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Abstract: Stephen Yablo has argued that ascriptions of belief and knowledge are sensitive
to subject matter and that theorising in such terms may help resolve philosophical questions
about the semantics of such ascriptions. Truthmaker semantics offers a way of theorising
about subject matters. My main aim in this paper is to investigate what a semantics for
knowledge or belief ascriptions might look like within truthmaker semantics. I then discuss
what the resulting account might have to say about the problem of logical omniscience, the
nature of concepts, and rational belief.

1 Introduction

This paper has two main aims. The first is to investigate what a semantics
for knowledge or belief ascriptions looks like within the setting of truthmaker
semantics. The second is to evaluate how well that approach does as a solution
to the various problems of logical omniscience, whereby agents are modelled as
knowing too many logical consequences of what they know.

I will focus on belief, rather than knowledge, but much of what I say here
applies equally to knowledge ascriptions. More importantly, I will situate the
discussion within Finean truthmaker semantics (Fine 2017a;b), as opposed to the
Yabloesque approach (Yablo 2014). The former takes primitive states, standing
in a part-whole relation, as its conceptual starting point. The latter, by contrast,
takes possible worlds as its primitive and constructs states from these. The former
is more general, in that it can draw hyperintensional distinctions where the latter
cannot (Yablo 2018; Fine 2020). It is also more foreign. We know far less about
how to reason with and about states than we do with and about worlds. That is
reason enough to explore.

The basic insight on how to model knowledge and belief in this setting, however,
is from Yablo:

Knowledge-attributions care about subject matter, over and above truth
conditions. They take note of how P is true or false in various worlds, not
only which world is it is true or false in. (Yablo 2014, 122)

You know you locked the front door. Do you thereby know that any apparent
evidence to the contrary is misleading? It seems not. Reports of an open door might
make you reconsider. So if we are not to concede too much everyday knowledge
to the sceptic, we must accept that knowledge is not closed under simple known
implications such as this. Yablo’s diagnosis highlights the change in subject matter,
from how the door is to (something like) whether there is evidence from other
sources concerning how the door is (Yablo 2014, §7.4).

The paper proceeds as follows. §2 is a brief introduction to truthmaker
semantics, à la Fine. §3 presents the basic semantics for belief ascriptions, which
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is then extended to a more general account in §4. Additional conditions – truth
and positive introspection – are discussed in §5. We then turn, in §6, to how
the resulting account handles the various problems of logical omniscience. §7
relates the account to some recent approaches to concept possession. §8 discusses
an objection which affects similar responses to logical omniscience. Finally, §9
discusses the vexing issue of how an agent’s beliefs stand in light of her limited
cognitive resources.

2 Truthmaker Semantics

In this section, we sketch a very brief overview of truthmaker semantics and state
some basic results. For further details, the reader is referred to Fine 2016; 2017a
and Fine and Jago 2019; Forthcoming. Here we use the notation and presentation
of Fine and Jago Forthcoming.

Truthmaker semantics is built around the notion of a state space: a set of
states S with a part-whole structure ⊑ on it. This is a complete partial order: it is
reflexive and transitive and has unique least and greatest elements, ◽, ◾ ∈ S, such
that ◽ ⊑ s ⊑ ◾ for every state s ∈ S. Given this ordering, each subset T of U has
a unique least upper bound ⊔T ∈ S and a unique greatest lower bound ⊓T ∈ S.
(The least upper bound of a set T is the least state s ∈ S for which t ⊑ s for each
t ∈ T . Similarly, the greatest lower bound of a set T is the greatest state s ∈ S for
which s ⊑ t for each t ∈ T .) In particular, ⊔∅ = ⊓ S = ◽ and ⊔ S = ⊓∅ = ◾. For
pairs of states, we write s ⊔ u for ⊔{s, u}, the fusion of s and u, and s ⊓ u for
⊓{s, u}. ⟨S,⊔⟩ and ⟨S,⊓⟩ are complete semilattices, with identity elements ◽ and
◾, respectively: s ⊔ ◽ = s and s ⊓ ◾ = s for each s ∈ S. ⊔ and ⊓ are commutative,
associative, and idempotent, and s ⊔ u = u iff s ⊓ u = s iff s ⊑ u. (In what follows,
we mostly ignore ⊓.)

We shall work with a very simple propositional language:

p ∣ ¬A ∣ A∧ B ∣ A∨ B

(to be expanded with belief operators Bi in §3.) We expand state spaces ⟨S,⊑⟩ to
models by adding positive and negative valuation functions:

Definition 1 (Models). A modelM is a quadruple ⟨S,⊑,V+,V−⟩, where ⟨S,⊑⟩ is a
state space and V+,V− ∶ P Ð→ 2S are functions from sentence letters to nonempty
subsets of S.

We then define exact truthmaking (⊩) and falsitymaking (ê) relations as
follows:

Definition 2 (Exact truthmaking and falsitymaking). Given a modelM (which
we leave implicit), exact truthmaking ⊩ and exact falsitymaking ê relations are
defined by double recursion as follows:

s ⊩ p iff s ∈ V+p
s ê p iff s ∈ V−p
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s ⊩ ¬A iff s ê A

s ê ¬A iff s ⊩ A

s ⊩ A∧ B iff ∃tu(s = t ⊔ u & t ⊩ A & u ⊩ B)

s ê A∧ B iff s ê A or s ê B

s ⊩ A∨ B iff s ⊩ A or s ⊩ B

s ê A∨ B iff ∃tu(s = t ⊔ u & t ê A & u ê B)

These are said to be exact relationships in that s ⊩ A says that s is wholly
relevant to A’s truth (and s ê A says that s is wholly relevant to A’s falsity).
This requirement leads to the unusual truthmaking clause for conjunction: a
truthmaker for A∧ B is the fusion of a truthmaker for A and a truthmaker for B.
That state may itself not be wholly relevant to A’s (or B’s) truth and so, in general,
truthmakers for conjunctions will not be truthmakers for their conjuncts. (Similar
remarks apply to falsitymaking for disjunctions.)

That state will nevertheless be sufficient for (if not wholly relevant to) the truth
of the conjuncts. This is the notion of inexact truthmaking, defined as follows.

Definition 3 (Inexact truthmaking and falsitymaking). In any modelM, s ∣∣> A iff
u ⊩ A for some u ⊑ s, and s<∣∣ A iff u ê A for some u ⊑ s.

Inexact truthmaking, unlike its exact cousin, obeys the standard extensional
clauses for conjunction and disjunction:

s ∣∣> A∧ B iff s ∣∣> A and s ∣∣> B
s <∣∣ A∧ B iff s <∣∣ A or s<∣∣ B
s ∣∣> A∨ B iff s ∣∣> A or s ∣∣> B
s <∣∣ A∨ B iff s <∣∣ A and s <∣∣ B

We define exact truthmaker and falsitymaker sets as follows:

∣A∣+ = {s ∈ S ∣ s ⊩ A} ∣A∣− = {s ∈ S ∣ s ê A}

and lift ⊔ to sets of states by setting:

T ⊔U = {t ⊔ u ∣ s ∈ T , u ∈ U}

We may then state the exact clauses in algebraic form:

∣¬A∣+ = ∣A∣− ∣A∧ B∣+ = ∣A∣+ ⊔ ∣B∣+ ∣A∨ B∣+ = ∣A∣+ ∪ ∣B∣+

∣¬A∣− = ∣A∣+ ∣A∧ B∣− = ∣A∣− ∪ ∣B∣− ∣A∨ B∣− = ∣A∣− ⊔ ∣B∣−

We identify propositions with sets of states. More precisely, a unilateral
proposition is a set of states P ⊆ S, and a bilateral proposition is a pair P = ⟨P+,P−⟩
of sets of states. The idea here is that P+ contains P’s truthmakers and P− its
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falsitymakers. Given bilateral propositions P = ⟨P+,P−⟩ and Q = ⟨Q+,Q−⟩, we
define bilateral Boolean operators as follows:

¬⟨P+,P−⟩ = ⟨P−,P+⟩
⟨P+,P−⟩∧ ⟨P+,P−⟩ = ⟨P+ ⊔Q+,P− ∪Q−⟩
⟨P+,P−⟩∨ ⟨P+,P−⟩ = ⟨P+ ∪Q+,P− ⊔Q−⟩

We may in addition require one or more closure conditions on propositions:

Definition 4 (Closure Conditions).

Closure (⊔): A proposition P is closed when ⊔Q ∈ P for any nonempty Q ⊆ P

Convex closure (⌢): A proposition P is convex when, for any t ∈ S, if s, u ∈ P
and s ⊑ t ⊑ u, then t ∈ S too.

Regular closure (∗): A proposition P is regular when it is both closed and
convex.

We write P⊔, P⌢, and P∗ for the smallest closed, convex, and regular sets
(respectively) that contain P.

Each proposition has a subject matter, which intuitively is what the proposition
is about. For Yablo (2014; 2018), each instance of ‘there are n stars’ has the subject
matter the number of stars, analogous to the question, ‘how many stars are there?’
Fine (2017b) has a slightly different notion of subject matter, on which each
instance of ‘there are n stars’ has the subject matter whether there are n stars,
which (for the same n) it shares with ‘there are not n stars’. Both agree that a
proposition’s subject matter is not given merely by the objects it is about, for the
headlines, ‘man bites dog’ and ‘dog bites man’ have quite different subject matter
(Yablo 2014, 24).

Following Fine (2017b), we define the subject matter p of a unilateral
proposition P to be ⊔P and of a bilateral proposition P = ⟨P+,P−⟩ to be p+ ⊔ p−.
(We could instead understand bilateral subject matter as the pair ⟨p+,p−⟩. Fine
(2017b, 697) calls these options ‘comprehensive’ and ‘differentiated’ subject
maters, respectively. We adopt the former here because it captures the intuitive
principle that negating a proposition does not affect its subject matter.)

Given a modelM and sentence A, we shall for the most part be interested
in the regular (unilateral and bilateral) propositions ∣A∣+∗ and ⟨∣A∣+∗, ∣A∣−∗⟩
associated with A. We use the notation sm+(A) and sm±(A) for their subject
matters, respectively. These are determined purely by the subject matters of the
letters appearing in A (and, for the unilateral case, by whether those letters occur
positively or negatively, in the following sense).

Lemma 2.1 (Subject matter). Say that p occurs positively (or negatively) in A
when p occurs within the scope of an even (odd) number of negations in A. Let
lett+(A) and lett−(A) be the sets of letters occurring positively and negatively in
A, respectively, and set lett(A) = lett+(A)∪ lett−(A). Then, relative to any model
M:
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(i) sm±(A) = ⊔
p∈lett(A)

sm±(p)

(ii) sm+(A) = ⊔
p∈lett+(A)

sm+(p) ⊔ ⊔
p∈lett−(A)

sm+(¬p)

Proof: (i) is by induction on A. The base case is given by definition and, for the
induction step, it suffices to note that, for ¬: sm±(¬A) = sm±(A) and lett(¬A) =
lett(A), and for ∧ and ∨: sm±(A ∧ B) = sm±(A ∨ B) = sm±(A) ⊔ sm±(B) and
lett(A∧ B) = lett(A∨ B) = lett(A)∪ lett(B).

For (ii), let lit(A) be the set of literals (letters or their negations) occurring in
A and dnf(A) be any disjunctive normal form of A. DNFs have the property that
p ∈ lit(dnf(A)) iff p ∈ lett+(A) and ¬p ∈ lit(dnf(A)) iff p ∈ lett−(A). Moreover,
given the equivalences in figure 1, dnf(A) is equivalent to A, hence ∣dnf(A)∣+∗ =
∣A∣+∗, and so sm+(A) = sm+(dnf(A)). We also have

sm+(A∧ B) = sm+(A∨ B) = sm+(A)⊔ sm+(B)

and so:

sm+(dnf(A)) = ⊔
l∈lit(dnf(A))

sm+(l)

= ⊔
p∈lett+(A)

sm+(p) ⊔ ⊔
p∈lett−(A)

sm+(¬p)

∎

We take sentences A,B to be equivalent, A ≡e B when they express the same
unilateral proposition. Where we impose no closure conditions on propositions,
equivalence amounts to A,B having the same truthmakers. But for technical
reasons, it is preferable to insist that propositions be regular closed sets, so that
A ≡e B when ∣A∣+∗ = ∣B∣+∗. This gives us the familiar equivalences shown in figure
1. (Of these, the majority hold on the basic semantics. Idempotence for ∧ requires
closure. Distributivity for ∨ requires both closure and convexity.)

We take (single-premise) entailment to be propositional inclusion: A exactly
entails B when ∣B∣+∗ ⊆ ∣A∣+∗. As already noted, A ∧ B will not exactly entail A.
Yet there is clearly an important relationship between A∧ B and A. We say that
the proposition expressed by A is a conjunctive part of that expressed by A∧ B:

Definition 5 (Conjunctive parthood). P is a conjunctive part of Q, P ≤ Q, when:

(Up) Each s ∈ P is part of some u ∈ Q (i.e. s ⊑ u); and

(Down) Each s ∈ Q has a part u ∈ P (i.e. u ⊑ s).

When the first condition holds, we say that P subserves Q (P ⊑∀∃ Q) and when
the second is met, we say that Q subsumes P (Q ⊒∀∃ P). We also say that Q
contains P when P ≤ Q.

Note that ≤ is a natural way to lift the parthood ordering ⊑ from states to sets
of states, since we have, in parallel to the usual order-lattice equivalence on states
(s ⊑ u iff s ⊔ u = u):

Lemma 2.2 (Fine 2017a). P ≤ Q iff P ∧Q = Q
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Commutativity: A∧ B ≡e B ∧ A
A∨ B ≡e B ∨ A

Associativity: A∧ (B ∧C) ≡e (A∧ B)∧C
A∨ (B ∨C) ≡e (A∨ B)∨C

Distributivity: A∧ (B ∨C) ≡e (A∧ B)∨ (A∧C)
A∨ (B ∧C) ≡e (A∨ B)∧ (A∨C)

Idempotence: A∧ A ≡e A
A∨ A ≡e A

De Morgan: ¬(A∧ B) ≡e ¬A∨¬B
¬(A∨ B) ≡e ¬A∧¬B

Double negation: ¬¬A ≡e A

Figure 1: Equivalences given regular closure

3 Semantics for Belief States

It is common in formal epistemology to take an agent’s total belief state to be
a proposition (a set of worlds, situations, scenarios, states, or whatever) and
to analyse belief in a particular proposition, P, in terms of P’s inclusion in (the
consequences of) that total belief state. We may adopt that approach in the
truthmaker setting, where we already have a notion of proposition. It remains to
say only what the relevant sense of inclusion is. Spoiler: it is conjunctive parthood.

We will begin with a simplified semantics, in this section, before extending to
the full analysis in §4. For the time being, we consider a single agent, for whom we
introduce a belief operator B into the language, so that BA is a sentence whenever
A is. An agent’s total belief state is modelled as a unilateral proposition: a set
of states, D. The agent believes that A when the proposition expressed by A is
contained in (i.e. is a conjunctive part of) D. (This, I take it, is how to understand
Yablo’s idea that ‘[belief]-attributions care about subject matter’ (2014, 122)
within Finean truthmaker semantics.) More precisely:

Definition 6 (Simple models and truth). A simple doxastic model is a quintuple
M = ⟨S,⊑,D,V+,V−⟩, where ⟨S,⊑,V+,V−⟩ is as before and D ⊆ S is a regular
unilateral proposition. For a B-free sentence A, BA is true inM,M ⊧ BA, when
∣A∣+∗ ≤ D. Entailment is preservation of truth-in-a-model and equivalence is
two-way entailment.

This definition of truth is very limited, applying only to simple belief ascriptions,
of the form BA where A itself is B-free. This is sufficient for a modest investigation
into the entailment behaviour of belief ascriptions, which shall be the focus of this
section. We shall give a more nuanced semantics in the next section.
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As mentioned above, I take this approach to be the natural way of developing
Yablo’s suggestion within Finean truthmaker semantics. As far as I know, Fine
does not suggest a semantics of belief or knowledge along these lines. Hawke
and Özgün (2023) develop a truthmaker semantics for knowledge ascriptions
along quite different lines: see Fine 2023 for discussion. Elgin (2021) connects
knowledge ascriptions to a notion of analytic consequence, which may in turn
be understood in terms of truthmaker semantics (see theorem 3.5 below), but
does not offer a truthmaker semantics for knowledge ascriptions. So, as far as I
am aware, this particular semantics for belief appears for the first time here. The
closest existent approach I know of is Fine’s analysis of free-choice obligation
(Fine 2018), in which a deontic statement of obligation OA is true relative to a
code of conduct C (a set of states) iff OA ≤ C. The parallel to the present approach
is not exact, however.

Under what conditions does BA entail BC, on this approach? The first source
of closure conditions is the conditions on propositions themselves. If A and B
express the same proposition, then BA will be equivalent to BC. So (having
assumed the regular semantics) pairs BA,BC will be equivalent for each pair A,C
listed in figure 1: B(A∧C) is equivalent to B(C ∧ A), and so on.

The second source of closure conditions is the relation of conjunctive parthood
that TMS claims to hold between a believed proposition P and the agent’s total
belief state D. So let us look at some of the properties of conjunctive parthood in
more detail.

Lemma 3.1 (Fine 2017a).

(i) ≤ is reflexive and transitive

(ii) If P ≤ Q and Q ≤ P then P = Q

(iii) If P = P1 ∧ P2 ∧ ⋯ , then (i) p = ⊔i pi and (ii) P is the least proposition such
that Pi ≤ P for each i

(iv) If P ≤ R and Q ≤ R then P ∧Q ≤ R

(v) P ≤ Q iff p ⊑ q and Q ⊒∀∃ P.

Part (v) will be especially useful in what follows, as it allows us to replace the
(Down) condition on P ≤ Q with the simpler condition p ⊑ q.

Given transitivity, if ∣C ∣+∗ ≤ ∣A∣+∗, then BA will entail BC. In particular,
B(A∧C) entails both BA and BC. And conversely, by (iv), BA and BC together
entail B(A ∧C). In fact, the agent’s total belief state D may be seen as the big
conjunction of all the propositions Pi she believes: D = P1 ∧P2 ∧ ⋯ . Its total subject
matter is the fusion of the subject matters of each believed Pi. Thus, fixing D fixes
a subject matter d = ⊔D beyond which belief ascriptions may not transgress: BA
only if the subject matter of the proposition expressed by A is part of d.

Let us now see how entailments between belief ascriptions, say from BA to
BC, relate both to the subject matter and the syntactic construction of A and C.

Lemma 3.2. BA entails BC only if sm+(C) ⊑ sm+(A) in every simple doxastic
modelM.
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Proof: Consider a modelM = ⟨S,⊑,D,V+,V−⟩ for which sm+(C) ⋢ sm+(A).
Given definition 6, A and C must be B-free sentences and so ∣A∣+∗ and ∣C ∣+∗ do
not depend on the choice of D. Now letMA be just likeM but with ∣A∣+∗ in place
of D. Then sm+(C) ⋢ sm+(A) in MA and, given closure, sm+(C) ∈ ∣C ∣+∗ but
sm+(C) ∉ ∣A∣+∗ (else sm+(C) ⊑ sm+(A)) and so ∣C ∣+∗ ≰ ∣A∣+∗. But thenMA ⊭ BC
and so BA does not entail BC. ∎

Lemma 3.3. For B-free sentences A,C and simple doxastic modelsM:

(i) sm±(A) ⊑ sm±(C) in eachM iff lett(A) ⊆ lett(C)

(ii) sm+(A) ⊑ sm+(C) in eachM iff lett+(A) ⊆ lett+(C)& lett−(A) ⊆ lett−(C)

Proof: For the left-to-right directions, we use a canonical model construction.
Let L be the set of all literals and D ⊆ 2L (i.e. a set of sets of literals). The D-
canonical doxastic model isMD = ⟨2L,⊑,D,V+,V−⟩, where ⊑ is ⊆ restricted to
2L, V+ = {{p}}, and V− = {{¬p}}. Given lemma 2.1, inMD:

sm±(A) = ⋃
p∈lett(A)

{p,¬p} sm+(A) = ⋃
p∈lett+(A)

{p}∪ ⋃
p∈lett−(A)

{¬p}

Now for (i), assume that sm±(A) ⊑ sm±(C) in every simple doxastic model and
that p ∈ lett(A). Then sm±(A) ⊆ sm±(C) inMD, hence {q,¬q ∣ q ∈ lett(A)} ⊆
{q,¬q ∣ q ∈ lett(C)}, and so p ∈ lett(C). Similar reasoning for (ii) establishes that
lett+(A) ⊆ lett+(C) and lett−(A) ⊆ lett−(C).

For (i) right-to-left: if lett(A) ⊆ lett(C) then, for an arbitrary simple doxastic
modelM:

⊔
p∈lett(A)

sm+(p) ⊑ ⊔
p∈lett(C)

sm+(p)

inM and so, by lemma 2.1, sm+(A) ⊑ sm+(C) inM, and hence (sinceM was
arbitrary) in every simple doxastic model. The reasoning for (ii) right-to-left is
similar. ∎

Theorem 3.4. BA entails BC only if lett(C) ⊆ lett(A).

Proof: Assume BA entails BC and p ∈ lett(C). Then sm+(C) ⊑ sm+(A) in every
simple doxastic model (lemma 3.2), hence lett+(A) ⊆ lett+(C) and lett−(A) ⊆
lett−(C) (lemma 3.3). Moreover, either p ∈ lett+(C), in which case p ∈ lett+(A),
or else p ∈ lett−(C), in which case p ∈ lett−(A). Either way, p ∈ lett(A), and so
lett(C) ⊆ lett(A). ∎

This is the relevant logician’s variable sharing condition in overdrive! In
particular, Bp does not entail B(p ∨ q). (This will be important in §6, when we
consider the problems of logical omniscience.) In fact, the behaviour of disjunction
within belief reports is fully accounted for by the equivalences listed in figure
1 (that is, BA and BC are equivalent when A ≡e C), plus the rule that, if BA
entails BC, then B(A ∨ B) entails B(C ∨ B). Conjunction within belief reports
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is characterised by a similar rule, plus conjunction elimination (from B(A ∧C)
to BA). These axioms and rules give us a deductive relation on sentences, the
transitive closure of which is none other than Angell’s Analytic Containment
(Angell 1989):

Definition 7 (Analytic Containment). ⊢AC is the smallest relation between
sentences which includes the axioms and is closed under the rules shown in
figure 2. We read A ⊢AC C as A analytically implies C and say that the associated
proposition ∣A∣+∗ analytically contains ∣C ∣+∗.

(The deductive equivalence of these rules to Angell’s formulation is shown in Fine
2016.)

(eeq) A ⊢AC C if A ≡e C according to figure 1

(∧e) A∧ B ⊢AC A

A ⊢AC B B ⊢AC C

A ⊢AC C
(trans)

A ⊢AC B

(A∧C) ⊢AC (B ∧C)
(∧i)

A ⊢AC B

(A∨C) ⊢AC (B ∨C)
(∨i)

Figure 2: Analytic Containment

Theorem 3.5. BA entails BC iff A ⊢AC C.

Proof: Fine (2016, theorem 23) shows that A ⊢AC C iff ∣C ∣+∗ ≤ ∣A∣+∗ in every
modelM, which is the case iff BA entails BC. ∎

These results bring out an idea discussed by Yablo (2014) and Elgin (2021), that
subject matter is a limiting factor on knowledge or belief ascriptions. (They both
focus on the case of knowledge.) Yablo’s idea (discussed in §1, now transposed to
the case of belief) is that you may believe that you closed your front door, without
thereby believing that any future evidence to the contrary is misleading. For your
belief concerns the subject matter how the door is, which need not include the
subject matter whether there is evidence from other sources concerning how the
door is (Yablo 2014, §7.4).

Elgin (2021) argues, on independent grounds, that knowledge is closed under
known analytic implication. That is, knowing both that A and that A analytically
implies C implies knowing that C. The connection to subject matter is given by
the truthmaker semantics for analytic implication, on which analytic implication
(A ⊢AC C) amounts to conjunctive parthood (∣C ∣+∗ ≤ ∣A∣+∗). Note that, on the

9



present semantics, we have no way to express analytic implication, and hence
no way to express belief or knowledge of an analytic implication, in the object
language.

4 Embedded Belief

The account presented in §3 does not allow us to embed belief reports. We
cannot express, and so cannot analyse, an agent who believes she believes some
proposition. The restriction is due to our semantics. Belief reports are analysed in
terms of propositions (sets of states of affairs). So to analyse an agent who believes
she believes some p, BBp, we first need to say what proposition Bp expresses.
This is turn requires saying which states s make Bp true. At present, we can
say whether or not Bp is true on a model, but not what makes it true or false.
We have also focused on the beliefs of a single agent only, whereas much of the
interest in epistemic logic arises in the multi-agent case. Let us now remedy these
shortcomings.

We consider a finite number of agents i, adding a belief operator Bi to
the propositional language for each, so that BiA is a sentence whenever A is.
Semantically, we introduce for each agent i a partial function δi from states s to
pairs of regular sets of states ⟨D+,D−⟩, understood as the bilateral proposition
giving agent i’s doxastic state according to s. D+ gives the agent’s positive doxastic
state and D− the agent’s negative doxastic state, relativised to a state of affairs s.

Definition 8. A model for n agents is a quintuple M = ⟨S,⊑,{δi}i≤n,V+,V−⟩,
where ⟨S,⊑,V+,V−⟩ is as before and each δi is a partial function S ⇀ (2S × 2S)
from states to pairs of regular sets of states. Where δi s = ⟨D+,D−⟩, we write δ+i s
for D+ and δ−i s for D−.

For agent i to believe A in virtue of s is then for A’s positive content to be part
of δ+i s:

s ⊩ BiA iff ∣A∣+∗ ≤ δ+i s

or, spelling out the clause in full:

s ⊩ BiA iff (B-Up) u ∈ ∣A∣+∗ only if t ∈ δ+i s for some t ⊒ u; and

(B-Down) t ∈ δ+i s only if u ∈ ∣A∣+∗ for some u ⊑ t

We may simplify (B-Up):

Lemma 4.1. (B-Up) is equivalent to (B-Up′): u ⊩ A only if u ⊑ ⊔ δ+i s.

Proof: Given lemma 3.1(v), (B-Up) simplifies to: u ∈ ∣A∣+∗ only if u ⊑ ⊔ δ+i s. If
u ⊩ then u ∈ ∣A∣+∗ and so, given (B-Up), u ⊑ ⊔ δ+i s. Thus (B-Up) implies (B-Up′).
Now assume (B-Up′). Then u ∈ ∣A∣+ implies u ⊑ ⊔ δ+i s and so ⊔ ∣A∣+ ⊑ ⊔ δ+i s. But
⊔ ∣A∣+ = ⊔ ∣A∣+∗ = sm+(A) and so u ⊑ sm+(A) ⊑ ⊔ δ+i s for any u ∈ ∣A∣+∗. Thus
(B-Up′) implies (B-Up). ∎
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We also need to say when a state makes a belief ascription false. This is where
the bilateral semantics earns its keep. The negative component of a total belief
state, δ−i s, is intended to model what agent i fails to believe in virtue of state
s. There may in general be many reasons for a failure of belief, from explicit
evidence to the contrary to the agent’s lack of interest in the topic. We reflect this
by allowing a state to be a falsitymaker for BiA independently of whether it is
a truthmaker for BiA. For agent i to fail to believe A in virtue of s, is for A’s
positive content to be included in δ−i s:

s ê BiA iff ∣A∣+∗ ⊆ δ−i s

As before, we understand exact entailment (A ⊧e B) and exact equivalence
(A ≡e B) in terms of the corresponding regular contents: ∣B∣+∗ ⊆ ∣A∣+∗ and ∣A∣+∗ =
∣B∣+∗, respectively. We shall henceforth call this the truthmaker semantics (TMS)
account of belief ascription.

The falsitymaking clause uses (set-theoretic) inclusion, ∣A∣+∗ ⊆ δ−s , where the
truthmaking clause uses parthood, ∣A∣+∗ ≤ δ+i s. Why is this? Suppose that, in
virtue of some state s, I do not believe the object to be red. We might take s to be
a state of visual evidence pertaining to the object’s colour. Then s must thereby
count as evidence that the object is not scarlet. In forming my beliefs rationally
based on that evidence, s makes it the case that I do not believe the object to
be scarlet. The relationship between those contents, it is scarlet and it is red, is
one of inclusion, not of parthood: any truthmaker for ‘it is scarlet’ is thereby a
truthmaker for ‘it is red’, but some truthmakers for ‘it is red’ (such as the state
that it is maroon) will not contain any truthmaker for ‘it is scarlet’.

More generally, we understand s to be a falsitymaker for BA in terms of ∣A∣+∗’s
inclusion in δ−s . Thus δ−s may be seen as the disjunction of all not-believed content,
just as δ+s may be seen as the conjunction of all believed content. As a consequence,
¬BiA will be an exact consequence of ¬BiC whenever ∣A∣+∗ ⊆ ∣C ∣+∗. In particular,
¬Bi(A∨C) will exactly entail ¬BiA. (Indeed, if we think of the proposition it is
red as the disjunction it is either scarlet or maroon or . . . , then this entailment
explains the previous example.)

By contrast, ¬BiA will not exactly entail ¬Bi(A ∧ C). Because the object
appears blue (s), I do not believe it to be red; and because the object appears
cylindrical (u), I do not believe it to be rectangular. s alone explains my lack of
belief that it is red, whereas s and u together explain my lack of belief that it is
both red and rectangular. Of course, given that the object appears blue, I may
infer and so come to disbelieve that it is not both red and rectangular. But then I
lack that belief in virtue of s combined with my inference (t), not in virtue of s
alone.

For positive belief reports BiA, we retain the if direction of theorem 3.5:

Theorem 4.2. BiA ⊧e BC if A ⊢AC C.

Proof: Suppose A ⊢AC C. From Fine 2016, theorem 23, ∣C ∣+∗ ≤ ∣A∣+∗, so for any t:
∣C ∣+∗ ≤ δ+t if ∣A∣+∗ ≤ δ+t. Then we have ∣BiC ∣+ ⊆ ∣BiA∣+, hence ∣BiC ∣+∗ ⊆ ∣BiA∣+∗
and so BiA ⊧e BC. ∎
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In particular, Bi(A ∧C) exactly entails BiA but BiA does not exactly entail
Bi(A∨C). Notice that we have:

Bi(A∧C) ⊧e BiA but ¬BiA ⊭e ¬Bi(A∧C)

¬BiA ⊧e ¬Bi(A∨C) but BiA ⊭e Bi(A∨C)

Exact entailment does not contrapose. This not a specific feature of doxastic
models, for even on the class of basic models ⟨S,⊑,V+,V−⟩, A ⊧e C does not
imply ¬C ⊧e ¬A.

We will look at more belief ascription entailments in §6, when we discuss
logical omniscience.

5 Truth and Introspection

Modal epistemic logics allow us to relate familiar axioms governing the belief
operator to principles of the accessibility relation R on worlds. Of particular
interest are the T and B axioms:

(T) BiA → A (Truth)

(4) BiA → BiBiA (Positive introspection)

In the classical modal setting, these correspond to reflexivity and transitivity of
the accessibility relation R, respectively. What is the picture on the TMS account?

It will be useful to introduce exact and inexact conditionals, at the level of
models rather than states:

Definition 9. A → C is true in a model M (M ⊧ A → C) just in case s ∣∣> C
whenever s ∣∣> A inM. Similarly, A↠ C is true inM (M ⊧ A↠ C) just in case
s ⊩ C whenever s ⊩ A inM. A → C or A ↠ C is valid on a class of models C
when it is true in all models in C.

The exact truth axiom, BiA↠ A, is of little interest, for what makes it true that
an agent has a given belief will not in general be what makes that belief true. The
inexact version, (T) above, adequately captures the restriction to true belief. It says
that states which contain a truthmaker for BiA also contain a truthmaker for A.
If we understand truth-at-a-state in terms of that state containing an appropriate
truthmaker, then it implies that, at any state, the beliefs held there are true. The
semantic condition required for (T) is just the projection function analogue of
reflexivity:

(Inclusion) s ∈ δ+i s

Lemma 5.1. BiA → A is valid on the class of models which satisfy inclusion (for
each agent i and state s).
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Proof: Assume M satisfies (inclusion) and s ∣∣> BiA. Then for some s− ⊑ s,
s− ⊩ BiA and so ∣A∣+∗ ≤ δi s−. By (inclusion), s− ∈ δ+i s

− and so, by (B-Down),
u ∈ ∣A∣+∗ for some u ⊑ s−. Since u ∈ ∣A∣+∗, there is some u− ⊑ u for which u ⊩ A.
Then u− ⊑ u ⊑ s− ⊑ s and so s ∣∣> A. ∎

Now we turn to positive introspection. The picture here is much more complex
than in the classical setting, which considers just truth at accessible worlds. In the
truthmaker setting, by contrast, we must consider the propositions P contained
by a set of accessible states, P ≤ δi s. The condition required to guarantee (4) is the
following, for any content P and state u:

(⋆) If P ≤ δ+i s then (i) s ⊑ p and (ii) if t ∈ δ+i s then P ≤ δ+i u for some u ⊑ t.

Lemma 5.2. BiA↠ BiBiA and BiA → BiBiA are both valid on the class of models
which satisfy (⋆).

Proof: We first show that BiA↠ BiBiA is true on all such models. AssumeM
satisfies (⋆) and s ⊩ BiA. Then ∣A∣+∗ ≤ δ+i s. Let a = ⊔ ∣A∣+∗ and ba = ⊔ ∣BiA∣+∗.
We show ∣BiA∣+∗ ≤ δ+i s:

(Up): Consider any t ⊩ BiA. Then ∣A∣+∗ ≤ ⊔ δ+i t and, given (⋆i), t ⊑ a. Since this
holds for all t ∈ ∣BiA∣+, we have ⊔ ∣BiA∣+ = ⊔ ∣BiA∣+∗ = ba ⊑ a. Given ∣A∣+∗ ≤ δ+i s,
we also have a ⊑ ⊔ δ+i s. Now consider any u ∈ ∣BiA∣+∗. Then u ⊑ ba, hence
u ⊑ ba ⊑ a ⊑ ⊔ δi s and so u ⊑ ⊔ δ+i s.

(Down): Assume t ∈ δ+i s. From (⋆ii), ∣A∣+∗ ≤ δ+i u for some u ⊑ t. Then u ⊩ BiA
and so u ∈ ∣BiA∣+∗.

It follows that ∣BiA∣+∗ ≤ δ+i s and so s ⊩ BiBiA. Thus BiA↠ BiBiA is valid
in models satisfying (⋆). For the inexact case, assume s ∣∣> BiA. Then s− ⊩ BiA
for some s− ⊑ s. By the previous reasoning, s− ⊩ BiBiA and so s ∣∣> BiBiA. So
BiA → BiBiA too is valid in models satisfying (⋆). ∎

Condition (⋆) does not look particularly intuitive, especially when compared to
its classical analogue, transitivity of R. What does (⋆) mean? Part (i) is a restriction
on subject matter: if state s is to make it true that the agent believes that A, then s
must be wholly relevant to A’s subject matter. (That is not to say that it makes A
true: it need not.) Part (ii) says that for any containment relationship P ≤ Q, each
member t of Q has a part u for which P ≤ δ+i u. (This is a slight generalisation, for
(⋆) applies only when Q = δ+i s for some s. But the point here is that (ii), unlike (i),
is not primarily about state s.) There is a kind of transitivity here: if we can go
from contents P to Q, and from Q to some δ+i u (with u as above), then we can
go directly from P to δ+i u.

6 Logical Omniscience

A logic of belief tells us that, as a matter of logic, if certain things are believed
then so must be some other things. If the relationship between those things is
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some strong notion of logical consequence, then we may have a problem: agents
will be said to believe far more than any real agent could. Agents will be treated
as believing all consequences of what they believe, including all logical validities.
Someone with inconsistent beliefs – all of us – might even be treated as believing
everything. This is the problem of logical omniscience. What does the TMS account
have to say for itself in this regard and how does it compare to other responses in
the literature?

On closer inspection, there is not just one problem of logical omniscience
here. Fagin et al. (1995, 335–6) and van Ditmarsch et al. (2008, 23) discuss the
following closure conditions, all of which have been questioned:

(C1) If BiA and A entails C, then BiC

(C2) If A is valid, then BiA

(C3) ¬(BiA∧Bi¬A) is valid

(C4) BiA and BiC are equivalent whenever A and C are

(C5) If BiA and A → C is valid, then BiC

(C6) If BiA and Bi(A → C), then BiC

(C7) Bi(A∧C) iff BiA and BiC

(C8) If BiA, then Bi(A∨C)

Problems of logical omniscience are often addressed by weakening the logic
underlying worlds (as, e.g., in Hintikka 1975, Levesque 1984, and Wansing 1990).
If a paraconsistent logic is adopted, for example, then it is easy to model agents
with inconsistent beliefs. And for any choice of sub-classical logic, it will be easy
to model agents who do not believe all classical consequences of what they believe.

It is often undesirable to weaken the operative notion of logical consequence in
this way, however (Fagin and Halpern 1988; Jago 2007). For although we want to
accommodate an agent with inconsistent beliefs, we likely want our logic of belief
ascription to remain consistent and to preserve some classical (or other strong)
notion of consequence. One way to achieve this (within a worlds framework) is
to distinguish between two classes of worlds. The normal (or possible) worlds
behave classically, whereas the non-normal (or impossible) worlds need not. Belief
is defined over all worlds, so that an agent’s beliefs need not be closed under
classical consequence. But consequence for the logic is defined over the normal
worlds only, so that classical consequence is preserved. This approach is not
without problems (Jago 2014a; Berto and Jago 2019), but that is not our central
concern here.

Let us see how the TMS account compares. As already noted, identity for TMS
propositions obeys the commutativity, associativity, distributivity, idempotence,
De Morgan, and double negation laws. We therefore have the corresponding
exact equivalences for belief ascriptions: BiA ≡e BiC whenever ∣A∣+∗ = ∣C ∣+∗
(i.e. those equivalences A ≡e C given in figure 1). We also have closure under
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conjunctive parthood: BiA exactly entails BiC whenever ∣C ∣+ ≤ ∣A∣+. In particular,
Bi(A∧C) exactly entails BiA. And conversely, beliefs are closed under conjunction
introduction:

Lemma 6.1. BiA,BiC together exactly entail Bi(A∧C).

Proof: Immediate from lemma 3.1(iv) and the clause for Bi. ∎

A key feature of the TMS approach is that belief is not closed under disjunction
introduction. BiA does not exactly entail Bi(A∨C) for arbitrary C, for ∣A∨C ∣+
is not in general a conjunctive part of ∣A∣+. The TMS approach validates only (C7)
in our list of closure principles, where equivalence is understood classically. (It also
validates the analogue of (C4) with equivalence understood as exact equivalence.)

Note that disjunction introduction is a valid exact entailment: A exactly entails
A∨C for arbitrary C. So belief is not closed under exact entailment (and so not
under any of the stronger notions of entailment) on the TMS approach. Failures of
omniscience are not achieved by weakening the operative notion of entailment, in
other words. Indeed, TMS can recapture a wide variety of consequence relations,
including classical entailment. We might take our operative notion of entailment
to be the classical one, whilst still avoiding (C8), the entailment from BiA to
Bi(A ∨C). And, unlike on the non-normal worlds approach described above,
TMS does this with a uniform treatment of the connectives, thus avoiding the
compositionality objection.

The TMS approach thus takes beliefs to be closed under conjunction but
not under disjunction. It is, in this respect, a dual approach to Lewis’s (1982)
logic for equivocators, on which beliefs are closed under disjunction but not
conjunction: BiA and BiC together do not imply Bi(A ∧C). Lewis considers
failures of omniscience which are due to a fragmented system of beliefs:

My system of beliefs was broken into (overlapping) fragments. Different
fragments came into action in different situations, and the whole system of
beliefs never manifested itself all at once. (Lewis 1982, 436)

Fagin and Halpern (1988) give a formal model of belief along these lines, which
they call a model of ‘local reasoning’. They think in terms of multiple ‘frames of
mind’, each corresponding to one of Lewis’s belief fragments. On either approach,
an agent believes whatever is believed in some fragment. This results in a degree
of inconsistency tolerance. An agent may believe that A in one fragment and that
¬A in another, and so believe both overall, without thereby believing arbitrary
propositions. They need not believe the explicit contradiction, A ∧ ¬A, if they
never ‘put two and two together’ and combine these fragments of belief.

On Lewis’s and Fagin and Halpern’s approach, each fragment of belief is
treated in the classical way, as a set of possible worlds. Thus each fragment
must be internally consistent, must contain every classical tautology, and must be
closed under logical consequence. So even though the agent’s beliefs as a whole
are not classically closed, it remains the case that they are closed under single-
premise entailment. Thus, Lewis’s approach satisfies (C1), (C2), (C4), (C5), and
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(C8), plus (C7) left-to-right. As a response to the logical omniscience problem,
Lewis’s approach leaves a lot to be desired. It nevertheless captures a degree
of psychological realism. Agents often fail to combine individual beliefs they
hold. Believing that A and separately that C does not automatically produce the
combined belief that A∧C.

We can easily incorporate Lewis’s insight into the TMS approach. We view
a doxastic agent as a fragmented system, as with Lewis, but with each local
fragment modelled as on the TMS account. Thus, a TMS model of local reasoning
for a single agent with multiple frames of mind 1, . . . , n is a multi-agent model as
given in definition 8, with each doxastic function δi now understood as giving the
content of fragment i of the agent’s total belief state. We read BiA as ‘the agent
believes that A in fragment i’ and we introduce a new modality, B+, to capture
her beliefs overall, just as Lewis does:

s ⊩ B+A iff for some i ∶ s ⊩ BiA

To model multiple fragmented agents like this, we simply partition the fragments
1, . . . , n into equivalence classes E1, . . . ,Em, each with its own belief modality
B+k , with the slightly amended clause:

s ⊩ B+kA iff for some i ∈ Ek ∶ s ⊩ BiA

In what follows, I will ignore this complication with multiple fragments of belief
and focus on agents with a single, unfragmented belief state.

Lewis’s approach is both a model of and a reasonable explanation for (C7)’s
failure from right-to-left. The TMS account is a model of (C8)’s failure. Can it
also supply a reasonable explanation? This will be the topic of the next section.

7 Concept Possession

A plausible explanation of why (C8) fails is that it seems inadmissible to ascribe to
an agent a belief that goes beyond her conceptual repertoire. Stalnaker (1984, 88)
gives the example of William III, who in 1700 believed that war with France could
be avoided. Yet it seems we cannot say that William thereby believed that nuclear
war could be avoided, even though this is clearly implied by what he believed,
for he had no grasp of the concept of nuclear war. Similarly, we should not say
that he believed that either war or nuclear war could be avoided, even though
that proposition is equivalent to what he did believe. Since a disjunction A ∨ B
may well involve concepts not present in A alone, we appear to have a plausible
explanation for the failure of (C8).

Whether this explanation is acceptable depends on what it is to possess a
concept (or, perhaps, on what concepts themselves are). On one approach, concepts
are constituents of mental representations or thoughts. On the competing approach,
concepts are better understood as abilities. In this section, I shall argue as follows.
The former understanding does not provide a good explanation of (C8)’s failure.
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The latter might, but has a serious problem, which itself may be resolved by
reformulating it in terms of truthmaker semantics.

The former cluster of approaches understand concepts as something like items
of mental vocabulary or components of inner representations. This is an idea we
find in defenders of the representational theory of mind, such as Carruthers (2006),
Fodor (2003), and Millikan (2000). We may (for current purposes) also include
here views on which concepts are abstract Fregean senses (Peacocke 1992). What
these approaches have in common is that one may possess the concept hesperus
without possessing the concept phosphorus, or possess eye doctor without
possessing ophthalmologist. One can then explain the cognitive significance
of ‘Hesperus is Phosphorus’ or ‘ophthalmologists are eye doctors’ in those terms.
On such views, it is natural to take belief ascriptions to be accurate when they
correspond to the agent’s inner representations or Fregean thoughts. So possession
of the relevant concepts (so understood) will be a necessary condition on belief
ascription.

In the epistemic logic literature, logics of awareness draw on ideas along these
lines. The approach, beginning with Fagin and Halpern 1988, is to combine a
possible worlds approach with a syntactic filter, which specifies the primitive
concepts of which the agent is aware. On Fagin and Halpern’s (1988) basic
logic of awareness, valuations are restricted to the sentence letters in the agent’s
awareness set. If a sentence A contains a letter p not in the awareness set, A
will receive no truth-value at any epistemically accessible world. In particular,
there may be accessible worlds relative to which A but not A ∨ B is true and
hence (C8) is invalidated. The syntactic awareness filter, central to these technical
accounts, may be understood as corresponding to the concepts she possesses, in
the representational or Fregean sense just given.

Even setting aside technical issues, this approach has philosophical problems.
Consider Anna, describing in detail her poor eye health to Cath, an ophthalmolo-
gist. Anna does not possess (in the above sense) the concept ophthalmologist,
instead thinking of Cath as the doctor at the hospital with expertise in eye problems.
We might describe the situation as follows:

(1) Anna believes that Cath is an ophthalmologist, although she wouldn’t put it
like that.

This ascription explains why Anna is talking to Cath, whilst conveying also that
Anna does not conceptualise her (in the above sense) under ophthalmologist.
The ascription is certainly coherent. So it is coherent to ascribe beliefs involving
concepts which the agent does not herself use to represent the situation in question.
But if so, concept possession (so understood) is not necessary for belief ascription
and so we lose our explanation of why (C8) fails.

On the alternative understanding, concepts are understood as abilities of a
certain kind (Dummett 1993). To possess a concept is to able to draw certain
distinctions in the world. For Yalcin (2018), ‘a concept determines a matrix of
distinctions’ such that

To possess a concept is to have an ability to cut logical space in a certain way,
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to distinguish possibilities in terms of the sorts of things that answer to the
concept. (Yalcin 2018, 36)

In the example, Anna can distinguish ophthalmologists from non-ophthalmologists.
What she lacks is competence with the word ‘ophthalmologist’ (and perhaps lacks
corresponding inner representations). She stands in contrast in this respect to
someone unable to distinguish doctors from non-doctors, to whom we should
not attribute a belief like (1), even with the caveat. On this approach, the proper
explanation of (C8)’s failure is that an agent may be competent with the concepts
involved in A but not with those in B and hence not with all of those in A∨ B.

There is an issue here, however. The ability to distinguish Fs is just the ability
to distinguish F ∧ (F ∨G)s, since necessarily, these are the same individuals. But
clearly, the ability to distinguish Fs does not imply the ability to distinguish F ∨Gs.
Someone who cannot distinguish Gs at all will be bad at distinguishing F ∨Gs
when the Gs are prevalent. But then we must allow in general that conceptual
ability with a concept F ∧G does not imply conceptual ability with G. So if
competence with a concept is necessary for belief and hence for knowledge, this
will imply that it is possible to know that something is an F ∧G without knowing
it to be a G. We surely want to avoid results like this.

My suggestion is that we understand conceptual competence, of the kind
required to ascribe to an agent a belief with that conceptual content, in terms
of her ability to identify states of the world which correspond exactly to that
content. Competence with a concept F amounts to the ability to discern, for any
suitable x, a state which exactly decides whether x is F. That state should be
an exact truthmaker for Fx ∨¬Fx. The requirement of exactness allows for the
distinction between F and F ∧ (F ∨G), which the Lewis-Yablo-Yalcin possible
worlds approach does not, and hence avoids the problem just discussed.

(It is an interesting question whether there is independent reason for thinking
one can be competent with a conjunctive concept but not with its conjuncts. A
referee suggests the following case: a creature unable to detect objects smaller
than elephants might thereby count as competent with pink elephant but not
with pink. Perhaps that is right for some notion of conceptual competence but,
as just noted, this cannot be the operative notion if we wish to take conceptual
competence as necessary for belief. One available response is as follows. The
operative notion of conceptual competence should be understood relative to the
agent’s relevant non-conceptual abilities. Thus, an agent’s competence with a
visual concept like pink amounts to the ability to discern, amongst the kind of
thing she can see clearly, states which exactly decide whether each such thing is
pink. There is clearly much more to be said here, however.)

This approach is clearly close to Yalcin’s. There is a further similarity. For
Yalcin, ‘a concept determines a matrix of distinctions’ (2018, 36), understood as
a partition on possible worlds. Within the Lewis-Yablo tradition, partitions on
worlds are also understood as explicating subject matters. So concepts, for Yalcin,
are a certain kind of subject matter. On the TMS understanding, by contrast,
subject matters are understood as ‘flattened’ propositions (p = ⊔P for a unilateral
proposition P: see §2). Each subject matter is a state, not a partition on states (or
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worlds). We may also align concepts with subject matters, so understood. The
concept F is the fusion, for every x, of all states which decide whether x is F.
This is the subject matter of the proposition which says, of each individual, that it
either is or isn’t an F. If we further identify universally quantified propositions
with infinite conjunctions over all individuals (as van Fraassen (1969) does), then
the concept F will be identified with the subject matter of ∀x(Fx ∨ ¬Fx). On
this view, as on Yalcin’s account, concepts are not literally components of the
propositions or beliefs which involve those concepts (except in the special case of
the proposition that everything either has or lacks the concepts in question).

There is clearly much more to be said about Yalcin’s approach and its
implementation within the TMS account. I should note that the basic TMS account
is not committed to this understanding of concepts. Nevertheless, the overall
approach seems to me a very promising way both of explaining the failure of (C8)
within the TMS account of belief and of giving an account of concept possession
which avoids the worry for Yalcin discussed above.

8 The Rationality Objection

I want now to address a worry for the TMS approach to belief. It is based on the
following principle:

(lem) Rational agents believe each instance of A∨¬A.

Any rational agent should believe all instances of A∨¬A (or nearly all instances:
we may ignore those cases in which LEM is thought to be questionable). All one
need do, to believe any given instance A∨¬A, is to identify that the sentence has
the syntactic form it does. I needn’t know what a babirusa is in the slightest to
know that either babirusas are mammals or they aren’t. (And if I know it, I believe
it.) A similar point can be made with a no-contradiction principle:

(nc) Rational agents believe each instance of ¬(A∧¬A).

I needn’t know what a babirusa is to know that they aren’t both mammals and
not mammals. On the TMS account, (nc) has the same effect on belief states as
(lem) because ¬(A∧¬A) is exactly equivalent to A∨¬A.

The objection is that accepting (lem) (or (nc)) will render any restriction
based on concept possession, of the kinds discussed in §7, null and void. For in
believing each instance of A∨¬A, the agent is thereby treated as possessing, or
being competent with, each concept. If the only reason we cannot infer from BiA
to Bi(A ∨C) is because of some such restriction, then we may be forced to say
the agent who believes both A and C ∨¬C must thereby believe that A∨C.

This objection affects the logic of awareness (§7) deeply. On Fagin and
Halpern’s (1988) account, being aware of the concepts in a primitive sentence p
amounts to believing p ∨¬p. For complex sentences A, awareness of the concepts
in A amounts to awareness of p for each subsentence p of A. So an agent aware
of each A will believe any valid B and, more generally, will be fully logically
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omniscient in the logic of awareness (Fagin and Halpern 1988, 47, proposition
3.1).

Whether the worry also affects the TMS account depends on how we interpret
(lem). Suppose we take it to mean the following:

(lem-e) For every state s: s ⊩ Bi(A∨¬A)

This corresponds to the following semantic condition, which leads to troubling
results.

(lem′) (∣A∣+∗ ∪ ∣A∣−∗)∗ ≤ δ+i s for every sentence A, agent i, and state s on which
δ is defined.

Lemma 8.1. Let ▴ = ⊔{s ∣ s ⊩ A for some A}. For any model M which satisfies
(lem′):

(i) ⊔ δ+i s ⊒ ▴ for any s

(ii) ∣A∣+∗ ≤ δ+i s iff for any t ∈ δ+i s there is some u ⊑ t such that u ∈ ∣A∣+∗

(iii) s ⊩ BiA iff u ∣∣> A for all u ∈ δ+i s

Proof: (i) Consider any s for which δ+i s is defined and let u by any active state.
Then u ∈ ∣A∣+ for some A and so, by (lem′), u ∈ (∣A∣+∗ ∪ ∣A∣−∗)∗ ≤ δ+i s. By (Up),
u ⊑ t for some t ∈ δ+i s. So ▴ ⊑ ⊔ δ+i s.

(ii) Consider any u ∈ ∣A∣+∗. By definition, t ⊑ ▴ for any t ⊩ A and so sm+(A) ⊑
▴. Since u ⊑ sm+(A), it follows that u ⊑ ▴. Then by part (i), u ⊑ ⊔ δ+i s if δ+i s is
defined. So (Up) is trivially satisfied and hence ∣A∣+∗ ≤ δ+i s iff (Down).

(iii) Suppose s ⊩ BiA and t ∈ δ+i s. Then ∣A∣+∗ ≤ δ+i s and so there is some u ⊑ t
such that u ∈ ∣A∣+∗. Then there is a u− ⊑ u ⊑ t such that u− ⊩ A and so t ∣∣> A.
Now suppose t ∣∣> A for all t ∈ δ+i s and consider any such t. Then there is some
u ⊑ t such that u ⊩ A, hence u ∈ ∣A∣+∗. Since this holds for any such t, by (ii),
∣A∣+∗ ≤ δ+i s and so s ⊩ BiA. ∎

Definition 10 (LP). ⊢FDE is the smallest relation between sentences containing
⊢AC and such that: A ⊢FDE A∨C. ⊢LP is the smallest relation between sentences
(including ⊺) containing ⊢FDE and such that: ⊺ ⊢LP A∨¬A. We write ⊢LP A∨¬A
for ⊺ ⊢LP A∨¬A.

Theorem 8.2. Both BiA↠ BiC and BiA → BiC are valid on the class of models
which satisfy (lem′) whenever A ⊢LP C.

Proof: We show the result (for↠) holds for each axiom and rule of LP. Given
theorem 4.2, it holds for each axiom and rule of AC. From lemma 8.1(iii), s ⊩ BiA
iff u ∣∣> A for all u ∈ δ+i s only if u ∣∣> A ∨C for all u ∈ δ+i s iff s ⊩ Bi(A ∨C). So
BiA ⊧e Bi(A∨C) and so BiA↠ Bi(A∨C). Thus the result holds for each axiom
and rule of FDE. Finally, given (lem′), ⊧e BiA∨Bi¬A and so the result (for↠)
holds for each axiom and rule of LP. Then by definition, it also holds for →. ∎

In this proof, we also established:
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Corollary 8.3. (C8) is valid on models which satisfy (lem′).

It is clear that the TMS account must deny (lem-e) if it is to be plausible.
Fortunately, (lem-e) is stronger than we need to capture the thought behind (lem),
which is simply that rational agents must believe A ∨ ¬A. (lem-e), by contrast,
says that every state makes it true that agents believe each instance of A ∨ ¬A.
This is not at all plausible, for what makes Bi(A ∨ ¬A) true and what makes
Bi(C ∨¬C) true will often be distinct states. (lem) requires that such states exist,
but not that one does the work of all. A state will treat the agent as being rational
(with respect to believing instances of A ∨ ¬A) so long as it contains, for each
instance Bi(A∨¬A), a truthmaker for that instance. Those states need not all be
identical. Thus the requirement on models is just that:

(lem-i) For every state s: s ∣∣> Bi(A∨¬A)

With this in place of (lem-e), the results above are blocked and, in particular, (C8)
remains invalid.

It is worth delving a little deeper into how this approach accommodates the
rationality requirement in (lem) whilst avoiding (C8). Say a state w is a world
when w ∣∣> A∨¬A for each A and let W be the set of all worlds. Any such w will
have a part u such that u ⊩ A or u ê A, so that u ∈ ∣A ∨¬A∣+∗. It follows that
∣A∨¬A∣+∗ ≤W for each A. But it will not be the case that W contains arbitrary
disjunctions, say ∣A ∨C ∣+∗ ≤ W , for there are worlds (the consistent ¬A ∧ ¬C-
worlds) with no part in ∣A ∨C ∣+∗. Now if we set δi s =W , then s ⊩ Bi(A ∨¬A)
for each A. In particular, we might set δi◽ =W so that s ∣∣> Bi(A∨¬A) for each
state s and each A. We thus obtain models satisfying (lem-i) but in which s ∣∣> BiA
does not imply s ∣∣> Bi(A∨C).

This demonstrates that the TMS account can treat agents as rational, in the
sense of (lem) and the equivalent (nc), whilst avoiding (C8). So the rationality
objection based on (lem), which affects awareness-style approaches, does not
touch the TMS account.

9 Resources and The Problem of Rational Belief

There is one further objection to the TMS account I wish to consider. It is often
said that agents fail to believe some consequences of what they believe simply
because they lack the resources to derive those consequences (Konolige 1986; Jago
2009). This applies to AI as well as human agents (see, e.g., Alechina et al. 2006;
Jago 2006). The objection is that the TMS account fails to capture this.

Resources include time, memory, and the ability to focus on deductive
reasoning. Even when we possess all the relevant concepts and combine all our
beliefs pertaining to some deductive problem, complex solutions often elude us.
Playing chess is a good example of this. Suppose you and I play a game of chess
without time controls in which a draw counts as a win for black. This guarantees
the game will have a winner. It is then a surprising mathematical fact that, at any
stage of the game, one of us has a winning strategy: a function from the game’s

21



previous moves to that player’s next move that is mathematically guaranteed to
win, regardless of how the other player plays. That strategy follows deductively
from the rules and the current game position, all of which I believe. Yet no one has
ever calculated such a strategy (except in certain endgames, where the complexity
reduces significantly). In general, it’s far too complicated. Even the most powerful
computer doesn’t play chess purely by cranking out deductive consequences of
possible moves. Heuristics, rather than pure deduction, are the backbone of chess
strategy.

When I make a daft move, it’s not because I lack some chess-relevant concept,
or because my chess-relevant beliefs fall into different fragments of my mind. It’s
not that the better move wasn’t relevant to the question, ‘how should I move
next?’, or somehow not part of the subject matter I’m considering. It’s just that
there’s a limit to how much reasoning of the form, ‘if I move here, you’ll likely
move here or here . . . ’ which I can perform before my mind gives up and starts
thinking about pancakes.

Do considerations like these show that an accurate epistemic model should
be built on some resource-sensitive logic? Such logics exist: linear logic (Girard
1987) is a prominent example. Roughly speaking, A ⊢ B can be derived in linear
logic when A is exactly what is needed to prove B. Thus A,A ⊢ B may not be
derivable even if A ⊢ B is, for the premise-list A,A represents a resource used
twice. In this case, although A,A would be sufficient for B, it would be overkill
in terms of resources. (There is thus a similarity with exact entailment here, in
that A∧ B is sufficient but not exactly relevant to A’s truth.)

It is not difficult to see that building an epistemic logic on top of linear logic is
not the way to avoid the resourced-based problem of logical omniscience. Linear
logic remains too strong in that it validates modus ponens, whereas agents’ beliefs
are not in general closed under modus ponens. (Just consider the rules of chess
written as implications.) Linear logic is also too weak, in that the doxastic agents
we are considering (let us suppose) are happy to infer from A ⊢ B to A,A ⊢ B and
vice versa. Indeed, it is not obvious what it could mean for an agent to believe that
A twice over, but not believe it once over. The problem is that linear logic views
formulas as resources, whereas in epistemic logic, (embedded) formulas represent
believed propositions.

This is not merely a problem for linear logic or the TMS approach. It exists
regardless of the logic we use to model doxastic agents. The problem at heart
is the tug-of-war between the deductive principles we consider constitutive of
rationality and the fact that agents do not believe all consequences (given these
principles) of what they believe. Modus ponens is constitutive of rationality if
any deductive principle is. Now suppose we say, here is a chap who believes that
A → B and believes that A, but he just doesn’t believe that B. He’s attentive to
the question, he’s thought about it seriously for some time, but still, he doesn’t
believe that B. What are we to make of this? We seem to be saying that the agent
is irrational. (Perhaps there are genuine cases like this, although they are usually
explained in other terms: perhaps the agent accepts some strange theory of the
conditional or assigns some other meaning to ‘→’. But in those cases, we should
not say that she believes what we mean by A → B. Anyway, typical cases are not
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like this.)
This point is especially hard to avoid for those who accept the Dennettian

view that the purpose of ascribing attitudes to an agent is to make rational sense,
from our point of view, of her behaviour (Dennett 1987). There may be behaviour
indicative of rejecting an instance of modus ponens: say, the agent’s asserting both
premises whilst explicitly denying the conclusion. This is evidence for the stronger
ascription, that she believes the conclusion to be false. (And, as just noted, we
might interpret such cases as her assigning an unusual meaning to the conditional.)
The more typical case is where the agent seemingly fails to take any stance on the
conclusion.

Elsewhere, I describe the problem of rational knowledge Jago (2014a;b); here
I will call it the problem of rational belief ascription. We note that (i) rational
agents seemingly believe the trivial consequences of what they believe, but (ii)
they do not believe all logical consequences of what they believe. The problem is
that (i) and (ii) are incompatible. Any logical consequence of a set of premises is
derivable from those premises via a chain of trivial inferences and so, if one does
not believe some logical consequence of what one believes, then one must fail to
believe some trivial consequence of what one believes.

There is a structural similarity here with the sorites paradox, which is central
to the problem of vagueness. The principle that rational agents believe the trivial
consequences of what they believe plays the role that tolerance conditionals (for
‘heap’, say) play in the sorites. Clearly, not all such conditionals are true; but
we cannot say or discover which is false. We must acknowledge the existence of
borderline cases of ‘heap’ but we cannot say, of a particular case, that it is one
such case. This is the phenomena of unassertibility at the borderline. Williamson
(1992) puts the point by saying we can have inexact knowledge only and as a
consequence we may not rationally assert precise claims in the vicinity of the
borderline.

The situation is, I believe, similar in the case of belief ascriptions. We cannot
rationally assert that this is the particular trivial inference which does not preserve
the agent’s belief, even if that is in fact the case. My view is that such instances of
belief failure are always indeterminate instances of belief failure (Jago 2014a;b).
There is never a case in which agent i determinately believes such-and-such, from
which it trivially follows that A, such that it is determinate that i does not believe
that A.

This analysis has a rather deflating consequence, however. There are no non-
trivial logical principles of inference such that, if the determinately agent believes
(or knows) the premises, then it logically follows that she determinately believes
(or knows) the conclusion. That seems to imply that there can be no interesting
logic of belief or knowledge. But that is too quick. A logic of belief is the attempt
to use logical tools to draw interesting, non-trivial conclusions about what agents
believe. Given the argument above, any such attempt must idealise away from the
actual facts. Any interesting epistemic logic should be viewed as an idealisation
away from an agent’s cognitive limitations.

This does not mean we should accept the picture of full omniscience which
accompanies the original possible worlds account. We can idealise away from
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some aspects of an agent’s cognitive state without thereby ignoring all of them.
The TMS approach incorporates and allows us to reason about several interesting
features of belief. It tolerates incompatible sets of beliefs and even internally
inconsistent beliefs. It captures the idea that a total belief state is restricted to a
particular subject matter. And, given the arguments of §6 and §8, it does so better
than awareness-based approaches. The TMS account (unlike the semantics given
in Jago 2014a;b) does not capture the way in which an agent’s resources cause
her beliefs to ‘grey out’ at some indeterminate point. But likely, neither does any
genuinely useful epistemic logic.
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