
Dogmatism, Probability and Logical
Uncertainty

David Jehle Brian Weatherson
2012

Many epistemologists hold that an agent can come to justifiably believe that p is
true by seeing that it appears that p is true, without having any antecedent reason
to believe that visual impressions are generally reliable. Certain reliabilists think
this, at least if the agent’s vision is generally reliable. And it is a central tenet of
dogmatism (as described by James Pryor) that this is possible. Against these posi-
tions it has been argued (e.g. by Stewart Cohen and Roger White) that this violates
some principles from probabilistic learning theory. To see the problem, let’s note
what the dogmatist thinks we can learn by paying attention to how things appear.
(The reliabilist says the same things, but we’ll focus on the dogmatist.)

Many epistemologists hold that an agent can come to justifiably believe that p is true
by seeing that it appears that p is true, without having any antecedent reason to believe
that visual impressions are generally reliable. Certain reliabilists think this, at least if the
agent’s vision is generally reliable. And it is a central tenet of dogmatism (as described
by Pryor (2000) and Pryor (2004)) that this is possible. Against these positions it has
been argued (e.g. by Cohen (2005) and White (2006)) that this violates some principles
from probabilistic learning theory. To see the problem, let’s note what the dogmatist
thinks we can learn by paying attention to how things appear. (The reliabilist says the
same things, but we’ll focus on the dogmatist.)

Suppose an agent receives an appearance that p, and comes to believe that p. Let-
ting Ap be the proposition that it appears to the agent that p, and → be the material
conditional, we can say that the agent learns that p, and hence is in a position to infer
Ap → p, once they receive the evidence Ap.1 This is surprising, because we can prove
the following.2

Theorem 1
If Pr is a classical probability function, then
Pr(Ap → p | Ap) ⩽ Pr(Ap → p).

1We’re assuming here that the agent’s evidence really is Ap, not p. That’s a controversial assumption, but it
isn’t at issue in this debate.

2Popper and Miller (1987) prove a stronger result than Theorem One, and note its significance for proba-
bilistic models of learning.
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(All the theorems are proved in the appendix.) We can restate Theorem 1 in the follow-
ing way, using classically equvalent formulations of the material conditional.

Theorem 2
If Pr is a classical probability function, then

• Pr(¬(Ap ∧ ¬p) | Ap) ⩽ Pr(¬(Ap ∧ ¬p)); and
• Pr(¬Ap ∨ p| Ap) ⩽ Pr(¬Ap ∨ p).

And that’s a problem for the dogmatist if we make the standard Bayesian assumption
that some evidence E is only evidence for hypothesis H if Pr(H | E) > Pr(H ). For here
we have cases where the evidence the agent receives does not raise the probability of
Ap→ p, ¬(Ap∧ ¬p) or ¬Ap∨ p, so the agent has not received any evidence for them, but
getting this evidence takes them from not having a reason to believe these propositions
to having a reason to get them.

In this paper, we offer a novel response for the dogmatist. The proof of
Theorem 1 makes crucial use of the logical equivalence between Ap → p and
((Ap → p) ∧ Ap) ∨ ((Ap → p) ∧ ¬Ap). These propositions are equivalent in
classical logic, but they are not equivalent in intuitionistic logic. Exploiting this
non-equivalence, we derive two claims. In Section 1 we show that Theorems 1 and 2
fail in intuitionistic probability theory. In Section 2 we consider how an agent who
is unsure whether classical or intuitionistic logic is correct should apportion their
credences. We conclude that for such an agent, theorems analogous to Theorems 1
and 2 fail even if the agent thinks it extremely unlikely that intuitionistic logic is the
correct logic. The upshot is that if it is rationally permissible to be even a little unsure
whether classical or intuitionistic logic is correct, it is possible that getting evidence
that Ap raises the rational credibility of Ap → p, ¬(Ap ∧ ¬p) and ¬Ap ∨ p.

1 Intuitionistic Probability

In Weatherson (2003), the notion of a ⊢-probability function, where ⊢ is an entailment
relation, is introduced. For any ⊢, a ⊢-probability function is a function Pr from sen-
tences in the language of ⊢ to [0, 1] satisfying the following four constraints.3

(P0) Pr(p) = 0$ if p is a ⊢-antithesis, i.e. iff for any X, p ⊢ X.
(P1) Pr(p) = 1 if p is a ⊢-thesis, i.e. iff for any X, X ⊢ p.
(P2) If p ⊢ q then Pr(p) ⩽ Pr(q).
(P3) Pr(p) + Pr(q) = Pr(p ∨ q) + Pr(p ∧ q).

3We’ll usually assume that the language of ⊢ is a familiar kind of propositional calculus, with a countable
infinity of sentence letters, and satisfying the usual recursive constraints. That is, ifA and B are sentences
of the language, then so are ¬A, A → B, A ∧ B and A ∨ B. It isn’t entirely trivial to extend some of our
results to a language that contains quantifiers. This is because once we add quantifiers, intuitionistic
and classical logic no longer have the same anti-theorems. But that complication is outside the scope of
this paper. Note that for Theorem 6, we assume a restricted language with just two sentence letters. This
merely simplifies the proof. A version of the construction we use there with those two letters being simply
the first two sentence letters would be similar, but somewhat more complicated.
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We’ll use ⊢𝐶𝐿 to denote the classical entailment relation, and ⊢𝛪𝐿 to denote the intu-
itionist entailment relation. Then what we usually take to be probability functions are
⊢𝐶𝐿-probability functions. And intuitionist probability functions are ⊢𝛪𝐿-probability
functions.

In what follows we’ll make frequent appeal to three obvious consequences of these
axioms, consequences which are useful enough to deserve their own names. Hopefully
these are obvious enough to pass without proof.4

Weatherson (2003) discusses what happens if we make P2* or P3* an axiom in place
of either P2 and P3. It is argued there that this gives us too many functions to be useful
in epistemology. The arguments in Williams (2012) provide much stronger reasons for
believing this conclusion is correct.
(P1*) 0 ⩽ Pr(p) ⩽ 1.
(P2*) If p ⊣⊢ q then Pr(p) = Pr(q).
(P3*) If p ∧ q is a ⊢-antithesis, then Pr(p) + Pr(q) = Pr(p ∨ q).
⊢-probability functions obviously concern unconditional probability, but we can easily
extend them into conditional ⊢-probability functions by adding the following axioms.5

(P4) If r is not a ⊢-antithesis, then Pr(⋅ | r) is a ⊢-probability function; i.e., it satisfies
P0-P3.

(P5) If r ⊢ p then Pr(p | r) = 1.
(P6) If r is not a ⊢-antithesis, then Pr(p ∧ q | r) = Pr(p | q ∧ r)Pr(q | r).
There is a simple way to generate ⊢𝐶𝐿 probability functions. Let ⟨W, V ⟩ be a model
where W is a finite set of worlds, and V a valuation function defined on them with
respect to a (finite) set K of atomic sentences, i.e., a function from K to subsets of
W. Let L be the smallest set including all members of K such that whenever A and B
are in L, so are A ∧ B, A ∨ B, A → B and ¬A. Extend V to V *, a function from L to
subsets of W using the usual recursive definitions of the sentential connectives. (So
w ∈V *(A ∧ B) iffw ∈V *(A) andw ∈V *(B), and so on for the other connectives.) Letm
be a measure function defined over subsets of W. Then for any sentence S in L, Pr(S) is
m({w: w ∈ V *(S)}). It isn’t too hard to show that Pr is a ⊢𝐶𝐿 probability function.

There is a similar way to generate ⊢𝛪𝐿 probability functions. This method uses a sim-
plified version of the semantics for intuitionistic logic in Kripke (1965). Let ⟨W,R,V ⟩
be a model where W is a finite set of worlds, R is a reflexive, transitive relation defined
on W, and V is a valuation function defined on them with respect to a (finite) setK of
atomic sentences. We require thatV be closed with respect toR, i.e. that if x ∈V (p) and
xRy, then y ∈V (p). We defineL the same way as above, and extendV toV * (a function
from L to subsets of W ) using the following definitions.

4In the original, the next three paragraphs were footnoted, but I no longer like having numbered things in
footnotes.

5For the reasons given in Hájek (2003), it is probably better in general to take conditional probability as
primitive. But for our purposes taking unconditional probability to be basic won’t lead to any problems,
so we’ll stay neutral on whether conditional or unconditional probability is really primitive.
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w ∈ V *(A ∧ B) iff w ∈ V *(A) and w ∈ V *(B).
w ∈ V *(A ∨ B) iff w ∈ V *(A) or w ∈ V *(B).
w ∈ V *(A → B) iff for all w′ such that wRw′ and w′ ∈ V *(A), w′ ∈ V *(B).
w ∈V *(¬ A) iff for allw′ such thatwRw′, it is not the case thatw′ ∈V *(A).

Finally, we letm be a measure function defined over subsets ofW. And for any sentence
S in L, Pr(S) is m({w: w ∈ V *(S)}). Weatherson (2003) shows that any such Pr is a ⊢𝛪𝐿
probability function.

To show that Theorem 1 may fail when Pr is ⊢𝛪𝐿 a probability function, we need a
model we’ll call M. The valuation function in M is defined with respect to a language
where the only atomic propositions are p and Ap.

W = {1, 2, 3}
R = {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩, ⟨1, 2⟩, ⟨1, 3⟩}
V (p) = {2}
V (Ap) = {2, 3}

Graphically, M looks like this.

@
@

@
@

@
@

@
@@I

�
�
�
�

�
�
�

���

u

u u

1

2 3𝛢𝑝, 𝑝 𝛢𝑝

We’ll now consider a family of measures overm. For any x ∈ (0, 1), letmx be the mea-
sure function such that mx({1}) = 1 - x, mx({2}) = x, and mx({3}) = 0. Corresponding
to each functionmx is a ⊢𝛪𝐿 probability function we’ll call Prx . Inspection of the model
shows that Theorem 3 is true.

Theorem 3.
In M, for any x ∈ (0, 1),

1. Prx(Ap → p) = Prx((Ap → p) ∧ Ap) = x
2. Prx(¬Ap ∨ p) = Prx((¬Ap ∨ p) ∧ Ap) = x
3. Prx(¬(Ap ∧ ¬p)) = Prx(¬(Ap ∧ ¬p) ∧ Ap) = x

An obvious corollary of Theorem 3 is
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Theorem 4.
For any x ∈ (0, 1),

1. 1 = Prx(Ap → p | Ap) > Prx(Ap → p) = x
2. 1 = Prx(¬Ap ∨ p| Ap) > Prx(¬Ap ∨ p) = x
3. 1 = Prx(¬(Ap ∧ ¬p) | Ap) > Prx(¬(Ap ∧ ¬p)) = x

So for any x, conditionalising on Ap actually raises the probability of Ap → p,
¬(Ap ∧ ¬p) and ¬Ap ∨ p with respect to Prx . Indeed, since x could be arbitrarily low,
it can raise the probability of each of these three propositions from any arbitrarily
low value to 1. So it seems that if we think learning goes by conditionalisation, then
receiving evidence Ap could be sufficient grounds to justify belief in these three
propositions. Of course, this relies on our being prepared to use the intuitionist
probability calculus. For many, this will be considered too steep a price to pay to
preserve dogmatism. But in section 2 we’ll show that the dogmatist does not need
to insist that intuitionistic logic is the correct logic for modelling uncertainty. All
they need to show is that it might be correct, and then they’ll have a response to this
argument.

2 Logical Uncertainty

We’re going to build up to a picture of how to model agents who are rationally uncertain
about whether the correct logic is classical or intuitionistic. But let’s start by thinking
how an agent who is unsure which of two empirical theories T 1 or T 2 is correct. We’ll
assume that the agent is using the classical probability calculus, and the agent knows
which propositions are entailed by each of the two theories. And we’ll also assume that
the agent is sure that it’s not the case that each of these theories is false, and the theories
are inconsistent, so they can’t both be true.

The natural thing then is for the agent to have some credence x inT 1, and credence 1-
x inT 2. She will naturally have a picture of what the world is like assumingT 1 is correct,
and on that picture every proposition entailed by T 1 will get probability 1. And she’ll
have a picture of what the world is like assuming T 2 is correct. Her overall credal state
will be a mixture of those two pictures, weighted according to the credibility ofT 1 and
T 2.

If we’re working with unconditional credences as primitive, then it is easy to mix two
probability functions to produce a credal function which is also a probability function.
Let Pr1 be the probability function that reflects the agent’s views about how things
probably are conditional onT 1 being true, and Pr2 the probability function that reflects
her views about how things probably are conditional on T 2 being true. Then for any
p, let Cr(p) = xPr1(p) + (1-x)Pr2(p), where Cr is the agent’s credence function.

It is easy to see that Cr will be a probability function. Indeed, inspecting the axioms
P0-P3 makes it obvious that for any ⊢, mixing two ⊢-probability functions as we’ve
just done will always produce a ⊢-probability function. The axioms just require that
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probabilities stand in certain equalities and inequalities that are obviously preserved
under mixing.

It is a little trickier to mix conditional probability functions in an intuitive way, for
the reasons set out in Jehle and Fitelson (2009). But in a special case, these difficulties
are not overly pressing. Say that a ⊢-probability function is regular iff for any p, q in its
domain, Pr(p | q) = 0 iff p ∧ q is a ⊢-antitheorem. Then, for any two regular conditional
probability functions Pr1 and Pr2 we can create a weighted mixture of the two of them
by taking the new unconditional probabilities, i.e. the probabilities of p given T, where
T is a theorem, to be weighted sums of the unconditional probabilities in Pr1 and Pr2.
That is, our new function Pr3 is given by:

Pr3(p

In the general case, this does not determine exactly which function Pr3 is, since it doesn’t
determine the value of Pr3(p | q) when Pr1(q | T ) = Pr2(q | T ) = 0. But since we’re
paying attention just to regular functions this doesn’t matter. If the function is regular,
then we can just let the familiar ratio account of conditional probability be a genuine
definition. So in general we have,

Pr3(p

And since the numerator is 0 iff q is an anti-theorem, whenever Pr(p | q) is supposed to
be defined, i.e. when q is not an anti-theorem, the right hand side will be well defined.
As we noted, things get a lot messier when the functions are not regular, but those
complications are unnecessary for the story we want to tell.

Now in the cases we’ve been considering so far, we’ve been assuming that T 1 and
T 2 are empirical theories, and that we could assume classical logic in the background.
Given all that, most of what we’ve said in this section has been a fairly orthodox treat-
ment of how to account for a kind of uncertainty. But there’s no reason, we say, why we
should restrict T 1 and T 2 in this way. We could apply just the same techniques when
T 1 and T 2 are theories of entailment.

When T 1 is the theory that classical logic is the right logic of entailment, and T 2
the theory that intuitionistic logic is the right logic of entailment, then Pr1 and Pr2
should be different kinds of probability functions. In particular, Pr1 should be a ⊢𝐶𝐿-
probability function, and Pr2 should be a ⊢𝛪𝐿-probability function. That’s because Pr1
represents how things probably are given T 1, and given T 1, how things probably are
is constrained by classical logic. And Pr2 represents how things probably are given T 2,
and given T 2, how things probably are is constrained by intuitionistic logic.

If we do all that, we’re pushed towards the thought that the if someone is uncer-
tain whether the right logic is intuitionistic or classical logic, then the right theory of
probability for them is intuitionistic probability theory. That’s because of Theorem 5.

Theorem 5
Let Pr1 be a regular conditional ⊢𝐶𝐿-probability function, and Pr2 be a
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regular conditional ⊢𝛪𝐿-probability function that is not a ⊢𝐶𝐿-probability
function. And let Pr3 be defined as in the text. (That is, Pr3(A) = xPr1(A)
+ (1-x)Pr2(A), and Pr3(A | B) = (Pr3(A ∧ B))/(Pr3(B).) Then Pr3 is a reg-
ular conditional ⊢𝛪𝐿-probability function.

That’s to say, if the agent is at all unsure whether classical logic or intuitionistic logic is
the correct logic, then their credence function should be an intuitionistic probability
function.

Of course, if the agent is very confident that classical logic is the correct logic,
then they couldn’t rationally have their credences distributed by any old intuitionistic
probability function. After all, there are intuitionistic probability functions such that
Pr(p ∨ ¬p) = 0, but an agent whose credence that classical logic is correct is, say, 0.95,
could not reasonably have credence 0 in p ∨ ¬p. For our purposes, this matters because
we want to show that an agent who is confident, but not certain, that classical logic is
correct can nevertheless be a dogmatist. To fill in the argument we need,

Theorem 6
Let x be any real in (0, 1). Then there is a probability function Cr that (a)
is a coherent credence function for someone whose credence that classical
logic is correct is x, and (b) satisfies each of the following inequalities:

Pr(Ap → p | Ap) > Pr(Ap → p)
Pr(¬Ap ∨ p| Ap) > Pr(¬Ap ∨ p)
Pr(¬(Ap ∧ ¬p) | Ap) > Pr(¬(Ap ∧ ¬p))

The main idea driving the proof of Theorem 6 which is set out in the appendix, is that
if intuitionistic logic is correct, it’s possible that conditionalising onAp raises the prob-
ability of each of these three propositions from arbitrarily low values to 1. So as long
as the prior probability of each of the three propositions, conditional on intuitionistic
logic being correct, is low enough, it can still be raised by conditionalising on Ap.

More centrally, we think Theorem 6 shows that the probabilistic argument against
dogmatism is not compelling. The original argument noted that the dogmatist says that
we can learn the three propositions in Theorem 6, most importantlyAp→ p, by getting
evidence Ap. And it says this is implausible because conditionalising on Ap lowers the
probability of Ap → p. But it turns out this is something of an artifact of the very
strong classical assumptions that are being made. The argument not only requires the
correctness of classical logic, it requires that the appropriate credence the agent should
have in classical logic’s being correct is one. And that assumption is, we think, wildly
implausible. Even if the agent should be very confident that classical logic is the correct
logic, it shouldn’t be a requirement of rationality that she be absolutely certain that it
is correct.

So we conclude that this argument fails. A dogmatist about perception who is at
least minimally open-minded about logic can marry perceptual dogmatism to a proba-
bilistically coherent theory of confirmation.
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This paper is one more attempt on our behalf to defend dogmatism from a proba-
bilistic challenge. Weatherson (2007) defends dogmatism from the so-called “Bayesian
objection”. And Jehle (2009) not only shows that dogmatism can be situated nicely into
a probabilistically coherent theory of confirmation, but also that within such a theory,
many of the traditional objections to dogmatism are easily rebutted. We look forward to
future research on the connections between dogmatism and probability, but we remain
skeptical that dogmatism will be undermined solely by probabilistic considerations.

Appendix: Proofs

Theorem 1
If Pr$ is a classical probability function, then
Pr(Ap → p | Ap) ⩽ Pr(Ap → p).

Proof : Assume Pr is a classical probability function, and ⊢ the classical consequence
relation.

1. Ap → p ⊣   ⊢ ((Ap → p) ∧ Ap) ∨ ((Ap → p) ∧ ¬Ap)
2. Pr(Ap → p) = Pr(((Ap → p) ∧ Ap) ∨ ((Ap → p) ∧ ¬Ap)) (from 1, P2^*^)
3. Pr((Ap → p) ∧ Ap) ∨ ((Ap → p) ∧ ¬Ap)) = Pr ((Ap → p) ∧ Ap) + Pr

((Ap → p) ∧ ¬Ap) (from P3*)
4. Pr((Ap → p) ∧ Ap) = Pr (Ap)Pr(Ap → p| Ap) (from P6)
5. Pr((Ap → p) ∧ ¬Ap) = Pr(¬Ap)Pr(Ap → p |¬Ap) (from P6)
6. Pr(Ap → p) = Pr(Ap)Pr(Ap → p| Ap) + Pr (¬Ap)Pr(Ap → p |¬Ap) (from 2, 4,

5)
7. (Ap → p) ∧ Ap ⊣   ⊢ ¬Ap
8. Pr((Ap → p) ∧ Ap) = Pr(¬Ap) (from 7, P2^*^)
9. Pr(Ap → p |¬Ap) = 1 or Pr(¬Ap) = 0 (from 8, P6)

10. Pr(Ap → p | Ap) ⩽ 1 (from P4, P5)
11. Pr(Ap → p) ⩾ Pr(Ap)Pr(Ap → p| Ap) + Pr (¬Ap)Pr(Ap → p | Ap) (from 6, 9,

10)
12. ⊢ Ap ∨ ¬Ap
13. Pr(Ap ∨ ¬Ap) = 1 (from 12, P1)
14. Pr(Ap) + Pr (¬Ap) = 1 (from 13, P3*)
15. Pr(Ap → p ) ⩾ Pr (Ap → p| Ap) (from 11, 14)

Note (11) is an equality iff (8) is. The only step there that may not be obvious is step 10.
The reason it holds is that either Ap is a ⊢-antitheorem or it isn’t. If it is, then it entails
Ap → p, so by P5, Pr(Ap → p | Ap) ⩽ 1. If it is not, then by P1*, Pr(x | Ap) ⩽ 1 for any
x, so Pr(Ap → p | Ap) ⩽ 1.

Theorem 2
If Pr is a classical probability function, then

• Pr(¬(Ap ∧ ¬p) | Ap) ⩽ Pr(¬(Ap ∧ ¬p)) ; and
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• Pr(¬Ap ∨ p| Ap) ⩽ Pr(¬Ap ∨ p).
Proof : Assume Pr is a classical probability function, and ⊢ the classical consequence
relation.

1. Ap → p ⊣⊢ ¬(Ap ∧ ¬p)
2. Pr(Ap → p) = Pr(¬(Ap ∧ ¬p)) (1, P2^*^)
3. Pr(Ap → p | Ap) = Pr(¬(Ap ∧ ¬p) | Ap) (1, P4, P5)
4. Pr(Ap → p ) ⩾ Pr (Ap → p| Ap) (Theorem 1)
5. Pr(¬(Ap ∧ ¬p) | Ap) ⩾ Pr(¬(Ap ∧ ¬p)) (2, 3, 4)
6. Ap → p ⊣⊢ ¬Ap ∨ p
7. Pr(Ap → p) = Pr(¬Ap ∨ p) (6, P2^*^)
8. Pr(Ap → p | Ap) = Pr(¬Ap ∨ p| Ap) (6, P4, P5)
9. Pr(¬Ap ∨ p| Ap) ⩾ Pr(¬Ap ∨ p) (4, 7, 8)

The only minor complication is with step 3. There are two cases to consider, either Ap
is a ⊢-antitheorem or it isn’t. If it is a ⊢-antitheorem, then both the LHS and RHS of
(3) equal 1, so they are equal. If it is not a ⊢-antitheorem, then by P4, Pr(⋅ | Ap) is a
probability function. So by P2^^, and the fact that Ap→ p ⊣⊢ ¬(Ap ¬p*), we have
that the LHS and RHS are equal.

Theorem 3.
In M, for any x ∈ (0, 1),

1. Prx(Ap → p) = Prx((Ap → p) ∧ Ap) = x
2. Prx(¬Ap ∨ p) = Prx((¬Ap ∨ p) ∧ Ap) = x
3. Prx(¬(Ap ∧ ¬p)) = Prx(¬(Ap ∧ ¬p) ∧ Ap) = x

Recall what M looks like.
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The only point where Ap → p is true is at 2. Indeed, ¬(Ap → p) is true at 3, and
neither Ap → p nor ¬(Ap → p) are true at 1. So Prx(Ap → p) = mx({2}) = x. Since Ap
is also true at 2, that’s the only point where (Ap → p) ∧ Ap is true. So it follows that
Prx((Ap → p) ∧ Ap) = mx({2}) = x.
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Similar inspection of the model shows that 2 is the only point where ¬(Ap ∧ ¬p) is
true, and the only point where ¬Ap ∨ p is true. And so (b) and (c) follow in just the
same way.

In slight contrast, Ap is true at two points in the model, 2 and 3. But since
mx({3}) = 0, it follows that mx({2, 3}) = mx({2}) = x. So Prx(Ap) = x.

Theorem 4.
For any x ∈ (0, 1),

a. 1 = Prx(Ap → p | Ap) > Prx(Ap → p) = x
b. 1 = Prx(¬Ap ∨ p| Ap) > Prx(¬Ap ∨ p) = x
c. 1 = Prx(¬(Ap ∧ ¬p) | Ap) > Prx(¬(Ap ∧ ¬p)) = x

We’ll just go through the argument for (a); the other cases are similar. By P6, we know
that Prx(¬(Ap ∧ ¬p) |Ap) Prx(Ap) = Prx((Ap→ p) ∧Ap). By Theorem 3, we know that
Prx(Ap) = Prx((Ap → p) ∧ Ap), and that both sides are greater than 0. (Note that the
theorem is only said to hold for x > 0.) The only way both these equations can hold is
if Prx(¬(Ap ∧ ¬p) |Ap) = 1. Note also that by hypothesis, x < 1, and from this claim (a)
follows. The other two cases are completely similar.

Theorem 5
Let Pr1 be a regular conditional ⊢𝐶𝐿-probability function, and Pr2 be a
regular conditional ⊢𝛪𝐿-probability function that is not a ⊢𝐶𝐿-probability
function. And let Pr3 be defined as in the text. (That is, Pr3(A) = xPr1(A)
+ (1-x)Pr2(A), and Pr3(A | B) = (Pr3(A ∧ B))/{Pr3(B)}.) Then Pr3 is a reg-
ular conditional ⊢𝛪𝐿-probability function.

We first prove that Pr3 satisfies the requirements of an unconditional ⊢𝛪𝐿-probability
function, and then show that it satisfies the requirements of a conditional ⊢𝛪𝐿-
probability function.

If p is an ⊢𝛪𝐿-antithesis, then it is also a ⊢𝐶𝐿-antithesis. So Pr1(p) = Pr2(p) = 0$. So
Pr3(A) = 0x + 0(1-x) = 0, as required for (P0).

If p is an ⊢𝛪𝐿-thesis, then it is also a ⊢𝐶𝐿-thesis. So Pr1(p) = Pr2(p) = 1. So Pr3(p) = x +
(1-x) = 1, as required for (P1).

If 𝑝 ⊢𝛪𝐿 𝑞 then 𝑝 ⊢𝐶𝐿 𝑞. So we have both Pr1(p) ⩽ Pr(q) and Pr2(p) ⩽ Pr2(q). Since x
⩾ 0 and (1-x) ⩾ 0, these inequalities imply that xPr1(p) ⩽ xPr(q) and (1-x)Pr2(p) ⩽ (1-
x)Pr2(q). Summing these, we get xPr1(p) + (1-x)Pr2(p) ⩽ xPr1(q) + (1-x)Pr2(q). And
by the definition of Pr3, that means that Pr3(p) ⩽ Pr3(q), as required for (P2).

Finally, we just need to show that Pr3(p) + Pr3(q) = Pr3(p∨ q) + Pr3(p∧ q), as follows:

Pr3(p) + Pr3(q) = xPr1(p) + (1-x)Pr2(p) + xPr1(q) +
(1-x)Pr2(q)
= x(Pr1(p) + Pr1(q)) + (1-x)(Pr2(p) +
Pr2(q))
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= x(Pr1(p ∨ q) + Pr1(p ∧ q)) +
(1-x)(Pr2(p ∨ q) + Pr2(p ∧ q))
= xPr1(p ∨ q) + (1-x)Pr2(p ∨ q) +
xPr1(p ∧ q) + (1-x)Pr2(p ∧ q)
= Pr3(p ∨ q) + Pr3(p ∧ q), as required

Now that we have shown Pr3 is an unconditional ⊢𝛪𝐿-probability function, we
need to show it is a conditional ⊢𝛪𝐿-probability function, where Pr3(p | r) =df
(Pr3(p ∧ r))/(Pr3(r)). Remember we are assuming that both Pr1 and Pr2 are regular,
from which it clearly follows that Pr3 is regular, so this definition is always in order.
(That is, we’re never dividing by zero.) The longest part of showing Pr3 is a conditional
⊢𝛪𝐿-probability function is showing that it satisfies (P4), which has four parts. We need
to show that Pr(· | r) satisfies (P0)-(P3). Fortunately these are fairly straightforward.

If p is an ⊢𝛪𝐿-antithesis, then so is p ∧ r. So Pr3(p ∧ r) = 0, so Pr3(p | r) = 0, as required
for (P0).

If p is an ⊢𝛪𝐿-thesis, then p ∧ r ⊣   ⊢ r, so Pr3(p ∧ r) = Pr3(r), so Pr3(p | r) = 1, as
required for (P1).

If 𝑝 ⊢𝛪𝐿 𝑞 then p ∧ r ⊢𝛪𝐿 q ∧ r. So Pr3(p ∧ r) ⩽ Pr3(q ∧ r). So (Pr3(p ∧ r))/(Pr3(r) ⩽
(Pr3(q ∧ r))/(Pr3(r)). That is, Pr3(p | r) ⩽ Pr3(q | r), as required for (P2).

Finally, we need to show that Pr3(p | r) + Pr3(q | r) = Pr3(p ∨ q | r) + Pr3(p ∧ q | r),
as follows, making repeated use of the fact that Pr3 is an unconditional ⊢𝛪𝐿-probability
function, so we can assume it satisfies (P3), and that we can substitute intuitionistic
equivalences inside Pr3.

Pr 3(𝑝|𝑟) + Pr 3(𝑞|𝑟) = Pr 3(𝑝 ∧ 𝑟)Pr 3(𝑟) + Pr 3(𝑞 ∧ 𝑟)Pr 3(𝑟)
= Pr 3(𝑝 ∧ 𝑟) + 𝛲𝑟(𝑞 ∧ 𝑟)Pr 3(𝑟)

= Pr 3((𝑝 ∧ 𝑟) ∨ (𝑞 ∧ 𝑟)) + Pr 3((𝑝 ∧ 𝑟) ∧ (𝑞 ∧ 𝑟))Pr 3(𝑟)
= Pr 3(𝑝 ∨ 𝑞) ∧ 𝑟) + Pr 3((𝑝 ∧ 𝑞) ∧ 𝑟)Pr 3(𝑟)
= Pr 3(𝑝 ∨ 𝑞) ∧ 𝑟)Pr 3(𝑟) + Pr 3((𝑝 ∧ 𝑞) ∧ 𝑟)Pr 3(𝑟)

= Pr 3(𝑝 ∨ 𝑞|𝑟) + Pr 3(𝑝 ∧ 𝑞|𝑟) as required
Now if r ⊢𝛪𝐿 p, then r ∧ p 𝛪𝐿 ⊣⊢𝛪𝐿 p, so Pr3(r ∧ p) = Pr3(p), so Pr3(p | r) = 1, as required

for (P5).
Finally, we show that Pr3 satisfies (P6).
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Pr 3(𝑝 ∧ 𝑞|𝑟) = Pr 3(𝑝 ∧ 𝑞 ∧ 𝑟)Pr 3(𝑟)
= Pr 3(𝑝 ∧ 𝑞 ∧ 𝑟)Pr 3(𝑞 ∧ 𝑟)

Pr 3(𝑞 ∧ 𝑟)Pr 3(𝑟)
= Pr 3(𝑝|𝑞 ∧ 𝑟)𝛲𝑟 3 (𝑞|𝑟) as required

Theorem 6Let x be any real in (0, 1). Then there is a probability function
Cr that (a) is a coherent credence function for someone whose credence
that classical logic is correct is x, and (b) satisfies each of the following in-
equalities:
Pr(Ap → p | Ap) > Pr(Ap → p)
Pr(¬Ap ∨ p| Ap) > Pr(¬Ap ∨ p)
Pr(¬(Ap ∧ ¬p) | Ap) > Pr(¬(Ap ∧ ¬p))

We’ll prove this by constructing the function Pr. For the sake of this proof, we’ll assume
a very restricted formal language with just two atomic sentences: Ap and p. This restric-
tion makes it easier to ensure that the functions are all regular, which as we noted in the
main text lets us avoid various complications. The proofs will rely on three probability
functions defined using this Kripke tree M.
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��3
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0

1 2 3 4𝛢𝑝, 𝑝 𝛢𝑝 𝑝

We’ve shown on the graph where the atomic sentences true: Ap is true at 1 and 2,
and p is true at 1 and 3. So the four terminal nodes represent the four classical possi-
bilities that are definable using just these two atomic sentences. We define two measure
functions m1 and m2 over the points in this model as follows:

m(0) m(1) m(2) m(3) m(4)
m1 0 x/2 (1-x)/2 ¼ ¼
m2 x/2 (1-x)/4 (1-x)/4 ¼ ¼

We’ve just specified the measure of each singleton, but since we’re just dealing with a
finite model, that uniquely specifies the measure of any set. We then turn each of these
into probability functions in the way described in section 1. That is, for any proposition
X, and i ∈ {1, 2}, Pri(X ) =mi(MX), whereMX is the set of points inM whereX is true.
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Note that the terminal nodes in M, like the terminal nodes in any Kripke tree, are
just classical possibilities. That is, for any sentence, either it or its negation is true at a
terminal node. Moreover, any measure over classical possibilities generates a classical
probability function. (And vice versa, any classical probability function is generated by
a measure over classical possibilities.) That is, for any measure over classical possibili-
ties, the function from propositions to the measure of the set of possibilities at which
they are true is a classical probability function. Nowm1 isn’t quite a measure over clas-
sical possibilities, since strictly speaking m1({0}) is defined. But since m1({0}) = 0 it is
equivalent to a measure only defined over the terminal nodes. So the probability func-
tion it generates, i.e., Pr1, is a classical probability function.Of course, with only two
atomic sentences, we can also verify by brute force that Pr1 is classical, but it’s a little
more helpful to see why this is so. In contrast, Pr2 is not a classical probability function,
since Pr2(p ∨ ¬p) = 1 - x/2, but it is an intuitionistic probability function.

So there could be an agent who satisfies the following four conditions:
• Her credence that classical logic is correct is x;
• Her credence that intuitionistic logic is correct is 1-x;
• Conditional on classical logic being correct, she thinks that Pr1 is the right rep-

resentation of how things probably are; and
• Conditional on intuitionistic logic being correct, she thinks that Pr2 is the right

representation of how things are.
Such an agent’s credences will be given by a ⊢𝛪𝐿-probability function Pr generated by
‘mixing’ Pr1 and Pr2. For any sentence Y in the domain, her credence in Y will be
xPr1(Y ) + (1-x)Pr2(Y ). Rather than working through each proposition, it’s easiest to
represent this function by mixing the measures m1 and m1 to get a new measure m on
the above Kripke tree. Here’s the measure that m assigns to each node.

m(0) m(1) m(2) m(3) m(4)
m x(1-x)/2 (3x2 - 2x + 1)/4 (1-x2)/4 ¼ ¼

As usual, this measurem generates a probability function Pr. We’ve already argued that
Pr is a reasonable function for someone whose credence that classical logic is x. We’ll
now argue that Pr(Ap → p | Ap) > Pr(Ap → p).

It’s easy to see what Pr(Ap → p) is. Ap → p is true at 1, 3 and 4, so
Pr(Ap → p) = m({1}) + m({3}) + m(4)

= (3x2 - 2x + 1)/4 + ¼ + ¼
= (3x2 - 2x + 3)/4

Since Pr is regular, we can use the ratio definition of conditional probability to work
out Pr(Ap → p | Ap).

Pr(Ap → p | Ap) = (Pr((Ap → p) ∧ Ap))/(Pr(Ap))
= m(1)/(m(1) + m(2)) \
= ((3x2 - 2x + 1)/4) / ((3x2 - 2x + 1)/4 + (1-x2)/4)
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= (3x2 - 2x + 1) / ((3x2 - 2x + 1) + (1-x2))
= (3x2 - 2x + 1) /2(x2 - x + 1)

Putting all that together, we have
Pr(𝛢𝑝 → 𝑝|𝛢𝑝) > 𝛲𝑟(𝛢𝑝 → 𝑝)

⇔ 3𝑥2 − 2𝑥 + 3
4 > 3𝑥2 − 2𝑥 + 1

2(𝑥2 − 𝑥 + 1)

⇔ 3𝑥2 − 2𝑥 + 3 > 6𝑥2 − 4𝑥 + 2
𝑥2 − 𝑥 + 1

⇔ (3𝑥2 − 2𝑥 + 3)(𝑥2 + 𝑥 + 1) > 6𝑥2 − 4𝑥 + 2
⇔ 3𝑥4 − 5𝑥3 + 8𝑥2 − 5𝑥 + 3 > 6𝑥2 − 4𝑥 + 2
⇔ 3𝑥4 − 5𝑥3 + 2𝑥2 − 𝑥 + 1 > 0
⇔ (3𝑥2 + 𝑥 + 1)(𝑥2 − 2𝑥 + 1) > 0
⇔ (3𝑥2 + 𝑥 + 1)(𝑥 − 1)2 > 0

But it is clear that for any x ∈ (0,1), both of the terms of the LHS of the final line are
positive, so their product is positive. And that means Pr(Ap → p | Ap) > Pr(Ap → p).
So no matter how close x gets to 1, that is, no matter how certain the agent gets that
classical logic is correct, as long as x does not reach 1, conditionalising on Ap will raise
the probability of Ap → p. As we’ve been arguing, as long as there is any doubt about
classical logic, even a vanishingly small doubt, there is no probabilistic objection to dog-
matism.

To finish up, we show that Pr(¬Ap∨ p|Ap) > Pr(¬Ap∨ p) and Pr(¬(Ap∧ ¬p) |Ap) >
Pr(¬(Ap ∧ ¬p)). To do this, we just need to note that Ap → p, ¬Ap ∨ p and ¬(Ap ∧ ¬p)
are true at the same points in the model, so their probabilities, both unconditionally
and conditional on Ap, will be identical. So from Pr(Ap → p | Ap) > Pr(Ap → p) the
other two inequalities follow immediately.
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