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A person is offered a choice between two envelopes, A and B. She is 

told that one envelope contains twice as much money as the other but 

has no information as to which one that is. She chooses A, say. Before 

opening A she asks herself whether she ought to have taken B instead. 

There is a line of reasoning which suggests that she should. Suppose 

that the amount of money in A is $x. Then B either contains $2x or 

$0.5x. Each possibility is equally likely, hence the expected value of 

taking B is 0.5.$2x + 0.5.$0.5x = $1.25x, a gain of $0.25x. This 

conclusion cannot be right. The mere choosing of A cannot give her a 

reason to say that she ought to have picked up B instead. For the 

situation is symmetrical as between A and B, at least until one of 

them is opened. Moreover, had she chosen B initially the same 

reasoning would suggest that she ought to have chosen A instead. No 

matter which choice she makes the reasoning leads to the conclusion 

that she made the wrong choice! 

 It is easy to say how she ought to have done the expected value 

calculation so as to avoid the absurd (clearly mistaken) result. She 

should have reasoned that the following two situations are equally 

likely: A contains $x, B contains $2x; and A contains $2x, B contains 

$x. The expected value of taking A is then $1.5x, and the expected 

value of taking B is also $1.5x, and hence there is no reason for her 

to judge that  she should have chosen B instead of A. The problem is 

to say what is wrong with the first way of doing the calculation.  

 The important difference between the two calculations is that in 

the first, fallacious calculation, but not in the second, correct way 

of calculating the relevant expected values, ‘x’ ranges over the 

amount of money in some particular envelope Ñ A, as we supposed. (In 

the second calculation ‘x’ ranges over the amount of money that has a 

0.5 chance of being in A and a 0.5 chance of being in B.) This means 

that the first way of doing the calculation involves supposing that 

for any value of x, if $x is the amount of money in some particular 

envelope, it is equally likely that $2x or $0.5x is the amount in the 

other envelope. This supposition is not part of what is given in 

setting up the puzzle. Moreover, it is false, at least for any 

rational, minimally informed person. Such a person will have a prior 

probability distribution concerning the total amount of money in the 

two envelopes which means it is not equally likely that if $x is the 

amount of money in one envelope, $2x or $0.5x is the amount in the 

other envelope, for all x. Suppose, for example, that she thinks that 

there is almost no chance that the total amount of money in the two 

envelopes will be greater than $1000. Then, if she considers the 

possible case in which the amount of money in one envelope is $600, 

she will not suppose that the probability that the other envelope 

contains $300 is the same as the probability that the other envelope 

contains $1200, for that would take the total over $1000. Conversely, 

for a small enough value of x, she will give almost no chance to the 



other envelope containing $0.5x, for that would take the contents of 

the other envelope below the smallest available item of currency.  

 Why will a rational, minimally informed person have such a prior 

probability distribution concerning the total amount of money in the 

two envelopes? Because it is common knowledge that there is a finite 

amount of money in the world and that there is a smallest unit in any 

currency. Of course, for some values of x the supposition of equal 

likelihood may well be true. Suppose it is true for x = 20. Then if 

she opens A, say, and finds that it contains $20, she knows that B 

either contains $10 or contains $40. As ex hypothesi in this case each 

possibility is equally likely, the expected value of the contents of B 

is $5 + $20, and accordingly she ought to decline the contents of A 

and choose B instead. 

 James Cargile [1] has recently discussed a variant of the two 

envelope paradox, but does not endorse the solution just given. (There 

is textual evidence that the solution we have offered was put to him. 

We presume that the reason he did not accept it relates to his variant 

on the paradox we now discuss.) In the version he considers, our 

subject is given the following information. An unknown amount of money 

$x was placed in one envelope (marked with a red spot, say). A coin 

was tossed. If it came down heads, $2x was placed in the other 

envelope; if it came down tails, $0.5x was placed in the other 

envelope. She is then to choose one of the envelopes. As Cargile 

notes, in this case the person ought to choose the unmarked envelope 

because it ‘corresponds causally to accepting a bet on a fair coin at 

payoff of double or half’ ([1], pp. 212-3.).  But, as he observes, 

surely we correctly reach this conclusion by an application of the 

line of reasoning which led to the absurd result in the original 

version of the puzzle, and which we declared to be fallacious in the 

original version.  

 There is, however, a crucial difference between the two cases. In 

the variant case, for any value of x, if $x is the amount of money in 

the marked envelope, it is equally likely that $2x or $0.5x is the 

amount in the other envelope. By contrast with the original case, the 

prior probability distribution of the subject over the total amount of 

money likely to be in the envelopes does not undermine this. Suppose, 

as before, that she thinks that the total amount of money in the two 

envelopes is very unlikely to exceed $1000. What happens in the 

variant case if she opens the marked envelope and finds $600? Because 

she knows that the amount in the unmarked envelope was assigned by 

halving or doubling a sum of money she now knows to be $600, she will 

be forced to revise upwards the probability (from near to zero to near 

to a half) she now gives to the total being $1800. (She will also give 

close to a half to the total being $900, of course.) Whereas in the 

original case, finding $600 in the envelope in her hand would have the 

effect of forcing up dramatically the probability she gives to the 

envelope in her hand being the one with the most money, finding $600 

in the marked envelope in the variant case instead forces up the 

probability she gives to the total amount of money being over $1000.  

 Moreover, the conclusion in the variant case does not violate 

symmetry considerations in the way that the conclusion in the original 

case does. In the original case there is no relevant difference 



between A and B, and yet we are led to the conclusion that merely 

choosing without opening A means that our subject should have chosen 

B. And we noted that if the reasoning worked we have an a priori 

argument that no matter which of A and B she chooses, she chooses 

wrongly. The situation is not symmetrical in the revised case. One 

envelope is marked and the other is not, and this matters. For the 

amount of money in the unmarked envelope was determined by taking the 

money to be put in the marked one, and doubling or halving it 

according to the toss of a coin.  

 There is a final matter that deserves comment. Our diagnosis of 

where the reasoning in the original case goes astray depended on the 

fact that the subject knows that the amount of money is bounded top 

and bottom. This assumption could be dispensed with in fantastical 

cases. We can imagine a case where the possible payoffs in envelopes A 

and B are unbounded top and bottom, and where the subject gives equal 

(infinitesimal) probability to each and every possible total 

distributed between the two envelopes. The symmetry of the situation 

would, however, be unaltered by this change. It would still be wrong 

to prefer one envelope over the other. However, we cannot offer the 

same diagnosis of the error in the expected value calculation to the 

opposite conclusion. There is all the same an error. As Richard 

Jeffrey [2], chapter 10, has pointed out in connection with other 

puzzle cases involving infinite domains, we can reasonably insist that 

‘the standard method’ for probabilistic and expected value reasoning 

ought not to be applied in such cases.  Finitude assumptions are built 

into the very foundations that justify such reasoning.i  
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i We have benefited from discussions with Denis Robinson and Lloyd Humberstone, 
and many, many others. 

                                                           


