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Abstract
The presence of symmetries in physical theories implies a pernicious form of under-
determination. In order to avoid this theoretical vice, philosophers often espouse a
principle called Leibniz Equivalence, which states that symmetry-related models rep-
resent the same state of affairs.Moreover, philosophers have claimed that the existence
of non-trivial symmetries motivates us to accept the Invariance Principle, which states
that quantities that vary under a theory’s symmetries aren’t physically real. Leibniz
Equivalence and the Invariance Principle are often seen as part of the same package.
I argue that this is a mistake: Leibniz Equivalence and the Invariance Principle are
orthogonal to each other. This means that it is possible to hold that symmetry-related
models represent the same state of affairs whilst having a realist attitude towards
variant quantities. Various arguments have been presented in favour of the Invariance
Principle: a rejection of the Invariance Principle is inter alia supposed to cause inde-
terminism, undetectability or failure of reference. I respond that these arguments at
best support Leibniz Equivalence.

Keywords Symmetries · Invariance principle · Leibniz equivalence · Reduction ·
Sophistication · Supervaluation · Underdetermination · Indeterminism

1 Introduction

The presence of symmetries in physical theories implies a pernicious form of under-
determination. It is widely agreed that at least in some cases symmetry-related
models are empirically equivalent: the possibilities they represent are observation-
ally indiscernible.1 For example, models related by ‘shifts’—uniform translations of
all the universe’s matter content—are empirically equivalent because they agree on all

1 See Roberts (2008), Wallace (2019). It is controversial whether this is true for all symmetries; for dissent,
see Belot (2013), Dasgupta (2016). Middleton and Murgueitio Ramírez (2020) have argued that variant
quantities are detectable, but see Jacobs (2020) for a response.
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observable facts about distances, relative velocities and accelerations. In addition to
underdetermination, local symmetries also seem to imply a particularly problematic
form of indeterminism. Theories with local symmetries possess pairs of models that
agree on all facts up until some time t , but diverge thereafter. The Hole Argument in
General Relativity is a famous example of this.2

In order to avoid these theoretical vices, philosophers often espouse a principle
called Leibniz Equivalence, which states that symmetry-related models (invariably)
represent the same state of affairs. With Leibniz Equivalence, there simply is no
underdetermination: symmetry-related models are just different ways of describing
the same possibility. In the case of shifts, this means that shift-related models really
represent the same state of affairs: shifts are ‘distinctions without a difference’. More-
over, philosophers have claimed that the existence of non-trivial symmetries motivates
us to accept the Invariance Principle, which states that quantities that vary under a
theory’s symmetries are physically unreal. The Invariance Principal codifies so-called
‘symmetry-to-(un)reality inferences’: inferences from the variance of some quantity
to its non-reality.3 For example, (absolute) positions vary under shifts, and hence the
Invariance Principle rejects them as unphysical.

Leibniz Equivalence and the Invariance Principle are often seen as part of the same
package (Sect. 3). I believe that this is a mistake: Leibniz Equivalence and the Invari-
ance Principle are orthogonal. But it is no surprise that this fact has gone unnoticed, for
the principles are equivalent if one assumes that a quantity’s values always represent
the same magnitude. I understand ‘values’ here as mathematical entities that represent
physical properties (Sect. 4). Call this claim the Value-Magnitude Link. If we accept
the Value-Magnitude Link, Leibniz Equivalence does entail the Invariance Principle.
We are then naturally led to reductionism, which aims to formulate ‘reduced’ theories
in terms of these invariant quantities. However, it is also possible to reject the Value-
Magnitude Link. Indeed, a popular position in the philosophy of spacetime called
sophisticated substantivalism does just that. If we reject this link, Leibniz Equiva-
lence does not entail the Invariance Principle. This means that it is possible to take
symmetry-related models to represent the same state of affairs whilst having a realist
attitude towards variant quantities. In other words, Leibniz Equivalence and the Invari-
ance Principle can come apart. Sophistication, of which sophisticated substantivalism
is an instance, aims to fill this space.4 In Sect. 5, I explain the nature of sophistication
in terms of a method of supervaluation over symmetry-related states.5

This means that those who accept Leibniz Equivalence as a solution to the problems
of underdetermination and indeterminism face a choice: reject the Value-Magnitude
Link, or accept it and hence commit to the Invariance Principle? Various arguments

2 See Earman and Norton (1987), Wallace (2002).
3 For more on the symmetry-to-reality inference, see Dasgupta (2016), Read and Møller-Nielsen (2020).
4 For more on the reduction/sophistication distinction, see Dewar (2019), Martens and Read (2020).
5 This naturally raises the question: is there also a coherent position that denies Leibniz Equivalence yet
affirms Invariance Principle? It has been suggested to me in conversation by Noel Swanson that Belot’s
(2011) ‘modal relationism’ might fulfil this role. As a relationist, Belot accepts the Invariance Principle:
only the invariant distances are physically real. But Belot’s relational facts are endowed with rich modal
structures that allow for more possibilities than standard relationism, contra the collapse of possibilities
entailed by Leibniz Equivalence.
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have been presented in favour of the Invariance Principle: a rejection of the princi-
ple is supposed to cause indeterminism (Earman and Norton 1987), undetectability
(Dasgupta 2016) and failure of unique reference (Healey 2009; Caulton 2015). As
I will argue in Sect. 6, however, those arguments at best support Leibniz Equiva-
lence. The inference to the Invariance Principle is unwarranted since this additionally
requires that one assumes the Value-Magnitude Link, which proponents of sophistica-
tion reject. Therefore, these arguments cannot offer support for reductionism, contrary
to the intentions of their authors.

2 Two principles

In this section, I discuss Leibniz Equivalence and the Invariance Principle in turn.
Throughout the paper, I will adopt a loose definition of symmetries as transformations
that in some sense ‘preserve the dynamics’. In order to explain this notion, it is useful to
distinguish between two types of models. The kinematically possible models (KPMs)
of a theory are those that are of the correct ‘form’, or contain the right sort ofmathemat-
ical objects. The dynamically possible models (DPMs) are those KPMs that in addition
satisfy a set of equations of motion. The DPMs represent ways the world could be if
the theory were true. Symmetries are maps from the space of KPMs onto itself that
preserve the space of DPMs. Since Belot (2013), it has been well-known that not all
symmetries of this type relate empirically—let alone physically—equivalent states.
For this reason I restrict discussion to just those symmetries that in addition satisfy
a condition of empirical equivalence. The main symmetries of philosophical interest,
from ‘shifts’ in Newtonian Mechanics and diffeomorphisms in General Relativity to
the gauge symmetries of electrodynamics, satisfy this requirement.

2.1 Leibniz equivalence

Leibniz Equivalence was first suggested by Earman and Norton (1987) as a response
to the Hole Argument, which states that General Relativity contains pairs of models
related by diffeomorphisms that agree on all physical fact up until some time t but
diverge thereafter. Because of this fact, it seems that substantivalist interpretations of
General Relativity are indeterministic. Earman andNorton (1987, p. 522) phrase Leib-
niz Equivalence as the claim that diffeomorphic models represent the same physical
situation. With this assumption, General Relativity is not indeterministic, since the
symmetry-related models that seem to represent diverging futures are in fact merely
distinct representations of the same future. Since then, the term has been used more
broadly to refer to the view that any symmetry (subject to the proviso of empirical
equivalence) relates physically equivalent models, whether or not the symmetry in
question is a diffeomorphism. I will understand Leibniz Equivalence in this broader
sense:

Leibniz Equivalence: Symmetry-related models are physically equivalent.
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The aforementioned shifts are a paradigmatic example: shifts preserve all distances
between bodies and so relate empirically equivalent states of affairs. From Leibniz
Equivalence, it follows that shift-related models are also physically equivalent: they
merely represent the same state of affairs in different ways. Proponents of Leibniz
Equivalence include Saunders (2003b), Baker (2010), Weatherall (2018) and Greaves
and Wallace (2014). The latter, for example, write:

There is a widespread consensus that ‘two states of affairs related by a symmetry
transformation are really just the same state of affairs differently described’. That
is, if two mathematical models of a physical theory are related by a symmetry
transformation, then those models represent one and the same physical state of
affairs.

This is not to say that there is no dissent; see, for instance, Roberts (2020). But it
seems clear that Leibniz Equivalence is the orthodoxy with respect to symmetry-
related models.

Rynasiewicz (1994) calls the negation of Leibniz Equivalence model literalism.
According to model literalism (or literalism, for short), distinct models represent dis-
tinct states of affairs, whether or not they are symmetry-related. In other words, there is
a one-to-one relation betweenmodels and possibilities. As we will see below (Sect. 6),
in the presence of non-trivial symmetries literalism implies exactly those vices that
Leibniz Equivalence is supposed to solve. I will argue that the denial of literalism, and
hence acceptance of Leibniz Equivalence, suffices to avoid these: the further posit of
the Invariance Principle is unnecessary.

2.2 The invariance principle

The Invariance Principle is the claim that “only quantities that are invariant under
the symmetries of our theories are physically real” (Møller-Nielsen 2017, p. 1253). In
other words, only those quantities that have the same value across equivalence classes
of symmetry-related states represent a feature of physical reality. Put differently:

Invariance Principle. A quantity is physically real only if it is invariant under
the symmetries of our theories.

Examples of variant quantities include absolute position under shifts, but also the
values of the electrostatic potential in electromagnetism under gauge transformations,
and (arguably) intrinsic mass under mass scalings.6 Examples of invariant quantities
are distances and relative velocities, so-called ‘loop holonomies’ of the potential field,
and mass ratios. The Invariance Principle suggests that the latter set of quantities is
more fundamental than the former.

The Invariance Principle has gathered assent from a broad range of physicists and
philosophers throughout the twentieth and twenty-first century. Here is a collection of
representative quotes:

6 The latter issue is controversial: see Dasgupta (2013) for the case for comparativism, and Baker (2014),
Martens (2019) for responses.
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Physically real quantities are invariant under exact symmetries—this is the gen-
eral lesson. (Saunders 2003b, p. 300)

[O]nce we possess the covariant representation under which the equations stay
the same for all coordinate systems, the quantities in the (covariant) equations
are the real and objective quantities. (Nozick 2001, p. 82)

[T]he important things in the world appear as the invariants […] of these trans-
formations. (Dirac 1930, p. 7)

Endorsements of the Invariance Principle can also be found in Saunders (2007), Baker
(2010), Dewar (2015), Caulton (2015) andDasgupta (2016), among others. The Invari-
ance Principle is perhaps even more orthodox than Leibniz Equivalence.

The Invariance Principle encodes the idea of so-called symmetry-to-reality infer-
ences: the inference from the variance of a quantity under the theory’s symmetries to its
physical unreality. Dasgupta (2016) justifies such inferences on the basis that variant
quantities are undetectable. It then follows from an application of Occam’s razor that
theories that excise these quantities are preferable, all else being equal. But as I will
argue below (Sect. 6), realism about such quantities does not entail empirical underde-
termination. Therefore, Occam’s razor does not justify the Invariance Principle, pace
Dasgupta.

3 One principle?

Leibniz Equivalence and the Invariance Principle are closely related. Nevertheless
the two principles are distinct, a fact which has often gone unnoticed.7 For example,
Saunders (2007, p. 453) equivocates between them in the following passage:

[Relationalism] says that only quantities invariant under exact symmetries are
real—thus relative directions, relative distances, and so on, under rotations
and translations, etc. […]. Call [this principle] the invariance principle. The
distinctions among representations then correspond to nothing physically real.
Equivalently, such models, as goes their physical content, can be simply identi-
fied. (emphasis mine)

The first italicised part of this passage is a canonical statement of the Invariance Princi-
ple. But towards the end of the quote Saunders equates this with Leibniz Equivalence,
the claim that symmetry-related models are physically equivalent. Similarly, Baker
(2010) writes:

[I]f changes in surplus structure are generally (as in geometry) mere descrip-
tive changes, it follows that physical situations related by symmetries must be
qualitatively identical [Leibniz Equivalence]. And if this is right, then physical
quantities that change under symmetry transformations (i.e. that are not invari-
ant) must not be fundamental quantities [Invariance Principle].

7 Read and Møller-Nielsen (2020, Sect. 6) are an exception: they rightly point out that these principles are
not logically equivalent.
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In this passage Baker, like Saunders, moves freely from Leibniz Equivalence to the
Invariance Principle.

As far as I am aware, however, there is no explicit argument for the claim that
Leibniz Equivalence implies the Invariance Principle to be found in the literature. It
seems plausible that the following line of reasoning is implicitly assumed. Let m and
m′ denote symmetry-related models of a theory T , such that there is a variant quantity
Q which takes on different values across these models. For instance, m and m′ could
denote shift-related models of Newtonian Gravitation, with Q the (variant) position
of the Earth. Then:

(1) The models m and m′ represent the same physical possibility (Leibniz Equiva-
lence);

(2) Distinctmodels represent the samephysical possibility iff they agree on all physical
features;

(3) Therefore, m and m′ agree on all physical features (from (1) and (2));
(4) The models m and m′ disagree on the value of Q;
(5) Therefore, if Q is physically real thenm andm′ disagree on some physical feature

(from (3) and (4));
(C) Conclusion: Q is not physically real (Invariance Principle).

This argument seems valid, but in fact it is not: (5) does not follow from (3) and (4).
The reason is that a quantity’s values are representative devices, rather than physical
features. Therefore, the fact that two models disagree on those values does not imply
that they disagree on any physical fact. For it is possible that the values of Q represent
different magnitudes across models. In particular, it is possible that Q’s distinct values
in m and m′ denote the same property. In that case, the two models are in agreement
on all physical features after all, so the Invariance Principle does not follow.

In order to turn the above into a valid argument, an assumption that connects a
quantity’s values with the magnitudes they are supposed to represent is required. I will
discuss such a principle in the next section.

4 The value-magnitude link

The above argument is valid if we assume the following principle, which I call the
Value-Magnitude Link:

Value-Magnitude Link. The values of a quantity invariably represent the same
magnitude across models.

I am not aware of any explicit statement of the Value-Magnitude Link in the literature,
let alone a defence. But in light of the quotes above, I contend that theValue-Magnitude
Link is a widely-shared implicit assumption in the symmetries literature.

It is important to be clear on what is meant by values here. In the first instance,
it is tempting to think of values as numbers. For example, the mass value of a 5 kg
object is ‘5’. But on this definition the Value-Magnitude Link is obviously false,
since the same magnitude may be represented by different numbers in different unit
systems. For example, we can also represent ‘5 kg’ as ‘5000 g’. In other words,
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the Value-Magnitude Link clearly fails for passive transformations. When I write
‘value’, then, I don’t mean the numerical value of a quantity in a certain system of
units. Rather, I mean a mathematical element of the theory’s models: a particular
point of a differentiable manifold, or an element of an internal ‘value space’. For
example, a model of Newtonian Gravitation consists of an assignment of massive
particle trajectories to a manifold M , over which some spacetime structure is defined.
We can endow the manifold M with coordinates: a passive transformation then is
simply a change in these coordinates. But we can also leave the coordinates fixed,
and assign the particle trajectories to different points of the manifold itself. This is
an active transformation.8 The values in this case are the point of the manifold M ,
and the Value-Magnitude Link asserts that the same point of M represents the same
point of spacetime in all of the theory’s models. We can present a similar set-up for
quantities such as mass. Here, quantities are functions from the theory’s domain—
say, particles—into a value space: a mathematical structure whose elements represent
determinatemagnitudes of said quantity. For instance,mass is a function fromparticles
into a mass value space, whose elements represent determinate mass magnitudes such
as ‘5 kg’. As with spacetime, we can ‘coordinatise’ a value space via an assignment
of numbers to its elements. This amounts to a choice of unit. But we can also leave the
units fixed, and consider a different mapping from the domain into value space. For
instance, an (active) mass scaling maps each particle onto a different element of mass
value space. In this case, values are simply elements of a value space, and the Value-
Magnitude Link asserts that these elements represent the same magnitudes across the
theory’s models. Finally, I embrace realism about values: they represent real aspects
of the physical world, such as positions or masses (in the case of position, this entails
substantivalism).9

With this clarification in mind, let’s consider the Value-Magnitude Link in more
detail. In the previous section, I said that Leibniz Equivalence implies the Invariance
Principle if we assume the Value-Magnitude Link. In fact, these two principles are
equivalent on that assumption, as I will now show.

Proof Left to right. Consider a variant quantity Q. Suppose that in some model m1,
the values of Q for x and y are Q(x) = a and Q(y) = b. Now, consider a symmetry-
related model m2 in which Q(x) = b and Q(y) = c.10 By Leibniz Equivalence, m1
andm2 are physically equivalent, soQ(x) andQ(y) each represent the samemagnitude
in both models. But since Q(y) = b in m1 while Q(x) = b in m2, this means that
the value b represents distinct magnitudes across those models. This contradicts the
Value-Magnitude Link, so Q cannot represent a physically real quantity. Since Q is an
arbitrary variant quantity, it follows that only invariant quantities are physically real.

For an example, consider again the static shift. Since static shifts are symmetries
of Newtonian Gravitation, Leibniz Equivalence implies that shift-related models are

8 Note that on this definition an active transformation need not correspond to any physical transformation:
if shift-related models of Newtonian Gravitation are physically equivalent, then an active transformation
relates models that represent the same state of affairs.
9 For more on the metaphysics of value spaces, see Arntzenius and Dorr (2012), Eddon (2013), Wolff
(2020) and references therein.
10 This relies on the assumption that there exists some symmetry-related model in which Q(x) = b; see
the shift example below.
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physically equivalent. In that case, the Invariance Principle implies that position,which
varies under shifts, is not a physically real quantity. For consider the following two
shift-related models, where xA and xB denote the locations of particles A and B
respectively:

M1 :
{
xA = (1, 0, 0)

xB = (2, 0, 0)
M2 :

{
xA = (2, 0, 0)

xB = (3, 0, 0)

If these models are physically equivalent, then (1, 0, 0) and (2, 0, 0) both represent
the same spacetime point: A’s location. Similarly, (2, 0, 0) and (3, 0, 0) both represent
B’s location. And this means that the same value, (2, 0, 0), represents A’s location
in m1, and B’s location in m2. But both models represent those bodies as occupying
distinct locations. It follows that the same values of xA and xB must denote different
spatial locations across models. This contradicts the Value-Magnitude Link, and so
variant location is not physically real.

Right to left. Consider any pair of symmetry-related models. By definition, the
invariant quantities have the same values across these models. The Invariance Princi-
ple implies that only those quantities are physically real. From the Value-Magnitude
Link, it follows that their values denote the same magnitudes across models. There-
fore, these models agree on all physical features. Symmetry-related models are thus
physically equivalent, and so Leibniz Equivalence holds. For example, consider once
more two shift-related models. From Invariance Principle, it follows that only the
invariant quantities—distances, relative velocities and accelerations—are physically
real. By definition, those quantities have the same value in both models. From the
Value-Magnitude Link, it follows that those values represent the same magnitude.
Therefore, both models represent the same state of affairs. ��

On the assumption of the Value-Magnitude Link, then, Leibniz Equivalence and the
Invariance Principle are equivalent. If that is the case, then “symmetry-to-reality”
inferences have a clear structure: symmetry-related models are physically equivalent,
and hence variant quantities are unphysical. This naturally leads to the view that we
ought to formulate new theories that are solely expressed in terms of the invariant quan-
tities, so-called reduced theories. On the other hand, if one were to insist that variant
quantities are physically real, then under the assumption of the Value-Magnitude Link
this entails the denial of Leibniz Equivalence, or literalism. So, on the assumption of
the Value-Magnitude Link the interpretation of symmetry-related models leads to a
dilemma: either variant quantities are physically real and symmetry-related models
represent distinct states of affairs (literalism), or only invariant quantities are real and
so symmetry-relatedmodels are physically equivalent. In the latter case, a new theoret-
ical formalism is appropriate (reduction). There is no room for an intermediate view.
But as we will see in the next section, there is no need to accept the Value-Magnitude
Link. If we do not, another option becomes available.
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Fig. 1 Examples of shift-related models

5 Conventional values and supervaluation

The Value-Magnitude Link seems unassailable, but is in fact denied by one of the
most common views on symmetries: sophistication. In this section, I will first illustrate
sophisticationwith a couple of examples: sophisticated spacetime substantivalism, and
sophistication for the electrostatic potential. The fact that the latter example concerns
an internal symmetry shows that the failure of the Value-Magnitude Link is not merely
a particularity of spacetime. After the examples, I will undertake a more general
discussion of the relation between sophistication, reduction and literalism.

Themost well-known example of sophistication is sophisticated substantivalism.11

According to sophisticated substantivalism, spacetime is a real substance inwhich bod-
ies are located; hence, there is a sense inwhich (variant) positions are physically real.12

Contrast this with relationism, which says that only distances between bodies are real.
Despite the fact that sophisticated substantivalism is realist about position, it affirms
the physical equivalence of symmetry-related models. It does so via an appeal to anti-
haecceitism regarding spacetime points. Rather than possessing primitive identities,
spacetime points are individuated via their qualitative relations to each other and to
the universe’s matter content. Since spacetime symmetries relate qualitatively iden-
tical models, symmetry-related models represent the exact same points in the same
configurations. As a result, such models have identical physical content.

Therefore, sophisticated substantivalism accepts Leibniz Equivalence and rejects
the Invariance Principle. It follows from the previous section that sophistication must
also reject theValue-MagnitudeLink. This is indeed the case.Here is a simple example.
Suppose as before thatmodels relatedby shifts are physically equivalent. The following
three diagrams then represent the same state of affairs:
Here, the dots represent the locations of three bodies labelled ‘a’, ‘b’ and ‘c’ in two-
dimensional position space. The location value of the dots is different in each diagram
(the dots are shifted on the x-axis). On the assumption of the Value-Magnitude Link,
this means that spatial location itself is not a physically real quantity, since it varies

11 See Pooley (2013, Sect. 7) for an overview.
12 The claim that sophisticated substantivalism is realist about (variant) position assumes a particular
form of that view, namely what Saunders (2003a) calls non-reductive relationism. On the other hand, an
eliminative relationist may understand positions as non-fundamental quantities. To confuse matters, both
types of view have sometimes been called ‘structuralism’; cf. Greaves (2011). I will eschew the latter term
in what follows.
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across the theory’s shift-symmetries. But according to sophistication there are phys-
ically meaningful statements about spatial position. Consider the claim that particle
b has some location in space (i.e. b is assigned some value in two-dimensional posi-
tion space). This statement is invariant under shifts: b is assigned a location on all
three diagrams in Fig. 1. Robert Stalnaker has summarised the point as follows: “in
the relational theory of space, spelled out in this way, no intrinsic spatial properties
would be real (except the property of being located somewhere in space)” (Stalnaker
1979, pp. 353–354, emphasis mine). This, of course, is a direct consequence of the
sophisticated substantivalist’s commitment to space as a real substance in which par-
ticles are located.

Furthermore, sophistication is not just applicable to spacetime symmetries. Dewar
(2019) has recently argued that sophistication can be seen as a general approach to the
interpretation of symmetries. Hementions the example of the electrostatic potential,φ.
The empirical consequences of φ are due to its gradient E := ∇φ. Therefore, uniform
shifts of φ are symmetries of electrostatics. According to Leibniz Equivalence, then,
models related by shifts in the potential are physically equivalent. It simply makes no
difference if we increase φ everywhere by the same amount. The Invariance Principle
in turn implies that the electrostatic potential is not physically real, since it is variant
under the symmetries of electrostatics. Instead, the electric field E , which is invariant,
represents the theory’s fundamental field. This motivates the demand for a reduced
theory formulated in terms of E alone. But as Dewar points out, such a reduced theory
cannot explain the fact that E is a conservative force, i.e. that ∇ × E = 0. On the
other hand, if E is defined as the gradient of φ then this conservativeness rolls out as a
mathematical theorem, since ∇ × (∇φ) = 0 for any φ. For this reason, Dewar argues
that it is better to affirm the physical reality of φ, contrary to the Invariance Principle.
This implies a rejection of the Value-Magnitude Link. For consider two symmetry-
related models, one in which φ(x) = a and one in which φ(x) = b. When a �= b, the
value of φ at x differs across these models. But since symmetry-related models are
physically equivalent, both models must represent the same physicalmagnitude of the
electrostatic potential at x . Hence, it is not the case that values invariably represent
the same magnitude across models. Dewar’s sophistication achieves this balance via
an appeal to anti-quidditism, the analogue of anti-haecceitism for properties: physical
properties are individuated via their position in a structure of qualitative relations.
Since the distinct values a and b occupy the same structural role across symmetry-
related models, they also represent the same magnitude.13

These examples illustrate how sophistication steers a course between equivalence
and invariance. But in order to obtain a more general characterisation of the difference
between sophistication and reduction, it is necessary to provide a more specific crite-
rion for the physical content of a sophisticated theory. In other words, what we need
is a statement of the semantics of a sophisticated theory.14 I propose the following
criterion:

13 For more on anti-quidditism in the context of symmetries, see Martens and Read (2020).
14 This is different from the formalism of a sophisticated theory, which is what Dewar (2019) is chiefly
concerned with. As Dewar argues, sophistication requires that a theory’s symmetry-related models are
isomorphic. On the ‘internal’ approach to sophistication, this usually requires a reformulation of the theory’s
models.
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Sophistication. A theoretical statement is physically meaningful if and only if it
is invariant across physically equivalent models.15

From left to right, this says that a statement is physically meaningful only if it is invari-
ant across physically equivalent models. This is uncontroversial: physically equivalent
models agree on all physical facts, so whatever varies across such models cannot have
a consistent meaningful interpretation. But read from right to left, this claim is non-
trivial: it states that any invariant statement is physically meaningful, even if such a
statement involves variant quantities. In other words, sophistication locates physical
meaning in the full sentence, rather than in its terms. For an example, borrowed from
Van Fraassen (1989, p. 284), consider the statement “total momentum is conserved”.
In Newtonian Gravitation, total momentum is a variant quantity: it varies under boosts
of our reference frame. But it is true in any frame that the total momentum of all
particles is conserved, and hence the statement “total momentum is conserved” is still
physically meaningful under a sophisticated semantics.

We can also understand this semantic criterion in terms of the logic of supervalua-
tion. This will provide us with another, more formal way of understanding the space
between literalism and reduction. In formal semantics, the idea of supervaluation is to
consider the truth-value of a sentence with respect to a class of interpretations, rather
thanwithin any particular interpretation. In the present context, the equivalent idea is to
evaluate the truth-value of a sentence of the theory with respect to an equivalence class
of symmetry-related models, rather than within any particular model. Thus, we call
a statement supertrue (respectively superfalse) iff it is true (respectively false) in all
modelswithin a class of symmetry-relatedmodels.16 Importantly, supervaluation does
not commute with logical composition. This means that the truth-value of a composite
statement under supervaluation is not a function of the truth-values of its components
under supervaluation. We can use this fact to explain the difference between reduction
and sophistication: the former first supervaluates over ‘atomic’ theoretical statements
and then composes complex ones, whereas the latter first composes complex sentences
and then supervaluates. Let [φ(m)]S denote the truth value of a sentence φ in a model
m when we supervaluate it with respect to a group of symmetries S (compare the role
of interpretations in logic). The truth conditions of [φ(m)]S are:

[φ(m)]S =

⎧⎪⎨
⎪⎩
T iff φ(s(m)) = T for all s ∈ S
F iff φ(s(m)) = F for all s ∈ S
# otherwise

(1)

where s(m) denotes the model obtained from an application of s tom. In simple terms,
this says that φ is true (false) inm iff it is true (false) in all models related tom by one
of the symmetry transformations in S. If neither situation obtains—if φ is true in some
model, but false in another, symmetry-related one—then the statement is meaningless.

15 Cf. Mundy (1986). See also Barrett’s (2017) proof that any piece of symmetry-invariant structure is
implicitly definable from the theory’s models.
16 Cf. Dewar’s (2019) supervaluationist semantics for sophistication. See also Russell’s (2018) discussion
of determinacy.
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For instance, the claim that a certain body is at absolute rest is true in some models of
Newtonian Gravitation, but false in any model related to the first by a uniform boost.
Therefore, on a supervaluationist semantics it is physically meaningless. But the claim
that total momentum is conserved is true in all models of the theory, so comes out as
true under the supervaluationist semantics.

For an example of a statement that is meaningful (indeed, true) for sophistication
but meaningless for reduction, consider the claim that a quantity Q has some value in
m: ∃x(Q(m) = x). For example, Q can stand for the Earth’s position, so the claim is
that the Earth is located somewhere in space.We canwrite this claim as a disjunction:17

Q(m) = x1 ∨ · · · ∨ Q(m) = xn (2)

The crucial insight here is that there is a difference in truth value between the supervalu-
ation of this sentence as a whole, and the composition of its individually supervaluated
disjuncts. In other words,

[Q(m) = x1 ∨ · · · ∨ Q(m) = xn]S � [Q(m) = x1]S ∨ · · · ∨ [Q(m) = xn]S (3)

Proof Since Q varies under S, for any x the claim [Q(m) = x]S is neither true nor
false. Under standard trivalent semantics (such asKleene), the disjunction of sentences
with truth-value # itself has truth-value #. Therefore, the rhs of (3) is neither true nor
false. On the other hand, [Q(m) = x1 ∨ · · · ∨ Q(m) = xn]S does have a truth-value,
since in any model Q has some value between x1 and xn . Therefore, the lhs of (3) is
true. This completes the proof. ��

It is because of this fact that sophistication is different in terms of its physical
content from both literalism and reduction. Using the example of the Earth’s location,
the difference is as follows. Reduction says that no statement of the form “The Earth
is located at position x” is meaningful, since no such statement has the same truth-
value within a class of shifted models. Therefore, the reductionist argues, composites
of such statements are also meaningless. In particular, the sentence “The Earth has
some location”—whichwe have interpreted as a disjunction of ascriptions of particular
locations—has no physical relevance. But sophistication evaluates the truth-value of
sentences as a whole. And as we have seen, the sentence “The earth has some location”
is true across shift-related models. Therefore, the semantics of supervaluation offers
a formal way of understanding the sense in which sophistication has more physical
content than reduction.

Although it is outside of the scope of this paper, let me briefly say something
about the benefits of this additional content. The rough idea is that the theory’s variant
quantities contribute towards its explanatory strength. Consider, for example, the fact
that the electric force is conservative, i.e. that∇×E = 0.On a sophisticated semantics,
the definition E := ∇φ is invariant across symmetry-related models, hence physically
meaningful. Therefore, we can use it to explain the conservativeness of E as a result
of the fact that ∇ × ∇φ = 0 for any scalar field φ. On a reductionist semantics, on

17 I will gloss over any issues arising from the fact that for most quantities, this disjunction is infinitary.
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the other hand, any statement that involves φ is physically meaningless as a result of
the fact that φ itself varies under the theory’s symmetries. Therefore, reductionism
cannot appeal to φ to explain the conservativeness of E . For reductionism, it is a
brute fact that E is conservative. Generally, what this means is that sophistication
but not reduction allows for explanations of physical phenomena in terms of variant
quantities. In fact, such explanations abound in physics. For just one example, we can
explain the Twin Paradox in Special Relativity in terms of the phenomenon of time
dilation.18 But this is a frame-dependent (hence symmetry-variant) phenomenon, and
so reductionism accords it less reality than sophistication. Here, too, it seems that
sophistication increases the explanatory strength of the theory. I’ll briefly return to
these ideas in the conclusion.

6 Against invariance

If one accepts the Value-Magnitude Link, one faces a stark binary choice between
literalism and reduction. On the first view, symmetry-related models represent distinct
possibilities: the consequence is underdetermination and possibly indeterminism. On
the second view, symmetry-related models are physically equivalent. With the Value-
Magnitude Link in place, this then implies the Invariance Principle: only invariant
quantities are physically real. It is this principle that motivates the search for a reduced
theory formulated solely in terms of these invariant quantities. Clearly, reduction is
preferable over literalism. But if we reject the Value-Magnitude Link a third option
becomes available: sophistication. Sophistication accepts Leibniz Equivalence, but not
the Invariance Principle. As I illustrated above, this means that it remains committed
to the physical reality of variant quantities. The possibility of sophistication shows
that Leibniz Equivalence in itself cannot motivate the Invariance Principle.

However, there aremany other arguments in the literature in favour of the Invariance
Principle. Earman and Norton (1987) argue that the Invariance Principle is necessary
to avoid radical indeterminism; Dasgupta (2016) claims that variant quantities are
undetectable; and according to Caulton (2015), such quantities fail to refer uniquely.
These arguments, if successful, a fortiori support reduction over sophistication. But
I will argue that they fail. Specifically, I claim that all three arguments only support
Leibniz Equivalence, rather than the Invariance Principle. It is only when one tacitly
assumes theValue-Magnitude Link that the latter follows. But that assumption begs the
question against sophistication, which explicitly rejects this link. Therefore, I conclude
that these purported arguments for the Invariance Principle cannot support reduction
over sophistication, contrary to their author’s explicit claims.

I will now discuss the arguments in favour of the Invariance Principle one by one.

18 See, for instance, Rindler (1977, Sect. 2.14). But note that Debs and Redhead (1996) argue that such
explanations are invalid exactly because they appeal to frame-dependent facts.
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6.1 Determinism

The claim that symmetries lead to indeterminism of our theories is well-known. Ear-
man and Norton (1987) argue that this happens in General Relativity due to the Hole
Argument, and Belot (1998) applies a similar line of reasoning to electromagnetism.
Wallace (2002) generalises the argument to any time-dependent local symmetry (for
our purposes, a local symmetry is one that can act non-trivially over some finite period
of time). The thrust of these arguments is that there are distinct models that agree on
all physical facts before some time t , but which differ by a non-trivial symmetry trans-
formation after t . If these models represent distinct physical possibilities, then this
implies a failure of determinism: the history of the universe up to time t does not
determine its state at later times.

Earman and Norton (1987) argue that we should avoid this sort of radical inde-
terminism not because indeterminism is in principle unacceptable, but because
“[determinism] should fail for a reason of physics, not because of a commitment to
substantival properties which can be eradicated without affecting the empirical con-
sequences of the theory” (524). In a spacetime context, the ‘substantival properties’ to
which Earman and Norton refer here are variant positions in spacetime. Their claim
is that it is necessary to accept Leibniz Equivalence in order to avoid indeterminism,
and that therefore the fundamental spatio-temporal quantities are relational rather than
intrinsic. In other words, Earman and Norton advocate a form of reduction. Indeed,
Earman (1989) went on to try to formulate such a reduced theory in terms of Einstein
algebras, but Rynasiewicz (1992) showed that this was unsuccessful.

I agree with Earman and Norton that Leibniz Equivalence is necessary to avoid this
sort of indeterminism. However, it does not follow that we have to ‘eradicate’ substan-
tival properties, or variant quantities more generally. This is only a valid inference on
the assumption of the Value-Magnitude Link. If the Value-Magnitude Link is denied,
on the other hand, Leibniz Equivalence implies that we can remain realist about variant
properties. In the case of spacetime, for example, sophisticated substantivalism accepts
that symmetry-related models are physically equivalent, but nevertheless gives a real-
ist interpretation of spacetime. Moreover, Dewar (2019) suggests that one can use
the same strategy for non-spatio-temporal, or ‘internal’ symmetries, such as the gauge
symmetry of electrodynamics. There, too, we can simply interpret gauge-related mod-
els as distinct representations of the same physical fields, rather than representations
of distinct possible evolutions of those fields for a given initial condition. This suf-
fices to avoid indeterminism, since the symmetry-related models that were supposed
to represent distinct possible futures now considered as distinct representations of the
same future. We need not accept the Invariance Principle in order to avoid radical
indeterminism.

6.2 Detectability

The second argument for the Invariance Principle is epistemic. According to Dasgupta
(2016), we should renounce variant quantities because they are in principle unde-
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tectable. On his account, the symmetry-to-reality inference goes as follows (Dasgupta
2016, p. 843):

(i) Laws L are the complete laws of motion governing our world.
(ii) Feature X is variant under the symmetries of L .
(iii) Therefore, X is undetectable (from (i) and (ii)).
(C) Therefore, X is not real (from (3) and an Occamist norm that we dispense with

undetectable structure).

Like Earman and Norton, Dasgupta claims that such reasoning motivates the search
for an alternative theory that solely trades in the invariant quantities.

Again, I will argue that we can avoid the undetectability of variant quantities by
assuming Leibniz Equivalence, which only implies the Invariance Principle if we also
accept the Value-Magnitude Link. First, however, let me comment on the ‘Occamist
norm’ to which Dasgupta refers. This norm states that all else being equal we ought
to dispense with undetectable structure. The ‘all else equal’ clause is important here:
Dasgupta believes that there may be good reasons to posit undetectable structure. For
example, such structure may yield a simpler theory, or one with greater explanatory
strength. “In that case, we would have empirical evidence of sorts that the feature
is real, in the sense that our all-things-considered best empirically confirmed theory
implies that it is real” (Dasgupta 2016, p. 854). Dasgupta thus believes it is possible
that variant quantities are physically real, contrary to the Invariance Principle. Nev-
ertheless, the spirit of Dasgupta’s argument is clearly against variant quantities. It is
therefore worthwhile to show that there is a sense in which such quantities are not
undetectable on a sophisticated view.

Here is how Dasgupta initially defines undetectability:

[S]omething is undetectable in my sense if, roughly speaking, it is physically
impossible for it to have an impact on our senses. (Dasgupta 2016, p. 854)

This definition of detectability is rather weak: even absolute velocities are detectable
on this definition. After all, in Newtonian mechanics relative velocities supervene
on absolute velocities, and since the former impact our senses, so do the latter. For
instance, suppose that we increase the absolute velocity of a ship at sea. Since this
also increases the relative velocity of the ship with respect to the shore, the difference
is clearly visible. Therefore, the absolute velocity of the ship has an impact on our
senses. On this definition, then, the symmetry-to-reality inference is inconsequential.

However, Dasgupta quickly revises his initial definition in favour of something
stronger:

It then follows […] that the feature is undetectable [if] there is no physically
possible process by which we might discover which determinate values are
actually instantiated.

This is a stronger criterion, since it demands that we can measure the particular value
of a quantity (presumably up to some degree of accuracy), rather than just its effect.
Let us call this notion measurability (cf. Ismael and Van Fraassen’s (2003) distinc-
tion between the observable and the measurable). For instance, absolute velocity is
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unmeasurable in the sense that there is no unique (numerical) value we can assign to
the motion of any particular object: we can only express velocities relative to some
other object. What is undetectable here are not the variant quantities themselves, but
their particular values. Suppose, for example, that the current mass of the Eiffel Tower
is 7 million kilograms. And suppose that there exists a physically possible world qual-
itatively identical to ours, but in which the masses of all bodies are doubled—hence
the mass of the Eiffel tower is 14 million kilograms in that world. Since these two
worlds are (by stipulation) empirically equivalent, there is no experiment that could
reveal the actual mass of the Eiffel Tower. For such an experiment, if it were an accu-
rate measurement of the Eiffel Tower’s mass, would have to have different outcomes
in these worlds.19 Therefore, we cannot know, even in principle, whether the Eiffel
Tower has the mass denoted by ‘7 million kilograms’ rather than the mass denoted by
‘14 million kilograms’.

If we follow Dasgupta’s Occamist advice and reject the physical reality of intrinsic
mass, there simply are no mass values to measure. However, such a solution to the
problem of undetectability is unnecessarily strong. For as we have seen, the prob-
lem arises when our theories imply the existence of symmetry-related worlds that are
empirically equivalent yet physically distinct. This means that the issue is a failure of
Leibniz Equivalence, rather than the Invariance Principle. If symmetry-related models
represent the same possible worlds, then there are no differences between them, so a
fortiori no undetectable differences. As I explained in Sect. 5, Leibniz Equivalence
is consistent with the rejection of the Invariance Principle once we reject the Value-
Magnitude Link. On such a view, the value ‘7 million kilograms’ does not denote the
same mass across models. Instead, sophistication adopts an anti-quidditist picture on
which physical mass magnitudes are qualitatively identified. Since the values ‘7 mil-
lion kilograms’ in the first model and ‘14 million kilograms’ in the second instantiate
the same qualitative profile (for example, the same mass ratios to external bodies), the
Eiffel Tower is represented as having the same mass in both models. Sophistication
implies that the Eiffel Tower has some mass, whereas reduction renounces intrin-
sic mass quantities altogether. Nevertheless, it may seem as if there is still a further
question: which mass does the Eiffel Tower have? Now, if this is a question about
the primitive identities of mass values, there simply are none on the sophisticated
account—so the question is void. If, on the other hand, this is a question about the
qualitative features of the Eiffel Tower’s mass, the answer is the same for both models:
the Eiffel Tower’s mass is 100,000 times my mass, a mere fraction of the Sun’s mass,
and so on. On this view, then, we can measure which mass the Eiffel Tower (or any
other object) has, since we can measure a mass value’s qualitative features.

Therefore, sophistication avoids undetectable properties without the Invariance
Principle; Leibniz Equivalence is all that’s necessary. Dasgupta’s epistemic argument
does not justify the latter once we recognise the Value-Magnitude Link as a tacit but
unwarranted assumption.

19 This, in a nutshell, is Roberts’s (2008) argument for the claim that variant quantities are unmeasurable.
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6.3 Reference

The previous section was concerned with an epistemic argument. The final argument,
found in Healey (2006) and Caulton (2015), is semantic in nature. The claim I will
contest is that variant quantities cannot be given a realist interpretation because they
have no unique referent.

Suppose we are trying to interpret a physical theory. Part of the aim of interpretation
is to assign referents to the terms that occur in the theory in question. Some of these
terms will obviously correspond to physical quantities with which we are directly
acquainted, such as colour or distance. We call these observables. Since we already
know what the observables are, we can simply stipulate which theoretical quantities
denote them. Caulton (2015) calls this the first phase of interpretation. However, the-
ories usually also introduce novel terms for unobservable quantities, such as ‘electric
field’. We have no grasp on what these unobservables are apart from what the theory
says about them. It seems that we cannot know what these theoretical terms refer to,
unless we have already interpreted the theories in which they occur. This raises the
worry that the interpretation of theoretical terms is an impossible mission.

Fortunately, the situation is not hopeless. Following Lewis (1970), we can construct
implicit definitions of the theory’s theoretical terms once we have interpreted the
observable terms by stipulation; this is Caulton’s (2015) second phase of interpretation.
Instead of directly connecting a theoretical term to its referent, we declare that the term
refers to whatever it is that is related to the observables in the manner described by
the theory. For example, the electric field is just whatever is generated by and exerts
a force on charged particles in accordance with Maxwell’s laws. For this approach
to work, our theories must be uniquely realised. That is, there must exist in nature a
unique set of unobservable quantities that the theoretical terms of our theories refer
to. If this condition fails to hold, then either the theory is not realised at all (i.e. it is
false), or it ismultiply realised. In the latter case it is indeterminatewhat its theoretical
terms refer to.

Now, both Healey and Caulton argue that if we interpret variant quantities as phys-
ically real, theories with non-trivial symmetries are multiply realised. Therefore, in
order to avoid indeterminacy of reference we ought to embrace the Invariance Prin-
ciple. But as with the two previous arguments, I believe that Leibniz Equivalence is
enough to avoid a failure of reference. The further step from Leibniz Equivalence to
the Invariance Principle is unwarranted. I will borrow an example from Healey (2006)
to illustrate this claim. Suppose that we have a toy theory according to which sub-
atomic particles called ‘quarks’ cluster together to form protons and neutrons. Quarks
can have one of three colours: red, green and blue. Colour is a dynamically efficacious
property which couples to various other quantities in the laws. However, the theory
has a colour permutation symmetry, such that if one changes (for example) all red
quarks to green, all green quarks to blue, and all blue quarks to red, the difference is
empirically indiscernible. Finally, the dynamics of our toy theory are such that quarks
are strongly confined in colour-neutral combinations of red, green and blue.

Healey argues that in this set-up the terms ‘green’, ‘red’ and ‘blue’ are referentially
indeterminate. For simplicity, let’s label these properties R, G and B. The toy theory
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has a partially interpreted model of the formm(r , g, b), where r , g and b are variables
that stand for the colour properties of certain quarks. Suppose thatwewant to implicitly
define r , g and b as whatever triple of properties jointly satisfies m. Furthermore,
suppose thatm is satisfied if r denotes R, g denotesG, and b denotes B. In other words,
m(R,G, B) is a dynamically possible model. It then seems that the implicit definition
of r picks out R as its unique referent, and similarly for the other terms. However,
since our theory is colour permutation invariant, m(G, B, R) is also a dynamically
possible model. And this means that m(r , g, b) is also satisfied if r refers to G, and g
refers to B, and b refers to R. Therefore, an implicit definition in terms of m(r , g, b)
leaves it indeterminate whether r refers to R or G (or even B!), and likewise for g and
b. This is a consequence of the theory’s colour permutation symmetry.

Healey concludes from this that variant quantities such as quark colour are not phys-
ically real. Similarly, Caulton (2015, p. 161) writes that this “prompts appropriate
reform towards a new formalism, in which the physical properties and relations—
including the unobservable ones—are transparently represented without redundancy”.
In other words, Caulton advocates reduction. However, the demand for a reduced
theory is too strong: assuming Leibniz Equivalence is enough to avoid non-unique
reference. Recall that the problem that causes the indeterminacy of reference of the
terms r , g and b is that m(r , g, b) is realised multiply by m(R,G, B), m(G, B, R)

andm(B, R,G). But if we accept Leibniz Equivalence, symmetry-related models are
distinct representations of the same state of affairs, and hence the differences between
these permuted models are merely representational. If this is the case, m(r , g, b) is
not multiply realised: it only has one physical realisation, which is redundantly repre-
sented by an equivalence class of symmetry-related models.20 In other words, Leibniz
Equivalence alone suffices to avoid multiple realisation, of which the indeterminacy
of theoretical terms is a consequence.

On this picture,what do the terms r , b and g refer to?Note that these terms are values
of the colour quantity, rather than quantities themselves. According to sophistication,
then, their referent is not fixed across models: there is no unique colour property
to which we can consistently refer across theoretical models with r , b or g. Rather,
whether we call a colour property ‘red’, ‘green’ or ‘blue’ is a conventional choice
that may vary across models. Nevertheless, it is possible to identify theoretical terms
qualitatively. For example, we can (arbitrarily) stipulate that r refers to the colour of
the quark which is located at the centre of mass of a particular proton. This is entirely
analogous to the stipulation that we will use the term ‘kilogram’ to refer to the mass
of the standard kilogram in Paris. On this account, there is no sense in which ‘r’ refers
to the samemagnitude across models. Instead, each class of symmetry-related models
requires a distinct convention on how the terms ‘r’, ‘g’ and ‘b’ are used. But in each
case, these terms have a unique referent.

20 The advocate of reduction may respond that its aim is exactly to avoid such representational redundancy.
I agree that that is a legitimate motivation for a reduced formalism—but note that in many cases, finding
such a formalism has proved difficult if not impossible. For further discussion, see Dewar (2019, Sect. 2).
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7 Conclusion

I have analysed three arguments in favour of the Invariance Principle. These argu-
ments all start from the claim that without the Invariance Principle, several woes will
befall us: indeterminism, undetectability or a failure of reference. But as I hope to have
shown, all that is necessary to avoid these woes is Leibniz Equivalence. Leibniz Equiv-
alence and the Invariance Principle are closely related, but they are not equivalent. In
particular, sophistication is a view which simultaneously accepts Leibniz Equivalence
and rejects the Invariance Principle. Reduction, on the other hand, accepts both Leib-
niz Equivalence and the Invariance Principle. But since arguments in favour of the
Invariance Principle fail, the latter cannot support reduction over sophistication. Of
course, this does not mean that reduction is for some reason undesirable: as far as
the theoretical vices of indeterminism, undetectability and failure of reference are
concerned, reduction and sophistication are exactly on a par.

What, then, could decide in favour of one or the other strategy for interpreting
symmetry-related models? This is a significant question that I cannot fully answer
here. But the clue lies in the ‘gap’ between reduction and sophistication. As I argued,
sophistication is committed to the existence of variant quantities, even though it does
not entail that such quantities have determinate values. For example, the claim “the
Eiffel Tower has an intrinsicmass” is (super)true inNewtonianGravitation, despite the
fact that intrinsic mass might be a variant quantity. The benefit of sophistication is that
such quantities may serve an explanatory purpose. For example, I mentioned earlier
that the electrostatic potential φ can explain why the electric force E is conservative.
Similarly, Martens and Read (2020) argue that the existence of intrinsic mass can
explain the ‘transitivity of mass ratios’, that is, the fact that the mass ratio between
two bodies a and c is equal to the product of the mass ratios between a and b and b
and c, for any body b.

We can put the point differently. As we saw at the end of the previous section, the-
ories with symmetries exhibit a certain representational redundancy: different models
represent the same state of affairs.21 This redundancy provides one motivation for
reduction, which eliminates the offending symmetries from the theory. But if the
above is correct, then there is a sense in which this additional structure is not redun-
dant. Instead, variant quantities such as the electrostatic potential provide the theory
with explanatory resources. Far from ‘fluff’, then, such quantities are necessary for
theories to discharge their explanatory duties. But in order to ‘access’ these quantities,
we require the semantics of supervaluation as discussed in Sect. 5. So, sophistica-
tion offers a different way of semantically evaluating our theories which allows its
‘redundant’ structures to play an explanatory role.

For this reason, I contend that sophisticationmay strike the perfect balance between
literalism’s excess of physical content, which leads to underdetermination, and reduc-
tion’s metaphysical sparseness, which hinders its explanatory aspirations. We ought
to accept Leibniz Equivalence but reject the Invariance Principle.

21 Ismael and Van Fraassen (2003) argue that symmetries are “a guide to superfluous theoretical structure”;
Earman (2004) calls it ‘descriptive fluff’. But Bradley and Weatherall (2020) challenge this view, arguing
that theories whose symmetry-related models are isomorphic possess no surplus structure.

123



Synthese

Acknowledgements I would like to thank AdamCaulton and James Read for valuable comments on earlier
drafts of this paper. This paper was written as part of a research project funded by the British Society for
the Philosophy of Science.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arntzenius, F. & Dorr, C. (2012). Calculus as geometry. In Space, time, and stuff. Oxford University Press.
Baker, D. J. (2010). Symmetry and the metaphysics of physics. Philosophy Compass, 5(12), 1157–1166.
Baker, D. J. (2014). Some consequences of physics for the comparative metaphysics of quantity. http://

philsci-archive.pitt.edu/12674/.
Barrett, T. W. (2017). What do symmetries tell us about structure? Philosophy of Science, 4, 617–639.
Belot, G. (1998). Understanding electromagnetism. The British Journal for the Philosophy of Science,

49(4), 531–555.
Belot, G. (2011). Geometric possibility. Oxford: Oxford University Press.
Belot, G. (2013). Symmetry and equivalence. In R. Batterman (Ed.), The Oxford handbook of philosophy

of physics (pp. 318–339). Oxford: Oxford University Press.
Bradley, C. & Weatherall, J. O. (2020). On representational redundancy, surplus structure, and the hole

argument. arXiv:1904.04439 [physics].
Caulton, A. (2015). The role of symmetry in the interpretation of physical theories. Studies in History and

Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52, 153–162.
Dasgupta, S. (2013). Absolutism vs comparativism about quantity. InOxford studies inmetaphysics: Volume

8. Oxford University Press.
Dasgupta, S. (2016). Symmetry as an epistemic notion (twice over). The British Journal for the Philosophy

of Science, 67(3), 837–878.
Debs, T. A., & Redhead, M. L. G. (1996). The twin “paradox” and the conventionality of simultaneity.

American Journal of Physics, 64(4), 384–392.
Dewar, N. (2015). Symmetries and the philosophy of language. Studies inHistory and Philosophy of Science

Part B: Studies in History and Philosophy of Modern Physics, 52(Part B), 317–327.
Dewar, N. (2019). Sophistication about symmetries. The British Journal for the Philosophy of Science,

70(2), 485–521.
Dirac, P. A. M. (1930). The principles of quantum mechanics. Oxford: Clarendon Press.
Earman, J. (1989).World enough and spacetime. Cambridge: MIT Press.
Earman, J. (2004). Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and

objectivity. Philosophy of Science, 71(5), 1227–1241.
Earman, J., & Norton, J. (1987). What price spacetime substantivalism? The hole story. The British Journal

for the Philosophy of Science, 38(4), 515–525.
Eddon, M. (2013). Quantitative properties. Philosophy Compass, 8(7), 633–645.
Greaves, H. (2011). In search of (spacetime) structuralism. Philosophical Perspectives, 25, 189–204.
Greaves, H., & Wallace, D. (2014). Empirical consequences of symmetries. The British Journal for the

Philosophy of Science, 65(1), 59–89.
Healey, R. (2006). Symmetry and the scope of scientific realism. In W. Demopoulos & I. Pitowsky (Eds.),

Physical theory and its interpretation: Essays in Honor of Jeffrey bub, the western Ontario series in
philosophy of science (pp. 143–160). Dordrecht: Springer.

Healey, R. (2009). Perfect symmetries. British Journal for the Philosophy of Science, 60(4), 697–720.

123

http://creativecommons.org/licenses/by/4.0/
http://philsci-archive.pitt.edu/12674/
http://philsci-archive.pitt.edu/12674/
http://arxiv.org/abs/1904.04439


Synthese

Ismael, J., & Van Fraassen, B. C. (2003). Symmetry as a guide to superfluous theoretical structure. In
K. Brading & E. Castellani (Eds.), Symmetries in physics: philosophical reflections (pp. 371–392).
Cambridge: Cambridge University Press.

Jacobs, C. (2020). Absolute velocities are unmeasurable: Response to middleton and murgueitio ramirez.
Australasian Journal of Philosophy.

Lewis, D. (1970). How to define theoretical terms. Journal of Philosophy, 67(13), 427–446.
Martens, N. C. M. (2019). Machian comparativism about mass. The British Journal for the Philosophy of

Science.
Martens, N. C. M., & Read, J. (2020). Sophistry about symmetries? Synthese.
Middleton, B., & Murgueitio Ramírez, S. M. (2020). Measuring absolute velocity. Australasian Journal of

Philosophy, 1–11.
Møller-Nielsen, T. (2017). Invariance, interpretation, and motivation. Philosophy of Science, 84(5), 1253–

1264.
Mundy, B. (1986). On the general theory of meaningful representation. Synthese, 67(3), 391–437.
Nozick, R. (2001). Invariances: The structure of the objective world. Cambridge, MA: Harvard University

Press.
Pooley, O. (2013). Substantivalist and relationalist approaches to spacetime. In R. Batterman (Ed.), The

oxford handbook and of philosophy of physics. Oxford: Oxford University Press.
Read, J., &Møller-Nielsen, T. (2020). Redundant epistemic symmetries. Studies in History and Philosophy

of Science Part B: Studies in History and Philosophy of Modern Physics.
Rindler, W. (1977). Essential relativity: Special, general, and cosmological. Berlin: Springer.
Roberts, B. W. (2020). Regarding ‘Leibniz equivalence’. Foundations of Physics, 50(4), 250–269.
Roberts, J. T. (2008). A puzzle about laws, symmetries and measurability. The British Journal for the

Philosophy of Science, 59(2), 143–168.
Russell, J. S. (2018). Quality and quantifiers. Australasian Journal of Philosophy, 96(3), 562–577.
Rynasiewicz, R. (1992). Rings, holes and substantivalism: On the program of Leibniz algebras. Philosophy

of Science, 59(4), 572–589.
Rynasiewicz, R. (1994). The lessons of the hole argument. British Journal for the Philosophy of Science,

45(2), 407–436.
Saunders, S. (2003a). Indiscernibles, general covariance, and other symmetries: The case for non-reductive

relationalsm. In Revisiting the foundations of relativistic physics, ed. A. Ashtekar (pp. 151–173).
Saunders, S. (2003b). Physics and Leibniz’s principles. In K. Brading & E. Castellani (Eds.), Symmetries

in physics: philosophical reflections (pp. 289–307). Cambridge: Cambridge University Press.
Saunders, S. (2007). Mirroring as an a priori symmetry. Philosophy of Science, 74(4), 452–480.
Stalnaker, R. (1979). Anti-essentialism. Midwest Studies in Philosophy, 4(1), 343–355.
Van Fraassen, B. C. (1989). Laws and Symmetry. Oxford: Oxford University Press.
Wallace, D. (2002). Time-dependent symmetries: The link between gauge symmetries and indeterminism.

In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections (pp. 163–173).
Cambridge: Cambridge University Press.

Wallace, D. (2019). Observability, redundancy and modality for dynamical symmetry transformations.
http://philsci-archive.pitt.edu/16622/

Weatherall, J. O. (2018). Regarding the ‘hole argument’. The British Journal for the Philosophy of Science,
69(2), 329–350.

Wolff, J. E. (2020). The metaphysics of quantities. Oxford: Oxford University Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://philsci-archive.pitt.edu/16622/

	Invariance or equivalence: a tale of two principles
	Abstract
	1 Introduction
	2 Two principles
	2.1 Leibniz equivalence
	2.2 The invariance principle

	3 One principle?
	4 The value-magnitude link
	5 Conventional values and supervaluation
	6 Against invariance
	6.1 Determinism
	6.2 Detectability
	6.3 Reference

	7 Conclusion
	Acknowledgements
	References




