Oq2._ ).
The above can be easily generalized as follows. For example, define O§122)n = (X1 x Xy, F1 X Fy,
F(12)
o) such that
FOP (21 xZ) = FU2 (21 x Ey x Xy x - x X)) (V2; € F1,VE, € Fo).

n 2..n

Then, we have the (12)-marginal observable O%mn = (X1 x Xy, F1 K Fy, F1(212)n) Of course, we also

see that Fis ,, = F1(212nn)

The following theorem is often used:

Theorem 7.4. Consider the basic structure
A CACB(H).

Let O; = (X4, 31, F1) and Oy = (X3, Fy, Fy) be W*-observables in A such that at least one of them
is a projective observable. (So, without loss of generality, we assume that Oy is projective, i.e.,
Fy = (F,)? > Then, the following statements (i) and (ii) are equivalent:
qp
(i) There exists a quasi-product observable O = (X; x X5, F) X Fy, F} X F») with marginal
observables O; and O,.

(ii)) Oy and O commute, that is, F1(Z1)Fo(Es) = Fo(E9)F1(Z)) (V2 € F1,V=0 € Fy).
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Furthermore, if the above statements (i) and (ii) hold, the uniqueness of the quasi-product observ-
able O3 of O; and O, is guaranteed.

Proof. See refs. [, 29, B4].

7.3 Properties of quasi-product observables

Consider the measurement Mz(O1o=(X; x Xy, F1 X Fy, F3), Spp)) with the sample probability space
(X1 % Xo, F1 W Fo, u (p, Fia(+)) 7). Put

Rep=*&[0y] = |4° (p, F12(Z1 % 52))E a=(p, F12(Z1 x 2%)) 7
A

? a-(py Fia(Z5 x E5)) 7
(VEl S 9:1,\VIEQ S ?2)

where =€ is the complement of = {z € X | z ¢ =}. Also, note that

We have the following lemma.

Lemma 7.5. [The condition of quasi-product observables] Consider the general basic structure
[A CAC B(H).

Let O; = (X31,31, F1) and Oy = (X, Fs, F5) be observables in C'(Q2). Let O1p = (X1 x Xo,F; X
Fo, Fio=F; (;é)Fg) be a quasi-product observable of O; and O,. That is, it holds that

F=FY  F=F2.

Then, putting ailXEQ = 4+ (p, F12(Z1 X Z2)) 7 = p(F12(Z1 x E)), we see

= s (p, Fia(Z1 x E2)) 7 a (p, F12(Z1 X 28)) 1

Re =1 XE2 O _ A (107 12 ’_‘1 ’_‘2 A ) — —‘2 A

P00l = () PalE x 22))5 4 (0 PualEE % )5

_ a, . ) X:(F1(51)) —a,” ] (7.2)
p(Fa(22)) —a, 7 140, = p(Fi(E1)) — p(F2(Z2))

and

max{0, p(Fi(Z1)) + p(Fa(Z2)) = 1} L 0,7 <
min{p(F1(Z1)), p(F2(Z2))}
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(V21 € F1,VE5 € F»,Vp € GP(A)). (7.3)

Conversely, for any ozilxgz satisfying ([23), the observable Oi defined by (I2) is a quasi-product

observable of O; and O,. Also, it holds that

PF(EIXE5) =0 = a7 = p(F(E1)

— (Fi(E)) £ p(Fa(Es)). (7.4)

[1]

b
~—~—

Proof. Though this lemma is easy, we add a brief proof for completeness. 0 < p(F((Z] x =5)))
<1, (V=] € F1, 5, € ) we see, by (II2) that

0= ajlxaz <1

01+ aleEQ —p(Fi(21)) — p(F2(Ez)) =1
0 < p(Fa(22) — o, <1

0< p(FA(E)) —a) ™ 1

which clearly implies (=3). Conversely if « satisfies (I7-3), then we easily see (I72). Also, ([74) is
obvious. This completes the proof. n

Let 012 = (Xl X XQ, 3’1 &?2, F12:F1(;§F2> be a quasi—product observable of 01 = (Xl, 371, Fl) and

— qp
02 = (XQ, 9'2, Fg) in A. Consider the measurement MZ(OH :(Xl X XQ, 5_1'1 X 9:2, F12:F1XF2), S[p}))
And assume that a measured value(zq,x2) (€ X7 X X3) is obtained. And assume that we know that
x1 € Z1. Then, the probability (i.e., the conditional probability) that x5 € =5 is given by

p PF(E1 X 5)) p(F12(E1 X E3))
p(F1(Z1)) p(F12(E1 X E3)) + p(F12(E1 x E5))

And further, it is, by (I3), estimated as follows.
max{0, p(F1(E1)) + p(F2(52)) — 1}
p(F12(Z1 X E2)) + p(F12(E1 % E9))

min{p(F1(Z1)), p(F2(=Z2))}
p(F12(E1 X Ea)) + p(Fi2(Z1 x E5))

A

P

[IA

~—

Example 7.6. [Example of tomatoes] Let Q@ = {w;,ws,....,wn} be a set of tomatoes, which is
regarded as a compact Hausdorff space with the discrete topology. Consider the classical basic
structure

[Co() € L®(Q,v) € B(L*(Q,v))].
Consider yes-no observables Ogp, = (Xgp, 2570 i) and Ogyw = (Xaw, 255V, Fyy) in C(Q) such that

Xrp = {yRDa nRD} and Xqw = {QSWa nsw}7

where we consider that “yzp,” and “ngp” respectively mean “RED” and “NOT RED”. Similarly, “ygw”
and “ngy” respectively mean “SWEET” and “NOT SWEET".
For example, the wy is red and not sweet, the ws is red and sweet, etc. as follows.
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N N

—_—

Ywa
Yro '

Nrp
# Yow
New Ysw

Nrp
Ysw

Mgw

Tomatoes ( Red or Sweet? )

Next, consider the quasi-product observable as follows.

qp
O13 = (Xnp X Xgw, 200X %W = s FL)
That is,

Repii}’RD:YSW)}[Olﬂ — [F({(Z/Rmysw)]?](wk)

[F({(yRD,nSW)})](wk)]
[F({(nro, ysw) })] (W)

[F({(nro, nsw) })] (wr)
Frn ({40 )] — g gy
{wrpwsw)} [Fro({yro })] — [Fsw({ysw})]| 7
where oz{(yRDyysw)}(

wy,) satisfies the (723). When we know that a tomato wy is red, the probability P
that the tomato wy is sweet is given by

(0%
— {(yrD yswW)?}
[Fsw({ysw})] —

a{(yRDJsz)} I+a

P =

LF'({ (Yo Ysw) })] (wr) _ F'({ (yro, Ysw) })](wr)
[F({ (Yro, ysw) D] (wr) + [F{ (Yro, nsw) D] (wr)

[Fro ({yr0 1) (w)

Since [F'({(yno, ysw) Pl (we) = v, (wy), the conditional probability P is estimated by

max{0, [F1({yro })](wr) + [F2({ysw})l(wr) — 1} <P
[FRD({yRD})](wk) N

A

min[Fy ({ysw })](wr), [F2({ysw})](wr)}
[Fro ({ro 1) (w)

7.4 Implication — the definition of “="

7.4.1 Implication and contraposition
N N
Yo Yro Npp Npn
New Ysw Ysw Ngw
Tomatoes ( Red or Sweet? )
161
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In Example I8, consider the case that [F'({(ysp, nsw)})](w) = 0. In this case, we see

[F'({ (Yo, ysw) P](w)
[E'({ (yxo, ysw) DI (@) + [F({ (yro, nsw) P (@)

Therefore, when we know that a tomato w is red, the probability, that the tomato w is sweet, is equal
to 1. That is,

= 1.

“IF{(Yrps nsw) P](w) =07 <= [“Red” — “Sweet”

Motivated by the above argument, we have the following definition.

Definition 7.7. [Implication] Consider the general basic structure

[A CAC B(H).

Let O12 = (X3 X Xo, F1 K Ty, F12:F1()1§F2) be a quasi-product observable in A. Let p € GP(A*),
=, € 1, Zy € Fy. Then, if it holds that

p(F12(Z1 x (23))) = 0.
This is denoted by

ol;=] = [0%:3,] (7.5)

M7(O12,5,))

Of course, this (IZ5) should be read as follows.

(A) Assume that a measured value (z1,22)(€ X; x X3) is obtained by a measurement
Moo (@) (O12, Sk). When we know that z1 € =, then we can assure that z, € Z,.

The above argument is generalized as follows. Let Oy, = ( Xy Xi, K- Ty, Flo.n = k=1,>§ .... an)
be a quasi-product observable in A. Let Z; € F; and =, € F;. Then, the condition
a(p, P (B0 % (E5)z=0
(where =¢= X \ ) is denoted by
Ot 6y (51 (7.6)

M—=(012...n,5))

Theorem 7.8. [Contraposition] Let O12 = (X7 X Xo, F1 X Fy, F12:F1§£)F2) be a quasi-product
observable in A. Let p € GP(A*). Let Z; € F; and Z5 € Fy. If it holds that

1), = 2
[032); =) — [052)3

) 7.7
M7 (012,5(,)) 2 (1)

[1]
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then we see:

O(l);EC — 0(2); =5
o=, o (o=

Proof. The proof is easy, but we add it. Assume the condition (7). That is,
A (07 Fia(Z1 X (X2\ EQ)))Z = 0.

Since 21 x Ep¢ = ()¢ x 25, we see 4+ (p, Fi2((25)° x 25)) = 0. Therefore, we get

2). —c
— [0%);=g)

O(l)’ Ec
[ 12 1] Mj(om,s[p])

7.5 Combined observable — Only one measurement is per-
mitted

7.5.1 Combined observable — only one observable

The linguistic interpretation says

“Only one measurement is permitted”

= “only one observable” = “the necessity of the combined observable”

Thus, we prepare the following theorem.

Theorem 7.9. [The existence theorem of classical combined observables]( cf.refs.[29, B5]) Consider the
classical basic structure

[Co(Q) € L=(Q,v) € B(L*(Q,v))].

And consider observables O15=(X; x Xo, F1 X Fy, F12) and Og3= (X3 X X3, Fo X F3, Fo3) in L=(, v).
Here, for simplicity, assume that X;={z}, 22 ... 2"} (i = 1,2, 3) is finite, and that F; = 2%, Further
assume that

0 =0 (Thatis, Fia(Xy x Zp) = Fos(Sp x X3) (VE, € 2%2)).

X, . > e
g 2
g
;/ | /

163 ‘ For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

7.5 Combined observable — Only one measurement is permitted

Then, we have the observable O193=(X; X X5 X X3,F1 X Fy x F3, Fia3) in L>() such that
O§1223 = 02, 0522?;’;) = Oas.
That is,

F1(21§)<_.1 X \_,2 X X3) Fm(El X EQ), F1(22§)(X1 X EQ X 53) = FQg(EQ X 53) (78)
(V21 € F1,VE, € Fo, V=5 € F3))

The Q123 is called the combined observable of O and Oss.

Proof. 0123 = (Xl X X2 X Xg, ffl X 3:2 X 9:3, F123) iS, for example, defined by

[Fios({(z1, 2, 25) })](w)
[ [Fr2({(z1, 22)})](w) - [Fas({(z2, z3)})](w)

[F12(X1 x {z2})](w)
([Fi2(X1 X {z2})](w) #0and )

([F12(X1 x {z2})](w) = 0 and )
(Vw € Q,V(x1, 29, 23) € X7 X Xy X X3)

This clearly satisfies ([R). O

Counter example 7.10. [Counter example in quantum systems] Theorem [79 does not hold in the
quantum basic structure

(C(H) € B(H) C B(H).

For example, put H = C", and consider the three Hermitian (n x n)-matrices 71, Ty, T3 in B(H)
such that

N =TT, Ty =1T5T,, T\T5# T5T;. (7.9)

For each k = 1,2,3, define the spectrum decomposition Oy = (X, Fy, Fi) in H (which is regarded
as a projective observable) such that

Xk

where X}, = R, F, = Br. From the commutativity, we have the simultaneous observables
012201 X 02 = (X1 X X279‘~1 X ?2,F12 = F1 X Fg)
and

023202 X 03 = (Xg X X3’3:2 X 9:3,F23 = FQ X F3)
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It is clear that

Og) = Og? (that iS, Flg(Xl X Eg) = FQ(EQ) = Fgg(EQ X Xg) (VEQ - 9:2))

However, it should be noted that there does not exist the observable O193=(X; X X5 X X3, F1 X Fy X
?3, F123) in B(H) such that

0(11223) = Oy, Og?é) = Oas.

That is because, if O193 exists, Theorem [/4 says that O; and O3 commute, and it is in contradiction
with the (I79). Therefore, the combined observable Oia3 of O3 and Og3 does not exist.

7.6 Syllogism and its variants

7.6.1 Syllogism and its variations: Classical systems

Next, we shall discuss practical syllogism (i.e., measurement theoretical theorem concerning im-
plication (Definitionl7"7) ). Before the discussion, we note

(#) Since Theorem 9 (The existence of the combined observable) does not hold in quantum
system, (cf. Counter Example710), syllogism does not hold.

On the other hand, in classical system, we can expect that syllogism holds. This will be proved in
the following theorem.

Theorem 7.11. [Practical syllogism in classical systems|  Consider the classical basic structure

[Co(Q) € L=(Q,v) € B(L*(Q,v))].

Let 0123 = (Xl X XQ X )(37 ?1 X ?2 X ?3, F123:;1?k:1’273Fk) be an observable in LOO<Q) Fix w € Q,
=1 € F1, By € Fy, Z3 € F3 Then, we see the following (i) — (iii).
(i). (practical syllogism)

oY) 1= — 02 2o, o [ = — 0¥ =
[O123; Ei] Mioe ) (Ors:S) [O123; Z2].  [Of23; =2 M ioe o (Ors:S) [O123; Zs]
implies
13) = = 13) = =
Rep2 = (012)] = [[F1z (B1 ¥ Z)l(w) [Fg (51 x Z)(w)
[Fla5’ (B x Es)|(w)  [Fio3 (EF x E§)](w)

That is, it holds:

O] =[O0y (7.11)

165
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Ofpy E — OS], [O0hE — O E
[ 123 1} MLoo(Q)(Oms,S[w])[ 123 2] [ 123 2] MLw(Q)(012375[W])[ 123 3]
implies
Nz o= 13) /= —c¢
RepE = (02)] — [Pz (1 ¥ Z)l(w) [Fg (51 x Z](w)
¢ [F123 (Ef X E3)K°J) [F123 (E{i X Eg)](w)
1) /—
B sz, [FInE)](w) — oz o,
- 3) /— 1) /— 3) /— )
[FaEs)w) — s ey 1—as o — [Fi3(E0)] - [FA(Es)]
where

7 (Z3)](w) — 1}

max{[F{3)(Z2)](w), [Fis (G0 (w) + [F
FOED)w), [Fia(Es)](w)}. (7.12)

< a2 (w) £ min{[FH(

(ii).

Ol E — O =a], [O04E — Oy =
[ 123 1} MLOO(Q)(01237S[M])|: 123 2] [ 123 2] MLOO(Q)(OlQ?,,S[W])[ 123 3]
implies
Rep= =501 [Figc x Z3)](w) “’Eii (21 x E@](w)]
[F123 (B x E3)](w) [F123 (T x Eg)](w)
_| e @ [Ff;;%,el)]gw) ~ e, (). ]
FE(Es)] () - g, @) 1—ag o (@) — [Fo)(ED](W) — [FS)(Es)]w)
where

max{0, [F3(E1)](w) + [Fis(Zs)](w) — [Fah(Z2)](w)}
< oy o (W) £ min{[FR(E)] W), [F5(Es)](w)}.

Proof. (i): By the condition, we see
0= [P\ (21 x Z9](w) = [Fias(E1 X E x Zp)](w) + [Fioa(E1 x E§ x E5)](w)
0= [P35 (Z2 x Z9](w) = [Fizs(E1 X B x Z9))(w) + [Fiaa(E5 x Ez x E5)](w)
Therefore,
0 = [Fi23(E1 x E5 x E3)](w) = [Fr23(21 x 25 x Z5)](w)
0 = [Fl23(Z1 x B x Z5)](w) = [F123(E] x Zp x E5)](w)
Hence,

[FS9(Z1 x Z9)](w) = [Fias(Er X Ea X E5)](w) + [F93(Fr x 5 x Z5)](w) = 0.
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Thus, we get, (IZ11).
For the proof of (ii) and (iii), see refs. [29, B4]. O

Example 7.12. [Continued from Example 6] Let O; = Ogy = (Xaw, 255V, Fyy) and O3 = Ogp =
(Xip, 2570 Fip) be as in Example 6. Putting Xup = {Yrp, nre }, consider the new observable O,
= Opp = (Xgp, 2%7% F). Here, “yrp” and “ngp” respectively means “ripe” and “not ripe”. Put

Rep[01] = [[Fow({ysw (@), [Fow ({nsw })] (wr)]
Rep[Oq] = [[FRP({yRP})](wk)y [FRP({”RP})KWk)}
Rep[O3] = [[FRD<{Z/RD}>](Wk)a [FRD({nRD})KWk)]

Consider the following quasi-product observables:
qp
O1p = (Xow X Xpp, 2XWXXRP B0 L X Fp)
qp
O3 = (Xup X Xpp, 258 XXRD [0 X Fp).

Let wy, € Q. And assume that

Oy fu}l,, = 100 {yar,
LSO 123, Wi
[02); {yw}] — [0%); (o }]- (7.13)

Moo () (0123,5),,])

Then, by Theorem [T1(i), we get

_ | Fas({yswi x {ymo P)](wr)  [Fis({ysw} X {nan})](wr)
Rep[O13] = [[Flg({nsw} X Ayro})l(wr)  [Fis({nsw} x {nan})](wk)}

_ { [Faw ({ysw )] (we) 0 }
[Fro ({ymo D)) (wr) = [Faw({ysw ] (@r) 1 = [Fro ({yro D] (wr)]

Therefore, when we know that the tomato wy is sweet by measurement Mpe()(O123, S,), the
probability that wy is red is given by

[Fis({ysw}t X {ynn )] (ws) _ Fo (1m0 )] (wr) =1. (7.14)

[Fis({ysw}t X {ymo )] (wi) + [Fis({ysw} X {nmo)(we)  [Fro ({ro 1)) (wr)

Of course, (["13) means

“Sweet” = “Ripe” “Ripe” = “Red”
Therefore, by (I711), we get the following conclusion.
“Sweet” = “Red”
However, this result is not useful in the market. We want a statement like
“Red” = “Sweet”

This will be discussed in the following example.

167 For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

7.6 Syllogism and its variants

Example 7.13. [Continued from Example 6] Instead of (/I3), assume that

O*{yl} — Oé?ﬂ} 0392} _ O§y3}, (7.15)
Mreo(0)(012,55,,1) ’ Moo (0)(023,575,,,1)

When we observe that the tomato w, is “Red”), we can infer, by the fuzzy inference My (q)(Oss,
Sis...1)» the probability that the tomato w, is “Sweet” is given by

[Fis({ysw} X {yao PI(wn)
[Fia({ysw} X{yno DI(wn) + [Fia({nsw} X {yno})](wn)

which is, by (=3), estimated as follows:

max{ [Fre({yre ](wn)  [Fow({ysw})] + [Fro({yro})] — 1} <Q
[Fro ({yro })](wn) 7 [Fro({Yro })](wn) N

min [FSW({?JSW})](WH)
< i e D) (7.16)

Q=

Note that (713) implies (and is implied by)
“Ripe” = “Sweet” and “Ripe” = “Red”
And note that the conclusion (16) is somewhat like
“Red” = “Sweet”

Therefore, the estimation ([/16) may be useful in markets. ///

Red
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Chapter 8

Bayesian statistics (C Mixed
measurement theory)

Quantum language (= measurement theory ) is classified as follows.

( classical system : Fisher statistics
pure type .
( ﬁl) quantum system : usual quantum mechanics
(f) measurement theory
(=quantum language) classical system : including Bayesian statistics
mixed type and Kalman filter
(ﬁ2) quantum system : quantum decoherence

In this chapter, we study mixed measurement theory, which includes Bayesian statistics.

Statisticians Thomas Bayes
ﬁﬁﬂ.nald Fisher p

"A genius who

almost single-
handedly created
the foundations for
modern statistical
science”,

1890-1962

Wi 1701-1761 !

8.1 Mixed measurement theory

8.1.1 Axiom (™ 1 (mixed measurement)

In the previous chapters, we studied Axiom 1 (pure measurement: §2.7), that is,

[(pure)Axiom 1] [Axaom-_2)
‘ pure measurement theory ‘ = ‘ pure measurement ‘—&-’ Causality ‘ +‘ Linguistic Copenhagen interpretation ‘
(=quantum language) (cf. BZ20) (cf. §E3) (cf. §BM)
a kind of spells (a priori judgment) manual to use spells

(8.1)
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8.1 Mixed measurement theory

In this chapter, we shall study “Axiom() 1 (mixed measurement)” in mixed measurement theory,
that is,

((mixed) Axiom ™) 1| [Axom 7]
‘ mixed measurement theory ‘ = ‘ mixed measurement ‘Jr‘ Causality ‘Jr‘ Linguistic Copenhagen interpretation ‘
(=quantum language) (cf. B8) (cf. §u3) (cf. §B&D)
a kind of spells (a priori judgment) manual to use spells

(8.2)

In the previous chapters, we mainly discussed pure measurements listed in Review 9.1, especially
W*-measurement (Aj).

Review 8.1. [=Preparation 2730].

(A1) W*-measurement Mz (0= (X, F, F), S|), where O= (X, F, F) is a W*-observable in A, and
p(€ &P(A*)) is a pure state. Here, " W*-measurement Mz (O, Sj,)” is also denoted by

"measurement"V” MZ(O. S[p])” ,or “measurement MZ(O. S[p])” ,

(A;) C*-measurement My (O= (X, 5, F), S|,), where O= (X,J, F) is a C*-observable in A, and
p(€ GP(A*)) is a pure state. Here, ” C*-measurement M, (O, Sj,)” is also denoted by

"measurement® M, (O. S[p])” ,or “measurement My (O. S[p])” .

In this chapter, we introduce four “mixed measurements” as follows.

Preparation 8.2.

(B1) W*-mixed measurement Mz (O= (X, F, F), Sp,(wo)), where O= (X, F, F) is a W*-observable
in A, and wo(€ & (A,)) is a W*-mixed state. Here, ”W*-mixed measurement Mz (O,
S (wp))” is also denoted by

”W*-mixed measurement”” Mz (0. S},j(wo))”, or ”mixed measurement Mz(O.
St (wo))”

(Bz) C*-mixed measurement Mz (0= (X, F, F), S(po)), where O= (X, F, F) is a W*-observable
in A, and po(€ &™(A*)) is a C*-mixed state. Here, ” C*-mixed measurement My (O, Sp,(po))”
is also denoted by

”C*-mixed measurement"”” Mz(O. Sp(po))”, or "mixed measurement Mz(O.

Sw(po))”

Although we mainly devote ourselves to the above two, we add the followings.

(Bs) W*-mixed measurement My (O= (X, F, F), Sp(wo)), where O= (X, F, F) is a C*-observable
in A, and wo(e &"(A,)) is a W*mixed state. Here, ”TW* mixed measurement M 4(0,
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Spj(wo))” is also denoted by

"W*-mixed measurement® My (O. Spy(wp))”, or "mixed measurement Mg (O.
Sty (wo))”

(B4) C*-mixed measurement My (O= (X, F, F), Sy(po)), where O= (X, T, F) is a C*-observable
in A, and po(€ G™(A*)) is a C*-mixed state. Here, ” C*-mixed measurement My (O, Sy(po))”
is also denoted by

?C*mixed measurement® My (O. g[*] (po))”, or "mixed measurement

M. (050 p0)’

We now give Axiom 1 for mixed measurements. We will discuss (C;) mainly, and (C;) when
necessary.

s (C):Axiom™ 1 (mixed measurement) ~

Let O= (X, T, F) be a W*-observable in A
(Cy): Let wo € 6™ (A,). The probability that a measured value obtained by W*-mixed measure-
ment Mz (O= (X, 7, F), Spj(wo)) belongs to Z (€ F) is given by

x.(wo, FENz (= wo(F(E)

(Cs): Let pg € &™(A*). The probability that a measured value obtained by C*-mixed measure-
ment MX(O: (X,T3,F), S (po)) belongs to = (€ ¥) is given by

w (oo, FENz (= p(F(E)
- /

As we learned Axiom 1 by rote in pure measurement theory,
we have to learn Aziom™ 1 by rote, and exercise a lot of examples.

The practices will be done in this chapter.

Remark 8.3. In the above Axiom™) 1, (C;) and (C,) are not so different.
(t1) In the quantum case, (C;)=(C,) clearly holds, since &™(Tr(H)) =& (Tr(H)) in (2-17).
(f2) In the classical case, we see

po(D)= [ wo(w)v(dw)

LY (Q0) 5w » po € M11(9)

Therefore, in this case, we consider that

MLOO(Q.V) (O:(Xa ?7 F),g[*]('w())) = MLOO(Q‘V) (O:(Xa 357 F)a S[*] (pO))
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)

/1]

Hence, (C;) and (Cz) are not so different. In order to avoid confusions, we use the following notation:
W*-mixed state wy (€ & (A,) is written by the Roman alphabet (e.g., wq,w, v, ...)
C*-mixed state pg (€ &™(A*) is written by the Greek alphabet (e.g., po, p,

8.2 Simple examples in mixed measurement theory

Recall the following wise sayings:
Experience is the best teacher, or Custom makes all things.

Review 8.4. [Answer b7 to Problem 52 by Fisher's maximum likelihood method]
You do not know the urn behind the curtain. Assume that you pick up a white ball from the urn.

Which urn do you think is more likely, U; or Uy ?

Figure 8.1 (= Figure 5.6: ): Pure measurement (Fisher’s maximum likelihood method)

(8.3)

that
o) =1, vl{w)) =1

(w1) =0.8,

)

L>(Q) is defined by

[Fwp({W})]
[Fws({W})](w2) =

max{[Fys({W})](w1), [Fws({W})](w2)}

Answer Consider the state space 2 = {wy, ws} with the discrete topology and the measure v such

In the classical basic structure [Co(Q) C L>®(Q,v) C B(L*(Q,v))], consider the measurement
Mzw (o) (O= ({W, B}, 2B} Fy5), Sp), where the observable Owp = ({W, B},2I"W:B} Fy ) in
=0.2
(8.4)

‘ For further information see my homepagé

Here, we see:
=max{0.8,0.4} = 0.8 = Fyyg({W})](w).
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Then, Fisher’s maximum likelihood method (Theorem b6) says that
[*] = W1.

Therefore, there is a reason to infer that the urn behind the curtain is Uy O
Thus, we exercise the following problem.

Problem 8.5. [mixed measurement M (q,)(0 = (X, T, F), Syy(w))]

Figure 8.2: Mixed measurement (Urn problem)
(f1) Assume an unfair coin-tossing (7},1-,) such that (0 < p < 1): That is,

the possibility that “head” appears is 100p%
the possibility that “tail” appears is 100(1 — p)%

If “head” [resp. “tail”] appears, put an urn U;(=w;) [resp. Us(=ws)] behind the curtain.
Assume that you do not know which urn is behind the curtain, U; or U,). The unknown
urn is denoted by [#](€ {wi,w2}). This situation is represented by w € L (2, v) (with the
counting measure v), that is,

1—p (ifw=wy)

w(w):{]? (fw=uw)

(#2) Consider the “measurement” such that a ball is picked out from the unknown urn. This
“measurement” is denoted by Mpe(q,.)(0, Sp(w)), and called a mixed measurement.

Then, we have the following problems:

(a) Calculate the probability that a white ball is picked from the unknown urn behind the curtain
!

And further,

(b) when a white ball is picked, calculate the probability that the unknown urn behind the curtain
is U1 !

We would like to remark
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e the term ”subjective probability” is not used in the above problem.

Answer: Assume that the state spaceQ = {w;,ws} is defined by the discrete metric with the
following measure v:

v({w}) =1, v({w}) = 1. (8.5)
Thus, we start from the classical basic structure:
[Co(©) € L=(Q,v) € BLAQ, )], (8.6)

in which we consider the mixed measurement My )(O= ({W, B}, 2W-B} F) S}, (w)). Here, the
observable Oy g = ({W, B}, 2{W:B} Fyp) in L=(Q) is defined by

[Fws({W})](w1) = 0.8, [Fws({B})](w1) = 0.2
[FWB({W})](W2) = 0.4, [FWB({B})](W2) = 0.6. (8-7)

Also, the mixed state wy € L (2, v) is defined by
wo(w1) = p, wo(ws) =1 —p. (8.8)
Then, by Axiom™ 1, we see

(a): the probability that a measured value x (€ {W, B}) 7.2is obtained by My« q)(0O= ({W, B},
2iW:B}  F), S (w)) is given by

P({r}) = oy (00 F()) oy = [ IFL6) - wnfe)o( )
= pIF({a)](w1) + (1 - PIF({})](w2)

0.8p+0.4(1 —p) (when z=W)
= (8.9)
0.2p+0.6(1 —p) (when z = B)
The question (b) will be answered in Answer KT3. O
#Note 8.1. The following question is natural. That is,
(b1) In the above (#1) in Problem&35, why is “the possibility that [ % ] = wy is 100p% - --” replaced

by “the probability that [*] = w; is 100p% ---7 ?
However, the linguistic Copenhagen interpretation says that
(b2) there is no probability without measurements.

This is the reason why the term “probability” is not used in (i). However, from a practical point of
view, we are not sensitive to the difference between “probability” and “possibility”.
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Example 8.6. [Mixed spin measurement Mp(c2)(0 = (X = {1,1},2%, F?),Sy(w))]  Consider the
quantum basic structure:

[€(C*)(= B(C*)) € B(C*) € B(C?)].
And consider a particle P; with spin state p; = |a){a| € &P(B(C?)), where

(8
o= |2l €€ Clal = o + fasf = ).

And consider another particle P, with spin state py = |b)(b| € &°(B(C?)), where

b= ee (il =ap + 18P = .

Here, assume that

“ e s “ 1 a particleP; | . . D
e the “probability” that the “particle” P is { a particle, } is given by { 1—p }

That is,

state p | ————— |unknown state [x]| «————— |state ps
“probability” p “probability” 1—p

(Particle Py) (Particle P) (Particle P»)

Here, the unknown state [*] of Particle P is represented by the mixed state w

(e &™(Tr(C?))) such that
w = pp1 + (1 = p)p2 = pla)(al + (1 — p)|b){b].

Therefore, we have the mixed measurement Mpc2) (0, = (X, 2%, F?), Sy(w)) of the z-axis spin
observable O, = (X, ¥, F?), where

Fam=[y o] Fan=] ).

And we say that

(a) the probability that a measured value { 1 } is obtained by the mixed measurement Mp(c2)(0. =
(X,2%, F?), Siy(w)) is given by

reien (w0, F (1) ) mieny = pln P + (1= p) 61

reien) (w0, F2({41) ) nes) = plaal + (1 p)|Baf?

Remark 8.7. As seen in the above, we say
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8.3 St. Petersburg two envelopes problem

(a) Pure measurement theory is fundamental. Adding the concept of “mixed state”, we can con-
struct mixed measurement theory as follows.

‘ mixed measurement theory ‘:: ’ pure measurement theory ‘—i— mixed state
Moo (0 (O, Sy (w)) Moo (0)(O, Sps) v

That is, we usually devote ourselves to the case that
(b) there 1s no mixed measurement without pure measurement.
Hence, in quantum language, there is no confrontation between “frequency probability” and “sub-

jective probability”. The reason that a coin-tossing is used in Problem K73 is to emphasize that the
naming of “subjective probability” is improper.

8.3 St. Petersburg two envelopes problem

This section is extracted from the following:

Ref. [68]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics
( arXiv:1408.4916v4 [stat.O’TT 2014 )

Now, we shall review the St. Petersburg two envelopes problem (cf. ref. [G]").

Problem 8.8. [The St. Petersburg two envelopes problem] The host presents you with a choice
between two envelopes (i.e., Envelope A and Envelope B). You are told that each of them contains
an amount determined by the following procedure, performed separately for each envelope:

(#) a coin was flipped until it came up heads, and if it came up heads on the k-th trial, 2* is put
into the envelope. This procedure is performed separately for each envelope.

You choose randomly (by a fair coin toss) one envelope. For example, assume that the envelope is
Envelope A. And therefore, the host get Envelope B. You find 2™ dollars in the envelope A. Now

you are offered the options of keeping A (=your envelope) or switching to B (= host’s envelope ).
What should you do ¢

PP EEEEEETETE LTS AT LT
¢

A B

A '

BALTRERRRTRW
AARRRRRRYY

WAL LTEERRN

A SR AR R NR Y

IR R

PP IPIIIIIIIIIT A

\

P o ir 7 T T T T T TS

Two envelopes problem

Figure 8.3.: Two envelopes problem
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[(P2):Why is it paradoxical 7].
You reason that, before opening the envelopes A and B, the expected values F(z) and E(y) in A
and B are both infinite. That is because

1 o, 1

For any 2™, if you knew that A contained z = 2™ dollars, then the expected value E(y) in B
would still be infinite. Therefore, you should switch to B. But this seems clearly wrong, as your
information about A and B is symmetrical. This is the famous St. Petersburg two-envelope paradox
(i.e., “The Other Person’s Envelope is Always Greener” ).

The grass is always greener "
| | on the other side

8.3.1 (P2): St. Petersburg two envelopes problem: classical mixed mea-
surement

Define the state space 2 such that Q = {w = 2% | k = 1,2, .-}, with the discrete metric and the
counting measure v. And define the exact observable O = (X, JF, F') in L*>(£2, v) such that

X=0Q F=2X={=|=2CX}

FEI@-ww={, L3  tEenwen

Define the mixed state w (€ L1, (Q,v), i.e., the probability density function on ) such that
wo(w) =277 (Vw=2"€ Q).
Consider the mixed measurement Mz« (q,)(0 = (X, F, F), Si(wp)). Axiom™ 1(Cy) [§8.1) says that

(A) the probability that a measured value 2* is obtained by Mr=(q)(0 = (X, F, F), Sp(wp)) is
given by 27,

Therefore, the expectation of the measured value is calculated as follows.

E:i2k~2_k:oo
k=1

Note that you knew that A contained x = 2™ dollars (and thus, F = oo > 2™). There is a reason to
consider that the switching to B is an advantage.

Remark 8.9. After you get a measured value 2™ from the envelope A, you can guess (also see
Bayes theorem later) that the probability density function wy changes to the new w; such that
w1 (2™) = 1,w;(2¥) = 0(k # m). Thus, now your information about A : w; and B : wyp is not
symmetrical. Hence, in this case, it is true: “The Other Person’s envelope is Always Greener”.

ID.J. Chalmers, “The St. Petersburg Two-Envelope Paradox,” Analysis,Vol.62, 155-157, (2002)
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ANote 8.2. There are various criteria other than expectations. For example, consider the criterion such
that

(#) “the probability that the switching is disadvantageous” < %

Under this criterion, it is reasonable to judge that

m=1 — switching to B
m=2,3,... = keeping A

8.4 Bayesian statistics is to use Bayes theorem in mixed
measurement theory

Although there may be several opinions about the question “What is Bayesian statistics 7”7, we
think that

Bayesian statistics is to use Bayes’ theorem in mized measurement.
Thus,
let us start from Bayes’ theorem.
Recall Remark 877, i.e., “there is no mixed measurement without pure measurement”, thus, we says
“there is no Bayesian statistics without pure measurement”.
Or,
(#) pure measurements (Fisher’s statistics) are more fundamental than Bayesian statistics. (Or,

Bayesian statistics is a variant of Fisher statistics.)

The following is clear.

Theorem 8.10. [The conditional probability]. Consider the mixed measurement ME(O: (X x
Y,F X G, H), g[*}(w)), which is formulated in the basic structure

A CACB(H).

Assume that a measured value (z,y) (€ X x Y) is obtained by the mixed measurement Mz(O=
(X xY,FXG H), Sy (w)) belongs to = x Y (€ F). Then, the probability that y € I' is given by

7w, HExXT))z
Z*(w7H<E X Y))Tl

(VT € G).
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Proof. This is due to the well-known property of conditional probability. Il

In the classical case, this is rewritten as follows.

Theorem 8.11. [Bayes' Theorem (in classical mixed measurement)]. Consider the simultaneous
measurement Mz (0= (X x V,FKX G, F x G), S}j(wp)) formulated in the classical basic structure
[Co(2) C L*°(Q,v) C B(L*(,v))]. Here the observable O15=(X x Y,F X G F x () is defined by
the simultaneous observable of the two observables O1=(X,J, F)) and O,=(Y, G, G). That is,

(FxG)ExT)=F(E)-G(I) (V= e F,vI € 9). (8.10)
Assume that

(a) a measured value (z,y) (€ X X Y) obtained by the mixed measurement My (q)(O12= (X X
V,FX G, F x G), Siy(wo)) belongs to = x Y (where, = € F).

Then, the probability such that "y € I'” is given by

@) (wo, H(E X T')) Lo () JolF(E)] W) - [G(D))(w) - wo(w)v(dw)
o TS Ve f PO ) G
Here, putting
(b) Wew(w) = T et (79 € ).
(5TT) = /Q (G(T)](@)waen (@)1 (dw) (VT € G). (8.12)

Remark 8.12. [How to understand Bayes' Theorem] Bayes’ theorem KT is usually read as follows.

(b') If a measured value z (€ X) obtained by the mixed measurement M) (O1= (X, T, F),
S[*](wo)) belongs to = (€ F), then, the following state collapse happens:

0] 2 [T

pre-state ~  post-state

The above (d) superficially contradicts the linguistic Copenhagen interpretation, which says
A state never moves.

In this sense, the above (b) or (b') (i.e., Bayes’ theorem) is convenient and makeshift.

Answer 8.13. [About Bayes' Theorem (=Problem B™&: (a) and (b)) ]
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U1~w1
100p%
o000e —
o0o00e

Figure 8.2 (in Problem 85): Mixed measurement (Urn problem)

Assume that the state space Q = {wy,ws} is defined by the discrete metric with the following measure
v

v({wi}) =1, v({wse}) = 1. (8.13)
Thus, we start from the classical basic structure:
[Co(Q) € L=(Q,v) C B(L*(Q,v))], (8.14)

in which we consider the mixed measurement My )(O= ({W, B}, 2tW-B} F), S}, (w)). Here, the
observable Oy g = ({W, B}, 2IW:B} [5) in L®(Q) is defined by

[Fws({WH](w1) = 0.8, [Fwp({B})l(w1) = 0.2,
[Fws({W})](ws) = 0.4, [Fws({B})](w2) = 0.6. (8.15)

Also, the mixed state wy € L (Q, v) is defined by
wo(wy) = p, wo(wy) =1 —p. (8.16)

Then, by Axiom™ 1, we see

(a): the probability that a measured value x (€ {W, B}) is obtained by My« q) (0= ({W, B}, 2{W:B},
F), Sp(w)) is given by

P({z}) = v (wo, F({z})) /Q[F({x})](W) - wo(w)v (dw)

plE({x})](w) + (1 —p)[ ({z})](w2)
0.8p+0.4(1 —p) (when x=W)
0.2p+0.6(1 —p) (when x = B)

(8.17)

(b)

e [W*-algebraic answer to Problem 8H(b) |
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Since “white ball” is obtained by a mixed measurement M) (O, Spy(wo)), a new mixed state
Wyew (€ L 1(Q)) is given by

0.8p (when w = wy)
Weew (W) = [F({WH](w)wo(w) B 0.8p+0.2(1 — p)
T RFAW D@ @) | o2 —p)

(when w = wy)

0.8p + 0.2(1 — p)

e [C*-algebraic answer to Problem 85(b) |
Since “white ball” is obtained by a mixed measurement Mpe(q)(O, Sp(po)), a new mixed state
Prew (€ M4 1(2)) is given by

_ F{WHpo _ 0.8p N 0.2(1 — p)
Prew = T TEW D] (@)polde)  0.8p+02(1—p) " " 0.8p+0.2(1 —p)

8.5 Two envelopes problem (Bayes’ method)
This section is extracted from the following:

ref. [68]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics
(prXiv:1408.4916v4 [stat.OTT 2014)

Problem 8.14. [ (=Problem 5.16): the two envelopes problem]

The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope B). You
know one envelope contains twice as much money as the other, but you do not know which contains
more. That is, Envelope A [resp. Envelope B] contains V; dollars [resp. V3 dollars]. You know that

(a) %:1/2 or, %:

Define the exchanging map @ : {Vi, Vo} — {Vi, Va} by

You choose randomly (by a fair coin toss) one envelope, and you get x; dollars (i.e., if you choose
Envelope A [resp. Envelope B], you get V; dollars [resp. V5 dollars] ). And the host gets 7; dollars.
Thus, you can infer whether T; = 2z or T; = z1/2. Now the host says “You are offered the options
of keeping your x; or switching to my z;”. What should you do ?
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Two envelopes problem

Figure 8.4: Two envelopes problem (in Bayesian statistics)

[(P1):Why is it paradoxical ?]. You get @ = 1. Then, you reason that, with probability 1/2, 7y is
equal to either o/2 or 2a dollars. Thus, the expected value (denoted E ;1 e (0) at this moment) of
the other envelope is

Boiner(@) = (1/2)(/2) + (1/2)(20) = 1.250. (8.18)

This is greater than the a in your current envelope A. Therefore, you should switch to B. But
this seems clearly wrong, as your information about A and B is symmetrical. This is the famous
two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

The grass is always greener
on the other side
& g e

8.5.1 (P1): Bayesian approach to the two envelopes problem

Consider the state space () such that
Q=R,(={weR|w>0}
with Lebesgue measure v. Thus, we start from the classical basic structure
[Co(Q) C L™(Q,v) C B(L*(,v))].
Also, putting 0= {(w,2w) |w € Ry}, we consider the identification:

Qow — (w,2w) € Q. (8.19)
(identification)

Furthermore, define V; : Q(=R,) — X(=R,) and V5 : Q(=R,) — X (=R, ) such that
V(w) =w, V(w)=2w (Vw € Q).
And define the observable O = (X (= F(= Bg, : the Borel field), F) in L*>(£,v) such that

1 ifwe=, 2we

Ry),
(

PE)|(w) = 1?2 Elfweu, 2w ¢
(

~—

12 (ifwé= 2we (Vw € Q,VE € F)

fwg= 2wé¢

(1] [1] [1] [1]

— — —

0
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Recalling the identification : Q> (w,2w) +— w € Q = R, assume that
po(D) = / wo(w)dw (VD € Bg = Bg, ),
D

where the probability density function wg : Q(~ Ei) — R, is assumed to be continuous positive
function. That is, the mixed state po(€ M™((= R,))) has the probability density function wy.
Axiom™) 1 [§8.1) says

€ Bx = Bg, ) that a measured value obtained by the mixed measure-
ment Mre(0,4.,)(0 = (X, F, F), Spy(po)) belongs to =(€ Bx = Bg, ) is given by
FEI@I() = [ [FE) @)

Q
wo(x/2)  wo(x)
1 +

dr (V= € Bg,). (8.20)

— 5

Therefore, the expectation is given by

/R xP(dx) = %/Ooox- (w0($/2)/2+wo(x)>dx _

[\CRNGV]

/]R zwo(x)d. (8.21)

+

(80)  (a2a) T Q= 0=R,)

Figure 8.5(=Figure 5.10) : likelihood function

Furthermore, Theorem 811 (Bayes’ theorem) says

(A2) When a measured value « is obtained by the mixed measurement Mze (g a)(O = (X, T, F),
Si(po)), then the post-state pyost(€ M™(Q2)) is given by

wo(;é/2)
pa t = o 5(&70[) +
pos h( 2/2) + w()(a) 2

wo(v)
wo(a/2
0(2/ ) +w0(a)

d(a,20)- (8.22)

183 ‘ For further information see my homepagé ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html
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2:) }, then you change { Z 2§a }, and thus you get the switching gain

Therefore, the expectation of the switching gain is calculated as follows:

wo(a/2)
@ — 3 wo ()
/R+ <(_§> M +wo(a) + awo(;/z) n wo(a))P(da)
:/R (_%)wO(Z/Q) e woéa) da = 0. (8.23)

Therefore, we see that the swapping is even, i.e., no advantage and no disadvantage.
8.6 Monty Hall problem (The Bayesian approach)

8.6.1 The review of Problem 5.14 (Monty Hall problem in pure mea-
surement)

Problem 8.15. [= Problem 5.14; Monty Hall problem; High school puzzle| (The answer
by Fisher’s maximum likelihood method)

You are on a game show and you are given a choice of three doors. Behind one door is a car,
and behind the other two are goats. You choose, say, door 1, and the host, who knows where
the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you a choice of sticking to door 1 or switching to door 2 7 What

should you do ¢
Lo |
door door door J |
|

No. 1 No. 2 No. 3 q:P\ q:P\_]

Figure 8.6: Monty Hall problem
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ol il

the door 3 has a goat

You choose door 1

Answer: Put Q = {wy,ws, w3} with the discrete topology dp and the counting measure v. Thus,
consider the classical basic structure:

[Co(Q) € L(Q,v) € B(L*(Q,v))].
Assume that each state d,,, (€ &P(Cy(£2)*)) means
du,, < the state that the car is behind the door 1 (m = 1,2, 3)

Define the observable O; = ({1,2,3},2{123} F)) in L>(Q) such that

)
[F({1D)](w) =00, [FA({2D)](wr) =05,  [F({3})](w1) = 0.5,
[F({1D))(w2) = 0.0, [F({2})](w2) = 0.0,  [F({3})](w2) = 1.0,
[F({1)](ws) = 0.0, [F({2D](ws) = 1.0, [Fi({3})](ws) = 0.0, (8.24)

where it is also possible to assume that Fi({2})(w1) = a, F1({3})(w1) =1 —a (0 < a < 1). The fact
that you say “the door 17 means that we have a measurement M) (01, Sp,j). Here, we assume :

e

a) “a measured value 1 is obtained < The host says “Door 1 has a goat”
b) “measured value 2 is obtained < The host says “Door 2 has a goat”
¢) “measured value 3 is obtained < The host says “Door 3 has a goat”

Since the host said “Door 3 has a goat? this implies that you get the measured value “3” by the
measurement Mo (01, Sp). Therefore, Theorem 56 (Fisher’s maximum likelihood method) says
that you should pick door number 2. That is because we see that

max{[F1({3})](w1), [F1({3})](w2), [F1({3})](ws) } = max{0.5, 1.0, 0.0}
= 1.0 = [F({3})](w2)

and thus, there is a reason to infer that [*] = d,,. Thus, you should switch to door 2. This is the
first answer to Monty-Hall problem. O]

8.6.2 Monty Hall problem in mixed measurement (=Bayesian measure-
ment)

Next, let us study Monty Hall problem in mixed measurement theory (particularly, Bayesian
statistics).

| |
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Problem 8.16. [Monty Hall problem (The answer by Bayes’ method) |

Suppose you are on a game show, and you are given a choice of three doors (i.e., “number
17 “number 27 “number 3. Behind one door is a car, behind the others, goats. You pick a
door, say number 1. Then, the host, who set a car behind a certain door, says

(#1) the car was set behind the door decided by the cast of the distorted dice. That is, the
host set the car behind the k-th door (i.e., “number k”) with probability py (or, weight
such that py +ps +p3 =1, 0 < py,po,p3 < 1).

And further, the host says, for example,
(b) the door 3 has a goat.

He says to you, “Do you want to pick door number 2 7”7 Is it to your advantage to switch
your choice of doors 7

|

l é § |

door door door J |
No. 1 No. 2 No. 3 |

Answer: In the same way as we did in Problem BT5 (Monty Hall problem: the answer by Fisher’s

maximum likelihood method), consider the state space 2 = {w;, ws, w3} with the discrete metric dp

and the observable O;. Under the hypothesis (#;), define the mixed state vy ( € M;1(Q2)) such that
Vo = P10w; + P20u, + P30y,

namely,

w{wi}) =p1, w({ws}) =p2, vol{ws}) = ps.
Thus, we have a mixed measurement M (q)(O1, Si(10)). Note that

a) “measured value 1 is obtained by the mixed measurement M) (O1, Su(10))”
& the host says “Door 1 has a goat”

b) “measured value 2 is obtained by the mixed measurement My qy(O1, Spy(10))”
& the host says “Door 2 has a goat”

c) “measured value 3 is obtained by the mixed measurement My q)(O1, Si(10))”
& the host says “Door 3 has a goat”

Here, assume that, by the mixed measurement M) (01, Suj(10)), you obtain a measured value 3,
which corresponds to the fact that the host said “Door 3 has a goat” Then, Theorem BTT (Bayes’
theorem) says that the posterior state vy (€ M41(§2)) is given by

B3 xw
T (w, Fu({3)))
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That is,
5 b2
Vpost ({W = 2 , Upost(1Ww = , Vpost(1Ww =0.
poal{n)) = gy onllion)) = 7 ol les))

Particularly, we see that

o if p; = py = p3 = 1/3, then it holds that vpest({w1}) = 1/3, Vpost({w2}) = 2/3, Vpost {ws}) = %
and thus, you should pick Door 2.

ANote 8.3. It is not natural to assume the rule (#;) in Problem BT6. That is because the host may
intentionally set the car behind a certain door. Thus, we think that Problem 876 is temporary. For
our formal assertion, see Problem BT latter.

8.7 Monty Hall problem (The principle of equal weight)

8.7.1 The principle of equal weight — The most famous unsolved problem

Let us reconsider Monty Hall problem (Problem K714, Problem&T1H) in what follows. We think
that the following is one of the most reasonable answers (also, see Problem Th35).

Problem 8.17. [Monty Hall problem (The principle of equal weight) |

Suppose you are on a game show, and you are given a choice of three doors (i.e., “number 17
“number 2] “number 3”). Behind one door is a car, behind the others, goats.

(#2) You choose a door by the cast of the fair dice, i.e., with probability 1/3.

According to the rule (£2), you pick a door, say number 1, and the host, who knows where
the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

He says to you, “Do you want to pick door number 2 ?” Is it to your advantage to switch
your choice of doors 7

1 2 3 1 - ‘a
ﬁ>t.‘ .
. . L 1

= = i

the door 3 has a goat
You choose door 1
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Answer: By the same way of ProblemR8T5 and Problem&8T6 (Monty Hall problem), define the
state space Q0 = {wy,wy, w3} and the observable O = (X, F, F'). And the observable O = (X, F, F) is
defined by the formula (R7IT). With the map ¢ : Q —  is defined by

P(wi) = wa, @(w2) = w3, @(ws) =wi,

we get a causal operator ® : L®(Q2) — L>*(Q) by [®(f)](w) = f(o(w)) (Vf € L=(), Yw € Q).
Assume that a car is behind the door k (k = 1,2,3). Then, we say :

1,2 MLOO(Q)(O7S[Wk])
(a) By the dice-throwing, you get | 3,4 |, then, take | My (PO, Sp,))
5,6 MLOO(Q)(@2O, S[wk])

as a measurement. We, by the argument in Chapter 11 (¢f. the formula (I07))?, see the following
identifications:

Mroe(@) (PO, Siuy)) = Mpe(@)(0, Sipu)))s Mi () (270, Si,))
= Mpre@)(0, Sig2()-

Thus, the above (a) is equal to

1, 2 MLO@(Q) (O, S[wk])
(b) By the dice-throwing, you get | 3,4 | then, take | Mp~()(O, Sige,))
5,6 Mo~ (0, Sig2(wy)

as a measurement. Here, note that (0., + 0p(w,) + 0p2(wy)) = 50wy + 0wy + 0uy) (V= 1,2,3). Thus,
this (b) is identified with the mixed measurement M) (O, Sj(ve)) , where

Ve = é(éwl + 6w2 + 6w3)

Therefore, Problem B7T7 is the same as Problem 816. Hence, you should choose the door 2. O

ANote 8.4. The above argument is easy. That is, since you have no information, we choose the door
by a fair dice throwing. In this sense, the principle of equal weight — unless we have sufficient reason
to regard one case as more probable than others, we treat them as equally probable — is clear in
measurement theory. However, it should be noted that the above argument is based on dualism.

From the above argument, we have the following theorem.

Theorem 8.18. [The principle of equal weight] Consider a finite state space €, that is, =
{wi,wa,...,wy}. Let O = (X,F, F) be an observable in L*>(Q2, v), where v is the counting measure.
Consider a measurement My (q)(O, S}y). If the observer has no information for the state [x], there
is a reason to that this measurement is identified with the mixed measurement M Lw(Q)(O,g[*] (we))

< or, M) (O, S(ve)) ), where

1
We(wk) =1/n (Vk=1,2,...,n) or Ve = — Zéwk.

2Thus, from the pure theoretical point of view, this problem should be discussed after Chapter 11.
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Proof. The proof is a easy consequence of the above Monty Hall problem (or, see [35, &3]). [

#Note 8.5. Concerning the principle of equal weight, we deal the following three kinds:

(#1) the principle of equal weight in Remark 519
(#2) the principle of equal weight in Theorem RIR

(#3) the principle of equal weight in Proclaim Th4

8.8 Averaging information (Entropy)

As one of applications (of Bayes’ theorem), we now study the “entropy (cf. ref. [I0])” of the
measurement. This section is due to the following references.

(#) Ref. [B0]: S. Ishikawa, A Quantum Mechanical Approach to Fuzzy Theory, Fuzzy Sets and
Systems, Vol. 90, No. 3, 277-306, 1997, doi: 10.1016/S0165-0114(96)00114-5

(#) Ref. [B5]: S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University
Inc—2

Press 006

Let us begin with the following definition.

Definition 8.19. [Entropy(cf. refs. [30, B5])] Assume
Classical basic structure [Co(Q2) C L>(Q,v) C B(L*(Q,v))] .

Consider a mixed measurement My, (O = (X, 2%, F), Sy (wp)) with a countable measured value
space X = {x1,2,...}. The probability P({z,}) that a measured value x,, is obtained by the mixed
measurement M) (O, Spy(wo)) is given by

P({wn}) = A[F({xn})](W)wo(w)V(dw)- (8.25)

Furthermore, when a measured value x,, is obtained, the information I({z,}), from Bayes’ theorem
R11, is calculated as follows.

o F({z))w) Flale)
I(wad) /Qfg[mxn})]( Junle)r(dm) 8 T (o lridm) 0 )

(
Therefore, the averaging information H (Mpe(o)(O, Sp(wo))) of the mixed measurement Mz q) (O,
S (wp)) is naturally defined by

H (Mpee(0)(0, Spy(wo)) Z P({x,}) - I({zn}). (8.26)
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Also, the following is clear:

H (Mo (2)(0, Sp(wo))) ZZ/Q[F({%})J(W) log[F({zn})](w)wo(w)r(dw)

— 3" P({za}) log P({z,})- (8.27)

Example 8.20. [The offender is male or female ? fast or slow ?]  Assume that
(a) There are 100 suspected persons such as {s1, S, ..., S100}, in which there is one criminal.
Define the state space Q = {wy,ws, ..., w100} such that
state w, - - - the state such that suspect s,, is a criminal (n=1,2,...,100).

Assume the counting measure v such that v({wy}) = 1(Vk = 1,2,--- ,100). Define a male-observable
Owm = (X = {Ym, nm }, 2%, M) in L(Q) by

M (raDlen) = i) = { § (132 20

(M ({nm ) (wn) = My, (i) = 1 — [M({ym})](wn)
For example,

Taking a measurement My (q)(Om, Sp,,]) — the sex of the criminal s;7 —, we get the measured
value n,,(=female).

Also, define the fast-observable Oy = (Y = {y;, n¢},2Y, F) in L>=(Q2) by

According to the principle of equal weight (=Theorem KIR ), there is a reason to consider that a
mixed state wy (€ L1,(Q)) is equal to the state w, such that wo(w,) = we(w,) = 1/100 (Vn). Thus,
consider two mixed measurement Moo (q)(Om, Sp(we)) and Mo (q)(Of, Spq(we)). Then, we see:

H (M poo()(On, Spy(we))) = /mem(w)we(w)u(dw)-log/gzmym(w)we(w)u(dw)
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[ iy () og [, (@wfeivids)
=1log,2 =1 (bit)®.
Also,
H(M(On S (w))) = [ fy(w)log (vl
[ o) o8 fuhun)ulde) = [ folhune)v(do) g | fe(whun(e)p(d)
-/ fufehld) - / fnffau)we(w)u(dw)

#2/ Alogy AdA + 1= — +1=0278- - (bit)
0

2log, 2

e

Therefore, as eyewitness information, “male or female” has more valuable than “fast or slow”.

8.9 Fisher statistics: Monty Hall problem [three prisoners
problem]

This section is extracted from the following:

Ref. [67]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners
Problem  ( arXiv:1408.0963v1 [stat.OT| 2014 )

In Sections B9 ~ K11, I will discuss Monty Hall Problem and Three Prisoners Problem in
parallel. As Monty Hall Problem has already been discussed, only Three Prisoners Problem may be
read. However, reading the two in parallel has the following advantages.

It is usually said that

Monty Hall problem and three prisoners problem are the so-called isomorphism problem.

But, we think that the meaning of “isomorphism problem” is ambiguous, or, it is not able to be
clarified without measurement or the dualism. Therefore, in order to understand “isomorphism”,
we simultaneously discuss the two

Monty Hall problem
three prisoners problem

8.9.1 Fisher statistics: Monty Hall problem and three prisoners problem

Problem 8.21. (=ProblemRTH: [Monty Hall problem]).

191 For further information see my homepagé ‘



http://arxiv-web3.library.cornell.edu/abs/1408.0963
http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

8.9 Fisher statistics: Monty Hall problem [three prisoners problem]|

Suppose you are on a game show, and you are given choice of three doors (i.e., “Door A;’
“Door Ay} “Door As”). Behind one door is a car, behind the others, goats. You do not know
what’s behind the doors

However, you pick a door, say “Door A;”, and the host, who knows what’s behind the doors,
opens another door, say “Door A3z which has a goat.

He says to you, “Do you want to pick Door Ay 7”7 Is it to your advantage to switch your
choice of doors ?

| = g

the door 3 has a goat
You choose door 1

Problem 8.22. [three prisoners problem)].

Three prisoners, Ay, As, and Az were in jail. They knew that one of them was to be set free
and the other two were to be executed. They did not know who was the one to be spared,
but the emperor did know. A; said to the emperor, “I already know that at least one of the
other two prisoners will be executed, so if you tell me the name of one who will be executed,
you won’t have given me any information about my own execution”. After some thinking,
the emperor said, “As will be executed.” Thereupon A; felt happier because his chance had

1 This prisoner A;’s happiness may or may

. 1
increased from SN AT A AT to e rwEE
not be reasonable 7

“ Az will be executigd’

>

(Emperor)

L
= \(>)
=/ )

l—’\f/ -
L
= \)®)

8.9.2 The answer in Fisher statistics: Monty Hall problem and three

prisoners problem

Let rewrite the spirit of dualism (Descartes figure) as follows.

192
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observer system
(I(=mind)) (matter)
— — [observable] AT _l
[measured value] [state]

| (@project light _, |
| 1

<
<

| ®perceive reactic1n |

| | |
I I I

-
|
|
|
I

Descartes Figure 8.7: The image of “measurement(=1)+(2))” in dualism

In the dualism, we have the confrontation

“observer<—system”

as follows.

Table 8.1: Correspondence: observer - system

Problems\ dualism II Mind(=I=Observer) I Matter(=System) I
Monty Hall problem you Three doors

Three prisoners problem Prisoner Ay Emperor’s mind

Problem BZ1 (Monty-Hall problem)
Problem 822 (Three prisoners problem)
cal pure measurement theory. The two will be simultaneously solved as follows. The spirit of dualism
(in Figure 8.7) urges us to declare that

In what follows, the first answer to is given in classi-

“observer

@ |

~ you” and “system = three doors” in Problem RI
“observer = prisoner A;” and “system =& emperor’s mind” in Problem 822

Put Q = {wy, ws, w3} with the discrete topology. Assume that each state 4, (€ &P(C(2)*)) means

dw,, < the state that the car is behind the door A,,
dw,, < the state that the prisoner A,, is will be executed

(m =1,2,3) (8.28)
Define the observable O; = ({1,2,3},2{123} F)) in L>(Q) such that

[F({1D)](w) =00, [FA{2Dl(wr) =05, [F({3})](w1) = 0.5,
[FL({1))(w2) = 0.0, [F({2})](w2) = 0.0,  [F({3})](w2) = 1.0,
[Fi({1))(ws) = 0.0, [F({2})](ws) = 1.0, [Fi({3})](ws) = 0.0, (8.29)
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where it is also possible to assume that F;({2})(w1) = «, F1({3})(w1) =1 —a (0 < a < 1). Thus,
we have a measurement Mo (q)(Oy, Sj), which should be regarded as a theoretical representation
you say “Door Ay”

f th t that . .
ot the measuretnent tha “Prisoner A1” asks to the emperor

Here, we assume that

a) “measured value 1 is obtained by the measurement Mpec(q)(O1, Sp)”
[ the host says “Door A; has a goat” |

= . .
| the emperor says “Prisoner A; will be executed”

b) “measured value 2 is obtained by the measurement M) (O1, Spy) ”
[ the host says “Door A, has a goat” |

= . .
| the emperor says “Prisoner Ay will be executed”

c) “measured value 3 is obtained by the measurement M) (O1, Sp) ”
[ the host says “Door As has a goat” ]

54 . .
| the emperor says “Prisoner Az will be executed”

Recall that the host said “Door 3 has a goat”
the emperor said “Prisoner Az will be executed”
L you
This implies that { Prisoner A,

Sp). Note that

} get the measured value “3” by the measurement M Loo(Q)(Ol,

[F,({3))](ws) = 1.0 = max{0.5, 1.0, 0.0}
= max{[F1({3})](w1), [F1({3})](w2), [F1({3})](ws)}- (8.30)

Therefore, Theorem 66 (Fisher’s maximum likelihood method) says :

(By) In Problem K21 (Monty-Hall problem), there is a reason to infer that [*] = §,,. Thus, you
should switch to Door As,.

(B2) In Problem 822 (Three prisoners problem), there is a reason to infer that [*] = d,,. However,
there is no reasonable answer for the question: whether Prisoner A;’s happiness increases. That
is, Problem 827 is not within Fisher’s maximum likelihood method.

8.10 Bayesian statistics: Monty Hall problem and three
prisoners problem

This section is extracted from the following:

Ref. [67]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners
Problem  ( arXiv:1408.0963v1 [stat.OT] 2014 )
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8.10.1 Bayesian statistics: Monty Hall problem and three prisoners

problem

Problem 8.23. [(=Problem&16) Monty Hall problem (the case that the host throws the dice)].

Suppose you are on a game show, and you are given a choice of three doors (i.e., “Door A;7
“Door A, “Door A3z"). Behind one door is a car, behind the others, goats. You do not know
what’s behind the doors.

However, you pick a door, say “Door A;”, and the host, who knows what’s behind the doors,
opens another door, say “Door A3) which has a goat. And he adds that

(#1) the car was set behind the door is decided by a cast of a distorted dice. That is, the host
set the car behind Door A,, with probability p,, (where p1+pe+ps=1,0 < p1,ps,p3 <1

).

He says to you, “Do you want to pick Door A; 77 Is it to your advantage to switch your
choice of doors 7

the door 3 has a goat
You choose door 1

195

Problem 8.24. [three prisoners problem)].

Three prisoners, A;, A, and Az were in jail. They knew that one of them was to be set free
and the other two were to be executed. They did not know who was the one to be spared,
but they know that

(f2) the one to be spared was decided by the cast of the (distorted) dice. That is, Prisoner A,
is to be spared with probability p,, (where p1 4+ ps+p3=1,0<p;,p2,ps <1).

but the emperor did know the one to be spared. A; said to the emperor, “I already know
that at least one of the other two prisoners will be executed, so if you tell me the name of one
who will be executed, you won’t have given me any information about my own execution”.
After some thinking, the emperor said, “As will be executed.” Thereupon A; felt happier
because his chance had increased from z—m {j‘h LA o 7. This prisoner Ay’s
happiness may or may not be reasonable 7

1
2(=Num[{A1,A2}]
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“As will be executéd”

>
-

(Emperor)

L
= \(>)
=/ =)

l———\f/ -
L
= \)®)

8.10.2 The answer in Bayesian statistics: Monty Hall problem and three
prisoners problem

In the dualism, we have the confrontation

“observer<—system”

as follows.

Table 8.2: Correspondence: observer - system

| Problems\ dualism [ Mind(=I=Observer) | Matter(=System) |
Monty Hall problem you Three doors

Three prisoners problem Prisoner A; Emperor’s mind

Let = {w1,wq, w3} be a state space with the discrete metric. Each pure state 4, (€ &P(C(Q2)*))
means as follows.

dw,, < The state such that a car is behind the door A,,
[resp. 4., < the state such that a prisoner A,, is pardoned ]
(m=1,2,3) (8.31)

The observable O, = ({1,2,3},2{123} F}) is defined by

[F({1)](w) =00, [F({2D](wi) =05, [Fi({3})](w1) = 0.5,
[F({1)](w2) = 0.0, [F({2D](w2) = 0.0, [F({3})](w2) = 1. 0,
[Fi({1D)](ws) = 0.0, [FA({2Dl(ws) = 1.0,  [Fi({3})](ws) = 0.0, (8.32)

Thus, we have a mixed measurement My (q)(O1, Sp(0)). Note that

a) “measured value 1 is obtained by the measurement M Loo(Q)(Ol, S[*])”
the host says “Door A; has a goat”
the emperor says “Prisoner A; will be executed”
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b) “measured value 2 is obtained by the measurement M) (O1, Spy) ”
the host says “Door A, has a goat”
the emperor says “Prisoner Ay will be executed”

c) “measured value 3 is obtained by the measurement My (q)(O1, Sp) ”
the host says “Door Az has a goat”
the emperor says “Prisoner Az will be executed”

Here, assume that, by the mixed measurement M) (01, Sp (1)) (where, vy = P10y, +P20w, +P30w, ),
you obtain a measured value 3, which corresponds to the fact that

the host said “Door As has a goat”
the emperor said “Prisoner Az is to be executed”

Then, Bayes’ theorem K11 says that the posterior state vy (€ M7 (€2)) is given by

Fi({3}) x 1o

Vpost = ——————. 8.33
Pt (v, F1({3})) (8.33)
That is,
b1
2 P2
0S = ) oS - 5 0S :0 834
Vpost ({w1}) T Vpost ({w2}) T Vpost ({ws }) (8.34)
Then,

(I1) In Problem 823,

if Vpost ({w1}) < Vpost({w2}) ( p1 < 2pa), you should pick Door A
if Vpost ({w1}) = Vpost ({w2}) (p1 = 2p2), you may pick Doors A; or A
if Vpost ({w1}) > Vpost({w2}) ( p1 > 2p2), you should not pick Door A;

(I2) In Problem 824,

if vo({w1}) < Vpost({w1}) (p1 < 1 — 2p9), the prisoner A;’s happiness increases
if vo({w1}) = vpost ({w1}) (p1 = 1 — 2ps), the prisoner A;’s happiness is invariant
if vo({w1}) > Vpost ({wr}) (1 > 1 — 2py), the prisoner A;’s happiness decreases

197
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8.11

Equal probability: Monty Hall problem and three
prisoners problem

This section is extracted from the following:

ref. [67]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners
Problem  ( arXiv:1408.0963v1 [stat.OT[ 2014 ")

Problem 8.25. [(=Problem&TA)Monty Hall problem (the case that you throws the dice)].

Suppose you are on a game show, and you are given a choice of three doors (i.e., “Door A;7
“Door Ay} “Door As”). Behind one door is a car, behind the others, goats. You do not know

what’s behind the doors. Thus,
(81) you select Door Ay by the cast of the fair dice. That is, you say “Door Ay” with probability

1/3.

The host, who knows what’s behind the doors, opens another door, say “Door A3} which has
a goat. He says to you, “Do you want to pick Door Ay 77 Is it to your advantage to switch

your choice of doors 7

the door 3 has a goat
You choose door 1

198

Problem 8.26. [three prisoners problem(the case that the prisoner throws the dice)].

Three prisoners, Ay, A, and Az were in jail. They knew that one of them was to be set free
and the other two were to be executed. They did not know who was the one to be spared,
but the emperor did know. Since three prisoners wanted to ask the emperor,

(#2) the questioner was decided by the fair die throw. And Prisoner Ay was selected with
probability 1/3

Then, A; said to the emperor, “I already know that at least one of the other two prisoners
will be executed, so if you tell me the name of one who will be executed, you won’t have
given me any information about my own execution”.  After some thinking, the emperor
said, “As will be executed.” Thereupon A; felt happier because his chance had increased
This prisoner A;’s happiness may or may not be

1 1
from s—rmn A 1 xR
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reasonable 7

“As will be executed

>

-

(Emperor)

P
=0
=0
I"\f/

N
=ave

Answer : By Theorem 8T8 (The principle of equal weight), the above Problems 875 and 874 is
respectively the same as Problems 823 and 824 in the case that p; = ps = p3 = 1/3. Therefore,

(By) Problem&25 [Monty Hall problem (the case that you throw a fair dice)]

Vpost({w1}) < vpost({w2}) (Le., p1 =1/3 <2/3 = 2py),
thus, you should choose the door A,

(By) Problem&26 [three prisoners problem ( the case that the questioner was decided by the fair
dice throw)],

n({wi}) = vpost({wi}) (e, pr=1/3 =1—2py),
Thus, the happiness of the prisoner A; is invariant

ANote 8.6. These problems (i.e., Monty Hall problem and the three prisoners problem) continued
attracting the philosopher’s interest. This is not due to the fact that these are easy to make a mistake

for high school students, but

these problems include the essence of “dualism”.

199 For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

8.12 Bertrand’s paradox

8.12 Bertrand’s paradox
Theorem& IR (the principle of equal weight) implies that
e the “randomness” may be related to the invariant probability measure.
However, this is due to the finiteness of the state space. In the case of infinite state space,

“randommness” depends on how you look at.

This is explained in this section.

8.12.1 Bertrand’s paradox(“randomness” depends on how you look at)

Here, let us review the argument about the Bertrand paradox (cf. refs. [25, BA, b5]). Consider
the following problem:

Problem 8.27. (Bertrand paradox) Given a circle with the radius 1. Suppose a chord of the circle
is chosen at random. What is the probability that the chord is shorter than NEN:

X2
A

7

N\

L1

Figure 8.8: Bertrand’ paradox

: R? = R? (0 < 0 < 27) and the reverse map Trey : R? — R? such that

l’l o 0 ]_ xl
n) =] )

Define the rotation map TlfOt

o .. _ |cost —sinf|
Tror® = [sin@ COSQ:|
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Problem 8.28. (Bertrand paradox and its answer) Given a circle with the radius 1.

X2
A

4

Figure 8.9: Bertrand’ paradox

Put Q = {l |l is a chord}, that is, the set of all chords.
(A) Can we uniquely define an invariant probability measure on 2 7

Here, “invariant” means “invariant concerning the rotation map Tr00t and reverse map Trey’ .
In what follows, we show that the above invariant measure exists but it is not determined
uniquely.

(Pic.1)

Figure 8.10: Two cases in Bertrand’s paradox

cm
[The first answer (Pic.1(in Figure 8.10))]. In Pic.1, we see that the chord ¢ is represented by
a point (a, 8) in the rectangle O = {(a, f) | 0 < a < 27, 0 < f < 7/2(radian)}. That is, we have
the following identification:

Q(= the set of all chords) 3w ={(np = +— (a,8) € Q(C R?).

identification

Note that we have the natural probability measure v; on )y such that v;(A) = hl\/fleea?ss[[;;]} = Megs[A]
1
(VA € Bg,), where “ Meas” = “ Lebesgue measure”. Transferring the probability measure v4 on €
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8.12 Bertrand’s paradox

to €2, we get p; on €. That is,
M_H(Q) > M —— vV € M+1(Ql)

identification

(2) It is clear that the measure p; is invariant concerning the rotation map Tfot and reverse map
Trev.

Therefore, we have a natural measurement My ,,)(Og = (2, Bg, F), Sj4(1)), where Og is the
exact observable, i.e., [Fg((2)](w) = x=(w) (V= € Bg,Vw € Q). Consider the identification:

ODEz <+ {(ao,B) € ¢ “the length of {4 5" < V3l C oy

identification

Then, Axiom™) 1 says that the probability that a measured value belongs to = V3 18 given by

JIEE 3nau>pﬂdw>=:jgwg 1 py(dw)

=mi({liap = (o, 3) € Q1 | “the length of £, 5" < V3})
a <

_ Meas[{(a,8) |0 < a < 2r, 7/6 < 5 < n/2)]
Meas[{(a, 5) |0 < a < 2w, 0 < 8 < 7/2}]

C2mx (m/3) 2

)

[The second answer (Pic.2(in Figure 8.10))]. In Pic.2, we see that the chord ¢ is represented by
a point (z,y) in the circle Qy = {(z,y) | * + y* < 1}. That is, we have the following identification:

Q(= the set of all chords) D w =, <+— (z,y) € Q(C R?).

identification

_ Measj4a] _ Meas[4]
= Measin] — - (VA S BQQ>
Transferring the probability measure v, on 25 to 2, we get py on ). That is,

We have the natural probability measure v, on €2 such that v5(A)

M_H(Q) > P2 > Vo € M+1(QQ)

identification

(#) It is clear that the measure p, is invariant concerning the rotation map TlfOt and reverse map
TI'GV'

Therefore, we have a natural measurement Mo (q ,)(Or = (2, B, Fg), Sj4(1)). Consider the iden-
tification:

QDEZ,5 «—  {(z,y) €D : “the length of " < V3} C O

identification
Then, Axiom™ 1 says that the probability that a measured value belongs to = V3 18 given by

=V3

[ PeEI) pld) = [ 1 pafa)
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=15({lizy) % (,y) € Q2| “the length of £,)" < V/3})
~ Meas[{(z,y) | 1/4<a*+y*> <1} 3

T 4’

Conclusion 8.29. Thus, even if there is a custom to regard a natural probability measure (i.e., an

invariant measure concerning natural map) as “random”, the first answer and the second answer

say that

()  the uniqueness in (A) of Problem 828 is denied.

That is, the invariant measure concerning a natural map does not always mean ‘probability’.
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Chapter 9

Axiom 2 — causality

;

Measurement theory (= QL) has the following classification:

classical system : Fisher statistics
pure type .
( Al) quantum system : usual quantum mechanics
(A) measurement theory
(=quantum language) classical system : including Bayesian statistics
mixed type and Kalman filter
(Az) quantum system : quantum decoherence

This is formulated as follows.

(B):

(By1):
’ pure measurement theory ‘

(=quantum language)
[(pure)Axiom 1]] [Bsaom—] [fuantum hnguistic Copenhagen interpretatiol|

= ’ pure measurement ‘ + ‘ Causality‘—l—‘ Linguistic Copenhagen interpretation
(cf. BZ20) (cf. 8E3) (cf. §BD)

a kind of spells (a priori judgment) manual to use spells

(Ba):

’ mixed measurement theory ‘

(=quantum language)

[(mixed)Axiom ™) 1| [Bxaam—] [ouantum inguistic Copenhagen interpretation|

= ’ mixed measurement ‘—1— ‘ Causality ‘4—‘ Linguistic Copenhagen interpretation

(cf. ESD) (cf §E3) (cf. §BM)
a kind of spells (a priori judgment) manual to use spells
[/—\snnm ')]
In this chapter, we devote ourselves to the last theme | Causality |, which is common to both (B;) and
(cf. §3)

(B2).

205



9.1 The most important unsolved problem — what is causality ?

9.1 The most important unsolved problem — what is causal-
ity 7

This section is extracted from ref.[dd]. The importance of “measurement” and “causality” should be
reconfirmed in the following famous maxims:

(Cy) There is no science without measurement.
(C9) Science is the knowledge about causal relationship.

They should be also regarded as one of the linguistic Copenhagen interpretation in a wider sense.

9.1.1 Modern science started from the discovery of “causality”

When a certain thing happens, the cause always exists. This is called causality. You should just
remember the proverb

Smoke is not located on the place which does not have fire.

However the situation is not so simple as you think. Consider, for example,
This morning I feel good. Is it because that I slept sound yesterday 7 or
Is it because I go to favorite golf from now on 7
You will find the difficulty in using the word “causality”. In daily conversation, it is used in many contexts,
mixing up “a cause (past)”, “a reason (connotation)”, and “the purpose and a motive (future)”.
Pioneering research on movement and change may be found in

Heraclitus(BC.540 -BC.480): “Everything flows.”

Parmenides (born around BC. 515): “There is no movement.”
(Zeno’s teacher)

Although their assertions are not clear, they recognized that “movement and change” were the primarily
important keywords in “world description”.
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Heraclitus Parmenides

everything flows

there in no movement

[The beginning of World description]

Heraclitus
=[The discovery of movement and change | =
Parmenides

Aristotle (BC384-BC322) further investigated the essence of movement and change, and concluded that
all the movements had the “purpose”.

For example, a stone falls because it has the purpose to go downward, and smoke rises because it has the
purpose to go upward. Under the influence of Aristotle, “Purpose’ had remained as a mainstream idea of
“Movement” for a long period of 1500 years or more.

We were freed from the spell of “Purpose”, only after Galileo, Bacon, Descartes, and Newton et al.
discovered the essence of movement and change lies in “Causality”.

Revolution from “Purpose” to “Causality”

is the greatest paradigm shift in the history of science. It is not an exaggeration even if we call the shift
“birth of modern science”.

the birth of world description the birth of modern science

“purpose” B
Movement Causality

7
(Heraclitus, Parmenides, Zeno) Aristotle :( About 1500 years) ( Galileo, Bacon, Descartes, Newton)

;

Newton

Aristotle

#Note 9.1. I cannot emphasize too much the importance of the discovery of the term: ”causality”.
That is,
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9.1 The most important unsolved problem — what is causality ?

(#) Science is the discipline about phenomena can be represented by the term ”causality”. (i.e., "No
smoke without fire” )

Thus, I consider that the discovery of ”causality” is equal to that of science.

Also, as mentioned in Preface, note that my purpose of this book is to the propaganda of the follows:

Heisenberg's uncertainty principle

Ap )
9 AX ApAxsh

impossible to know exactly:

in science as a whole | * Where something is

* how fast it is going
Hovever, what is the definition of ,Qp or, Ax 7

paradigm shift

That is, the ‘quantum mechanical paradigm’ that began 100 years ago is no longer finished and will
spread to all sciences, not just physics.

9.1.2 Four answers to “what is causality ?” (c¢f. Sec. 10.2.1 in ref. [76])

As mentioned above, about “what is an essence of movement and change?”, it was once settled with the
word “causality.” However, not all were solved now. We do not yet understand “causality” fully. In fact,

Problem 9.1. Problem:
”What is causality?”
is the most important outstanding problems in modern science.

Answer this problem!

There may be some readers who are surprised with saying like this, although it is the outstanding problems
in the present. Below, I arrange the history of the answer to this problem.

(A) [Realistic causality] Newton advocated the realistic describing method of Newtonian mechanics
as a final settlement of accounts of ideas, such as Galileo, Bacon, and Descartes, and he thought as
follows. :

“Causality” actually exists in the world. Newtonian equation described faithfully this “causal-
ity”. That is, Newtonian equation is the equation of a causal chain.

Causality

™ 1
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This realistic causality may be a very natural idea, and you may think that you cannot think in addition to
this. In fact, probably, we may say that the current of the realistic causal relationship which continues like

“Newtonian mechanics— Electricity and magnetism— Theory of relativity— ---”
is the mainstream of science.
However, there are also other ideas, i.e. three “non-realistic causalities” as follows.

(B) [Cognitive causality] David Hume, Immanuel Kant, etc. thought as follows. :

We can not say that “Causality” actually exists in the world, or that it does not exist in the
world. And when we think that “something” in the world is “causality”, we should just believe
that it has “causality”.

sensibili
(space, time)

Most readers may regard this as “a kind of rhetoric”, however, some readers may believe it. It may look
like that, because you are looking through the prejudice of “causality.” This is Kant’s famous “Copernican
revolution” (i.e., “Kant was awakened from his dogmatic slumber by Hume’s idea and came up with the
Copernican revolution”), that is,

“cognition constitutes the world.”

which is considered that the cognition circuit of causality is installed in the brain, and when it is stimulated
by “something” and reacts, “there is causal relationship.”

Copernican
revolution
realistic nair;i-:'ir'u.g abstract painting
( realism ) ( idealism )

#Note 9.2. About his discovery of “the Copernican revolution”, Kant says in his book “Prolegomena”
(1783):
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(#) I freely admit that it was the remembrance of David Hume which, many years ago, first inter-
rupted my dogmatic slumber and gave my investigations in the field of speculative philosophy a
completely different direction.

Readers may ask, “Why did Kant, an honest and humble man, make such an exaggerated statement?”

It is a matter of course that Kant had great confidence such that it was the greatest discovery in the
history of philosophy. I agree to his opinion. O

(C) [Causality in applied mathematics (Dynamical system theory)]

Automatic cogfrol
Since dynamical system theory (= statistics) has developed as the mathematical technique in engi-

neering, they have not investigated “What is causality?” thoroughly. However,

In dynamical system theory, we start from the state equation (i.e., simultaneous ordinary differ-
ential equation of the first order) such that

(9.1)

and, we think that

(#) the phenomenon described by the state equation has “causality.”

This is the spirit of dynamical system theory (= statistics). Although this is proposed under the confusion
of mathematics and worldview, it is quite useful. In this sense, I think that (C) should be evaluated more.

(D) [Linguistic causal relationship (Measurement Theory)]

Axiom 1 Axiom-2 Copenhagen interpretation
s oLt Gy i

L - 12a causality
QL= i1+ +

= measurement B 4’77” “

-

= 5

Jobsarvablal |—
[measured I'\.'n]uu!r |[5'm“-’]

______,

I
theory — ¥ :
cf. Chap. 1 ( sec.1.2) 1 :

Figure 1.1

The causal relationship of measurement theory is decided by the [Axiom 2 (causality; Sec. 1.1) of
Chap. 1. If I say in detail,:
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e Although measurement theory (= quantum language) consists of the two Axioms 1 and 2, it is
the Axiom 2 that is concerned with causal relationship. When describing something in quantum
language and using Axiom 2 (causality; Sec. 1.1) , we think that it has causality.

Summary 9.2. The above is summarized as follows.

A) World is first

)

) Recognition is first

) Mathematics(buried into ordinary language) is first
) Language (= quantum language) is first

(

(B
(C
(D
Now, in measurement theory, we assert the next as said repeatedly:

Quantum language is a basic language which describes various sciences.

Supposing this is recognized, we can assert the next. Namely,

In science, causality is just as mentioned in the above (D).

This is my answer to “What is causality?”.

9.2 Causality in QL — Mathematical preparation

9.2.1 The Heisenberg picture and the Schrodinger picture

First, let us review the general basic structure (cf. §2-1°3 ) as follows.

e (A): General basic structure and State spaces ~

SP(A*) C GM(AY) C A

C*-pure state C*-mixed state

dual
— = — < _[B(H) (6:2)
subalgebra subalgebra
weak-closure
J{pre-dual
6" (A,) CA,
W*-mixed state
N _J
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Remark 9.3. [A. C A*] : Consider the basic structure [A C A]p). For each p € A,, F € A(C A C
B(H)), we see that

(0. F)5| < CIF I = CIIFIA (9.3)
Thus, we can consider that p € A*. That is, in the sense of (9-3), we consider that
Al C A"
When p(€ A,) is regarded as the element of A*, it is sometimes denoted by p. Therefore,

- (p, F)Z — (ﬁ, F)A (VF € A(C A)). (9.4)

Definition 9.4. [Causal operator (= Markov causal operator)]  Consider two basic structures:
[.Al g ﬁl g B(Hl)} and [.AQ g ZQ g B(HQ)]

A continuous linear operator ®1 5 : A — Ay is called a causal operator (or, Markov causal operator, the
Heisenberg picture of “causality”), if it satisfies the following (i) — (iv):

(i) lbeAy Fo20= ®15F» >0
(i) @121z, = Iy, (where I (€ Ay) is the identity)

(iii) there exists the continuous linear operator (®12)« : (A1)« — (A2)« such that

@ . (1 ®12F2) 5 = iy (@120 7).
(Vpl S (ﬁl)*,VFQ € ﬁg) (9.5)
(b) (®12)+(&"((A1)4)) € & ((A2)s) (9.6)
This (®1,2)« is called the pre-dual causal operator of @ o.

(iv) there exists the continuous linear operator ®7 5 : A7 — A5 such that

@) @, (”1’@1’21?2)21 T A2 (cbi?ﬁl’FZ)AQ
(Vp1 = p1 € (A1)«(C A7), VF; € A) (9.7)
(b)  (212)"(6"(A1)) C 6™(A3) (9:8)

This @7 , is called the dual operator of @ 5.

In addition, the causal operator @1 is called a deterministic causal operator, if it satisfies that

(©1,2)7(67(A7)). € G°(A3). (9.9)
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ANote 9.3. [Causal operator in Classical systems] Consider the two basic structures:
[Co(1) € L=(Q1,11)]B(a,) and [Co(Q2) € L™ (R, v2)] B(my)-

A continuous linear operator @19 : L™®(Qa) — L(Q) called a causal operator, if it satisfies the
following (i) — (iv):

(i) f2€L>(Q2), f220= P12/220

(ii) ®191l9 = 1; where 1g(wg) =1 (Vwi € Qk, k =1,2)

(iii) There exists a continuous linear operator (®12)s : L'(Q1) — L*(Q2) (and (®1,2)« : L1 (1) —
L% ,(€) ) such that

/Q (Braflr) (o) = [ falen) [(Br2)ep]avadon)
(Vp1 € Ll(Ql),Vfg € L>(Q9))

This (®1,2)« is called a pre-dual causal operator of ®q .

(iv) There exists a continuous linear operator ®7, : M(1) — M(Q2) (and @7, @ My (1) —
M;+1(922) ) such that

L1(Q1) (m, @1,2F2) Loo(91) = M(Q) <‘I’T,2/71, Fz) Co(92)
(Vpl = ,51 S M(Ql),VFQ S C()(QQ))

where p1(D) = [ p1(wi)vi(dwr) (VD € Bg,). This (®12)* is called a dual causal operator of
@1’2.

In addition, a causal operator ® 5 is called a deterministic causal operator, if there exists a continuous
map ¢12: 1 — g such that

[@12f2)(w1) = fo(dr2(w1)) (Vf2 € C(),Vwr € ). (9.10)

This ¢12 : 1 — o is called a deterministic causal map. Here, it is clear that

O = &P(Co(21)%) 3 buy o Ora(wr) € 6F(Co(Q22)") = Na.
12

Q5 f / \ f2

O Qo

$1,2(w1)

w1

Figure 9.1: Deterministic causal map ¢1 2 and deterministic causal operator ®1 2
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Theorem 9.5. [Continuous map and deterministic causal map]  Let (Q1,Bq,,v1) and (Q2,Bg,,v2) be
measure spaces. Assume that a continuous map ¢ 2 : {21 — €2 satisfies:

Dy € Bo,, 1a(D2) =0 = w1(¢15(Ds)) =0.

Then, the continuous map ¢12 : Q; — €y is deterministic, that is, the operator ®;5 : L®(Q, 1) —
L (€, 1) defined by (9°110) is a deterministic causal operator.

Proof. For each p; € LY(Q4,11), define a measure us on (22, Bg,) such that
p2(D2) = / pr(wr) vi(dwi) (VD2 € Bg,).
¢1.5(D2)
Then, it suffices to consider the Radon-Nikodym derivative (cf. ref. [I14]) [®;2]«(p;) = dua/dre. That is
because
D5 € 'BQQ, I/Q(Dz) =0 = Vl((ﬁi%(Dg)) =0 = [LQ(DQ) =0. (9.11)

Thus, by the Radon-Nikodym theorem, we get a continuous linear operator [®1 o], : L*(Q1, 1) — L1(Qa,v2).
O

Theorem 9.6. Let @5 : L®(2) — L*>(€) be a deterministic causal operator. Then, it holds that

DP1o(f2-g2) = P12(f2) - P12(g2)  (Vf2,Vg2 € L7(22)).

Proof. Let fa, g2 be in L*>(€Qs). Let ¢12 : 1 — Q2 be the deterministic causal map of the deterministic
causal operator ®1 5. Then, we see

[@12(f2- g2)](w1) = (f2- g2)(¢12(w1)) = fa(P1,2(w1)) - ga(d1,2(w1))
=[@12(f2)[(w1) - [P12(g2)](w1) = [P12(f2) - P12(g2)](w1) (Vw1 € Q1)

This completes the theorem. ]

9.2.2 Simple example — Finite causal operator is represented by matrix

Example 9.7. [Deterministic causal operator, deterministic dual causal operator, deterministic causal map]
Define the two states space €21 and 25 such that 2; = Q29 = R with the Lebesgue measure v. Thus, we have
the classical basic structures:

[Co(u) © L, v) C B(LA(,v))] (k= 1,2).
Define the deterministic causal map ¢1 2 : {21 — €23 such that
wy = ¢P12(wy) = 3(w1)2 +2 (Vw1 € Q1 =R).
Then, by (9-10), we get the deterministic dual causal operator ®7 5 : M(£21) — M(Q2) such that
120w = 03242 (Vw1 € ),

where §(.) is the point measure. Also, the deterministic causal operator®; 2 : L>(€Q2) — L*°(£) is defined
by

[@12(f2)](w1) = fo(B(w1)® +2)  (Vf2 € Co(Q2),Vwr € D).
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Example 9.8. [Dual causal operator, causal operator] Recall Remark 2713, that is, if Q (= {1,2,...,n}) is
finite set (with the discrete metric dp and the counting measure v), we can consider that

Co(Q) =L>(Q,v)=C",  M(Q) =LY Qv)=C",  M4u1(Q) =L (Q,v).
For example, put 1 = {w},w? wi} and Qs = {wi,w?}. And define p;(€ M, 1(Q4)) such that
p1= aléw% + agéw% + agéw% (0=Z ar,a9,a3 =1, a;+az+az=1).
Then, the dual causal operator @7, : Mi1(Q1) — M41(92) is represented by

@] 5(p1) =(c1101 + c12a2 + 013(13)%% + (e2101 + ca2a2 + 023(13)5w§
2

0y £1,Y cy=1)
=1

and, consider the identification:M () ~ C3, M(€22) ~ C2. That is,

aq
M(Ql) = a15w1 + 04250_)2 + a35w3 — ag| € (C3
1 1 L (identification) o3

b1 2
M(Q 5 Y
(Q2) 3 b1 w3 + B2 w3 (idenmtion) [52 <C

Then, putting

®7 5(p1) = Brdyy + B2,y = [ﬁl] :

B2
o
p1 = Oq(sw% + ch(sw% + Odg(swi’, = |ag],
L&3
we write, by matrix representation, as follows.
el en ez es] |0
*
1,2(01) = = a2
B2 C21 C22 €23
I as

Next, from this dual causal operator ®] 5 : M(£21) — M(£22), we shall construct a causal operator @ :
Co(Q2) — Co(£21). Consider the identification:Co(Q1) ~ C3, Cp(Q2) ~ C?, that is,

fi(wi)
Co()>fi «— fi(wd)]| e C?,
(identification) Filwd)

fz(w%)} 2
Co( C-.
o) 3 fo (idenﬁa‘cion) [ 5 ©

Let fa € Co(€2), f1 = ®12f2. Then, we see

fi(w]) cin e 1
fiwd)| = fi=P12(f2) = |12 e [?Eggi] .
f1(w?) €13 €23 22

Therefore, the relation between the dual causal operator®] , and causal operator®; s is represented as the
the transposed matrix.
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Example 9.9. [Deterministic dual causal operator, deterministic causal map, deterministic causal operator]
Consider the case that dual causal operator @7, : M(21)(~=C3) — M(Q2)(~C?) ha s the matrix representa-
tion such that

In this case, it is the deterministic dual causal operator. This deterministic causal operator ®; 2 : Cp(£22) —
Co(£21) is represented by

fi(wi) 0 1
fi (w%) = fi=®12(f2) = |1 0 [;2552]
f1(w?) 10 22

with the deterministic causal map ¢ : 21 — €9 such that

Pra(wl) =wy,  dra(wi) =wy,  dra(wi) = w;.

Q 197}

o il —

9.2.3 Sequential causal operator — A chain of causalities

Let (T, <) be a finite tree, i.e., a tree like semi-ordered finite set such that “¢; < ¢3 and ty < t3” implies
“t1 <ty or tg < t1”. Assume that there exists an element to € T, called the root of T, such that tg <t
(Vt € T) holds. Put T2 = {(t1,t2) € T? : t; < t2}. An element to € T is called a root if to < t (Vt € T)
holds. Since we usually consider the subtree Ti, ( € T') with the root to, we assume that the tree has a root.
In this chapter, assume, for simplicity, that 7" is finite (though it is sometimes infinite in applications).

For simplicity, assume that 7" is finite, or a finite subtree of a whole tree. Let T' ( = {0,1,...,N}) be a
tree with the root 0. Define the parent map 7 : T'\ {0} — T such that 7(t) = max{s € T': s < t}. It is
clear that the tree (T' = {0, 1, ..., N}, <) can be identified with the pair (T'= {0,1,.... N},7: T\ {0} = T).
Also, note that, for any ¢t € T\ {0}, there uniquely exists a natural number h(t) (called the height of t )
such that 7"®)(t) = 0. Here, 72(t) = n(n(t)), 73(t) = n(x2(t)), etc. Also, put {0,1, ...,N}i ={(m,n) |0 <
m < n < N}. In Fig. 10.2, see the root tg, the parent map: w(t3) = 7w(ta) = t2, w(t2) = 7(ts) = t1,
w(ty) = 7(te) = w(t7) = to
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s
; L t3
2
™
/ Vw\ ty
- "
to \ \
\ te
Figure 9.2: Tree: (T = {to,t1,....t7}, 7 : T\ {to} = T)
Definition 9.10. [Sequential causal operator; Heisenberg picture of causality] ~ The family {®;, 4, : A, —
_ _® _
Atl}(tl,tg)eTz ( or, { Ay, gt Atl}(tl,tg)eTz ) is called a sequential causal operator, if it satisfies that

(i) For each t (€ T), a basic structure [A; C A; C B(H;)] is determined.

ii) For each (ti,ts) € T2, a causal operator ®;, 4, : Az, — Az, is defined such as @y, 1, Pr, 1, = Py,
= 1,t2 2 1 1,02 2,l3 1,3
(V(t1,t2), Y(to,t3) € Té) Here, ®;; : A; — A; is the identity operator.

(1)2,3 Z
_ 3
(I)l 2 A2 /
/
_ Dot Ay
ACI)O/71 e Q15
Ao T~ 7 As
~Zos Ao
Po7™ 7.

Figure 9.3: Heisenberg picture( sequential causal operator)

Definition 9.11. (i): [Ee—dual sequential causal operator: Schrddinger picture of causality]  The sequence
{(Pert2)s + (An)s = (At)st (e t)er 18 called a pre-dual sequential causal operator of {®y 4, + Ap, —

ﬁtl}(tmﬁz)ETé
(ii): [Dual sequential causal operator : Schrodinger picture of causEIity] B A sequence {®j, ,, : A} —
A 2 is called a dual sequential causal operator of {®y, 4, : Ay, — Ay 2.

t1 (t17t2)€T§ 1,02 2 1 (Ifl,tg)ETg

(PZS** o3 *
/Z (As). iy e A

@1/4“42 12
2,4 * 4)*

(®o1)s (A1 o AT
T < \‘?1 5) A < \1,5A*
o)), (As) Do A 5

(Po7)* (&), o7 Az

(i): pre-dual sequential causal operatoi(ii): dual sequential causal operator
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Figure 9.4: Schrodinger picture (dual sequential causal operator)

Remark 9.12. [The Heisenberg picture is formal; the Schrodinger picture is makeshift] ~ The Schrodinger
picture is intuitive and handy. Consider the Schrodinger picture{®j ,, : A;, — Arl}(tl,tz)eTE‘ For C*-

mixed state pg, (€ ™ (Aj)) (i.e., a state at time 1),

e C*-mixed state p;, (€ ™ (Ajf,)) (at time t2(> t1)) is defined by
Pty = (prl,tthl

However, the linguistic Copenhagen interpretation says “state does not move”, and thus, we consider that

the Heisenberg picture is formal

the Schrodinger picture is makeshift
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9.3 Axiom 2 — Smoke is not located on the place which
does not have fire

In this section, propose Axiom 2 ( Causality), and thus all of QL are presented as follows.

(1) :’ pure measurement theory ‘

(=quantum language)
[/—\X]OI’T‘I 2]

[(pure)Axion 1| (deterministic) [fuantun inguistic Copenhagen mterpretatior)
= ’pure measurement ‘ +| Causality + ’ Linguistic Copenhagen interpretation
(cf. BZ) (cf. 8§E3) (cf. §BD)
a kind of spells (a priori judgment) manual to use spells

(f2) :’ mixed measurement theory ‘

(=quantum language)

[(mixed) Axiom (™) 1] [BxaomJ] [Guantum linguistic Copenhagen mterpretation]
= ’mixed measurement ‘ + ’ Causality ‘ —i—’ Linguistic Copenhagen interpretation
(cf. B8) (cf. §m3) (cf. §51)
a kind of spells (a priori judgment) manual to use spells

9.3.1 Axiom 2 (A chain of causal relations)

Now we can propose Axiom 2 of causality, which is a measurement theoretical representation of the maxim
“Smoke is not located on the place which does not have fire”:
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‘ (C): Axiom 2 (A chain of causalities) ‘ ~

For each t(€ T=*“tree”)), consider the basic structure:

[A: C A; C B(H,)].
Then, the chain of causalities is represented by a sequential causal operator {®y, 1, : A, — Az, }(tl,tz)eTE‘
Also, when @, 4, is always deterministic, it is called a sequential deterministic causal operator. -

T t3
to —

t‘V ‘71'\ ty
-
to T~ V{ ts

T to
™

Later Figure 9.2: Tree: (T = {to,t1,...,t7},m: T\ {to} = T)

Causality

(el

ANote 9.4. Note that there is no mention of ‘time’ yet. Time is discussed in sections B4 and B8. There-
fore, QL (i.e., the linguistic Copenhagen interpretation) asserts “Causality precedes time”. Therefore,
if the concept of time is extended to include parallel time and tree-typed time, these are also considered
to be a type of time.

ANote 9.5. Axiom 2 (causality) as well as Axiom 1 (measurement) are a kind of spells. There are
several spells concerning ”motion”. For example,

(1) [
(f2) [
(#3) [Hegel]: dialectic (Thesis, antithesis, synthesis)
(#a) 1

(#1)—(f3) are non-quantitative, but (f4) is quantitative. Everybody agrees that these ((f1)—(f4)) moved
the world.

Aristotle]: final cause

Darwin]|: evolution theory (survival of the fittest)

aw of entropy increase
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9.3.2 Sequential causal operator — State equation, etc.

In what follows, we shall exercise the chain of causality in quantum language.

Example 9.13. [State equation] Let 7' = R be a tree which represents the time axis. For each
t(€ T), consider the state space 2, = R"™ (n-dimensional real space). And consider simultaneous
ordinary differential equation of the first order

L (1) = vy (wi (t), wa(t), . .., wa(t), 1)
oo (1) = vy (wy (1), wa(t), - . ., wWalt), 1) (9.12)

=y
S
=
—~
~
N—
Il

Un (w1 (1), wa(t), ..., wy(t),t).

which is called a state equation. Let ¢, 1, : Q4 — Qu,, (t1 < t2) be a deterministic causal map induced
by the state equation (912). It is clear that ¢, (0t 1, (W) = Gpyas(Wry) (Wi, € 4yt S 1o S t3).
Therefore, we have the deterministic sequential causal operator {®y, 4, : L>(€,) — L=(4,) } ¢, )12

Example 9.14. [Difference equation of the second order] Consider the discrete time T =
{0,1,2,...} with the parent map = : 7"\ {0} — T such that n(¢) =t —1 (vt = 1,2,...). For
each t(€ T), consider a state space {2, such that 2, = R (with the Lebesgue measure). For example,
consider the following difference equation, that is, ¢ : €2y x Q11 — €15 satisfies as follows.

Wty = gb(wt?wtﬂ) = w + W1 + 2 (Vt € T)

Here, note that the state w2 depends on both w1 and w; (i.e., multiple Markov property). This
must be modified as follows. For each t(€ T') consider a new state space €0 = ; x Q47 = R x R.
And define the deterministic causal map ¢ 441 : €2 — €41 as follows.

(We1, Wiyo) = 5t,t+1(wta Wir1) = (Wig1, wr + wigr + 2)
(V(wt,th) S ﬁt,Vt € T)

Therefore, by Theorem 971, the deterministic causal operator $t7t+1 : L2°(Qyp1) — L2°(€) is defined
by

ﬁ)t,ﬁrlft] (Wi, wip1) = ft(wt—i-la Wt + w1 + 2)

(V(wp, wig1) € Qu, Vfy € L¥(Q1),Vt € T\ {0})).

Thus, we get the deterministic sequential causal operator {&)mﬂ : L°°(§~2t+1) —
L) ber\(oy-

#Note 9.6. In order to analyze multiple Markov processes and time-lag processes, such ideas in Example
914 are needed.
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9.4 Kinetic equation in classical and quantum mechanics

9.4.1 Hamiltonian (Time-invariant system)

In this section, we consider the simplest kinetic equation in classical and quantum systems. Consider
the state space  such that Q0 = R?, that is,

R? =R, x R,={(g,p) = (position , momentum ) | ¢,p € R} (9.13)
Hamiltonian H(q, p) defined by the total energy takes the form of
[Hamiltonian (= H(q, p))]
2

=|kinetic energy(= 2p—m)] + [potential energy(= V' (q))] (9.14)

for a typical case of one particle with mass =m.

9.4.2 Newtonian equation (=Hamilton’s canonical equation)

Newtan{1643-1727)

Concerning Hamiltonian H(q, p), Hamilton’s canonical equation is defined by

dp _ _ H(a.p)
dt Oq
Hamilton’s canonical equation = (9.15)
dg _ ¥(a,p)
dt op
And thus, in the case of (9-14), we get
dp _ _H(ap) _ _ OV(gp)
dt dq Oq
Hamilton’s canonical equation = (9.16)
dg _ 9H(gp) _ p
dt op m
which is the same as Newtonian equation. That is,
d’q OV (q,p)
m—— = [Mass] x [Acceleration] = ————(= Force
L= Mass] x [ | =~ S (= Foree)

Now, let us describe the above (916) in quantum language. For each ¢t € T'= R, define the state
space €); by

Q= Q=R*=R, x R,={(g,p) = (position , momentum ) | ¢, p € R} (9.17)
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and assume Lebesgue measure v. Then, we have the classical basic structure:
[Co(Q) C L>™(Qy) C B(L*(Y))]  (Vt€T =R).
The solution of the canonical equation (9-16) is defined by
Q2w = Gyt (wry) = wyy, € Ly, (9.18)

Since (918) determines the deterministic causal map, we have the deterministic sequential causal
operator {®y, s, : L>(2,) = L>(€;) }, ap)er2 such that

[q)tl,tz(fh)}(wh) = ftz (¢t1,t2 (wt1)) (vft2 S LOO(Q2)7th1 S Qtlv th < tQ)' (919>

9.4.3 Schrédinger equation (quantized Hamiltonian)

The quantization is the following procedure:

( /=10
total energy B P
. . hd
quantization"” ¢ momentum p wantiation, V197 (9.20)
position ¢ —q
. quantization
Substituting the quantization (920) to the classical Hamiltonian:
P
E=X =—4V
(a,p) = o~ + V()
we get
0 h 0 h? 92
hw—-1l—==H¢g,—==—)=——=—+V 9.21
VEIG = Hla ) = 5o+ V() (921)
And therefore, we get the Schrddinger equation:
ou(t,q) h 0 n* o*
hv—1 =H(qg, —=—=—)u(t,q) = ——==u(t V t,q). 9.22
Vv py (g, \/—_18q)u( ,q) 5 anU( ,q) + V(qu(t, q) (9.22)

Putting u(t, ) = u; € L*(R) (Vt € T = R), we denote the Schrodinger equation (922) by

Uy = ——=—=Hu
t h /—_1 t
Solving this formally, we see
up = eﬁiﬁtuo (Thus, the state representation is |ug){u;| = |e%tu0)(eﬁ%tuo| ) (9.23)

Learning the (920) by rote, we can derive Schrédinger equation (9-22). However, the meaning of “quantization”
is not clear.
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where wuy € L?(R) is an initial condition. Now, put Hilbert space H; = L*(R) (V¢ € T = R), and
consider the quantum basic structure:

[€(L*(R)) € B(L*(R)) € B(L*(R))].
The dual sequential causal operator {®;, ,, : Tr(Hy,) — Tr(He,)}e, p)erz 18 defined by
@,y (p) = TR (v € Tr(H) = (B(HL)). = ©(H,)). (9.24)

And therefore, the sequential causal operator {@, 1, : B(H,) = B(Hy, )}y p)er2 is defined by

i(tg—tl) L(tQ_tl)
(I)tl,tz (A) = ew-1 Aeﬁﬁ (VA c B(Hm)) (925)
Also, since
P}, 1, (S7(C(H,,)")) € GP(C(Hy,)"),

the sequential causal operator {®y, 1, : B(Hy,) — B(Hy, )}, ty)erz 18 deterministic. Since we deal

with the time-invariant system, putting ¢ = to — t;, we see that (925) is equal to

—H t I t
At = (Pt(AO) = ehv—1 140671\/771 . (926)
And thus, we get the differential equation:

dA —K —3 X —K _5¢ % H
¢ el Ager/ 1 + e 1l Agerv Tt

At a1 fiv/—1 h/—1
- ﬂ{At) (9.27)

-H H 1
— = A4 A - (A€
=1 ' Thy/=1 b=\
which is just Heisenberg’s kinetic equation. In quantum language, we say that
e Heisenberg’s kinetic equation is formal, and Schrodinger equation is makeshift,

though the two are usually said to be equivalent.

Schrédinger Heisenberg
(1887-1961) (1901-1976)
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9.5 Exercise: Solving Schrodinger equation by variable sep-
aration method

Consider a particle with the mass m in the box (i.e., the closed interval [0, 2]) in the one dimensional
space R. The motion of this particle (i.e., the wave function of the particle) is represented by the
following Schrodinger equation

o 292
h— = — in H=L*R
ihgpa.t) = —5 o v(ad) + Valaiila ) (in H = L2(R)).
where
_JO0 (0=<q¢=2)
Vola) = { oo ( otherwise )
Vo(q)
—— o0
(g, 1)
» R
0 2 4
Figure 9.5: Particle in a box
Put

¢, ) =Tt)X(q) (0<q¢=<2).
And consider the following equation:

h?9?

_W¢(QJt)'

0

Then, we see

i) X'(q)
T(t) 2mX (q)

= K(= constant ).

Then,

&(q,1) = T()X (q) = Cy exp(i k) (01 exp(in/2mE [h q) + Coexp( — in/2mK /h q).)

Since X (0) = X(2) = 0 (perfectly elastic collision), putting K = "28’;?, we see
Fon 2 th
Bla,t) = ()X (q) = Caexp(

) sin(nmq/2) (n=1,2,..).
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Assume the initial condition:
Y (q,0) = ¢y sin(mq/2) + cosin(2mq/2) + c3sin(37q/2) + - - - .

where [ |1#(q,0)[?dg = 1. Then we see

(g, t) = exp(ig:zt) sin(mq/2) + co exp(i47r2ht) sin(2mq/2)
+c3 exp(igW;ht) sin(3mq/2) +--- .
And thus, we have the time evolution of the state by
pr =GO WG 01 (€ X(Tr(H)) € B(H)) (V¢ > 0)

9.6 Random walk and quantum decoherence

9.6.1 Diffusion process

Example 9.15. [Random walk]  Let the state space Q be Z = {0,£1,+2,...} with the counting
measure v. Define the dual causal operator ®* : M, 1(Z) — M 1(Z) such that

di—1 + i1

*(0;) = 5

(i €Z)
where §()(€ M1(Z)) is a point measure. Therefore, the causal operator ® : L*(Z) — L*®(Z) is
defined by

[@(F)](i) = Fe—1) ;L Fi+l) (VF € L®(Z),Vi € Z)

and the pre-dual causal operator ®, : L'(Z) — L'(Z) is defined by

[2.(N)(E) = fi=1) J; Fi+l) (Vf € LNZ),Vi € 7).

Now, consider the discrete time 7" = {0,1,2,..., N}, where the parent map = : T\ {0} — T is
defined by w(t) =t —1 (t = 1,2,...). For each t(€ T'), a state space €}, is define by ; = Z. Then,
we have the sequential causal operator {®.u (= @) : L>() — L®(Qrgw)) brer\{0}-
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9.6.2 Quantum decoherence: non-deterministic causal operator

Consider the quantum basic structure:

[C(H) € B(H) C B(H)].

Let P = {P,}>2, be the spectrum decomposition in B(H), that is,
P, is a projection (i.e., B, = (P,)?), and i P, =1
Define the operator (Vp), : Tr(H) — Tr(H) such that
(Up), (|u)(ul) Z\Pu (Pou| (Vu e H).

Clearly we see

o0

(, (Up),(|u)(u|)v Z|Pu (P,u|)v Z| NP ?>0  (Yu,v € H)

and
Tr ((‘I’P) (lu)(ul))
=T ( Z |Pau)(Poul) = > ) ek, Paw)* =D [Poul® = Jul*  (Yu € H),

n=1 n=1 k=1

where {e;}72, is CONS in H.

Hence
(). (Tri  (H)) € Trea(H).

Therefore, Vp(= ((Vp).)*) : B(H) — B(H) is a causal operator, but it is not deterministic. In
this note, a non-deterministic (sequential) causal operator is called a quantum decoherence.

Remark 9.16. [Quantum decoherence] For the relation between quantum decoherence and quantum
Zeno effect, see § 4. Also, for the relation between quantum decoherence and Schrodinger’s cat,
see § M4, In this note, we assume that the non-deterministic causal operator belongs to the mixed
measurement theory. Thus, we consider quantum language (= measurement theory) is classified as
follows.

( . . .
classical system : Fisher statistics
pure type .
( Al) quantum system : usual quantum mechanics
(A) measurement theory
(=quantum language) classical system : including Bayesian statistics
mixed type and Kalman filter
(A2) quantum system : quantum decoherence
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9.7 Leibniz-Clarke Correspondence: What is space-time?

This section is published in the following:

e ref. [/0]: S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypothesis,
McTaggart’s paradox, etc. are clarified in quantum language
Open Journal of philosophy, Vol. 8, No.5 , 466-480, 2018,
(https ://www.scirp.org/Journal/PaperInformation. aspx'?PaperID=87862)

e ref. [71]; S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypothesis,
McTaggart’s paradoz, etc. are clarified in quantum language; [Revised version] ; Keio Research
report; 2018; KSTS/RR-18/001, 1-15 (https://philpapers.org/rec/ISHLCB)

(http ://www.math.keilo.ac.jp/academic/research_pdf/report/2013/18001 .pdf)

The problems (“What is space?” and “What is time?”) are the most important in modern science
as well as the traditional philosophies. In this section, we give the quantum linguistic answer to these
problems. As seen later, our answer is similar to Leibniz’s relationalism concerning space-time. In this
sense, we consider that Leibniz is one of the discoverers of the linguistic Copenhagen interpretation

9.7.1 “What is space?” and “What is time?”)
Note that

“space” and “time” are not written in Axioms 1 and 2 (in QL);

We must therefore, like God, make “space” and “time” as follows.

9.7.1.1 Space in quantum language
( How to describe “space” in quantum language)

In what follows, let us explain “space” in measurement theory (= quantum language ). For
example, consider the simplest case, that is,

« 9 : :
(A) space” =R, ( one dimensional space)
Since classical system and quantum system must be considered, we see

(B1): a classical particle in the one dimensional space R,

(B)

(B2): a quantum particle in the one dimensional space R,

In the classical case, we start from the following state:
(g,p) = (“position”, “momentum”) € R, x R,

Thus, we have the classical basic structure:
(Cl) [CO(RQ X Rp) C LOO(RQ X Rp) - B(Lz(Rq X Rp)]

Also, concerning quantum system, we have the quantum basic structure:

228 For further information see my homepagé



https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862
https://philpapers.org/rec/ISHLCB
http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18001.pdf
http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 9 Axiom 2 — causality

(C2) [C(L*(Ry) € B(L*(Ry) € B(L*(R,)]
Summing up, we have the basic structure

(Cy): classical [Ch(R, x R,) C L=¥(R, x R,) C B(L*(R, x R,)]
(C) [ACAC B(H))
(C2): quantum [€(L*(R,) C B(L*(R,) € B(L*(R,)]

Since we always start from a basic structure in quantum language, we consider that

How to describe “space” in quantum language
< How to describe [(A):space] by [(C):basic structure]

This is done in the following steps.

(9.28)

Assertion 9.17. [The linguistic Copenhagen interpretation concerning ”space”|
How to describe “space” in quantum language

(D7) Begin with the basic structure:

[ACAC B(H)]

(Dg) Next, consider a certain commutative C*-algebra Ag(= Cy(2)) such that

|

Ay C

(D3) Lastly, the spectrum 2 (~ &P(A,)) is used to represent “space”.

For example,
(E1) in the classical case (Cy):
[Co(R, x R,) C L®(R, x R,) C B(L*(R, x R,))]
we have the commutative Cy(RR,) such that
Co(R,) € L=(R, x R,)

And thus, we get the space R, as mentioned in (A)

(E2) in the quantum case (Cy):
[C(L*(R,) € B(L*(R,)) € B(L*(R,))]
we have the commutative Cy(RR,) such that
Co(Ry) € B(L*(R,))

And thus, we get the space R, as mentioned in (A)
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9.7 Leibniz-Clarke Correspondence: What is space-time?

9.7.1.2 Time in quantum language
( How to describe “time” in quantum language)

In what follows, let us explain “time” in measurement theory (= quantum language ). This is
easily done in the following steps.

Assertion 9.18. [The linguistic Copenhagen interpretation concerning ”time”]
How to describe “time” in quantum language

(F1) Let T be a tree. For each t € T, consider the basic structure:

A, C A, C B(H,)]

(F3) Next, consider a certain linear subtree T'(C T'), which can be used to represent “time”.

9.7.2 Leibniz-Clarke Correspondence

SUBSTANTIVALISM VS, RELATIONALISM

Newton Clarke Leibniz

The above argument urges us to recall Leibniz-Clarke Correspondence (1715-1716: cf. ref. [1]),
which is important to know both Leibniz’s and Clarke’s (=Newton’s) ideas concerning space and
time.

(G) [The realistic space-time]
Newton’s absolutism says that the space-time should be regarded as a receptacle of a
“thing.” Therefore, even if “thing” does not exits, the space-time exists.

On the other hand,

(H) [The metaphysical space-time]
Leibniz’s relationalism says that

(H;) Space is a kind of state of “thing”, i.e., a point in space is regarded as a parameter (=
state).

(Hy) Time is an order of occurring in succession which changes one after another.
Therefore, if “thing” does not exits, the space-time does not exist.

Therefore, I regard this correspondence as

Newton (= Clarke)| <+—

S. . T . .
(realistic view) (linguistic view)
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which should be compared to

[Einstein]  «<—  [Bol]

(realistic view) (linguistic view)
Again, we emphasize that Leibniz’s relationalism in Leibniz-Clarke correspondence is clarified in
quantum language, and it should be regarded as one of the most important parts of the linguistic

Copenhagen interpretation of quantum theory.

ANote 9.7. Many scientists may think that
Newton’s assertion is understandable, in fact, his idea was inherited by Einstein. On the other
Leibniz’s assertion is incomprehensible and literary. Thus, his idea is not related to science.

However, recall the classification of the world-description (Figure U.1 in Preface)

(space-time in physics)

() : Newton, Clarke -‘realistic space-time‘
(realistic world view) “What is space-time?”

.
(successors: Einstein, etc.)

(space-time in measurement theory)

‘ linguistic space-time ‘

(i.e., spectrum, tree)

: Leibniz
li t 1d
(linguistic world view) “How should space-time be represented?”

in which Newton and Leibniz respectively devotes himself to (1) and (2). Although Leibniz’s assertion

is not clear, we believe that

e Leibniz found the importance of “linguistic space and time” in science,

Also, it should be noted that

(#1) Newton proposed the scientific language called Newtonian mechanics,
on the other hand,
Leibniz could not propose a scientific language

After all, we conclude that

(f2) the philosopher’s failure is that they did not propose a language.

Talking cynically, we say that

(#3) Philosophers continued investigating “linguistic Copenhagen interpretation” (=“how to use Ax-
ioms 1 and 2”) without language (i.e., Axiom 1(measurement:§2.7) and Axiom 2(causality:£9.3)).

ANote 9.8. T want to believe that “realistic” vs. “linguistic” is always hidden behind the great disputes

in the history of the world view (cf. ref. [76]). That is,

’realistic world View‘ s ’ linguistic world View‘
' (idealistic)

For example,

For further information see my homepagé
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Table 10.1: Philosophical controversy that has been ongoing for 2,500 years
[(monistic) realistic worldview] vs. [(dualistic) linguistic/idealistic world view]

dispute \_[R] vs. [L] Realistic worldview | Idealistic worldview|
(monism, realism, (dualism, idealism,
no measurement) measurement)
(a): motion Herakleitos Parmenides
(®):Ancient Greece Aristotle Plato
(©): Problem of universals Ockham Anselmus
(): space-time Newton ( Clarke) Leibniz
(®): quantum theory Einstein Bohr
(P):philosophy of science Carnap Quine
®): fuzzy sets Kalman Zadeh

For a detailed discussion, see ref. [76].

9.8 Zeno’s paradox and Motion function method (in classi-
cal system)

Zeno’s paradox is humanity’s oldest unsolved scientific problem. Thus, numerous challenges have
therefore been made to solve Zeno’s paradox. For example,

(i) solving it with Newtonian mechanics.
(ii) Solving it in the framework of relativity.

(iii) solving it in the framework of quantum mechanics, etc.
Why were these challenges not generally approved?

The reason, I think, is that Newtonian mechanics, relativity, quantum mechanics are not a theory of
everyday science. And thus, I would like to consider that

(£) to solve Zeno’s paradox < to discover a theory of everyday science (i.e., classical QL ), and
clarify Zeno’s paradox in classical QL

Thus, let us prove Zeno’s paradox in classical QL as follows.

9.8.1 Zeno’s paradox (e.g., flying arrow)

D =S

distance speed

X T

time

232 For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 9 Axiom 2 — causality

If we obey the motion function method, we can easily solve Zeno’s paradoxes (e.g., Flying arrow) as
follows.

Answer 9.19. (=Answer 2.11 in ref.[76]) Under the motion function method, we discuss “Fly-
ing arrow” as follows.

e Consider the motion function x(t), that is, for each time ¢, the position x(t) of the arrow is
corresponded. It is obvious that

(#) "for each time ¢, the position x(t) of the arrow is corresponded” does not imply that the
motion function x(¢) is a constant function.

Therefore, the arrow is not necessarily at rest.

P

Y

9.8.2 The Schrodinger picture and the Heisenberg picture are equivalent
in the classical system

(The general case (the Schrédinger picture and the Heisenberg picture are equivalent) will be dis-
cussed in section M0T.)

According to Leibniz, “time” is just a “parameter” that can be conveniently created. Let’s
introduce “parallel time” and “Series time. Here, parallel time represents the time lapse of a dice
throw or the law of large numbers, etc.(cf. ref. [77]). Let Q(C RY) (where N is assumed to be
sufficiently large natural number) be a compact space, and let B(e P(£2)) be the Borel field of
Q. (Q,B(2),r) be measure space such that v(2) = 1. Assume that v(D) > 0 for all open set
D(C Q) such that D # (. Thus, we consider the W*-algebraic basic structure [C(Q) C L>(Q,v) C
B(L>(£,v))]. Consider a classical dynamical system (€2, ¢y, +,). Assume that t;,t, € T' = [0, 1] such
that 0 <t <ty <1, amap ¢y, 4,(-) : 2 — Qis bi-continuous and satisfies the following condition:

(ﬁl) hmtzﬁtl ¢t1,t2 (w) =w (w € Q)
(#2) [Ptats © D1 t2) (W) = Pt 3 (D115 (W) = Pty g5 (W) (W € Q0 <t <ty <t3<1)

As mentioned before
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(K) there exists a homomorphism ®;, 4, : L>(Q) — L*>*(Q2) such that

[(I)tLtQ (th)] (wh) = Ot, (¢t1,t2 (wtl )) (thl € Qv vgtz € L™ (Q))>

Consider the following time series (i.e., the case that N =3, Q; =Q,i=0,1,2,3)

(L)

O=(XTF) O=(XTF) O=(XF3h) 0=(X,F,F)

J/state space J/state space J/state space J/state space
®0,1 1,2 $2,3

2, 2, 2,

[wo (Rduwg )]

where O = (X, F, F') is arbitrary observable in L*>(€2).
[(i) Schrédinger pictures ( a state moves) :Parallel time)] of (L):

Figure ( the case that N =3;Q=CQ,;, i=0,1,2,3)

Q| 0= (X,F,F)
®0,0
¢o,0: identity map
: 0=(X,7,F) Po2 = P12 0 o1
¢0,3 = ¢2,3 o ¢1,2 o ¢0,1

[wo(zéwo}

—

D] 0= (X,F,F)

&//g 9\

Q] 0= (X,5,F)

Assume that the state wy(€ §2) at time to(= 0) evolves in time to become ¢4, (wo) (k =0,1,...,N)
as follows:

(H3) state ¢o,(wo) = wo at time tg = 0/n(=0)
state ¢o, (wo) at time ¢, =1/n
state ¢o,(wp) at time to = 2/n

state ¢o4, (wo) at time ty = k/n

state ¢4, (wo) at time ¢, =n/n =1
And assume:

(M) At eich time to(= 0),t1(= 1/n), ..., tx(= k/n), ..., to(= 1), measurement Mooy (0 = (X, F, F), Sig, ;. (wo)])
is taken.
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That is, putting 7, = {to(=0),t1(= 1/n),--- ,t,(= 1)}, we take the tensor product exact measure-
ment:

&) Moy (0 = (X, 5, F), Sigo,, (o))
tL€Ty
=Mc@r) () Or, = (™, B(Q™), Q) F), Sit6., (wol)eyern])
tkeTn tkeTn

Then, we see that, for any =, C X (k =1,2,...,n),

(N) the probability that the measured value belongs to x¥_ =, is given by

k>n< [F(Ek)](Po,1,, (wo))

0

[(ii) Heisenberg picture ( observable moves: (Series time)]

Figure ( the case that N =3; Q=Q;, i=0,1,2,3)

O=(X,3,F) ® O=(X,3,F) ® O=(X,3,F) <I> O=(X,3,F)
[wo]

As mentioned in the above, assume that the state wo(€ Q) at time to(= 0), and T;, = {to(=
0),t1(=1/n), - ,tp_1(= (n — 1)/n), tn(=1)}. Assume that, at each to(= 0),t1(=1/n), - ,t,_1(=
(n—1)/n),t,(= 1), an observable O = (X, P(X), F) is set.

(b4) the observable O(= (X,J, F')) at time ¢,(= 1) is identified with the observable ®; . ; O(=
(X, F, &y, 1, F)) at time ¢,_1. At time ¢,_;, we originally have an observable O, and the
product of this O and ®; O gives the observable at time t,,_1:

nflin
O X ((Ptn—l,tno) ( = (X27 lE i:13:’ F\n—l))

Similarly, the observable it time ¢,,_5 is represented by

O x (q)tn—z,tn—l (O X (q)tn_htno))) ( = (X3> X z:ff, ﬁn—?))

Further, the observable at time t,_3 is represented by,
0 % (D1, 0, 5(0 X (B1, s, (0% (2,,,0))) (= (X', W4T, Fpa))
Iteratively, after all, the observable at time ¢t is represented by,

6150 = O X (@1, (- -+ (O X (Pt 5,05 (O X (P, 1,1 (O X (P4,_,,4,0))))) -+ +))
= (X", X Ry

Thus, we get the measurement MLw(Q)(atO,S[wO]) at time ¢ = 0. Therefore, putting =, C X (k =
1,2,...,n), we see that
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(O) the probability that its measured value belongs to x* = is given by [Fy(ZoxZ1 X - - x Z,,)] (wo)

Here, we see
[Fo(E() X =1 X -+ X En>](u}0)

=[F(Z0))(wo) X Py 0o FL(E1 % -+ % )] (wo)

=[F(Z0)|(wo) X [F1(E1 x -+ X Ep)](w1)

= X [F(ER)] (b0, (w0)

k=0
Here, note that (N)=(O) holds. Thus, we can conclude that

(P) Schrédinger and Heisenberg pictures are equivalent in the classical system

9.8.3 Derivation of the motion function method from (classical) quan-
tum language

In the above, we see that the Schrodinger picture (N) and the Heisenberg picture (O) are equivalent

in classical system. From here, consider the case of exact observables, i.e.,
O0=(X,F,F)=(Q,B(Q),Eq) =O0g,

where B() is the Borel field, [Eq(2)](w) = 1(w € E),=0(w ¢ Z).

Put T' = [0,1]. And further, consider the infinite tensor product exact measurement

® ML"O(Q) (OEQ = (Q, 3<Q)7 EQ)? S[(bo,t(wo)})

teT
=M 0r) () Oy = (27, B(Q7), Q) Ea), Sigos(wo)icr))
teT teT
Thus, we see
(Q) When the tensor product exact measurement My qr) (&),cr Op, = (27, B(QT), Eqr), Si(s0.c(wuy)eer])
is taken, the probability that the measured value (z;);er(€ Q) belongs to any open set which
includes (w;)ier(€ Q) is 1. In the same sense, the measured value (z;)ier(€ QF) is surely
equal to (¢o(wo))ter

Ty = ¢o(wo) /

P

> T(: [O’ 1])
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In general, define the position map P’ : Q(= X) — X’ such that
Q(= X) > [state] 2 [position](= X)
Then, the motion function m : T'— X’ can be written as follows.

m(t) = Pl(¢0,t(wo)) (VteT)

ANote 9.9. Readers may ask the following questions.
e Why is the author concerned with the Zeno’s paradox (like schoolchildren’s problem)?

The reason is as follows.

Seeing [Figure 0.1, I think that

(#) the aim of Western philosophy from a scientific perspective is to propose a theory of everyday
science, under which the Zeno’s paradox is solved.

Also, recall that the main purpose of this book is to propose ‘classical QL’ as the theory of everyday
science.

This is why I was concerned with Zeno’s paradox. Also, if so, this would explain why western
philosophy has been obsessed with Zeno’s paradox for some 2,500 years. That is, I think that the
followings are equivalent

(b1) To solve Zeno’s paradox

(b2) to propose the theory of everyday science

ANote 9.10. Many scientists may not understand the meaning of the ’philosophical theory of time’.
In fact, I do not know what 'Bergson’s theory of time’ means either. However, as discussed in this
chapter, the theory of time within QL would be understandable. Note that the tree structure should
be linear, i.e., T' = {to, 1, ...t, }, if we consider time series. That is,

T: to—t1+—tag— ... 1,
or, more generally,

T: [to,00)

This implies that

(#) the beginning of time always exists. However, there is not always an end to time.
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Chapter 10

Simple measurement and causality

By chapter 10, we have learned all of quantum language, that is,

(1) :’ pure measurement theory ‘

(=quantum language)

[Asaom—7)

[(pure)Axiom 1] (deterministic) [cuantum Tinguistic Copenhagen interpretation|
= ’pure measurement ‘ +| Causality + ’ Linguistic Copenhagen interpretation
(cf. B2.7) (cf. §3) (cf. §6T)

a kind of spells (a priori judgment) manual to use spells

(f2) :’ mixed measurement theory ‘

(=quantum language)

[(mixed) Axiom (™) 1] [BsaomJ] [Guantum Tinguistic Copenhagen imterpretation]
= ’mixed measurement ‘ + ’ Causality ‘ —i—’ Linguistic Copenhagen interpretation
(cf. §&T) (cf. §23) (cf. §B)

TV
manual to use spells

a kind of spells(a priori judgment)
However, what is important is

e to exercise the relationship of measurement and causality.
Since measurement theory is a language, we have to note the following wise sayings:

e FExperience is the best teacher, or Custom makes all things.

10.1 The Heisenberg picture and the Schrodinger picture

In Sec. U822 I discussed the Schrodinger picture and the Heisenberg picture are equivalent in the
classical system, In this section I discuss the Schrodinger picture and the Heisenberg picture in

quantum systems.

10.1.1 State does not move — the Heisenberg picture
We consider that
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10.1 The Heisenberg picture and the Schrédinger picture

“only one measurement” = “state does not move”

That is because

(a) In order to see the state movement, we have to take measurement at least twice. However, the
“plural measurement” is prohibited. Thus, we conclude “state does not move”.

We are tempted to think that this is associated with Parmenides’ words:
There 18 no movement, (10.1)

which is related to the Heisenberg picture. This will be explained in what follows.

Theorem 10.1. [Causal operator and observable] Consider the basic structure:
A C AL C B(Hy)] (k= 1,2).

Let @45 : Ay — A; be a causal operator, aEd let Oy = (X, J, F3) be an observable in As. Then,
0,50, = (X, T, 1 2F5) is an observable in As.

Proof. Let = (€ F). And consider the countable decomposition {Z,Zs,...,=,,...} of 2 ( ie.,

[I]

U EnZn€F,(n=1,2,...),5,NE, =0 (m+#n) > Then we see, for any pi(€ (A1).),

. (7 ®1’2F2(L_J1 =0)a, = . (@2 (U =),

n=1
_Z ( (1312 Pl,FQ Zin > Z(A (P1>¢1,2F2(En)>22

Thus,®, 205 = (X, F, 1 5F3) is an observable in A O

Let us begin with the simplest case. Consider a tree T' = {0,1}. For each t € T, consider the
basic structure:

[A; CA, C B(H)] (t=0,1).

And consider the causal operator @ : A, — Ap. That is,

—  $o;1

Ap +— Ai. (10.2)
Therefore, we have the pre-dual operator (®¢ ;). and the dual operator RS

(Ao)e —— (A1) Ay — Aj. (10.3)

(®o,1)« ®6,1
If &g, : A, — Ap is deterministic, we see that

A D &P (AG) 3 p— Djup € G7(A]) C AL (10.4)
0,1

240 ‘ For further information see my homepagé ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 10 Simple measurement and causality

Under the above preparation, we shall explain the Heisenberg picture and the Schrédinger picture
in what follows.
Assume that
(A;) Consider a deterministic causal operator ®q; : A — Ay.
(Ay) astate py € GP(Af) : pure state
(As) Let Oy = (X;,71, F}) be an observable in Aj.

Then, we see:

Explanation 10.2. [the Heisenberg picture] The Heisenberg picture is just the following (a):
(al) To identify an observable O, in A, with an 10, in Ao . That is,

= $o,1
0104 0,

(in Ao) identification (in Ay)

Therefore,

(a2) a measurement of an observable O; (at time ¢ = 1) for a pure state py (at time t = 0) € SP(AY)
is represented by

MZO (@07101, S[po])'

Thus, Axiom 1 ( measurement: §2.7) says that

(a3) the probability that a measured value belongs to Z(€ F) is given by

a3 (P> @01 (F1(2)) ) 5, (10.5)
Explanation 10.3. [the Schrédinger picture|. The Schrodinger picture is just the following
(b):
(b1) To identify a pure state ®F,po(€ &P(A})) with po(€ &P(Ap)), That is,

@*
A5 D SP(A) 3 o —— s B3 py € SF (A7) C A
identification ’

Therefore, Axiom 1 ( measurement: §2.7) says that

(b2) a measurement of an observable O, (at time ¢t = 1) for a pure state py (at time t = 0) € GP(A7)
is represented by

Mﬁl (Ol ) S[q)*JPO] ) :

0
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10.2 The wave function collapse ( i.e., the projection postulate )

Thus,
(b3) the probability that a measured value belongs to =Z(€ ) is given by

A (‘Pé,lpo, Fl(E))zl, (10.6)

which is equal to
A (po, ¢0,1(F1(E)))ﬁ0- (10.7)

In the above sense (i.e., (I06) and (I0°7) ), we conclude that, under the condition (A;),

the Heisenberg picture and the Schrodinger picture are equivalent.

That is,

Mﬁo(q)O,lola S[po]) < Mﬁl (01, S[cbalpo]) (108)

(identification)

(Heisenberg picture) (Schrédenger picture)

Remark 10.4. In the above, the conditions (A;) is indispensable, that is,
(A;) Consider a deterministic causal operator ®g; : A — Ap.

Without the deterministic conditions (A;), the Schrodinger picture can not be formulated completely.

That is because @, pg is not necessarily a pure state. On the other hand, the Heisenberg picture is
always formulated. Hence we consider that

the Heisenberg picture is formal

the Schrodinger picture is makeshift

10.2 The wave function collapse ( i.e., the projection pos-

tulate
Spread out A Collapsed

. wavefunction
wavefunction e

-
_i Y

The linguistic interpretation says that the post measurement state is meaningless. However,
considering a tricky measurement, we can realize the wave function collapse. In this section, we shall
explain this idea in the following paper:

kY

e Ref. [8Y] Linguistic Copenhagen interpretation of quantum mechanics; Projection Postulate,
JQIS, Vol. 5(4) , 150-155, 2015
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10.2.1 Problem: How should the von Neumann-Liiders projection pos-
tulate be understood?

Let [C(H), B(H)]p(m) be a quantum basic structure. Let A be a countable set. Consider the projec-
tion valued observable Op = (A,2*, P) in B(H). Put

P, = P({\}) (VA e ) (10.9)
Axiom 1 says:

(Ay) The probability that a measured value Ao (€ A) is obtained by the measurement Mgy (Op :=(A, 2%, P),
Sip)) is given by

Tr,, (pPy) (= (u, Pagu) = ||Paull®),  ( where p = |u)(ul) (10.10)
Also, the von Neumann-Liiders projection postulate ( in so called Copenhagen interpretation, cf.
refs. |10, BR]) says:

(Ay) When a measured value Ay (€ A) is obtained by the measurement
Mgy (Op :=(A, 2%, P), S|,)), the post-measurement state ppost, is given by

p _ PAO‘U><u‘pA0
POt [ Py ul?

And therefore, when a next measurement Mpg)(Op :=(X,F, F), S[Ppost}) is taken (where Op
is arbitrary observable in B(H)), the probability that a measured value belongs to =(€ F) is
given by

P Ao U
HP AOUH 7

Pu >) (10.11)

TrH(ppostF(E))< = || Paoue||

F(Z)

Problem 10.5. In the linguistic Copenhagen interpretation, the phrase: “post-measure- ment state”
in the (A,) is meaningless. Also, the above (=(A1)+(Az2)) is equivalent to the simultaneous mea-
surement Mp()(Op x Op, S},), which does not exist in the case that Op and Op do not commute.
Hence the (Ay) is meaningless in general. Therefore, we have the following problem:

(B) Instead of the Op x Op in Mp)(Op x Op, S|,)), what observable should be chosen?

In the following section, I answer this problem within the framework of the linguistic Copenhagen
interpretation.

10.2.2  The derivation of von Neumann-Liiders projection postulate in
the linguistic Copenhagen interpretation
Consider two basic structure [C(H ), B(H)]pm) and [C(H ® K), B(H ® K)|pusk)- Let {Px| A € A}

be as in [Section TU271, and let {e)}rea be a complete orthonormal system in a Hilbert space K. Define
the predual Markov operator ¥, : Tr(H) — Tr(H ® K) by, for any u € H,

U (ju)(u)) =D (Pru@en)() (Pau®ey)| (10.12)

AEA AEA
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10.2 The wave function collapse ( i.e., the projection postulate )

or
Ve(fu)(u)) = Y [Pru@ex)(Pau® ey (10.13)
A€A
Thus, the Markov operator ¥ : B(H ® K) — B(H) ( in Axiom 2) is defined by ¥ = (¥,)*.
Define the observable O¢ = (A, 2%, G) in B(K) such that

GHAD =lex)(eal  (AeA)

Let O = (X,3,F) be arbitrary observable in B(H). Thus, we have the tensor observable Op ® Og =
(X x A,FXR2M F® Q) in B(H ® K), where F X 2% is the product o-field.

Fix a pure state p = |u)(u| (u € H, [Jul|g = 1). Consider the measurement Mp(g)(¥(Of ® Og), S,))-
Then, we see that

(C) the probability that a measured value (z, ) obtained by the measurement Mgz (¥(Or ® Og), S|,))
belongs to Z x {Ag} is given by

Tr, [(Ju) (u)) ¥ (F(Z) ® GUAM )] = 1) ([0)ul, W(F(E) @ G({Ao})) gy
= resie (Lr([u)(ul), F(E) @ G{MD) prar) = Taer (T(lu)(ul))(F(E) @ G({Ao}))]
=Ty (1Y S (Pru@ex)) () (Prau® ex))(F(E) @ lexg) (ex))]

AEA AEA
:<P)\0ua F(E)PAOU> (VE € 3')

( In a similar way, the same result is easily obtained in the case of (IT13)).
Thus, we see the following.

(D) if 2= X, then

Tr,, [(Ju) (ul) ¥ (F(X) ® G{Ao}))] = (Prgu, Prgu) = || Payul® (10.14)

(D2) in case that a measured value (z, A) belongs to X x {\o}, the conditional probability such that x € =
is given by

Py,u
[P ull

F(2)

(Prus F(E)Pagu) (_, Prgu _
[[Proull? <_<||PAOU||’ >) (VE€T) (10.15)

where it should be recalled that Op is arbitrary. Also note that the above (i.e., the projection postulate
(D)) is a consequence of Axioms 1 and 2.
Considering the correspondence: (A) < (D), that is,

MB(H)(OP; S[p]) <OI‘7 meaningless MB(H)(OF X OP,SM) ) g MB(H)(\I/(OF ® Og), S[p]),

namely,
(10.10) < (10.14), (10.11) < (10.15)

there is a reason to assume that the true meaning of the (A) is just the (D). Also, note the taboo phrase
“post-measurement state” is not used in (D3) but in (Ag). Hence, we obtain the answer of Problem I3

(i.e., \I/(OF & OG) )
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Remark 10.6. So called Copenhagen interpretation may admit the post-measurement state (cf. ref. [24)]).
Pyg |u)(u| Py
1Pxgull?
obtained by the (Dg2) ( since Op is arbitrary). However, this idea would not be generally approved. That
is because, if the post-measurement state is admitted, a series of problems occur, that is, “When is a mea-
surement taken?”, “When does the wave function collapse happen?”, or “How fast is the wave function
collapse?”, which is beyond Axioms 1 and 2. Hence, the projection postulate is usually regarded as “postu-
late”. On the other hand, in the linguistic Copenhagen interpretation, the projection postulate is completely
clarified, and therefore, it should be regarded as a theorem. Recall the Wittgenstein’s words: “The limits

of my language mean the limits of my world”.

Thus, in this case, readers may think that the post-measurement state is equal to , which is

Postulate 10.7. [Projection postulate, cf. ref. [6Y]] As mentioned in the above, the statement (As) (= von
Neumann-Liiders projection postulate) is wrong. However, in the sense of the (D2), the statement (Ag) is
often used. That is, we often say:

(E) when a measured value Ao (€ A) is obtained by the measurement Mp ) (Op =
(A, 2%, P), S[y)), the post-measurement state ppost is given by

P)\o|u> <U|P>\o

= 10.1
Ppost = | Bygul? 1010

10.3 de Broglie’s paradox (non-locality=faster-than-light)

In this section, we explain de Broglie’s paradox in B(L?(R)) (¢f. §2-10: de Broglie’s paradox in B(C?) ).
Puttlng q= (QI7 q2, q3) € Rgv and

0* 9?2 9

Vi= 54 S5+ =
d¢f 98¢5 9q3

we consider Schrodinger equation (concerning one particle):

39
ol t) = [V 4 Via t)]ila,) (10.17)

where m is the mass of the particle, V' is a potential energy.
For simplicity, we discuss one dimensional case R, and consider the Hilbert space H = L?(R, dq). Putting
H; = H (t € R), consider the quantum basic structure:

[C(H) € B(H) € B(H)].

Equation 10.8. [Schrodinger equation]. There is a particle P (with mass m) in the box (that is, the
closed interval [0, 2](C R)). Let py, = |¢1,) (¥1,| € SP(C(H)*) be an initial state (at time tg) of the particle
P. Let p; = |[¢¢) (] (to <t < t1) be a state at time ¢, where ¢, = 9(-,t) € H = L?(R,dq) satisfies the
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10.3 de Broglie’s paradox (non-locality=faster-than-light)

following Schrodinger equation:

initial state:1)(-,t0) = 1y,
(10.18)

ih2a(q,t) = | 52 59—;2 + Vg, t)]w(q, t)

V== ‘ ﬁ V=
0

Consider the same situation in §10.5, i.e., a particle with the mass m in the box of closed interval [0, 2]
in one dimensional space R.

Vo(q)

¥(q,t)

Y
=

0 2

Figure 10.1(1)(time to)
Now let us partition the box [0, 2]] into [0, 1]] and [1,2]. That is, we change V(q) to Vi(q), where

0
ha =1 % | (10.19)
o

Vi(q)

wQ(Qa t) .

\

0 %(q, 1 )

Figure 10.1(2)(partition)

Next, we carry the box [0,1] [resp. the box [1,2]] to New York (or, the earth) [resp. Tokyo (or, the polar
star)].
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New York Tokyo
a(q,t1)
Y1(q,t1)
0 1 a+1 a+2

Figure 10.1(3)(time t1)
Here, 1 < a. Solving the Schrédinger equation (IU-IR), we see that

P1(-,t1) + 2, t1) = Uyt Y10

where Uy, ¢, : L?(Ry,) — L%*(Ry,) is the unitary operator. Define the causal operator @y, ¢, : B(L?(Ry,)) —
B(L*(Ry,)) by

CI)150,151 (A) = Utt),h AUto,h (VA S B(L2 (Rt2)))

Put T = {to,t1}. And consider the observable O = (X = {N,T.E},2% F) in B(L*(Ry,)) (where “N”=New
York, “T”=Tokyo, “E”=elsewhere ) such that

FU@ = § ot FUTHI0 = {

[FHEDN ) =1 - [FENDHI9) = [FETHI(9)-

1 a+1<g<a+2

0 elsewhere ’

Hence we have the measurement I\/IB(L2(RtO)) (@to,tlo, S[\¢t0><1/)z0\])‘

Conclusion 10.9.
In Heisenberg picture, we see, by Axiom 1 ( measurement: §2.7), that

N
(A1) the probability that a measured value | 7' | is obtained by the measurement
E

MB(LQ(]RtO)) ((I)to,tlo, S[‘¢t0><¢tou> is given by

(Utg, ®rg.ty F({N Pugg) = [y 11 (g, t1)[2dg
<Ut0, ¢t0~t1F<{T})uto> = fj_:rf W2(q,t1)|2dq
<ut07 q>to~t1F({E})uto> =0

Also, In Schrédinger picture, we see Axiom 1 ( measurement: §2.7), that

N
(Ag) the probability that a measured value | T' | is obtained by the measurement
E
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10.4 Quantum Zeno effect

Mb (L2 ®yy)) (O’ Sie; (|wt0><wt0|>1) is given by

tg,t1

T (@7, 1, (10) (o) - FUND)) = Ut s thros FUNDUratita) = . 11(a, 1) dg
Tr (I)Zko,tl(’wtoxwtob : F({T})> = <Uto7t1¢toaF({T})Uto,tlwto> = fj_:f W}Q(q?tl)‘qu
T (@7, 1, (1010) (Vo)) - FUEYD) = Wros s FUEDUrgt1 1) = 0

Note that the probability that we find the particle in the box [0,1] [resp. the box [a + 1,a + 2]] is given
by [ [1(q,t1)Pdg [resp. [ [12(g, t1)[Pdg]. That is,

(A1)=(A2)

Remark 10.10. In the above, assume that we get a measured value “N”, that is, we open the box [0, 1] at
New York. And assume that we find the particle in the box [0, 1]. Then, in the sense of Projection postulate
077, we say that at the moment the wave function 1 vanishes. That is,

New York Tokyo
. “Vanish”
¢1 (Q7 tl)
0 1 a+1 a+2

Figure 10.1(4) (The wave function after measurement)

where

/ (g, tr)
vileh) = T

Thus, we may consider “the collapse of wave function” such as

(-, t1) + a(- ) Py (-t1) (10.20)

the collapse of wave function

Also, note that New York [resp. Tokyo] may be the earth [resp. the polar Star]. Thus,
e the above argument (in both cases (A1) and (Ag)) implies that there is something faster than light.

This is called “the de Broglie paradox”(cf. refs. [[3, [07]). This is a true paradox, which is not clarified
even in quantum language.

10.4 Quantum Zeno effect

This section is extracted from
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e Ref. [B0]: S. Ishikawa; Heisenberg uncertainty principle and quantum Zeno effects in the linguistic
Copenhagen interpretation of quantum mechanics
( prXiv:1308.5469 [quant-ph[ 2014")

10.4.1 Quantum decoherence: non-deterministic sequential causal op-
erator

Let us start from a review of Section B67 (quantum decoherence). Consider the quantum basic structure:

(€(H) € B(H) € B(H)].

Let P = [P,]o2; be the spectrum decomposition in B(H), that is,

oo
P, is a projection, and, Z pP,=1.

n=1
Define the operator (¥p), : Tr(H) — Tr(H) such that
(We)-(ju) (ul) = S [Puu) (Pl (Vu € H).
n=1
Clearly we see
(, (Up)(|u) (u])v Zypu (Pyul)v Z| P> >0 (Yu,v € H)
and
Tr((We)x(lu)(ul))
=Tr(Y_ [Pau)(Puul) = > Y ew, o) = Y |1Paul® = [[ul® (V€ H)

n=1 n=1 k=1 n=1

Hence
(Up)« (Tl (H)) € Triq(H).

Therefore,

(#) Up(= ((Up)s)*) : B(H) — B(H) is a causal operator, but it is not deterministic.

In this note, a non-deterministic (sequential) causal operator is called a quantum decoherence.

Example 10.11. [Quantum decoherence in quantum Zeno effect cf. ref. [&7]]. Further consider a causal
operator (¥5), : Tr(H) — Tr(H) such that

(U5 «(Ju)(ul) = le”

where the Hamiltonian H is, for example, defined by

iHAL _iHAt

nouy(em hou|l (Yue H),

_[ h? 92

By V(q,t)}.
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10.4 Quantum Zeno effect

Let P = [P,]22, be the spectrum decomposition in B(H), that is, for each n, P,, € B(H) is a projection
such that

iPn:I.
n=1

Define the (Up), : Tr(H) — Tr(H) such that

[e.e]

(Ve)u(lu)(ul) = D [Paw)(Poul  (Vu € H).

n=1

Also, we define the Schrédinger time evolution (W4%), : Tr(H) — Tr(H) such that

1HAL 1HAL

nouy(em R oul (Vue H),

(U5 (lu)(ul) = e

where H is the Hamiltonian (921). Consider ¢ = 0,1. Putting At = %, H = Hy = H;, we can define the

((ID(()]’\P)* : Tr(Hy) — Tr(H;) such that

(@57). = (Y™ (Wp).) Y,

which induces the Markov operator @é{\{) : B(H1) — B(Hj) as the dual operator @é{\p = ((@éj\lf))*)* Let

p = |Y)(¢| be a state at time 0. Let O :=(X,F, F) be an observable in B(H;). Then, we see
p=1) (¥
o)
01 01 =(X,F,F)

Thus, we have a measurement:

N
MB(HO)(Q)[()J)OL S[p])

(or more precisely, MB(HO)(CID((){\{)O =(X, 7, @é{\{)F), Sigyw)) )- Here, Axiom 1 ( §2.7) says that
(A) the probability that the measured value obtained by the measurement belongs to Z(€ ¥) is given by

(N)

Tr([p) (] - 41 F(E)). (10.21)
Now we shall explain “quantum Zeno effect” in the following example.

Example 10.12. [Quantum Zeno effect]

Hot soup is hard to cool down when you see it.
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Let ¢ € H such that ||| = 1. Define the spectrum decomposition
P =[Pi(= ) {]), Po(= T — P1)]. (10.22)
And define the observable Oy :=(X,F, F') in B(H;) such that
X = {1, 22}, F=2%
and

F({z1}) = [0)@l(= P1), F({xz2}) = I = [)@l(= Po).

(
~ (1= 0P~ 1. CwP) =1 (N = o) (10.23)

Thus, if N is sufficiently large, we see that
N
M (i) (@101, Sty (w) = Mis(azg) (2101, Sy o)
(where ®; : B(H;) — B(Hy) is the identity map)
= Mp (o) (O1, Spy wi))-

Hence, we roughly say in Schrodinger picture that

the state ) {y| does not move.

Remark 10.13. The above argument is motivated by B. Misra and E.C.G. Sudarshan (ref. [93]). However,
the title of their paper: “The Zeno’s paradox in quantum theory” is not appropriate. That is because

(B) the spectrum decomposition P should not be regarded as an observable (or moreover, measurement).

The effect in Example 12 should be called “brake effect” and not “watched pot effect”.

10.5 Schrodinger’s cat, Wigner’s friend and Laplace’s de-
mon
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10.5 Schrodinger’s cat, Wigner’s friend and Laplace’s demon

10.5.1 Schrodinger’s cat and Wigner’s friend

Let us explain Schrédinger’s cat paradox in the Schrodinger picture.

Problem 10.14. [Schrédinger’s cat]

(a) Suppose we put a cat in a cage with a radioactive atom, a Geiger counter, and a poison gas bottle;
further suppose that the atom in the cage has a half-life of one hour, a fifty-fifty chance of decaying
within the hour. If the atom decays, the Geiger counter will tick; the triggering of the counter will
get the lid off the poison gas bottle, which will kill the cat. If the atom does not decay, none of the
above things happen, and the cat will be alive.

polson gas

. GeigeT counfer

@ radioactiv(

Figure 10.2: Schrodinger’s cat

Here, we have the following question:

(b) Assume that, after one hour, you look at the inside of the box. Then, do you know whether the cat
is dead or alive after one hour ?
Of course, we say that it is half-and-half whether the cat is alive. However, our problem is

Clarify the meaning of “half-and-half” !

LY
%\§>+/—*5-|x>=>| b
|

ANote 10.1. [Wigner’s friend]: Instead of the above (b), we consider as follows.

(b’) after one hour, Wigner’s friend look at the inside of the box, and thus, he knows whether the
cat is dead or alive after one hour. And further, after two hours, Wigner’s friend informs you of
the fact. How is the cat 7

This problem is not difficult. That is because the linguistic Copenhagen interpretation says that ”the
moment you measured” is out of quantum language. Recall the spirit of the linguistic world-view (i.e.,
Wittgenstein’s words) such as

The limits of my language mean the limits of my world
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and

What we cannot speak about we must pass over in silence.

THE LIMITS OF MY
LANGUAGE
MEAN THE LIMITS - .

OF MY WORLD. (Ludwig Wittgenstein)

(1889-1951)

Whereof one cannot speak, thereof
one must be silent.

The pure state, Projection postulate I0-7)].
Put q = (q11, 912, 413, 421, 422, 423, - - - » s Gn2, Gn3) € R*". And put

0? 0? 0?
Vi = + o5+t 5o
d¢7; 947 04

Consider the quantum system basic structure:
[C(H) C B(H) C B(H)] ( where H = L?(R3",dq) ).

And consider the Schrédinger equation (concerning n-particles system):

ihgr(a,t) = | S0 52V + V(e t)|v(a1)
(10.24)

Yo(q) = 1(q,0) : initial condition

where m; is the mass of a particle P;, V is a potential energy.
If we believe in quantum mechanics, it suffices to solve this Schrodinger equation ([MI24). That is,

(A1) Assume that the wave function (-, 60%) = Uy gp2¢0 after one hour (i.e., 60? seconds) is calculated.
Then, the state pgo2 (€ Trh | (H)) after 60% seconds is represented by

Peo2 = [We02) (Ve02| (10.25)
(where 402 = (-, 607)).
Now, define the observable O = (X = {life, death}, 2%, ') in B(H) as follows.
(Ag) that is, putting

|w) (ul

[l

Vieath (S H) = the orthogonal complement space of Vj;¢,
—{ue H [ (uo) =0 (Vo€ Vigo)}

Wife(C H) = qu € H | “ the state

—

7 & “cat is alive”}

define F'({life})(€ B(H)) is the projection of the closed subspace V};f, and F'({death}) = I —F({life}),

Here,
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(A3) Consider the measurement Mg (0O = (X, 2X F ), Spe02))- The probability that a measured value
[ life

death } is obtained is given by

Tr(H) 9602>F({hfe})>B(H) = (Ye02, F'({life})1g02) = 0.5
Tr(H) PGOQ,F({death})>B(H) = (Y02, F'({death})pgp2) = 0.5

Therefore, we can assure that

1
VYeo2 = ﬁ(d}]ife + wdeath)' (10.26)

(where 9jire € Viife, [[¥1ifell =1 Ydeath € Vaeath: [¥deatnll =1)
Hence. we can conclude that
(A4) the state (or, wave function) of the cat (after one hour ) is represented by (I026), that is,

“Fig.(ﬂl)”-f' “Fig.(ﬂ2)77
V2

Fig. (#1) = ife Fig. (#2)= Ydeatn
|

‘poipon gas

. Geiger countetl Geiger countet

radioactive gtom l radioactive

Figure 10.3: Schrodinger’s cat(half and half)

click!

poisor/gas

o+

o111

And,

(As) After one hour (i.e., to the moment of opening a window), It is decided “the cat is dead” or “the cat
is vigorously alive.” That is,

13 b2l 1
half-dead ( = §(|d}life + Y death) (Ylife + ¢death|))

in the sense of projection postulate T4 ( precisely speaking, by the misunderstanding of projection
postulate M0-7),

“alive” (= [¥yife) (V1ifel)

to the moment of opening a window

the collapse of wave function

“dead” (= [¥geath) (Ydeath!)
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10.5.3 The answer using decoherence

Answer 10.16. [The second answer to Problem M0.14)].
In quantum language, the quantum decoherence is permitted. That is, we can assume that

(B1) the state pg, after one hour is represented by the following mixed state

/ 1
Peoz = 5 (|¢life><¢life| + |wdeath><¢death‘>

That is, we can assume the decoherent causal operator ®( g2 : B(H) — B(H) such that
(Po602)+(P0) = Pep2-

Here, consider the measurement Mgz (0 = (X, 2% F), S[ngQ}), or, its Heisenberg picture Mp()(®g 6020 =
(X, 2%, @ 602 F), Sipp)). Of course we see:

life
death
Mp (i) (96020 = (X, 2%, @ 602 F), Sypp]) is given by

(B2) The probability that a measured value [ } is obtained by the measurement

7o) (0 @02 F({1ife}) ) ) = (Y, F({life})igoe) = 0.5
Tr(H) \ PO, (I)O,ﬁozF({death}))B(H) = <¢/602’ F({death})ygp2) = 0.5

Also, “the moment of measuring” and “the collapse of wave function” are prohibited in the linguistic
Copenhagen interpretation, but the statement (B2) holds in quantum language. O

10.5.4 Summary (Laplace’s demon)

Summary 10.17. [Schrédinger’s cat in quantum language]
Here, let us examine

AnswerllLTH :(Aj5) vs. AnswerliLT6 :(By)
(C1) the answer (As) may be unnatural, but it is an argument which cannot be confuted.

On the other hand,
(Cg) the answer (B2) is natural, but the non-deterministic time evolution is used.

Since the non-deterministic causal operator (i.e., quantum decoherence) is permitted in quantum language,
we conclude that

(C3) Answer ML16:(B3) is superior to Answer TOLTH:(A;).

For the reason that the non-deterministic causal operator (i.e., quantum decoherence) is permitted in quan-
tum language, we add the following.
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10.6 Wheeler’s Delayed choice experiment: “ Particle or wave ?” is a foolish question

e If Newtonian mechanics is applied to the whole universe, Laplace’s demon appears. Also, if Newtonian
mechanics is applied to the micro-world, chaos appears. This kind of supremacy of physics is not
natural, and thus, we consider that these are beyond “the limit of Newtonian mechanics”

And,

e when we want to apply Newton mechanics to phenomena beyond “the limit of Newtonian mechanics”,
we often use the stochastic differential equation (and Brownian motion). This approach is called
“dynamical system theory”, which is not physics but metaphysics.

beyond the limits

Newtonian mechanics‘ : —
physics linguistic turn

‘dynamical system theory; statistics‘ (10.27)

metaphysics

In the same sense, we consider that quantum mechanics has “the limit”. That is,
e Schrodinger’s cat is beyond quantum mechanics.
And thus,

e When we want to apply quantum mechanics to phenomena beyond “the limit of quantum mechanics”,
we often use the quantum decoherence. Although this approach is not physics but metaphysics, it is
quite powerful.

beyond the limits

quantum language

metaphysics

quantum mechanics

Physics linguistic turn

ANote 10.2. If we know the present state of the universe and the kinetic equation (=the theory of
everything), and if we calculate it, we can know everything (from past to future). There may be a
reason to believe this idea. This intellect is often referred to as Laplace’s demon. Laplace’s demon is
sometimes discussed as the super realistic-view (i.e., the realistic-view over which the degree passed).
Thus, we consider the following correspondence:

beyond the limits

> | Laplace’s Demon (10.28)
physics ?

Newtonian mechanics‘ —
physics super realistic-view

This should be compared with the formula (ITC27).

10.6 Wheeler’s Delayed choice experiment: * Particle or
wave ?7” is a foolish question
This section is extracted from

(#) [B8] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the quantum
linguistic Copenhagen interpretation, arxiv:1407.5143]|quantum-ph], (2014)
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10.6.1 “Particle or wave ?” is a foolish question

In the conventional quantum mechanics, the question: “particle or wave?” may frequently appear.
However, this is a foolish question. On the other hand, the argument about the “particle vs. wave” is clear
in quantum language. As seen in the following table, this argument is traditional:

Table 11.1: Particle vs. Wave in several world-views (cf. [Tabhle 21 )
’ World-views \ P or W H Particle(=symbol) ‘ Wave(= math. represent ) ‘
Aristotle hyle eidos
Newton mechanics point mass state (=(position, momentum))
Statistics population parameter
Quantum mechanics particle state (~ wave function)
Quantum language system (=measuring object) state

In table 11.1, Newtonian mechanics (i.e., mass point <> state) may be easiest to understand. In view
of this table, we understand “particle” and “wave” are not contradictory concepts, so that it is possible to
think

(A;) “Particle or wave” is a foolish question.

On the other hand

(A2) we have Wheeler’s delayed choice experiment on “particle or wave”.
So let me answer the interesting question:

(A3) How is Wheeler’s delayed choice experiment described in quantum mechanics 7

10.6.2 Preparation

Let us start from a review of Section 210 (de Broglie paradox in B(C?)). Let H be a two dimensional
Hilbert space, i.e., H = C2. Consider the basic structure

[B(C?) € B(C?) € B(C?)].

Let fi, fo € H such that

Put

fi+ fa
V2

Thus, we have the state p = |u)(u| (€ &P(B(C?))). Let U(€ B(C?)) be an unitary operator such that
1 0
U= I:O eiTr/2:| )
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and let ® : B(C2) — B(C?) be the homomorphism such that
®(F)=U*FU  (VF € B(C?).
Consider two observable Oy = ({1,2},2{:2}, F) and O, = ({1,2},2{"?},G) in B(C?) such that
F{1}) =1f)Al FA2h) =[f2(f2l and  G{1}) =|g)(nrl, G({2}) = [g2) (92|

where

i [ it fo
g1 = \/i ) go = \/5 .

10.6.3 de Broglie’s paradox in B(C?) (No interference)

half mirror 1

u= 7 (fi+f2) “.. course 1 %fl mirror 1
Photon P | "=
course 2 %j} %fl
N\ %f 2 rfz
N\ ) ([f2)(f2]))
mirror 2 photon detector)
4h

Dy (= ([f1)(f1])

Y
J (photon detector)

Figure 10.4(1). [D; + Dy]=Observable Oy

Now we shall explain, in the Schrédinger picture, Figure 10.4(1) as follows. The photon P with the state
u= %(f 1 + f2) ( precisely, p = |u)(u| ) rushed into the half-mirror 1,

(B1) the f; part in u = %( f1+ f2) passes through the half-mirror 1, and goes along the course 1. And it
is reflected at the mirror 1, and goes to the photon detector D;.

(Bg) the fo part in u = %( f1 + f2) rebounds on the half-mirror 1 (and strictly saying, the fo changes to

v —1fa, we are not concerned with it ), and goes along the course 2. And it is reflected at the mirror
2, and goes to the photon detector Ds.

This is, in the Heisenberg picture, represented by the following measurement:

MB((Cz)((I)Of,S[p]) (10.29)

Then, we see:
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a measured value 1

(C) the probability that [ a measured value 2

} is obtained by Mpc2)(®0y, S|)) is given by

[<UU7F({1})52>} _ [(Uu, flﬂ _ {

(Uu, F({2})Uu) (U, f2)|? ] (10.30)

D=0 =

Remark 10.18. [Projection postulate] By the analogy of Section T2 ( The projection postulate ), Figure
10.4(1) is also described as follows. That is, putting e; = [(1)] and ey = [(1]] (€ C?), we have the observable

Op = ({1,2},2112} E) in B(C?) such that E({1}) = |e1)(e; and E({1}) = |e1)(e1. Hence,

half mirror 1

u=75 (f1+2) ., course 1 %f1®61 mirror 1
Photon P | "=
course 2 %fg@eg %ﬁ@el
N N
v ~—=J2®e = J2®e
\ 7 J20e 2 12922 8 (= (0) @ Jea) (ea)))
mirror 2 (photon detector)

%ﬁ@el

v D= (0 @ler)(e))
(photon detector)
Figure 10.4(1"). [D1 4+ D2|=0; ® Op

Thus, using the Schrodinger picture, in the above figure we see:

v —1
fi®e] + — fo®es

1 1
u:72(f1+f2) —= NG

V2 time evolution V2

which may imply that spacetime and quantum entanglement are related.

10.6.4 Mach-Zehnder interferometer (Interference)

Next, consider the following figure:
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half mirror 1

=1 . 1 irror 2
u=75(f1+/2) -, Course 1 \/ifl {
Photon P | ™ N
course 2 ‘/% fo % f1
Ef . 0
\ 2
N\ 2 ) Da(= () (e2])
mirror 1 half mirror 2| photon detector)
%f 1— %f 2

D1(= (lg1)(91l))

J (photon detector)

Figure 10.4(2). [D1 + D2]=0ObservableO,

Now we shall explain, by the Schrodinger picture, Figure 10.4(2) as follows. The photon P with the
state u = %(fl + f2) ( precisely, p = |u)(u| ) rushed into the half-mirror 1,

(Dy) the f1 part in u = %(f 1 + f2) passes through the half-mirror 1, and goes along the course 1. And

it is reflected at the mirror 1, and passes through the half-mirror 2, and goes to the photon detector
D;.

(D2) the fy part in u = %(f 1 + f2) rebounds on the half-mirror 1 (and strictly saying, the fs changes to

v —1fs, we are not concerned with it ), and goes along the course 2. And it is reflected at the mirror
2, and further reflected in the half-mirror 2, and goes to the photon detector Ds.

This is, by the Heisenberg picture, represented by the following measurement:
MB(Cz)(QJQOg, Sp)- Then, we see:

a measured value 1

(E) the probability that [ a measured value 2

} is obtained by MB((CZ)(q)QOg, S|p)) is given by

[caeciiana) = oopae] = o) 03

10.6.5 Another case

Consider the following Figure 10.4(3).
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half mirror 1

u=—=(fi+f2) = if mirror 2
V2 = course 1 1
2 V2 Di(= (If0)(A)
Photon P . (photon detector)
course 2 % fo
\ T
N\ "
mirror 1 half mirror 2
L,

Da(= (If2)(f2]))

\J (photon detector)

Figure 10.4(3). [D2 + D1] =ObservableO ¢

Now we shall explain, by the Schrodinger picture, Figure 10.4(3) as follows. The photon P with the
state u = %(fl + f2) ( precisely, p = |u)(u| ) rushed into the half-mirror 1,

1) the f1 part in v = —=(f1 + f2) passes through the hall-mirror 1, and goes along the course 1. And 1t
F h i \}5 h h the half-mi 1 d 1 h 1. And i
reaches to the photon detector D.

(Fy) the fo part in u = %(f 1 + f2) rebounds on the half-mirror 1 (and strictly saying, the fo changes to

v —1fs, we are not concerned with it ), and goes along the course 2. And it is again reflected at the
mirror 1, and further reflected in the half-mirror 2, and goes to the photon detector Ds.

This is, in the Heisenberg picture, represented by the following measurement:
Mpc2) (20, Siy))- (10.32)

Therefore, we see the following:

measured value 1

(G) The probablhty that [measured value 2

} is obtained by the measurement
MB(Cz)(@QOf, S[,)) is given by

[To- e - [0 o] _ (00w 0] [3].

2

Therefore, if the photon detector D; does not react, it is expected that the photon detector D5 reacts.

10.6.6 Conclusion

The above argument is just Wheeler’s delayed choice experiment. It should be noted that the difference
among Examples in §11.5.3 (Figure 10.4(1))- §11.5 (Figure 10.4(3)) lies in the observables (= measuring
instrument ). That is,
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§11.5.3 (Figure 10.4(1)) OO
Heisenberg picture

§11.5.4 (Figure 10.4(2)) 20,
Heisenberg picture

§11.5.5 (Figure 10.4(3)) 204

Heisenberg picture

Hence, it should be noted that

(H) Wheeler’s delayed choice experiment —“after the photon P passes through the half-mirror 1, one of
Figure 10.4(1), Figure 10.4(2) and Figure 10.4(3) is chosen” — can not be described paradoxically in
quantum language.

Hence, Wheeler’s delayed choice experiment is not a paradox in quantum language, or in the sense of
Wittgenstein’s words (i.e., the spirit of the linguistic world view):

What we cannot speak about we must pass over in silence.

However, it should be noted that the non-locality paradox (i.e., “there is something faster than light”) is
not solved even in quantum language.

ANote 10.3. What we want to assert in this book may be the following:

(#) everything (except “there is something faster than light”) can not be described paradoxically in
quantum language

10.7 Hardy’s paradox: total probability is less than 1

In this section, we shall introduce the Hardy’s paradox (cf. ref.[I8]) in terms of quantum language”.
Let H be a two dimensional Hilbert space, i.e., H = C2. Let fi, f2, 91,92 € H such that

T R o B T L

Put

u:fl\%ﬁ(:gl)

Consider the tensor Hilbert space H ® H = C?> ® C? and define the state p such that

/:ﬁ+ﬁ®ﬁ+ﬁ
V2 V2

As shown in the next section (e.g., annihilation (i.e., fi ® fi — 0), etc.), define the operator P : C? @ C% —
C? ® C? such that

p=luu){u®u|

U=u®u

Plonfi® fi+o2fi @ fa+ a1 fo @ fi + oo fo @ fo)

IThis section is extracted from

(#) [68] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the quantum linguistic
Copenhagen interpretation, hrxiv:1407.5143[quantum-ph],( 2014)
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=—0pfi® fa—anfo® fi+anfr® f

Here, it is clear that

P2 (a1 f1 ® fi + a1af1 @ fo + ao1fo ® fi + aafo @ fo)
=apf1® fotanfo® fi+anfo®f

hence, we see that P? : C> ® C?> — C? ® C? is a projection.  Also, define the causal operator T
B(C? ® C?) — B(C?2® C?) by

U(A)=PAP (A€ B(C*®C?)
Here, it is easy to see that U : B(C2 ® C?) — B(C2 ® C?) satisfies
(A1) U(A*A) >0 (VA€ B(C2®C?))
(As) U(I) = P2

Since it is not always assured that W(I) = I, strictly speaking, the ¥ : B(C2®C2) — B(C2®(C?) is a causal
operator in the wide sense.

10.7.1  Observable O, ® O,
Consider the following figure

Positron B’ %(f{ + f3)
of V=1 # mirror 2/
N\

course
half mirfesr 1/

1/ / V=1 g1
. half mirror 1 coue i V2 7, 2 L
ﬁ(flJr'f.Q_) course 1 %ﬁ irror 2 DZ(S (lg1)(911))
Electron P|"™s N N no annihﬂatiqn,fl{zf{ ( ‘et)ector)
V=1 mirro\r 1/ half mirror ¥
course 2 ﬁf 2 ifl no annihilation,
—=h
, s -  Di(= (lg5)hl)
" > ) (Detector)
mirror 1 half mirror |2 Ds(= (lg1){g1]))

(Detector)

D1 (= (|g2)(92
o 25

Figure 10.5(1). Electron P and Positron P’ are annihilated at ®

In the above, Electron P and Positron P’ rush into the half-mirror 1 and the half-mirror 1’ respectively.
Here, “half-mirror” has the following property:

1 / I
[O] =h=hH) pass through half-mirror [0] =Eh=hH)
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m(Zbeé) \ﬁ”( fa=13)

be reflected in half-mirror, and x+/—1

Assume that the initial state of Electron P [resp. Positron P'] is 81 f1 + Saf2 [resp. 51 f1 + B5f5]. Then, we
see, by the Schrodinger picture, that

(Buf1 + Baf2) ® (BLfL + Bofs) = B1BLAL® fi + B1Baf1 @ fo + Bofifa @ f1 + BaBofo ® [

(half-mirror)

BiBLfL® f1+ V=1B1B3f1® fo + V—1B281f2 ® fi — B2fBofo ® f3

(annihilation(i.e., f1 ® f] = 0))
V1818511 @ f3 + V—1B2B1f2 ® f1 — BaBsf2 ® [

(second half-mirror)

— B1Baf1 @ fo — BaPLfo ® f1 + BafBafo ® f

The above is written by the Schrédinger picture v, :Tr(C?eC?) — Tr(C?® CZ). Thus, we have the
Heisenberg picture (i.e., the causal operator ) v B((C2 ® C?) — B(C? ® C?) by U= (¥,)*. Define the
observable Og4y = ({1, 2} {1,2}, 21.2hx{1,2} H g) in B(C? @ C?) by the tensor observable O, ® Oy, that is,

Hyg({(1,1)}) = g1 ® g1) (g1 © a1,
ﬁgg({(Qa 1)}) =92 ® g1){g2 ® g1,

Hyg({(1,2)}) = |91 ® g2) (g1 © g2,
Hyg({(2,2)}) = |92 ® g2) (g2 © g2

Consider the measurement:
MB(@@CQ)(\I/OQQ, Si1) (10.33)
Then, the probability that a measured value (2,2) is obtained by M B(@@CQ)(@G, S[p)) is given by

(uu, PHyg({(2,2)}) P(u® w))
Nh-Ff)eh-f) heofh+heh+ L)
16
Wheh-hoh-heht+thefh Ahtheoht+thef)P 1

16 16

Also, the probability that a measured value (1,1) is obtained by M B(C2®C2)(\TJ699, Sip)) is given by

(u @ u, PHyy({(1,1)})P(u @ u))
:’<(f1+f2)®(f1+f2),f1®f2+f2®f1+f2®f2>’2
16
heh+heh+hHLOA+8f, @ fat+fo@fi+ 2@ )P 9

16 16

Further, the probability that a measured value (1,2) is obtained by M B((C2®(CQ)((I\’6gg, S(p)) is given by

(u® u, PHyg({(1,2)}) P(u®u))

_Nh+hR)ehi-f) Ao+t M)
16
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(riefi-heh+theofi-fef hohthohthof)? 1
16 16

Similarly,

(u@u, PHyy({(2, 1)} P(u®u)) = 1o

Remark 10.19. Note that
3

= + ) + = L <1
16 16 16 4
which is due to the annihilation. Thus, the probability that no measured value is obtained by the measure-

ment MB(@@@)(@@, S)) is equal to 1.

10.7.2 The case that there is no half-mirror 2’

Consider the case that there is no half-mirror 2’, the case described in the following figure:

Positron P’%(f{ + f5)
I : ’
Y course 2/ Cfé mirror 2

half miresr 1/

course 1 % 1 \/;?fé
Dy(= (1f1){f1])

. half mirror 1 .
IR course 1 % f1 g.llrror 2 -
N Nif no annihilation,\%‘) fi (; e)tector)

Electron P|™
=T mirror 1’
course 2 Wf 2 ifl no annihilation,
. sl (U
V=1 . Di(= (I12){f2]))
i fQ . 1 2 2
S ) e (Detector)

: Da(= (lg1)(1l))

half mirror |2
(Detector)

mirror 1

Di(= (I92)(92]))
e (Detector)
Figure 10.5(2). Electron P and Positron P’ are annihilated at ®

Define the observable (A)gf = ({1,2} x {1,2}, 2{1’2}X{172},ﬁ[gf) in B(C? ® C?) by the tensor observable

Oy ® Oy, that is,
Hy({(L DY) = g1 @ fi)lon @ fil. - Hop({(1,2)}) = o1 ® fo){gr © fol,
Hyy ({2 0)}) =192 @ fi)lo2 @ fil. Hyp({(2:2)}) = |92 ® fo){g2® fo
Since the causal operator U : B(C? ® C?) — B(C? ® C?) is the same, we get the measurement:
(10.34)

Mp(c2ec2) (¥0,y, i)

For further information see my homepagé ‘
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Then, the probability that a measured value (2,2) is obtained by M B(@@@)(@Gg £55[p)) is given by

(u®u, PHyp({(2,2)})P(u @ u))

:‘<(f1—f2)®f2,f1®f2+f2®f1+f2®f2>\2 —0
8

Also, the probability that a measured value (1,1) is obtained by M B(@@Cz)(@ﬁg f>9S]p) is given by

(u @ u, PHyp({(1,1)})P(u @ u))

(Nt @hheh+theh+hefH?
8

oo =

Further, the probability that a measured value (1,2) is obtained by Mpc2gc2) \Tl@g 7+5[p)) 1s given by

—~

(u® u, PHgp({(1,2)})P(u®u))
(h+th)ofhofh+hofithof)f 4

16 8

Similarly,

(uw®u, PHyp({(2,1)})P(u ® u))
((fi=f)Of1, AR fat @ fi+ fa® fo)? 1

8 8

Remark 10.20. It is usual to consider that “Which way pass problem” is nonsense. It should be noted
that, in the Heisenberg picture, the observable (= measuring instrument ) does not only include detectors
but also mirrors.

10.8 quantum eraser experiment

Let us explain quantum eraser experiment(cf. [II0]). This section is extracted from

(#) [B6] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradoz in the quantum
linguistic Copenhagen interpretation, arxiv:1407.5143]|quantum-ph],( 2014)

10.8.1 Tensor Hilbert space

Let C? be the two dimensional Hilbert space, ie., C? = { El] | 21,20 € (C}. And put
2

ol e

Here, define the observable O, = ({—1,1},2{=11 F,) in B(C?) such that

Ry =31 ] Bem=5| 4 T

Here, note that

F({1Per = Jler+ea), El{1hes = J(er+e2)
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F({=1Pe = gler—ea), Fal{-1Dez = 3l—e1+¢)

Let H be a Hilbert space such that L?(R). And let O = (X, J, F) be an observable in B(H). For example,
consider the position observable, that is, X = R, F = Bg, and

FEl0={, LEZE)

Let u; and us (€ H) be orthonormal elements, i.e., |[u1||g = ||uz|lg =1 and (u;,u2) = 0. Put
U= QU] + QU2

where ; € C such that |a1|? + |az|? = 1. Further, define 1 € C2 ® H ( the tensor Hilbert space of C? and
H) such that

Y= are; Quy + ages ® us

where a; € C such that |ag]? + |as|? = 1.

10.8.2 Interference

Consider the measurement:

M c20m)(Oz ® O, S|y ) (10.35)
Then, we see:

(A1) the probability that a measured value (1,z)(€ {—1,1} x X) belongs to {1} x = is given by

(v, (Fx({1}) ® F(2))y)
=(a1e1 ® up + agex ® ug, (Fr ({1} ® F(2)))(a1e1 ® up + azes ® ug))
1
25(01161 ® u1 + agez ® ug, a1(e1 + e2) ® F(Z)uy + az(er + ez) @ F(Z)ug)
1 _ — _ — _ —
=3 (|a1\2<u1, F(E)u1) + |ag|*(ug, F(E)us) + aras(uy, F(E)ug) + a1a2<uQ,F(:)u1>>
1 — _ _ —_
=3 (]al\Q(ul, FE)u) + \a2]2<uQ,F(:)u2> + 2[Real part](aiag(us, F(:)uQ>))
where the interference term (i.e., the third term) appears.

Define the probability density function p; by

R e FEW
mt@aa = S ha (EED)
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Then, by the interference term (i.e., 2[Real part](@;ae(ui, F(Z)uz)) ), we get the following graph.

b1

Figure 10.6(1): The graph of p;
Also, we see:

(Ag) the probability that a measured value (—1,z)(€ {—1,1} x X) belongs to {—1} x E is given by
(, (Fz({—1}) @ F(E))y)
=(av1e1 ® u1 + agex ® ug, (Fp({—1} ® F(2)))(a1e1 ® ug + ages ® ug))
%(alel ® uy + ages @ ug, ai(e; —ez) ® F(E)up + ag(—e1 + e2) @ F(E)ug)
%(ml\ (u, F(2)ur) + |z *(ua, F(E)uz) - @ras(ur, F(E)uz) — andiafus, F(E)ur))
%(|a1| (u, F(Z)ur) + | *(uz, F(2)us) - 2[Real part] @10z (ur, F(E)us)) )

where the interference term (i.e., the third term) appears.
Define the probability density function ps by

W (B 9 FENY)
[ pataria = B oDy =)

Then, by the interference term (i.e., —2[Real part](@;aa(u;, F(E)uz)) ), we get the following graph.

D2

Figure 10.6(2): The graph of po

10.8.3 No interference

Consider the measurement:
MB((C2®H)(OQC ® 0, SH@D)WJ”) (10.36)
Then, we see
(A3) the probability that a measured value (u,x)(€ {1, —1} x X) belongs to {1, —1} x = is given by

(1, (I ® F(E))¢)

(ane1 ® ur + azex @ ug, (I @ F(2))(a1e1 @ up + azes @ ug))
(

o

are; @ up + ages @ ug, are; @ F(E)up + agea ® F(E)ug)
12 (u1, F(2)ur) + |azl*(uz, F(E)ug)

268

For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 10 Simple measurement and causality

where the interference term disappears.
Define the probability density function ps by

/_ ps(q)dq = (b, (1 ® F(E))Y) (V2 € F)

Since there is no interference term, we get the following graph.

p3 =p1+p2

b1

Figure 10.6(3): The graph of ps = p1 + p2
Remark 10.21. Note that

(As) = (A1)+(A2)

no interference interferences are canceled

This was experimentally examined in [[CTT].
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Chapter 11

Realized causal observable in general
theory

What we have studied is

(1) :’ pure measurement theory ‘

(=quantum language)
[(pure)Axiom 1] [Asaom—7) [cuantum Iinguistic Copenhagen interpretation|

= ’ pure measurement, ‘ —l—’ Causality ‘—i— ’ Linguistic Copenhagen interpretation
(cf. EZ270) (cf. §53) (cf. §60)

a kind of spells (a priori judgment) manual to use spells

(ﬁz):’ mixed measurement theory‘

(=quantum language)

[(mixed)Axiom (™) 1] [Axaom-J) [cuantum Tinguistic Copenhagen interpretation]

= ’ mixed measurement ‘—&— ’ Causality ‘—i— ’ Linguistic Copenhagen interpretation

(cf. §571) (¢f. §93) (¢f. §x1)

a kind of spells (a priori judgment) manual to use spells

As mentioned in the previous chapter, what is important is

e to exercise the relationship of measurement and causality.

In this chapter, we discuss the relationship more systematically.

11.1 Finite realized causal observable

In dualism (i.e., quantum language), Axiom 2 (Causality) is not used independently, but is always used with
Axiom 1 (measurement), just as George Berkeley (A.D. 1685- A.D.1753) said :

(A1) To be is to be perceived.

271



11.1 Finite realized causal observable

George Berkeley
To be is

to be perceived
(1685-1753)

Einstein Tagore

#Note 11.1. Note that Berkeley’s words is opposite to Einstein’s words:
(#3) The moon is there whether one looks at it or not.
in Einstein and Tagore’s conversation.
In this chapter, we devote ourselves to finite realized causal observable. The readers should understand:

e ‘“realized causal observable” is a direct consequence of the linguistic Copenhagen interpretation, that
is,

Only one measurement is permitted.

Now we shall review the following theorem:

Theorem 11.1. [=Theorem T01:Causal operator and observable] Consider the basic structure:
[Ar CAr € B(H)]  (k=1,2).

Let @1 : Ao — Aq be a causal operator, and let Oy = (X, J, F») be an observable in As. Then, @10, =
(X,F,®q2F>) is an observable in A;.

Proof. See the proof of Theorem [IT] O
In this section, we consider the case that the tree ordered set T'(¢g) is finite. Thus, putting T'(tg) =

{to,t1,...,tn}, consider the finite tree (T'(tg), < ) with the root ¢y, which is represented by (T'={to, t1,...,tn}, 7 :
T\ {to} — T) with the the parent map 7.

Definition 11.2. [(finite) sequential causal observable] ~ Consider the basic structure:
Ak © Ax © B(Hy)]  (t € T(to) = {to. t1,+ ,tn}),

in which, we have a sequential causal operator {®y, 1, : A, — ﬁtl}(thtz)GTg (¢f. Definition G100 ) such that

(i) for each (t1,t2) € Té, a causal operator @, ¢, : Ay, — Ay, satisfies that @y, 1, Py, 1y = Py 1y (V(t1,t2),
V(to, t3) € Té) Here, &y : A; — Ay is the identity.

For each t € T, consider an observable O;=(X, F;, F}) in A;. The pair [{O¢ }ter, { Py, 1, : Ag, — Ay, }(tl,tz)eTE
] is called a sequential causal observable, denoted by [Or] or [Op(y)]. That is, [Or] = {O:Yeer, { Pty 4, -
Ap, — ﬁtl}(tl,tg)eTg ]. Using the parent map = : T\ {to} — T, [Or] is also denoted by [Or] = [{O¢t}ier,

Qo) —

{A: Az Her\{to)))-
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Dy 3 [ 03]
(Iiy [ﬁ2 02] <
®o1  (7..0 Do [Ag 1 O4
- / [ L 1] ‘%57
[Ao : O :@ [Ag : Og] s : Os)
P07 [A7: 0]

Figure 11.1 : Simple example of sequential causal observable

Now we can show our present problem.

Problem 11.3. We want to formulate the measurement of a sequential causal observable[Or| =
[{Othier { Pt + Asy = At } (1) t)er2 ] for a system S with an initial state p, (€ &F(Aj,)).

How do we formulate this measurement ?

Let us solve this problem as follows. Note that the linguistic Copenhagen interpretation says :
Only one measurement (and thus, only one observable) is permitted.

_Thus, we have to combine many observables in a sequential causal observable [Or] = [{Ot}ter, {®r 1, :
Aty = At } (1) 4)er2 |- This is realized as follows.

Definition 11.4. [Realized causal observable]

Let T(to) = {to,tl, .. tN} be a finite tree. Let [OT to)] [{Ot}teT7 {(IJ ﬁt L Aﬂ'(t)}tET\{to} ] be
a sequential causal observable

For each s (¢ T), put Ts = {t € T' | t = s}. Define the observable S—(XteT X, ™Wier T, 5) in A,
such that

. 0, (if s T\ n(T))
0, — A (11.1)
X(Xien1((s)) Lr)Or) (if s € n(T))

(In quantum case, the existence of OS is not always guaranteed) And further, iteratively, we get the
observable Oto = (XteT X;, N yerdy, Fy,) in Ay,. Put Oto = OT(tO)

The observable 6T(t0 = (Xyer Xi, Xyerdy, ﬁto) is called the (finite) realized causal observable of the
sequential causal observable[Op()] = [{O¢heer, {®r()t : At = An() hem\ (1o} )-
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Note that

(#) In the classical case, the realized causal observable 6T(t0) = (Xyer X, X ierd, F\to) always exists.

ap
ANote 11.2. In the above (1), the product “x” may be generalized as the quasi-product “X”.
However, in this note we are not concerned with such generalization.

Example 11.5. [A simple classical example | Suppose that a tree (T { 1,...,6,7},m) has an ordered
(4) =

structure such that 7(1) = 7(6) = n(7) =0, 7(2) = w(5) = 1, 7(3) = )_

P23 100(04) : 0
oy
Doy [L2°(€2) : O4]

[L>°(25) : Os)

\

®o1 [L°(Q): 0]
3 [L(%%) : O

7 [L>°(Q27) : OF]

Figure 11.2 : Simple classical example of sequential causal observables

Consider a sequential causal observable [Or] = [{O¢}ier, {LOO(Qt)‘b”i;)vt
L>®(Qr(t)) }ter\fop)]- Now, we shall construct its realized causal observable O,y = (X yer Xi, X 1er T,
F,,) in what follows. Put

O;=0; andthus Fy=F (t=234,5,6,7).

First we construct the product observable Oy in L*>°(Q3) such as

62 = (X2 X X3 X X4,?2 & ?3 & ?4,?2) where ﬁg = F2 X( X @2’tﬁt).
t=3,4

Iteratively, we construct the following:

P10

Fo X ®g6Fs X ®o7Fy Fy X ®, 5F

=~ 0] ~ [0 ~

FO 0,1 F1 1,2 F2
(FoX(I’O,(;F\GX@(),?F}X(DOJFE) (Fl ><<1>115F\5><<1)1’2ﬁ2) (F2X<I>213F\3><‘1>2’4F\4)
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That is, we get the product observable O; = (X?ZlXt, &?:lfﬂ,ﬁl) of Oy, @1,262 and @17565, and
finally, the product observable

-~

7 7 ~ N
O = (X o X, W ,_Fo, Fo(= Fp x (t_i<67‘1>0,tFt))

of Oy, @07161, @07666 and @07767. Then, we get a realization of a sequential causal observable [{O;}ier,

o, ~
{L>°() T L (Qr(1)) er\{0}]- For completeness, Fy is represented by

Fo(So x E1 X g X B3 X B4 X B5 X Zg X Zr)]
:FO(EO) X (13071 <F1(El> X c13175F5(E5) X (I)LQ (FQ(EQ) X (1)273F3<53) X (1)274F4(E4))>
x o.6(F5(Z6)) x Po7(F7(E7)) (11.2)

(In quantum case, the existence of Oy in not guaranteed). O

Remark 11.6. In the above example, consider the case that O; (¢t = 2,6,7) is not determined. In this
case, it suffices to define O; by the existence observable OEeXl):(Xt, {0, X}, Ft(em)). Then, we see that

Fo(Zo x By x Xo x Z3 x 24 X Z5 X Xg X X7)
:F()(Eo) X @0’1 (Fl(El) X (1)1,5F5(E5) X (1)1,2 <(I)2,3F3(53) X (1)2,4F4(E4)>). (113)

This is true. However, the following is not wrong. Putting 7" = {0,1,3,4,5}, consider the [Op] =
[{Oihter APt + L(Ry) — L()}ey 1)erz. |- Then, the realized causal observable Oz () =

(Xier X, Wyer i, 136) is defined by

IIA

F\é(EO X =1 X E3 X 24 X 55)
:F()(Eo) X (1)071 (Fl(El) X (1)175F5(E5) X cI)174F14(E4) X ‘1)1’3F3(Eg) X ‘1)1’4F4(E4)) (114)

which is different from the fact (IT°2). We may sometimes omit “existence observable”. However, we have
to do it with careful cautions.

Thus, we can answer Problem 113 as follows.

Problem 11.7. [=Problem 0I13] (written again) B
We want to formulate the measurement of a sequential causal observable[Or] = [{O¢}ter, { Pty 1, + Ar, —
At }t1,t2)er2 | for a system S with an initial state py, (€ GP(A7,)).

How do we formulate the measurement 7

Answer: If the realized causal observable 6t0 exists, the measurement is formulated by

measurement Mﬁto (61&0, Slor])

Thus, according to Axiom 1 ( measurement: §2.7), we see that
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(B) The probability that a measured value (z;)ier obtained by the measurement
Mﬁto (Or, S[pto]) belongs to Z(e X ;erdF;) is given by

4 (10 B ()7, (11.5)

The following theorem, which holds in classical systems, is frequently used.

Theorem 11.8. [The realized causal observable of deterministic sequential causal observable in classical systems]
Let (T'(to), <) be a finite tree. For each t € T'(tg), consider the classical basic structure

[Co(%) C L®(Qy,vt) C B(L* (4, 11))].

Let [Or] = [{Othter, { Pty 4 1 L(Q4,) — LOO(QtJ}(tl,tg)eTg | be deterministic causal observable. Then, the
realization 6t0 = ( Xyer Xy, X erF, ﬁto) is represented by

~

Oto = >< q)t(),tot.
teT

That is, it holds that

12 (té Er )(wry) = té[¢to,tFt(Et)](wto) = té[Ft(Et)](ﬁbto,twto)-

(tho S QtO,VEt € EFt)

Proof. It suffices to prove the simple classical case of Example I1°5. Using Theorem U6 repeatedly, we
see that

F\o = F() X ( >< q)O,tﬁt)
t=1,6,7

:Fo X (q)O,lﬁl X @O’Gﬁﬁ X (13077ﬁ7) = Fo X (@071ﬁ1 X @0’6F6 X @077F7)

:( X éo,tFt) ><(<I>071ﬁ1):< X <1>0,tFt> x Bo1(Fy x (X ®14F)))
t=0,6,7 t=0,6,7 t=2.5

:( X (I)O,tFt) X Poq( X (I)l,tﬁt) = ( X ‘I’o,tFt) X ‘1)0,1((1‘1,2?2 X ‘1’1,5135)
t=0,1,6,7 t=2,5 t=0,1,6,7

:( X <I)()¢Ft) X @0,1(¢172ﬁ2)
t=0,1,5,6,7

:( X (I)O,tFt> X @0?1(@172(}72 X ( X q)Q’tﬁt)))
t=0,1,5,6,7 t=3,4

7
=X &g F;
t=0

This completes the proof. ]
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11.2 Double-slit experiment

understandable in classical and quantum mechanics impossib|e to understand in classical mechanics

11.2.1 Interference

For each t € T' = [0, 00), define the quantum basic structure
[C(H:) € B(H:) € B(Hy)],

where H; = L?(R?) (Vt € T)).
Let ug € Hy = L?(R?) be an initial wave-function such that (ko > 0, small & > 0):

2

uo(a:?y)wa(xv )%(y, )— \/mexp (Z OCIZ—@> . \/7mexp(_g>7

where the average momentum (p(l)7 pg) is calculated by
o) = ([ Bato0) 22D, [ 5,000 200 dy) — k.0,

That is, we assume that the initial state of the particle P is equal to |ug)(ug|-

Picture 11.9. MB(HQ)(q)O,tQOQ = (R, 'B]R, ©Q7t2F2), S[|u0><u0”)

t=1 t =19

Figure 11.3(1) Potential V' (z,y) = oo on the thick line, = 0 (elsewhere)
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Thus, we have the following Schrodinger equation:

h? 02 n? 92

L0
ihgpu(y) =Hu(w,y),  H=—5 a5 -5 55

T +V(z,y)

Let s5,t be 0 < s <t < co. Thus, we have the causal relation: {®g; : B(H;) — B(Hs)}o<s<t<co Where

H(t—s) _J-C(t—s)

b A=e # Ae @ (VA € B(H;) = B(L*(R?)))
Thus, (Po, )« (uo) = uI + u% in Picture 12.9.
Let Os = (R, Bg, F») be the position observable in B(L?(R?) such that
1 (z,y) eRxE
[FE)(z,y) = x=(y) =
0 (z,y) e RxR\ZE

Hence, we have the measurement Mp(f7,)(®0,t,02 = (R, Br, o1, 2), Sjjug) (uol])- Axiom 1 ( measurement:
§2.17) says that

(A) the probability that a measured value a € R by Mp(g,)(P0,t,0, Sjug)(uo|) belongs to (—oo,y] is given
by

Y
(10, (@01, F((—00, 4]))utg) = / o1 (y)dy

—0o0

#Note 11.3. Precisely speaking, we say as follows. Let A, € be small positive real numbers. For each
keZ={k|k=0,£1,£2,43,,,,,}, define the rectangle Dy, such that

DOZ{(:E7y) € R? ‘ .%'<b},
Di={(z,y) eR*|b<z,(k—1DA<y<kA}, k=123,..
Dy ={(z,y) eR* | b<z,kA <y < (k+1)A}, k=-1,-2-3,..

Thus, we have the projection observable 0% = (Z, 2%, F5*) in L?(R?) such that
[F({kD)(z.y) =1 ((z,9) € D), =0 ((z,y) eR*\Dy) (k€ Z)
Then it suffices to consider

e for each time t,, = to + ne(n = 0,1,2,...), the projection observable 02A is measured in the sense
of Projection postulate 07

11.2.2 Which-way path experiment

Picture 11.10. Which-way path experiment: A measured value by Mpr2g2y)(Pos, (¥(Oc ®
D41,4,02)), S[jug) (uol) belongs to {1} x (=00, y]
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t=11 t =12

Figure 11.3(2) Potential V' (z,y) = oo on the thick line, = 0 (elsewhere)

Next, let us explain the above figure. Define the projection observable O = ({1, },2{"} F) in B(L?(R?))
such that

CENEES

[FL (D, ) =1 = [ {1z, v)

According to Section M2 (Projection postulate), consider the CONS {e1, ez} (€ C2). Define the predual
operator U, : Tr(L?(R?)) — Tr(C? @ L*(R?)) such that

Ui (Ju)(ul) = |(ex @ Fi({T})u) + (e2 @ Fi({{Hu)){(er © Fi({THu) + (e2 @ F1({1})u)]

Then we have the causal operator ¥ : B(C?® L?(R?)) — L?(R?) such that ¥ = (¥,)*. Define the observable
Og = ({1, 1}, 2t @) in B(C?) such that

G{1}) =ler)(er],  G{{}) = ea){e2]

Hence we have the tensor observable Og ® @, 1,02 in B(C? ® L?(R?)), and hence, the measurement
Mp 2 ®2))(Po.t, (¥(Oc @ Pry.1,02)); S[jug) (uol))- Then, Axiom 1 ( measurement: §2.7) says that

(B) the probability that a measured value (A, y) € {1, 1} xR by Mp(r2®2)) (P04, (¥ (Oc@Py; 1,02)), Sjue) (uol))
belongs to {1} x (—o0,y] is given by

<ﬁ4@mﬁwiwm@>=l/ymwmy

#Note 11.4. Precisely speaking, in the above case, it suffices to consider the following procedure (1)
and (ii):
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(i) for time ¢1, the projection observable O; is measured in the sense of Postulate (17

(ii) for each time t,, = t2 +ne(n =0,1,2,...), the projection observable 02A is measured in the sense
of Postulate 7.

11.3 Wilson cloud chamber in double slit experiment

In this section, we shall analyze a discrete trajectory of a quantum particle, which is assumed to be
one of the models of the Wilson cloud chamber ( i.e., a particle detector used for detecting ionizing
radiation). The main idea is due to. [27, PR, (1991, 1994, S. Ishikawa, et al.)].

11.3.1 Trajectory of a particle is nonsense

We shall consider a particle P in the one-dimensional real line R, whose initial wave function is
u(x) € H = L*(R). Since our purpose is to analyze the discrete trajectory of the particle in the
double-slit experiment, we choose the state u(x) (or precisely, |u)(u| ) as follows:

1/V2,2 € (-3/2,—-1/2) U (1/2,3/2)
u(z) = (11.6)
0, otherwise

1/V3

>
-

3/2 -1/2 0 1/2 3/2 x

Figure 11.4 The initial wave function u(z)

Let Ay be a position observable in H, that is,
(Agv)(z) = zv(x) (Ve € R, forve H=L*R))

which is identified with the observable O = (R, Bg, F4,) defined by the spectral representation:
AO = fR LCEAO(dx)

We treat the following Heisenberg’s kinetic equation of the time evolution of the observable A,
(—oo < t < o0) in a Hilbert space H with a Hamiltonian H such that H = —(h?/2m)d?/02? (i.e.,
the potential V(x) = 0), that is,

dA;

—Zh% = g’CAt - Atg'(:, —o0 <t < oo, where AO = A. (117)

The one-parameter unitary group U, is defined by exp(—itA). An easy calculation shows that

. . ht d
At:Ut AUt:Ut.’L‘Ut:x—F%% (118)

280 ‘ For further information see my homepagé ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

Chap. 11 Realized causal observable in general theory

Put t =1/4, i/m = 1. And put

1d
A = Ao(: ZE), B = A1/4(: x -+ ——) - Uf/4A0U1/4 = (13071/4140.

4i dx
Thus, we have the sequential causal observable
position observable: Ag position observable: Ag
B (H()) <<I>— B (H1/4)
0,1/4

initial wave function:ug
However, Ay(= A) and ®g;,4A40(= B) do not commute, that is, we see:

1 d 1 d
AB — BA = — ) — —— x=1/4 .
x<x+4idx) (x + 4z'dx)x i/4#0

Therefore, the realized causal observable does not exist. In this sense,

The trajectory of a particle is nonsense.

11.3.2 Approximate measurement of trajectories of a particle

In spite of this fact, we want to consider “trajectories” as follows. That is, we consider the approxi-
mate simultaneous measurement of self-adjoint operators {A, B} for a particle P with an initial state
u(z). Recall Definition @14, that is,

Definition 11.11. (=Definition &-14). The quartet (K, s, A, E) is called an approximately simul-
taneous observable of A and B, if it satisfied that

(A;) K is a Hilbert space. s € K, ||s||x = 1, A and B are commutative self-adjoint operators on a
tensor Hilbert space H @ K that satisfy the average value coincidence condition, that is,

(w® s, Au®s)) = (u, Au), (u®s,Bu® s)) = (u, Bu) (11.9)
(Vu € H, ||ullg =1)

Also, the measurement Mprgk)(0O7 x Og,S}5,,)) is called the approximately simultaneous mea-

surement of M) (O4, Sp,,)) and Mg (Og, Sj,]), where
pus = u@s){u®s|  (|stx =1).
And we define that

(Ap) A%S (= [[(A=A® I)(u®s)|) and A%; (= |(B—=B®I)(u®s)|) are called errors of the
approximate simultaneous measurement Mpugr) (07 % Og, Sip..))-
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Now, let us constitute approximate observables (K s, 121\, E) as follows. Put

K = L*(R,), JWZZ(%>M6@<_W%N>

where w; is assumed to be w; = 4, 16, 64 later. It is easy to show that [[s||z2®,) = 1 (ie., [|s[|x =1
) and

(s, As) = (s, Bs) = 0. (11.10)

And further, put

~

A=A T+20® A,

E:B@I—%I@B.

Note that the two commute (i.e., AB = BA ). Also, we see, by (II_10),
WRs, Au®s)) =(u®s (AT +2I @ A)(u® s)) = (u, Au), (11.11)

®
u@s, Au®s)) =(u®s (BoI—210A)(u®s)) = (u, Bu). (11.12)
(Vu e H,i=1,2)

Thus, we have the approximately simultaneous measurement Mprgr)(Oz X Og,Sj5,,]), and the
errors are calculated as follows:

S = A% = [[(A— A& I)(u®s)|| = 120/ ® A)(u © 5)|| = 2||As] (11.13)
O1/a = A%; =(B-BaI)(u®s)| = (1/2)[|I® B)(u®s)|| = (1/2)||Bs|| (11.14)

By the parallel measurement @y _, Mg o) (05%05, Sjp..)), assume that a measured value: ((z1,z}),
(z2,25), -+, (zN, xy)) is obtained. This is numerically calculated as follows.
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wy =4

L] S, L ..
Il =5 8 =0.250

=1

t=0 : SLIT 1 v SLIT 3 Ef. &y = 0.707

u1=lE

T
t=1/4

P | ]ORN |
t=10

kel vl
t=1/4

| O S |
t=0

Figure 11.5: The lines connecting two points (i.e., z; and z})(k = 1,2, ...)

Here, note that dg(= d1/4) and &y are depend on w.

#Note 11.5. For further arguments, see the following references.

(#1) [27): S. Ishikawa, Uncertainties and an interpretation of non-relativistic quantum theory, Inter-
national Journal of Theoretical Physics 30, 401-417 (1991)
doi: 10.1007/BF00670793

(#2) [2R]: Ishikawa, S., Arai, T. and Kawai, T. Numerical Analysis of Trajectories of a Quantum
Particle in Two-slit FExperiment, International Journal of Theoretical Physics, Vol. 33, No. 6,
1265-1274, 1994
doi: 10.1007/BF00670793
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Chapter 12

Why does statistics work? : Fisher
statistics (II)

Measurement theory (= quantum language ) is formulated as follows.

[AX]()Y‘H I] [AXIOI’!] 2]
’measurement theory‘ :=|Measurement |+ | Causality
(=quantum language) (cf. &27) (cf. §E3)

a kind of spell(a priori judgment)
[ouantum inguistic Copenhagen interpretation|
+ ’ Linguistic Copenhagen interpretation
(of. §50)

manual how to use spells

In Chapter 5 (Why does Fisher statistics work in our world? (I)), we discussed “inference” in relation
to “measurement”. In this chapter, we discuss “inference” in the relation to both “measurement” and

“causality”.

12.1  “Inference = Control” in quantum language

It is usually considered that

e statistics is closely related to inference
e dynamical system theory is closely related to control

However, in this chapter, we show that
“inference” = “control”

In this sense, we conclude that statistics and dynamical system theory are essentially the same.

285



12.1 “Inference = Control” in quantum language

12.1.1 Inference problem (statistics)

Problem 12.1. [Who is the high school student who saved the drowning girl?] Let Q

= {w1,wa,...,wip0} be a set of all students of a certain high school. Define h : Q — [0,200] and
w : 0 — [0,200] such that

h(w,) = “the height of a student w,,” (n=1,2,...,100)
w(wy,) = “the weight of a student w,,” (n=1,2,...,100) (12.1)

For simplicity, put, N = 5. For example, see the following.

Table 12.1: Height and weight

Height- Weight \ Student| w1 | wo | w3 | wqg | ws
Height (h(w) cm) 150 | 160 | 165 | 170 | 175
Weight (w(w) kg) 65 | 55 | 75 | 60 | 65

200

Assume that:

(a;) The principal of this high school knows the both functions h and w. That is, he knows the
exact data of the height and weight of all students.

Also, assume that:

(ag) Some day, a certain student helped a drowned girl. But, he left without reporting the name.
Thus, all information that the principal has is as follows:
(i) he is a student of the principal’s high school.
(ii) his height [resp. weight] is about 165 cm [resp. about 65 kg].

(iii) Assume that the height and weight of high school students follow independent normal
distributions N(u1,01) and N(ue,03), and further, assume that oy/07 = V2 though it
may not be natural.
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Now we have the following question:
(b) Under the above assumption (a;) and (az), how does the principal infer who he is.
This will be answered in Answer 1273. ///

To answer this problem, we must prepare the following Theorem.

Theorem 12.2. Let (T'={to,t1, ..., tn},m: T\ {to} — T) be a tree. Let Or =(Xyer Xi, M yer Ty,
F,) be the realized causal observable of a sequential causal observable [{Oy(= (X¢, Iy, F2)) ber, { Pr() e
L®() — L®°(Qrt)) beer\ito} )- Thus, we have a measurement

MLw(Qto)(aT:( >< Xt? & tGT?M F\to)u S[*])

teT

Assume that a measured value obtained by the measurement belongs to = (¢ X ,crF;). Then, there
is a reason to infer that

[*]:wtov

where wy, (€ §,) is defined by

)

o (3))(wiy) = max [F, (2)](w).

W&y

(Fisher’s maximum likelihood method).

/1]

The proof is a direct consequence of Axiom 2 (causality; §9.3) and Fisher maximum likelihood
method (Theorem b6). Thus, we omit it.

Answer 12.3. [(Continued from Problem 271 (Inference problem))] Let (7= {0,1,2},7: T\ {0} —
T') be the parent map representation of a tree, where it is assumed that

(1) =7n(2) =0.
Put Qo = {w1,ws, ..., ws}, O = interval [100, 200], 2 = interval [30, 110]. Here, we consider that
QoDWyrre-- a state such that “the girl is helped by a student w,” (n=1,2,...,5)

For each ¢ (€ {1,2}), the deterministic map ¢g; : €9 — € is defined by ¢o1 = h (height function),
¢o2 = w (weight function). Thus, for each ¢t (€ {1,2}), the deterministic causal operator ®g; :
L>(€) — L*>(€y) is defined by

(Do, fi](w) = fi(dor(w)) (Vw € Qo, Vfi € L>()).

Po1_L=()

V<I>\L°°(Qg)

L ()

0,2
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12.1 “Inference = Control” in quantum language

For each t = 1,2, let Og,, =(R, Bg, G,) be the normal observable with a standard deviation
o; > 0in L>(£). That is,

1 _ (z—w)?
[Go, (2)](w) = /e 2 dr  (VZ € Bg,Vw € Q).

2102

Thus, we have a deterministic sequence observable [{Og,, }i=1,2, {®o; : L®(2) —
L>(Qg) }+=12]. Its realization Or = (R?, Fge, F\O) is defined by

~

[Fo(E1 X E2)](w) = [201Go ](w) - [P0,2Go,](w) = [Goy (E1)](¢0,1(w)) - [Goy (B2)](P0,2(w))-
(VEl,EQ € Br, Vw € Qg = {wl,WQ, c. ,w5})

Let N be sufficiently large. Define intervals =;, = C R by

= = 165 1165—1—1 o = |65 165—|—1
—1 — N’ N —2 — N’ N
The measured data obtained by a measurement M Loo(QO)(@T, Sp) 1s
(165,65) (€ R?).

Thus, the measured value belongs to =; x =5. Using Theorem 1272, we say:

(#) Find wy (€ Q) such as

Since N is sufficiently large,

hw)?  (x2 — w(w))®

1 (1'1 -
—_—— — — dxyd
0= ] [ Z A
=1 X2
(165 — h(w))? (65 — w(w))?
I R
. (165 — h(w))? (65 — w(w))?

:>L£I€lg(l)[ 207 107 ] ( (agiii) says that 20} = 03 )

—When w = w,, minimum 2(165 — 170)? + (65 — 60)? is attained
—The student is w;.

Therefore, we can infer that the student who helps the girl is wy. Il

12.1.2 Control problem (dynamical system theory)

Adding the measurement equation g : R — R to the state equation, we have dynamical system
theory (I22). That is,
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Chap. 12 Why does statistics work? : Fisher statistics (II)

(i) : 29 — o(w(t),t,e1(t), B) - ( state equation)

dt
‘ dynamical system theory ‘ = (initial w(0)=a) (12.2)

(ii) : z(t) = g(w(t),t,e2(t))  ---( measurement)

where «, § are parameters, e;(t) is noise, es(t) is measurement error.

The following example is the simplest problem concerning inference.

Problem 12.4. [Control problem] We have a rectangular water tank filled with water.

—

Ju(t)
}

Figure 12.1: Water tank

Assume that the height of water at time ¢ is given by the following function w(t):

d
d—L; = Bo, then w(t) = wy + 6t, (12.3)

where wy and 6 are unknown fixed parameters such that wg is the height of water filling the tank
at the beginning and 6 is the increasing height of water per unit time. The measured height x(¢) of
water at time ¢ is assumed to be represented by

z(t) = wo + 0t +e(t),

where e(t) represents a noise (or more precisely, a measurement error) with some suitable conditions.
And assume that as follows:

z(1) =1.9, 2(2) =30, z(3)=47. (12.4)
Under this setting, we consider the following problem:
(c1) [Control]: Settle the state (wp, d) such that measured data (I24) will be obtained.
or, equivalently,

(co) [Inference]: when measured data (24) is obtained, infer the unknown state (wp, 6).
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12.2 [Parameter~State] in QL

This will be answered in Answer TZ2S.

/1]

Note that

(c1)=(c2)

from a mathematical point of view. Thus, we consider :

(d) Inference problem and control problem are the same problem. And these are characterized as
the reverse problem of measurements. Thus, the three are essentially the same.

inference- measurement

Thus, statistics, measurement theory, dynamical system theory, control theory are essentially the
same.

Remark 12.5. [Remark on dynamical system theory (cf. [35]) | Again recall the formulation (I22)
of dynamical system theory, in which

(£) the noise e;(t) and the measurement error e;(t) have the same mathematical structure (i.e.,
stochastic processes).

This is a weak point of dynamical system theory. Since the noise and the measurement error are
different, I think that the mathematical formulations should be different. In fact, confusions between
noises and measurement errors frequently occur. This weakness is clarified in quantum language, as
shown in Answer 28,

12.2 [ParameterxState| in QL

The following theorem is a slight extension of Theorem

Theorem 12.6. [Parameter~State] in QL Let (T={to,t1, ..., tn}, 7 : T\{to} — T) be a tree. Let
© be a (locally) compact set (i.e., parameter space), which is regarded as a kind of state space. For
each 0(€ ©), consider a sequential causal observable [{O; }ier, {@i(t)’t D L() = L)) Feer\ fto}

]. Let 69T =(Xyer Xi, WierTy, ﬁfo) be the realized causal observable of a sequential causal ob-
servable [{O; }ier, {q)fr(t),t D L°(Qy) = L®(Qrw) her\ 1o} |- Consider a measurement

ML‘”(Qto)@?F:(téXn X ierF, FL),Sy) (0 €6)
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which can be identified with the following.
MLOO(QtO X@) (O%:(té Xt7 & tGTS:b ﬁti)’ S[(*Q,*@)])

And Fisher’s maximum likelihood method
Assume that a measured value obtained by the measurement belongs to = (€ X 1erFt). Then,
Fisher’s maximum likelihood method (Theorem b6) says that there is a reason to infer that

[*](: [*Qoa *9]) = (wtoag‘J)»

where (wy,, 0p) (€ §2, x O) is defined by

1)

[Eo (E)](wtm 90) = (wﬁgg%ﬁX@[FIfo (E)](w7 Q)

/1]

The proof is a direct consequence of Axiom 2 (causality; §9.3) and Fisher’s maximum likelihood
method (Theorem 56). Thus, we omit it.

#Note 12.1. Perhaps the above should have been called a ‘method’ (or, ‘one of the Copenhagen in-
terpretation’) rather than a ‘theorem’. Even up to this point, we should recall that what is called a
‘parameter’ in statistics is called a ’state’ in QL.

The above is too general, so consider the simple case as follows.

Corollary 12.7. [The simple form of Theorem [276]
Put T = {0,1,2, 3},

o= 7m) P 00m(x0.50. )
L () L(€)

‘@XOS:(X&?S’FB)

03 | L>(Qs)

0
(I)O,l

Oo=(X0,%0,F0)
L>(8)
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Thus, we get the realized causal observable:

6%:( X Xi, &teTfﬂ,ﬁt%) in L>(Qp)

teT

where
Ff = Fo(Z0) [(965F5(Za)) (96, (F(E0) (81, F2(22))) )

Consider a measurement

MLW(Qio)(G%:(tﬁT Xt? & tETﬁita ﬁ;f%)y S[*]) (9 c @)

which can be identified with the following.

MLW(QtOXG)(G%:( X Xtu X tGngh ﬁteo)ﬂ S[(*Q,*(—))])

teT

Assume that a measured value obtained by the measurement belongs to = (e X terFt).
Then, Fisher’s maximum likelihood method (Theorem 576) says that there is a reason to infer
that

[+ (= [xay, *e]) = (wiy, b)),
where (wy,, 6p) (€ 4, X ©) is defined by

[Eo (E>](wt07 00) - (w,@?el%iz xe[FtO (E)] (w7 8)

/1]

ANote 12.2. Tt should be noted that there is a consistent spirit of the linguistic Copenhagen interpre-
tation of ‘measurement only once’ in Theorem [Z8.

Answer 12.8. [Continued from Problem 0274 (Control problem); Theorem 26 Put Qy = O =
Qs = Q3 =R. and put

$o1

anwg ]—>w0+9:w1€§21
P12

Qlawl ’—>(JJ1+6:W2€QQ
$23

QQBCL)Q ]—>w2+9:w3€§23
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Thus, we see:

®f @9 @4
0O0=(X0,%0,F0) 0,1 O1=(X1,%1,F1) 1,2 O2=(X2,%2,F») 2,3 O3=(X3,%3,F3)
L>(€) L>() L>(62s) L>(82)

where O = (X, Fo, Fp) is the existence observable (c¢f.Definition 2-21), so, it can be neglected. Also,
Og = 01 = Oy = O3 is the normal observable O¢, with a standard deviation o, i.e., Og,=(R, Bg, G,)
where

_(@—w)?

202 dx (VE € BR,V(JJ € Qt)

)= 1
V2702 E

s 0 Qs Q3
A W= b+ o
a7\
)
1'9T1WW
wol .
0 | | 3 V t

Figure 12.2 Problem: Find the equation w = 0t + wy of the dashed line

We have the deterministic sequential causal observable [{O;}i—1,23, {Pr()¢ : L2(Q) = L®(Qrr)) beer,2,3}]-
And thus, we have the realized causal observable O = (R?, Frs, Fpy) in L>(£y) such that (using The-
orem [T°R)

0(Z1 X Zy x Zg)J(wo) = [Po1(Go(Z1)P12(Go(E2)P25(Gy(Zs)))) | (wo)

01Go(Z1)](wo) - [Po,2Go(Z2)](wo) - [Po,3G5(Z3)](wo)

1)](d0,1(wo)) - [Go(Z2)](do,2(w0)) - [Go(Z3)] (b0,
=3)](wo

D](wo +0)) - [Go(Z2)](wo + 20)) - [Go (2
(VEl,:Q,\_g S 31@, \V/a)g,e c QO X @)

3(wo))
+30))
Our problem (i.e., Problem 124) is as follows,

(#1) Find the parameter (6,wy) (i.e.,Mpoo(qy)( OT, Slwo)) ) that is most likely to yield the measured
value (1.9,3.0,4.7).
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For a sufficiently large natural number N, put

1
N

1

_ 1 1] - 1 _ 1
21 = 1.9—N,1.9+N},H2_[3.0 N30+ ],Hg_[m N AT |

Fisher’s maximum likelihood method (Theorem 58)) says that the above (f#;) is equivalent to the
following problem

(#2) Find (wo, ) (€ Qo x ©) such that

[ﬁo(El X Ho X Eg)](bdo,e) = (mag%[ﬁo(El X Zg X Eg)]
wo,

Since N is assumed to be sufficiently large, we see

(f2) = max [FO(Hl X g X Z3)](wo, 0)

(0.)() G)EQO
(zl*<w0+9))2+(r2*(w0+29))2+(13*(w0+39))2]
:> max 202
(wo0,0)€Q0 4 /271'02

Z1XEgXZE3
X d.ﬁL’ldLUQd.Tg

=—> max ex J/ (202
Jmax p(—=J/(207))

= min J
(OJ(),G)EQ[)

where

J= (1.9 — (wo+0))? + (3.0 — (wo + 20))* + (4.7 — (wo + 30))*.

:>{ (1.9 — (wo +0)) + (3.0 — (wo +20)) + (4.7 — (wo + 30)) = 0
(1.9 — (wo + 0)) + 2(3.0 — (wo + 20)) + 3(4.7 — (wo + 30)) =
)

=  (wo,0) = (04,14
Therefore, in order to obtain a measured value (1.9, 3.0, 4.7), it suffices to put

(wo,0) = (0.4, 1.4).

For completeness, note that,
e From a theoretical point of view,

“inference” = “control”

Thus, we conclude that statistics and dynamical system theory are essentially the same.
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measurement

inference- control

B —

ANote 12.3. Comparing Sec. 6.4 (Regression) and Answer 12.8, we may say the Theorem TZ8 is a
kind of the generalization of regression analysis. I have previously overemphasized this. This emphasis
caused confusion among readers, so I will not emphasize it in this publication.
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Chapter 13

Least-squares method and Regression
analysis

Although regression analysis has a history of great achievements, it seems to have been wrongly
understood in essence. For example, the fundamental terms in regression analysis (e.g., “regression”,
“least-squares method”, “explanatory variable”, “response variable”, etc.) are historical conventions,
and do not express their roles adequately in the regression analysis. In this chapter, we show that the
least squares method acquires a right position in quantum language as follows.

describe by

The least squares method‘ > | Regression analysis
quantum language

(Section C3T) (Section C32)

natural ‘ Generalized linear model (ﬁ)

(Section M33)

generalization

In this story, the terms “explanatory variable” and “response variable” are clarified in the framework
of quantum language. To develop a general theory of regression analysis, it suffices to work with
Theorem [26. However, from a practical point of view, we need the above scheme (). This chapter
is extracted from

Ref. [64]: S. Ishikawa; Regression analysis in quantum language
arxiv:1403.0060[math.ST], (2014)

13.1 The least squares method

Let us start from a simple explanation of the least-squares method. Let {(a;,x;)}!, be a sequence
in the two dimensional real space R2. Let ¢#1/%2) : R — R be the simple function such that

R>a—z=¢P%(a) = Bia+ B € R (13.1)

where the pair (31, 82)(€ R?) is assumed to be unknown. Define the error o by

n 1 n

02(51, 52) = %Z(xz - ¢(51’52)(Gi))2< = ﬁ Z(l‘z - (516% + 50))2>- (13‘2)

297
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13.1 The least squares method

Then, we have the following minimization problem:

Problem 13.1. [The least squares method)].

Let {(as,2;)}7_, be a sequence in the two dimensional real space R?.
Find the (5o, 1) (€ R?) such that

o*(fo, /1) = min 02(50,51)< = min L Z(%‘z — (Bra; + 50))2>7 (13.3)

(Bo,B1)€ER? (Bo,B1)ERZ T )

where (S, 51) is called “sample regression coefficients”.

= Fa+ By

Least squares method

This is easily solved as follows. Taking partial derivatives with respect to 5y, 51, and equating
the results to zero, gives the equations (i.e., “likelihood equations”),

80-2(507 ﬂl) o <

— Z(xz - 50 - ﬁlai) = 07 (Z = 17 ---vn)7 (134>
9B —
0%y, - .
% = Z(ﬂ?z — Bo — Prai)a; =0, (i=1,..,n). (13.5)
1 i=1
Solving it, we get that
A Sax A — Sax _ ~2/ 1 - A A2\ 8(2193
£ = 5. Bo =7 — ga, 67 (= o ;(fﬁi — (Bra; + Bo)) ) = Saz — P (13.6)
where
o a1+.7.z.+an, x:w (13.7)
J— n 2 o .. —_— n 2 —_— T DY —_— T 2
Sua = (al CL) + + (an a) 7 Spp = (xl l’) + + (.Z'n l') ’ (138)
n n
Sy = (al_a)(xl —5:)—1—---—1—(&”—&)(3:”—53). (13'9>
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ANote 13.1. [Applied mathematics]. Note that the above result is in (applied) mathematics, that is,
e the above is neither in statistics nor in quantum language.

The purpose of this chapter is to add a quantum linguistic story to Problem T371 (i.e., the least-squares
method).

13.2 Regression analysis

13.2.1 The simplest problem

Let us start from the simplest problem.

Problem 13.2. [The simplest problem].
[(I): Applied math]

Let {(a;, z;)}"; be a sequence in the two dimensional real space R

~ o-I-

Find the 5, (€ R) such that

02(30) = min 02(50)( = min EZ(% - 50)2)7

(Bo)eR

Of course, it is easy. That is,

Bo = (*)

[(IT): The argument in QL]
It should be noted that this problem is similar to the inference problem of the simultaneous normal
measurement (in Example b10): Mo ®xr, (0" = (R™, B, G"),S}), where

[G™(E) X Zo X -+ X Zp)](w)

(X Q)E X B x e x Ew) = X [GENW)

k=1

299 ‘ For further information see my homepagé



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

13.2 Regression analysis

noq 1
— X — —(zx—p)?| d
X /: ex p{ 5,2 (x, u)} T,

(VEk € By (= By), Yoo = (1,0) € Q= R x R.))
Recall that Fisher’s maximum likelihood method (Theoremb6) says that the unknown state [x| =

(u,0) (€ R x Ry) is inferred as follows.

Q31+$2+ R

\/ 2 (01 — A(2))?
[(III): The purpose of this chapter|
The above (i.e., (x)=(%x)) is easy. However, our purpose of this chapter is to investigate a quantum
linguistic understanding of Problem 371 just like the above [(I) and [(II)].

1= 7i(x) ()

13.2.2 Regression analysis in quantum language

Put T={0,1,2,--- ,4,--- ,n}. And let (T, 7 : T\ {0} — T') be the parallel tree such that

(i)=0 (Vi=1,2,--,n). (13.10)
o
0o 2

Figure 13.1: Parallel structure

#Note 13.2. In regression analysis, we usually deal with “classical deterministic causal relation”. Thus,
Theorem IR is important, which says that it suffices to consider only the parallel structure.

For each i € T, define a locally compact space €2; such that

Qp = R? = {5: {gﬂ . Bo. B ER}, (13.11)
Qi:R:{m : MGR} (i=1,2,--- ,n) (13.12)

where the Lebesgue measures m; are assumed.
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Assume that
G ER  (i=1,2-n), (13.13)

which are called ezplanatory variables in the conventional statistics. Consider the deterministic causal
map 1, : Qo(=R?) = Q;(= R) such that

Q =R?> 8= (6o, 1) = Ya,(Bo, B1) = Bo + bra; = i € % = R (13.14)
which is equivalent to the deterministic causal operator ¥, : L>(€);) — L*°(Qg) such that
(W (F)(0) = Filtbas () (Y € L¥(Q), Vi € QWi € 1,2, ). (13.15)

Thus, under the identification: a; < v,, < V,,, the term “explanatory variable” means a kind of
causal relation V¥,,.

Yo e ) Vo 1201 (=R))
oEr) e RED eoery) A2 LR(=R)

= R) W Q= R)

wa” Bo+B1an Gn

Figure 13.2: Parallel structure (Causal map v,,, Causal operator ¥,.)

For each i = 1,2,--- ,n, define normal observables O,=(R, Bg, G,) in L>(;(= R)) such that

Gy (2)](n) = ;)/exp [—u] dx (V= € Bg,Vu € Qi(=R)) (13.16)

(v/2m0?) ) 20?

where o is a positive constant.
Thus, we have the observable Of'=(R, Bg, ¥,,G,) in L>=(2y(= R?)) such that

- - 1 (z — (Bo + aiB1))”
0 (G @) = [Gol@NN0a0) = s [ oo [ 5 52  Jae 13.10

(VE € BR,Vﬁ = (ﬁo,ﬁl) € Q()(E RQ)

Hence, we have the simultaneous observable X, O%=(R", Bgn, X, ¥, G,) in L>®(Qy(= R?)) such
that

n

(X W,,Go)(X Z](5) = >”<([%ZG ENE)
el R

202

1= 1_‘1

://p(5076170)(x17$27 ’xn)dxldxn (1318)
X =

=14
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(Vi(l Ei € Brn, V5 = (fo, /1) € Q(=R?))

Assuming that o is a variable, we have the observable O = (R”(: X), Brn(=9), F> in L>°(QoxRy)
such that

F(X Z0)(8,0) = [(X aGo) (X Z)|(A) (VE: € Ba, ¥(B,0) € RA=00) xR.).  (13.19)

Problem 13.3. [Regression analysis in quantum language|
T1

T2
Assume that a measured value z = ) € X = R” is obtained by the measurement

:L‘n
Moo (oxr,) (O = (X, T, F), Sig,81,0))- (The measured value is also called a response variable.)
And assume that we do not know the state (g, 81, 0?).
Then,

e Infer the Sy, 1,0 from the measured value z = (z1, 22, ...,2,) € R™

That is, represent (3o, 81,0) by (Bo(z), Bi(z), 6(x)) as functions of z.

Answer : Taking partial derivatives with respect to By, 81, 02, and equating the results to zero,
gives the log-likelihood equations. That is, putting

L(B07 ﬁla 0-27 L1, L2,y an) - log (p(ﬁo,ﬁl,a)(xhx% e an))7

(where “log” is not essential), we see that

n

oL

95, =0 = ; (zi — (Bo + aipr)) =0 (13.20)
oL -

— =0 = Zai(-’ﬂi = (Bo + i) =0 (13.21)
b i=1

oL n 1 &

207 0 = Gy + Tﬁ;(ﬁi — Po — ﬁlai)Q =0 (13.22)

Therefore, using the notations (I377)-([3:9), we obtain that

fo(a) =F = Ai()a =7 - 2a, fyla) = == (13.23)

and
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2 2

n n
2

Sax Sax\2 Sax
=Sgx — 23@1‘ + Saa(_) = Sgx — — - (1324)
Saa Saa Saa

Note that the above ([3723) and ([324) are the same as ([[36). Therefore, Problem 33 (i.e.,
regression analysis in quantum language) is a quantum linguistic story of the least squares method
(Problem [T3T).

Remark 13.4. Again, note that
(A) the least squares method (I36) and the regression analysis (T323) and ([324) are the same.

Therefore, a small mathematical technique (the least squares method) can be understood in a grand
story of regression analysis in quantum language. The readers may think that

(B) Why do we choose “complicated (Problem [13-3)” rather than “simple (Problem 1371)” ap-
proaches ?

Of course, such a reason is unnecessary for quantum language ! That is because
(C) the spirit of quantum language says
FEverything should be described by quantum language.

However, this may not be a kind answer. The reason is that the grand story has a merit such
that statistical methods (i.e., the confidence interval method and the statistical hypothesis testing)
can be applicable. The discussion of ‘confidence interval and hypothesis testing’ is omitted in this
book, see refs. [62, B4].

13.3 Generalized linear model

Put T =4{0,1,2,--- ,4,--- ,n}, which is the same as the tree (I3710), that is,

(1) =0 (Vi=1,2,---,n). (13.25)
.
o 0

Figure 13.3: Parallel structure
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13.3 Generalized linear model

For each 7 € T, define a locally compact space €2; such that

Bo
QO:R’”“:{B: ﬁf : 50,51,--~,ﬁmeR} (13.26)
B
Qi:R:{ui : meR} (=12, ,n). (13.27)
Assume that
a;; €R (i=1,2,---,n, j=1,2,--- m,(m+1<n)). (13.28)

which are called explanatory variables in the conventional statistics. Consider the deterministic causal
map g, : Qo(=R™1) — Q;(=R) such that

KZOZIRT’H—1 Bﬂ: (607/817"' 7ﬁm)’_>

Yara (Bos B1, -+ Bm) = Bo+ Y Bjas; = i € % =R (13.29)
j=1
(1=1,2,--+,n)

Summing up, we see

aix Q2 - Aim ‘5‘
0

- 1
50 wah(ﬁOaﬁla"' 7Bm)
61 waz. (BO7 617 e 7ﬁm) i da 22 @2m 51
1

B=|Be| i [Vaaa(BosBroooe B) | = |7 03 05 7 Gl g (13.30)

aq1 Q42 - Q4qm

Bm
- _]- ap1 Qp2 *°° Apm - -

B [Yera (B Br e )

which is equivalent to the deterministic Markov operator W, : L>(£2;) — L*(£2) such that
Vo (fi)l(wo) = fi(Ya, (o)) (Vi € L¥(), Vwo € Qo,Vie 1,2, ,n). (13.31)

Thus, under the identification: {a;;};=1.. m < W, , the term “explanatory variable” means a kind
of causality.

ao L= R)

Figure 1.4: Parallel structure(Causal relation ¥, )
Therefore, we have an observable Oj*=(R, Bg, ¥,.,G,) in L>=(2y(= R™™)) such that
Ve, (Go(2)](B) = [(Go ()] (¢aa (B))
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Chap. 13 Least-squares method and Regression analysis

(13.32)

1 (33 — (Bo + ZJ L aij35))?

(VE S BR,VB = (ﬁOaﬁl) e 7ﬂm) € Q()(E Rm+1))

Hence, we have the simultaneous observable X_, Of*=(R", Bgn, X ;_, ¥,..G,) in L®(Q
(= R™"1)) such that

[<>n< ¥,,Go) (X Z))(6) = X ([%.G JEID)
27T02 / / Yo (@i — (Bo+ Z;n:1 aijﬁj))2:| dzy -+ da,. (13.33)

202

i= 1_‘1

(V;(l Zi € Bpn, VB = (8o, b1, , Bm) € Qo(= R™))

Assuming that o is a variable, we have an observable O = <R”(: X), Brn (=), F) in L>®(Qy xRy)
such that

(V X Z; € Bgn,V(B,0) € R (= Q) x Ry). (13.34)
i=1

Thus, we have the following problem.

Problem 13.5. [Generalized linear model in quantum language]
T1
T

Assume that a measured value z = _2 € X = R” is obtained by the measurement
:L‘n

Moo (oxr,) (O = (X, T, F), Si(80,81, Bm.0)))- (The measured value is also called a response vari-

able.) And assume that we do not know the state (3o, 81, , Bm, 02).

Then,

Infer 5y, B1,+ -+ , Bm, o from the measured value xr = (21,29, ...,2,) € R"
or A )
Represent (B, B1, -, Bm, o) by (Bo(x), B1(x), -+, Bm(x),d(x)) as functions of x.

The answer is easy, since it is a slight generalization of Problem T373. Also, it suffices to follow
ref. [R]. However, note that the purpose of this chapter is to propose Problem 35 (i.e., the quantum
linguistic formulation of the generalized linear model) and not to give the answer to Problem [375.
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13.3 Generalized linear model

Remark 13.6. As a generalization of regression analysis, we also see measurement error model (cf.
§5.5 (117 page) in ref. [B4]), That is, we have two different generalizations such as

D : ‘generalized linear model‘

(13.35)

’Regression analysis‘ _—
generalization ®: \measurement error model‘

However, we think that () is natural as the generalization of regression analysis (cf. ref. [33]).
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Chapter 14

Equilibrium statistical mechanics

This chapter propose the quantum linguistic formulation of statistical mechanics as follows.

® (3] @ Chap.14
Analytic phil. statistics
. ; guantum c statistical |
ee e fuzzy logic, Fisher. o . 'o8®

Phil. of science “J# mechanics  Baysian,

_ + Copenhagen interpretation
(% Greek phil. ~ Descartes-Kant epistemology )

In this chapter, we study and answer the following fundamental problems concerning classical equi-
librium statistical mechanics:

(A) Is the principle of equal a priori probabilities indispensable for equilibrium statistical mechanics?
(B) Is the ergodic hypothesis related to equilibrium statistical mechanics?

(C) Why and where does the concept of “probability” appear in equilibrium statistical mechanics?

Note that there are several opinions for the formulation of equilibrium statistical mechanics. In this
sense, the above problems are not yet answered. Thus, we propose the measurement theoretical
foundation of equilibrium statistical mechanics, and clarify the confusion between two aspects (i.e.,
probabilistic and kinetic aspects in equilibrium statistical mechanics), that is, we discuss

the kinetic aspect (i.e., causality) -+ in Section M4~
the probabilistic aspect (i.e., measurement) --- in Section 42

And we answer the above (A) and (B), that is, we conclude that
(A) is “No”, but, (B) is “Yes”.

and further, we can understand the problem (C).

This chapter is extracted from the following:
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14.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

[@5] S. Ishikawa, “Ergodic Hypothesis and Equilibrium Statistical Mechanics in the Quantum
Mechanical World View,” WJM, Vol. 2, No. 2, 2012, pp. 125-130. doi: 10.4236/wim.2012.22014,

or ref. [BY], ref. [62](Ver.5; Chap.17).

14.1 Equilibrium statistical mechanical phenomena con-

cerning Axiom 2 (causality)

14.1.1 Equilibrium statistical mechanical phenomena

(1) Every particle obeys Newtonian mechanics.

Hypothesis 14.1. [ Equilibrium statistical mechanical hypothesis |.
6.02 x 10%® ~ “the Avogadro constant”) particles (for example, hydrogen molecules) move in a box
with about 20 liters. It is natural to assume the following phenomena (1) — (4):

(2) Every particle moves uniformly in the box. For example, a particle does not halt in a corner.
(3) Every particle moves with the same statistical behavior concerning time.

() The motions of particles are (approximately) independent of each other.

N / N
AR BN

L I SR WA B B LR

1()24 partlcles ¢

> "% ~ \_‘o b » o~ %e

Vi v 7

o e e >

[ &

d

('8

Assume that about N (x10%* ~

(14.1)
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ANote 14.1. Let me illustrate the above (2) — (4) with a simple ‘metaphor’. Suppose that 100 kinder-
garten children play on swings, slides and sand in a kindergarten yard during a one-hour lunch break.
Assume, however, that there are enough swings, slides and sandboxes for all of them and that there
is no queueing time. The, the above (2) — (4) can be illustrated by the following ‘metaphor’.

(2) All the kindergartners are bored and change their play one after the other. For example, one
of the preschoolers played as follows.

(t) [Swing|— |Slide| —|Sand|—[Slide| — [Swing| — [ Sand | — [Swing

(5min) (3min) (6min) (7min) (9min) (8min) (9min)
— | Sand | — | Swing
(6min) (7min)

For example, no children play only on the swings during the lunch break.

(3) All the children have the same preferences. Therefore, the total duration of each of the three
play activities is the same for all children. For example, every child are as follows.

Total time spent playing on the swings 30min
Total time spent playing on the slides 18min
Total time spent playing in the sandpit 12min

(¥ All children play with a spirit of ”independence and self-respect”. In other words, they are
rarely influenced by the play of other children. For example, they do not act in groups, such

as playing on the swings, then the slide, with other close friends.

You can read the following by imagining this(2)—(4). .

In what follows we shall devote ourselves to the problem:

(D) how to describe the above equilibrium statistical mechanical phenomena (1) — (2)
in terms of quantum language ( =measurement theory).

14.1.2  About (2) in Hypothesis 141

In Newtonian mechanics, any state of a system composed of N( & 10%*) particles is represented

by a point (g, p) (E (position, momentum) = (Gin; @21, @3ns Pins P> P3n) ey ) in a phase (or state)
space RSV, Let 3 : RN — R be a Hamiltonian such that

H (1> @2ns 430, Pins P2ns Pan)n—y) = momentum energy + potential energy
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14.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

(pkn)2 N
U((qin; G2ns Gsn)n=1)- 14.2
2 X particle’s mass]+ ((q1n: G2n: G3n)n=1) ( )

”MZ

Fix a positive £ > 0. And define the measure v, on the energy surface Q. (= {(q,p) € RN | H(q,p) =
E}) such that

v,(B) = / IVH(q,p)| Fdmen—1 (VB € Bq,_, the Borel field of Q)
B
where

+

IVH(q,p)| = 232

”MZ

and dmegn_1 is the usual surface Lebesgue measure on §2,,. Let {f} _s<t<oo be the flow on the energy
surface €1, induced by the Newton equation with the Hamiltonian H, or equivalently, Hamilton’s
canonical equation:
dt N ap;m’ dt N aq;m’
(k=1,2,3, n=1,2,...,N).

(14.3)

Liouville’s theorem (c¢f.[86]) says that the measure v, is invariant concerning the flow {f}_<i<oo-
Defining the normalized measure v, such that v, = —£&— lzfz 7, we have the normalized measure space
E\E

(QE7 BQE ] EE)‘
Putting A = Cy(2,) = C(£2,) (from the compactness of €2, ), we have the classical basic structure:

[C(Qy) € L*(Qy, 1) € BILAQ,, 1))

E’TE

Thus, putting 7 = R, and solving the (14.3), we get w; = (q(t),p(t)), 1,00 = Vi _11s PF1y0ur, =
Oge,1y(wiy) (Vwy € €2,), and further we define the sequential deterministic causal operator {®;, s, :
L>(Q,) — L“(QE)}(tl‘tg)eT% (cf. Definition O4).

14.1.3 About (2) in Hypothesis 14.1

Now let us begin with the well-known ergodic theorem (c¢f. [86]). For example, consider one
particle P;. Put

Sp, = {w € Q, | astate w such that the particle P, stays around a corner of the box }

Clearly, it holds that Sp, € Q.. Also, if ¥f(Sp,) C Sp, (0 =Vt < 00), then the particle P, must
always stay a corner. This contradicts (2). Therefore, (2) means the following:

(2) [Ergodic property]: If a compact set S(C Q,,S # ) satisfies ¢F(S) C S (0 £Vt < 00), then
it holds that S = Q.

The ergodic theorem (cf. ref. [8G]) says that the above (2)’ is equivalent to the following equality:

—00

/ ) = jim 4 [ s (14.4)

(state) space average) (time average)
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Va e R,Vf € C(2,), Ywy € Q)

After all, the ergodic property (2)' (< (I44) ) says that if 7" is sufficiently large, it holds that

a+T
| femaor g [ rrea (145)

Put m,.(dt) = %. The probability space ([, + T, Ba,a+7], M) (or equivalently, ([0, 7], B,
m,) ) is called a (normalized) first staying time space, also, the probability space (2,,Bq_,7,) is
called a (normalized)second staying time space. Note that these mathematical probability spaces
are not related to “probability” (Recall the linguistic Copenhagen interpretation [§3.1) :there is no
probability without measurement).

14.1.4 About (3) and (») in Hypothesis 14.1

Put Ky = {1,2,...,N(=10*")}. For each k ( € Ky), define the coordinate map m;, : Q,( C
RYV) — R such that

ﬂ-k(w) = 7Tk<q,p> :Wk((q1n7 q2n, Q?maplnap%np?m)r]yzl)
=(G1k; @2k 93k P1ks D2ks D3k) (14.6)

for all w = (,p) = (q1n: G2ns Gy Pins P2ns Pan)ny € Qp( C ROY). Also, for any subset K (€ Ky=
{1,2, ..., N (~102%)}), define the distribution map DY) : Q, ( C R®N) — M, (R®) such that

1
DY = o D nan (V(@.p) € Q(CRY))
HE] (e

where $[K] is the number of the elements of the set K.
Let wo(€ ) be a state. For each n (€ Ky), we define the map X“° : [0, 7] — R® such that

X5 (t) = ma(pf (wo)) (VL €10,T7]). (14.7)

And, we regard {X“°}_ as random variables (i.e., measurable functions ) on the probability space
([0, T, Bio,ry, m,). Then, (3) and (1) respectively means

@) {X@IN_ is a sequence with the approzimately identical distribution concerning time. In other
words, there exists a normalized measure p, on R® (ie., p, € M7, (R®)) such that:

m,({t € [0,T) : X2(t) € E})x p, (E) (14.8)
(VE S ‘BR67TL: 1,2,...,N)

@) {X@N_is approzimately independent, in the sense that, for any Ky C {1,2, ..., N(~10**)}
such that 1 < #[Ky) < N ( that is, @%O ), it holds that

m,.({t €[0,T]: X;°(t) € Zx(€ Brs),k € Ko})

~ X T, ({t € [0,T] 1 X2(t) € Zy(€ Bro)}).

keKy
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14.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

Here, we can assert the advantage of our method in comparison with Ruelle’s method (cf.ref.
[04]) as follows.

Remark 14.2. [About the time interval [0,7]]. For example, as one of typical cases, consider the
motion of 10?4 particles in a cubic box (whose long side is 0.3m). It is usual to consider that “averaging
velocity” =5 x 10*m/s, “mean free path”=10""m. And therefore, the collisions rarely happen among
#[Ko] particles in the time interval [0,7], and therefore, the motion is “almost independent”. For
example, putting #[K,] = 10'°, we can calculate the number of times a certain particle collides with

Ky-particles in [0,T] as (1077 x }8%)*1 X (5% 10%) x T~ 5 x 107° x T. Hence, in order to expect

that (3)' and (1) hold, it suffices to consider that T' ~ 5 seconds. /]

Also, we see, by (I477) and (I4°5), that, for Ky(C Ky) such that 1 < #§[{Ky] < N,

my({t €[0,T] : X;°(t) € Zx(€ Bgs), k € Ko})
=m,.({t € [0,T] : mp(¢VF (wo) € Zx(€ Bre), k € Ko})

=11, ({t € [0,T] : ¥F (wo) € ((Th)rers) " ( X Zp)})

~ T ((7h)kery) ™' ( é{o =)
=(7, o ((Wk:>keKo)_l)(k€>§<o Ek) (14.9)

Particularly, putting Ky = {k}, we see:

m,({t €[0,T] : X;°(t) € E})= (7, o1, ') (E)
(V= € Bgo). (14.10)

Hence, we can describe the (3) and (4) in terms of {m} in what follows.

Hypothesis 14.3. [(3) and (») ]. Put Ky = {1,2, ..., N(=10*)}. Let , E, v, v, 7 : Q, — R®
be as in the above. Then, summing up (3) and (1), by (T29) we have:

(E) {m : Q, — RO} | is approximately independent random variables with the identical distribu-
tion in the sense that there exists p, (€ M7, (R%)) such that

® p, (= “product measure” )~ v, o ((my)rex,) (14.11)
keKo

for all Ko C Ky and 1 £ #[Ky] < N.

Also, a state (g, p)(€ €2,) is called an equilibrium state if it satisfies D%f)sz.
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14.1.5 Ergodic Hypothesis

Now, we have the following theorem (cf.ref. [A5]):

Theorem 14.4. [Ergodic hypothesis]. Assume Hypothesis 1423 ( or equivalently, (3) and (1) ). Then,
for any wy = (¢(0),p(0)) € 2, it holds that

(DY) (2)xm, ({t € [0,T] © Xeo(t) € E})
(VE € Bge, k =1,2,..., N(=10*")) (14.12)

for almost all ¢. That is, 0 = m,.({t € [0,T] : (T4712) does not hold}) <« 1.

Proof. Let Ky C Ky such that 1 < §[Ky] = Ny < N (that is, [1(0 A0~ i) ). Then, from
Hypothesis A, the law of large numbers (cf. ref. [B5]) says that

Dg{]{gt)’p(t))% ﬁE o) 7]—];1 ( ~ pE ) (1413)
for almost all time ¢. Consider the decomposition Ky = {Ky, K, - . . K(L)}. (i.e, Ky = UZL LK,

KoyNKgy=0 (1#1")), where {{Kpl=No (I =1,2,...,L). From ([413), it holds that, for each k
(=1,2,...,N (=10%)),

t)p(t 1 (t
D&?L)p( ) _ ~ IZ:MK o] % Dg(l))p )]
=1
1 L
NZ XpENV Oﬂ—k1<sz )7 (1414>

1=1
for almost all time ¢. Thus, by (I4710), we get (T4-12). Hence, the proof is completed.

We believe that Theorem 1474 is just what should be represented by the “ergodic hypothesis” such
that

“population average of N particles at each ¢”
=“time average of one particle”.
Thus, we can assert that the ergodic hypothesis is related to equilibrium statistical mechanics ( ¢f. the
(B) in the abstract). Here, the ergodic property (2)’ (or equivalently, equality (T2H)) and the above

ergodic hypothesis should not be confused. Also, it should be noted that the ergodic hypothesis does
not hold if the box ( containing particles ) is too large.

Remark 14.5. [The law of increasing entropy|. The entropy H (g, p) of a state (¢, p)(€ 2,) is defined
by

H(q,p) = klog[v, ({(d,p)) € Q, : DV~ D)

where
k = [Boltzmann constant]/([Plank constant]* N!)

Since almost every state in €2, is equilibrium, the entropy of almost every state is equal klog v, (2,).
Therefore, it is natural to assume that the law of increasing entropy holds.
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14.2 Equilibrium statistical mechanical phenomena con-
cerning Axiom 1 ( Measurement)

In this section we shall study the probabilistic aspects of equilibrium statistical mechanics. For
completeness, note that

(F) the argument in the previous section is not related to “probability”
since Axiom 1 (measurement; §2.7) does not appear in Section T4_1. Also, Recall the linguistic
implies that the equilibrium statistical mechanical system at almost all time ¢ can be regarded as:

(G) a box including about 10%* particles such as the number of the particles whose states belong
to = ( € Bge) is given by p,(Z) x 10

Thus, it is natural to assume as follows.

(H) if we, at random, choose a particle from 10?* particles in the box at time ¢, then the probability
that the state (qi,qo,q3, p1, D2, p3) (€ R®) of the particle belongs to = ( € Bgs) is given by

Pp(E)-

In what follows, we shall represent this (H) in terms of measurements. Define the observable Oy =
(R®, Bgs, Fp) in L>(£2,) such that

[Fo(2)(g,p) = [Df,?;@](z)( _ Bk Wﬁ%) € E}]>

(V2 € Bgs,¥(q,p) € Q,( C RY)). (14.15)

Thus, we have the measurement Mz (q,)(Op := (R®, Bge, Fp), S|
(measurement; §2.7) , that

Soy(a v ;). Then we say, by AxiomT
070

(I) the probability that the measured value obtained by the measurement M q,)(Og := (RS, Bgs, Fy), S (B¢

belongs to Z(€ Bgs) is given by p,(Z). That is because Theorem 14.4 says that [Fy(Z)] (¢ (g, Py))
~ p,(Z) (almost every time t).

Also, let U7 : L>(§2,) — L>(Q2,,) be a deterministic Markov operator determined by the continuous
map ¢¥f : Q. — Q. (¢f Section [417). Then, it clearly holds WOy = Op. And, we must take
a Mpeq,)(00; Sig(t) p(i)))) for each time t1,t, ... 2, ... t,. However, the linguistic Copenhagen
interpretation (§3.1) :( there is no probability without measurement) says that it suffices to take the

. n
simultaneous measurement MC(QE)( X —1 Oo, S[é(qm),p(o»]>'

Remark 14.6. [The principle of equal a priori probabilities |. The (H) (or equivalently, (I)) says
“choose a particle from NV particles in box”, and not “choose a state from the state space {2,”. Thus,
as mentioned in the abstract of this chapter, the principle of equal (a priori) probability is not related
to our method. If we try to describe Ruele’s method [[04] in terms of measurement theory, we must
use mixed measurement theory (c¢f. Chapter R). However, this trial will end in failure.
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14.3 Conclusions

Our concern in this chapter may be regarded as the problem: “What is the classical mechanical
world view?” Concretely speaking, we are concerned with the problem:

“our method” vs. “Ruele’s method [I04] ( which has been authorized for a long time )”

And, we assert the superiority of our method to Ruele’s method in Remarks 042, T4 5, T46.
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Chapter 15

How to describe “belief”

Recall the spirit of quantum language (i.e., the spirit of the quantum mechanical world view), that is,
(#) every phenomenon should be described in quantum language.

Thus, we consider that even “belief” should be described in quantum language. For this, it suffices to
consider the identification:
“belief” = “odds by bookmaker”

This approach has a great merit such that the principle of equal weight holds. This chapter is extracted
from Chapter 8 (Sec. 8.6) in

e Ref. [B5]: 5. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University|
Press Inc_ 2006

15.1 Belief, probability and odds

For instance, we want to formulate the following “probability”:

(A) the “probability” that Japan will win the victory in the next FIFA World Cup.
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15.1 Belief, probability and odds

This is possible (c¢f. [3H]), if “parimutuel betting (or, odds in bookmaker)” is formulated by Axiom (™
1 ( mixed measurement ). The purpose of this chapter is to show it, and further, to propose the
principle of equal weight, that is,

(B) the principle that, in the absence of any reason to expect one event rather than another, all the
possible events should be assigned the same probability.

whose validity has not been proven yet. It is one of the most important unsolved problems in

'”f<?®?>w

statistics.

probability 0,5 probability 0.5

he principle of equal probability

In Chapter B, we studied the mixed measurement: that is,

[(mixed) Axiom ™) 1] [Bxiom 7]
mixed measurement theory‘ = ‘ mixed measurement ‘ + | Causality
(=quantum language) (cf. B81) (cf. §E3)

a kind of spells (a priori judgment)

lguantum hnguistic Copenhagen interpretation|
+ ‘ Linguistic Copenhagen interpretation ‘ (15.1)
(¢f. §8)

manual to use spells

The purpose of this chapter is to characterize “belief” as a kind of mixed measurement.

15.1.1 A simple example; how to describe “belief” in quantum language

We begin with a simplest example (c¢f. Problem 85 ) as follows.

Problem 15.1. [= Problem B%; Bayes' method] Assume the following situation:

(C) You do not know which the urn behind the curtain is, U; or Uy, but the “probability”: p and
1—p.

Here, consider the following problem:
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Assume that you pick up a ball from the urn behind the curtain.
(i): What is the probability that the picke(g) ball is a white ball ?

Ui

™
N
N

"’U

(ii): If the picked ball is white, what is the probability that the urn behind the curtain is Uy 7

Figure 15.1:( Mixed measurement)

Answer 15.2. (=Answer R.T3)
Put Q@ = {wy,ws} with the discrete metric and the counting measure v, thus, note that Cy(2)

= C(Q) = L*>*(2,v). Thus, in this chapter, we devote ourselves to the C*-algebraic formulation:
Define the observables O = ({W,B}, 2{W:B} F) and Oy = ({Uy,U,}, 21Unt2} Gy) in C(Q) by

F{W})(wi) =038, F({B})(wi) = 0.2, F({W})(w2) = 0.4, F({B})(w2) = 0.6
Gu({Ui})(w1) = 1,Gu({U2})(w1) = 0, Gu({U1})(w2) = 0, Gy({Ua})(w2) = 1

Here “W” and “B” means “white” and “black” respectively. Under the identification: U; ~ w; and
U, &~ ws, the above situation is represented by the mixed state p*) (€ M,41(€)) such that

prior

pl(ozgor = p5w1 + (1 - p)(;wm

where ¢, is the point measure at w. Thus, we have the mixed measurement:

@ (0 x Oy := ({W,B} x {Uy, Uy}, 2WBHAULU} B ) S (p)).- (15.2)

pprlOI‘
Axiom(™ 1 gives the answer to the (i) in Problem I51 as follows.

(D) the probability that a measured value (z,y) obtained by the mixed measurement M¢(q)(O x
Ou, Sy ( ) ) belongs to {W} x {Uy,Us} is given by

pprlor
2@ (P8 hors FUW D) ey = 0.8p + 0.4(1 — p).

Since a white ball is obtained, Answer BT3 (=Bayes’ theorem ) says that a new mixed state
P (€ M1(Q)) is given by

® _ ({W})pprlor _ 0.8p 0.4(1 — p) 5
P T AW D))l () 08p+04(1=p) ™" " 08p+04(1—p) ™

(15.3)
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15.1 Belief, probability and odds

Hence, the answer of the (ii) is given by

B 0.8p
~0.8p+0.4(1 — p).

M©Q) (Pl(o[f))sta Gu({U1})) o

By an analogy of the above Problem Th71 ( for simplicity, we put: p = 1/4), we consider as follows.
Assume that there are 100 people. And moreover assume the following situation (E) such that,
for some reasons,

(E) 25 people believe ( or vote) that [«] = U; (i.e., Uy is behind the curtain)
75 people believe ( or vote) that [*] = U, (i.e., Us is behind the curtain)

That is, we have the following picture instead of Figure 15.1:

Figure 15.2: Belief ( or voting )

Ul(% CUl)

7 N
7/ A ¥
7 N
7 N
7 N
7/ N
7/ N
7/ N
y 4 N\

T Y
B |
L §
L ¥ 7
\ 7
N 7
N 7
N\ 7
N 7
NS 7
NS >

25 people believe that [«] = Uy, 75 people believe that [#] = Us.

Now, we have the following problem:
Problem 15.3. Consider Situation (E) and Situation (C) (p=1/4, 1 —p=3/4). Then,
(F,) Can Situation (E) be understood like Situation (C) 7
or, in the same sense,

(F,) Can Situation (E) be formulated in mixed measurement (i.e., Axiom™) 1)? That is, can
Situation (E) be described in quantum language ?

15.1.2 The affirmative answer to Problem 15.3

Since 100 people know the situation of the urn (i.e., Figure T2, the assumption (E) ) implies
(G)(=Figure Th3), that is,

(25 people (in 100 people) believe that [*] = U;
N { (G1): 20 people guess (or bet) that a white ball will be picked
(Gz): b people guess (or bet) that a black ball will be picked
75 people (in 100 people) believe that [*] = U,
N { (G3): 30 people guess (or bet) that a white ball will be picked
\ (Gy): 45 people guess (or bet) that a black ball will be picked

(G)
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Figure 15.3: The odds in bookmaker
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25 people believe that [x] = Uj. 75 people believe that [x] = Us.
(G1): 20 people guess that a white ball will be pick€ds): 30 people guess that a white ball will be pick
(G2): 5 people guess that a black ball will be pickefiG4): 45 people guess that a black ball will be pick

ted.
ed.

Assume that a white ball is picked in the above figure. Then, the above (Gg) and (G4) are vanished
as follows.

Figure 15.4: A white ball is picked
®)

L ¥
N
A ¥
N
N
N
N
N
N
N\
X
Y
|

7
7
7

25 people believe that [x] = Uj. 75 people believe that [x] = Us.
(G1): 20 people guess that a white ball will be pickddz): 30 people guess that a white ball will be picked.
—{Ga): 5 people guess that-a-black balbwill be picke(Gi): 15 people guess that-a black ball-will be picled.

After all, we get the following figure:

Figure 15.5: After all, we get the new odds

]
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40 % people believe that [x] = Uy, 60 % people believe that [x] =|Us.

Thus, we see that

(prior state) (a white ball is plcked (post state)

[Fig 153 ——— ———[Fig 3 154

1 2 3
2601+ 360, £0w; 56wy
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15.2 The principle of equal odds weight

Considering the mixed measurement (i.e., the (I52) in the case that p = 1/4):

MC(Q)(O x Oy = ({W,B} x {U17U2}72{W,B}><{U1,U2}’F > GU),S*]( (1/4))) (15.5)

pprlor

we see that the above (I54) is the same as the Bayesian result (I523).
Note that the measurement (T535) is interpreted as

(H) choose one person from the 100 people at random, and ask him/her “Do you guess that a white
ball (or, a black ball) will be picked from the urn behind the curtain, and its urn is U; or Uy ?”

In what follows, let us explain it. Consider the product observable O x Oy of O = ({W, B}, 2{W:B},
F) and Oy = ({U;, Uy}, 21002} G) in C(©) (where © = {6}, 05, ..., 0100 }) such that

[FUWNI(0) = 4/5, [F{BYI(60:) =1/5, (k=1,2,...,25)
[FUWNI0:) =2/5, [F{BYI(0:) =3/5, (k=26,27,...,100) (15.6)
GoUDN(O:) =1, [Gu{UD)(O) =0, (k=1,2,...,25)
[Gu({Ui )] (0) =0, [Gu({U21)])(0x) =1, (k= 26,27, ...,100) (15.7)

And put vy = (1/100) 3,2, 35, (€ M;1(©)). Then, the above measurement (H) is formulated by
Mcey(0 x Oy = ({W,B} x {U;, Us}, 2WEPLTRY [ Gy, Spyy (1)) (15.8)
which is identified with the measurement (T5-5) under the deterministic causal operator ® : C(2) —

C(©) such that ®*(dp,) = b, (K =1,2,...,25), = d,, (k = 26,27,...,100). That is, we see, symboli-
cally,

(H)=(T58): the Heisenberg picture —2 (Th35): the Schrodinger picture

identification

Thus, as a particular case of the above arguments, we can answer Problem 523 such that
(I;) Situation (E) can be understood like Situation (C).

That is,

(Iy) Situation (E) can be formulated in mixed measurement (i.e., Axiom™ 1).  In the same sense,
Situation (E) can be described in quantum language.

15.2 The principle of equal odds weight

From the above arguments, we see that

Proclaim 15.4. [The principle of equal weight] Consider a finite state space 2 with the discrete met-
ric, that is, Q = {wy,ws, ..., wp}. Let O = (X, F, F') be an observable in C(2). Consider a measure-
ment Mcq) (O, Sp). If the observer has no information for the unknown state [*], there is a reason to
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assume that this measurement is also represented by the mixed measurement Me(q) (O, Siy(Pprior))
where

1
Pprior = E ; 5(.%- (159)

Explanation. In betting, it is certain that everybody wants to choose an unpopular wy. Thus, I
believe that everybody agrees with Proclaim [574. Also, it should be noted that

(J) the term “probability” can be freely used within the rule of Axiom 1 or Axiom(™ 1.

The reason that the justice of the (B: the principle of equal weight) is not assured yet is due to the
lack of the understanding of the (J).

ANote 15.1. In this book, we dealt with the following three kinds:

(#1) the principle of equal weight in Remark 519
(f2) the principle of equal weight in Theorem KT=

(#3) the principle of equal weight in Proclaim [h4
which are essentially the same.
In order to promote the readers’ understanding of the difference between Theorem KT8 and

Proclaim 1574, we show the following example, which should be compared with Problem 514 and
Problem RT7

Problem 15.5. [Monty Hall problem (=Problem 5.14; The principle of equal weight) |

You are on a game show and you are given a choice of three doors. Behind one door is a car,
and behind the other two are goats. You choose, say, door 1, and the host, who knows where the
car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you a choice of sticking to door 1 or switching to door 2 7 What should

you do ?
Lo |
door door door J |
No. 1 No. 2 No. 3 |
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Figure 15.6: Monty Hall problem

the door 3 has a goat

You choose door 1

Proof. It should be noted that the above is completely the same as Problem bT4. However, the
proof is different. That is, it suffices to use Proclaim Th4 and Bayes theorem (Bg). That is, the
proof is similar to Problem K16 . O
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Chapter 16

Postscript: Everyday science

This research report examines [ (1 area] (i.e., the area within the green line) in the diagram
below.

e Aristotle’s Spirit; monistic realism = - - __
! relativity
Aristotle : S%eorv Y
—7 2 oo
@G reek : {monism) - (usselved)
philosophy | © ® TOE
g -at | @ SOPEnNApEen = h £
nocrates —+ Newton {intabpretatbion ! @ theory o
I:‘m'n:vuir.l(-s 1l (realism) T | —— || everything
Zeno,Plato | @ ) '
: quantum | (quantum phys.)
@ " 2 redlhtivistic
OXini , mechanics : ®
. : i B3
(@)Schola- s .L ; )
i _x:] e e e e T T R T e = e R P e e B
phfidacphy :— linguistic turn Q[S_ b ,
Anselmus : - -
T]I‘OH]LL; ! q'l.'l&llt'l]lll iIlfOrﬂlﬂ.tlDll sclence
as b
| @ =
I N @ statistics inguisticCopenhager
1 applied math. . % ok interpretation
i system theory | dualisation
| classical mechanical worldview @

{Copernican revolution)

5 ; QIs (= QM
CTT il
Classical QL

(@M Descartes (D Kant
[} -
Leibniz, Locke @ {apiste- _ }OQIS,qu.-:.utEnn imfor-
- y “openhager mation science
—+ (epistemology) — mology) ; - lé Claissical QL thssy
) — sinterpretation | * -
‘ H w P i linguistic turn+ @ _ of everyday science
: (logic, set theory) ®Saussure quantum mechanical
i Wittgenstein mpechanical @ worldview
y " X BT : - 3 Clenc
| : @'-BOOIE" Frege, 13| Hempel,Zadeh | turn l.mg-uagf_ of science
| Russell, Cantor -_>> fuzzy logic
| ' math. " analytic philo. I :
| o e Plato’s Spirit; dualistic idealism =  ------ =

Figure 16.1

Also, recall that | HWP | and [ LCI is respectively discussed in refs. [63, 6] and refs. [62, 65].
Figure 16.1 implies that

(A) [My vision of the future on the interpretation of quantum mechanics|:
The diagram above alludes to the shape of the end of the century-long interpretative problem
of quantum mechanics (the Copenhagen Interpretation versus the Other Interpretations (e.g.,
many world, Bohmian mechanics, etc.)). Interpretations other than the Copenhagen interpre-
tation will develop and dissolve beyond the framework of quantum mechanics as we move in
the direction of 5) and . The Copenhagen Interpretation will go in the direction of ). In
other words, the Copenhagen Interpretation is not a rule governing the small scientific theory
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16.1 My favorite results ( Best 10)

of quantum mechanics, but a rule governing the vast scientific theory (i.e. quantum language),
including statistics. It would be a waste to confine the Copenhagen interpretation only to
quantum mechanics (E). Note ”Copenhagen interpretation” in () and ()! The above is "my
vision of the future of the problem of interpretation of quantum mechanics”, or rather, anyone
who knows quantum language would think this way. Thus, the Copenhagen Interpretation is
eternal.

16.1 My favorite results ( Best 10)

Under QL (= QM(=QIS) + classical QL), I showed a lot of important results in this book and my
recent book [[76]. There are many different opinions on their importance, in my personal opinion,
the following are my top ten best jobs

(i)

326

Solving of Zeno’s paradox (c¢f. Sec. IR, or [76])

For quite some time now (cf. ref. [37]), I have believed that Zeno’s paradox is due to the fact
that "everyday science” is not established as a scientific theory. The proofs were gradually
simplified (cf. refs. [62, 63]) and the current recommended proof is given in Sec. R of this
book. That is, I believe the following equivalence:

(a) Solving Zeno’s paradox

(b) Completing the philosophy of science

(c) the discovery of “the theory of everyday science”
Zeno’s paradox (a) may be a symbol of philosophical puzzle, and thus it a ‘problem that should
not be solved’ . Also, there may be various opinions about “what is the philosophy of science?”.

Therefore some philosophers may disagree with (a) and (b), but if they do, that’s fine by me.
That is because my true assertion is (c). Also, see Note B9.

%

Quantum linguistic understanding of analytic philosophy (i.e., Wittgenstein’s TLP (Tractatus
Logico-philosophicus, cf. ref. [IT3, 6] )).

The starting point of analytic philosophy is Wittgenstein’s TLP: in TLP, Wittgenstein asked
"Why does logic work in our world?” and examined the question:

(#) Why does logic work in our world?

As mentioned in (E7) of Sec. B, he wrote down in TLP gems expressing the basic spirit of
the linguistic Copenhagen interpretation.
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THE LIMITS OF MY
LANGUAGE

Whereof one cannot speak, thereof
one must be silent.

(Ludwig Wittgenstein)

(1889-1951)

However, his TLP is a kind of poetry collection, and theoretically no one could read it. I assert
that this question (f) can be anssered in QL (c¢f. Chap. 12 ref. [[/6]). And thus, I believe that
Wittgenstein’s dream has come true in QL (¢f. Chap. 12 ref. [[/6]) as ‘fuzzy logic’. Further,
fuzzy logic can solve analytic-synthetic distinction problem (Carnap-Quine controversy). In
fuzzy logic, this controversy was won by Quine. Since fuzzy logic asserts that

fuzzy proposition = measurement (= Axiom 1)

Dualistic idealism

| 2o
Proposition y &
(=Axiom 1) J ﬁ

measurement

Look below.

® ® ©@ Chap.14
Analytic phil. tat
. j t statistics ratistical
coe fuzzy logic, , QUMM — Fisher. ~ S e e 0

Phil. of science “# mechanics  Baysian,

_ + Copenhagen interpretation
(% Greek phil. ~ Descartes-Kant epistemology )

My opinion on analytic philosophy (Wittgenstein) is written below.

(a) It was a mistake to dismiss Descartes-Kant’s epistemology as metaphysics.

(b) It is true that analytical philosophy was born out of the study of mathematical logic.
However, there is no direct relationship between mathematical logic and analytical
philosophy. I think it is unfortunate that 100 years have passed without us realizing
this.

(¢) The argument of analytic philosophy is, ”Be logical!”. But the argument of quantum
language is, "Be scientific!”  (="Speak quantum language!”). Analytic philosophy
could not find the similarity between logic and statistics.
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(iii)

- precise - ‘brecise —
emotionar| PS5 (Togieal | 25 (Gmpirca
<— [matters matters

rouah

(23
S\
%:th Socrates
Mi} ~logic is recommended " statistics is recommended
% ﬂ'-{fs\mj {0.1%-valued logic R-valued "logic"
9, 9 everyday logic
God QL( D logic + statistics )

(d) Wittgenstein was not wrong when he chose ”logic” as the theme of his philosophy.
About 20 years ago, I believed that logic had nothing to do with philosophy. Wittgen-
stein sensibly knew the difference between ”logic” and "mathematical logic,” and I
am sure that he was one of the greatest philosophers.

The clearance of ‘Hempel’s ravens paradox’ in philosophy of science. (See above, and
[i5)).

AR AR IV N
SUPp W\ ANy,

Hempel’s raven paradox is a central problem in the philosophy of science, and its resolution
means the completion of the scientific part of the philosophy of science. As mentioned in
this book, we consider QL to be a foundational theory of everyday science. And it should
be noted that this paradox arises from the consideration of set theory as the fundamental
theory of the philosophy of science. That is, after learning about Hempel’s ravens paradox,
I became convinced that

e the purpose of philosophy of science
= to discover the language of ‘everyday science’ (=classical QL).

I have to admire Hempel for approaching the heart of the philosophy of science without
knowledge of quantum language
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The next question is the frequently raised question of analytic philosophy.

e Has there ever been even a single research result that could be called ‘analytic phi-
losophy’, which is distinct from philosophy?
I can say that, if the perfection of analytic philosophy is QL, we can assert that almost
all (dualistic idealist) philosophical problems can be solved within analytic philosophy.

With regard to post-Wittgenstein analytic philosophy, I consider the following (cf. ref.
[i]).

Hempel Quine]
= - T_ .‘ = I'-‘ﬁ

Wittgenstein | Axiomatic theory
- e .
measurement
- 2 causality
, y £ . z z =
.' B anicarl “  Phil of science Two Do ]
“ i positivism _faven paradox . Empi:i]cism ¢ Quantum
Axiomatic theory
AT -
Copenhagen interpratation ¢
Promoting
practical logic |—|Popper Putnam Chalmers
Axiomatic theory A Linguistic
Copenhagen

interpretation

brain in a vat
Phil. of mind

falsifiability

Just to be clear, I say it again:

o “Philosophy of Science = QL”

(iv) Solving the problem of universals (cf. ref. [76])

The problem of universals is the greatest controversy (Aristotle’s monism vs. Plato’s du-
alism)  in Scholastic philosophy. The controversy was muddled because Plato’s dualism
was not clearly understood; if Plato’s dualism is replaced by The dualism of QL, the
meaning of the controversy becomes clearer. However, Anselmus’ and Thomas Aquinas’
understanding of dualism was groundbreaking at the time and laid the foundation for
Descartes’ discovery of mind-body dualism.

The problem of universals
Does the human race 'e)ust"

A‘* i @} @ E :;:a
“ o ?? ﬁ ﬁ %«,
T R

Their (Anselmus’ Thomas Aquinas’ and Descartes’) arguments are so outstanding that
it is hard to believe that they are considerations made without knowledge of quantum
language (the scientific end point of dualistic idealism).
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As mentioned in [[76], I consider that what Descartes did was rewrite Thomas’s philosophy
for the general public (using the magic phrase [I think therefore I am]).

Solving of Hume’s problem of induction and the grue paradox (cf. ref. [[7G]).

This paradox is due to the fact that ‘everyday science’ is not established as a scientific
theory. Therefore, it is automatically solved if classical QL is accepted as the theory of
everyday science. That is, the law of large numbers is one of the most important theorems
in the theory of everyday science. Also, I think that the concept of ‘parallel time’ is needed

in classical QL (c¢f. sections -7 and BR)."

jﬂ} ; Flones = Oy &) g . ) 2. [ '
A= 1= :I,,- | -_/,’;'l—. . e i, @ [ I':> &Qr

5 = il o NS d ._,_.,:} - A ] | |

) B B = O E)- T8, &) |
8 [ J AL :42’-'__-‘- W & ,_\."-l" = tha law of large numbars
( = il Qs (=9 — =8 et

Glue’s emerald paradox is well-known but not written in an understandable way. However,
Glue’s emerald paradox can be solved immediately if Hume’s problem of induction is seen
as a law of large numbers within a quantum language.

s

! As mentioned in Sec. 87 (Leibniz-Clarke correspondence), we think that

we, like God, can create ‘space’ and ‘time’ at our convenience,

since “space” and “time” do not exist in Axioms 1 and 2 (in QL).
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(vi) The proposal of the linguistic understanding of von Neumann-Liiders projection postulate
(i.e., Postulate M7 in Sec. TU2).

Spread out M Collapsed

wavefunction 3? wErelmCkon

LY

And we use this postulate to clarify the paradox of Schrodinger cat, though what we have
done is ’clarification’, not 'resolution’.

Fig. (1) = Yiite F1g. (82)~ Ydeath

pv‘@) gas click!
15T inter ofnter
@ radioact]ve atom ra<ﬁ0act ve atom

Figure 10.3: Schrodinger’s cat(half and half)

As mentioned in Chap. [, note that, without Postulate 114, we can not mention several
famous quantum paradoxes (such as the paradox of Schrodinger cat).

(vii) ;5}126) discovery of Theorem AT6 (= the true Heisenberg’s uncertainty pronciple A, - A, >

That is, the definitions of A, and A, are proposed

Heisenberg's uncertainty principle

fzx,} AX ApAx s h

impossible to know exactly:
= where something s
= how fast it is going
Hoeever, what is the definition of ..'_\p tor, Ax)?

I am of the opinion that just as Descartes’ cogito proposition was used as a catchphrase
for Descartes-Kant’s epistemology, Heisenberg’s uncertainty principle (Proposition A-1T)

from the Yy -ray microscope thought experiment was used as propaganda for quantum
mechanics.
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i -5:]):}) (( observer

e

Heisenberg's thought experiment
with y -ray microscope

(viii) I assert that ‘theoretical statistics’ should be constructed in the frame of QL (i.e., [QL is

the language of (everyday) science], or [science is ‘speaking in QL’])?. T believe that this
assertion is the biggest in science. This is the main theme in this book. See @ below.

1
- q?t- i |® @ Chap.14
nalytic phil. tatistics ieti
. ; t SiE tatistical
ees fuzzy logie, o duantum — “rigne, © statistical o

Phil. of science W rhechanics  Baysian,

_ + Copenhagen interpretation
(% Greek phil. ~ Descartes-Kant epistemology )

.

discussed in refs. [63, 76} discussed in refs. [62, B3]
(See Chap. B Statistics (I), Chap. B Bayes statistics and Chap. [2 Statistics (II) )

I am aware that there are negative opinions about the scientific part of the history of
Western philosophy (ancient Greek philosophy, Scholastic philosophy, Descartes-Kant’s
epistemology, analytic philosophy), but I am rather positive about dualistic idealism,
since these lead to QL as we saw in in Preface (or, ref. [[76]).

(ix) Solving the Monty Hall Problem (and the proof of the principle of equal weight)®

(#1) Monty Hall Problem in Fisher statistics - - - Problem b14

(#2) Monty Hall Problem by the moment method - - - Remark bT4
(#3) Monty Hall Problem by Bayes” method - - - Problem BTH
(#4)

1) Monty Hall Problem by the principle of equal weight - - - Problem 575

%I do not agree with the claims of analytic philosophy (i.e., mathematics is the language of science).
3As far as I checked (e.g., ref. [13]), the solution (#;) is new.
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=
|

door door door J @ |
No. 1 No. 2 No. 3 |
_

The solution (f3) in Bayesian statis-
tics is well known. However, I think that my solution (f;) (¢f. [24] (using Fisher’s maxi-
mum likelihood method)) should be standard, since Fisher statistics is more fundamental
than Bayesian statistics (¢f. (f) in Sec. 84).

I like these puzzles such as ‘two envelopes problem’, ‘three prisoners problem’; ‘Bertrand’s
paradox’, etc.

(x) In Chap. 14, I propose the quantum linguistic characterization of equilibrium statisti-
cal mechanics, which asserts that the ergodic hypothesis is not related to equilibrium
statistical mechanics.

’ L‘}\A "\4‘
‘7.1“'1 s.\&.aa}
10** particles 3! ,
'\’A l’ xﬁ.y".‘ >
| I 4 \.a ") A e 4

Clarifying the relationship between statistics and statistical mechanics is an open question,
which could be fully answered. That is, I think that

® ® € Chap.14
Hnalytic I'Jhi'. statistics
. ; guantum : statistical |
ee e fuzzy logic, Fisher. 4 . 'o8®

Phil. of science “J# mechanics  Baysian,

+ Copenhagen interpretation

(= Greek phil. ~ Descartes-Kant epistemology )
Figure 16.1

This is a matter of course, since we assert that classical QL is proposed as a theory of everyday
science.
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16.2 At the end.

(i):In the first year of university, regardless of whether you are a liberal arts or science student,
there are lectures on mathematics, physics, and statistics. This means that these three are the
"most important basic theories” and correspond to the following three.

The world's shortest history of three fundamental theories

Mathematics Two basic sciences
(no matter, no mind) ? @ o T
s | ¥

" Aristotle Plato i_

matter J

s By
mind-body-matter

A

1+2+...+100=5050

A

@ | think therefore | am

Quantum language

Cantor

Abstract
Mathematics

Set theory Theory of everything

Mathematics and QL have reached their destination, and now we are in the details. However,
the TOE of physics is still unknown. I think that human wisdom must solve these three
problems. Physicists need to hurry, otherwise AI will do it first!

(ii): Another question I've been wondering about is, "Is there a fourth fundamental theory?”
I believe there isn’t, but I'm not confident.

(iii): T add Chap. ©7 [Appendix: Socrates’ absolutism was perfected by QL(See. Sec.l'7-1)]. I
highly recommend you read it.
Shiro Ishikawa®
20 July in 2024

4For the further information concerning quantum language (notices on improvements to the results of this publi-
cation, etc.)7 see home page: https://ishikawa.math.keio.ac.jp/indexe.html]
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Chapter 17

Appendix: Socrates’ absolutism was
perfected by QL
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The diagram above alludes to the shape of the end of the century-long interpretative problem of
quantum mechanics (the Copenhagen Interpretation versus the Other Interpretations). Interpretations
other than the Copenhagen interpretation will develop and dissolve beyond the framework of quantum
mechanics as we move in the direction of (5) and (6). The Copenhagen Interpretation will go in the
direction of (8). In other words, the Copenhagen Interpretation is not a rule governing the small
scientific theory of quantum mechanics, but a rule governing the vast scientific theory (i.e. quantum
language), including statistics. It would be a waste to confine the Copenhagen interpretation only
to quantum mechanics (B). It doesn’t matter if the Copenhagen interpretation is slightly inferior to
other interpretations in quantum mechanics. Thus,

the Copenhagen Interpretation is eternal.

17.1 Socrates’ absolutism was perfected by QL

The following is an excerpt from my website (https://ishikawa.math.keio.ac.jp/indexe.html).
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Linguistic Copenhagen interpretation of
Quantum language
Socrates' absolutism was perfected by

QL

[I] . The whole picture of Quantum Language (=QL) is explained in detail in the following two:

[HWP]: History of Western Philosophy from the quantum theoretical point of view; [Ver.5] (2023)
[https://philarchive.org/rec/ISHHOW-3]

The main point is the derivation of fuzzy logic from QL. It is the part of [analytical philosophy® — QLD]

written in Figure 1 below.

[LCI]: Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 6] (2023)
[https://philarchive.org/rec/ISHLCI-3]

The main point is the derivation of statistics from QL. It is the part of [statistics® — QLO] written in Figure 1

below.

The above two can be summarized as follows:

e It is common knowledge that "Newtonian mechanics" is not a branch of mathematics, but a theory of
everyday cases of "the theoory of relativity (theory of monistic realism)." Now, in university, "logic" is
emphasized in the humanities and "statistics" in the sciences, but "logic" and "statistics" are not
branches of mathematics but these of "quantum language (theory of dualistic idealism)." In other
words, logic and statistics is used for the rough matters and statistics for the fairly precise stuff
respectively .

However, this homepage is written so that it can be read without knowing [HWP] and [LCI].

[II : Latest Results; The perfection of Socrates' absolutism.]:
This homepage will introduces the following latest paper:
[SOC]: History of Western Philosophy and QL (2024) [J. applied math. and Physics (Pdf download free)]

I chose this because I want the claim of [SOC] (i.e., the completion of Socrates' absolutism) to become
common knowledge in general. Also, I think that every university student is able to read it regardless of their
field of study.
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Below is the Abstract:

What did they want to achieve?

Linguistic Copenhagen interpretation of Quantum language (Keio university)

Aristotle

Thomas Aquinas

Were they just having fun with fashion?

Descartes

o>
A

Kant

—_ = '
- T v

b5
A A

QL

Wittgenstein

e [Abstract]: The purpose of philosophy is diverse, but many philosophers acknowledge that the

mainstream of Western philosophy (Socrates, Plato, Aristotle, Thomas Aquinas, Descartes, Kant,
Wittgenstein) has progressed towards the completion of Socrates' absolutism. However, can absolutism
still maintain its central position after analytical philosophy? There are pessimistic views on this issue,
like that of R. Rorty, a leading figure of neo-pragmatism. Recently, I have proposed quantum language
(including quantum mechanics, statistics, fuzzy sets, etc.). I believe this theory is not only one of the
most fundamental scientific theories but also the scientific ultimate endpoint of Western philosophy. If

so, Socrates' dream has come true. The purpose of this paper is to discuss the above and convey to the

reader that quantum language has the power to cause a paradigm shift from a classical mechanical

worldview to a quantum mechanical worldview.

Now, it is no exaggeration to say that the following [Figure 1: Diagram of two scientific world descriptions] is
all I have to say. The argument for this diagram is as follows.

(AO) There are two types of scientific thinking (monistic realism and dualistic idealism). I am not familiar

with the former (e.g. TOE) because it is difficult to understand, but I consider as 'Newtonian

mechanistic thinking' for the moment. But we are interested in the latter, everyday (non-physical)
scientific thinking, which is a quantum language © evolved from statistics @ or fuzzy logic ®. We
therefore use 'scientific' here in the latter sense (sometimes also 'QL-like' to avoid confusion, e.g. 'QL-

like' is used to mean 'scientific').

= Aristotle’s spirit: monistic realism
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B e ok e i ]
;io_c:mtelsd J || Newton _@L.. : m (©) theory ?f
Z; ?PS;-LEE (realism) 4 \hﬁe_l}-,mmtiu — | everything
m | ! @ quantum i (quantum phys.)
I \ 1
| (1) | @ — | mechanics - ®
: L F— ) :
f P S T e FE | T O E G s Em o Ee e Eans o aee R
@I' :- linguistic turn .
Sendle @ ©
sticism | T quantization -,
; @ @ statistics (‘_J/,
I

applied math.

system theory

dualism

classical mechanical worldview

) Descartes

—

Leibniz, Locke

)

@ Kant

(epist

(logic, set theory)

@

| Boole, Frege,

. Russel, Cantor |

math.

emology) [ ]
22

linguisti

£ turn

i (mind-body dualism) (Copernican revolution)

@ | Fuzzy logic

B Witt genstein
Hempel, Zadeh

?

analytic philos.

Lingﬁ?ﬁ’?
Copenhagen
terpretation

©

(JL:quantum
language

- Plato’s spirit; dualistic idealism

file:///D:/2024Homepage True/HomepageNew/indexePDF.html

quantumn mechanical

worldview

2/10



2024/07/19 22:07 Linguistic Copenhagen interpretation of Quantum language (Keio university)
Figure 1: The locaction QL in the History of Western Philosophy

(the green road =the main stream of western philosophy history )

[III:Let's Get to the Main Topic; This is not the 'end of philosophy
but the 'completion of philosophy']:

We adopt the general convention of considering Socrates as the founder of philosophy. Therefore, we have:

Socrates (absolutlsm pursuit of truth) vs. Protagoras (relativism: mastering rhetoric)

Man e the I know that
measure of

§ all things." I know nothing

~ Socrates ~

In ancient Athens, it was customary for citizens to gather in the agora, a public square, to freely debate. So
how did one "win an argument"?

e Protagoras, the relativist, responded to this question by saying "improve your rhetoric skills"
e Socrates, the absolutist, said "speak the truth" (or, "Make the correct expression.")

. If I were in the agora, I would probably agree with Protagoras, but that's not where philosophy begins. So
Socrates' disciples pursued the question, "What is absolute truth?" This pursuit has continued through

Plato, Aristotle, Augustine, Anselm, Thomas Aquinas, Descartes, Kant, and Wittgenstein,
and has formed the mainstream of Western philosophical history. However, despite being pursued by the most
brilliant geniuses of every era for the past 2,500 years, no clear answer has yet been found. That's why some
people, like Rorty (the flag bearer of neo-pragmatism), say, "Let's give up on the pursuit of truth here." If
Rorty says something like that, I would think that Rorty's opinion may be correct, but still, the stubborn
pursuit of true
If so, I think everyone would agree with the following:

(Al) The most important problem in Western philosophy is the completion of Socratic absolutism, i.e., the
final settlement of the mainstream (Plato, Aristotle, Augustine, Anselmus, Thomas Aquinas,
Descartes, Kant, Wittgenstein)

And the answer of this paper is as follows.

(A>) Next for Wittgenstein is QL, which is the perfection of Socratic

absolutism.
l L™

> QL

A

Wittgenstein

Arlstntle Thomas Aquinas
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Some readers might be thinking:

e Why are there no names like Spinoza, Hegel, Nietzsche, Husserl, Heidegger, Sartre etc?

The reason is simple: their achievements are not scientific (=QL). That does not mean that they are
philosophically inferior to QL philosophers. However, the spirit that permeates the mainstream of Western
philosophy is "scientific."

[IV:The explanation of the answer (A>)]:

Quantum language (=QL) is a mathematical extension of quantum mechanics (=QM), so it has the following
form similar to quantum mechanics:

Axiom 1 Axiom 2
|Quantum language| = [measurement] + [causality| +|Copenhagen interpretation| (1)

The reader may naturally request that "[Axioms 1 and 2] be clearly stated here," but since this is at the
graduate school level, I will omit this.

Axiom 1 is an axiom about measurement, and Axiom 2 is an axiom about motion (equation of motion).
However, since QL is a mathematical extension of quantum mechanics, it is no longer physics, and Axioms 1
and 2 become something like incomprehensible spells. Therefore, quantum mechanics is physics (realism),
but QL is idealism. As shown in the diagram below, measurement is a concept consisting of three parts: the
measurer (measured value), the measuring device (observable), and the measured thing (state). However,
following convention, it is called dualism (rather than trinism). In summary, quantum language is dualistic
idealism, and the mainstream of Western philosophy is also dualistic idealism. In other words, the two can be
discussed within the following Cartesian diagram.

observer measuring instument system
(1 (=mind)) (body, eye, etc.) (matter, measuring object)
[observable] r - ,— _l
[measured value]
@project light _l [State] ¥ / \
= [\ |
@ perceive the reaction ___(,'"" \"-.‘.
(i.e., the reflected light) | / A

Figure 2: Descartes Figure [ The three keywords : mind (measured value)-- body(observable)--
matter(state)]

[Axioms 1 and 2] are spells, and we don't know how to use them. Therefore, we need a manual on how to
use [Axioms 1 and 2]. This manual is the Copenhagen interpretation. Therefore,

(B1) The Copenhagen Interpretation is a manual on how to use [Axioms
1 and 2]

The word "manual” means that you can learn how to use [Axioms 1 and 2] by trial and error without looking
at a manual, and Dr. Mermin's famous "Shut up and calculate!" can be considered a similar definition to (By).
Or rather, I would like to consider the following definition of (B,) to be the true one.

However, there is another way of thinking about this. This is when you do not know [Axioms 1 and 2]. In
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this case, it is as follows.

(B>) The Copenhagen Interpretation is a memo that records things that
are obvious in the world of dualistic idealism.

(To be more specific, it is a memo that records things that are obvious in the world of dualistic idealism, but
not obvious to our normal senses.)

The author's preference is definition (B,) and does not wish to adopt definition (B) if possible. Our

Copenhagen interpretation is specifically enumerated as follows [footnote‘[l]]

(cq)Always think with the Cartesian Figure in mind.
(cp)Measure only once.

(c3)Measurers have no space-time.

(c4)State does not change (There is no movement)
(cs)... (Maybe endless)

etc. Also, I think as follows.

e The Copenhagen Interpretation is attached to quantum language, not to quantum mechanics.
However, when quantum mechanics is viewed as [quantum mechanics ¢ quantum language], the
Copenhagen interpretation appears to be attached to quantum mechanics. The many-worlds
interpretation of quantum mechanics does not consider [quantum mechanics c quantum language], so
it is not associated with the Copenhagen interpretation.

Many readers may think, "I can understand definition (B;), but definition (B>) is impossible." However, what is
surprising is that most of the Copenhagen Interpretation was discovered before the birth of quantum
mechanics. In fact, things like 2, ..., 4 above were discovered by Parmenides (c. 520 BC - 450 BC), who was
50 years older than Socrates. However, Parmenides was too much of a genius, and it is probably the
consensus among philosophy lovers that the position of the father of philosophy should belong to Socrates.
Even so, Parmenides had a clear vision of the world of dualistic idealism and discovered the Copenhagen
Interpretation. Moreover, he discovered it under definition (B2) (without assuming Axioms 1 and 2), which
means he was nothing short of a genius. The field of Western philosophical history is full of geniuses, but
Parmenides (as well as Thomas Aquinas and Descartes) is surprising. Thus we see:

D) The mainstream of Western philosophy has pursued the question, "What is the world of dualistic
idealism (the world in which "things" and "mind" are intertwined)?" In other words, the Copenhagen
Interpretation has been sought.

That the search for the Copenhagen interpretation runs through the mainstream of Western philosophy
[Plato, Augustine, Anselmus, Thomas Aquinas, Descartes, Kant, (excluding Aristotle and Wittgenstein)] is
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evident in the following table.

|Plato, Aristotle, Scholasticism, Descartes, Wittgenstein and QL] |

Plato 3 g
(Allegory of the Sun) actual world Idea(=sunlight) Tdea world
Aristotle hule
(monism) / / [eidos]
Scholasticism T O
(Anselmus) universal individual
Scholasticism human intellect divine ntellect individual
(Thomas Aquinas) (universale post rem) (universale ante rem) {universal in re)
IDescartes. Locke, Kant [B](=body (= sensory organ))

[A](= mind) [Cl(= matter)

(epistemology) (Mediating of A and C)

Wittgenstein

(analytic philosophy) logic
¢ 1 measurer measuring instrument system
quantum fanguage [measured value] [observable] [state]

Figure 3: The mainstream of Western philosophical history [the history of clarifying the three
keywords (mind, body, matter)] (Aristotle is a monistic realist)

But the story is not simple. The problem is the [logic] part of analytic philosophy (Wittgenstein). Anyone
looking at [Figure 3] would think that

(E]_) Isn't "analytical philosophy" unique and out of touch with the mainstream of Western philosophy?

)

(EZ) Descartes-Kant's epistemology is meaningless because it is metaphysics. True philosophy begins with
analytic philosophy!

etc. It is natural that a variety of opinions erupt. Figure 1 is shown again:

- Aristotle’s spirit: monistic realism  _____

(logic, set theory) linguisti

| @ i @W’it—tgenstein

| Boole, Frege, @ Hempel, Zadeh
?
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Figure 1: The locaction QL in the History of Western Philosophy

Now, as we saw above, everyone would think that
(E3) "@: linguistic turn" is unreasonable (i.e., ® and ® not connected)

Wittgenstein discarded (Descartes-Kant) epistemology as metaphysics and established analytical philosophy.
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Wittgenstein's brilliant eloquence led philosophy lovers to believe in the linguistic turn: @ — ®, and this has
continued for 100 years.
If you think about it normally, even if "logic" is the foundation of mathematics and is important, philosophy
does not go out of its way to emphasize the "importance of logic." If mathematicians or physicists emphasize
the "importance of logic," it would be somewhat understandable, but they do not go out of their way to say
such obvious things. To begin with, his TLP (= Tractatus Logico-philosophicus) is not written logically, and
Wittgenstein is not a philosopher who thinks logically.

About 10 years ago, I thought the following:

(E4) Analytical philosophy is a philosophy that the magician Wittgenstein created in the midst of the
scientific revolution (abstract mathematics, quantum mechanics, and relativity) in the early 20th
century in order to break the "Epistemological rut." He was blinded by the surprising fact that logic is
the language of (abstract) mathematics and jumped on "logic," but it is doubtful that "logic" is the
main theme of philosophy. It has nothing to do with Socratic absolutism.

[V: The most important issue in the history of Western philosophy
is the relationship between Kant @O and Wittgenstein ®]:

About 10 years ago, my opinion was (E,4), but now I think as follows.

(F) Wittgenstein was wrong to discard "epistemology". However, Wittgenstein's choice of "logical"
is quite commendable. Maybe 50 points. But to get 100 points, he should have chosen
"scientific".

Let me show this below.

We must free ourselves from the spell of Wittgenstein and look squarely at the absolute truth of Socrates. In
other words, we must look at it from the perspective of QL. Then, by expanding the essential part of Figure 1,
we obtain the following:

®:QM ] linguistic furm ]
quantum mechanics ®)
( Copenhagen interpretation) justification

@:_:ii.a[i::itic;i I N quantum mechanical
system theory <:?: worldview
- justification

@); Descartes 1y gan i) progress ! C

<O

squantium
language
guag

Locke, Hume |:> »

(epistemology)

Copenhagen interpretation - ‘Copenhaqe‘n
g interpretation

(] mahematial | historical ® Saussure s

EO loai i —————————————— g Wittgenstein <:,lﬂ,' —]
: ogic \background = | Hempel, Zadch justification
- Frege, etc. i fuzzy logic J

Figure 4: The view [®,®,®,®] from QL (=end point)
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The following has the same meaning as Figure 4:

® guantum
mechanics @
: : Copenhagen
Analytic phil ( - .
- : interpretation) statistics . )
- o b ] ) “eisher. mecﬁaﬁﬂzs RN

Phil. of science “W# Baysian,

_ + Copenhagen interpretation
(% Greek phil. ~ Descartes-Kant epistemology )

Figure 5:The strangeness of quantum mechanics arises from the strangeness of the Copenhagen
Interpretation.
Statistics is a theory that has sealed off the Copenhagen Interpretation to prevent its strangeness
from surfacing, and has chosen to be a type of applied mathematics.

Hence we see :

(G1) QM(®),statistcs(®) and fuzzy logic(@) are derived from QL. Therefore,
these are connected These are also connected to the underlying
Copenhagen interpretation (~ Descartes=Kant epistemology)

[footnote[;]]

Therefore, quantum theory, statistics, and analytical philosophy (fuzzy logic) can all be deduced from LQ (=
[AXioms 1 and 2] + Copenhagen interpretation).
Therefore,

(G>) Wittgenstein was not wrong to emphasise the importance of being
'logical’. But he really should have emphasised the importance of
'scientific (i.e. QL)". It was also a big mistake to abandon 'Cartesian-
Kantian epistemology'.

That is,
(H) Like anything, you can't see the whole picture until you see it from the top
of the mountain.

Just to be clear, analytical philosophy ® has no relation to mathematical logic @, just as physics ® has no
relation to mathematical logic @. Research that considers the results of mathematical logic, such as Godel's
incompleteness theorem, from a philosophical perspective may be important, but this has nothing to do with
what Wittgenstein aimed for.

[VI: Conclution]
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The above showed that.

(A2) QL is the perfection of Socratic absolutism (i.e., dualistic idealism)

(I think this is the most important claim in philosophy. If it were not so, we would not be able to answer the

question, "What was the mainstream of the history of Western philosophy?" In other words, we would not
know what the great philosophers depicted below were trying to do.)

hs 1A

Aristotle Thomas Aquinas Descartes Kant Wittgenstein
We were not doing philosophy as fashion. We were running a relay race aiming for the QL (= goal).

Now we can finally say "what Wittgenstein wanted to say".
(I) What we cannot speak about in QL, we must pass over in silence.

[VII:Supplement]:

(i):In the first year of university, regardless of whether you are a liberal arts or science student, there are
lectures on mathematics, physics, and statistics. This means that these three are the "most important basic
theories" and correspond to the following three.
The world's shortest history of three fundamental theories
Mathematics Tw:o basic sciences
(no matter, no mind) ; o i

f =
Aristotle Plato §_

matter J g S

mind-body-matter

1+2+...+100=5050

B A

Q | think therefore | am

Cantor

Abstract TOE Q L

Mathematics

Set theory Theory of everything Quantum [anguage

(Abbreviation for Figure 1)

Mathematics and QL have reached their destination, and now we are in the details. However, the TOE of
physics is still unknown. I think that human wisdom must solve these three problems. Physicists need to

hurry, otherwise AI will do it first!
(ii): Another question I've been wondering about is, "Is there a fourth fundamental theory?" I believe there

isn't, but I'm not confident.
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[footnote]

1. The author's preference is (B2) and does not want to adopt (B1) if possible. Therefore, we do not agree
that something like 'contraction of the wave function' is one of the Copenhagen interpretations; in QL,
the 'projective canon' is a theorem (cf. [LCI]). In the same sense that there is 'no perfect manual’, we
believe there is no 'perfect Copenhagen Interpretation'. There may be no Copenhagen Interpretation
that clears all the examples given by researchers in the 'philosophy of mind' (e.g. the 'aquarium brain').
However, we think that a Copenhagen Interpretation that covers the problems we are likely to
encounter in practice is possible. Some researchers might want to debate whether to adopt the
'Heisenberg cut' as one of the Copenhagen interpretations, but the author's aesthetic sense would have
to be reluctant to do so. However, this is not to say that the 'Heisenberg Cut' is totally rejected. We
hope that many people will try to propose a 'user-friendly Copenhagen interpretation'. back

2. What Wittgenstein writes in his Tractatus that cannot be derived from QL is unscientific. back

355

file:///D:/2024Homepage True/HomepageNew/indexePDF.html 10/10



	 
	1 Nobody understands quantum mechanics (by R. Feynman)  
	1.1 Outline of quantum language 
	1.1.1 Von Neumann's quantum theory 
	1.1.2 Classification of quantum language 
	1.1.3 Axiom 1 (measurement) and Axiom 2 (causality) in (A1) 
	1.1.4 The linguistic Copenhagen interpretation
	1.1.5 Remarks 

	1.2 Example: Bald man paradox 

	2 Axiom  1 – measurement 
	2.1 The basic structure A†ºAbar†ºB(H); General theory 
	2.1.1 Hilbert space and operator algebra 
	2.1.2 Basic structure A†ºAbar†ºB(H) ; General theory 
	2.1.3 Basic structure [A†ºAbar†ºB(H)] and state space; General theory 

	2.2 Quantum basic structure [C(H)†ºB(H)†ºB(H)] and State space    
	2.2.1 Quantum basic structure [C(H)†ºB(H)†ºB(H)] 
	2.2.2 Quantum basic structure C(H)†ºB(H)†ºB(H) and State space   

	2.3 Classical basic structure C0(…Ö)†ºL†⁄(…¶,…Ö)†ºL2(…¶,…Ë)] 
	2.3.1 Classical basic structure C0(…Ö)†ºL†⁄(…¶,…Ö)†ºL2(…¶,…Ë)]
	2.3.2 Classical basic structure C0(…¶)†ºL†⁄(…¶,…Ë)†ºB(L2(…¶,…Ë))] and State space

	2.4 State and Observable – the primary quality and the secondary quality  
	2.4.1 Mind-matter dualism (= mind-body dualism), Descartes, John Locke
	2.4.2 Essentially continuous 
	2.4.3 The definition of ``observable (=measuring instrument)"

	2.5  Examples of observables
	2.6 System quantity – The origin of observable 
	2.7 Axiom 1 – No science without measurement 
	2.7.1 Axiom 1 for measurement
	2.7.2 A simplest example

	2.8 Classical simple examples (urn problem, etc.) 
	2.8.1 linguistic world-view – Wonder of man's linguistic competence  
	2.8.2 Elementary examples – urn problem, etc. 

	2.9 Simple quantum examples (Stern=Gerlach experiment)
	2.9.1 Stern=Gerlach experiment 

	2.10 A simple example (de Broglie paradox) in B(C2) 
	2.10.1 de Broglie paradox in B(C2)


	3 Linguistic Copenhagen interpretation (dualism and idealism)  
	3.1  Linguistic Copenhagen interpretation  
	3.1.1 What is the linguistic Copenhagen interpretation? 
	3.1.2 Descartes figure 
	3.1.3 The linguistic Copenhagen interpretation [ E1-E7 ]

	3.2 Tensor operator algebra 
	3.2.1 Tensor product of Hilbert space
	3.2.2 Tensor basic structure

	3.3 Exercise — Only one measurement is permitted
	3.3.1 ``Observable is only one" and simultaneous measurement 
	3.3.2 ``State does not move" and quasi-product observable 
	3.3.3 Only one state and parallel measurement 


	4 Linguistic Copenhagen interpretation of quantum systems  
	4.1  Kolmogorov's extension theorem and the linguistic Copenhagen interpretation   
	4.2 The law of large numbers in quantum language  
	4.2.1 The sample space of infinite parallel measurement k=1MA
	4.2.2 Mean,   variance,   unbiased variance 
	4.2.3 Robertson's uncertainty principle

	4.3 Heisenberg's uncertainty principle  
	4.3.1 Why is Heisenberg's uncertainty principle famous ? 
	4.3.2 The mathematical formulation of Heisenberg's uncertainty principle
	4.3.3 Without the average value coincidence condition

	4.4 EPR-paradox (1935) and faster-than-light 
	4.4.1 EPR-paradox


	5 Why does statistics work? : Fisher statistics (I) 
	5.1 Statistics is, after all, urn problems 
	5.1.1 Population (=system) †¨  parameter (=state)
	5.1.2 Normal observable  

	5.2 The reverse relation between Fisher and Born  
	5.2.1 Inference problem (Statistical inference)  
	5.2.2 Fisher's maximum likelihood method in measurement theory  

	5.3 Examples of Fisher's maximum likelihood method 
	5.4  Moment method: useful but artificial  
	5.5 Monty Hall problem in Fisher's maximum likelihood method 
	5.6 The two envelopes problem – High school student puzzle  
	5.6.1 Problem (the two envelopes problem)
	5.6.2 Answer: the two envelopes problem 5.16  
	5.6.3 Another answer: the two envelopes problem 5.16
	5.6.4 Where do we mistake in (P1) of Problem 5.16 ?  


	6 Confidence interval and hypothesis testing  
	6.1 Review; Estimation and testing problems in conventional statistics  
	6.1.1 The theory of random variables 
	6.1.2 Normal distribution 
	6.1.3 (Student) t-distribution, 2-distribution 
	6.1.4 Answer to Problem 6.3 about ``Xn (s)"; Confidence interval and Hypothesis Testing  
	6.1.5 Answer to Problem 6.3 ``SSn (s)n-1"; Hypothesis Testing  

	6.2 Confidence and testing problem in QL terms  
	6.2.1 Review of Fisher's maximal likelihood method 
	6.2.2 Confidence interval and testing problems by QL  
	6.2.3 Measurement theoretical answer to Problem 6.3 ``Xn (s)"; Confidence interval and Hypothesis Testing 

	6.3 Random valuable vs. measurement 
	6.4 Regression analysis
	6.4.1 Simple regression analysis


	7 Practical logic 
	7.1 My recent opinion  
	7.2 Marginal observable and quasi-product observable  
	7.3 Properties of quasi-product observables  
	7.4 Implication – the definition of †¨"  
	7.4.1 Implication and contraposition  

	7.5 Combined observable – Only one measurement is permitted  
	7.5.1 Combined observable – only one observable  

	7.6 Syllogism and its variants  
	7.6.1 Syllogism and its variations: Classical systems  


	8 Bayesian statistics ( Mixed measurement theory)  
	8.1 Mixed measurement theory  
	8.1.1 Axiom (m) 1 (mixed measurement)  

	8.2 Simple examples in mixed measurement theory  
	8.3 St. Petersburg two envelopes problem 
	8.3.1 (P2): St. Petersburg two envelopes problem: classical mixed measurement 

	8.4 Bayesian statistics is to use Bayes theorem in mixed measurement theory 
	8.5 Two envelopes problem (Bayes' method)  
	8.5.1 (P1): Bayesian approach to the two envelopes problem 

	8.6 Monty Hall problem (The Bayesian approach) 
	8.6.1 The review of Problem 5.14 (Monty Hall problem in pure measurement)
	8.6.2 Monty Hall problem in mixed measurement (=Bayesian measurement)

	8.7 Monty Hall problem (The principle of equal weight)  
	8.7.1 The principle of equal weight – The most famous unsolved problem  

	8.8 Averaging information (Entropy)   
	8.9 Fisher statistics: Monty Hall problem [three prisoners problem]  
	8.9.1 Fisher statistics: Monty Hall problem and three prisoners problem
	8.9.2  The answer in Fisher statistics: Monty Hall problem and three prisoners problem

	8.10 Bayesian statistics: Monty Hall problem and three prisoners problem  
	8.10.1 Bayesian statistics: Monty Hall problem and three prisoners problem
	8.10.2 The answer in Bayesian statistics: Monty Hall problem and three prisoners problem

	8.11  Equal probability: Monty Hall problem and three prisoners problem  
	8.12 Bertrand's paradox 
	8.12.1 Bertrand's paradox(``randomness" depends on how you look at)


	9 Axiom 2 – causality 
	9.1 The most important unsolved problem – what is causality ? 
	9.1.1 Modern science started from the discovery of  causality"
	9.1.2 Four answers to ``what is causality ?" (cf. Sec. 10.2.1 in ref. ItohHistory)  

	9.2 Causality in QL – Mathematical preparation  
	9.2.1 The Heisenberg picture and the Schrödinger picture  
	9.2.2 Simple example – Finite causal operator is represented by matrix 
	9.2.3 Sequential causal operator – A chain of causalities

	9.3 Axiom 2 – Smoke is not located on the place which does not have fire 
	9.3.1 Axiom 2 (A chain of causal relations) 
	9.3.2 Sequential causal operator – State equation, etc.  

	9.4  Kinetic equation in classical and quantum mechanics 
	9.4.1 Hamiltonian (Time-invariant system)
	9.4.2 Newtonian equation (=Hamilton's canonical equation)
	9.4.3 Schrödinger equation (quantized Hamiltonian)

	9.5 Exercise: Solving Schrödinger equation by variable separation method  
	9.6 Random walk and quantum decoherence  
	9.6.1 Diffusion process
	9.6.2 Quantum decoherence: non-deterministic causal operator 

	9.7 Leibniz-Clarke Correspondence: What is space-time?  
	9.7.1 ``What is space?" and ``What is time?") 
	9.7.2 Leibniz-Clarke Correspondence

	9.8 Zeno's paradox and Motion function method (in classical system) 
	9.8.1 Zeno's paradox (e.g., flying arrow)  
	9.8.2 The Schrödinger picture and the Heisenberg picture are equivalent in the classical system  
	9.8.3 Derivation of the motion function method from (classical) quantum language 


	10 Simple measurement and causality 
	10.1 The Heisenberg picture and the Schrödinger picture
	10.1.1 State does not move – the Heisenberg picture 

	10.2 The wave function collapse ( i.e., the projection postulate ) 
	10.2.1  Problem: How should the von Neumann-Lüders projection postulate be understood?  
	10.2.2  The derivation of von Neumann-Lüders projection postulate in the linguistic Copenhagen interpretation  

	10.3 de Broglie's paradox (non-locality=faster-than-light)  
	10.4 Quantum Zeno effect  
	10.4.1 Quantum decoherence: non-deterministic sequential causal operator

	10.5 Schrödinger's cat, Wigner's friend and Laplace's demon  
	10.5.1 Schrödinger's cat and Wigner's friend
	10.5.2 The usual answer
	10.5.3 The answer using decoherence
	10.5.4 Summary (Laplace's demon) 

	10.6 Wheeler's Delayed choice experiment:   Particle or wave ?" is a foolish question  
	10.6.1 ``Particle or wave ?" is a foolish question
	10.6.2 Preparation 
	10.6.3 de Broglie's paradox in B(C2) (No interference)
	10.6.4 Mach-Zehnder interferometer (Interference)
	10.6.5 Another case
	10.6.6 Conclusion

	10.7 Hardy's paradox: total probability is less than 1
	10.7.1  Observable Og Og
	10.7.2 The case that there is no half-mirror 2'

	10.8 quantum eraser experiment 
	10.8.1 Tensor Hilbert space
	10.8.2 Interference
	10.8.3 No interference


	11 Realized causal observable in general theory  
	11.1 Finite realized causal observable  
	11.2 Double-slit experiment 
	11.2.1 Interference
	11.2.2 Which-way path experiment

	11.3 Wilson cloud chamber in double slit experiment  
	11.3.1 Trajectory of a particle is nonsense
	11.3.2 Approximate measurement of trajectories of a particle


	12 Why does statistics work? : Fisher statistics (II) 
	12.1  ``Inference = Control" in quantum language
	12.1.1 Inference problem (statistics)  
	12.1.2 Control problem  (dynamical system theory)  

	12.2 [ParameterState] in QL  

	13 Least-squares method and Regression analysis
	13.1 The least squares method  
	13.2 Regression analysis
	13.2.1 The simplest problem
	13.2.2 Regression analysis in quantum language

	13.3 Generalized linear model

	14 Equilibrium statistical mechanics 
	14.1  Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)   
	14.1.1  Equilibrium statistical mechanical phenomena
	14.1.2  About 1 in Hypothesis 14.1  
	14.1.3  About 2 in Hypothesis 14.1 
	14.1.4  About 3 and 4 in Hypothesis 14.1 
	14.1.5  Ergodic Hypothesis

	14.2  Equilibrium statistical mechanical phenomena concerning Axiom 1 ( Measurement)   
	14.3  Conclusions 

	15 How to describe ``belief'' 
	15.1  Belief, probability and odds 
	15.1.1 A simple example; how to describe ``belief" in quantum language  
	15.1.2  The affirmative answer to Problem 15.3 

	15.2 The principle of equal odds weight  

	16  Postscript: Everyday science 
	16.1 My favorite results ( Best 10)  
	16.2 At the end.  

	17 Appendix: Socrates' absolutism was perfected by QL 
	17.1 Socrates' absolutism was perfected by QL 


