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Abstract

One of the important challenges in the philosophy of mathematics is to account for the se-
mantics of sentences that express mathematical propositions while simultaneously explaining
our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue
that cognitive science furnishes new tools by means of which we can make progress on this
problem. The foundation of the solution, I argue, must be an ontologically realist, albeit
non-platonist, conception of mathematical reality. The semantic portion of the problem can
be addressed by accepting a Chomskyan conception of natural languages and a matching
internalist, mentalist and nativist view of semantics. A helpful perspective on the epistemic
aspect of the puzzle can be gained by translating Kurt Gödel’s neo-Kantian conception of
the nature of mathematics and its objects into modern, cognitive terms.

Keywords: mathematical cognition, philosophy of mathematics, realism, psycholo-
gism, functional architecture, conceptualist semantics, cognition, mathematics, Benacerraf,
Chomksy, Gödel, Kant.
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0 Introduction

The appearance of an antinomy is for me a symptom of disease.

. . . Whenever this happens, we have to submit our ways of thinking

to a thorough revision, to reject some premisses in which we

believed, or to improve some forms of argument which we used.

— Alfred Tarski

One of the important unsolved problems in the philosophy of mathematics was first artic-
ulated in Paul Benacerraf’s [1973] paper, Mathematical Truth. There, Benacerraf argued
that it is difficult (surprisingly difficult, in fact) to offer an adequate semantic account of
sentences that, to all appearances, express mathematical knowledge, while simultaneously
also providing an explanation of our epistemic access to their contents. On a standard real-
ist conception, mathematics studies a body of facts—ones not unlike those investigated by
the geologist or the chemist, albeit significantly more ‘abstract’ in nature. Many working
mathematicians and philosophers find such a conception attractive. However, it is widely
recognized that mathematical realism faces serious difficulties in epistemology: how, short
of magic, can our cognitive access to abstract states of affairs be explained? An alternative
conception proposes that we view the practice of mathematics as the playing out of a formal
game with correct and incorrect moves. Some who consider themselves ‘hard-nosed’ natu-
ralists opt for this view. To be sure, abandoning the supposition that mathematics studies
full-blooded facts does some violence to our commonsense interpretation of the meaning of
mathematical expressions. It does however have the advantage of explaining (or, more ac-
curately, explaining away) mathematical ‘knowledge,’ thereby making the epistemologist’s
task tractable. This approach encounters its own set of problems. Chief among them is
the difficulty of adequately explaining maths’ uncanny utility in natural science. Thesis,
antithesis, stalemate.

The past two decades have witnessed a steady increase in the interest paid to mathe-
matics (especially arithmetic) by cognitive scientists, including cognitive psychologists and
cognitive neuroscientists.1 As their projects gather momentum researchers are faced with a
choice whether or not to interpret the study of mathematics—including algebra, analysis,
set theory, and so on—as the investigation of an objectively existing domain. The choice
has direct implications for which empirical research programs are taken seriously and which
are shelved as prima facie implausible. At the moment, the balance is swinging in the anti-
realists’ favour. This, I will argue, is a mistake. My central thesis in what follows is that

1See, for example, Butterworth [1999], Carey [2001], Dehaene [1997], Gallistel and Gelman [2000], Gelman
and Gallistel [1978], Hauser and Spelke [2004], Spelke and Tsivkin [2001], Wynn [1998], Xu and Spelke [2000].
There have also been a few attempts by sympathetic, naturalist philosophers to apply empirical results and
techniques to problems in the philosophy of mathematics. They include Kitcher [1983] and Maddy [1990],
and more recently Giaquinto [2001], and Laurence and Margolis [2005].
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cognitive science should opt for an unflinchingly realist conception of mathematicalia. But
in order for this to be possible, ontological realism about mathematics must itself undergo
a transformation both with respect to the semantics it endorses and the epistemic picture
it relies on. The realist must be able to offer a coherent, naturalist hypothesis regarding
the correct solution to Benacerraf’s dilemma. What follows is intended as a contribution to
that project.

I argue for my thesis in four Chapters. In Chapters 1 and 2, I articulate the kernel of the
ontological realist view and show that it is well-motivated. I try to demonstrate however
that the standard, platonist elaboration of minimal ontological realism is untenable and so
should be abandoned. The positive proposal begins in Chapter 3. There, I retrace some
relatively recent Chomskyan arguments in favour of a cognitivist conception of language.
A conceptualist account of the semantics of sentences expressing mathematical content
based on Ray Jackendoff’s recent [2002] work constitutes one half of the positive story.
In Chapter 4 I look to Gödel and to Kant for insight concerning the problem of access
to mathematical facts. My positive proposal lays out a naturalistic reinterpretation of
Kant’s [1781, 1783] solution to the epistemic problem presented by mathematics. The
reinterpretation is quite substantial insofar as it involves accepting some of Gödel’s [1947]
criticisms of Kant and marrying the resulting picture with a modern conception of our
cognitive architecture. My claim is that this approach, together with the semantics
endorsed in Chapter 3, constitutes a viable realist hypothesis regarding the solution to
Benacerraf’s problem. If that’s right then the experimental cognitive scientist working on
mathematics ought to choose this brand of naturalist realism over its rivals as the correct
background picture on which to predicate her research.2

Montréal, Québec
August, 2009

2The solution proposed here bears a family resemblance to that suggested in Maddy’s [2007] recent book.
I embarked on this project several years ago, inspired largely by Maddy [1990], Falkenstein [1995], and
Jackendoff [1992b]. Because my views of Kant, Chomsky and cognitive science differ from Maddy’s, the
realism I end up with is (for better or worse) quite different from hers. Despite these differences, I’d like to
think of my project as falling under the umbrella of what she calls ‘second philosophy’.
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1 Minimal Realism

Do numbers exist? And why?

And must they be so silent?

— Geoffrey Hellman

I’d like to start with the bare basics. In this chapter I introduce a minimal form of ontological
realism about mathematics and outline an argument for why we should take it seriously as
a prospective standpoint. The bulk of the ensuing discussion is taken up with motivating
this argument’s premises. This is time well spent. It will allow us to take up several issues
of central importance to the philosophy of mathematics, including inter alia the purported
truth of mathematical propositions, our default commitments concerning natural language
semantics, and maths’ touted applicability to natural science. Each of these issues will come
up again. Moreover, the argument presented in this chapter will itself serve as a point of
reference for the remainder of the monograph. The views addressed in subsequent chapters
will be attempts to extend it in new directions, to modify some of its assumptions, or to
patch its shortcomings.

Definition

In the simplest case, a philosophy P counts as a species of ontological realism about
e’s—where e’s can be qualia, possible worlds, physical objects, properties, ethical norms,
or anything else—if it meets two jointly sufficient conditions: first, P holds that e’s exist
(leaving open the question of whether e’s are simple or ontologically reducible for now);
second, P holds that the existence of e’s is not brought about by human agency, whether
individual or collective. That there are e’s is not due to human labour, rituals, creativity,
inventiveness, thoughts, ideas, conceptions, conventions, or ways of speaking. We can think
and act as we please; the e’s take care of themselves.3

This characterization of realism requires two comments. First, the two conditions are
jointly sufficient but neither is strictly necessary. There are other ways of defining philo-
sophical realism. Some of these would perhaps substitute a stronger modality claim than
de facto existence for the first condition. As well, realisms about certain entities—including
days of the week, haircuts, propositional attitudes, and perhaps even ethical norms—would
want to relax the second condition or abandon it outright. None of this affects my point:
whenever the two conditions just named are satisfied, a philosophy counts as ontologically
realist.4

3To forestall a (rather surprising) misunderstanding let me say at once that I do not take realism to be
incompatible in principle with Kant’s work.

4This definition allows us to include among the realists those philosophers who believe that there are bona
fide mathematical facts but that there are no mathematical entities. Among them are Hellman [1989] and
Putnam [1967, 2006] who reject the existence of mathematical objects in favour of a realism about modalities.
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My second caveat concerns the omission of an additional requirement that is sometimes
mentioned when defining ontological realism. It is occasionally suggested that in order to
count as realist, a philosophy P needs to hold that most of what we know about e’s is true
or approximately true [Resnik 1997].5 In my view, this addition makes the minimal list of
collectively sufficient conditions on realism excessively stringent. Or, at least, it does so in
cases where we are able to register the entities in question independently of the descriptions
we offer of them. I see no reason to deny, for instance, that those skeptical pre-Copernican
cosmologists who held that heavenly bodies existed but that most of what we believed about
them was hokum were nonetheless astronomical realists.

If we are prepared to accept the above definition then it is sufficient for a philosophy of
mathematics to count as realist if it holds that:

(R.i) Some mathematical entities exist; and
(R.ii) Their existence is independent of human minds, cultures, languages, and conven-

tions.

Let us call a view that accepts both of these clauses, but nothing more, a naked ontological
realism about mathematics (norm, for short). norm is specific enough to avoid mislabeling
as ‘realist’ any species of nominalism or social-constructivism, since the former violate (R.i)
and the latter (R.ii). Nonetheless, norm leaves unaddressed almost all of the interesting
questions that we might expect a philosophy of mathematics to take a view on: the nature
of axioms, the role of diagrams in proofs, the bounds of our ontological commitment in
‘recreational’ mathematics (if any), the reason for maths’ apparent indispensability to the
natural sciences, and so on. Importantly, norm is silent on the metaphysical nature of
mathematical entities themselves since it says nothing about mathematical entities’ essential
non-mathematical properties (if any). Some of the philosophical terms are thus left at a
pre-theoretical, intuitive level for now. In particular, the mode of existence peculiar to
mathematical entities is left as a topic for further study. Finally, because norm does not
give the necessary condtions that must be met for a view to be considered mathematically
realist, it leaves the door open to other, independent ways of construing realism. This is
deliberate. norm is no more and no less than one core around which we might construct a
realist conception of mathematics. For our purposes, that’s what we will need.

Evidence

Whether you prefer to call it parsimony or a healthy skepticism, we should begin from a
defeasible presumption against the existence of any metaphysical posit. Every new addition

5The inspiration here is Dummett. See for instance his [1994].
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to our scientific ontology must be warranted.6 My next task must therefore be to show how
our natural skepticism is overcome in the case of mathematical entities. Given what has just
been said, there are two distinct questions to answer: Why think that mathematicalia exist?
And, assuming that they do, why take them to exist independently of human activity? Let’s
begin with the first of these questions and return to the second a little later on.

In essence, the argument for norm’s (R.i) runs as follows:

1. Because mathematics is indispensable to the conduct of natural science, some mathe-
matics is true.

2. Assuming a standard semantics, the existence of mathematical truths entails the ex-
istence of mathematical entities.

∴ (R.i) Some mathematical entities exist.

The argument’s premises are far from self-evident and a good deal will need to be said to
motivate them. We will need to know more about what maths’ supposed ‘indispensability’ to
natural science comes to. And it’s perhaps not immediately clear what semantics contributes
to the issue. Let me try to make this a bit more explicit.

Indispensability and truth

Aristotle’s Metaphysics VI (E) teaches that “to say about what is that it is not, or about
what is not that it is, is false; while to say of what is that it is, or of what is not that it is not,
is true” [Aristotle 1941]. Even if somewhat underdeveloped, this characterization of truth is
certainly serviceable. Taking it on board we are faced with three broad possibilities regarding
the truth value of such assertions as that there is no greatest prime or that first-order Peano
arithmetic admits of nonstandard models. First, such statements may correctly describe
an existing state of affairs and so be true. Alternatively, they may incorrectly describe a
state of affairs and so be false. Finally, they might not describe a state of affairs at all and,
like the configurations of a kaleidoscope, lack content altogether. On this third scenario,
apparently true mathematical propositions would be no more than ‘acceptable’ moves in a
complex formal game and so (strictly) neither be true nor false.

Below, I present two arguments. Both start from maths’ ‘indispensability’ to the con-
duct of natural science, though the precise details in each case are rather different. The
first argument discusses maths’ role in using accepted scientific theories to deduce specific
predictions about the behaviour of familiar natural systems and concludes that standard
mathematics is not false. The second argument addresses maths’ role in helping us extend

6As I have already remarked, and as will become increasingly apparent, I take metaphysics to be part
and parcel of natural science very much along the lines of Penelope Maddy’s [2007] ‘second’ metaphysics.
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our knowledge and conceive of new scientific hypotheses, particularly at the murky edges of
our understanding. It concludes that standard mathematics does not lack content. Together
with what has just been said, these arguments give us a reason to believe that much of what
is accepted as standard mathematics is, quite simply, true.

Deductive indispensability. At first pass, it may perhaps be natural to think of indi-
vidual laboratory experiments as capable, under ideal conditions, of directly confirming or
disconfirming specific scientific hypotheses. Duhem [1906] famously argues however that,
on reflection, this atomistic conception of hypothesis testing is wrong. Even under ideal
conditions, predicting the future state of a physical system given its initial conditions is a
task which simultaneously involves many physical laws and auxiliary hypotheses. The aux-
iliary hypotheses can be trivial: that no external forces are operative, that the experimental
apparatus is functioning correctly, and so on. Trivial or not though, the logical form of the
prediction made by the experimenter is this: if all of the theories (θ) antecedently believed
to govern aspects of the system are true and all auxiliary presuppositions (Aux) are true
and the hypothesis being tested (H) is true then the predicted result (R) will be observed.

Typically, when a working hypothesis H is borne out by experimental evidence we com-
mit ourselves provisionally to its truth as well as to the truth of the network of supporting
theses on which it relies. Admittedly, this has the logical form of affirming the consequent
(hence the provisional commitment). But while not strictly valid, the move is an infer-
ence to the best explanation we are currently able to supply. The inductive case for H is
strengthened as it plays a role in an increasing number of successful experiments.7

In cases where the predicted result is not observed, the experimenter’s modus ponens is
reversed into the corresponding modus tollens:

1. If (θ1 . . . θn) ∧ (Aux1 . . . Auxn) ∧H, then R
2. Not-R

∴ 3. Not-{(θ1 . . . θn) ∧ (Aux1 . . . Auxn) ∧H}

Thus, if predictions are not borne out by experiments (or whatever tests are appropriate to
the domain) it follows that one or more of the corpus of interrelated theses on which one
based the prediction is false. But which? The tricky thing—and this is Duhem’s point—is
that it does not necessarily follow that the problem lies with the hypothesis currently under
investigation. A theory-builder has a good deal of latitude when accounting for recalcitrant
data. She can reject the working hypothesis. But she can also reject some of the operative

7I am bypassing a discussion of anti-inductivism here since addressing it would take us too far off track.
So far as I can see, nothing prevents a strict Popperian from reconstructing my point without reference to
induction. Cf. Popper [1963].
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auxiliary assumptions or cast a critical eye over the background theories. Some of the
artistry of theory-building lies in developing a feel for how deep to dig.

Duhem’s argument is bolstered and extended by Quine [1953]. Duhem takes holism
to be a feature of theory testing in physics and explicitly rejects the idea that similar
considerations apply in physiology or in chemistry. In particular, he does not regard the
argument as having anything to tell us about logic or mathematics—in part perhaps because
he was not aware of the changes to logic ushered in by Frege. Moreover, Duhem takes the
antecedent of the conditional in premise one (above) to naturally be limited to a bounded
set of ‘relevant’ considerations. Quine takes a different view on these three issues. He takes
evidentiary holism to be a perfectly general feature of scientific investigation and hence
to be domain independent. He sees the argument as embracing even the propositions of
logic and mathematics. Such propositions are somewhat unusual insofar as they play an
auxiliary role in most (if not all) of our scientific theorizing. For this reason, they enjoy an
unparalleled degree of inductive confirmation and reside near the centre of our web of belief.
Nevertheless, according to Quine, when confronted with sufficiently strange empirical results
(as in quantum mechanics, for instance) we are in principle free to contemplate rejecting or
altering even our logic and mathematics.8 Finally, Quine suggests that our entire world-view
is put to the test with each experiment, hence that “the unit of empirical significance is the
whole of science” [Quine 1953]. This allows him to maintain that no statement, no matter
how precious, is in principle immune to revision in light of future experience.9

One need not subscribe to all of the tenants of Quinean underdetermination to find
the basic insight convincing. We all frequently rely on predictions about future states of
physical systems. Experimental scientists and engineers do so daily and explicitly as part
of their professional practice. The rest of us do it implicitly every time we set foot in an
elevator, cross a bridge, or swerve to avoid a hazard (to name just a few obvious instances).
Whether we know it or not, the underlying reasoning takes the form of a modus ponens: pro-
vided some initial conditions are satisfied, and a given set of laws govern the system, and
a number of auxiliary hypotheses hold, then we can expect the system to behave thus and so.

1. If (Init1 . . . Initn) ∧ (θ1 . . . θn) ∧ (Aux1 . . . Auxn), then R
2. (θ1 . . . θn) ∧ (Aux1 . . . Auxn) ∧ (Init1 . . . Initn)

∴ 3. R

The propositions of logic and mathematics play an auxiliary role in many instances of

8For a lucid and wide-randing assessment of indispensability arguments, see Putnam [2006]. For a helpful
discussion of the contrast between Duhem’s and Quine’s views more specifically, see Gillies [1998].

9Unfortunately, it also allows Quine to maintain that any statement could, in principle, be held true
come what may provided that we were willing to countenance sufficiently drastic changes to our conceptual
scheme. For a compelling criticism of Quine’s position on this matter see Laudan [1990].
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deductive reasoning of this kind. (Whether they are semantically empty and therefore
eliminable by clever paraphrase is a question to which I will return momentarily.) Now
let us suppose for the sake of argument that the propositions of arithmetic, trigonometry,
vector algebra, and calculus which enter into these chains of reasoning are, in point of
fact, contentful, substantive but false. In other words, they predicate something false of
an existing state of affairs. If so, we routinely rely on unsound inferences in order to
make predictions. Curiously, those unsound chains of reasoning work very well for us. They
reliably lead us from our premises to correct conclusions and have done for hundreds of years.
Yet if that’s so then we have here a bizarre coincidence on a cosmic scale, a coincidence that
constitutes a crisis for our most intimate conception of correct reasoning and inference! It
would seem then that the hypothesis that mathematical propositions are false leads in a few
short steps to preposterous conclusions.

One might object at this point that, in spite of what I have said, standardly accepted
mathematical propositions could still be false. We relied on Newton’s mechanics for several
hundred years before subtle flaws came to light. Reliability—even reliability in the long
run—does not guarantee truth per se.10 There’s no denying that the the observation is
accurate. But I don’t think it fatally undermines my point. Consider: mathematics could
have, in principle, injected an additional source of uncertainty into our scientific deduc-
tions. That is, it could have been the case that, in addition to flawed instruments, biased
observations, incorrect auxiliary hypotheses, and the myriad other reasons that our predic-
tions sometimes go astray, we might have had to worry about subtle divergences between
our mathematics and the world at large. One can readily imagine, for instance, that our
attempts to calculate the angular momentum of a body or the refraction angle of a beam
of light only yielded correct results in ninety nine percent of cases. In the other one per-
cent, the mathematics simply became “unglued” from the world—indeed, this is what we
would expect were our mathematics subtly false. Were the world constituted in this way,
investigators would have simply learned to put up with a certain amount of ubiquitous,
math-induced ‘slack’ or ‘randomness’ in our science.11 Yet everyone but the radical sceptic
should grant that our calculations do not introduce an additional source of noise into our
scientific deductions. It’s genuinely remarkable that nothing of the sort happens.12 I want
to suggest that the impeccable deductive translucency of mathematical statements is readily
explained either by their utter lack of content (as the formalist asserts) or by their truth
(as the realist suggests). By contrast, this absence of random misfirings becomes all but

10I am grateful to Mary Kate McGowan for raising this objection.
11The sort of randomness I am describing would likely be encountered by chimpanzees were they to attempt

to develop a version of classical mechanics. Chimpanzees’ basic arithmetic abilities can be very good, but
(unlike our own) never wholly reliable. Cf. Kawai and Matsuzawa [2000].

12A philosopher who denies this last statement must produce evidence rather than a bare possibility.
Radical skepticism is not an objection.
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inexplicable if mathematics is contentful yet false, as the sceptic would have it.

Ampliative indispensability. Discounting the (admittedly farfetched) possibility that
mathematical research generally yields contentful yet false results does not yet establish
our conclusion. Many philosophers and some mathematicians have been tempted by the
view that geometry, algebra, analysis, and indeed all of mathematics comprises a vast for-
mal game—not unlike chess perhaps—though richer and more abstract. On this view, the
propositions of mathematics do not add an additional source of error into the deductions
of natural scientists since, far from being subtly false, they lack content altogether. We
proceed by picking axioms and studying their legitimate consequences. Thus, mathematics
is not really about anything; or, at most, its claims are about the notation itself and nothing
beyond it, much the way that the configurations of cat’s cradle do not signify anything
beyond themselves. Formalism of this kind is tempting as it allows the mathematician to
short-circuit apparently idle philosophical deliberations and press on with the business of
studying mathematics itself:

the typical working mathematician is a platonist on weekdays and a formalist on Sun-
days. That is, when he is doing mathematics he is convinced that he is dealing with
an objective reality whose properties he is attempting to determine. But then, when
challenged to give a philosophical account of this reality, he finds it easiest to pretend
that he does not believe in it after all. [Davis and Hersh 1998, 321]:

Expressing a measure of sympathy for the formalist view, Saunders Mac Lane [1986] writes
that “mathematics is not true, but its correct results are certain.” He advises us to aban-
don fruitless discussions about the truth of mathematics and the nature of its corresponding
‘objects.’ It would be more useful, he suggests, to enquire whether some piece of mathe-
matics is ingenious, illuminating, and whether it promises to open new avenues for future
research. Without a doubt, there is a great deal to be said for Mac Lane’s sober, defla-
tionary recommendations. Philosophers can surely be accused of the occasional pin-head
waltz. Nonetheless, in this case, I think there is convincing evidence that the formalist is
excessively modest in her assessment of math’s significance; a good deal of mathematics
possesses robust semantic content even when our best minds are disposed to suggest other-
wise. Indeed, we will shortly see that, in the final reckoning, Mac Lane himself reluctantly
concedes that formalism is untenable.

Geometry. The argument for recognizing maths’ robust semantic content turns on some
very puzzling historical developments that took place in the course of the late eighteenth,
nineteenth, and early twentieth centuries.13 At the start of the period, a tradition stretch-
ing back to Aristotle still took mathematics essentially to comprise two unequal fields of

13The classic presentation of the view that I defend here is due to Wigner [1960]. The general form of the
argument I offer in this section is based on Mark Steiner’s 1998, 2005 reworking and elaboration. While I find
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study: geometry and arithmetic. The former was concerned with continuous magnitudes,
the latter with discrete pluralities. By this time, the development of new branches of
mathematics—notably the calculus and Descartes’ algebra of species—had started to exert
pressure on this two-fold division of the field. But the picture had not yet given way.14 Since
antiquity, geometry had been taken to be the more fundamental science: while all discrete
quantities could be represented geometrically, some magnitudes were known to be inexpress-
ible as ratios of whole, discrete quantities. Moreover, thanks to Euclid’s systematization,
geometric proofs were taken to epitomize rigorous mathematical demonstration. Whatever
flaws had been found in the work by the eighteenth century were minor compared to the
problems that plagued contemporary proofs in algebra, probability, or analysis.15 Geometry
stood out as a field in which an empirical phenomenon, physical space, had apparently been
regimented and made rational.

The eventual paradigm shift had its roots in the ongoing efforts to tidy up outstanding
issues in Euclid’s work. Imperfections in the Elements were already noted in antiquity.
It had long been known, for instance, that Euclid occasionally helped himself to certain
‘intuitive’ results that, strictly, cannot be derived from the axioms.16 The most serious
problem with the Elements however concerned Euclid’s fifth ‘parallel lines’ postulate. Here
is Playfair’s version: given a straight line AB and a point a not on that line, it is possible to
draw a unique, coplanar line through a that will never intersect AB no matter how far it is
extended in either direction. The postulate seems plausible enough; it is hard to imagine how
it might fail to hold. Nonetheless, Euclid had apparently not regarded it as completely self-
evident and avoided making use of it until relatively late in his work. Over the centuries,
a number of attempts had been made to demonstrate that the fifth postulate was not

Steiner’s anti-formalism compelling, I don’t think he’s correct in seeing his Pythagoreanism as incompatible
with naturalism. Steiner [1998], I think, makes a significant false step when he claims that “it goes without
saying [that] the naturalist rules out in advance any connection between the human brain and the universe as
a whole, except those connections explained away by natural selection” (p.72). I don’t think this is obvious
at all. In fact, neither ontological nor methodological naturalism need to commit to such an implausibly
strong thesis. I take up this issue in subsequent chapters, and especially in Chapter 4.

14In Chapter 4, we will discuss the Kantian conception of mathematics which, in its original [1781] form
at least, was based on this picture.

15In fact, at the time, many mathematicians still relied on ‘physical’ demonstrations or eschewed rigorous
proof as unnecessary pedantry. Even those mathematicians who were convinced of the importance of rigour
were hampered by the fact that no commonly agreed formal definition of such basic notions as number or
function had yet been found. In part for this reason, negative and complex numbers were highly controversial
and not widely accepted.

16In Proposition 12, for instance, one assumes that a line passing through the centre of a given circle must
intersect it at two points. Strictly speaking, nether the definition of line nor that of circle guarantees this.
Indeed, for this reason some seventeenth century mathematicians, including Descartes, had already come to
suspect that the classical geometers of antiquity had surreptitiously relied on much more powerful methods
than those published in the Elements in order to make their discoveries and that they had deliberately hidden
this from posterity. See Detlefsen [2005].
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independent of the other axioms. These had proven unsuccessful. At most, mathematicians
had managed to show that the fifth postulate is equivalent to a number of other interesting
but equally tendentious propositions. (Gauss, for instance, showed that the parallel lines
postulate is tantamount to the proposition that a triangle of arbitrary size can be drawn.)

Systematic alternatives to Euclidean geometry were first seriously pursued independently
by Gauss, by Lobachevsky and by Bolyai. Gauss chose not to publish on the topic, perhaps
for fear of ridicule. He may however have indirectly encouraged Johann Bolyai’s interest
[Eves 1997]. In the end, it was Lobachevsky who first published a systematic treatment
of what he called pangeometry. In his work, Lobachevsky replaces Euclid’s fifth postulate
with an alternative: a given straight line AB and a point a not on that line, more than
one coplanar line passing through a can be drawn that does not intersect AB. Given this
and the remaining standard Euclidean postulates, it’s possible to show that at least two
lines through a and parallel to AB can be drawn; in addition, there exist many so-called
hyperparallels that do not intersect AB and pass through the two parallels only at a. At
nearly the same time (so in 1854) Riemann proposed another non-Euclidean geometry; one
where any two straight lines in a plane intersect. Evidently, in such a system, rather than
having more than one parallel to AB, we have none.17

The initial reception of non-Euclidean geometry was cool—though understandably so.18

Kline [1972] suggests two reasons for the lack of interest. From a strictly formal point of view,
it was not known whether the new systems were internally consistent. No contradictions
had yet emerged, but it was unclear whether any would. And there was a second problem
also. As I mentioned earlier, the geometry of Euclid was taken by just about everyone to
characterize the structure of physical space. Since the new geometries were based (in part)
on quite different and incompatible assumptions, they evidently could not be about real
spatial relations. They were therefore useless almost by definition. On the whole, it’s quite
understandable that a potentially inconsistent formal system with no real applications gen-
erated little enthusiasm.19 The situation changed somewhat after the demonstration—by
Beltrami in 1868—that the new geometries were indeed formally consistent relative Eu-
clidean geometry. In effect, Beltrami showed that the geometries of Lobachevski and Bolyai
could be treated as inscribed on a plane of constant negative curvature, say a tractoid; the
geometry of Riemann can be represented on a surface with a constant positive curvature, say
a sphere. The existence of these models liberated researchers dedicated to pure mathematics
to explore the implications of the new ideas without fear of contradiction. It however did

17For a detailed and largely nontechnical treatment of Lobachevskian and Riemannian geometry, see Eves
[1997]. The details are not crucial to our concerns and so I will not review them here.

18In an 1840 German exposition of his work, for example, Lobachevski regrets the lack of interest in his
writings on the part of the mathematical community.

19There were some exceptions; Gauss and Reimann both saw that which geometry applied to the space of
our experience as an open empirical question. Both considered the topic worth pursuing.
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not change the attitudes of those with a more practical bent, as can be seen in this passage
by Duhem [1915]:

Riemann’s doctrine is a rigorous algebra, for all the theorems which it formulates are
very precisely deduced from its basic postulates; so it satisfies the geometric spirit. It is
not a true geometry, for, in putting forward its postulates, it is not concerned that their
corollaries should agree at every point with the judgements, drawn from experience,
which constitute our intuitive knowledge of space; it is therefore repugnant to common
sense. [Duhem [1915], quoted by Gillies [1998]]

Duhem expresses here a hostility that was prevalent in the nineteenth century and (ev-
idently) persisted into the twentieth. What’s important for us though is that pure and
applied mathematics had begun to part company. The latter continued to be useful in
science, affairs, and industry. The former started to be viewed by its practitioners as a
free, abstract expression of the power of the human intellect—a form of creativity distinct
in kind from artistic endeavours but allied in spirit insofar as it was not tethered to the
empirical reality in which we dwell. In retrospect, we can see that with the discovery of
non-Euclidean geometry the earlier paradigm had been abolished: an apparently finished
mathematical field was shown to conceal genuinely new insights and this liberated axiomatic
study of geometry from concern with real, physical space [Eves 1997].

Let us at this point register a helpful distinction due originally to Mark Steiner [2005].
It concerns the senses in which a mathematical theory can ‘apply’ to phenomena. Let’s say
that the application of a mathematical theory R to a domain D is canonical just in the
case that R was deliberately developed for the purpose of capturing the formal structure of
D. Thus, for instance, the canonical application of the positive integers is the enumeration
of stable, discrete, physical entities. Plausibly, real numbers apply canonically to spatial
magnitudes (but also felicitously apply to continuous magnitudes of other kinds). Vectors
apply canonically to quantities with both a magnitude and a direction, such as the velocity
of a moving body. Quaternions were introduced so as to facilitate vector algebra in three
dimensions. Their canonical application is to the trajectories of bodies moving under the
influence of several, non-coplanar forces.20 And so on. In general, whenever a mathematical
theory is developed so as to model a given domain, its success in so doing requires no special
explanation. Nor does its success in capturing the structure of closely related, isomorphic
domains. On this definition, non-Euclidean geometries are remarkable precisely insofar as
they lack a canonical empirical application. Nor are they alone in this respect. Let me now
briefly outline the development of a second mathematical theory that shares this feature.

20Quaternions are of the form a + bi + cj + dk where {a, b, c} ∈ N while i2 = j2 = k2 = −1. For an
interesting exposition of Hamilton’s struggle to arrive at a consistent algebra for quaternions, see Kline
[1980], Chapter 4.
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Groups. Roughly the same time-period witnessed a parallel maturation in algebra and
the emergence of algebraic theories which were likewise inspired by purely math-internal
considerations, rather than by the attempt to model external phenomena. One of the
challenges facing mathematicians in the late eighteenth century concerned finding the roots
of arbitrary polynomial equations.21 A way of determining the roots of quadratic equations
had been known since antiquity. To find the values of x that satisfy ax2 + bx+ c = 0 we
can use the formula x = (−b±

√
b2 − 4ac)/2a and locate the results in the complex plane.

During the sixteenth century, similarly general, though more elaborate, means were found of
solving cubic and quartic polynomial equations. These involved reformulating the equations
by the application of a sequence of arithmetic operations and the extraction of roots (square
roots, cube roots, and quartic roots). Some degree five and higher polynomials were solvable
by extracting roots of unity as well. However, it was shown during the early nineteenth
century that no general formula exists for solving quintic or higher degree polynomials.
Explaining which of those equations are solvable by radicals and why became a major
research problem. The solution and explanation was ultimately arrived at by Galois, who
laid the foundations for an important new area of pure mathematical research in the process.

In general, think of a field F as a subset of the complex numbers that is closed under
the arithmetic operations—i.e., given any two elements of the field, applying one of the four
basic operations yields a member of F . The rational numbers, for instance, form a field.
It’s possible to associate with an arbitrary polynomial equation f(x) a field K containing
its coefficients—the equation’s domain of rationality. Some polynomials are reducible over
their domain of rationality; their roots are contained in K. Thus, x2−1 = 0 for example has
both coefficients and roots in the field of the rational numbers. Many polynomials however,
including quadratics such as x2 + 1 = 0, do not have this property. It’s possible to associate
with each such function an extension of K, called a splitting field, the smallest set containing
K as well as the equation’s (possibly complex) roots. In our case, since x2 +1 has two roots,
±i, the splitting field contains the rationals and ±i. Galois went on to analyze the internal
structure of splitting fields. He associated with each a Galois group; a set of automorphisms
for K which permute the polynomial’s roots but leave the underlying field unaffected. In
the above case, each rotation of the roots in the complex plane about the point of origin
by nπ for an integral value of n has this effect. Galois showed that whether a polynomial
is solvable by radicals depends on some the properties of its Galois group. The subsequent
study of the structure-preserving substitutions he employed led some forty years later, to
the explicit recognition of the modern group concept.

In modern terms, a group is just a set closed under identity, inverse, and a single binary
associative operation. To make this concrete, the integers constitute a group under addition;
the reals are a group under multiplication; the rotations of an equilateral triangle about its

21My discussion here draws especially on [Parshall 2008], Liebeck [2008] and on Kline [1972, 1980].
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centre at 2/3π intervals also constitute a group. Clearly, groups are a very general notion.
And they have proven useful in a variety of mathematical domains. Importantly for us,
much like non-Euclidean geometries, group theory has no canonical empirical applications.
The group concept emerged originally to help study other mathematical structures. This
fact was not lost either on the mathematicians who pursued pure mathematical research nor
on natural scientists and engineers. We see here yet another reason why both camps found it
necessary to revise their conception of the nature of mathematical research. At the opening
of the nineteenth century it was still reasonable to believe that mathematical propositions
were a sort of description abstracted from observations of external, physical states of affairs.
By the century’s close, that view was widely discredited.22 As mathematics became ever
more abstract, pure mathematicians celebrated the liberation of their research and maths’
new autonomy. They were increasingly left to pursue ‘free creations of the human mind.’23

But while ‘free,’ these creations were not wholly arbitrary or unconstrained. Pure research
was guided by certain mores internal to mathematics. These included (of course) formal
consistency but also certain aesthetic considerations: as we have already seen, good ideas
are those that were ingenious, illuminating, fruitful, mathematically significant, and (above
all) those that are beautiful. Here is Hardy [1940] addressing this topic:

It would be quite difficult now to find an educated man quite insensitive to the aesthetic
appeal of mathematics. It may be very hard to define mathematical beauty, but that is
just as true of beauty of any kind—we may not know quite what we mean by a beau-
tiful poem, but that does not prevent us from recognizing one when we read it.. . . The
mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas
like the colours or the words, must fit together in a harmonious way. Beauty is the first
test: there is no permanent place in the world for ugly mathematics. [Hardy 1940]

The new spirit was not always celebrated by more practically minded researchers. Physi-
cists and engineers in particular were not always supportive of maths’ newfound freedom.
Mathematical domains with canonical application to scientific problems continued to re-
ceive attention. More fanciful areas of pure research however were viewed with increasing
skepticism. Davis and Hersh [1998] report that

in 1910 a board of experts including Oswald Veblen and Sir James Jeans, upon reviewing
the mathematics curriculum at Princeton, concluded that group theory ought to be
thrown out as useless. [p.205]

The attitude was a sensible one. Such qualities as ingeniousness, simplicity and elegance are
evidently interpreter-relative. Functions that prove tricky to define in some formal systems

22Recall, for instance, Frege’s [1953] withering comments about Mill’s “gingerbread arithmetic.”
23The phrase is Dedekind’s.
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are trivial to state in others—some functions that are hard to write in C++ are easy to
state in Prolog, for instance (though more often the reverse). Aesthetic notions like the
beautiful or the sublime are, if anything, even more obviously interpreter-relative. Which
structures one appreciates as possessing such qualities depends in some measure on one’s
cognitive makeup. It would have been unreasonable to expect human aesthetic judgements
to carry cross-species—nevermind universal—validity. Certainly, there was no real reason
at all to expect concepts developed to suit human aesthetic sensibilities to be of much use
in theoretical physics or in any other branch of empirical science.

Subatomic physics. We now know that Veblen and Jeans were wrong. The surprise came
when apparently idle mathematical theories—including both Riemannian geometry and
group theory—began to play an indispensable role in facilitating discoveries of hitherto un-
suspected phenomena in physics. The early 20th century was a time when, Mark Steiner
[1998] notes, physics and chemistry encountered a serious and unprecedented problem: re-
searchers interested in atomic and subatomic interactions stopped being able to rely on
macroscopic models to make progress. Events at the atomic scale are sufficiently alien that
the discrete, slow, medium-sized objects which we experience as our lebenswelt fail to pro-
vide the theory-builder with fertile ground on which to base new models. A number of the
breakthroughs were due to the application of apparently useless mathematics to this field
of study.

An early example concerns the discovery of anti-matter. In 1929, Paul Dirac derived
equations that combined quantum mechanics and special relativity to describe the motion
of electrons in electric and magnetic fields [Barnett et al. 2000]. Surprisingly, the theory
predicted the existence of positively charged “holes” or anti-electrons—and these, Dirac
initially took to be protons. A year earlier, Hermann Weyl had published his important
[1928] study of the application of group theory to quantum mechanics. Not all physicists
were persuaded that a mathematization of physical experiments in terms of group theory
could be useful. Still, Weyl argued on purely mathematical grounds that Dirac’s anti-
electrons could not be protons after all; symmetry required that the new particles possess
the same mass as electrons but the opposite electric charge. Dirac did indeed change his
mind and about a year later the prediction of anti-matter was borne out by Carl Anderson’s
discovery of the positron in a cloud chamber photograph of cosmic radiation passing through
a lead plate. (Both Dirac and Anderson eventually received Nobel Prizes.)24

The power of the theory of symmetries to find structure in the subatomic world and (just
as importantly) to direct researchers to new findings became indisputable after the discovery
of the Ω− baryon.25 By the early 1960s, over a hundred subatomic particles had been found.

24For the history, see Hanson [1963] as well as Peter Pesic’s helpful introduction to Weyl [1934].
25My discussion here follows Steiner [2005] as well as Barnett et al. [2000] and Riordan [1987]. I also draw

sporadically on Das and Ferbel [2003].
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It was hard to accept that they should all be fundamental. In any case, various patterns
had been discerned. An apparently basic cut ran between leptons, such as the electron,
and hadrons like the proton and neutron. Particles were further classified according to
their various properties or quantum numbers. The hadrons thus divided into baryons and
mesons according to their angular momentum (or spin). Observed mesons typically had a
spin value of zero. By contrast, baryons took half-integer spin values (so 1/2~, 3/2~, and
so on). Beyond that rough-and-ready classification however things were uncertain. Some
subfamilies of particles seemed to have three members, others six, or seven. The values
of some properties (electric charge, spin, strangeness) seemed tightly constrained, while
others (mass) varied widely. Moreover, not all quantum numbers were necessarily defined
for every particle since not all particles are affected by all forces. Leptons are subject to
electromagnetic and weak forces as well as to gravity. They are not however subject to the
strong nuclear force and hence most strong quantum numbers are undefined for leptons.
By contrast, baryons, including the proton and neutron, as well as mesons are subject
to all forces including the strong nuclear force. What complicates matters still further is
that not all conservation laws apply equally to each family of particles. Hadrons undergoing
some weak and electromagnetic interactions fail to conserve some of their quantum numbers
(isospin and strangeness in particular). In sum, trying to develop a neat classification that
divides the particles into families and predicts the possible results of high-energy interactions
was devilishly hard (quite apart from complications introduced by experimental error).26

One way of organizing the data was to offer a group theoretic description. There’s an in-
teresting link (first elaborated by Emmy Noether) between invariances, or symmetries, and
physical conservation laws: whenever a physical quantity is conserved, we can find a symme-
try or invariance associated with it. Conversely, whenever there is an underlying symmetry
in a physical system, we can define a conserved quantity associated with that invariance.27

This observation helps constrain the structure of physical theories. For instance, it was
known that the angular momentum of the electron could take one of two possible values.
Any electron observed will therefore be in one of two possible states: spin up or spin down.
(This is, of course, different from the angular momentum of slow, mid-sized objects which
varies continuously.) The probability that a given electron will be found in a particular state
varies continuously as a function of its rotation. The spin of the electron is 1/2~, which is
to say it takes two full revolutions of 360◦ to bring the particle back to its initial state. We
have no macroscopic model of this phenomenon. Nonetheless, mathematical considerations
suggest a particular symmetry group, the standard unitary group in two dimensions, or

26Indeed, according to one model popular in the early 1960s, the “bootstrap theory,” all particles were
equally fundamental and could potentially emerge from any interaction [Riordan 1987].

27Here are some familiar illustrations of transformations in which a quantity is preserved: spatial trans-
lation preserves mass, temporal translation preserves energy, spatial rotation preserves angular momentum,
and so on Das and Ferbel [2003].
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SU(2), as the appropriate model. And this was helpful insofar as it suggested SU(2) as a
classification scheme for the spin of particles. (The nucleons, incidentally, also turned out
to have a property, isospin, that could be modeled by SU(2).)

Symmetries can be instantiated by groups of determinate size. As an illustration, think
here of perfect Platonic solids. The symmetry that applies to such three dimensional solids
allows instantiations of four, six, eight, twelve, and twenty sides. We can be sure however
that no perfect solid with, say, fourteen sides will be found. Similarly, taking SU(2) to be the
correct representation of particle spin constrained the number of members that families of
particles could have. Thus, adopting SU(2) let physicists work backwards; that is, to reason
from the mathematics to the physics and to predict the structure particle families in terms
of spin and isospin. In general, following through this idea allowed the classification some of
the discovered entities. It turned out however that the resulting classification was imperfect
(for example, K mesons came in two pairs, not a triplet as the symmetry predicted). The
imperfections in the organization scheme suggested that something was still missing [Steiner
2005].

Murray Gell-Mann and Yuval Ne’eman worked (independently) to find a deeper mathe-
matical framework—a higher symmetry—which could help make sense of the facts. Mathe-
matical considerations suggested SU(3), a group of which SU(2) is a subgroup. The approach
proved successful. Using SU(3) Gell-Mann was able to arrange known mesons and baryons
into a geometric pattern; the eight baryons of spin 1/2 could be arranged in a cube-like
pattern in a three dimensional space based on their mass, electric charge, and strangeness.
The seven spin zero mesons could be arranged similarly, though a gap remained. That
imperfection in the pattern suggested that an eighth member of the family might exist,
leading Gell-Mann to postulate the η◦ meson. The particle was indeed discovered within a
year, lending further support to the group theoretic approach to conducting research. The
real breakthrough came however when the symmetry was taken seriously in suggesting more
arcane posits. SU(3) does not require families to have eight members. The symmetry is
also realized in families of one, three, ten, twenty-seven (and more) members. Gell-Mann’s
interest was turned to baryons of spin 3/2. Nine members of this family had been found;
the SU(3) symmetry, which was still highly hypothetical, required that there be a tenth.
In 1962, Gell-Mann postulated that particle and specified the properties that it ought to
possess (a strangeness of -3 and a relatively large mass). The prediction would have been
impossible without group theory. Remarkably, the particle, the Ω−, was indeed found in
late 1963. Evidently, the approach had proved successful not only in reorganizing known
data but (importantly for us) also in predicting the existence of hitherto unobserved and
unsuspected entities.28

28The Ω− is composed of three strange quarks, hence its -3 strangeness value. Historically however the
postulation of quarks and of fractional electric charges—while contemporaneous with the use of SU(3) as the
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Relativity. Group theory is not the only apparently useless mathematical theory which
has helped extend the scope of our scientific understanding. My second example concerns
Einstein’s work both on special relativity and, later, on general relativity. Early on in his
career, certainly before 1920, Einstein took an instrumental attitude toward mathematics.
He also repeatedly displayed a distaste for excessive formalism and where possible preferred
to work with a sophisticated ‘physical intuition’ [Corry 1998]. Perhaps partly as a result, the
mathematics in Einstein’s revolutionary paper on special relativity was “relatively elemen-
tary” [Yourgrau 2005]. A number of mathematicians, including David Hilbert and Einstein’s
erstwhile mathematics teacher, Hermann Minkowski, took an interest in studying Einstein’s
work. Beginning in 1907, Minkowski devoted his energies to re-articulating Einstein’s ideas
in more mathematically elegant terms. The result was the embedding of special relativity
in a four-dimensional, non-Euclidean, space-time manifold. This formulation, whose clarity
surpassed Einstein’s, was immediately adopted by the first textbook treatments of special
relativity. And so, Minkowski space-time became a standard feature of the theory. What
should strike us as odd however is that Riemannian geometry, a mathematical theory with
no canonical application, should have been useful for this purpose at all. Minkowski did
not need to develop a new formal system on the basis of Einstein’s work in physics; he did
the reverse: he employed ideas that had already been found by the pure mathematician in
order to clarify what the physicist was laboriously trying to express. Commenting on this,
Minkowski says the following:

To some extent, the physicist needs to invent. . . concepts from scratch and must labou-
riously carve a path through a primeval forest of obscurity; at the same time, the math-
ematician travels nearby on an excellently designed road.. . . It will become apparent, to
the glory of mathematics and to the boundless astonishment of the rest of mankind,
that the mathematicians have created purely within their imagination a grand domain
that should have arrived at a real and most perfect existence, and this without any such
intention on their part. [Minkowski (1915) quoted by Pyenson 1977.]

Einstein himself was not impressed with the reformulation of special relativity in terms of
four dimensional, Riemannian geometry; indeed, he considered it ‘superfluous erudition.’
One reason for this has to do with discrepancies between Minkowski’s formulation and
observed physical phenomena; Minkowski had, in effect, made some errors [Pyenson 1977].
However, Einstein’s estimation of the role of mathematical formalism in research soon began
to change. Once he turned his attention to developing the general theory of relativity, he
found that some of the formal elements of Minkowski’s work (for instance, the invariant
line of Minkowski’s space-time) came to play an important role in extending his research.29

classificatory framework for mesons and baryons—was logically independent of it. I am omitting a discussion
of quarks here. See however Steiner [2005] and Riordan [1987].

29See Corry [1998] for a discussion.



19

Gradually, Einstein came to appreciate that his own creative efforts in physics depended
importantly on the antecedent existence of an appropriate set of mathematical ideas. By
the early thirties, he had come to adopt his teacher’s perspective:

Our experience hitherto justifies us in believing that nature is the realization of the
simplest conceivable mathematical ideas. I am convinced that we can discover by means
of pure mathematical constructions the concepts and laws connecting them with each
other, which furnish the key to understanding natural phenomena. Experience remains,
of course, the sole criterion of the physical utility of a mathematical construction. But
the creative principle resides in mathematics. [Einstein (1933) quoted by Corry 1998]

The development of general relativity thus indirectly depended on Minkowski’s work on
space-time. And that, in turn, depended on Riemann’s work on non-Euclidean geometries.
If we construe mathematical systems with no canonical empirical application as literally
contentless formal structures, this sequence of events becomes all but impossible to explain.
The fact that we are able to form ideas which enable us to limn the structure of reality at
all is a nontrivial gift. That we can do so while apparently pursuing idle speculation and
in advance of empirical investigation is truly remarkable. Certainly, Einstein was struck
by the peculiarity of our situation: “the most incomprehensible thing about the world,” he
remarks, “is that it’s comprehensible.”30

Discussion. It will not do to claim that using non-Euclidean geometry or group theory in
physics is on a par with constructing a tool for one purpose and subsequently finding that it
can be put to other uses.31 This sort of deflationist analogy works well to explain why (say)
the real numbers can be used to quantify physical lengths as well as temporal durations;
both are continuous magnitudes. And the canonical application of the real numbers are
precisely such magnitudes. The deflationist analysis works less well in the two cases we have
just considered. Neither non-Euclidean geometry nor group theory has canonical empirical
applications. Thus, rather than likening them to a tool, it would be more accurate to liken
them to a board-game or a Kandinsky painting that, years after its creation, has been found
to embody a useful roadmap to a newly discovered continent. Expecting our games or our
artistic creations to reflect the structure of far-away lands is like expecting magic to work
[Steiner 1998]. Or, rather, it would be like relying on magic were we to assume that such
formal systems carry no more content than chess configurations or kaleidoscopic images.
For just this reason, Saunders Mac Lane is moved to reject this supposition:

How can one account for the unreasonable effectiveness of Mathematics in providing
models for science and knowledge?. . . To fully account for this applicability, the phe-
nomena must in some sense be ready to fit the formulas. This becomes a question about

30Quoted in Yourgrau [2005].
31This is suggested by Kline [1980].
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the character of reality. All the experience of Mathematics and of the physical sciences
shows that many aspects of reality can be measured, organized, and then understood
by way of theories and concepts which have a large formal content. We have to agree
that the form is chosen to reflect the facts. It must also be the case that the facts
accept the form. We have not explained why this is so. . . For a strict formalist, for
whom Mathematics is just manipulation of symbols, this question cannot be answered.
[Mac Lane 1986, p. 445]

There is an alternative to formalism: we can instead accept the notion that a great deal of
pure mathematics is contentful even when mathematicians themselves don’t really think that
it is.32 Such a supposition allows us to hypothesize that a well-hidden structure-preserving
mapping exists between certain basic mathematical facts and physical reality. Once we grant
that this is the case, the supernatural aura surrounding unexpected applications begins to
dissipate. Admittedly, we are left to explain the concrete nature of the apparent preexisting
harmony between the physical world and our mathematical discoveries. But this is to trade
in an apparent miracle for a legitimate research problem—surely a trade worth making. In
any case, we have little choice. Unless we are prepared to countenance a mystery, we must
not conclude that mathematics is merely a meaningless, formal game; the notation gives
back more than we apparently put in.

Semantics and entities

So far, I have argued that the propositions of mathematics are not purely formal (or content-
free) and that at least some of them are not contentful yet subtly false. Given the alterna-
tives, these arguments show that some mathematical propositions are, in fact, true. Notice
however that it takes an additional argument to move from the truth of mathematical state-
ments to the existence of mathematical entities. The argument I will rely on here takes as
its point of departure one of the leading available accounts of natural language semantics.

Formal semantics. Semantics, understood as a branch of linguistics, aims to offer a the-
ory of meaning for natural, human languages. Having a working theory of this sort would
help explain how we manage to interpret linguistic expressions, hence how linguistic com-
munication is possible. In order to build a semantic theory it’s useful to idealize somewhat
by abstracting from extraneous details: the core meaning of a sentence, phrase or word is
that aspect of its semantic value that remains invariant under context change. Focusing
on core meaning allows us to exclude from consideration peculiarities of semantic valence
contributed on a given occasion by the identity of the speaker, the time and place of utter-
ance, the gathered company, and other purely circumstantial considerations. It’s not wholly

32Concretely how much “a great deal” turns out to be is a topic that I will address in a moment.
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self-evident how to go about developing a responsible, scientific account of core meaning.
Much is owed in this area to the work of Richard Montague [1974b], who himself built on
insights due to Frege [1953] and Tarski [2001]. A recurring theme in Montague’s work is
that, in order to arrive at an appropriate theory of meaning for natural languages, we should
treat these as essentially on par with artificial structures, such as the predicate calculus:

I reject the contention that an important theoretical difference exists between formal
and natural languages. [Montague 1974b]

Making this assumption has the benefit of enabling us to employ the machinery of model
theory to construct our semantic account.33 At its core, furnishing a semantics for a formal
language involves specifying a systematic mapping from its well-formed formulae to an
extralinguistic domain comprising at least two elements (say, 1 and 0, or > and ⊥). In
effect, working out the interpretation of a well-formed formula involves deriving its truth
value given a specific assignment of variables to domain elements. Something similar can
be done for the sentences of a natural language. We can’t identify the meanings of natural
language sentences with their truth values simpliciter, since that would make two of every
three sentences synonymous. Rather, we get our theory off the ground by supposing that
the core meanings of natural language sentences are importantly bound up with their truth
conditions [Davidson 1967, Tarski 2001]. The idea is quite intuitive. Consider:

(1) “Śnieg jest bia ly.” is true if and only if snow is white.

In order to grasp the core meaning of the sentence named in the antecedent, it suffices to
learn under what conditions that sentence comes out true. The appropriate truth conditions
are given in the consequent of the biconditional. Generalizing the point, a good first pass
at a semantic theory for one portion of a natural language—consisting of the set of its well-
formed, disambiguated, present-tense, declarative sentences—consists of an exhaustive list
of the mappings from the names of these sentences to the appropriate truth conditions.

There needs to be more to an adequate semantic theory however. We want our theories
to be elegant and economical. A theory consisting of sentence-fact pairings is neither. The
number of distinct, grammatical, declarative sentences of a natural language is, in principle,
unbounded.34 To fully interpret a natural language an exhaustive list of pairings would
therefore need to contain an infinite number of distinct clauses. Not only would it not be
elegant; it could never, in principle, be complete. Worse still, human beings do, as a matter
of fact, interpret their natural languages on the fly. It’s not plausible that we do so by
searching an infinite or even a very long list (if only because to do so would be impossible
in real time provided we assume a small but fixed processing time for each entry). There is

33For a helpful exposition of the semantics of predicate calculus, see Bell et al. [2001] or DeLong [2004].
34The grammaticality of arbitrarily many centre-embedded clauses shows this for English.
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another problem too. Not all of the declarative sentences whose truth conditions coincide
are, in fact, synonymous. Think here of the truths of logic or mathematics. Pairing sentences
to truth conditions is a good start for a semantic theory, but it’s not the whole story. If we
want our theory of meaning to be an explanation of how we understand language, we can’t
stop yet.

To make progress we once again borrow from the semantics of formal languages. The
interpretation of complex formal formulae is carried out recursively. One begins by offering
an interpretation of atomic components and moving to higher degree cases via recursion over
the quantifiers and operators. The semantic value of a complex formula thus turns out to be
a monotonic function of the semantic values of its parts (and their arrangement). Essentially
the same idea can be used to deal with natural languages. To get the analysis of constituents
going we introduce the notion of a semantic type. We say that sentences are of semantic type
〈t〉, for truth-conditions. Next, we map the various phrases to their appropriate referents.
In contrast to the formulae of the predicate calculus, the sentences of a natural language are
used to convey information about our surroundings—what Quine calls ‘the passing show.’
The extra-linguistic domain D to be employed in interpreting natural languages is therefore
not merely the true and the false but rather the world itself. Names are mapped directly
to the relevant individuals in D. This won’t work for common nouns, such as ‘cat’ or ‘dog’.
Those we take to pick out sets, such that the extension of a common noun is the set of (actual
or possible) entities in D named by the term. For the sake of clarity, we say that nouns are
of semantic type 〈e〉, for entity. A subset of the derived types allows us to classify other
linguistic items including logical connectives, verbs, adverbs, and adformulas. Consider first
the predicates of natural languages, including verbs and adjectives. They have unsaturated
semantic values which require arguments to constitute fully-formed thoughts. It’s natural
(after Frege) to take them to denote functions. In the simplest case, the case of intransitive
verbs, these are functions from entities to truth conditions. That’s because such verbs take
entities of type 〈e〉 as arguments, and return semantic types 〈t〉 as values. Intransitive verbs
are therefore naturally classified as of semantic type 〈e, t〉. The case of transitive verbs is
only slightly more involved: they take both a direct and an indirect object. Hence, they
take two 〈e〉’s to a 〈t〉: so are either of type 〈〈e, e〉, t〉 or 〈e, 〈e, t〉〉. Indeed, an unbounded
range of semantic types can be specified recursively: we stipulate that if σ and τ are types
then 〈σ,τ〉 is also a semantic type. By defining an unbounded variety of semantic types in
this way, FS offers us a maximally flexible classification of possible denotations relative to a
domain D. Furthermore, there is no need to expand our domain in order to accommodate
functions, since functions can be identified with sets of ordered pairs. Thus, a function that
maps to > just in the case that it takes elements of a specific subset of D as inputs can
itself be construed as a subset of D. Thus, the entire interpretation M requires nothing
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more than a domain and an interpretation function.35

FS is an elegant theory.36 It is capable of building up plausible interpretations of an
unbounded number of sentences from a finite base. It analyzes the core meaning of a
sentence both with reference to its truth conditions and the meanings of its parts, thereby
explaining why not all sentences with identical truth-conditions are synonymous. Finally,
formal semantics hooks language up with the world, thereby helping make sense of how
human beings use it to convey content. Plausibly then, it can serve as the beginnings of a
theory of meaning for natural languages.

More could be said about formal semantics; and indeed, I will return to the topic in
later chapters. My aim for the moment is to say enough to motivate the theory and to
explain how it approaches semantic analysis. Let’s therefore put FS to use in the context
of mathematical statements. As our example, consider this bit of mathematical trivia:
17 happens to be a prime number. The core meaning of the sentence that expresses this
fact is given by its truth conditions in the obvious way:

(2) “Seventeen is a prime number.” iff seventeen is a prime number.

The full interpretation of the sentence named in the antecedent requires us to explain how
its truth conditions are a function of the meaning of the parts. The first step is to pick out
the sentence’s parts unambiguously. A very natural way to do that is to use its syntactic
description.37 Here it is:

(3) [s [np Seventeen] [vp is [dp a [np [ap prime] [np number.] ] ] ] ]

And here is how those parts are analyzed:

35Specifying precisely how large the domain presupposed by FS needs to be presents certain problems.
Certainly, if proper classes exist, they can be referred to. And so on up the iterative hierarchy. It would be
tempting to identify D with the iterative hierarchy, taking actual and possible physical items to comprise the
bottom layer. The wrinkle is that the iterative hierarchy itself figures in D as a possible object of reference.
As we shall see in Chapter 3, this is the least of our worries.

36For a useful exposition of Montague [1974b], see Thomason [1974]. For a classic textbook treatment, see
Heim and Kratzer [1998].

37Interestingly, Montague himself had little time for “developments emanating from the Massachusetts
Institute of Technology” and did not employ what are now accepted syntactic categories. We can however
follow [Larson and Segal 1995] and Heim and Kratzer [1998] instead.
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Notice that the VP constitutes an unsaturated function from entities to truth values. Both
the copula and the indefinite article are semantically inert, contributing nothing to the
overall interpretation. The two NPs require a few words of explanation.38 The final NP is
of semantic type 〈e,t〉, and designates a function from entities to truth values. (I am treating
‘prime’ as an intersective adjective since not everything that is prime in the relevant sense is
ipso facto a number. Primeness has been generalized to other branches of mathematics. In
fact, this helps simplify the analysis considerably.)39 For the sentence to be of semantic type
〈t〉, the initial NP must be of type 〈e〉 and to designate an entity. The whole is therefore
true if and only if there in fact is an entity, picked out by ‘seventeen’ which has the property
of being a prime number. Ergo, at least one number exists.

And so we arrive at our conclusion. Suppose we accept standard semantics. Suppose
also we accept that all sentences displaying a given syntactic structure be treated uniformly
by our semantic theory. If so, then the existence of mathematical truths entails the existence
of mathematical entities just as the existence of nontrivial facts about London entails the
existence of that city. We must either accept norm’s (R.i) or give up on formal semantics

38This reading of the indefinite article in the predicative position, I have been informed, is not uncon-
troversial, but it is quite standard. My reading is based on Heim and Kratzer [1998]. I am grateful to
Rob Stainton, Marie Odile Junker, and Ileana Paul for helpful discussions, suggestions, and criticisms of my
linguistic analysis at various stages of this project. The remaining errors are mine alone.

39For a helpful discussion of nonintersective adjectives, see Cann [1993], Chapters 6 and 10.
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and supply some alternative theory of meaning.40

Objectivity

Recall that norm comprises two theses. We now have a reason to accept the first: that
some mathematical entities exist. Before ending the chapter, I want to motivate the second
thesis: that at least some mathematical entities—whatever they may ultimately prove to
be—exist independently of human conventions, opinions, thoughts and activities. They
are, in a word, real. Here, I should begin by deflating expectations slightly. Because the
scope and the metaphysical nature of the mathematical domain remains unspecified, the
responsible course for a would-be ontological realist is to start with maximally conservative
commitments. And so this is what I will do.

Constructivism. Brouwer’s [1975] intuitionism (or constructivism) is perhaps the most
influential modern anti -realism within mathematics.41 Davis and Hersh [1998] estimate that,
currently, one in twenty working mathematicians is a constructivist. There are also related
projects in logic, semantics, and metaphysics. It may seem at first glance that in order to
defend norm, one would need to attack Brouwer. I don’t think this is the case however. In
fact, the very weak sort of ontological realism that interests me here can remain neutral with
regard to the dispute between constructivist and nonconstructivist mathematicians. To show
that this is the case, I want to clearly distinguish core constructivist commitments regarding
the ontology of mathematics from associated peripheral, phenomenological doctrines. My
approach will be to concede as much of the mathematical core of constructivism as possible
while showing that realism (in my sense) still holds—and hence the bundle of cognitive and
epistemic problems that interests me endures. This strategy will force us to restrict the scope
of the ensuing discussion to what many mathematicians would regard as an uncomfortably
small corner of the mathematical universe. Nonetheless, the compromise has the advantage
of temporarily forestalling unhelpful disputes.42

It’s sometimes said that constructivism eschews independently existing mathematical
objects altogether or that it construes mathematical reality as essentially consciousness-
or mind-dependent. There is certainly textual support in Brouwer’s [1975] work for such
attributions.43 Here however, I will follow George and Velleman [2002] in suggesting that

40Notice, by the way, that function-composition seems indispensable to articulating a semantic theory.
This reinforces the point I made earlier about the indispensability of mathematicalia in natural science.

41I will not have much to say here about more philosophical anti-realisms regarding the ontology of math-
ematics, such as fictionalism. See Stanley [2001] for a discussion and criticism of fictionalism.

42The compromise still allows us to work with significantly more of the mathematical domain than is
currently under discussion in much more ambitious cognitive works, such as Butterworth [1999].

43See for instance Brouwer’s enigmatic [1948] essay on Consciousness, Philosophy, and Mathematics, in
his Collected Works [1975], pp. 480-494.



26

those speculative metaphysical doctrines are not ultimately what lies at the heart of modern
constructivism. It seems to me that it’s au fond mathematics and not metaphysics that the
constructivist cares about. Thus Heyting [1956]: “We have no objection against a mathe-
matician privately admitting any metaphysical theory he likes, but. . . we study mathematics
as something simpler, more immediate than metaphysics.”

At its core, constructivism is animated by a skepticism concerning the determinateness
and completedness of mathematical reality. A good illustration of this comes from the
constructivists’ interpretation of Cantor’s diagonal proof. Recall that two sets are equinu-
merous just in the case that a one-to-one, onto mapping between them can be established.
The integers and the rationals are both of the same cardinality as the natural numbers
since a bijection between them and the naturals exists. Cantor shows that, by contrast,
any scheme for establishing such a correspondence between reals and natural numbers is
bound to fail. It’s always possible to construct a new real number not accounted for by
any proposed enumeration. From this, a classical mathematician concludes that the infinite
set of natural numbers is smaller than the infinite set of the reals. The former comprise a
countably infinite set of cardinality ℵ0 while the latter comprise a nondenumerable set of
cardinality 2ℵ0 . The intuitionist is more circumspect. She accepts Cantor’s proof for the
non-denumerability of the reals but takes the peculiar classical gloss on this result to be
driven by a dubious ideology. In its stead, she offers a substantially different interpretation.
The crucial point in contention is the notion of an actual, completed infinity. Nowhere in
the proof does Cantor demonstrate that such collections truly exist (nor does he aim to).
Indeed, it’s not altogether clear how to make sense of the literal existence of completed
infinite collections without resorting to fairly fancy metaphysical footwork.44 What is clear
is that, given any collection of natural numbers, no matter how large, it’s always possible
to generate a new natural number not yet on the list (for example, by taking the successor
of the largest member of the collection). In view of this, the constructivist proposes that we
view the set of natural numbers as (not literally infinite but rather) as infinitely extendable
[Dummett 1994]. Viewed from a constructivist standpoint, Cantor’s proof shows that given
any rule for extending the collection of real numbers into a more inclusive collection, it’s
possible to find a real number not covered by that rule. The reals are infinitely extendable,
but in a manner that is different in kind from the way that the naturals or the integers are.
The example illustrates nicely the considerable overlap between the classical and construc-
tivist perspectives: Both accept the existence of mathematical entities—including numbers,
collections, and functions.45 They merely interpret these differently. In the final analysis

44For sample steps from the metaphysician’s repertory, cf. Balaguer [1998]. More on this in the subsequent
chapter.

45Though not always the same collections and functions.
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then, the fundamental point of contention concerns not phenomenological issues (the mind-
dependence of mathematics, the role of consciousness, or anything of the kind) but rather
whether such entities can, in some way, be grounded in completed infinities.

The constructivists’ rejection of completed infinities and of a finished, determinate math-
ematical realm has far-reaching implications. Let me point out just two. My first illustration
crops up in logic. Classical logicians assume the existence of freestanding infinite collections.
As a result, they rely on arguments that do not take care to distinguish between reasoning
in finite and in infinite domains. It’s trivial, for example, to divide a finite collection into
two subsets, one of which contains all and only members that display a given property, and
another whose members do not. It’s natural to extrapolate from this and to suppose that,
in the general case, p ∨ ¬p holds true.46 That is, any proposition whatsoever is either true
or false. Were this the case, it would be exceedingly useful since it would allow us to prove
the truth of any proposition by demonstrating that its contrary does not hold:

¬¬p
∴ p

The constructivist objects both to the unbounded use of the excluded middle and to proofs
by reductio ad absurdum in infinitely extendable domains. To see why, consider whether
winning the lottery is part of your life-story. Since your life is essentially incomplete, unless
you have in fact already won the lottery, this question cannot be settled. It literally doesn’t
have an answer just yet. Now, admittedly, one could stipulate that everyone’s future is
fixed and so (in some sense) ‘exists’ already. But it’s far from clear why we ought to find
such stipulation scientifically responsible or philosophically compelling. The constructivist
is moved by parallel considerations to suspend judgement on such matters as whether the
decimal expansion of π contains a sequence of seven 7s. Not only do we not know the answer,
she argues, there may well not yet be an answer. In general then, it’s actually not the case
that all propositions just are either true or false. For this reason, neither the principle of
excluded middle nor demonstrations by reductio ad absurdum enjoy blanket legitimacy.47

The second important implication of adopting a constructive conception of mathematics
that I’d like to mention arises in set theory. Here, the constructivist is forced to give up

46Or, more accurately, that (x)(P )(Px ∨ ¬Px) holds.
47There’s an important subtlety here that I’m glossing over. The reference to unknown future contingents

may make it appear that some n-valued logic might provide a suitable vehicle for capturing the idea that
the constructivist is articulating. If that were so, constructivist logics would turn out to be a special case of
 Lukasiewicz’s three valued logic. This is not so however. Kurt Gödel showed that no n-valued logic which
preserves the classical truth tables can serve as an appropriate semantics for constructivist logic (assuming
that the value of n is smaller than the number of entities in the logic’s domain). That’s because some pair of
atomic sentences A and B must take the same intermediate truth value and therefore A→ B will map to >.
But since the constructivist interprets A → B to mean that given a proof of A we can derive a proof of B,
she will sometimes be forced to deny the truth of the implication. See [Bell et al. 2001, 195] for a discussion.
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the unrestricted application of axiom of choice, another one of the classical mathematicians’
important tools.48 Consider: A relation is typically identified with a set of ordered pairs. A
function is a special case of a relation H such that for every x in the domain of H, there is a
unique y such that xHy. A classical mathematician accepts that given any relation R, there
is a function F over the same domain, such that F ⊆ R. In the case of finite sets, carving
out a function F from a relation R then is just a matter of choosing one (perhaps among
several possible) mappings to R’s range for each member of the domain. This can be done
unproblematically even for infinitely extendable domains consisting of sets of discernable
elements. To modify an example from Russell, if our domain consists of denumerably many
triples comprising a spoon, knife and fork, we can stipulate by description that our function
return (say) the spoon from each set. If however R’s domain consists of ℵ0 triples of
indistinguishable spoons, there is no way of defining an appropriate function by describing
what it should pick out. In this case, the classical mathematician stipulates that there exists
a function of the required type. This is legitimate on the assumption that all functions enjoy
a freestanding existence regardless of whether we can specify them by description. But this
is, of course, just what the constructivist doubts [Posy 2005].

There is no question that adopting a constructive conception of mathematics changes
one’s understanding of the field. From a classicist standpoint, constructivism constitutes an
unacceptable restriction on the freedom of mathematical research [Shapiro 1997]. Without
the axiom of choice, excluded middle and proofs by reductio, a good deal of what is viewed
by many as standard mathematics becomes inaccessible.49 This is not a negligible sacrifice.
Yet from a constructivist standpoint, the classical mathematician runs a serious risk of
working with illusory posits—ones that have either not been proven consistent, or worse
yet, ones that—in spite of our creative imaginings—do not really exist.

In what follows, I propose to remain strictly agnostic regarding the construc-
tivist/classicist controversy. My reasoning is as follows: in general, a scientific realist is
provisionally committed to the existence of whatever posits are generally recognized in a
given field of study [Melnyk 2003]. One rough and ready way of determining what counts is
a survey of standardly accepted undergraduate textbooks. In a domain where serious scien-
tific controversy still reigns, it’s correct for a non-participant to suspend judgement. I take
the classicist/constructivsit controversy to be an unsettled issue between rival paradigms. It
would be irresponsible and uncharitable to pretend to resolve the dispute by fiat. Anyway,
I’m not remotely qualified to do that. For this reason, in what follows, I will take norm to
be provisionally ontologically committed to those (and only those) mathematical structures
which both the classical mathematician and the constructivist recognize. The constructivist

48Actually, Gödel showed that the axiom of choice holds in the constructible universe.
49I leave a discussion of the constructivsts’ rejection of impredicative definitions and discontinuous functions

for another time. These are interesting and important issues but discussing them here at length would not
further my argument.
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rejects the existence of a determinate, finished mathematical universe. On the other hand,
the classicist rejects Brouwer’s free choice sequences. So be it. I am prepared to limit my
ontological commitment to entities that feature in mathematical assertions that hold uni-
versally, in every mathematical framework, whether it be constructivist or classical.50 This
has the effect of making norm a much narrower hypothesis than other proposed ontological
realisms about mathematics. I don’t see how this can be avoided; nor does this seem like a
bad thing given the scientific goals of this dissertation.

Intersubjective conventions. There is another kind of anti-realist view that I’d like to
briefly address before concluding the chapter. We have already encountered Hardy’s [1940]
claim that a certain aesthetic sensibility plays a significant role in guiding the course of
mathematical research. Hardy himself was a realist about mathematics and its entities.
But one could push his ideas concerning the importance of the subjective element in mathe-
matics quite a bit further than he was prepared to do. Emphasizing the active, constructive
role of the mathematician and her intellectual community in the process of mathemati-
cal development, one could arrive at a characterization of mathematics—and particularly
of pure mathematics with no canonical empirical applications—as an essentially arbitrary,
negotiated cultural product. Full blooded social conventionalism would have it that the
justification for mathematical claims rests ultimately on intersubjective consensus among
maths’ producers, the mathematicians (and perhaps also on the entrenched practise of re-
specting the law of non-contradiction and other such traditional notions). On such an
account, it’s ultimately aesthetic, psychological, sociological and (ultimately) economic fac-
tors that determine what maths’ producers find acceptable and compelling. Hence it’s to
those factors that we need to look so as to discover the nature of mathematical truth.

The radical conventionalism I have just sketched is, of course, a caricature. Not even
those who talk about mathematical ‘acculturation’, ‘cultural production’, and its eventual
fetishization argue explicitly for the theory when it’s put in such stark terms.51 Watered
down versions can however be found. In fact, even those theorists who are critical of con-
ventionalism sometimes find themselves inadvertently moving in that direction in spite of
themselves. Consider, for instance, Ray Jackendoff’s important and highly original cognitive

50In Chapter 8 of his [1988] book, John L. Bell asserts that such invariant mathematical laws “are the
theorems of the free naturalized local set theory.” I expect it will take me some time to understand the
concrete content of this claim. The suggestion is worth pursuing.

51See, for instance, A. J. Bishop [2002]. According to marxist theorists—for instance Walter Benjamin—a
cultural product is fetishized when the labourer forgets its human origins and mistakes it for a sui-generis
entity. The notion of fetishization is often a centre-piece of marxist critiques of commodification and religion.
See Buck-Morss [1991].
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theory of concepts.52 Jackendoff [2003] recognizes and discusses the importance of mathe-
matical objectivity. Nonetheless, his theoretical apparatus leaves him with few resources to
stave off a slide into conventionalism. It’s useful and instructive to see why this occurs and
also why the pull of anti-realism should be resisted.

Concepts, in the sense studied by cognitive psychologists, cognitive neuroscientists and
(many) linguists, are a subclass of structured, information-bearing states of an individual’s
mind/brain.53 Human brains share many aspects of their functional organization with the
brains of nonhuman animals. Our sensory modalities and our basic affective systems are,
for instance, a shared biological endowment. Much of our cognitive flexibility and hence our
effectiveness as a species has been attributed to our ability to integrate information across
a variety of cognitive domains [Spelke 2002]. Jackendoff [1992a] argues that concepts play
a crucial integrative role in human mental activity. He construes them as informational
interfaces between lower, task-specific or input-specific modules: linguistic, visual, auditory,
haptic, and olfactory information, as well as information about the position and state of
one’s body and one’s affective state is centrally encoded by conceptual structures. The
integrative work of the conceptual faculty allows us to bind various features of diverse
stimuli into a single, coherent representation: we can listen to a piano concerto, individuate
its movements, watch it being performed, remember the last time we had heard it, and so
on. Apart from integrating input, the conceptual faculty also plays a role in facilitating
complex, deliberate behaviour. Finally, what we experience as imagining, remembering,
and thinking is—on this account—the result of the largely unconscious recombination of
conceptual representations.54

I will return to a more sustained discussion of Jackendoff’s theory later on. What in-
terests me at the moment is the account of mathematical reasoning implicit in his work.
According to the view, conceptual representations of concrete objects display both percep-
tual and inferential links. The perceptual links allow one to identify the relevant objects
and to recall their physical and spatial properties. Inferential links, by contrast, allow one
to reason about those objects. The theory makes slightly different provisions for abstract
‘objects’ such as mortgages, interest rates, and lies. Since such entities have no defining
perceptual properties per se, they do not link to the sensory modalities; their role in the
cognitive economy is exhausted by their inferential links. We learn how to think about

52In this section, I limit myself to discussing just one aspect of Jackendoff’s work: his theory of concepts.
But, in fact, Jackendoff [1983, 1987, 2002] does vastly more than articulate this theory. In Chapter 3 we will
return to his account of linguistic meaning as well as to the parallel architecture of the language faculty. I
will eventually argue that Jackendoff’s work plays an important role in the solution to Benacerraf’s dilemma.

53See Margolis and Laurence [1999] for useful a discussion. The contrast, of course, is with Fregean
Concepts: mind-independent, platonic forms. I address platonism in the next chapter.

54Let me mention that while there is broad agreement among cognitive researchers that the integrative work
I am describing does indeed take place, not everyone agrees that it is performed by amodal representations.
See especially Barsalou [1999].
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abstract entities by learning what sort of inferences they support. This occurs via a process
of acculturation and social tuning [Jackendoff 2002].

Mathematical entities are paradigmantic instances of abstract entities. If the conceptu-
alist account is to work, it must work for them. Jackendoff rejects the suggestion that the
identity conditions of conceptual representations depend on their intentional links with their
external, worldly referents. In any case, since many mathematical theories are developed
with no canonical empirical application, allowing such links would be of debatable value.
The alternative is that the essential features of such representations are exhausted by their
inferential links to other representations (their location in the web of belief, if you prefer).
What is unclear, on such an account, is how to make sense of a robust notion of mathemati-
cal truth distinct from a prevailing community consensus regarding what inferences ought to
be drawn. Consider the situation of non-Euclidean geometries before Gauss. Essentially all
mathematicians inferred from the information at hand that such geometries were impossible
(if indeed they so much as entertained the idea). We now know that they were wrong; they
were making a mistake. But to say that requires a standard of correctness distinct from the
inferences the community in fact made; indeed, it requires something even stronger than
the set of all inferential dispositions the community of mathematicians then possessed. It
seems that without a discussion of mathematical truth, conceptualism cannot easily explain
how it avoids the slide toward conventionalism.55

Unlike the conventionalist, the norm realist proposes that apart from inferential links, math-
ematical concepts possess an objective component. Some realists construe this as a form of
perception. Here, for example, is Alain Connes:

The mathematician develops a special sense, I think—irreducible to sight, hearing, or
touch—that allows her to perceive a reality every bit as constraining as physical real-
ity, but one that’s far more stable than physical reality. . . Exploring the geography of
mathematics, little by little the mathematician perceives the contours and structure of
an incredibly rich world. Gradually she develops a sensitivity to the notion of simplicity
that opens up access to new, wholly unsuspected regions of the mathematical landscape.
[Changeaux & Connes 1995]

The challenge for any mathematical realist is to develop an account of how this mathemat-
ical perception might work. If we follow Connes in supposing that there exists an objective
mathematical reality into which the mathematician develops a peculiar insight then math-
ematical error becomes no harder to explain than optical illusions. Similarly, the resistance
that mathematical reality offers our representations can be attributed to its inherent, mind-
independed structure. Finally, the amplicative applicability of mathematics to the study of
the empirical world is due, according to the realist, to a pre-established harmony between

55Sam Scott and I make this point in Jerzykiewicz and Scott [2003].
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mathematical reality (whatever it proves to be) and the structure of empirical reality. None
of these answers are available to a conventionalist. In fact, it seems that conventionalism
offers little hope of explaining these features of mathematical judgements.56 We are better
off, I think, accepting norm.

Conclusion

Recall that naked ontological realism about mathematics comprises two theses:

(R.i) Some mathematical entities exist; and
(R.ii) Their existence is independent of human minds, cultures, languages, and conven-

tions.

I have argued that both of these theses are well-motivated. We have seen that mathe-
matical judgements cannot plausibly be construed as content-free or false. The ampliative
indispensability of mathematics in extending the scope of our scientific knowledge discounts
the former possibility; while the utility of mathematics in scientific deduction makes the
latter implausible. We have good reason to recognize therefore that some mathematical
judgements are true. And this, together with the semantic theory discussed in this chap-
ter leads us provisionally to recognize the reality of (at least some) mathematical entities.
Moreover, the conduct of standard mathematics gives us a prima facie reason to suppose
that at least some mathematical entities enjoy an objective, independent existence—though
precisely what that amounts to remains obscure. In any event, norm looks like a promising
point of departure. Of course, it’s not possible to rest here since many interesting questions
remain unaddressed. Among them is the fundamental epistemic problem: how can our cog-
nitive access to the contents of mathematical judgements be explained? Let us now turn to
platonism, a popular elaboration of the sort of basic realism I have been defending, to see
how this issue might be addressed.

56I will use the term ‘judgement’ to mean either the intentional object or the act of judging. Where
possible, I will avoid using the term ‘proposition’ since it now seems nearly universally to be understood to
denote an abstract object.
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2 Troubles for Platonism

There can no more be a species of naturalism

that is consistent with belief in the existence of abstract objects

than there can be a species of atheism

that is consistent with belief in the existence of God.

— Jerrold Katz

Let’s agree on the strength of the evidence just presented that naked ontological realism
(or norm) is on the right track. As I have emphasized, norm is merely a rough prelimi-
nary sketch of a philosophical position. We are still some distance from a fully developed
theory. In this chapter I examine how one influential species of abstract realism—Stewart
Shapiro’s [1997] ante rem structuralism—elaborates and extends the basic realist framework.

Although I will focus on one particular account, the point I want to make is general. The
vast majority of realists today, including Shapiro himself, hold that mathematical entities (or
structures) are abstract and acausal. ‘Realism’ has, in fact, come to be nearly synonymous
with ‘platonism’. I think it’s important for philosophically-minded cognitive scientists to
recognize that this is an error. Many of us today share a malaise concerning abstract
realism’s apparent inability to explain our knowledge of its posits. In this chapter, I will
argue that Shapiro’s own account cannot be accepted as overcoming these difficulties. We
shall see, moreover, that some of the difficulties Shapiro encounters are symptomatic of the
shortcomings of platonist theories as such. If the acceptance of ante rem posits lands the
realist in trouble then, I want to suggest, mathematical realists are well advised to cut their
losses, return to norm and try something new.

Abstract Realism

Shapiro [1997] characterizes philosophical realism concerning mathematics as the attempt
to take the discourse of working mathematicians at face value.57 To construe realism in this
manner is already to take a nontrivial step beyond minimal ontological realism. As we saw
in the last chapter, norm attempts to treat the intersection of mathematicians’ claims as
ontologically committing. It is therefore conciliatory toward constructivism in a way that
Shapiro’s realism is not. Nonetheless, I propose to concede for the sake of discussion in this
chapter that the appropriate point of departure is norm augmented by whatever Shapiro’s
classical mathematician wishes to add. Having noted the concession, let us now retrace
the chain of reasoning that leads from the arguments of the previous chapter to modern
platonism.

57Additional examples of this approach can be found in the work of Balaguer [1998] and of Resnik [1997].
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Platonism

Mathematics studies mathematical objects: sets, functions, groups, numbers, and so on. It
characterizes the essential, formal properties of those objects. But what, apart from their
naked existence and formal character, can we assert of such entities? On this question,
the mathematician herself remains silent. And so, the first hurdle confronting a philoso-
pher interested in mathematical objects’ nonformal properties concerns methodology: by
what means can she determine the answer to this question? One apparently promising way
forward is to proceed by conceptual analysis. We can start by drawing up a list of prop-
erties (or property types) that mathematicalia cannot exhibit on pain of contradiction or
incoherence, thereby arriving at a sort of photonegative of the solution.58

Here’s an obvious start: Mathematical entities are not observable—at least not in any
straightforward sense. They can be represented by means of diagrams, numerals and other
such aids. But even so, mathematical proofs are not about the diagrams or the notation;
they are about what those represent. Moreover, the unobservability enjoyed by mathemat-
icalia is of a peculiar sort. To see why, let me draw a rough and ready distinction here
between two kinds of unobservables. On the one hand, we have entities undetectable by
the unaided sensorium in virtue of sheer size, velocity, intense gravitational pull, or some
other physical feature. Among such entities we find viruses, quarks, tectonic plates, black
holes, and dark matter. A distinct category comprises entities which cannot be touched or
seen in virtue of being complexes realized in (or supervening on) other material entities.
Instances here include computer files, immune systems, and language acquisition devices. I
am not suggesting that this bifurcation is either exclusive or exhaustive. Still, the point can
be made that mathematical entities do not fit well on either side. Unlike the cosmologist
or geophysicist, the mathematician does not devise or build complex devices so as to better
observe her chosen objects. So the obstacle to observing mathematicalia does not seem to
stem from our imperfect sensorium [Brown 1999]. Nor does it seem plausible that math-
ematical entities could be unobservable in virtue of being complexes instantiated in more
simple physical systems. One important reason, noted by Frege [1953], has to do with the
cardinality of physical entities. Consider: all physical entities are located in space and time.
One standard way to construe space-time is as a set of (at most) 2ℵ0 points. There are,
moreover, at most, a finite number of physical entities in each region of space-time. If so,
then the number of physical entities is bounded. There are, in fact, no more than 2ℵ

ℵ0
0 of

them [Parsons 1975].59 Clearly, this is a colossal number. Still, standard set theory (with
the axiom of replacement) permits the construction of sets of the cardinality ℵω— the first
cardinal preceded by infinitely many cardinals, so one vastly larger than any collection of

58This strategy is mentioned, for instance, by Burgess and Rosen [1997].
59To be on the safe side, I’m assuming here that no more than a countable infinity of distinct entities can

occupy each space-time point. This is probably overly generous.



35

physical objects could posssibly be.60 And the iterative hierarchy climbs higher still. So
although it may not be immediately clear to a philosopher what it means for these dizzy-
ing collections to ‘exist,’ it cannot mean that they exist in virtue of being instantiated in
concrete physical models.61

There is, additionally, a second reason not to equate mathematical entities with physical
objects. I have already noted that mathematical facts are metaphysically necessary; it
could not have been the case that they were otherwise. Try as we might, we cannot imagine
coherent possible worlds where (say) there exists a largest prime or where

√
2 is a rational

fraction. By contrast, all physical facts are (arguably) in principle contingent. As far as
we know, even very fundamental physical facts, such as the values of physical constants,
might have been otherwise. The possibility, in any case, appears coherent even if possible
worlds where the values are very different from the actual would be uninhabitable by us.
The necessity of mathematical facts and contingency of physical ones makes it implausible
that the former can be equated with the latter.

Continuing with our conceptual analysis, we find another clue to the properties of math-
ematical entities in ordinary linguistic usage. To ask where ω-sequences are located or for
how long the conic sections have existed is to pose nonsensical questions. The problem is not
that we are currently ignorant of the answers. Rather, it’s hard to make sufficient sense of
what is being asked to know how to go about formulating a reply. These questions commit
what Ryle [1949] called a category mistake; they attempt to apply a predicate to a subject
matter which is inherently unsuitable to it.

Taken together, these considerations permit us now to venture a first, tentative step
beyond naked realism. The position arrived at, modern platonism, is characterized by the
acceptance of two hypotheses over and above what norm already commits us to. The first
is this:

(P.i) Mathematicalia are imperceptible, atemporal, and nonspatial.

The second hypothesis follows immediately from the first. As far as we know, causal inter-
actions involve entities (roughly) localizable in space-time. But since mathematicalia seem
neither to be spatial nor temporal, it follows that they are incapable of playing a role in
causal interactions. They cannot be generated, do not decay, and cannot be destroyed.
Needless to say, this makes them highly unusual (and perhaps even unique) objects.

(P.ii) Mathematicalia are incapable of entering into causal interactions.

60See Maddy [1997], pp. 57-60 for a discussion of this topic. Also see DeLong [2004] and Enderton [1977].
61This leaves open the question of whether mathematical entities can be identified with possible physical

objects. I defer discussion of modal construals of mathematics for another time.
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Modern platonism is sometimes called an ante rem (or ‘before substance’) realism since the
platonist holds that the existence of mathematicalia is independent of and metaphysically
prior to the existence of extended substance (res extensa).62 Next, I’d like to take a closer
look at what is perhaps the most sophisticated current version of ante rem realism: Stewart
Shapiro’s [1997] structuralism.

Structuralism

Stewart Shapiro [1997] endorses both (P.i) and (P.ii). But it would be misleading to call
his ante rem structuralism a species of platonism without further comment.63 Indeed, it’s
only fair to briefly clarify where the differences between standard platonism and abstract
structuralism lie.

Consider for a moment the sorts of entities that, according to the platonist, populate
the world of mathematics. We find the mathematical realm teeming with groups, numbers,
graphs, functions, sets, classes and other, more exotic species. It’s worth enquiring whether
all of these entities are sui generis or whether some are ontologically more basic than
others. As is well known, the mathematical realist can make significant economies in her
basic ontology by supposing that, in the final count, almost all denizens of the platonic realm
reduce to sets. That’s because (remarkably enough) we can construct surrogates for just
about all mathematical objects by using only the primitive notions of membership and the
null set.64 This does not, of course, imply that all mathematics is just set theory any more
than the ontologically basic status of subatomic particles entails that all physical science is
just particle physics. The various branches of mathematics have their distinctive intellectual
styles, techniques, and problems. Still, by recognizing the logical priority of sets we gain a
natural way of organizing our ontology.

Taking set theory as ontologically fundamental raises certain problems. It’s reasonable
to suppose, Benacerraf [1965] argues, that bona fide entities have stable identity conditions.
Suppose we know, for example, that a certain amino acid is really a particular organic
molecule. The amino acid’s various properties (molecular mass, polarity, acidity or basicity
and so on) can be accounted for directly in terms of its underlying chemical structure.
Moreover, armed with our chemical analysis, we can sensibly ask whether (for instance) the
amino acid in question contains or fails to contain a sulphur group (or whatever). In the
case of the proposed identification of complex mathematical entities with sets, things are

62It’s useful to notice that platonism is a form of ontological dualism. Note also that some of the same ar-
gumentative strategies that are normally deployed in favour of mind-body dualism—in particular, arguments
from conceivability and from category mistakes—play a role in sustaining platonism.

63The details of the structuralist conception of mathematics won’t play a significant role in my argument
for the moment. But I want to leave that door open.

64Set theory is not our only choice here; one can take mappings as basic and avail oneself of category
theory instead. Cf. Hellman [2003]. I return to this topic in later chapters.
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not nearly as clean. Consider the natural numbers. If numbers are objects, we should be
able to specify precisely what kind of objects they are. If they are au fond sets then we
should be able to say exactly which sets. As is well known however, there is an infinite
variety of non-equivalent ways of constructing a bijective mapping from sets to the natural
numbers. Because of this, apparently straightforward factual questions—such as whether
or not 1 ∈ 3—cannot be settled except by fiat. (If we identify the positive integers with von
Neumann’s ordinals then 1 is indeed an element of 3; if we adopt Zermelo’s characterization
instead, it’s not.) Moreover, the problem ramifies. There are many nonequivanent ways
of using sets to offer surrogates for the integers, rationals, reals, and so on. But if that’s
right, Benacerraf argues, this speaks against identifying numbers, or mathematical entities
in general, with sets. In fact it speaks against the notion that mathematicalia are bona fide
entities at all.

Ante rem structuralism offers an elegant reply. The apparent difficulty stems from
supposing that mathematical entities are to be thought of as being characterized by their
essential, intrinsic properties. There is however an alternative:

Mathematical objects [so numbers, groups, sets] are featureless, abstract positions in
structures (or more suggestively, patterns);. . . paradigm mathematical objects are geo-
metric points, whose identities are fixed only through their relationships to each other.
[Resnik 1997]

On the structuralist account, rather than investigating discrete entities with (as it were) a
mysterious inner nature, mathematics studies positions in abstract patterns. The nature of a
mathematical object is fully determined by the place it occupies in such a pattern—which is
to say, by its external relations to the structure’s other positions. The picturesque metaphor
can be given precise content. Shapiro [1997] offers axioms that detail the nature of abstract
structures. These closely parallel second-order ZF axioms, thus ensuring that the structural-
ist’s proposal is sufficiently rich to offer a background ontology for the whole of mathematics
(on the assumption, of course, that ZF does). The apparent problem of multiple reductions
that Benacerraf [1965] points out emerges as a natural corollary of the theory. Comparisons
between elements within a single structure (such as questions whether 1 < 3, and so on)
are perfectly sensible and receive answers. But since structuralism only specifies objects ‘up
to isomorphism,’ comparisons between objects across different structures find no principled
solutions. Nor would we expect them to. To be a natural number just is to play a role in
a structure specified by (second order, so categorical) arithmetic. It should not surprise us
that a variety of distinct sets are able to play this role.65

65Note also that structuralism starts us on the path to explaining why the study of mathematics is so
useful in natural science: mathematical patterns can serve as descriptions of concrete, physical systems when
the latter happen to display a structure isomorphic to the former. I return to this in Chapter 4.
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For our purposes, the important point to take away is that abstract structuralism takes
on board both of the propositions that more traditional platonism is committed to. In
addition, it accepts a further, logically independent postulate:

(P.iii) Mathematicalia are fully defined by their formal relational properties.

This postulate is logically independent of (P.i) and (P.ii). It stands or falls independently
of them.

Knowledge

Earlier, I mentioned the pervasive perception that mathematical realists (of all persuasions)
face some tough questions about epistemology. Addressing this topic, Benacerraf [1973]
argues as follows: In order to come to know a new fact F several conditions must be
satisfied. Most obviously, F must actually hold. As well, since knowledge is a species of
belief, coming to know a fact involves either forming a new belief or shifting preexisting
and erroneous beliefs with regard to F . Finally, to count as knowing that F , as opposed
to merely having made a lucky guess, we require that appropriate evidentiary grounds
exist for our epistemic state. Those grounds are typically construed as the existence of
an appropriate connection between ourselves and that which is known. In the case of our
knowledge of perceptually observable physical phenomena this connection can plausibly be
traced to the causal interaction between our sensory apparatus and our surroundings. Where
no connection exists, or in cases where the existing connection fails to be sensitive to the
appropriate facts, we cannot be said to have knowledge of F .66

What troubles Benacerraf about our apparent knowledge of mathematical entities (as
construed by platonists and their intellectual successors) is that it’s very hard to say what
the relevant epistemic grounds might be. It’s implausible that our knowledge of mathe-
matics beyond grade-school—the sort needed to grasp ZFC, for instance—is innately given.
Mathematical research is just too difficult and time-consuming for wholesale nativism to
be a plausible hypothesis. Yet since abstract entities (including ante rem structures) do
not, ex hypothesi, enter into causal interactions, we cannot easily explain our knowledge of
them by analogy with our knowledge of physical facts. Admittedly, it might seem tempting
to pass the buck to the mathematician by suggesting that accepted mathematical proofs
themselves constitute sufficient evidence for the existence of the relevant objects. Proofs,
after all, are considered sufficient evidence for the existence of the relevant mathematical
structures by working mathematicians. But, Benacerraf argues, this should not satisfy an

66I will discuss knowledge in more detail in Chapter 4. I should say however that I will be focusing here
on knowledge construed as true, reliable belief. In other words, I am interested in what makes mathematical
judgements true and how it comes to pass that such judgements are often reliable. If there is more to
knowledge than that, I am leaving it out of the discussion.



39

ontologist. What is at issue for her is truth and not theoremhood or “mathematical correct-
ness”. Lacking an independent philosophical account of how mathematical theoremhood
manages to track mathematical fact one can sensibly deny that we have reliable mathemat-
ical knowledge: the proofs might be correct, but the propositions they demonstrate might
still not be true.

Benacerraf’s argument is not a refutation of platonism. The platonist can reject some
of the presuppositions that Benacerraf relies on. Among the more vulnerable premises
is the causal account of epistemic grounding [Goldman 1967, Skyrms 1967]. Causal ac-
counts promise an attractive way of circumventing Gettier [1963] scenarios. They do how-
ever beg the question against the platonist by building in precisely what she explicitly
denies—namely, that knowledge requires causal traffic between knower and known. Of
course, the accusation of circularity alone does not prove that causal accounts of epistemic
grounding are false.67 For all we know, some version of such an account may be exactly
right. But causal accounts of epistemic grounding cannot be used to construct compelling
arguments against the platonist position. On balance then, Benacerraf [1973] should be read
as merely pointing out that no generally acceptable account of our mathematical knowledge
yet exists.

The burden of proof, I think, distributes evenly to both sides: It’s incumbent on skeptics
about acausal abstracta to show that a non-circular version of Benacerraf’s arguments can be
formulated or to furnish an alternative theory which avoids the problematic commitments.
The abstract realist, by contrast, needs to make every effort to explain how we might make
sense of our knowledge of acausal, abstract facts. Shapiro [1997] takes up this challenge and
it is to his account of epistemic contact that I now turn.

Ante rem account

Shapiro [1997] proposes an admirably lucid and detailed epistemic account. On that account,
we derive our mathematical knowledge from three sources: pattern recognition, linguistic
abstraction, and functional (or implicit) definition. Let me briefly explain each of these
routes before critically evaluating the hypothesis being advanced.

Pattern recognition. Of the three sources of mathematical knowledge, pattern recog-
nition is the simplest but also the most limited. Typically, the sensorium of an animate
creature is capable of registering and distinguishing a certain range of visual, haptic, olfac-
tory and auditory stimuli. The recurring properties of these stimuli—including, for instance,
shape, texture, and pitch—can be registered as well. Sufficiently complex creatures are able
to track groups or sequences of recurring properties.68 Human infants are no exception. For

67This is sometimes forgotten. See Nozick [1981] for some interesting comments.
68For a discussion of some unexpected limitations of this ability in higher mammals, see Spelke [2002].
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instance, newborns are already capable of distinguishing patterns consisting of two audi-
tory stimuli from those consisting of three [Bijeljac-Babic et al. 1993]. They are capable of
distinguishing faces (especially mother’s faces) from other types of patterns and they show
a preference for looking at the former [Pascalis et al. 1995]. And there is good evidence
that even prior to acquisition of language, infants factor the world in terms of predicates
and arguments [Gleitman and Fisher 2005]. Finally, in addition to any innate capacities for
specific pattern recognition and stimulus parsing, children are able to learn which new types
of patterns they need to track; they are, in effect, capable of genuine conceptual advances.69

Figure 1: A dozen tokens of a single
type.

The ante rem structuralist invites us to consider
an example of this sort of general learning. Take as
our example a child being taught to recognize the let-
ter ‘L’. She may start by learning the alphabet song.
Part of memorizing the song involves learning that
its twelfth term is a particular voiced, alveolar con-
sonant. Next, the child might be taught to correlate
occurrences of that phoneme with written tokens of
a specific shape. This is not entirely straightforward
since written L-tokens vary considerably in visual ap-
pearance. Once she masters that skill, she moves on
to still more complex challenges. It turns out that
the letter ‘L’ can be tapped in Morse code, gestured
in semaphore, and presented as a mariner’s flag. What’s more, certain letter tokens be-
longing to non-Roman or non-standard alphabets—including λ, Λ, and  L—can count under
certain conditions as borderline members of the L-type. But in any case, the ante rem realist
argues that normal children do eventually come to recognize context-sensitive, multi-modal
patterns and that this occurs on the basis of an exposure to concrete tokens. To make
sense of this fact the structuralist suggests that we need to admit that an acquaintance with
concrete physical tokens can give rise to knowledge of places in a pattern. After all, the only
feature shared by the various ‘Ls’ is the role they play in an alphabet. And an alphabet just
is a kind of structure. Thus, to make sense of what takes place, we must come to recognize
the existence of structures in addition to individual, concrete objects and their properties.

On the ante rem structuralist’s reconstruction, something analogous if somewhat more
sophisticated takes place when children come to understand natural numbers. Relatively
early on, infants recognize that many otherwise very different physical stimuli—such as

69Shapiro [2000] suggests that “pattern recognition is a deep and challenging problem in cognitive psy-
chology, and [that] there is no accepted account of the underlying mechanisms.” This is not false but it
is slightly misleading. Our knowledge of how humans categorize is, of course, incomplete. Nonetheless,
standard cognitive science textbooks, including O’Reilly and Munakata [2000] and Gurney [1997], contain
fairly sophisticated models and discussions.
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light flashes, sequences of tones, and concrete objects—can share a single, higher-order fea-
ture: what we would call ‘numerosity’. To recognize this, the infant mustn’t focus unduly on
the accidental physical features of each stimulus but rather attend to multi-modal, context-
sensitive information. Adults may perhaps help by actively pointing out various collections
while labelling them with the appropriate number term, but in all likelihood the underlying
ability is innate [Gallistel et al. 2005]. The important point is that learning to attend to and
distinguish collections of various numerosities is analogous (the argument runs) to grasping
the alphabet. In the one case, the child learns that certain tokens count as ‘Ls’; in the other,
she learns that certain collections count as pairs, or fours, or sevens. And this is a first step
toward grasping mathematical structures:

The process. . . may not go all the way to characters and strings as completely freestand-
ing abstract objects, but the development goes pretty far in that direction. Presumably,
nothing philosophically occult or scientifically disrespectable has been invoked along the
way. In the end, we either demystify numbers [and abstract structures] or we mystify
more mundane items [such as letters of the alphabet]. [Shapiro 1997]

In effect, the structuralist argues that in order to explain pattern recognition of the sort
employed by young children, we should acknowledge the existence of structures, including
the alphabet and the number seven.

Having taken that last step, we appear to face a dilemma: either we insist on thinking
of patterns as coextensive with (but not identical to) the elements that comprise them, or
we think of them as freestanding and abstract. On reflection, the first option quickly leads
to absurd conclusions. For instance, if all tokens of the letter ‘L’ were destroyed and if
the letter truly were coextensive with its token instantiations, then the letter itself would
perish. Likewise, if no physical collection of some particular cardinality happened to exist at
a given moment, the natural number corresponding to that cardinality would itself (perhaps
temporarily?) cease to exist. Recall that we already have reason to believe that there
are some infinite numbers that are never instantiated in concrete collections. Construing
patterns as coextensive with the systems they organize is therefore unacceptable. And so,
the structuralist invites us to accept the existence of freestanding, abstract patterns.

Linguistic abstraction. Pattern recognition has serious limitations as a means of ac-
quiring mathematical knowledge. In order to grasp a structure in this manner, one must
perceive a concrete system which exemplifies it. The maximum numerosity of systems hu-
man beings are capable of perceptually distinguishing is an open question. Shapiro suggests
however that it certainly does not exceed ten thousand:

At some point, still early in our child’s education, she develops an ability to understand
cardinal and ordinal structures beyond those that she can recognize all at once via
pattern recognition and beyond those that she has actually counted or could count.
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What of the 9422 pattern. . . ? Surely, we do not learn about and teach such patterns by
simple abstraction and ostensive definition. The parent does not say, “Look over there,
that is 9422” [Shapiro 1997, p.117]

The suggestion is that another, more sophisticated process must be invoked to explain our
knowledge of more complex structures.70

Here, language plays an important facilitating role. As I have noted, we begin to under-
stand the meanings of numerals and number-names once we grasp the connection each of
these has with appropriately sized collections. At first, this knowledge is gained piecemeal.
But having grasped the connection in the case of small collections, we are ready to take the
next step: that is, to realize that numerosity patterns themselves form a system. The distinct
and systematic labels that language makes available help the child grasp each number as
itself an object, rather than as a property of collections. Language moreover helps the child
understand that the system of numbers (now construed as objects) itself displays a regular,
orderly pattern—a pattern with a further, higher-order property: each of its elements has a
unique successor, such that no two elements share a successor. Once the child has grasped
this, she has (implicitly) grasped the Peano axioms.

Two pieces of evidence speak in favour of this reconstruction. At a certain moment,
children delight in making up labels for absurdly large and sometimes nonsensical numbers
(“a billion trillion zillion”) and gleefully naming the next higher cardinal. What they seem to
be enjoying is their new-found grasp of structures whose corresponding concrete collections
they could not possibly envisage. It’s interesting to note moreover that chimpanzees too
can be taught to match labels (including arabic numerals) to collections of items with the
appropriate numerosity. Interestingly however, chimps take a roughly equal period of time
to learn each label for collections from 0 through 9 [Kawai and Matsuzawa 2000]. Unlike
human children, they never seem to ‘get’ that every label’s referent must be followed by
a successor. One can reasonably hypothesize that our capacity for learning arithmetic
somehow piggybacks on our grasp of natural language [Hauser et al. 2002].

Implicit definition. Once learners have at their disposal the full semantic resources made
available by natural language, it’s possible to communicate the nature of a structure by
indirect description. In the case of structures that make no reference to entities outside
of themselves, we can describe the elements that comprise them strictly in terms of the
relationships they bear to one another. The system thus described need not have been
observed or even to have physically existed. We begin by holding true a plausible collection
of propositions or axioms in which some undefined term T appears. Perhaps the collection

70There is a second, independent reason why pattern recognition cannot be the whole story: pattern
recognition ties mathematical knowledge to sensory experience, while mathematics is typically held up as an
example of the a priori.
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strikes us as self-evident. The term T comes to be implicitly (or functionally) defined by
the axioms; it comes to possess whatever meaning it needs to for the statements to come
out true. Shapiro suggests that the strategy succeeds provided that two conditions are met.
The first is that the sentences that serve to specify T must be consistent; that is, they must
be capable of being true simultaneously. Second, the structure specified by the axioms must
be unique. Any systems that the definitions hold good of must share a common structure.71

Counter-evidence

Shapiro’s [1997] account of mathematical knowledge is admirably clear and precise in its
commitments. Thanks to its clarity, it is possible to critically examine some of its details.
I will start by reevaluating whether linguistic abstraction and implicit definition can indeed
account for human knowledge of large structures. I will return to pattern recognition and
smaller, finite structures a little later on.

Large structures

According to Shapiro, human beings capable of recognizing relatively small patterns are
brought to understand large (and sometimes truly vast) structures by linguistic abstraction
and implicit definition. It’s worth underscoring that both of these abilities rely crucially on
natural language. The theory is quite explicit on this point:

[These] epistemic techniques suggest a tight link between grasp of language and knowl-
edge of structures. This is especially true for implicit definition. For the fields of pure
mathematics at least, grasping a structure and understanding the language of its theory
amount to the same thing. There is no more to understanding a structure and having
the ability to refer to its places than having an ability to use the language correctly. . .

[T]he way humans apprehend structures and the way we “divide” the mathematical uni-
verse into structures, systems, and objects depends on our linguistic resources. Through
successful language use, we structure the objective subject matter. Thus, language pro-
vides our epistemic access to mathematical structures. [Shapiro 1997, p.137]

Let me concede for the moment that natural language could, in principle, play the required
mediating role between acausal structures and our cognitive apparatus. This is a point
to which I will return. For now, I want to focus on some of the implications of the pro-
posal. If Shapiro is right—if our epistemic access to mathematical facts is mediated by
language—then we would expect severe linguistic impairments to have a deleterious impact
on our mathematical abilities. And conversely, we might perhaps also expect impairments
of mathematical intelligence to correlate to a degree with impaired linguistic ability (though

71A useful introductory presentation of implicit definition can be found in Chapter 2 of Nagel and Newman
[2001]. For a rather critical philosophical discussion of the powers of implicit definition, see Horwich [1997].



44

this is far less certain). A look at the psychological literature does not bear out either of
these predictions.

Semantic dementia. The first piece of evidence I’d like to look at comes from studies
of dementia. In general, dementias are characterized by a chronic decline in cognitive
function across two or more distinct domains. They normally onset gradually and their
early symptoms can be relatively mild. The precise clinical profile of affected patients is
hard to predict in advance due to the considerable range of underlying neuropathologies.
Still, over time dementias are typically more debilitating than those impairments—such
as aphasias, ataxias or amnesias—which target only one type of function (so language,
coordination, and episodic memory, respectively) [Albert et al. 1999].

My interest here is in semantic dementia.72 The condition involves a gradual degener-
ation of semantic memory, typically due to the atrophy of the cerebral left temporal lobe
and supporting tissue (Figure 2). Semantic dementia leads to a loss of understanding of
the meanings of both spoken and written words, as well as severe difficulties in articulating
content. It also results in an inability to recognize objects, faces and pictures. Since other
cerebral regions are typically spared, these deficits are circumscribed and most other aspects
of mental life remain unaffected. Patients are typically alert and orient normally in their
surroundings. Their perceptual faculties, autobiographical (episodic) memory, and problem
solving skills remain intact. In fact, patients can even retain the non-semantic (so syntactic
and phonological) aspects of their linguistic competence.

Cappelletti et al. [2001] investigate the extent to which a patient affected by semantic
dementia retains an understanding of specifically arithmetic concepts and operations. The
subject, IH—a 65-year-old, male, right-handed, British banker—was first diagnosed in 1995.
IH’s initial symptoms included severe difficulties with finding words and also with naming
objects. IH remained fluent and his speech was syntactically correct but the investigators
characterized his replies as ‘vague’ and ‘discursive’, often lacking a clear meaning. To
compensate, IH frequently relied on set phrases such as “I delved into that. . . ”, or “I am
totally committed to. . . ”. He was also incapable of reading newspapers. It’s important
to emphasize however that IH’s semantic difficulties were not due to a lack of general
intelligence. His episodic memory was largely spared and he continued to recognize people
and places. His knowledge of familiar topics, such as sports and politics, also remained
intact. The problems IH was experiencing seemed therefore almost wholly connected to his
knowledge of language. (There was one notable exception, however: several years earlier IH
had begun to display a lack of judgement while gambling. This ultimately led to financial
difficulties and divorce. It’s not clear whether these symptoms were due to temporal lobe
atrophy or perhaps to damage to underlying, subcortical structures.)

72This has sometimes also been called progressive aphasia.
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Figure 2: Left temporal cortical at-

rophy resulting in semantic dementia

[Cappelletti et al. 2001]. Used with

permission.

The initial investigation comprised a battery of tests
designed to measure IH’s non-mathematical, semantic
knowledge. The stimuli included images of both living
and human-made entities drawn from six categories: veg-
etables, body parts, and animals, as well as furniture,
modes of transportation, and musical instruments. In
each case, the stimuli ranged from the very typical
(tomato, dog) to the atypical (asparagus, zebra). Both
verbal and pictorial tests were carried out. The verbal
tests asked IH to perform such tasks as picture naming,
picture matching by type, producing words semantically
associated with a given stimulus, offering verbal defini-
tions of objects, and naming as many objects of a partic-
ular type as possible. The results were almost uniformly
discouraging. IH was wholly unable to perform these
tasks, scoring zero on all but name-to-picture matching.
There, since the response options were limited, he per-
formed at chance.73 Age-matched control subjects, by
contrast, performed at 97% or better on all tasks.74 We must therefore conclude that IH’s
verbal semantic knowledge was all but nonexistent. IH did somewhat better on pictorial
tests of semantic knowledge. Here, the tasks involved understanding and manipulation of
pictures chosen so as to parallel stimuli used in the previous tasks. IH was asked to clas-
sify pictures both at the entry-level category (animal, furniture) and at the subcategory
level (exotic animals). He was also asked to draw size comparisons between depicted items,
perform semantic picture-picture associations, and distinguish between real and nonsense
objects based on silhouettes. In each case, the responses IH was asked to make were non-
verbal to block the interpretation that his deficits had to do with linguistic articulation.
He scored 80% on the picture classification at the category level and 66% at the subcate-
gory level. Similarly, he scored 65% on the size-judgement task, and 70% on the silhouette
reading task. (Predictably, the controls’ scores were nearly perfect for all but the silhouette
task.) The results suggest that while IH’s linguistic semantic abilities were almost wholly
compromised, he did retain some ability to understand objects and their properties.

73The sole exception to this pattern of results concerned the naming of seasons, days of the week, and
months of the year where IH scored 21 out of a possible 23. This, together with the rest of the results, raises
the question whether rote patterns such as the list of the days of the week are encoded differently from other
semantic memories. A difference in encoding is further suggested by neurophysiological studies, including
Dehaene et al. [2003].

74In the category fluency test, IH named zero objects of the types used; the controls averaged almost 15
per minute across the categories.
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The principal purpose of the study was, of course, to investigate IH’s specifically math-
ematical abilities. If these abilities depend on our capacity to grasp linguistic meaning, one
would expect IH’s understanding of mathematical concepts and operations to be very poor.
If, on the other hand, the two are importantly distinct, at least some mathematical under-
standing should be spared in spite of IH’s other semantic difficulties. Two broad types of
tasks were used: the first focused on comprehension and transcoding, the second on calcula-
tion. In the first set of tests, IH performed nearly flawlessly. The tasks included recognizing
written numbers, counting, naming a number’s successor and predecessor, transcoding from
arabic numerals to spoken number words and vice-versa. He made one mistake (in ten
trials) when asked to bisect numbers. The only exception to his apparently nearly perfect
comprehension of numbers involved knowledge of number facts. He was not able to say how
old he was, what his shoe size was, or how many months there were in the year. Moreover,
interestingly, he was not able to name or explain the arithmetical the operators. Still, IH
clearly retained much of his understanding of numbers and their properties.

Given IH’s apparent difficulties with explaining the arithmetic operators, one might
expect him to have trouble with written calculation. Not so. In fact, he scored above 95%
on 2 and 3 digit addition and subtraction problems and 69% and 62% on multiplication and
division problems, respectively. His single-digit arithmetic performance was even better. It
seems therefore that his knowledge of these operations is largely preserved in spite of the
clear semantic impairments he displays. (Cf. Table 1, below.)

Task IH % correct Controls % correct

Oral single-digit arithmetic (N=254)

Addition 98 100
Subtraction 95 100
Multiplication 73 90

Written multidigit arithmetic (N=128)

Addition 99 99
Subtraction 96 98
Multiplication 69 95
Division 62 95

Approximate calculation
Approximation to correct result not understood 100
Placing numbers on a line (N=100) 100 100

Table 1: Semantic dementia impacts arithmetic cognition (cf. Cappelletti [2001]).
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We should conclude therefore that while IH has very serious nonverbal semantic memory
deficits, his understanding of numbers and of arithmetic procedures remains largely intact.
This strongly suggests that our understanding of mathematical and of linguistic items involve
independent cognitive systems. It therefore gives us our first evidence that mathematical
understanding operates independently of some aspects of our linguistic competence.

Agrammatic aphasia. The case of IH leaves open the possibility that our mathematical
abilities are bound up closely with syntactic (rather than semantic) aspects of our linguistic
competence. Evidence showing that this is not the case comes from work on agrammatic
aphasia.

In what (to my knowledge) is the first study of its kind, Varley et al. [2005] investigated
the arithmetic abilities of three profoundly aphasic men: S.A., S.O., and P.R.75 All three
subjects were in their late 50s. All three had suffered lesions to their left middle cerebral
artery resulting in extensive damage to the left perisylvian temporal, parietal and frontal
cortices. Consistent with this damage, the subjects displayed severe but circumscribed lin-
guistic deficits. All three performed above 85% on both spoken and written word-picture
matching tasks. And two of the three did relatively well (> 75%) on spoken and written syn-
onym matching tasks.76 In each case, the subjects’ phonological memory was also relatively
spared. Nevertheless, the subjects performed poorly on tests of grammatical processing
involving the matching of reversible spoken and written sentences to pictures depicting rele-
vant actions (for example “The man killed the lion” and “The lion killed the man”), scoring
below chance on this task. Since their word-knowledge and linguistic memory were appar-
ently not a factor, their failure on this task can only be attributed to a specific grammatical
deficit.

Interestingly, all three subjects retained considerable mathematical competence. They
were able to add, subtract, multiply and divide whole numbers. They were also able to add
and subtract fractions. Moreover, in spite of their difficulties with reversible sentences, the
subjects did relatively well with reversible subtraction and division problems. The simplest
task of this sort involved solving pairs of arithmetic expressions—such as 59−13 and 13−59,
60 ÷ 12 and 12 ÷ 60. In order to arrive at the answer, the subjects needed to keep track
of the order of presentation and understand its impact on the calculation being performed.
A second, slightly harder task of a similar nature used bracketed expressions (36÷ (3× 2))
that the subjects were asked to solve. Once again, the subjects performed relatively well.
The third and hardest task had the subjects insert brackets into unbracketed expressions
(such as 7 + 4 × 3 + 17). Here, the subjects were deemed to have succeeded on a trial if
they were able to insert the brackets in two distinct ways into the given expression so as

75Also relevant is a commentary by Brannon [2005] and the work of Gelman and Butterworth [2005].
76The remaining subject scored 70% on the written part of this test.
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to produce two different answers. The arithmetic task results are summarized in Table 2,
below.

Task S.A S.O P.R.

Calculation tests (N=20)

Addition 19 16 20
Subtraction 19 19 19
Multiplication 19 13 17
Division 19 11 16

Adding and subtracting fractions (N=30) 27 27 20

Reversibility tests (N=40)

Subtraction 40 35 37
Division 37 34 38

Bracket expressions
Calculation accuracy (N=64) 45 52 43
Bracket generation and calculation (N=5) 4 4 2

Table 2: Agrammatic aphasia impacts arithmetic cognition (cf. Varley [2005]).

On the basis of the above results, we must conclude that all three test subjects were capa-
ble of coping with complex hierarchical structures in the context of arithmetic operations.
It seems that they could understand and apply hierarchical, syntactic reasoning regard-
ing arithmetic problems that they were unable to bring to bear on linguistic expressions.
This suggests that mathematical processing can operate independently of the processing of
natural language syntax.

Savants. Work presented thus far suggests a certain degree of independence between hu-
man numerical and linguistic abilities. Nonetheless, it doesn’t yet pose an insurmountable
problem for accounts of mathematical knowledge such as Shapiro’s. An ante rem struc-
turalist can maintain that a grasp of natural language (syntax or semantics) is required in
order to initially learn mathematical concepts and operations; once these are understood,
however, our mathematical abilities operate (or degrade) independently of language.77 My

77Ante rem structuralists are not the only ones who advance this hypothesis. The dependence of arithmetic
competence on natural language is also defended by Hauser et al. [2002]; limited empirical support is offered
by Donlan et al. [2007].
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next piece of evidence is intended to block this move. It concerns the highly unusual skills
of an autistic savant calculator.

Mathematical savants are able to appreciate relations between numbers not apparent
to the rest of us. The mathematician G. H. Hardy (whom we encountered in Chapter 1)
reports a conversation with Ramanujan, a mathematical genius, while the latter lay dying
of tuberculosis in a British sanatorium.

“The taxi that I hired to come here bore the number 1729,” said Hardy. “It seemed
a rather dull number,” “Oh no, Hardy” replied Ramanujan. “It’s a captivating one:
It’s the smallest number that can be expressed in two different ways as a sum of two
cubes”—1 729 = 13 + 123 = 103 + 93. [Quoted in Dehaene 1997, p.148]

The intuitive familiarity with natural numbers required to make this sort of observation
is a rare gift that is far from being understood by modern cognitive science. The ability
reportedly correlates (in many cases, at least) with a certain sensibility which facilitates
mathematical research. Indeed, a number of gifted mathematicians, including Gauss, were
calculating prodigies. Nonetheless, Dehaene [1997] argues that at least some apparently
superhuman feats of calculation rely on heuristics that can be learned and practised. More-
over, calculation ability alone does not necessarily correlate with general intelligence or the
capacity to construct imaginative solutions to novel abstract problems.

The case that interests me here is that of Michael, a young savant calculator. Michael is
doubly unusual: not only is he a gifted calculator, he is also profoundly autistic. Autism has
become something of a cause célèbre in the past two decades. The diagnosis spans a range of
disorders whose physiological basis is still not well understood. Autism-spectrum disorders
can however be characterized cognitively as involving a characteristic pattern of executive,
social, and linguistic deficits. Many autists engage in stereotyped, repetitive behaviours
and display obsessive interests. They dislike changes in routine. And they have trouble
shifting attention in a flexible and appropriate manner. When focused on a stimulus, they
display a bias for local, part-oriented processing. Perhaps for this reason, they seem not to
succumb to some visual illusions involving gestalt patterns. Three quarters of autists have
an IQ in the mentally retarded range, though some are of average or even above average
intelligence. Even high-functioning autists have trouble attributing mental states to others
(or to themselves) and so they typically have severe difficulties interpreting or predicting
others’ behaviour in terms of beliefs or desires. Many autists display serious difficulties with
linguistic communication, with special difficulties in the area of pragmatics—they tend to
grasp the literal rather than the intended meaning of what is said. They don’t get jokes or
respond appropriately to metaphor [Frith and Happé 1999, Tager-Flusberg et al. 2001].

Michael presents with the classic symptoms of autism with respect to executive func-
tion, social behaviour and linguistic ability. He does relatively poorly on tests of general
intelligence (IQ 67). However, he is fascinated by jigsaw puzzles which he solves equally
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well with the picture-side up or down. He is also interested in calendars. Thus, on tests of
intelligence involving only abstract shapes and relations, Michael scores well above average
(IQ 140). Michael never initiates social interaction and shows no interest in it. Nor does he
have any interest in communicating with others. He does not point and does not attend to
pointing. He was once taught some rudimentary signs but never uses these spontaneously.
Finally, Michael has never learned to speak and shows no indication of understanding spo-
ken language. In fact, he is, by all accounts, completely alinguistic. This is, I realize, a
surprising and radical claim, so I quote the relevant descriptions in full:

Michael is a young man without any speech or verbal comprehension. . . As a young child,
he did not talk or attempt to engage in any kind of communication. He still cannot
speak but has learned to copy numbers and letters, though only very poorly. [Anderson
et al. 1999, p.385-7]

He did not look at things when someone pointed at them, never waved goodbye or
responded to cuddling. Michael is not deaf, but he seemed not to understand any
language at all and did not himself develop any speech. . . He has remained entirely
without language, and though he was taught some sign language gestures he never used
these spontaneously.[Hermelin 2001, p.109]

[H]e never initiated gestures, such as pointing or waving goodbye. He never began to
speak and did not respond to language. He took very little interest in adults and did
not try to communicate in any way. . . He began attending a special school for autistic
children at age six. He learned to ‘write’ with a pencil, i.e., he learned to copy letters
and numbers. But he has not improved in this skill since his schooldays and his written
numbers are often difficult to make out. He also learned a few elementary Paget Gorman
signs, though he never used them spontaneously. [Hermelin and O’Connor 1990, p.165]

In one case, there is some suggestion that Michael’s linguistic handicap runs even deeper
than the above passages suggest. Anderson et al. [1999] write that not only is Michael
alinguistic; he also lacks the underlying resources to categorize pictures of concrete objects
into the relevant categories (such as vegetable, mode of transport, and so on). This appears
to be indicative of a profound semantic deficit.

Michael lacks any language production or comprehension. We might go further, and
suggest from his performance on the Columbia [inclusion/exclusion test] that he may
also be unable to abstract from objects the semantic categories to which they may be
assigned. . . [I]t may be that Michael demonstrates above average intelligence only when
problems are limited to spatial and perceptual dimensions. Moreover, it seems clear that
his capacity to deal with problems as long as they do not involve a semantic classification
of objects in the real world also extends to numbers.[Anderson et al. 1999, p.399]

It would appear then that Michael’s grasp of natural language (syntax, semantics and prag-
matics) is essentially nil.
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As it happens, both of Michael’s parents are mathematicians. He was taught to ‘read’
and copy numerals quite early on, though (as we just saw) his writing is often hard to
decipher. What is perhaps more surprising given the extent of his various deficits is that
Michael is capable of performing basic arithmetic operations on numbers. He can add,
subtract, divide, and multiply. Moreover, Michael is capable of factoring numbers. This
last ability was the focus of Hermelin and O’Connor’s [1990] study.

Three different tasks were used to test the savant’s skills: recognizing and generating
primes, as well as factorizing non-primes. Each task was performed with three-digit, four-
digit and five-digit numbers, so at three levels of difficulty. In each case, the task was modeled
for Michael twice. After this he was able to proceed with most of the tasks “appropriately
and without hesitation.” In one case, a trial had to be rerun to secure Michael’s cooperation.
Table 3 compares Michael’s performance to that of a control subject, a male psychologist
with a degree in mathematics.

In general, both subjects’ error rates as well as the kinds of mistakes committed were
similar. In general, the control tended toward omission errors while Michael tended to
produce false positives. The most striking difference between the data concerns the response
times. In general, the speed of information processing as measured by reaction time studies
is closely associated with the level of general intelligence [Jensen 1979]. In a prior study
of idiot-savant calendrical calculators Hermelin and O’Connor [1983] had found that the
“simple and complex visual RT of these subjects was in accordance with those expected
from their IQ whereas their speed of calendrical calculation was much faster than that
usually obtained from people with much higher IQs.” This suggests that savant calculators
possess a cognitively-specific calculating ability.

It’s hard to deny that Michael possesses genuine mathematical knowledge. This is par-
ticularly clear from his ability to generate prime numbers in the range between 10037 and
10133. (Recall that Shapiro [1997] specifically denies one could grasp structures as large
as 9422 by simple pattern recognition.) Moreover, we can be confident that his knowledge
is the same in kind as that displayed by the neurotypical control. An analysis of response
times suggests that Michael employs Eratosthenes’ sieve, the same algorithm used by the
control. The algorithm involves dividing the target number by all prime numbers less than
or equal to the target’s square root. Thus, for example, since 59 cannot be divided by 2, 3,
5, or 7, we can safely conclude that it is prime. So while Michael’s access to mathematical
knowledge is exceptionally fast, and perhaps unconscious, the knowledge itself appears to
be the same in kind as that possessed by the rest of us. It follows that a grasp of language
is not strictly required for genuine mathematical knowledge. It would seem therefore that
any account of human mathematical knowledge which holds that a knowledge of language
is required in order to grasp complex mathematical structures, such as the natural number
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structure, is empirically disconfirmed.78

Control Savant
Task Correct Mean time (sec) Correct Mean time (sec)
Recognizing primes
between 301-393 20/30 11.46 29/30 1.16

1201-1309 18/30 12.90 22/30 2.90
10307-10427 23/30 10.73 15/30 2.00

Generating primes
227-281 8/10 12.9 9/10 6.20
1019-1091 5/10 25.6 5/10 6.00
10037-10133 4/10 50.0 5/10 10.00

Factorizing numbers
212-221 8/10 22.6 9/10 8.8
1001-1011 7/10 25.5 8/10 20.8
10002-10013 4/10 48.0 7/10 38.2

Table 3: Savant performance on arithmetic tasks (cf. Hermelin O’Connor [1990]). Note: Results
shown indicate the number of correct responses and mean decision time.

Dyscalculia. In order to demonstrate the mutual independence of two cognitive capaci-
ties, it’s important to show a double dissociation: that is, to prove that each can operate
(or fail) independently of the other. The last piece of evidence I’d like to present is intended
to show that our mathematical competence can fail while leaving the rest of our cognitive
capacities intact. Strictly speaking, this is not crucial to the case I am trying to build. But
it does serve to reinforce the conclusion that mathematics and language are subserved by
functionally independent cognitive systems.79

The evidence here comes from studies of dyscalculia, a relatively common but still not
well understood developmental disorder [Butterworth 2005]. Dyscalculia seems to affect at
least 3.6% of the population—so roughly as many people as dyslexia. Those affected show
a persistent impairment learning and remembering arithmetic facts as well as problems
executing calculating procedures. Of course, reasons for poor math skills among children
can vary widely. They can include poor teaching, weak study skills, anxiety, missing lessons,

78This includes Shapiro [1997] but also Maddy [2007], and arguably the fictionalist accounts of Yablo
[2001], and Hoffman [1999].

79There is some evidence showing a parallel neurophysiological dissociation. See Kadosh et al. [2007].
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and so on. The situation of dyscalculics however is qualitatively different. Their inability
to learn is due to persistent problems in representing and retrieving arithmetic information
from long-term semantic memory. This manifests as a lack of intuitive knowledge of even the
most basic arithmetic. Thus, in spite of normal intelligence, good instruction and concerted
effort, dyscalculics can literally fail to understand what a teacher is saying:

Child 5 : Oh, there’s this really hard thing, about when you’re doing times—Ms. S says
you can’t take away this number, but I keep on taking it away, I don’t understand one
single bit of it.
Child 2 : I sometimes don’t understand whatever she (the teacher) says.
Child 1 : I don’t forget it, I don’t even know what she’s saying.
[Butterworth 2005]

Along with problems with grasping the relevant facts, dyscalculics show impairments execut-
ing calculation procedures. When they do add, subtract, multiply or divide, they typically
do so much more slowly. Their performance is error-prone and they lack confidence in their
results. And, even as adults, they rely on immature strategies, such as finger-counting.

Butterworth [1999] presents an interesting case study of dyscalculia. “Charles” is an
intelligent and resourceful university graduate in his thirties. He has a degree in psychology
and works as a psychological counsellor. As one might expect, he copes well with daily
life. However, Charles has had severe difficulties with mathematics since childhood. He
cannot add up the price of groceries, count the money in his wallet, or figure out the
correct change. When tested, he proved completely unable to solve two-digit subtraction
problems. He cannot work out multiplication problems involving numbers greater than 5.
And although he can find the solution to single-digit addition and subtraction problems,
his performance on these is four times slower than a control subject’s (so roughly three
seconds). Perhaps Butterworth’s most extraordinary findings concern Charles’ performance
on tasks thought to involve very low-level cognitive abilities. One of these is simple number
comparison. In general, the time taken by math-typical subjects to compare two single-digit
numbers is (roughly) inversely proportional to the difference between them; it’s easier to
judge that 2 is smaller than 9 than it is to judge that 8 is. In Charles’ case, this pattern is
reversed. The time it takes for him to compare two numbers is proportional to the difference
between them. This suggests that he is forced to perform number comparison tasks in a way
entirely unlike that of typical subjects. This supposition is reinforced by subitizing data.
Math-typical subjects take almost the same amount of time to grasp (or ‘subitize’) the
numerosity of collections containing one, two and three items. This capacity is thought to
be a very low-level cognitive or perhaps even perceptual ability.80 Interestingly, Charles does
not subitize; he laboriously counts items even in patterns containing two or three entities.

80See Trick and Pylyshyn [1993].
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This, once again, reinforces the conclusion that dyscalculics are affected by a pervasive,
math-specific cognitive impairment.81

Discussion. We have now seen some of the evidence pointing to a functional double dis-
sociation between human linguistic and mathematical abilities. In Chapter 4, we will review
additional evidence showing that the processing of linguistic and mathematical information
is subserved by independent cortical regions. I want to emphasize that the emerging picture
is far from straightforward. We need to keep in mind that certain linguistic and math-
ematical (specifically, arithmetic) abilities do appear to interact in various respects. For
instance, Welsh and Chinese-speaking children learn the count sequence faster than French
or English speakers. This can be attributed to the fact that number-terms in the former
two languages are perfectly regular, whereas French and English involve tricky exceptions
to a regular pattern (‘quatre-vingt’, ‘eleven’) [Miller et al. 2005]. Moreover, studies from
Amazonia by Gordon [2004] seem to suggest that users of languages which lack count terms
beyond the first three are impaired in their arithmetic abilities. However, in spite of lim-
ited interactions, the examples discussed above show that sophisticated mathematical and
linguistic capacities can develop and operate independently. And if that’s right then any
theory which claims that mathematical knowledge piggybacks on linguistic competence is
committed to an empirically false picture. We have seen that this is precisely what the ante
rem structuralist’s account of our knowledge of large structures maintains. And so that
account must be amended or rejected.

Small structures

As we have seen, Shapiro [1997] himself holds that perceptual pattern recognition does not
suffice to explain our ability to track facts about complex mathematical structures—those
which comprise more than several hundred places:

One cannot grasp a structure S by simple pattern recognition unless one can perceive a
system that exemplifies S. Such a structure can have at most a small, finite number of
places. [p.129]

Still, one could readily imagine an abstract realist adopting a more sanguine stance. Such
a theorist might argue—perhaps taking her cue from the cognitive mechanisms discussed
by Maddy [1990]—that, when correctly understood, perceptual pattern recognition does

81Before moving on, I should mention that (unlike Charles) many dyscalculics discussed in the literature
present with a variety of additional cognitive deficits. Some display general working memory problems, left-
right discrimination difficulties, spatial and psychomotor deficits, agnosia, dysgraphia, and reading problems.
Dyscalculia and dyslexia in particular frequently co-occur. Recent work (for example Landerl et al. [2004])
suggests that while such comorbidity is common, it is dissociable from the core math-specific problems.
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indeed afford us epistemic access to even the most arcane mathematical posits.82 I now
want to argue that, on the contrary, pattern recognition (and similar processes) are wholly
incapable of offering us an explanation of our knowledge of purported abstract facts.

Let’s begin from some shared assumptions. I take it as established that there are mathemat-
ical facts and that we have true beliefs about some of them. Of course, we also sometimes
make mistakes. But when these are spotted, we respond by changing our minds, tweaking
our beliefs, and continuing on with our mathematical research.

Two aspects of this situation deserve to be distinguished and attended to. The first is
aboutness. Our mathematical beliefs are, of course, about mathematical entities. (What
else?) This is easy to ignore since aboutness comes so cheap. No contact of any kind need
exist between us and what we think about. In fact, what we think about need not so much
as exist. We are just as happy thinking about Boston as Gotham, orchids as phlogiston.83

The second aspect of the situation that deserves mention is the responsiveness of our
beliefs to evidence. We say that a belief is responsive to a set of facts if discovering new
information concerning those facts is capable of altering that belief. Typically, when all
goes well, our beliefs about real, existing entities are responsive to the states of those
entities. Thus, Boston-beliefs are responsive to Boston-facts, orchid-beliefs to orchid-facts,
and so forth. This is not the end of the story however. Boston beliefs may additionally
be responsive to a host of other facts as well: perhaps facts about baseball, or linguistics,
or New England. Sorting out fully and precisely which facts a given belief happens to be
responsive to is difficult and perhaps even impossible. (Luckily we won’t need to do any of
that here.) Notice also that the situation is slightly different in the case of beliefs about the
non-existent. Our phlogiston-beliefs cannot be responsive to phlogiston-facts; there aren’t
any such facts. Instead, phlogiston-beliefs are responsive to a variety of other states of
affairs—including those involving oxygen, combustion, wood, charcoal, history textbooks,
and so on. Again, we may not be able to demarcate precisely which states of affairs are
relevant and which are not. But, once again, we must recognize that a fuzzy boundary is
a boundary nonetheless; the difficulty of making a sharp distinction does not detract from
the overall point.

Consider now what our beliefs about mathematical entities are responsive to. They can-
not be responsive to mathematical facts construed along platonist lines. That’s because

82Alternatively, an abstract realist might argue that if pattern recognition does not offer us epistemic access
to abstracta then some other, relevantly similar procedure does. See, for instance, Resnik [1997]. While I will
keep the discussion focused on pattern recognition for the sake of clarity, the overall argumentative strategy
employed here extends readily to other such views.

83The contrast here, of course, is with reference which, by most accounts, requires at least that the entity
referred to exist (though see McGinn [2000]). I mention reference only to set it aside until Chapter 3. The
important point for us not to let go of is that our mathematical beliefs are about mathematical structures
and entities.
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the process of altering one’s beliefs is a cognitive process. Cognitive processes supervene on
neurophysiological events—by which I mean that no change on the cognitive plane occurs
without an accompanying neurophysiological change (though not vice-versa). One of the
important and remarkable empirical findings of the past century is that all physical pro-
cesses—including those that take place in living organisms—are fully causally closed. Every
physical effect is fully determined by law by antecedent physical occurrences [Papineau
2001, Spurrett 1999]. On the platonic account, mathematical states of affairs are causally
inert. No physical process can be altered in response to acausal facts (even if we allow that
such facts obtain). Thus, a fortiori, no cognitive process can alter in response to abstract
mathematical facts. It follows that when we recognize a mistake in our understanding and
change our minds so as to have our beliefs accord with mathematical reality, if our beliefs
are responsive to something, that something is not the mathematical facts.84

What then are mathematical beliefs responsive to? It might be tempting to insist on
the noble origin and purity of mathematics by suggesting that mathematical beliefs have
no need of facts—and certainly not of physical facts! On reflection however, this proves
incoherent. If beliefs about mathematicalia are not responsive to acausal facts and they are
not responsive to physical facts then they are not responsive to facts, full stop. We have
agreed however that we possess mathematical knowledge. Beliefs that are not responsive
to (any) facts come in two varieties: they can be irrational idées fixes or they can shift
utterly randomly. In either case, such beliefs cannot be constitutive of knowledge. Neither
the platonist nor anyone else should be driven to characterizing our mathematical beliefs in

84The platonist can reply that, in fact, some physical effects not determined by antecedent physical pro-
cesses and hence that my argument does not go through. Radioactive decay has been cited to make this
point. I think this counter-argument fails for two reasons.

First, while α-decay is certainly unpredictable, in the sense that no single α-particle emission can be fully
predicted in advance, the process as such is lawful. The rate of decay of a radioactive sample at a time t is
given by R = R0e

−λt where R0 is the decay rate at t = 0 and λ is the disintegration constant characteristic
of the particular process. In the present context, the point to keep in focus is that the rate of α-decay, and
hence the chance of an α-emission, is fully determined by the state of the physical system and nothing else.
It’s far from obvious how the statistical nature of the underlying physical law can help the platonist’s case
for the existence of acausal entities.

There is moreover a second reason why an appeal to quantum physics is unhelpful. Suppose one were
to concede (for the sake of argument) that it’s only at the macroscopic level that every physical effect is
fully determined by antecedent physical causes. What follows? It has been suggested by Penrose [1989] and
by Hameroff [1998] that the explanation for some mental processes lies ultimately with quantum events in
neuronal microtubules. Quantum indeterminacy, they argue, plays an important role in our mental lives.
The suggestion is indeed intriguing but there is currently no evidence suggesting that it’s true. Indeed, there
is evidence to the contrary: see Churchland [1998] and Franks & Lieb [1998]. The relevance of quantum
phenomena to human cognition remains an intruiguing logical possibility. For that possibility to be wrought
into an objection in the present context, the platonist would need to show that quantum effects do indeed
play a role in human cognition; if they do not, my argument goes through. And she must further explain
how such quantum indeterminacy opens the door to acausal objects; for if it doesn’t then the discussion is
irrelevant.

I am indebted to James Robert Brown for calling my attention these issues.
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this way.
There’s another option. One might reasonably suppose that only a posteriori beliefs are

responsive to a circumscribed set of facts; perhaps beliefs about mathematicalia are unusual
in being responsive not to this or that state of affairs, but rather to the totality of facts. This
would perhaps help explain why none of our experiences can disconfirm a true mathematical
proposition. There is no doubt a grain of truth here somewhere. Nonetheless, it won’t help
the platonist. The sum total of causally-potent, physical facts do not add up to an ante
rem, acausal state of affairs. Even were we to accept this possibility, therefore, we would
still be compelled to conclude that our beliefs about mathematicalia are not responsive to
what the platonist tells us mathematics is about: the abstract facts of mathematics.

If we allow that our beliefs about mathematics are responsive to some set of facts, but
not to mathematical facts, some odd consequences follow. Imagine, for instance, a scenario
whereby we (somehow) come to be excommunicated from the platonic realm. Less figura-
tively: imagine that our beliefs about mathematics continue to be responsive to whatever
physical facts they are currently responsive to but that platonic facts (somehow) effectively
vanish. What, if anything, would the impact of such an unparallelled metaphysical catastro-
phe be? A moment’s reflection suggests that, in fact, we would not so much as notice. The
physical universe would continue to run its course. Our brains would continue to function as
they do. And the cognitive processes that working mathematicians undergo would exactly
mirror the transitions that they currently undergo. Plausibly, even their phenomenology
would remain the same. The same articles would be written. The same proofs would be
accepted for publication or rejected. Mathematics would continue to be indispensable to the
conduct of natural science. In brief, none of us would be any the wiser. It seems then that
mathematicalia construed as platonic abstracta are otiose. They are an unnecessary fifth
wheel, an empty place-holder, in explanations of the nature and conduct of the mathemat-
ical enterprise. I suppose that one can nonetheless maintain that ante rem states of affairs
exist. But I’m not sure what the point of this hypothesis that might be. Better, I suggest,
to conclude that (P.ii)—the proposition that mathematical states of affairs are acausal—is
false.85

My argument rests on two vulnerable assumptions. The abstract realist can reject the
hypothesis that mental states supervene on brain-states, opting perhaps for some form of
mind-body dualism. And she is free to reject the hypothesis that physics is causally com-
plete. In either case, since both of these propositions are today widely held by philosophers
and scientists, the burden is on her to prove her case. Lacking such proof, the mathematical
realist ought to give up on (P.ii). And since (P.i) entails (P.ii), the rejection of the latter
results (by modus tollens) in the rejection of the former also. That last step is tantamount

85See Rosen [2001] for a related line of argument.
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to a wholesale rejection of an ante rem conception of mathematics.86

Conclusion

The abstract realists’ inability to furnish a satisfactory account of our epistemic access to
mathematical facts is sometimes read as giving credibility to ontological anti-realism. Hartry
Field [1989], for instance, comments:

Benacerraf’s challenge—or, at least, the challenge which his paper suggests to me—is
to provide an account of the mechanisms that explain how our beliefs about [abstract]
entities can so well reflect the facts about them. The idea is that if it appears in principle
impossible to explain this, then that tends to undermine the belief in mathematical
entities, despite whatever reason we might have for believing in them. [Field 1989,
original emphasis.]

One part of what Field says is, I think, exactly right. Until the ante rem realist can offer
a plausible epistemic account, we should remain skeptical about her overall conception of
the nature of mathematics and its posits. Nonetheless, I think the passage takes a step too
far. Abstract realism makes weighty (and questionable) commitments beyond those that an
ontological realist must strictly make. The epistemic difficulties in which abstract realists
find themselves ensnared are logically independent of the arguments for norm presented
in the previous chapter. A steadfast nominalist may perhaps want to reject the latter as
well (though perhaps not on naturalist grounds per se). To do that, she would need to
offer an alternative explanation of maths’ deductive and abductive indispensability.87 As
things stand at the moment, the mathematical realist is free to reject (P.i-ii), to backtrack
to norm and explore alternative possibilities. This is indeed roughly what I propose to
do, but not until Chapter 4. Before we can entertain new realist proposals, some of our
background assumptions concerning language need to be modified.

86None of this entails a rejection of structuralism. Plausibly then, the bulk of Shapiro’s [1997] work is very
much on the right track in key respects.

87Notice that such an account is owed even if Field’s nominalization program were to succeed for all of
physics, including quantum mechanics. For a discussion of this point, see Steiner [1998].
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3 The Semantic Problem

If the semantic and the intentional are real properties of things,

it must be in virtue of their identity with properties

that are neither intentional nor semantic.

If aboutness is real, it must really be something else.

—Jerry Fodor

Although I did not make much of this earlier, Benacerraf’s classic [1973] paper actually
raises two distinct problems. Or—to put this another way—it raises one perfectly general
philosophical problem and quickly moves to discuss one tightly constrained, narrow version
of it. The general problem, as we have seen, is to find some way to simultaneously succeed
at two tasks. We need to furnish a satisfactory theory of meaning for sentences that (realists
will agree) express mathematical knowledge, sentences like the one we encountered earlier:

(5) Seventeen is a prime number.

At the same time, we are asked to provide an account of how creatures such as ourselves
come to have epistemic access to the contents of those sentences. If it’s the objective of
philosophers to articulate how ‘things, in the broadest sense, hang together in the broadest
sense,’ then this is surely a worthwhile undertaking.88 The narrow problem is a whole other
matter. In order to make headway on the general problem Benacerraf, quite understandably,
adopts what he takes to be plausible assumptions—in particular, he makes rather substan-
tive commitments concerning the nature of human languages, the appropriate way to go
about constructing a theory of meaning, and the semantics of mathematical expressions.
Regardless of the correctness of those assumptions, it’s important to notice that attempting
to solve the general problem having built in additional premises constitutes a significantly
narrower, more circumscribed enterprise. If moreover the particular assumptions Benacerraf
embraces are subtly incorrect in some way then it’s possible that the narrower version of
the problem has no solution even though the general problem does. In the first part of this
chapter I will argue that this is precisely our situation: Benacerraf’s conception of natural
language—and hence of the ‘language’ of mathematics—is off the mark in several nontrivial
respects. To make headway on the general version of Benacerraf’s problem we will therefore
need to backtrack and try a fresh approach.

The positive portion of this chapter is concerned with explaining what such a fresh
approach should look like. In a nutshell, I think we need to commit to the Chomskyan
paradigm both with respect to natural language syntax and with respect to semantics. For
reasons that will become apparent in the course of the discussion, this will require a sub-
stantial reinterpretation of norm. In particular, I will argue that we should move from

88The characterization, of course, is owed to Sellars [1962].
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an extensional to an intensional realism regarding mathematics; viz., rather than positing
objective mathematical entities, our minimal ontological realism should commit us to pro-
foundly non-negotiable constraints on the formation of correct mathematical judgements.89

The subsequent chapter will be devoted to laying out an account of how objective constraints
of the appropriate type can arise.

Benacerraf’s assumptions

What then are the assumptions that Benacerraf [1973] relies on to constrain the general
problem concerning mathematical meaning and mathematical knowledge? The following
passage encapsulates his view nicely. I have inserted markers for the sake of clarity.

[1] The semantical apparatus of mathematics [should] be seen as part and parcel of that
of the natural language in which it is done, and thus [2] whatever semantical account
we are inclined to give of names or, more generally, of singular terms, predicates, and
quantifiers in the mother tongue [ought to] include those parts of the mother tongue we
classify as mathematese. . . [3] I take it that we have only one such account: Tarski’s.
[Benacerraf 1973, my emphasis]

Benacerraf here adopts some fairly standard and seemingly innocuous views concerning
natural languages and their interpretation. The picture is this: mathematical reasoning is
carried out in some representational medium. The medium that math is ‘done in’ is, in
essence, a precisified and disambiguated subset of our mother tongue.90 We can agree to
call this subset ‘mathematese’. Whatever theory of meaning we are inclined to offer for
natural languages should extend to cover mathematese. In particular, whatever semantic
treatment we are inclined to give noun phrases of the vernacular should be identical to
the treatment that phrases which designate mathematicalia (‘seventeen’) receive. And since
there is really only one sufficiently well articulated semantic theory that can do the job—the
Tarski-inspired formal semantics discussed in Chapter 1—it is this sort of semantics that
should be used so as to interpret mathematese.

In spite of its apparent plausibility, much of the story is wrongheaded. On reflection, and
taking into account what we currently know, all three elements face significant challenges.

89Compare here a platonist philosopher’s realism about the set of all English sentences and a modern
syntactician’s (equally robust) realism about the grammar that yields just the observed utterances, modulo
production errors. See, for example, Katz [1998] and Chomsky [1986].

90I read [1] as claiming that mathematics is literally done in the vernacular in the sense that we psycho-
logically process mathematical ideas by availing ourselves of our natural language. However [1] can perhaps
also be read as claiming that we merely state mathematical judgements in NL while reasoning about them
in some other, language-independent way. As a reading of the above passage, the latter interpretation seems
dubious—how can the semantical apparatus of mathematics be part and parcel of mathematese if the latter
is merely used to state results? Incidentally, an advocate of an language-independent access to mathematical
content owes a concrete account. I offer mine in Chapter 4. (I’m grateful to Rob Stainton for drawing my
attention to this ambiguity in Benacerraf’s wording.)
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To begin: the explicit presupposition on which [1] rests—i.e., that mathematical reasoning
is ‘done in’ natural language—is inconsistent with results from the previous two chapters.
Just a moment ago, we saw that even moderately sophisticated mathematical operations
(factoring large numbers, locating primes, multiplication and division) can be accomplished
by human subjects who lack any grasp of the syntax and semantics of natural language.
If that’s indeed correct then mathematical reasoning and linguistic competence dissociate.
And so, it’s very unlikely, on empirical grounds, that the representational medium employed
by the thinking mathematician is her native tongue.

Indications of this were already implicit in Chapter 1. Mathematicians speak a variety
of languages. Yet they apparently share a common mathematical reality and explore the
same mathematical landscape. The natural language a mathematician happens to speak
apparently has no impact on her adult mathematical skills or whether she is able to share her
results with colleagues. Strictly, this is consistent with the existence of a mathematese: per-
haps mathematical work is conducted in a shared subset of all vernaculars. Provided the
subset employed lies at the intersection of all human natural languages (in some sense to
be determined) we would not expect any special difficulties of translation to arise.91 The
trouble is that this hypothetical shared subset of the vernacular has further unusual prop-
erties. First, it cannot be rendered without loss in any of its supersets. Even moderately
sophisticated mathematical results cannot be stated with full accuracy without resorting to
purely mathematical concepts and mathematical notation. This can perhaps be explained
away; poetry is exceedingly difficult, if not impossible, to explicate in prose as well. (The
difference, of course, is that truth-conditional equivalents of lines of poetry are trivial to find;
what is washed out by these is tone and poetic colour. By contrast, the truth-conditional
equivalent of the claim, say, that every infinite binary tree contains an infinite path that
makes no reference to trees, branching, posets, maximal elements or other mathematical
notions is hard to fathom.) Furthermore, as we saw in our opening chapter, the syntax
of mathematics (but not of poetry) and the concepts employed by it are indispensable to
abductive inference in natural science. And this second property doesn’t square at all well
with mathematese being a subset of NL. Languages are part of our contingent, human en-
dowment. Even if we allow that they share a common structure, it’s hard to see how an
overlapping subset can underwrite creative scientific abduction. This, together with the
results from Chapter 2, should make us reject the presupposition on which [1] rests.

Even if the first of Benacerraf’s claims is false, [2] can be read as directing us to an
interesting issue—viz., the hypothesis that whatever semantic account one is inclined to
give of declarative sentences in general should extend unmodified to statements that express
mathematical judgements. Whether this is correct is a problem to which I will return in
the next chapter. But before dealing with that topic, we face a logically antecedent issue.

91For a variant of this idea see Hauser et al. [2002].
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Namely: what, in general, is the appropriate manner of developing a semantic theory for
natural languages? In [3], Benacerraf identifies Tarski-Montague formal semantics as the
only serious contender. Certainly, this remains the dominant approach—at least among
philosophers. Earlier, we saw Saunders Mac Lane default to it as well. Nevertheless, I’d
like now to argue that this is an issue well worth reconsidering. Formal semantics is no
longer the sole contender. Moreover, FS faces some persistent and fundamental difficulties
that call into question its explanatory power. I’d like now to turn to these with a view to
showing that [3] is not correct.

Limitations of formal semantics

Scientific theories serve a variety of purposes. Ideally, we want a mature theory to classify,
measure, locate causes, predict, and to explain. Here I will focus mainly two of these
objectives: classification and explanation. There is mounting evidence that formal semantics
succeeds as a taxonomic enterprise but that it does significantly less well as an explanation
of the meaning of natural language expressions. If that’s right then the door remains open
for an alternative paradigm to step in and attempt to do better.

Let us say that a theory is descriptively adequate to the extent that it delivers an ac-
curate, nuanced, perspicuous and (with luck) complete classification of a target domain.
According to one time-honoured metaphor, good descriptions succeed in ‘carving nature at
the joints’ and laying out the parts neatly. Ideally, we want a successful taxonomy to be
internally coherent but also to fit well with adjacent domains (or at least not to clash).
Developing a theory that manages to systematize a domain is a nontrivial achievement.
Indeed, the history of science shows that classificatory adequacy is often only achieved after
a number of false starts. Kuhn [1970] points out that in pre-paradigmantic sciences it’s far
from obvious which properties of the target domain researchers ought to attend to. For this
reason, typically, early works include descriptions of trivial regularities liberally interspersed
among phenomena that, in due course, come to figure in the laws and explanations of the
mature enterprise. Before the situation has clarified itself, two or more rival classifications
can compete for the affections of working investigators.

Among formal semantics’ notable successes is the development of the first descriptively
adequate classification of the meanings of natural language expressions. As we saw ear-
lier, FS offers a finitely characterized, formally precise taxonomy of the meanings of an
unbounded range of sentences, phrases and words. It captures the fact that meanings of
complex expressions typically depend on the meanings of component parts and the order
of their occurrence. And it sometimes also classifies sentences such that semantic relations
such as synonymy, antonymy and logical entailment are highlighted. As we saw earlier, FS
helps itself to a toolkit that enables it to meet this challenge. Here, again, is Montague:

There is in my opinion no important theoretical difference between natural languages
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and the artificial languages of logicians; indeed, I consider it possible to comprehend the
syntax and semantics of both kinds of language within a single, natural and mathemat-
ically precise theory. [Montague 1974c]

Viewing natural languages as essentially on par with artificial ones licences the use of analytic
tools developed for the semantic interpretation of formal calculi. Central here is the notion
of a model. A model A of a language L is an ordered pair consisting of a domain D, and
an assignment function which maps each name in L to an element in D. The model in
the case of natural languages is just the domain of our natural discourse: all those entities
which figure in our discussions. The assignment function is the reference relation that maps
words to world and (as we saw earlier) recursively builds up interpretations of phrases
and sentences. The end result is a flexible, systematic, and infinite hierarchy of semantic
kinds—one that is capable of classifying a rich portion of any natural language.92

The sheer descriptive power of formal semantics is indisputable. Let me concede that FS
is capable of offering a maximally nuanced nomenclature of semantic types such that any
descriptively adequate theory of NL meaning can be restated in FS terms. What’s less clear
is whether FS constitutes an explanation of the phenomenon of linguistic meaning. Here
we need to tread carefully. It’s important not to stack the deck against FS by adopting a
loaded conception of explanation. Just what ultimately counts as a ground-level explanation
is a fraught issue. Outside of scientific contexts, we are typically quite tolerant concerning
what we are willing to accept. The explanatory devices we employ depend on our goals and
the level of precision sought: explanations of people’s actions are typically intentional (in
Dennett’s [1998] sense). Sub-personal explanations and those that concern the inanimate
are often functional (‘because the kidneys filter blood’) or causal (‘because it struck the
window’). Others still can be etiological (‘because it comes from Persia’). Or they can be
hybrid. Scientific explanations though tend to be significantly more regimented. Let me
follow Hempel [1962] here: let us agree that to fully explain an explanandum is at least
to show how it can validly be deduced from a set of covering laws. Let us agree also that
everyday informal explanations are, in fact, elliptical versions of arguments that demonstrate
how observed phenomena can be inferred from the natural laws. Nothing I want to say hinges
on the peculiarities of Hempel’s account. But accepting the deductive-nomological model
of explanation prevents us from building in the requirement that an explanation necessarily
specifies relationships of cause and effect. My hope is that we have here a characterization
of explanation that everyone can work with for the moment.

At first glance, the word-world relations that formal semantics highlights look taylor-
made to act as premises in deductive-nomological explanations—hence to act as explanations

92That portion of NL which involves tense, referentially opaque contexts, or other varieties of context-
sensitivity require us to move beyond a purely referential semantics to one that includes intensions. I’m
bypassing those issues here.
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of meaning. Nonetheless, a number of linguists and philosophers—many of them working in
a broadly cognitivist, Chomskyan tradition—have recently expressed doubts that this is so.
In what follows, I draw on their work—especially the work of James McGilvray [1998], Paul
Pietroski [2003a, 2003b], and Robert Stainton [2006a], as well as that of Noam Chomsky
[2000]—to argue that, on closer scrutiny, FS really presupposes rather than furnishes an
explanation of the meanings of natural language expressions. If this is the case then the
conception of meaning upon which Benacerraf predicates the narrow version of his problem
is flawed.93

Referents. As we just saw, the FS explanation of the nature of meanings depends ulti-
mately on referential mappings between linguistic items and everyday objects. On closer
scrutiny it turns out however that these word-world relations have some puzzling features
which prevent them from appearing in the premises bona fide deductive-nomological expla-
nations. Consider the following example, due to Chomsky [2000]:

(6) London is so unhappy, ugly, and polluted that it should be destroyed and rebuilt 100
miles away. [p.37]

Let’s suppose for the sake of argument that this sentence is true. (If we want to insist
that it’s false, the same point can be made using an alternative example.) On the FS
account, for this to be the case, at a bare minimum, there must be an entity in the domain
that corresponds to the proper noun that begins the sentence. What sort of entity is it?
Well, for a start it must be unhappy. It also needs to be ugly. And it must be polluted.
Furthermore, this same entity needs to somehow be susceptible to being obliterated and
recreated some distance away while retaining its identity. On reflection, all this is rather
odd. What manner of natural object, after all, could simultaneously possess all of these
traits? Chomsky comments:

London is not a fiction, but considering it as London—that is, through the perspec-
tive of a city name, a particular type of linguistic expression—we accord it curious
properties:. . . we allow that under some circumstances, it could be completely destroyed
and rebuilt somewhere else, years or even millenia later, still being London, that same
city. . . We can regard London with or without regard to its population: from one point
of view, it is the same city if its people desert it; from another, we can say that London
came to have a harsher feel to it through the Thatcher years, a comment on how people

93I’ve always thought it odd that we can allegedly successfully refer to entities outside our light cone.
This peculiarity does not however constitute a full-blown objection to formal semantics unless one also
accepts a causal theory of reference—something neither the formal semanticist nor a neutral arbiter have
much motivation to do. Nevertheless, for the record, I do think that attempting to offer serious scientific
explanations in terms of acausal relations is just short of invoking magic. Nothing in what follows is predicated
on my prejudice. Some of my reasons were offered in Chapter 2.
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act and live. Referring to London, we can be talking about a location or area, people
who sometimes live there, the air above it (but not too high), buildings, institutions,
etc., in various combinations. [Chomsky 2000, added emphasis]

Try this thought experiment: Imagine we wished to explain to a nonhuman intelligence
how some of our best scientific accounts represent the world. If our interlocutor were suffi-
ciently clever and equipped with an appropriate sensory array and measuring instruments
we should have no trouble conveying that (say) there is a property we call momentum and
that it’s a vector product of mass and velocity. Likewise, we could explain that we take
the gravitational force exerted between two bodies to be proportional to the product of
their masses divided by the square of the distance between them. In fact, most if not all
of our physics, chemistry, biology, and other mature sciences could, plausibly (with effort)
be made intelligible to our visitor. Now, what makes this possible is that in each case,
the fields quantify over objective features of our shared reality or over complexes of such
features. The point of Chomsky makes in the passage just quoted is that (barring a mirac-
ulous coincidence) the city of London would be a posit that would, in all likelihood, remain
perpetually incomprehensible to our alien interlocutor. There is no single, coherent, natural
entity existing independently of human concerns that counts as London. Let me be clear:
The problem is not that ‘London’ is vague or ambiguous. Rather, it’s just that the complex
we pick out with this word is not a freestanding entity in the world but rather the product
of our embedded, culture-dependent concerns and interpretations. In the end, our visitor
would be forced patiently to learn by rote what human beings’ semantic intuitions were
regarding the correct extension of this term. (The air in the city? How high?)

I’ll say more about the implications of this observation shortly. First, let’s note that the
issue is not restricted to proper nouns and their purported referents. Much the same can
be said about common nouns. Here’s an example:

(7) The thin, blue book, weighing four ounces, standing second from the left, was
published in 1759 and caused such a scandal in Paris that it was publicly burned.

On its face, the sentence concerns a single entity: a perceptually available object. One could
imagine it being uttered by a proud host showing off her private collection. Evidently, if
the sentence is true, the object must be thin and blue. As well, if the sentence is true then
the object in question was indeed published in 1759 on which occasion it caused a scandal.
To explain this fact it’s tempting to invoke the type-token distinction. Perhaps it wasn’t
the very token but rather its type which was first published in 1759 and caused so much
ruckus? Surely that’s closer to the truth. But then what was burned? Clearly not the type;
certainly not if types are abstract objects. And not this very token either. Evidently the
sentence is not about a single object at all but rather about a collection of instances of a
type. Fine. This collection then is presumably what is blue and thin? And weighs four
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ounces? That’s not right either. . . And so it seems that there is no single natural object
that can plausibly bear the properties being attributed simultaneously by a reasonable and
apparently true sentence. Our human ability to interpret such sentences without so much as
noticing the hermeneutic eddies and currents we effortlessly navigate speaks volumes about
our subtle interpretive capacities.

The problems multiply. Adjectives present parallel difficulties. Consider the following
sentences:

(8) The apple was red.
(9) The traffic light turned red.

(10) Adam’s house is red.
(11) Charlie’s bedroom is red.

In Chapter 1, we saw that properties can be construed as unsaturated functions: on the
standard account the relevant function maps to the true just in the case that the object
it takes as an argument is, in fact, red. You and I understand this perfectly. But spare
a thought once again for our alien intelligence. What is it to be red? Is it possible to
offer objectively accessible, sufficient conditions for counting as red? Perhaps to be red is
simply to be a surface that absorbs most wavelengths but reflects light between 635 and
740 nm? Not so. The redness of the light mentioned in (9) is not due to its subtractive but
to its additive properties: rather than absorbing most wavelengths, a coloured light emits
only electromagnetic radiation in a certain range. It might seem therefore that we need a
disjunctive definition of redness in terms of a number of physical characteristics. Things are
more complicated still.

A ripe apple looks about the same under the whitish light of the full moon, the bluish
light of the sky, or the yellow light of an incandescent light bulb. This is true even
though the wavelength composition will differ significantly in all three cases. [Koch
2004, 137]

An account in terms of naked physical properties wavelength is clearly not enough. An
account of redness that we offer our visitor will need to treat it not as a brute property but
rather as a relation between an object, its surroundings, and our perceptual apparatus.94

There are further difficulties with interpreting a colour predicate however. What counts as
red is partly dependent on the kind of object being considered. Consider Adam’s house, in

94Herman Weyl [1934] points out that “the sun is 150 000 times as bright as the full moon; consequently
white paper under moonlight is darker than black velvet under sunlight; nevertheless, we see that paper as
white, and not as black paper, both by moonlight and sunlight.” The same point is brought home forcefully
by the various colour illusions, including Adelson’s checker-shadow illusion. See also the work of Kathleen
Akins.
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(10): it is decidedly not red if only its interior walls and its roof have have this colour. It
does however count as red if the exterior walls have been painted (even if the roof is brown
and the interior walls beige) provided some further caveats are respected. The red paint
cannot constitute a pattern, such as stripes, checkers or polka-dots, for example. There are
a variety of ways that a bedroom can be red. It might have red furniture (and neutral,
eggshell walls) for example. What I take all this to show is that recognizing an object as red
depends inextricably—and in surprising ways—on what human beings and human cultures
are like. Once again: the point is not that there is no such thing as redness. Rather it’s
that being red is a property only recognizable from a certain perspective: ours. A semantic
account that simply says that ‘red’ means red is of no use to an intelligence that does not
already possess our prejudices and cognitive constraints. Rather than explaining how human
beings understand their language, FS presupposes such understanding.

Words. Evidently, it’s often hard to make sense of the right-hand side of the
word-world relation, except vis-à-vis human cognitive faculties and social conventions.
Many of the apparently freestanding props in ‘the passing show’ turn out, on closer
scrutiny, to depend on us for their identity conditions.95 The structure we are
dealing with is therefore at least a three- rather than a two-place relation: viz.,
〈word, 〈sensory input, perceptual and cognitive processing〉〉. The sensory input is recog-
nized by us as a stable ‘object’ and a word is matched to that object. This is not the end of
the story however. It turns out there are additional complications on the left-hand side of
the relation as well. The individuation of words also relies essentially on human propensities
and abilities.

The same word can be spoken, calligraphied, hand-signed, and telegraphed. In some
cases, a word can be communicated in just the same way in English, Dutch or German.96

So apparently, the identity of words transcends changes in medium and sometimes even
in dialect. I propose that we bracket those complex issues for a moment however and
restrict ourselves to the paradigmatic case: token words of a single dialect spoken aloud.
I propose we inquire into what the identity of words thus construed consists.97 Initially,
it’s tempting to look to the physical characteristics of the acoustic signal for an answer.
Spectrograms provide a useful graphical illustration of that signal, a sort of ‘voice print.’
We can see by looking at the energy pattern however that the acoustic signal of human speech
is continuously variable, and not, as one might perhaps expect, conveniently segmented at
word boundaries. Indeed, one reason why spectrograms have not delivered the anticipated

95The exceptions, interestingly, are scientific posits, such as nitrogen and energy. These, Chomsky [2000]
argues, are importantly different.

96The most obvious examples are certain geographic terms or names of monetary currencies. But many
other borrowed words are homophonous as well.

97My discussion here draws heavily on Ingram [2007] and also on Jackendoff [2002].
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quick strides in language recognition is that in order to identify lexical items in the signal,
finer-grained elements within the energy patterns need to be matched with appropriate
phonological representations—those phonological representations, in turn, can used to access
appropriate lexical items. These are however nontrivial tasks. Matching acoustic signal
to phonological target is complicated by a number of factors. Most obviously, there are
individual differences between speakers due to differences in their vocal tracts. As well,
the local speaking environment often changes how people use their voices and hence what
the spectrogram registers. We often alter how we speak depending on social context—our
sociolect can be more or less crisp depending on whether we are aiming to sound formal
or casual. Finally, there are more technical reasons for variation. The pronunciation of
individual sounds is often affected in subtle ways by what precedes and follows them. These
coarticulation effects stymy any simple mapping between features of the physical signal and
the phonological targets.

Let me say something about the phonological targets themselves. As I have already
intimated, these representations stand in a one-to-many relationship with phonetic repre-
sentations; they are, in a manner of speaking, abstract or (better) under-specified. Unlike
the acoustic signal, which is continuous, phonological features are categorical. Moreover,
they are hierarchically nested: at the top of the hierarchy, there are, phonological represen-
tations of entire words. The parsing of the phonetic signal may sometimes involve matching
its components directly to such relatively corse-grained representations. Frequently however,
the phonetic signal is matched to more fine-grained data structures that encode syllables as
well as their various components. That this occurs is perhaps most easily seen in the case
of nonsense words. Once the phonetic signal is matched to a phonological representation,
the further problem of matching that representation to appropriate syntactic and semantic
features needs to be solved. More on that in a moment. (See also Jackendoff [2002] and
Ingram [2007].)

The upshot from the foregoing is that what common sense identifies as ‘words’
are not, in fact, freestanding entities (or even event tokens) discernible solely in
terms of their intrinsic physical characteristics. The three-place relation I earlier pro-
posed should, properly speaking, be expanded further. Its left hand side should
read: 〈〈acoustic signal, phonological parsing〉, lexical retrieval〉. This yields a lexical rep-
resentation complete with phonological, syntactic and perhaps some additional fea-
tures (more on this shortly). The right-hand side of the relation remains this:
〈sensory input, perceptual and cognitive processing〉. Here, the retrieved lexical item is
paired with the result of nonlinguistic perceptual and cognitive processing. The entire
picture nicely explains our common-sense notion of a ‘word.’ But notice that words have
here become an explanandum rather than the explanans. The individuation conditions on
spoken words make essential reference to human recognition capacities. In this regard, the
property of being a word turns out to be not unlike being red, being a book, or having the
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property of being the city of London.

Discussion. Here’s what I take our discussion to show. A scientific theory faces a num-
ber of simultaneous challenges: among them, descriptive and explanatory adequacy. The
explanation of the meanings of natural language expressions offered by traditional formal se-
mantics relies crucially on mappings between freestanding linguistic items and the elements
of a non-lingusitic domain—that is, on referential mappings between words and world. The
evidence I have reviewed strongly suggests that this picture is too simple. If that’s the case
then FS meaning postulates (‘ready’ means ready, and so on) cannot play the same role
in deductive nomological explanations as the objective regularities delivered by legitimate
sciences. FS meaning postulates may, of course, still appear in DN explanations, but only
as a sort of short-hand that itself stands in further need of elucidation by a more basic
theory. To echo Paul Pietroski: rather than offering an explanation of the meanings of
natural language expressions, formal semantics presupposes one.

Let me end the section by making clear why I do not think this argument is sufficient
to demonstrate that the reference relation does not exist, full stop. The notion that words
denote and that we use words to refer to things is central to our conception of ourselves as
agents, language-users, and persons. It’s perhaps no less central to our self-understanding
than free-will or the propositional attitudes. What the arguments just presented suggest is
that reference is no more (but no less) than part of our manifest image of ourselves; it’s a
part of our folk-linguistics. Reference is perfectly real. But it is only visible provided one
adopts a sort of ‘referential stance’ (to use Dennett’s useful phrase).98

In the final count, reference will not feature in a noncircular, scientific semantics. And
so, for reasons wholly orthogonal to issues within the philosophy of mathematics, we must
rethink the Benacerraf problem from the ground up. From here on in, I abandon the narrow
version of the puzzle and pursue the wholly general issue of the meaning of mathematical
statements and our cognitive access to their contents.

Linguistic internalism

Earlier, we agreed that an interpretation (or model) A for a language L comprises a
nonempty domain D and an assignment function I that maps the basic elements of L to
elements in D. There is no reason to abandon this perfectly general, formal characteriza-
tion. We do however need to critically reassess how we understand its three components: the

98The allusions to Dennett, Sellars [1962], and Chomsky [2000] are not gratuitious. For a particularly useful
discussion of Dennett’s own quasi-realist ascriptivism about propositional attitudes, see his [1998]. There
one finds just this sort of quasi-realism that I think we should adopt toward the posits of folk-lingusitics,
including reference.
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language, domain, and assignment function in question. I now turn to that task.99

Language. The nature of natural languages came up briefly in Chapter 1, in the context
of our discussion of mathematical realism. On that occasion, relatively little was said about
the topic. I followed a prevalent philosophical tradition by assuming that human languages
were something like rule-governed practices that communities engage in for the purpose
of communication. At various moments, we also shifted emphasis from rules to sets and
thus construed languages as sets of legal strings defined over an alphabet. Moreover, we
followed Montague [1974a] in assuming that there was no theoretically important difference
between interpreting formal and natural languages. Admittedly, we did make a perfunctory
nod in the direction of linguistics by adopting a standard set of syntactic categories—IPs,
NPs, VPs, and so on—though not much depended on that choice. Any finite fragment of a
natural language can be viewed as having been generated by an unbounded variety of non-
equivalent sets of instructions. In this context, getting NL syntax ‘right’ is simply a matter of
offering some perspicuous description that facilitates the task of mapping sentences to truth
conditions (words to objects, and so on).100 The time has now come to reject this approach
to the study of natural languages, their grammar, and their semantics root and branch. The
alternative is to abandon a noncommittal (not to say instrumentalist) approach to NL syntax
and instead take linguistic theory, along with its attendant philosophical commitments,
much more seriously. In effect, it’s time to extend our robust scientific realism to natural
language.

Currently, the best available accounts of natural language fall within the Chomskyan
paradigm. There are a variety of ways of characterizing that work. One way is to construe it
as offering a solution to an important puzzle raised by the way that human children develop
the ability to use and understand their native tongue. By the age of four, all children acquire
a grasp of the local dialect (or dialects) provided some very minimal conditions are satisfied.
All that’s needed is that the child be neurotypical (within limits), that she be exposed to
linguistic stimuli, and that she be permitted to sign or speak—in short, to participate.
Children who meet these conditions achieve a stable grammatical competence very closely
resembling that of their local community. Success does not depend on such factors as

99In this section, I mention some of the arguments in support of adopting the perspective on natural
language that I favour. However, this is not the place for a full defense of the Chomskyan conception of
language. The literature on the topic is vast and even a cursory review of the some of the controversies would
take us off track. The unsympathetic reader is asked to treat what follows as an extended conditional: if
one were to adopt a mentalist, nativist conception of language, such-and-such perspective on Benacerraf’s
problem and on mathematical realism would follow. For helpful discussions of Noam Chomsky and his
intellectual legacy see Cook and Newson [2007], Hinzen [2006], McGilvray [2005], Smith [1999].

100Montague himself engages in rather careful syntactic analysis, though the categories he employs are
now outmoded. Even so, Montague’s [1974b] discussions of syntax as a pursuit are often dismissive and
disparaging: “I fail to see any great interest in syntax except as preliminary to semantics.”



71

the quality of care children receive (barring grotesque neglect), their general intelligence,
attention span, memory, or any other cognitive or perceptual peculiarities [Yamada 1990].
This is odd for several reasons. Language acquisition occurs at an age when solving formally
simpler problems—such as learning to play bridge or to do long division—is beyond a
child’s cognitive powers. By contrast, several decades of sustained collective labour by adult
linguists (some of whom can play bridge) has not fully uncovered the principles governing
even a single natural language. A second peculiar feature of the situation is its specificity;
no other animal species has the capacity to learn the grammar of a human language in spite
of the concerted efforts of primatologists and psychologists [Petitto 2005]. Evidently, the
human child’s rapid, accurate and apparently unique ability to grasp the grammar of her
dialect calls for some sort of explanation.

Everyone agrees that our species’ linguistic abilities are derived in some measure
from a natural endowment and in some measure from exposure to our linguistic and
perceptual environment. If there is a controversy here, it’s over the relative contribution
of each. The simplest explanation—the null hypothesis, if you like—emphasizes the role
played by nurture and minimizes the contribution from our innate, biological constitution.
On this sort of story, every human child comes into the world equipped with powerful,
domain-general pattern-recognition capacities and the ability to mimic linguistic stimuli.
Thus, a child learns her native language by committing to memory exemplars of adult
linguistic constructions and subsequently reproducing similar constructions (perhaps
replacing lexical item for lexical item). As it turns out, there is now considerable evidence
that, in spite of its initial plausibility, the empiricist hypothesis is false.101 Some of
that evidence is negative; it comes from observing what children never do despite what
empiricist models predict. Consider the following sentences:102

(12) The fact that Euclid had been superseded was not a surprise to some of the geometers.
(13) The fact that Euclid had been superseded was not a surprise to any of the geometers.

(14) The fact that Euclid had not been superseded was a surprise to some of the geometers.
(15*) The fact that Euclid had not been superseded was a surprise to any of the geometers.

The four sentences are structurally nearly identical. Nonetheless, every native English

101Empiricism fails here and elsewhere too. For evidence against empiricist accounts of arithmetic learning
see Wynn [1992].

102The discussion here follows Pietroski and Crain [2002] and Pietroski and Crain [2005]. I am avoiding
the hackneyed example of verb-fronting in English question-formation since an empiricist account of this
phenomenon based on word frequency effects may arguably be possible. Pietroski and Crain’s examples
show that, even if this is so, poverty of the stimulus arguments remain compelling.
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speaker recognizes (15*) as unacceptable. Evidently, an adult speaker relies on some rule G
which allows her to generate the first three sentences and prevents her from generating the
fourth, even though G is hard to make explicit. The challenge for a linguist is to spell out
G and to explain how it comes to be known. In this case, the appropriate rule is this:

G: Downward entailing linguistic environments license negative polarity items
(NPIs) when a negative element c-commands the NPI.

Let me unpack that a little. A downward entailing linguistic environment is one which
licenses inferences from a set to its subsets. If all geometers love circles then all Sicilian
geometers love chalk circles. However, if only some geometers love circles then it’s not
necessarily the case that any Sicilian geometer loves a circle or, for that matter, that any
geometer loves a chalk circle. ‘All’ therefore creates a downward entailing environment in
both its argument positions; ‘some’ does not. And so, in the above example, (13) and (15*)
count; (12) and (14) don’t. Furthermore, negative polarity items are words like ‘no’, ‘none’,
‘any’, and ‘ever.’ These words can sometimes, though not always, appear legitimately in
downward entailing environments. The challenge is to discern what features of sentences
make the crucial difference between the licensed and the unlicensed appearance of an NPI.
One logical possibility is that NPIs can appear in downward entailing environments so long
as they are preceded by a ‘not’. We can easily see from the above examples that proposal
cannot be right; if it were, (15*) would be acceptable. In fact, the relationship that ‘not’
must bear to ‘any’ is somewhat more complex. To a good approximation, a phrase P

c-commands another phrase R when R is among the daughter nodes of P ’s mother, and P

and R are distinct [Ouhalla 1994]. In (13) the negation is part of the VP and c-commands
the complement phrase in which ‘any’ appears. By contrast, in (15*) the negation appears
in the NP and thus does not c-command elements of the VP. And this accounts for the
acceptability of the former but not the latter sentence.

Evidently, the adult native English speaker somehow comes to be ‘aware’ of this rather
baroque dependence. A child trying to learn the appropriate rule can go wrong in two ways:
she can fail to generalize appropriately and, for example, mistakenly judge (13) to be un-
grammatical. Conversely, she can overgeneralize by erroneously accepting (15*) as correct.
Neither scenario is realized. Children do manage to grasp G. What’s more, they do so with-
out the benefit of correction or explicit instruction. This is remarkable since c-command is
an obscure structural feature of NL syntax; it cannot be identified on the basis of surface
features or lexical regularities. The empiricist therefore is left to explain how children ar-
rive at G solely on the basis of the positive evidence, while not making overgeneralization
errors.103 No available empiricist model is able to explain this—or indeed for a host of

103Children do, of course, make mistakes when learning their native language. But such mistakes typically
concern lexical items and not language universal aspects of grammar. More on errors in a moment.
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similar examples of the acquisition of hidden linguistic structure. So long as this state of
affairs persists, the empiricist null hypothesis is dead in the water. (While on the topic,
let me note some recent positive evidence against empiricism as well. Pietroski and Crain
[2002] discuss some of the grammatical errors that children do in fact make. It seems that
while children do not erroneously overgeneralize from local grammatical constructions, they
do sometimes produce constructions which would be legal in other languages. Thus, child
learners of English produce constructions legal in Italian, for instance. Another challenge
for the empiricist is to account for this regularity.)

Faced with evidence that external stimuli are too impoverished to account for the ob-
served pattern of language acquisition, the Chomskyan reverses the explanatory priority of
nature over nurture. If structural relationships crucial to our linguistic knowledge—such as
c-command—cannot be abstracted from ambient linguistic data, they must in some sense
form part of our innate linguistic endowment. On the Chomskyan conception, one impor-
tant aspect of the linguist’s job is to characterize the initial state of our linguistic knowledge
(the universal grammar or UG) and to explain how UG interacts with the environment to
yield the linguistic competence of the mature native speaker. We can be sure that UG is
indeed universal since all human children are capable, in principle, of learning any human
language: Welsh children brought up in Montréal learn Québécois; Czech children brought
up in Barcelona learn Catalan. We can also be confident that the language faculty consti-
tutes a discrete cognitive organ since a double-dissociation between our linguistic abilities
and other mental functions can be demonstrated. Natural and induced aphasias provide
us with examples of the selective impairment of the language faculty that can leave other
abilities unimpaired [Berthier et al. 1990, Lecours and Joanette 1980]. Likewise, there exist
instances of general cognitive deficit with spared linguistic abilities [Yamada 1990]. There is
neurophysiological evidence as well. As we saw earlier, the language organ of some 90% of
right-handed subjects is localized in Broca’s and Wernicke’s areas, so in the left hemisphere
inferior frontal and superior temporal lobes Pulvermüller [2002]. Language, in the technical
sense that interests the linguist and the cognitive scientist is thus an internal, individual,
innate mental organ; it is not an abstract set of utterances or a collection of community
practices and conventions.104

On one standard Chomskyan account, the initial state of the language organ comprises a
set of parameters—or switches. One parameter may concern whether the subject of a declar-
ative sentence can legally be dropped (as in Spanish but not French). Another parameter
may concern whether the word-order in a sentence is relatively free (as in Greek but not
English). Yet a third may determine whether a sentence can consist of subject-verb-object or
subject-object-verb (Polish versus Japanese). On the assumption that parameters are binary

104This sheds some light on why such folk-linguistic posits as ‘word’ were earlier found to be explananda
rather than explanans.
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and that there are two dozen of them, there are over sixteen million (224) possible human
languages—or, if one prefers to individuate differently, there is a single human language
which admits a vast range of variation. The major task a child faces when acquiring her
native tongue is to determine how the grammar of the local idiolect is parametrized. This
process is not a matter of hypothesis formation and testing. Rather it’s a matter of the
setting (or prioritizing) of dozens of constraints.105 This is not a trivial matter, but it is
vastly easier than attempting to derive the correct regularities from scratch. (Note that
this model accounts for why the grammatical mistakes children make are correct forms in
other languages: a child making a grammatical error is trying out a parameter setting legal
in another linguistic community but inappropriate in her local setting.)

Characterizing UG remains among the important long-term goals of linguistic research.
In order to realize that goal, it’s helpful to have sense of the possible final states of the
language faculty; that is, to have a characterization of the language organ with parameters
set and with lexicon fixed. This, of course, involves developing a theory of the linguistic
competence of (some substantial subset of) mature adult speakers. Since parameter settings
can be subtly different in each case, we focus on the individual. We also allow ourselves to
abstract away from the inessential: we ignore all idiosyncrasies due to memory limitations,
physical peculiarities, gender, age, and other extraneous, non-lingusitic factors. (Such ide-
alization is not uncommon in the sciences; think here of frictionless planes and ideal gasses.)
A successful syntactic theory (or grammar) is therefore a characterization of an internal,
individual, cognitive capacity—a psychologically real process taking place in the mind/brain
of the language user. In order to arrive at a grammar, all evidence is fair game: we draw
on data from adult performance, children’s language acquisition, native speaker ‘intuitions’
concerning grammaticality, cross-linguistic comparisons, studies of aphasia, data from sec-
ond language acquisition, and neurophysiology (to name a few common sources). Notice
how far this conception of linguistic research takes us from work on syntax in Montague’s
sense. While any number of grammars may be output-equivalent with the theory we are
looking for, only one characterizes the actual cognitive process under study. We are not
looking for some set of rules consistent with NL grammar; we’re looking for the set of prin-
ciples that characterize the structure of computations taking place in the mind/brain of
the (slightly idealized) language user. Committing to a Chomskyan conception of language
as a biological function (rather than formal structure) thus entails a shift toward a robust
scientific realism in linguistics.106

105On an alternative account (which I prefer), language acquisition is a matter of determining the com-
parative importance of the various parameters [Kager 1999]. On this view every utterance violates some
parameters; the unacceptable utterances however are sub-optimal with respect to which parameters they
sacrifice. The precise version of the parameter account which we should adopt is not crucial for our pur-
poses.

106See Smith [1999] for an extended discussion of Chomsky’s work.



75

Domain. For reasons discussed earlier, the domain of interpretation for an I-language
cannot consist of the set of perceptually salient properties and objects. Apparent referential
mappings cannot underwrite semantic explanation; they are what needs explaining. And, in
any case, we are capable of interpreting utterances about nonexistent, fictional, and even im-
possible entities—ones that ex hypothesi words cannot refer to.107 There is a ready alterna-
tive: the relevant domain of interpretation for an I-language consists of information-bearing
data-structures that exist outside the language organ—just beyond generative engine per
se—yet that are nevertheless internal to the cognitive apparatus of the individual language
user. This proposal can initially sound hopeless; it seems at first glance to entail a form
of idealism. Nonetheless, it has recently been revived by several responsible philosophers
and cognitive scientists—among them McGilvray [1998] and Jackendoff [2002].108 In what
follows, I follow their lead.

Let’s begin by characterizing the ‘meanings’ of linguistic expressions functionally by at-
tending to the roles they are called upon to play. Most obviously, meanings are what the
words, phrases and sentences of natural language are used to express. Conversely, when
all goes well, meanings are also what we derive by parsing others’ utterances. Such inter-
pretation is typically a matter of recalling relevant objects, places, situations, and events
from long- and short-term memory. Sometimes, interpreting an utterance also requires that
we take action so as to fulfill a request, heed a warning, or shift our perceptual focus. If
we accept an internalist conception of language then whatever meanings ultimately prove
to be they must act as a conduit between elements of the I-language and a host of other
cognitive and perceptual subsystems—among these, the perceptual modalities, object recog-
nition, motor capacities, episodic memory, and semantic memory. Evidently, language is not
strictly necessary for some of the information integration at issue here. We are, after all, ca-
pable of listening to the same concerto that we see being performed. We are able to both see
and smell a fresh loaf of bread while remembering the last occasion this happened. And we
can decide to extend our hand so as to move a saltshaker that we imagine may fall off a table.
These examples point to a language-independent ability to associate visual, auditory and
olfactory stimuli with long-term episodic memory and with visual imagination [Hume 1748].
The linguistic interface however does make an important contribution. Elizabeth Spelke
[2002] has argued, on the basis of several decades of experimental work, that the remarkable
intellectual capacities of human beings can precisely be attributed to our flexible integra-
tion of information across a variety of domains, rather than to additional, domain-specific

107See Scott [2003] for evidence that the human conceptual apparatus treats real and imaginary objects in
just the same way.

108McGilvray [1998] develops his ideas concerning semantic internalism within a minimalist extension of
the principles and parameters framework; Culicover and Jackendoff [2005] pursue a different conception of
grammar. The controversy over minimalism is not crucial for us here, so while I note it for the sake of
accuracy, I will largely pass over it in silence.
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cognitive powers. She suggests that these integrative capacities—capacities that are crucial
for higher cognitive function, including the understanding of the logical operators—are tied
to our linguistic abilities and come online as our language organ matures.

Figure 3: Jackendoff’s [2007] parallel cognitive architecture.

The integration of information via linguistic meanings has a clear advantage over straight-
forward association. Among the striking features of I-language is its unboundedness; we
can produce and parse an infinite number of distinct syntactic structures. And, of course,
we can assign meanings to these structures. (It could have been otherwise. We might have
had a generative grammar but only a finite list of interpretations we could assign to syntac-
tic constructions.) Our capacity to construct meanings is therefore apparently productive.
Moreover, much like syntactic constructions, meanings are systematic; someone who can
understand that the cat is on the mat can also understand that the mat is on the cat. Our
best—indeed, our only—explanation of productivity and systematicity is that we are deal-
ing with a generative engine whose complex elements are composed recursively from a finite
base of primitives by means of a finite set of formation rules [Fodor 1987]. A computational
system of this type is significantly more flexible than an associationist engine.

Ray Jackendoff’s [1992b] conceptualist semantics (hereafter CS) enshrines these insights.
Jackendoff—whom we encountered in Chapter 1—rejects the traditional tacit assumption
that NL syntax constitutes the sole generative module of the language faculty. In its place,
he substitutes a parallel architecture comprising separate generative phonological, syntactic
and semantic engines. This move not only has the advantage of explicitly recognizing the
generative nature of our conceptual apparatus. It also squares well with the current state
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of research in linguistics. Phonologists (recall) work with a proprietary set of nested data
structures that have their own rules of formation, composition and manipulation. Phono-
logical representations are independent of the syntactic types used by grammarians, though
they too are structured and so have their own local ‘syntax’ [Ingram 2007]. Many seman-
ticists have also been relying on representations which form and combine independently of
NL syntax [Fauconnier 1994, Talmy 2001]. Each of these is understood as working with its
own data-types, having its own rules of formation and processing, and each is construed as
interfacing with the other two. The result is an ecumenical model in which the phonolo-
gists’, syntacticians’ and semanticists’ local theories can find their place (see Fig. 3). Each
module possesses its own, dedicated rules for representation-formation and its own means
of computing over those. The modules operate autonomously and in parallel but are related
by a series of interfaces. Phonological processing of an input activates syntactic parsing.
And this, in turn, occasions an attempt at semantic processing. If the processing does not
terminate in error, an interpretation of the target phrase is constructed. Furthermore, since
semantics (unlike syntax or phonology) is directly legible to mental operations outside of
the language faculty, semantic interpretations are capable of triggering motor responses,
episodic memories, spatial judgements, and a variety of other nonlinguistic processes. In
effect, semantics becomes the language faculty’s window on the rest of the mind/brain.

Conceptual structures play an important integrative role. It’s advisable however not
to build in more than we strictly need; meanings (construed now as cognitive interfaces)
need not be representations in the philosophers’ sense. When philosophers speak of rep-
resentations, they typically mean symbols that re-present some worldly property, entity or
event to a sentient subject. Thus understood, representations are essentially intentional;
they point beyond themselves to an intentional object, either real or imagined. Indeed, rep-
resentations are individuated (in part, at least) precisely with respect to their intentional
properties.109 The data-structures that act as interfaces between the I-language and other
cognitive faculties should not be understood as representations in this sense. Syntactic
structures emphatically do not refer to semantic structures. In fact, the reference relation
itself drops out as a term of analysis. CS structures are not individuated by their inten-
tional objects. Rather, they are individuated by their local, syntactic properties—viz., the
cognitive, motor, and perceptual systems they interface with, and the local computations
(inferences) the permit [McGilvray 1998].

Abandoning intentionality and the traditional conception of representation may seem
unwise. But, in fact, there are some respectable precedents in cognitive science for just this
move. There are even existence proofs: Rodney Brooks’ [1991] robots are capable of complex
interactions with their environment—even collecting pop-cans left around the lab—without
the benefit of inner representations in the philosophers’ sense. The activation vectors at

109The elements of Fodor’s [1975] language of thought are representations in just this sense.
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the higher levels of the robots’ hierarchical subsumption architecture demonstrably do not
correspond to features in the world at large.110 The proposal here concerning interpretive
interfaces that link the language organ to other cognitive areas is that they play a similar
role. Rather than standing in need of further interpretation, cognitive interfaces just are
the interpretations of linguistic terms. They perform all of the functions that we expect
the meanings of our words and phrases to perform [Jackendoff 2002 p.306]. The inner
information bearing states that syntactic elements map to are not representations in the
sense that they do not ‘stand for’ anything. They are what McGilvray [1998] calls intrinsic
contents. (Of course, it may turn out that, quite apart from their intrinsic properties,
some of the interfaces do indeed additionally correspond to entities, properties, and events
outside the head. Plausibly the meanings of the terms of completed sciences would have this
feature. Any such correspondences would however be a fortuitous feature of the interfaces
in question.)

Let me note another peculiarity of the CS account. The parallel architecture does not
include a lexicon in addition to its three sub-modules. What we pretheoretically think of
as words are really the result of the co-ordination of phonological, syntactic, and semantic
computations. Under the hood however, there are only regularities in the way that the three
modules interact.111

Assignment. Let’s now turn to specifics. Ultimately, we need to exhibit a semantic
interpretation of a sentence that expresses a mathematical judgement, and we can’t do that
without a clear sense of how, concretely, a conceptualist semantic analysis proceeds. We thus
need to know more about the details of the assignment function that attempts to capture the
(psychologically real) interface between I-language and conceptual structure. There are two
major changes in this respect from our earlier FS account: CS relies on a vastly expanded
repertoire of semantic types; and, moreover, nearly every syntactic category (not just NPs)
are understood to be capable of being assigned to an element at conceptual structure.

The CS domain consists—not of freestanding things-in-themselves—but of all manner
of stable posits that can arrest human attention. It’s possible to categorize such ‘things’
and thereby to arrive at a catalogue of semantic types. This task is facilitated by adopting a
two-pronged approach. A rough and ready catalogue can be arrived at quickly by reviewing
the sorts of ‘things’ we can point to with our fingers. A roughly matching (though slightly

110Trained connectionist networks similarly do not manipulate explicit representations yet manage to ac-
complish complex classificatory tasks. See Churchland and Sejnowski [1992].

111This lets Jackendoff elegantly explain situations where the coordination comes apart slightly or fully.
‘Pushing up daisies’ and similar idioms have a normal syntax and phonology but interface as an atomic unit
with a single semantic item, in this case: [DIE]. Likewise, nonsense phrases like “twas brillig and the slithy
toves did gyre and gimble in the wabe” have a phonology and a syntax of sorts but fail to interface with any
semantic structures.
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more constrained) list can be obtained by considering the possible answers to questions
such as these:

(16) What is that?
(17) What’s there?
(18) What’s thataway?
(19) How?

On reflection, we can see that the possible objects of attention constitute an ontologically
heterogenous menagerie: entities, people, animals, properties, events, locations, amounts,
times, paths, compass directions, and procedures can all become subjects of scrutiny. A
desire for parsimony might incline us to attempt to reduce this list to a more basic list
or even to a single, fundamental root—perhaps entities and events, or even entities alone
would suffice. Jackendoff [1983] argues that this desire for simplicity is misguided. It’s
implausible on its face that events like signing a contract, or complex trajectories, or pro-
cedures like fixing a timepiece can be explicated without loss in terms of entities and their
relations—except perhaps by means of an open ended and wildly disjunctive account. In-
deed, this was the point of our earlier discussion about the city of London, colours, and
books. It’s not clear that adding events to our fundamental list helps.112 Moreover, there
is another reason not to engage in premature reduction. Ontological parsimony is not a
legitimate constraint at this stage of research. Biological systems such as the human brain
are, in some respects, inefficient organs where kluges and redundancies arise.113 There is no
a priori reason to expect that the interface between I-language and deeper, nonlinguistic
faculties will answer to an ideal of computational efficiency. It’s surely an empirical question
which categories the human conceptual apparatus evolved to register independently. It’s a
further empirical question to what extent the cuts the brain evolved to make correspond to
natural kinds. Rather than forcing a premature reduction, it’s best for now to work with
a multiplicity of types while awaiting guidance from ongoing work in cognitive psychology
and neuroscience.114

Let’s continue with our attempt at classification. Notice that many subsentential
phrases are incapable of standing alone either as answers to questions or as freestanding
assertions. Subordonate clauses such as “that Jack built” are an example. By contrast,
phrases designating each of the conceptual types named earlier can quite sensibly be
uttered alone. Here are a few examples along with their corresponding types:

112This remains an open question.
113Think here of our visual system, with its multiple and redundant pathways. There is no a priori reason

that a projection to the superior colliculus should exist at all. Nevermind the what/where path divergence.
114For an excellent anthology of readings concerning conceptual structure, see Margolis and Laurence [1999].
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(20) Alisa. 〈person〉
(21) A pen. 〈thing〉
(22) A misunderstanding. 〈event〉
(23) Two liters. 〈amount〉
(24) Royal blue. 〈property〉
(25) Along the fence. 〈path〉
(26) Politely. 〈manner〉
(27) Next to the fridge. 〈location〉

Jackendoff [1983] suggests that fragments like (20)-(27) strike us as sensible standalone
items because we can readily imagine cases where they would help fill a gap in conceptual
structure. In each instance, we can easily construct a question, to which the fragment
constitutes a full reply:

(28) Whom did you see? 〈person〉
(29) What did she find? 〈thing〉
(30) What transpired? 〈event〉
(31) How much? 〈amount〉
(32) What colour? 〈property〉
(33) Which way did she come? 〈path〉
(34) How did she say it? 〈manner〉
(35) Where are my keys? 〈location〉

Notice two things here. First, each of these questions can be answered by pointing to the
relevant entity, trajectory, location, or what have you, or by engaging in some creative
mimicry. This suggests that in each case, we are dealing with a structure that can be
encoded both linguistically and non-lingusitically. Note also the degree of specificity in the
match between questions and answers. Attempted cross-category answers are nearly always
nonsensical. “A pen” is not a readily interpretable answer to “Where are my keys?” for
example. Each question demands a particular conceptual type as a possible answer. This
once again suggests that many of the semantic types are mutually irreducible.

Let us accept the above list of semantic types as primitive. By doing so, we are effectively
moving away from a semantics with a simple, unstructured domain. We are adopting
instead a domain comprising a multiplicity of types. Although Jackendoff does not make
this explicit, this is tantamount to using a many-sorted (or typed) logic to interpret I-
language [Bell et al. 2001]. If we take semantic types to be mutually irreducible on grounds
of biological realism, then the natural model structure for a natural language L comprises
a sequence of domains 〈D0...Dn,〉, where each domain corresponds to a major semantic
category (path, event, etc.). The interpretation function I maps syntactic items into that
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ordered set of domains. How it does so brings up our second important difference between
FS and CS.

Like FS, CS relies on function composition to construct a semantic interpretation. Rely-
ing on a multiplicity of irreducible semantic types changes what such an interpretations can
look like. Consider, for instance, how NPs need to be treated on our new account. Earlier,
we assigned singular terms occurring at the heads of NPs to entities of type 〈e〉. Now that
our domain of interpretation is populated with a plethora of types, this picture evolves. As
examples (20)-(24) show, many NP heads designate categories other than 〈entity〉. They
are free to map to 〈persons〉, 〈events〉, 〈amounts〉, or nearly any other semantic type. There
are parallel changes in how the heads of other syntactic types are treated as well. On the FS
analysis, the heads of lexical categories other than NP are nonreferential; they map to un-
saturated functions. CS by contrast takes all heads of phrases, regardless of syntactic type,
to perform an equivalent semantic task by mapping directly to conceptual representations.
Examples (25)-(27) illustrate this for PPs and APs. Here again, there are no straightforward
regularities concerning the type of semantic structure a syntactic type can pick out. Finally,
the maximal projections of phrases themselves play an important role. We will see in a
moment that they form the exoskeleton structure within which an interpretation proceeds;
each maximal projection is mapped to a distinct representation in conceptual structure.

Let me end this brief discussion of CS by mentioning one important similarity between
it and FS. It concerns the limits of semantics. Neither theory wants to risk becoming a sort
of catch-all theory of everything. In both cases, a great deal of information is understood
not to be encoded in semantics. The idea is familiar from FS:

We should not expect a semantic theory to furnish an account of how any two expres-
sions belonging to the same syntactic category differ in meaning. ‘Walk’ and ‘run’, for
instance, and ‘unicorn’ and ‘zebra’ certainly do differ in meaning. . . [but discerning how]
demands considerable knowledge of the world. [Thomason 1974, p.48]

CS is no different in this regard. Conceptual structures are neutral with respect to a great
deal of encyclopedic information concerning the 〈entities〉, 〈events〉, and other types they
encode. In general, CS is an interface, not an encyclopedia. Whatever information is pro-
cessed elsewhere in the brain need not be replicated at CS. Semantic structures therefore
are not thought to capture the differences between chairs and seats, or between unicorns
and zebras. That is left to long-term memory and to perceptual faculties. The point is
worth making since it helps address an issue that was raised briefly earlier and set aside.
Recall that Benacerraf hypothesized that the semantic interpretation of sentences that ex-
press mathematical content proceeds no differently from the interpretation of sentences that
express any other factual states of affairs. In one sense, on the CS view, this is correct; both
types of sentences are treated exactly on a par at the CS interface. Whatever differences
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there may be lie not at conceptual structure. They lie in what conceptual structures in-
voked by mathematical statements subsequently invoke further downstream in the cognitive
architecture. (I will return to this topic shortly.)

Reanalysis. We can now put our revised semantic theory into practise. Our original
goal (one half of it) was to offer a plausible interpretation of the meaning of sentences that
express mathematical knowledge. We are now able to do this. Let’s return to the sentence
we have been working with throughout our study.

(36) Seventeen is a prime number.

In order to interpret it, we will first need to extract the sentence’s syntactic structure. Here
is one hypothesis concerning that structure:115

(37) IPhhhhhhhh
((((((((

NP[
3*

−−

] VPhhhhhhhh
((((((((

V
aaaa
!!!!

V[
2*

−−

] Inf[
1*

+present

]
NP
XXXXX

�����
Det[
4*

−−

] AP

A[
6*

−−

]
N[

5*

−−

]

Several aspects of this tree require commentary. Most striking perhaps is the fact that the
heads of phrases do not terminate in words. The reason is probably obvious given the forego-
ing discussion: ‘words’ are not, properly speaking, syntactic posits. They are folk-linguistic
terms. The familiar appearance that there exist ‘words’ results from the co-ordinated in-
teraction of the phonological, syntactic, and semantic engines. The heads of the phrases
in this tree therefore contain (what are, in effect) pointers to corresponding structures in
phonology and in semantics. I have labelled these pointers with starred numbers for the sake
of clarity. The order of the pointers corresponds to the structural order of the constituents.
The VP is taken to govern the sentence as a whole. The maximal projection of the first
NP acts as the IP’s specifier. The second NP plays the role of a complement to the verb

115The analysis is in line with Culicover and Jackendoff [2005]. Whether it is correct is, in the long run, an
empirical question. I am using it here to make the fit between syntactic structure and conceptual semantics
as perspicuous as possible.
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phrase. It is taken here to project three elements which facilitate the explanation of the
syntax-semantics interface (see below).

We saw a moment ago that, as a general rule, we can expect every major phrasal
constituent to map to a major semantic category. We can expect the leaf nodes to map to
functions (though these may be zero-place functions). Since the syntactic structure we’re
working with contains six phrasal constituents, we can expect the corresponding semantic
structure to contain the same number of fundamental components. Here is that semantic
structure:

(38)


PRESENT


BEident(

[
TOKEN : Seventeen

Thing 3

]
,


TY PE : number[
prime

Property 6

]
Indef4 Thing5

)
State 2


Situation 1



The sentence as a whole expresses a situation which obtains in the present tense. This
situation is represented in conceptual structure as involving the existence of a state between
a token item and a type. The token is a 〈thing〉: the number seventeen. The type is
complex: it involves being a number, also a species of 〈thing〉. But it is further delimited
by the 〈property〉 of being prime. So the sentence expresses that the token entity named by
‘seventeen’ is found among the entities designated by ‘number’; more precisely, it is among
those entities of that type which are also prime. None of this is particularly surprising, of
course. The usefulness of this analysis, again, hinges on the correspondence of the semantic
types to biologically real structures and processes. Among cognitive scientists’ research goals
is to characterize these semantic constituents in the terms of computational neuroscience.116

The aim of the section was to explain how the meanings of sentences that express
mathematical content can be understood in CS terms. We have done that. The new
analysis is a mixed blessing: CS offers a fresh vantage from which to survey the general
Benacerraf puzzle. You may recall however that some problems with Jackendoff’s account
of mathematical concepts arose already in Chapter 1. I now return to a discussion of those
problems.

116For an early stick-and-ball textbook treatment, see Chapter 10 of O’Reilly and Munakata [2000]. For a
very interesting attempt to offer a computational model of semantic structures similar to the ones we have
been discussing, see Regier [1996]. For a recent discussion, see Jackendoff [2007].
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Realism redefined

Tarski [2001] admonishes us that semantics is not a means of resolving substantive meta-
physical disputes nor is it a way of showing that everyone except the semanticist and her
friends are speaking nonsense. It’s important to heed that advice. The best available ac-
counts of natural language (syntax and semantics) fall within the Chomskyan paradigm.
Adopting an internalist, mentalist characterization of language vitiates our earlier argu-
ment for mathematical realism. In a moment I will spell out why. What I want to stress
however is that the overall metaphysical situation remains unaltered. Adopting a new se-
mantic theory neither enhances nor diminishes the fundamental plausibility of ontological
realism about mathematics. It simply calls for revisions.

Let’s again turn to specifics. Earlier I argued that a minimal ontological realism about
mathematics comprises two theses:

(R.i) Some mathematical entities exist; and
(R.ii) Their existence is independent of human minds, cultures, languages, and

conventions.

You will recall that the argument for (R.i) ran as follows:

1. Mathematical statements are true, false or lack content (hence are nei-
ther true nor false).

2. The abductive indispensability of mathematical statements entails that
they are not contentless.

3. The deductive utility of mathematical statements shows that they are
not false.

4. Some mathematical statements are true. [1,2,3]
5. Assuming traditional formal semantics, the existence of mathematical

truths entails the existence of mathematical entities.
6. Traditional formal semantics is correct.

∴ (R.i). Some mathematical entities exist. [4,5,6]

We now have grounds to reject (6); yet without it the argument does not go through.117 It
seems therefore that if we accept CS, we are left with no argument for norm. The situation
is further complicated by our independent arguments in favour of (R.ii), norm’s second
plank. A number of options suggest themselves. Most obviously we could reject the Chom-
skyan conception of language or conceptualist semantics. Evidently, the wholesale rejection

117Notice that this is a general result. Any philosophy that argues for the existence of mathematical entities
on the basis of formal semantics thereby comes to owe a reply to the Chomskyan arguments presented earlier
in this chapter. This extends to many platonist proposals, including Shapiro [1997].
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of a scientific theory carries a heavy cost. We immediately come to owe an explanation of
the phenomena that the theory successfully treats as well as an explanation of its apparent
success. More modestly, we could try to derive (R.i) from CS. This too, I think, is hope-
less. CS does not posit the same language-world relations FS employs; tacking these on
artificially would be ad hoc. Worse, it would be incoherent. A third option is to modify
norm itself. In other words, we can try to make sense of mathematical realism, mathe-
matical facts, and mathematical objectivity without an appeal to mathematical entities per
se. This seems like a reasonable project; the more so because there are precedents in the
literature.118 In any case, it would be peculiar were it to turn out not to be possible to ar-
ticulate a form of ontological realism (about ion channels and electric charges, say) that was
consistent with CS. Conceptualist semantics is, after all, no more than a hypothesis about
how the human mind/brain initially interprets the grammatical structures made available
by generative grammar; it’s thus an internalist, computational theory of a particular bi-
ological process. Such a theory may arguably have some bearing on how human beings
construe their surroundings and reason about them. But it would be bizarre indeed if a
rarefied biological theory concerning the information-processing capacities of a particular
organism were somehow to entail the non-existence of unrelated entities in the organism’s
surroundings.119

The key to articulating what ontological realism looks like under CS is to focus on
the difference between more and less constrained cognitive processes. No mental process,
including free-association and mental random-number generation, is wholly unconstrained.
It’s well known that human beings are particularly poor at generating truly random
responses. The constraints operative in such situations are not particularly interesting
however insofar as they do not reflect anything about a mind-independent domain. A more
interesting case of constraints on cognitive processing arises in connection with sensory
perception where, evidently, what we perceive is tightly—albeit imperfectly—constrained
by the local environment.120 Of course, not all constraints come from without. We cannot
help but to recognize certain sentences in our native tongue as ungrammatical. In this
case, we are constrained by our idiolect’s parameter settings. Our judgement, as in the
case of perceptual experience, is evidently not foolproof; garden path sentences can make
us think that a constraint has been violated when it has not. This is no more troubling to

118Recall that in Chapter 1 I left the door open to alternative ways of construing realism. Putnam [2004]
and Hellman [1989] offer a precedent for ontological realism without entities.

119This argument does raise certain interesting questions about the nature of our science-forming faculty.
Chomsky 2000 suggests that this faculty constitutes an independent mental organ. Given the contrasting
fortunes of natural language and mathematics in furnishing a useful vocabulary for natural science, the idea
seems plausible. I will say more about this in Chapter 4.

120I leave a discussion of visual perception for another time. But see Biederman [1995] and Churchland
et al. [1994] for two interesting perspectives.
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the linguist however than visual illusions are to the vision-scientist. The correct syntactic
theory accounts both for our intuitions of grammaticality and for why we find garden-path
sentences so difficult to parse. Indeed, in each of the above cases, the fact that we can talk
about making errors means also that we can talk about getting things right. And to claim
that some representation is correct is (at the very least) to maintain that it does not violate
any of the relevant, local, operative constraints. Evidently, ‘correctness’ is a very general
notion; it applies to statements, procedures, choices, and so on. But when we limit our
purview to contentful, affirmative judgements, to judge correctly is to judge truly. Bearing
this in mind, here is our revised argument for realism:

1. Mathematical statements are true, false or lack content (hence are nei-
ther true nor false).

2. The abductive indispensability of mathematical statements entails that
they are not contentless.

3. The deductive utility of mathematical statements shows that they are
not false.

4. Some mathematical statements are true. [1,2,3]
5. Assuming conceptual semantics the existence of mathematical truths

entails the existence of constraints on mathematical judgements.
6. Conceptual semantics is correct.

∴ (R.i′). Constraints on (some) mathematical judgements apply. [4,5,6]

An ontological realist about mathematics can accept the above argument. She can add,
moreover, that the constraints which delimit mathematical research are not due to the
peculiarities of human physiology or psychology. They run deeper than any contingent
features of our constitution. For a judgement to be universal, necessary and objective, it
suffices for the constraints on that judgement to be mind-independent, inescapable, and
applicable under all circumstances. We can now redefine norm as follows:

(R.i) Constraints on some mathematical judgements apply; and
(R.ii) Such constraints’ existence is independent of human minds, cultures,

languages, and conventions.

The epistemic issue henceforth shifts away from how we ‘make contact’ with the truth-
makers of mathematical expressions; instead we need to ask how the semantic structures
employed in the course of mathematical reasoning are forced to follow a rigidly constrained
course. What, in effect, makes the geography of peaks, valleys and hidden trails in Allain
Connes’ mathematical landscape so implacably resistant to our ambitions, desires, whims,
and our wishful thinking? This will be our next topic.
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Conclusion

It may be useful to recap and review. The problem we set ourselves was both to account
for the semantics of expressions that purport to make factual mathematical statements and
to offer an account of our knowledge of their contents. In Chapter 1 I argued that we have
compelling reasons to opt for a realist approach to this problem—viz., an approach that
takes the existence of (some) mathematical facts seriously. I argued in Chapter 2 however
that our ontological realism about mathematics should not be a form of platonism; we
ought not accept, in other words, that there exist acausal, abstract objects. That much is
background.

I opened this chapter by pointing out that our initial argument for ontological realism
(and indeed our initial statement of the problem under discussion) enshrined certain as-
sumptions concerning the nature of human languages. In particular, we identified natural
languages with publicly accessible conventions modelled by sets of well-formed formulae. We
also took semantics to be a matter of mapping between linguistic items and freestanding
entities out in the world. The thrust of this chapter was to argue that these assumptions
are wrongheaded. Henceforth, we need to predicate our discussion on an entirely different
conception of natural languages and their meanings. The place to look, I suggested, is
modern linguistics. Chomskyan generative grammar offers us a powerful, realist account
of the syntax of natural languages. Ray Jackendoff’s conceptualist semantics supplements
this with an attractive theory of meaning and an ecumenical parallel cognitive architecture.
My claim here is in these theories we find half of the solution to the puzzle with which
we began—i.e., we find a theory of meaning for linguistic expressions, including ones that
express mathematical content.

The price we pay for this shift in semantic perspective however is that we must abandon
our original argument for norm; the existence of semantic representations of mathematical
objects does not guarantee the existence of the corresponding entities per se. At the close
of the chapter, I argued that we must nonetheless hang on to ontological realism. That’s
because our original argument reasserts itself in terms of constraints on mathematical judge-
ments. In effect, we shift from an object-based (“extensional”) realism about mathematics
to a rule-based (“intensional”) version, much as the linguist has shifted from construing lan-
guages as freestanding, abstract sets to viewing them as biologically instantiated functions.
The crucial difference is that mathematics goes deeper. A minimal ontological realist about
mathematics is one who recognizes the existence of mind-independent, objective, and nec-
essary standards in the field—standards not dependent on human physiology or psychology.
The remaining challenge is to specify the source of those standards in a way that allows for
our mathematical knowledge.
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4 The Epistemic Problem

Everything should lead back to. . .

objects in the realm of space and time,

and to lawlike relations that obtain

for these objects.

— Albert Einstein

Having now offered a hypothesis concerning that part of the meaning of sentences that
express mathematical judgements which can be gleaned from the semantics of natural lan-
guages, it remains to account for our knowledge of their contents. Toward the end of the
previous chapter, I suggested that mathematical content can be construed as a hidden
ur-structure of nonnegotiable constraints operative on mathematical judgements. In this
chapter, I’d like to offer the beginnings of an account of how those constraints arise. I will
start by arguing that the relevant constraints cannot be accounted for by existing psycholog-
ical or neurophysiological theories; psychologism, in other words, is false. We have the seeds
of a workable realist alternative however in the writings of Kurt Gödel. My aim here will be
to present a new interpretation of Gödel’s philosophy and argue that, once charitably read
and correctly understood, his work offers us an attractive explanation of how mathematical
knowledge is possible and (equally importantly) also suggests a methodology by means of
which we can hope to supplement and extend ongoing work in cognitive science.

Psychologism

Let us suppose on the basis of the discussion in the last chapter that lexical items which en-
code mathematical content are partially constituted by their semantic interface. (Whether
this specific theory or some Minimalist alternative ultimately proves correct is not essen-
tial.) The semantic interface itself contains no special mathematical information; it merely
mediates between the language faculty and other mental organs. The cognitive psychology
and cognitive neuroscience literature are therefore the obvious place to look for an account
of the mathematical content that semantic structures encode. Those fields are now con-
verging on several models that promise eventually to explain the information processing
involved in our mathematical (and particularly arithmetic) reasoning. Neuroimaging and
neurophysiological investigations are furthermore starting to correlate psychological models
with the cortical regions where the arithmetic processing is thought to take place. I’d like
to discuss some of that work. In Chapter 2, I argued that philosophical accounts of mathe-
matical knowledge ignore empirical results at their peril. Now it’s time to see the other side
of that coin. Scientific hypotheses concerning our knowledge of mathematical facts which
sideline contributions by mathematicians (and also philosophers of mathematics) can also
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be expected to come up short. It will be instructive to see why that is.121

Stanislas Dehaene and his collaborators [2003] suggest that human arithmetic calculation
involves three distinct kinds of processing. At its core, it involves the processing of purely
quantitative information. In certain circumstances, additional linguistic processing is also
involved. Finally, some activities also require the use of an additional visual code. Each
of these activities can be correlated with the actions of specialized circuits located in the
parietal lobe. As one might expect, given the vast complexity of the brain, the story is not
entirely straightforward: the fit between the cognitive psychology and neuroscience is not
wholly perfect; and, moreover, several regions outside the parietal seem also to participate
in mathematical reasoning.122 Nonetheless, the models and results are robust enough that
it’s possible to offer a preliminary outline of the ‘mathematics faculty.’

Bilateral intraparietal. Dehaene et al. [2003] suggest that the core quantity system is
localized bilaterally in the horizontal segment of the intraparietal sulcus (or HIPS). Drawing
on the results of a dozen independent EEGs, tomography, and fMRI studies, they argue that
HIPS activation displays the features we would expect of a dedicated quantity module.

As one might predict, HIPS is more active when experimental subjects attend to quan-
tities than when they attend to other stimulus characteristics. There is moreover evidence
that thinking about the meaning of arithmetic concepts activates the intraparietal sulcus
more than the mere sensory presentation of number stimuli. Thus, tasks involving number
comparison, for example, result in significantly more HIPS activation than tasks involving
the reading of number terms or numerals. This increase in activation is bilateral; both
hemispheres of split-brain patients are able to compare number size. In normal, left-handed
subjects however the right hemisphere HIPS shows a significantly larger increase in activa-
tion than the left. This is consistent with our earlier result that (at least some) semantic
representations of quantity (or ‘numerosity’) are largely language-independent. In general,
the level of HIPS activation is proportional to the amount of numerosity information a
subject processes; HIPS is more active when experimental subjects compute two sums then
when they compute just one. As well, interestingly, HIPS is more active when subjects
subtract than when they multiply. (This last result is readily explained: most subjects
store single-digit multiplication table results in rote memory; by contrast, they compute
differences on the fly. If HIPS underwrites numerical manipulation, we would therefore

121Let me note that some experimental psychologists, notably Susan Carey, have gone well out of their way
to maintain a dialogue with mathematicians and with philosophers of mathematics. My intent is to make a
methodological point rather than a sweeping claim.

122There is electroencephalograph evidence Ravizzaa et al. [2008] for frontal lobe and cingulate gyrus
involvement in some tasks. The cingulate in particular seems to be involved in error correction—an interesting
fact given the previous chapter’s emphasis on the importance of constraints.
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Figure 4: Cerebral localization of the mathematical cognition (from Dehaene et al. [2003]).
Used with permission.

precisely expect it to be more active in subtraction than in simple multiplication.) Lastly,
HIPS activation appears to be domain specific. Its activation does not appear to increase
in experimental paradigms involving non-numerical comparison: for instance, the relative
ferocity of animals, the orientation of objects, the position of body parts, and so on. That
said, the absolute domain independence of the HIPS is still in question. Dehaene notes that
further work is needed to establish whether HIPS is activated in comparison tasks which
have a strong spatial or serial component (spatial prepositions, days of the week, months,
etc.)

Not only is the horizontal segment of the intraparietal sulcus selectively activated by
the processing of quantity, the magnitude and duration of its activation is affected by the
magnitude of the quantities manipulated. This is noteworthy insofar is it may give us
some clues concerning how numerosity is encoded. Neuronal activation is stronger and lasts
longer when computing or estimating large quantities than small ones. In a comparison task,
activation varies in direct proportion with the absolute distance between two numbers even
when the numbers are presented as words. In the case of the integers, when no additional
context is supplied—so when the implicit point of comparison is zero—activation is greater
when the number is larger. The effect is robust, regardless of the medium in which the
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numerosity is presented: dot patterns, arabic numerals, spoken numbers and even spelled-
out number names (T-H-R-E-E) induce the same effect. Nor does consciousness seem to
play any discernible role. In one typical paradigm, a target number is presented. The
target is preceded by a masked prime—flashed on a computer screen and subsequently over-
written too quickly to be registered consciously. HIPS activation occurs in all cases. The
level of activation is higher when the difference between the prime and the target is greater
(ONE vs. 4) as compared with cases when the target and prime are the same (1 and ONE).
Again, the format of presentation does not appear to have any impact on these results; both
numerals and words engender the effect.

Figure 5: Cognitive processing at the language-math interface.

If HIPS were indeed the site of neuronal representations of numerosity, one would expect
that the system could be selectively disabled, while leaving other mathematical abilities
intact. This accords with what neurophysiological studies reveal. Calculation abilities are
spared in (at least some) cases of severe semantic dementia resulting from a deterioration of
temporal and frontal cortex. By contrast, almost complete loss of number-processing abili-
ties following a small, localized lesion to the left parietal lobe has been reported [Cipolotti
et al. 1991]. Interestingly, in that case, the capacity to understand numbers 1 through 4
was spared, suggesting a possibly distinct substrate for the processing of small numerosities
(see below).

Accumulator. Several psychological models of the activity of a core quantity system have
been proposed. Among them is the accumulator ; a model advocated, among others, by
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Gallistel, Gelman and Cordes [2005]. It’s plausible that the quantity tracking system in the
HIPS implements the accumulator or whatever psychological model of quantity estimation
ultimately proves correct.123

Many animals possess a phylogenetically primitive system for representing continuous
magnitudes. The existence of such a system has been demonstrated in rats, pigeons and a
variety of other species [Dehaene 1997]. In a typical experiment a subject is presented with
two levers, A and B. Depressing A at least some preset number of times has the effect of
arming B so that subsequently pressing B releases a food reward. Pressing A too many times
has no extra effect; however, pressing B early incurs a penalty. Many animals can be taught
to perform the task even when A requires some two dozen activations before B is armed.
The pattern of observed results is robust across species and quite striking. When averaged
across trials, the number of arming activations gives a normal distribution with the mean
slightly above the required number of presses. This indicates that animals are reasonably
good as keeping track of numerosity information. The results should not be overstated
however: response variability is a linear function of the number of arming presses required
indicating that the subjects never learn to track precise number information. Rather, they
seem to be responding to a rough estimate at each step.

Several aspects of the results are worth pointing out. It has now been shown experimen-
tally that the pattern of responses is modality independent; the same results are obtained
when sounds and flashing lights are used as stimuli or (remarkably) even when these are
used in combination. This suggests that numerosity information is being represented by an
amodal register of some sort (rather than, say, by the visual scratch pad or by auditory
short term memory). Moreover, the number of presses an experimental subject makes is
independent of its estimate of temporal duration; hungry animals press the levers faster but
the same number of times [Dehaene 1997]. This reinforces the case for a dedicated system
for representing numerosity.

Results from animals show that the capacity to estimate is widely distributed, hence
phylogenetically quite primitive. Human beings, unsurprisingly perhaps, have been shown
to display the same pattern of results. Once verbal code is overloaded, say by repeating
a nonsense syllable rapidly, our capacity to estimate the number of lever presses we effect
also (on average, over many trials) centers around the target number with a distribution
proportional to the value of the number being estimated. (In other words, it displays scalar
variability.) Two other features of these estimation results should be noted. It turns out

123Here, I set aside Dehaene’s 2003 own preferred model, the logarithmic mental number line, in favour
of Gallistel and Gelman’s [2005] accumulator account. One reason is that the accumulator is more widely
discussed in the literature; another is that the differences between the models are relatively minor—at least
from a philosopher’s perspective. My criticisms apply with equal justice to the accumulator and to its rivals.
Note incidentally that the accumulator was used earlier to model temporal duration estimation [Meck and
Church 1983].
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that our ability perceptually to discriminate two cardinalities (as evidenced by reaction
time data) decreases with the absolute value of the numbers; thus, 2 items are easier to
tell from 5 than 72 are from 75. This is referred to as the size effect. Secondly, two
cardinalities are easier to tell apart as the difference between them increases. This is the
distance effect. (These effects are observed in adult humans, human children and nonhuman
animals, reinforcing the case for a biologically primitive system.)

Gelman and Gallistel [2005] propose a cognitive model that purports to capture these
phenomena. They point out that an object which stores a continuous quantity—say, a
beaker holding liquid or an capacitor that stores electric potential—acts as a physical model
of the observed results. They therefore propose that the brain employs a form of continuous
quantity storage (or accumulator) to keep track of numerosity information. At each event
being counted, the accumulator state is incremented by a fixed amount. Estimating the
cardinality of a set of events or objects is a matter of ‘reading off’ the accumulator state.
The reason, they suggest, that we find a normal distribution of results centred around the
target value is the the process of reading information off of the accumulator is noisy. On
average, we manage to get such readings right, but no individual trial is guaranteed to
be correct. (Alternately, one could argue that the amount by which the accumulator is
incremented at each step is itself noisy.) Finally, the size and distance effects are explained
by on analogy with perceptual similarity. It’s easier to tell apart two beakers containing
10 ml and 18 ml of water than to discriminate beakers containing 8 ml and 11 ml. The
accumulator is, in sum, a model of mental magnitudes which in turn (it is claimed) are a
representation system formally equivalent to the real numbers. Indeed, the suggestion is
that the discovery of the real numbers in antiquity was (unbeknownst to classical Greek
mathematicians) a sort of re-discovery:

Our thesis is that this cultural creation of the real numbers was a Platonic rediscovery
of the underlying non-verbal system of arithmetic reasoning. The cultural history of
the number concept is the history of our learning to talk coherently about a system of
reasoning with real numbers that predates our ability to talk, both phylogenetically and
ontogenetically. [Gallistel et al. 2005]

I should mention as well that the accumulator, when yoked to the natural number system,
purportedly affords us an understanding of the integers. That’s because, the account goes,
language consists of discrete symbols. These discrete symbols pick out the integers since
integers are the numbers that represent discrete quantity [Gallistel et al. 2005]. (I will return
to this topic momentarily.)

Left angular gyrus. The left angular gyrus houses a second cortical network implicated
in arithmetic cognition. The AG is not a system dedicated exclusively to numerical cognition
however. Rather, it plays a role in phoneme detection, reading, and in many tasks involving
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short term verbal memory. Performing certain calculations turns out to be among these.
For instance, AG is more activated by precise calculation than by estimation tasks. It’s
also more active during multiplication than during subtraction tasks. And it’s more active
during tasks involving small products than large ones. Likely, this is due to a difference in
how the information relevant to these tasks is stored. Relatively few subtraction results are
stored in memory; by contrast, typically, many multiplication results—particularly single
digit products—are memorized in advance. Results concerning addition further bear out this
pattern; small sums (below 10) activate the AG, while larger ones, which must presumably
typically be computed from scratch, do so less.

Bootstrapping. It’s early days, so any proposed matching between AG and cognitive
models must remain speculative. Still, it’s hard not to view the AG as underlying one impor-
tant component of a proposed representational synthesis which—according to an interesting
hypothesis advanced by Susan Carey [2004]—helps give rise to children’s understanding of
the natural numbers. On Carey’s account, we are ‘bootstrapped’ into an understanding of
the natural numbers by learning to coordinate the activity of three cognitive modules: a
‘subitizer’, a sequencer, and the grammar of natural language itself (construed, here again,
as an I-language).

Subitizing is the ability to register and attentionally track a small number of visually
salient objects. It has been studied by Zenon Pylyshyn [2001, 1993] and his collaborators.
Several factors distinguish subitizing from standard visual attention. First, the subitizing of
up to three objects occurs very rapidly (perhaps as fast as 40-120 ms) while serial counting
is much slower (250 ms or more per item). Second, objects registered via subitizing are
picked out pre-conceptually. That is, they are not picked out by description or classified
under a category. Instead, they are tracked purely on the basis of their spatial properties:
their location and the pattern of their motion. Even relatively drastic changes in visual
properties (colour, shape, and so on) do not disrupt subitizing. Moreover, it has been
shown by Pylyshyn [2001] that subitized items can successfully be tracked while moving
among visually identical non-target items and even while passing intermittently behind
rigid occluders. The interpretation of subitizing data is still contentious. However, one way
to account for it is to think of relatively early visual processes as registering each of the
three objects in a separate ‘object file’ and subsequently keeping track of it by location and
trajectory.124

Clearly, subitizing alone (or even in conjunction with accumulator data) is incapable of
giving us knowledge of the natural numbers. Any object files created by the process are
unconnected to one another and stand in no formal relations. They therefore fail to represent

124Subitizing may not be an early visual process at all. It may be related to the ‘where’ path in Goodale’s
1995 two-path account. The issue is not crucial for us here.
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such basic facts as that each number has a unique successor and that every number (but
zero) is a successor of some number. This is consistent with the experimental evidence:
infants already possess a capacity to discriminate gross differences in numerosity, such as
that between one and two stimuli [Wynn 1992, 1998]. However, an understanding of the
meaning of number terms, such as “one”, “two”, or “three”, is a hard-won ability that
develops gradually between the ages of two and four. How then is such knowledge acquired?

Carey [2004] argues that basic numerical understanding depends in part on an under-
standing of language.125 Around the age of two, children appear to treat small number
words on a par with quantifiers, such as ‘many’ and ‘some.’ They understand ‘one’ to refer
to collections of a precise cardinality. By contrast they initially take ‘two’ and ‘three’ to
be interchangeable with ‘many.’ Thus, asked for three toys, young children will hand over
a handful. The result is robust across language communities and cultures. Over the space
of several months, children come to grasp that ‘two’ designates only sets of a determinate
cardinality. An understanding of ‘three’ as referring to yet another cardinality follows some
months after that. The mean age at which children become two-knowers and three-knowers
varies between language communities. In particular, languages that have explicit morpho-
logical markings for duals in addition to plurals (Russian) facilitate acquisition; languages
that do not mark plurals (Japanese) slow the process slightly. In any case however, all
neurotypical children arrive at the same end-state.

Three-knowers do not yet have an understanding of natural numbers or integers per se.
Notice though how far ahead they are of even the most capable chimpanzees in terms of their
arithmetic comprehension. Chimps can be taught to associate numerosities with printed,
Arabic characters. It has been shown that numerals between one and nine as well as zero can
be learned. As well, chimps can associate such symbols with the cardinalities of collections
of token items [Kawai and Matsuzawa 2000]. And they can perform arithmetic operations,
including addition and subtraction using the symbols alone or using a mix of symbols and
token items (oranges, say). There are however important disanalogies between chimpanzee
knowledge of arithmetic and ours. Their performance remains error-prone even at small
cardinal values; they never cease to occasionally mistake 5 for 6, or 7 for 8. This suggests
that they may continue to rely on approximation (perhaps mediated by the accumulator)
rather than grasping a truly discrete counting system. Also, it has been noted by Matsuzawa
and his collaborators that chimp performance with the symbols degrades slightly after each
new symbol is introduced. Again, this result suggests that a somewhat different underlying
cognitive process than ours underlies chimp arithmetic. Human children who learn what
‘three’ means continue to understand ‘one’ and ‘two’ perfectly well. Most importantly

125I will make no attempt to reconcile this hypothesis with the evidence presented in Chapter 2. These are
open empirical issues. Please note that the final argument against Platonism presented in that chapter does
not depend on how this controversy turns out.
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though, chimps never grasp the successor function and so do not extrapolate from small
number symbols to the existence of an infinite set of naturals.

[C]himpanzes understanding of the integers is based on a mechanism that is wildly
different from that of human children. Chimpanzees learn the integer list by brute
association, mapping each symbol to a discrete quantity. Human children, in contrast,
learn by making an induction from a limited body of evidence. Children induce that
the integer list is created by a successor function, and that this function generates an
infinite list of numbers. [Hauser and Spelke 2004]

In fact, it’s unclear how human children take that important next step. What seems to
happen is that three-knowers next induce not just the number four but also the fact that
each natural number has a unique successor. Natural number quantifiers and the visual
subitizer are not sufficient to accomplish this. Carey [2004] suggests that the final neces-
sary component of the human counting system is the capacity for representing serial order.
Children learn to recite various ordered lists relatively early on and typically with no under-
standing of the meaning of the terms. Think here of the alphabet song, counting rhymes,
or skipping-rope songs. Carey’s suggestion is that kids learn the counting sequence by rote,
storing it in verbal memory (perhaps mediated by the AG). Subsequently, as children come
to realize that the first three items in that sequence not only designate an item on a list but
also stand for sets of objects that differ by a cardinality of one, they make the crucial step.
They come to realize that any word in the number sequence designates a cardinality. “For
any word on the list whose quantificational meaning is known, the next word on the list
refers to a set with another individual added” [Carey 2004]. The claim is that here we find
the cognitive basis of our understanding of the natural numbers and (later) of the integers.
(Note, incidentally, that Carey’s theory makes no essential use of analogue magnitudes or
the accumulator. It is therefore substantially different from the model advanced by Gallistel
et al. [2005].)

Posterior superior parietal. Let’s return to the neuroscientific evidence once more. The
third, and perhaps most enigmatic parietal system involved in mathematical processing is
the bilateral posterior superior parietal lobule, or PSPL. Like the AG (and unlike the HIPS)
this system is not domain specific. It plays a role in a number of visual and spatial tasks,
including hand reaching, grasping, and eye-orienting. It is activated in mental rotation
tasks. And it is involved in spatial working memory. It can be thought of as implementing
some of the functions of the psychologists’ visual-spatial scratch-pad. PSPL is activated
in number comparison, approximation and subtraction tasks. The hypothesis advanced by
Dehaene [2003] is that the PSPL is an attentional system involved in sequentially focusing
on particular segments of the internalized representation of the real number line. The
hypothesis is, clearly, somewhat speculative. In any case though, the mandatory involvement
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of a spatial attention region in calculation (and perhaps other mathematical tasks as well)
is suggestive and we’d do well to bear it in mind.

Limitations

I don’t think there can be much doubt that ongoing research in neuroscience and in cogni-
tive psychology is making important strides toward an understanding of the systems that
underlie human mathematical abilities. In all likelihood, a good deal of the work being done
today will eventually constitute a part of the finished theory of our mathematics faculty.
Nonetheless, as I have already intimated, the models still have significant limitations. Let
me explain what I take those limitations to consist in before offering some suggestions for
how we can move forward.126

Theory. Let me begin with some general methodological considerations. A fully elabo-
rated theory in cognitive science is pitched at three distinct yet complementary levels, the
Marr hierarchy (after Marr [1982]). The highest level is that of task description. Here,
we offer an characterization of the cognitive operation being performed that specifies what
the agent is trying to accomplish. The characterization is intentional, in Dennett’s [1987]
sense; it avers freely to what the subject believes, hopes, fears or intends. Some examples
of task descriptions include: recalling a numeral from memory, attending to a blue dot,
distinguishing two pictures, listening to an auditory stream presented to the left ear, and so
on. By contrast, the lowest level of description offers an implementational account of the
task—that is, a description in physiological terms. Theories pitched at this level are the
domain of the cognitive neuroscientist. A great deal of the action in cognitive science takes
place at the crucial middle layer where the (often implicit) aim is to bridge the gap between
task description and implementation. This is the domain of the cognitive psychologist, lin-
guist, and computer modeler. Research at this level is predicated on two (by now familiar)
assumptions: that the mind operates by manipulating information; and that it does so by
computing, in the sense of Turing [1950]. It may well be that the information is distributed
over vast, structured neural networks and that the computation itself is massively parallel.

126Before offering some criticisms, let me reiterate my motivations. Regrettably, philosophical objections
to psychological research concerning mathematical reasoning have in the past sometimes been dismissive
and unhelpful. Some argued, for instance, that since the referents of mathematical terms—mathematical
objects—necessarily transcend any attempt to make sense of them in terms of pedestrian empirical posits,
psychology and physiology have nothing of value to contribute to an understanding of mathematics per se
(see especially Frege [1953]). It should now be apparent that I want no truck with that view. In any case,
it seems slowly to be in decline. Martin Kusch [1995] has recently written a fascinating history of early 20th

century anti-psychologism. A number of respected philosophers have, moreover, started to back away from
more radical variants of the doctrine. See for instance Thomason [1995], Haack [1978], Giaquinto [2001], and
Laurence and Margolis [2005].
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Even so, the tri-level description holds.127

Two sorts of theories at the all-important middle-layer are possible. The one sort is an
account of the interfaces and the flow of control between coarse-grained mental functions.
This is sometimes called a theory of processing (or a boxology). The other sort of theory is
an account of the manipulated representational states themselves: a theory of structure.128

A cognitive model is said to be weakly equivalent to human mental performance if it mim-
ics it sufficiently well so as to be input-output equivalent to us. Computer programs that
play chess (and include time-delay and error-production subroutines) are a good exam-
ple of weakly equivalent models. A piece of C++ code based on standard data-structures
which proved capable of passing the Turing test would be weakly equivalent to human be-
ings as well; the mind/brain doesn’t rely on linked lists on which standard data structures
ultimately rely. In sum, weak equivalence can theoretically be achieved by sufficiently so-
phisticated models of processing. By contrast, a cognitive model is strongly equivalent to a
human in some cognitive domain if it performs a mental task by means of an algorithm that
manipulates structured representations identical to the ones in fact used by the mind/brain.
The ultimate aim of cognitive science is to offer strongly equivalent models of human cog-
nition. (For a discussion of the tri-level approach to cognitive science, see Dawson [1999],
Dennett [1998] and Pylyshyn [1984].) Let me now suggest that this characterization of the
cognitive enterprise helps shed light on what we ought to be looking for in an explanation
of our mathematical abilities. What we want are cognitive models that perform the same
tasks that human beings perform and do so by the same means. Unfortunately, it seems on
reflection that current models fall short of this goal.

Task description. The lack of strong equivalence between cognitive models and human
minds manifests itself in a variety of ways. The most basic is that some of our models appear
to be executing functions that, contrary to the advertising, are not formally equivalent to
those being performed by the lay mathematician.

Reals. Gallistel and Gelman are careful not to identify mentally represented magnitudes
with real numbers, preferring to leave such ontological questions alone. They do however
claim that mental magnitudes are “formally equivalent to the real numbers” [Gallistel et al.
2005]. Given the semantic theory we adopted in the previous chapter, this is nearly as
strong a claim. If we had at our disposal a thorough account of a mental module whose
representations were truly formally equivalent to some mathematical structure, we would be
a short step away from a theory of how our semantic representations of that mathematical

127See Dawson [1999] for an extended discussion of the tri-level hypothesis in a connectionist setting.
128A clear distinction between theories of structure and theories of processing is made, for instance, by

Jackendoff [1987]. Generative grammar is one example of a theory of structure. Biederman’s [1995] theory
of visual object recognition is another.
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structure were generated and constrained. So if Gallistel and Gelman are right about the
formal equivalence, we are closing in on a cognitive model of human ability.

On closer examination, it looks however that states of the accumulator are not formally
equivalent to the real numbers after all. The first problem is that the reals are dense;
between any two real numbers there exist an infinite number of other reals. It’s implausible
that accumulator states are densely packed since this would require the accumulator to
encode information with infinite precision. It’s hard to see how the human brain could be
capable of doing that. And there is no evidence that rat, pigeon, or chimp brains do so
either. (In fact, things are worse still. The reals form a continuum; the cardinality of the
set of real numbers is 2ℵ0 .) Secondly, the reals are unbounded upward; there is no greatest
real number. Again, it’s hard to see how accumulator states could be similarly unbounded
since they are implemented in a physical system.129

A third difference runs in the other direction. Accumulator states have successors
since—according to the model being proposed—we increment them while estimating quan-
tity. The accumulator is hypothesized to include a computational (effective) procedure for
generating the successor of each state.

Importantly, the verbal counting process is homomorphic to the nonverbal counting
process. In particular, both processes have effective procedures for defining successor
symbols. Each step in the verbal process summons the next word from the list of count
words. Each count in the nonverbal process defines the next magnitude [Gallistel et al.
2005].

As we know, there is no effective procedure for determining the successor of a real number
since no real number (qua real number) has a successor.130 Formal equivalence is a transitive
relation. If A is formally equivalent to B and B to C then it follows that A and C are
formally equivalent also. If accumulator states are homomorphic with the natural numbers
(as, it seems they are) and the natural numbers are not homomorphic with the reals then,
it follows, accumulator states are not homomorphic with the reals. But if so then we still
lack a model strongly equivalent to human arithmetic ability.

Admittedly, one might challenge this line of reasoning by saying that, while counting, the
accumulator increments its state by roughly one (construed as a real). Thus, it increments by

129Dehaene’s algorithmic number line model does better in this regard. It however requires that the amount
by which the counter is incremented decrease exponentially and with infinite precision.

130There’s a wrinkle here. Recall that on the structuralist account (which we did not reject) mathematical
entities are characterized entirely in terms of their relations to other members of the structures which they
inhabit. Structuralism permits us side-step potentially embarrassing questions about just which sets are
the true surrogates of the natural numbers. Questions about relations within structures can be posed and
answered meaningfully; matching elements across structures however is ultimately a matter of convenience.
It is ultimately done by fiat. The number 2 construed as an integer, of course, has a successor. The real
number that is customarily matched with it does not.
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1.0001 on one occasion, by 1.03 on another, and so on. This however does not help. Suppose
we admit this and suppose we also try to follow Gallistel and Gelman in trying to explicate
the arithmetic relations in terms of accumulator states. Doing so, we are led to define
equality of accumulator states as something like rough similarity. That’s because we have
abandoned the notion that some accumulator state n, incremented m times on two different
occasions will yield precisely the same result. The lack of a precise equality relation between
accumulator states seems to differentiate them importantly from real numbers. After all,
π +
√

2 + 1 computed on two different occasions yields exactly the same answer. It’s hard
to see therefore how accumulator states and real numbers can truly be formally equivalent.
And so we still seem to lack an appropriate model of human arithmetic ability.131 But if
there is no formal equivalence then Gallistel and Gelman’s claim that in discovering the
reals, the ancients made a platonic re-discovery of the accumulator and its states looks
implausible.

Integers. There is another problem with Gelman and Gallistel’s [2005] theory. Even if
the accumulator account could be shown to model a complete ordered field and to under-
write human ratiocination concerning the reals, we would still lack a convincing account
of the integers. Recall that Gelman and Gallistel attempt to derive the integers from the
coordination of activity between accumulator and natural language.

When a discrete system like language attempts to represent quantity, it will find it
much easier to represent countable (discrete) quantity than to represent uncountable
(continuous) quantity. . . [T]he integers are picked out by language because they are the
magnitudes that represent quantity. Countable quantity is the only kind of quantity
that can readily be represented by a system founded on discrete symbols, as language
is. [Gallistel et al. 2005]

The claim made in this passage is puzzling. It seems clear that there is no direct dependence
between representational medium and the domain represented. An analogue model can
represent discrete entities, just as a digital model can (perhaps imperfectly) represent a
continuous magnitude. Natural languages have the resources to represent both. We have
words like ‘dozen’ as well as ‘twelve’. We can keep track of how many chocolates are in
the box just as easily as we can keep track of how much chocolate is there. But let’s be
charitable. Fundamentally, the problem with the model (even setting aside the various
claims about natural language) is that it does not offer the cognitive modeller much to go
on. It’s hard to understand precisely how to yoke a capacitor circuit to a computational
model of the grammar for a natural language so as to obtain a representational system
capable of manipulating the natural numbers. And without those sorts of details, it’s hard
to assess whether the model is plausible.

131For related though slightly different criticisms of Gallistel and Gelman’s model, see Laurence and Margolis
[2005].
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By contrast, Susan Carey’s two-interface model of the acquisition of natural number
concepts is both elegant and convincing. It’s possible that Carey’s work offers us an insight
into one aspect of the functioning of the mathematics faculty. But even if that’s right,
ongoing work in cognitive science still faces two other sorts of philosophical objections.

Scope. An important symptom of the inadequacy of our models qua theories of structure
concerns their scope. Nearly all current work—including book-length treatments by But-
terworth [1999], Campbell [2005], Dehaene [1997]—discuss grade-school arithmetic to the
exclusion of all other branches of mathematics. We have no models of human set-theoretic,
group-theoretic, or topological reasoning, for instance.132

Two replies can be made. One might argue that the cognitive operations involved in
higher mathematics involve the same underlying operations that are used in basic arithmetic.
Unfortunately, there is little psychological evidence for this supposition. We are being asked
to believe, in effect, that cognitive processes that range over basic arithmetic information are
sufficient to allow one to represent and track the full range of mathematical facts. However,
the fact that set theory—rather than, say, the Peano axioms—is typically taken to constitute
a suitable foundation for mathematics makes this reply highly implausible. The second way
to respond is to dismiss higher mathematics as essentially a cultural invention.133 I don’t
think this sort of deflationism can be made to work. In the opening chapter, I offered
reasons for supposing that a good deal of higher mathematics is contentful, even when we
are initially disposed to suppose that it is not. The arguments advanced there hinged on
higher maths’ uncanny utility in providing a conceptual scaffolding for original scientific
research in the natural sciences. A psychologist tempted to dismiss group theory or non-
Euclidean geometry as empty sophistication owes an account of maths’ indispensability. In
the absence of an account, we have little reason to abandon the minimal realism defended
earlier. It seems therefore fair to conclude that ongoing cognitive investigations leave out
vast swaths of mathematics.

Even if the point is correct, it may seem insignificant. All scientific investigations are
forced by the nature of the enterprise to limit their purview. In this case however, I think
that the limited scope of investigation not only artificially constrains investigation; I think
it distorts results and leads to theories that will not scale up. To see why, consider an
analogy with linguistics. Imagine for a moment that generative grammar had not been
developed. Imagine that psycho- and neurolinguists studying language had chosen to focus
(perhaps understandably) on four ‘basic’ linguistic operations: asserting, asking questions,
making requests, and issuing warnings. There is little doubt that stable correlations could

132Recently, a few researchers, notably Lee and Spelke [2008], have begun to investigate Euclidean geometry
in addition to basic arithmetic. Even so, cognitive science is still far from embracing a broad realism about
the mathematical universe.

133At least one well-known psychologist has advocated this view.
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be found between cortical activation and the emitting of assertive, interrogatory, soliciting
and cautionary linguistic behaviours. Interesting comparisons can undoubtedly be found
between those cortical activation patterns in humans and in nonhuman animals. Moreover,
I have little doubt that matching boxologies—i.e., theories of processing—could be drawn
up to ‘account for’ the results. Unfortunately, all that work would get us no closer to proper
neurolingusitics in the modern sense [Pulvermüller 2002]. The problem is that a theory of
speech acts, no matter how nuanced, is no substitute for generative grammar. And it’s
largely the latter and not the former that helps inform the neuroscientist what she ought to
be looking for in patterns of cortical activity. It’s for this reason, I believe, that psychologists
who are content to operationally define ‘mathematics’ as little more than the four arithmetic
operations are committing a significant theoretical error.

Philosophical desiderata. It’s perhaps slightly unfair to expect psychological models to
meet metaphysical desiderata. Fair or not though, the fact remains that available models
of arithmetic reasoning fail to account for several aspects of mathematical knowledge that
philosophers and philosophically-minded mathematicians care about.134

The first such philosophical problem concerns maths’ much touted necessity. To put it
picturesquely, the very same mathematical objects with the very same properties exist in
any possible world. There is no way that the world could have been such that the math-
ematical entities, properties and relations had been different. The trouble with cashing
out such entities, properties and relations in terms of the states of psychological models
(including the accumulator or other sub-faculties) is that psychological and physiological
facts don’t go that deep [Frege 1953]. Our psychology could have been different. In fact,
it can be altered: there is evidence that accumulator performance can be affected by the
administration of amphetamines; under such conditions the subjects overestimate cardi-
nalities [Dehaene 1997]. Surely though the real numbers themselves don’t change under
those circumstances. Evidently, we need an independent standard of correctness, one not
defined in relation to contingent facts. Here’s another way of making the same point: it’s
possible that somewhere in the cosmos there exist intelligent beings with an altogether dif-
ferent psychology and physiology. It’s possible, moreover, that some of those beings have
developed natural sciences that permit them to study their surroundings, overcome their
folk prejudices, and engineer useful tools. Surely we’d want to concede that they have an
algebra, geometry, and calculus. And so we need some way of characterizing the objects and
relations that constitute those which itself does not spell out the relevant posits in terms
inextricably linked to avian and mammalian physiology.135

134See Jerzykiewicz and Scott [2003] for a related discussion.
135I’m not sure a move to functionalism helps us in this case unless we can also find some way of picking out

the relevant functions by means other than mathematical notation itself. I leave this as an open question.
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The second property of the mathematical universe that needs explaining is the applica-
bility of mathematics in natural science itself. Mathematical (or purely formal) descriptions
of natural phenomena apparently have more power than ones offered in natural language. I
addressed the issue at length in Chapter 1 and I have nothing new to add here. My point
simply is that a philosophically satisfying account of mathematics should explain this fact.
Proposing that an accumulator and a subitizer (and so forth) interface with semantic rep-
resentations offered up by the language faculty does nothing to dispel the air of mystery. It
therefore falls short of a philosophically satisfying account.

Mathematical ‘perception’

Eventually, we want a fully elaborated tri-level account of human mathematical abilities (in
the style of David Marr [1982]). Evidently, that will require a theory of the nature of the
‘representations’ employed in mathematical reasoning. It’s perhaps not surprising that I
have no concrete theory to offer here. Instead, I’d like to suggest a way of understanding
the nature of mathematical cognition that may help us arrive at a theory. The route will be
slightly circuitous and will necessitate a certain amount of historical exegesis. In this case,
that can’t be helped (and in any case, I think the history is intrinsically interesting).

The first step will be to abandon the first-pass, commonsensical understanding of ‘math-
ematics’ as consisting primarily of reckoning; we’ll need to dig a bit deeper. In Chapter 1
we encountered Alain Connes’ bold assertion that in the course of his research, he senses
himself to be charting an abstract landscape every bit as real as our physical surroundings.
This metaphor of mathematics as a kind of perceptual experience can, of course, be traced
back to Plato. I’d like to suggest that it is precisely to this conception of the nature of
mathematics that cognitive science ought to pay heed if we hope ultimately to make sense
of mathematics as a natural phenomenon. I’m not deaf to how odd that sounds, nor am I
about to betray my naturalist scruples. Let me offer the hard-nosed empirical psychologist
a reason not to abandon the discussion at this stage. Consider: as it happens, few adults are
synesthetes. To neurotypical subjects descriptions of the experiences of synesthetes sound
utterly fantastic and wholly implausible. On its face, little if any sense can be made of such
assertions as that peanut butter is full of circles and spheres or that high-pitched sounds
have an unpleasant briny taste.136 In spite of this, in order to arrive at a scientific account
of synesthesia, a good first step was to treat the subjects’ reports concerning their phenome-
nal experiences perfectly seriously. Indeed, such reports have become a respectable point of
departure for experimental investigation. We are now able to match the phenomenological
descriptions supplied by synesthetes with correlated psychological and neurophysiological

136The examples are from Cytowic [2003].
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events.137 Think now of the mathematicians’ inner experience. Given the profound impor-
tance of their field to our cultural and scientific endeavors, I see no obvious reason to deny
them the same courtesy. As in the case of the synesthete, it’s not a matter of taking their
self-reports as authoritative. Rather, it’s a matter of making these the starting point for
investigation. Anyway, we have little to lose by provisionally taking seriously the mathe-
matician’s descriptions of her phenomenology as well as her attempts to offer a philosophical
interpretation of them.

The modern locus classicus of the mathematicians’ sophisticated self-analysis is a short
[1947] essay by Kurt Gödel entitled ‘What is Cantor’s continuum problem?’ There, Gödel
famously asserts that

Despite their remoteness from sense experience, we do have something like a perception
of the objects of [fundamental mathematics, and in particular] set theory.

Gödel is an appropriate target for detailed study. His voluminous correspondence, notes,
and essays afford us a wealth of material. Moreover, Gödel was a careful and penetrating
thinker. We know a good deal about his intellectual biography as well as his metaphysical
and mathematical commitments and so it’s possible to reconstruct what he intended by his
claims in considerable detail. Once the interpretation is complete, we can begin to translate
the results into a more familiar, modern, cognitive-scientific idiom. I will argue toward the
end of the chapter that some progress toward an epistemology of mathematical judgements
can be made in this way. Gödel’s work also suggests how the structures that mathematical
reasoning manipulates should be understood.

Background

The key to understanding Gödel is to understand Kant. This, I realize, is not the received
wisdom. Indeed, Gödel has been called an arch-Platonist by more than a few commen-
tators.138 Before pressing ahead therefore let me briefly justify my departure from the
standard view.

We know that Gödel become a ‘conceptual and mathematical realist’ in 1925: early on
in his undergraduate career. The conversion coincided with his second, sustained attempt
to study Kant’s works. The first foray had already been made in 1922 while Gödel was still
a teenager attending Gymnasium in Brno. At that point, the young mathematician had

137See also Dennett’s [1991] discussion of hererophenomenology.
138This claim is made inter alia by Brown [1999], Shapiro [1997], Steiner [1998], as well as his biographer

Wang [1987]. In fact, even some recent commentators who recognize the Kantian roots of Gödel’s ideas try
to reconcile those with a Platonist ontology (Martin Solomon [2009]). Gödel is undoubtedly a realist, in
the sense discussed in Chapter 1. That he is a Platonist, in the sense addressed in Chapter 2 would require
considerable further evidence.
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mastered undergraduate mathematics and was beginning to turn his attention to related
philosophical matters.139 By 1925 Gödel was sufficiently taken with philosophy to enroll
in Gomperz full-year class on the history of the field. During that year, he read The
Metaphysical Foundations of Natural Science, evidently as background for a reading of the
first Critique. The impact of Kant’s work on Gödel cannot be overstated. Indeed, it would
not be an exaggeration to say that Kant constituted the major intellectual point of reference
for Gödel throughout his life.140 Of course there were others. We know that several other
philosophers, notably Husserl and Leibniz, also exercised an influence on Gödel later on
in life. Yet in 1975, when asked to reflect on his intellectual trajectory and to name the
philosophers who had contributed to the development of his ideas, Gödel responded that
“only Kant was important.”141

Let me temper what I have just said with a word of caution. The question of intellectual
influence in this case needs to be treated delicately. Gödel was an original thinker in his
own right, so while Kant exercised a powerful pull on him, it would be a serious mistake
to think of Gödel as a ‘Kantian.’ In a 1961 essay, he writes: “a general feature of Kant’s
assertions [is] that literally understood, they are false, but in a broader sense contain deeper
truths.” The first challenge for any interpreter of Gödel’s philosophy must therefore be
to disentangle the views he actually held from the rich Kantian backdrop against which
they are defined. In order to do this, it’s crucial to understand where Gödel departs from
transcendental idealism as well as his reasons for doing so.

In what follows, I propose to pursue these issues. Since the aim, ultimately, is to be in a
position to interpret Gödel’s [1947] discussion of the nature of our access to mathematical
reality, I will be particularly interested is relatively early critical philosophical reflections on
mathematics and metaphysics—those written between 1946 and 1949. As it happens, we
are in luck—there is concrete evidence to be had. The [1947] paper, entitled What is Can-
tor’s Continuum Problem? was commissioned in February 1946 by American Mathematical
Monthly. Gödel took the writing of this article—which had apparently been intended by

139See [Dawson 1997].
140For an interesting historical discussion see Yourgrau [2005].
141The questionnaire can be found in Gödel’s Collected Works, volume IV as well as in [Wang 1987]. Oddly

enough, Wang [1987] recognizes that in 1925 Gödel read a good deal of Kant and that he became a ‘conceptual
realist’ in that year. Yet he inexplicably suggests (p.22) that the conversion to realism occurred “presumably
under the influence of Plato.” He offers no evidence for this presumption.

I should mention that some interpreters—notably Charles Parsons [1983]—suggest that it may have been
Husserl and not Kant that Gödel has in mind in his 1947 essay. This is certainly an interesting idea and the
connection between Husserl’s work and Gödel’s later philosophy is worth pursuing. Still, I find this reading
unconvincing. Gödel did not devote himself to a serious study of Husserl’s philosophy until 1959. He had
became slightly familiar with Husserl’s work, especially work on consciousness, when the latter gave two
lectures in Vienna in 1935. Still, even bearing this in mind, I think connecting the 1947 paper to Husserl
would require additional evidence. In fact, Leibniz, whom we know Gödel studied between 1943 and 1946,
and maintained obsessed with throughout his life, might be a more plausible alternative candidate.
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the journal’s editor to be a relatively straightforward expository piece—very seriously. In
fact, he became quite absorbed in the project. Ultimately, he required an extension. And
the paper was not sent to the journal in its final state until May 29, 1947. While in the
midst of writing the piece on Cantor—in May 1946, to be precise—Gödel was asked by Paul
Schilpp to contribute to a volume in honour of Einstein, to be given to the latter on the
occasion of his seventieth birthday (March 14, 1949).142 Of course, Gödel accepted and so
took on a second project, which added significantly to his workload. Shortly thereafter, in
September 1946 he wrote to his mother that he had become “so deeply involved in his work
that he found it difficult to write letters” [Dawson 1997]. This second project gave rise to
several unpublished manuscripts entitled Some observations about the relationship between
theory of relativity and Kantian philosophy. It also resulted in an abridged piece that was
ultimately given to Einstein. Now, what makes these papers particularly valuable from our
perspective is that they contain an extended discussion and critical assessment of Kantian
metaphysics from a modern standpoint written at precisely the same time as the [1947]
remarks on mathematical perception. Indeed, since Gödel sent off the paper in which the
above cited passage is contained in May 1947, drafts of the Kant essays that were written
just before that point are of particular interest. Here again, we are in luck. We know that
Gödel made an important technical discovery on September 23, 1947.143 I propose here
therefore to work mainly with a draft of the Kant essay written immediately before that.144

My contention is that the metaphysical picture Gödel lays out in that paper is essentially
the same as the one that serves as the background for the [1947] essay.145

Kant’s Transcendental Psychology

Although Gödel is not an orthodox transcendental idealist, he does argue that much of
the Kantian world-view is coherent and broadly correct in its essentials. He does this by
showing that modern physics—and the general theory of relativity in particular—offers a
striking confirmation of some of the core metaphysical tenants advanced in Kant’s [1781]
first Critique.146 Simultaneously, Gödel [1949] takes the opportunity to clarify precisely

142The paper was, in fact, ultimately not included in the volume but rather given to Einstein directly at
his birthday celebration, on March 19, 1949.

143He discovered that relativity permitted worlds in which a simultaneity relation cannot be defined. See
the discussion by Malament elaborated by Stein in Gödel’s Collected Works, volume III, pp.203-4.

144This is the B2 draft written between the fall of 1946 and September 1947.
145The alternative is that while working intensely on three conceptually difficult topics—the continuum,

general relativity and transcendental idealism—Gödel nonetheless entertained some other metaphysics and
left no traces of this in the written record. I find such an alternative hard to accept. The more so, in fact,
since the period I am focusing on antedates Gödels interest in Husserlian phenomenology.

146Note that I read the Critique as mainly an ontological and not as an epistemological treatise. In fact,
I understand it as a contribution to transcendental psychology in the way suggested by Kitcher [1990]. My
reading is also heavily indebted to the interpretive work of Brook [1994], Carson [2004], Falkenstein [1995].
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which aspects of transcendental idealism have been superseded by subsequent developments
in mathematics and natural science.

Faculties. Central to the Critique is a distinction between two cognitive faculties—sensibility
and intellect—as well as their complex interplay. With the benefit of hindsight, it’s easy
to see Kant as a revolutionary. So it’s helpful to bear in mind that at first glance the
bicameral architecture would have struck Kant’s contemporaries as a rather reactionary
commitment.147 Both rationalists and empiricists had favoured single-facultly accounts of
the mind. These however, in Kant’s estimation, had run their course and failed: “Leibniz
intellectualized appearances, just as Locke had sensualized all of the concepts of the intellect,
i.e., had passed them off as nothing but empirical” [A271]. By returning to an earlier
theory—one introduced by Aristotle and employed by the scholastics—Kant effectively turns
back the clock. In his hands however, the old aesthesis/noûs distinction takes on new life.
For reasons that will emerge shortly, the faculties are characterized by Kant exclusively in
terms of the functions they perform rather than (say) in terms of the physiological systems
that implement them. This articulation of early functionalism is already a major original
contribution to the philosophy of mind [Brook 2004]. Just as important is the tightly
constrained range of functions that Kant is prepared to ascribe to the two faculties.148

Kant denies that we can have direct insight into the workings of the mind via clear and
distinct ideas or by any similar, privileged means. Nevertheless, we can infer a good deal
about our constitution by attending to the mind’s products—our experiences—and inferring
the structure of the mental faculties that contribute to producing them.149 One striking
aspect of our conscious experience is the lack of control we have over its basic content. We
cannot alter the state of our surroundings by the application of willpower alone. Facts about
our surroundings ‘force themselves upon us as being true.’ By contrast, our dreams and our
imaginary phantasms, in this respect at least, are largely under our control. To account for
this, Kant suggests we must posit the existence of a receptive mental faculty, the sensibility,
and allow that it receives input from without. Since he claims no privileged insight into its
nature, his characterization of the sensibility is appropriately minimalist: it is construed as
engaging in no inference-making, no reckoning, and as drawing no conclusions. Instead, the

I think Gödel’s claims concerning the affinity between Kant’s and Einstein’s work bears out this reading.
Einstein, after all, was not offering an epistemology; he was discussing what there is.

147For a discussion, see Falkenstein [1995].
148Let me note in passing that the bicameral architecture permits Kant to resolve some outstanding prob-

lems, not the least of which is the dispute between Leibniz and Newton concerning the nature of space.
Discussing this and the distinction of the faculties in Kant’s earlier work, such as the Inaugural Dissertation,
would take us too far off track. It is however independently interesting to anyone curious about the ur-history
of cognitive science. I refer the interested reader to Carson [2004] and Falkenstein [1995].

149This sort of transcendental argument is now commonplace in linguistics. We look to speaker performance
and native speaker judgements so as to hypothesize a theory of the grammar that produced them. See
Chomsky [2000].
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sensibility merely places us in an immediate and synchronic contact with that which forces
itself upon us: viz., concrete particulars.150 These imprint themselves upon us, thereby
becoming sensory impressions. True to form, Kant makes no special claims concerning the
distinction or the relationship between auditory, tactile, olfactory, and visual impressions.
Questions about the individual senses, their interrelations and the sensory organs themselves
are left to empirical psychology and physiology. Given how little we can safely infer about
the functional characterization of the sensibility from transcendental arguments based on
the nature of phenomenal experience, this is surely the prudent approach. (It prevented
Kant from making rash commitments that would have been disconfirmed by Galton’s work
on synesthesia, for example.) Instead, Kant uses the neutral term ‘intuition’ (intuitus) to
refer to the generic capacity to receive imprints or impressions (Eindrucke). It’s worth
underscoring that this term picks out a wholly pedestrian, non-mystical process: “Our
intuition, by our very nature, can never be other than sensible intuition; i.e., it contains
only the way in which we are affected by objects.”[A51] Kant therefore rejects all manner
of extra-sensory or supernatural input to the mind. (Gödel does exactly the same in the
[1947, 1949] papers we will discuss).151

Human beings may have a tendency to overestimate our species’ cognitive prowess and
devalue that of others. Still, we surely do enjoy a modest measure of mental flexibility
and a capacity for spontaneous thought. This too requires an account. Kant attributes
this aspect of our experience to the second part of the bicameral architecture, the intellect.
The powers of this active faculty are essentially discursive. It proceeds by drawing (largely
unconscious) inferences and arriving at judgements. To do so, the intellect subsumes the
sensory impressions delivered over by the sensibility under concepts. Unlike the synchronic
and unmediated action of the sensibility, the activities of the intellect unfold diachronically;
they take time to accomplish. And, of course, they can be executed incorrectly; we some-
times subsume a sensation under a concept only to discover on further reflection or in light
of subsequent experience that the predicate we had employed does not truly apply. Think
here of erroneous face recognition. Or again, think of visual illusions.

According to the mature Kant of the first Critique, all representations manipulated
by the intellect, without exception, derive their content mediately or immediately from
the sensibility [A51]. The intellect contains no innate ideas, exactly as the empiricists had
maintained.152 Nor does Kant ascribe any special receptive powers to the discursive faculties

150Zenon Pylyshyn’s [2001] visual indexes are a direct modern extension of Kant’s doctrine of sensibility.
151Interpreters of Gödel, including Shapiro [2000], often take ‘intuition’ to mean a sort of hunch or gut

feeling that some proposition must be true. This is a misinterpretation.
152Kant does not however deny that the mind contains innate ‘grounds’ of representation. There is some

controversy over whether these should be seen as innate mechanisms or something more basic, more passive
than that (see Kitcher [1990], pp.16-17). On the innate mechanisms reading, Kant can be read as taking up
Hume’s [1748] challenge to ‘characterize and class’ the principles by means of which the association of ideas
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of the mind. This is a significant limitation. It directly contradicts the scholastic doctrine
that noûs permits us to directly grasp certain ‘higher’ truths (a thesis Kant had tolerated
in earlier work). Kant’s mature transcendental psychology offers us an austere vision of
a cognitive architecture, one wholly inconsistent with any form of intellectual intuition.153

A reading of Gödel’s work that took him somehow to ‘blend’ Kantian philosophy with
a commitment to Platonic entities would owe a detailed account of how these clashing
commitments could be reconciled. The endeavour is, I think, hopeless. Moreover, I find no
evidence in Gödel’s writings that he attempted such a reconciliation.154

Syntheses. At this point, I must ask for the reader’s indulgence. Kurt Gödel’s account of
our access to the truths of mathematics turns on some of the details of the interplay between
sensibility and intellect. This is not the place for a close reading of the Critique but it will
not be possible to discuss Gödel competently without reviewing some of these.155

According to Kant, the raw presentations to the sensibility, whether these arise as the
effects of mind-independent entities or from internal causes, contain what Kant calls a
manifold. They are, in other words, complex and consist of a multiplicity of potentially
distinguishable presentations. A problem lurks here. As we have seen, the passive reception
of impressions as such is an immediate event that involves no computation. Yet in order
for the received multiplicity of the manifold to potentially resolve into a diachronic unity in
which distinct elements are distinguishable, each immediate presentation must be susceptible
to being gathered as a single, unified presentation, however briefly. This is accomplished by
what Kant calls a synthesis of apprehension in intuition [A99]. The details are a bit sketchy
but what seems plausible is that the synthesis of apprehension relies passively on the spatio-
temporal arrangement of the imprints to bring them into appropriate unity. (More on space
and time in a moment.)

Next, the gathered manifold is subject to the simplest function of the spontaneous
intellect [B130]. Kant reasons that in order for an experience of an object to be possible,
the presented manifold must not only be gathered together but also become susceptible
to being held fixed and ultimately compared with both itself and other experiences. The
holding fast of the synthesized manifold is performed by a faculty that will play a major
role in what follows: the reproductive imagination. Let me say at once that the label
is exceptionally misleading (even for Kant). This faculty is not to be confused with the
productive imagination—the more familiar faculty responsible for generating phantasms
and daydreams. I emphasize the point because Gödel places a good deal of weight on this

occurs. This perhaps is the initial motivation for the transcendental deduction of the categories.
153See Falkenstein [1995] for an extended discussion.
154Martin Solomon [2009] proposes such a reading.
155I am grateful to Andy Brook for a number of conversations about the doctrine of synthesis. This section

draws on his Kant seminar and his [1994] book.
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particular process. For the moment, let us simply characterize the productive imagination
functionally: it lies at the interface between brute sensibility and spontaneous intellect. It
constitutes (on most readings) the lowest level of the spontaneity subject to the laws of
association [A101,B151]. However, that said, it’s somewhat unclear whether it manipulates
sensations themselves or their representations.

The gathered and held manifold is subject to a third synthesis: recognition in a con-
cept. This final act of synthesis subsumes the manifold under a general predicate resulting
ultimately in a stable intentional object which is experienced as falling under a description
[A104]. A good deal of work is done by the cognitive apparatus at this crucial stage. Im-
portantly, the mere reproduction of the synthesized manifold in the imagination does not
yet yield a fully fledged object of experience. In other words, there is more to being a
recognizable, unified intentional object than being a bundle of representations upon which
the repetition of the reproductive imagination is effected. At a minimum, it requires the
recognition of the output of the reproductive imagination as a single object. The brute
fact that the representations being synthesized into a unified intentional object (presum-
ably) have as their source an objective, mind-independent, concrete particular does not help
much. If the idea of an unified object itself were not antecedently available to the mind, at
least in a purely formal sense, the impressions made on the sensibility would not themselves
be sufficient to spontaneously generate it.156 An act of judgement that connects the repre-
sented elements in a single experience is requited. (This is borne out by recent empirical
work on visual apperceptive agnosia.157) Kant calls the act of judgement in which the mind
connects disparate represented elements in a single experience the unity of apperception.158

To effect it, the mind itself needs to be capable of applying a function that becomes aware
of representations as a single experience. The apperceptive unity is effected on the basis of
a transcendental object, a pure x (or object file, of you prefer) that is already in the mind.
The application of the act of recognition in a single object itself requires the application
of several kinds of concepts; at least those of quantity, quality, and modality. So there are
built-in constraints on what intentional objects are like.159 Finally, an unified intentional
object falls under some more specific concept; it’s recognized as a triangle, a teapot, or
a face. The labels applied by the intellect are necessarily general; they do not relate us
directly to concrete particulars but rather bring intentional objects under a general rule.160

156We will see Kant’s point is reiterated by Gödel [1947].
157Shelton et al. [1994] discuss a subject with good visual acuity who nonetheless fails to recognize presented

objects as unified wholes.
158See Brook [1994] for a helpful extended discussion.
159I will not address the transcendental deduction of the categories here since nothing in the two Gödel

papers that we will shortly discuss draws on it.
160While the vocabulary is tortured and antiquated, the account is by no means out of date. Brook [1994]

and Kitcher [1990]) both point out that Anne Treisman’s influential [1980] model of feature binding exactly
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The upshot of Kant’s account of the interplay between sensibility and intellect is that,
in the normal way of things, the two faculties are wholly codependent. The synthesis of
recognition in a concept depends on the prior activities of the syntheses of apprehension
and reproduction. And while the first two syntheses can be accomplished without the third,
the product this yields cannot be an object of experience for us. All thought, indeed all
phenomenal experience, is the result of the application of both faculties—which is to say of all
three syntheses. The consistent application of this co-dependence thesis entails two weighty
limitative results. First, the use of concepts divorced from application to content derived,
mediately or immediately, from sensory experience yields nothing but a spurious spinning
of the wheels. We can certainly manipulate ideas either by free-associating or by cogitating
in accordance with the principle of non-contradiction. But, as Kant puts it, dialectical
cognition bereft of sensible input must ultimately remain empty. Clearly, this limitative
result constitutes a major challenge to anyone interested in defending entities or truths
that are purportedly not originally intuited by the senses. In particular, metaphysicians
and natural scientists who propose to violate the emptiness thesis—either by positing ante
rem entities or even imperceptible atoms—owe an account of how minds such as ours can
come by the relevant content. In the absence of an account, one must suspect that the
hypothesized entities are merely phantasms generated by the productive imagination (a
problem of which Gödel would have been aware).161 The second limitative result cuts the
other way: sensations that do not undergo the syntheses of the understanding and so are
not subsumed under representations are blind. They are not devoid of content, but they
do stand in a wholly non-cognitive relation to us and cannot directly become a matter of
human thought or experience. Here we come full circle and see the justification for Kant’s
insistence that we have no privileged access to the nature our own constitution. Blindness
prevents us from directly apprehending aspects of our being except by way of the recognition
of sensory experiences in a representation.

Space & Time. Let me end the discussion of the Kantian cognitive architecture by presenting
a doctrine that is important both to Kant’s own view of the content of mathematics and
also to Gödel’s understanding of the topic; namely, Kant’s conception of space and time.
Patricia Kitcher [1990] argues that we risk misreading Kant here if we do not see him as
engaging in the controversies of the day.162 This is clearest concerning the doctrine of space
in particular, where Kant weighs in on a (by then) old dispute. It was well recognized that
if our sense of space were derived from the matter of our sensations, it would need to be
attributed to either vision or to the sense of touch. Our olfactory and auditory faculties are

recapitulates the Kantian doctrine of synthesis.
161We have here the seeds of Ernst Mach’s phenomenalism which both Einstein and Gödel rejected. See

Yourgaru [2005].
162My reading here follows Kitcher’s [1990] and is also informed by Falkenstein 1990, 1995.
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not plausible as the origin of our experience of spatial relations. Neither sight nor touch
however seemed suitable to the task. The retina is, in essence, a two dimensional surface and
so cannot itself judge distance in three dimensions. Moreover, a variety of wholly different
external objects can cause identical retinal presentations (even if we factor in binocular
presentation). Descartes had proposed that our sense of distance could be accounted for
by positing an ‘innate geometry’ which exploited the parallax due to the distance between
the eyes. The proposal had been criticized, among others, by Berkeley.163 And it ran into
several significant objections: it was known, for instance, that the congenitally blind have
a good sense of spatial relations.164 Moreover, we typically experience dreams as presented
to us in space. But, of course, visual parallax is of no use in such a context. Yet neither
can our sense of space be attributed to the sense of touch, as Berkeley had maintained. In
response to that hypothesis, Leibniz had pointed out cases of paralyzed individuals learning
Euclidean geometry by sight alone. Counterexamples, it seems, exist to proposals on both
sides of the debate. (The argument for the nonsensory origin is, if anything, clearer in the
case of our experience of time.)

Kitcher reads Kant—plausibly, I think—to be following the modus tollens through to
the valid conclusion: our experience of space must be attributed to a source other than mere
sensory impressions.165 But neither is it plausible that spatial relations can have their origin
in the ideas and discursive functions of the intellect. Kant asks us to consider in connection
with this hypothesis two congruent scalene triangles inscribed on a sphere, one in the north
hemisphere and one in the south, such that they share a common base [Kant 1783 §13].
All of the intrinsic properties of these two triangles are identical; all the same predicates
apply to both. Indeed, as far as the intellect alone is concerned, they are indiscernible.
But of course they are distinct entities insofar as they cannot be made to overlap (except
by rotating them in three dimensions). The example is even more telling once presented
in three dimensions: a pair of three dimensional stereoisomers (such as a pair of gloves)
cannot be brought to overlap at all. From this, Kant concludes that spatial differences are
not merely intellectual differences. Spatial relations are real and so due to some aspect
of reality given to the sensibility and not merely conceptual differences detectable by the
intellect.

Having discounted both the matter of sensation and relations among ideas as the sources
of our spatio-temporal experience, Kant offers his own suggestion. The truly striking aspect
of our spatial and temporal experiences is their universal and necessary character. We can
antecedently be assured that all of our outer experiences will involve objects located in three

163Berkeley’s actual criticisms turn on a flawed view of the role of consciousness in cognitive processing, so
I will not discuss them here.

164For modern evidence, see Landau et al. [1981] and Landau et al. [1984].
165Note that Kant may have reached an important and correct conclusion by means of a valid, yet unsound

argument.
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dimensional, Euclidean space. Similarly, we know that all of our inner experiences will be
capable in principle of being ordered in a single, linear, temporal sequence (individual failures
of memory notwithstanding). Indeed, we can imagine being deprived of all input to the
sensibility but even under those circumstances, the spatiotemporal character of experience
would persist. We have no such assurance concerning any other aspect of our sensations.166

Kant infers that universal features of experience such as these must be due (not to the matter
of sensation but) to the way in which sensations are themselves arrayed in the sensibility.
Simply put, what I have been calling sensory experience is a complex of two elements: the
matter of sensation (the sensa) and the order in the sensations are arrayed [Falkenstein
1990]. Space is the ordering principle of all of our outer experiences; time is the ordering
principle of both outer and inner experience.

The solution is ingenious. It does however impose a further limitative result. Recall
that the consistent application of the blindness and emptiness theses forces Kant to say
next to nothing about objects as they are in themselves. And he is, if anything, even more
circumspect about the nature of space and of time as these exist in themselves.

I consider all the representations of the senses, together with their form, space and
time, to be nothing but appearances, and space and time to be a mere form of the
sensibility, which is not to be met with in objects out of it . . . But if I venture to go
beyond all possible experience with my concepts of space and time, which I cannot
refrain from doing if I proclaim them qualities inherent in things themselves. . . then a
grave error may arise due to illusion, in which I proclaim to be universally valid what is
merely a subjective condition of the intuition of things and certain only for the objects
of . . . possible experience. [Kant 1783, P291-2]

Kant then does not permit himself to characterize space or time wholly apart from our
experience of them. The ordering by means of which our sensations are arrayed as such has
no reality whatever apart from human experience. (Gödel, we shall see, rejects the purely
subjective character of space and time while accepting the essentials of Kant’s account.)

Mathematics. It’s not an exaggeration that explaining the striking contrast between the
successful employment of pure reason in mathematics and its failure to yield useful re-
sults in metaphysics preoccupied Kant during some of the most active years of his life.167

Regrettably, Kant was not fortunate enough to witness the period of rapid and profound
mathematical development which occurred in the course of the nineteenth century [Kline
1980]. Even so, already in his time the difference in the fortunes of speculative philosophy

166The possible exception is that we know antecedently that all our experiences will be attributable to a
single ‘I’. I will not however address the transcendental unity of apperception here.

167By which I mean from the time of the Inaugural Dissertation of 1764 to the time of the 1783 Prolegomena.
See Carson [2004].
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and mathematics were plain to see.168 The diagnosis Kant offers of the contrast between
the disciplines is rooted his account of the faculties: in brief, the mathematicians’ use of
reason is different in kind from the philosophers’. Along the way, he offers an original and
workable explanation of the nature of mathematical judgements.

The central phenomenon to be explained (by transcendental argument) is that math-
ematical research is genuinely ampliative. Kant was aware, of course, that mathematical
progress is not always steady and that blind alleys do frequently arise. But the point is that
mathematicians (like cartographers and experimental scientists) do build on prior results to
push back the boundaries of our ignorance. Now, in general, ampliative judgements have
this feature: they can contain genuinely novel information that cannot be gleaned by the
reshuffling and re-association of ideas alone. This is not to say that analysis is unhelpful.
On the contrary; careful scrutiny of ideas often uncovers hidden inconsistencies. And where
our ideas can be analyzed and shown to violate the principle of noncontradiction we can be
sure that something has gone wrong. Genuinely novel content however cannot arise from
the discursive exercise of the intellect. In the case of empirical (a posteriori) judgements,
new content comes from an encounter with the world. Indeed, the fact that the world forces
itself upon us as being a certain way was, recall, among the motivations for inferring the
existence of a receptive faculty in the first place. Similarly, to the extent that (some) mathe-
matical judgements are ampliative (or synthetic) suggests that when making them we intuit
content external to and independent of the intellect.169

Empirical ampliative judgements present no special explanatory problems for Kant: the
receptive faculty receives impressions from without. Questions about the structure of that
reality to which we lack answers can be pursued, straightforwardly enough, by creating
conditions under which new experiences can be had. Thus, if we do not know whether a given
substance conducts electrical current or whether it floats in ethanol, we create experimental
conditions that afford us the appropriate intuitions to make the relevant judgement. In
short, ‘questions not decidable now may be decidable in light of additional experience.’
Recall however that according to Kant, all intuition is sensible intuition; that is, all new
content is derived from sensory experience. It seems wholly implausible that the content
of mathematical judgements derives from the content of our sensations. One reason Kant
offers against such an explanation is that mathematical judgements are universal. When we

168In fact, this is a lesson Kant learns from Hume [1748]. It is a lesson however that has apparently not
been fully absorbed by some modern philosophers.

169Kant claims that all mathematical judgements are synthetic [A11]. The point is debatable. I think a
more careful way of putting it is that all mathematical judgements are synthetic in their origins. That is, all
new mathematical content, when first derived, is genuinely synthetic or ampliative. However, mathematical
results can be justified analytically by means of formal proof from given assumptions. Kant’s writing his-
torically antedates the heavy emphasis on formal proof that became important with the foundational work
of the nineteenth century so I think we ought to read him charitably here. The important point is the tight
link between truly new mathematical content and synthetic judgement.
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learn that a triangle inscribed in a circle (such that the base of the triangle bisects the circle)
contains a right angle, we learn this for all inscribed triangles. There is no need to conduct
additional experiments. Unlike empirical judgements, mathematical judgements do not
depend on any particular experience for their justification. Secondly, correct mathematical
judgements are necessary : they cannot be altered and are a feature of any experience.170

How then are pure (by which I mean non-empirical), ampliative judgements justified a
priori?

Given what has been said, the answer is obvious: there is more to sensory experience
than sensations alone.171 As we just saw, in addition to the content of the sensations,
sensory experience embodies also the principles of organization. Sensations are arrayed in
the intuition both spatially and temporally. And it’s precisely this ordering of the matter of
sensible intuitions which, Kant suggests, itself becomes the object of mathematical reflection.
In the case of arithmetic, the content derives from the pure, a priori intuition of time [A720].
Geometric judgements on the other hand are rooted in our a priori intuition of space. When
reflecting on geometric facts, the geometer effectively constructs a figure

by representing the object which corresponds to this concept either by [reproductive!]
imagination alone, in pure intuition, or in accordance therewith also on paper, in empir-
ical intuition—in both cases completely apriori, without having borrowed the pattern
from [the matter of] any experience.[A713]

In the case of mathematical cognition, our ideas arise from individual experiences but give
us universal knowledge about any experience whatsoever, provided that experience is gov-
erned by the same principles of organization. (Let me make one note here: this passage is
sometimes read as referring to the productive imagination. This cannot be right. There’s no
barrier to the productive imagination forming phantasms that, while apparently convincing,
are incoherent: one can perfectly well picture by means of the productive imagination using
a ruler and compass to nudge a unit circle into a perfect square. Yet, of course, squaring the
circle is impossible. Kant was not ignorant of this. What’s at issue here is not our capacity
to form fanciful phantasms. Rather, it’s our capacity to synthesize factually occurring spa-
tial and temporal patterns that does the cognitive work. This is done by the reproductive
imagination [A102]. Its products may sometimes be mirrored in phantasms, but need not
be.) The necessity of mathematical judgements derives from the perfect generality of the
forms of the sensibility. All content of sensory intuition is arrayed in space and time in just
the same way. If mathematics derives its basic content by (unselfconsciously) studying that
structure, we can be sure that the most basic mathematical results will apply universally to

170This is not to deny that we sometimes make mistakes in recognizing which mathematical judgements
are true.

171Falkenstein’s [1990, 1995] work provides a particularly lucid and helpful discussion of this.
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sensory experience. It follows unfortunately that mathematics will not legitimately apply
to entities as they exist in themselves, apart from our experience of them. If science relies
essentially on mathematics then, for Kant at least, a science of the noumena is impossible.
(We will see that Gödel takes a different view.) The possibility of mathematical error is ex-
plained in just the same way that perceptual error is accounted for: our empirical judgements
are sometimes false because, on occasion, the ideas under which we subsume presentations
do not match the ideas we would have subsumed presentations under had we had more
exposure to the manifold in question.172 Mathematical definitions are attempts to subsume
under concepts the universally valid content present in the reproductive imagination.173

And sometimes these attempts eventually prove incoherent.

Metaphysics. Mathematical judgements can be explained entirely a priori, with no reference
to the matter presented to the sensibility. It may still seem puzzling though that the employ-
ment of pure reason in mathematics is cumulative, while its employment in metaphysical
research is not. Let’s review the reason why.

The mathematician proceeds from intuitions to concepts, constructing the latter on the
basis of the former (or at least trying to do so). As Kant puts it, she “contemplates the
universal in the particular” [A714] by discovering universally valid patterns in the spatio-
temporal array by way of which the matter of sensation is presented. Though Kant does
not say so, one might add that as research proceeds, the construction of ever more com-
plex such patterns (of spatio-temporal configurations) becomes possible—a sort of evolving,
increasingly intricate kaleidoscope on which to base new ideas. The mathematical realm
is therefore real, but essentially unfinished. The speculative metaphysicians’ employment
of pure reason is altogether different [A713-738]. Speculative metaphysics, Kant suggests,
does not construct concepts on the basis of new intuitions. Instead, it “contemplates the
particular in the universal.” That is, it proceeds by taking a particular entity and analyzing
the concepts that apply to it. This is a discursive activity of the intellect and so can generate
no new content. In fact, contemplating an individual object—say, a triangle—and enumer-
ating the concepts under which it falls cannot help us prove so much as a single theorem
of Euclidean geometry. If the reception of content from outside the intellect is the engine
of conceptual progress and if the mathematician is able to do this while the metaphysician
cannot, speculative metaphysics must remain nothing more than a rehashing of ideas.174

172A special case of this are optical illusions and bistable percepts; in such cases, the same intuition can
equally well be subsumed under two distinct concepts. It’s at least conceivable that illusions of a sort arise
in mathematics. Gödel (below) takes this possibility seriously.

173In some passages [A713-738], Kant takes a different view of definitions. Given what he says about
mathematical content and its independence of the intellect, I think this is a mistake. In any case, Kant’s
views have been made obsolete by subsequent dicussions—notably between Frege and Hilbert—concerning
definitions. For a useful discussion, see Brown [1999].

174I have found Emily Carson’s [1999] work very helpful in thinking about this section.
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Gödel’s Transcendental Realism

Godel’s explanation of our knowledge of mathematics recapitulates Kant in many respects.
Like Kant’s explanation, it ultimately rests on Gödel’s conception of space, time, and the
human cognitive architecture. Remarkably, Gödel maintains that Kant’s doctrines on these
topics are largely correct and in accord with modern science—though they need to be
interpreted carefully and supplemented to reflect recent work. The reading of Kant that
Gödel pursues places a great deal of weight on two aspects of the philosophy: the unequivocal
rejection of subjective idealism, and the distinction between the manifest world of conscious
experience and reality as it exists in itself. If we hang on firmly to these two insights
(and allow ourselves to reassess flexibly some of the others) almost the whole of Kant’s
metaphysics remains viable. The unusual reading of transcendental idealism which Gödel
offers may not please a scrupulous scholar or an orthodox Kantian; it does however give
a slightly more opportunistic natural philosopher a way of extending norm in a genuinely
new and untried direction.175

Science & Noumena. Let me begin with what Gödel sees as the single major point of
disagreement between the modern physics and Kant. It’s useful to discuss it early since
it will help to situate us. The three limitative results we have encountered—blindness,
emptiness and the transcendental ideality of space and time—are typically taken to preclude
any robust theory of entities as they exist in themselves. On most readings, Kant himself
thought so.

I say that things as objects of our senses existing outside us are given, but we know
nothing of what they may be in themselves, knowing only their appearances; i.e., the
representations which they cause in us by affecting our senses. Consequently, I grant by
all means that there are bodies without us, that is, things which, though quite unknown
to us as to what they are in themselves, we yet know by the representations which their
influence on our sensibility procures us, and which we call bodies.[Kant 1783, Part 1,
Remark III.]

An important consequence of the limitative results, according to Kant, is that scientific
disciplines—including physiology, cosmology, and chemistry—may legitimately inform us
about the range of possible experiences we may undergo, but never about mind-independent
reality. This doctrine, phenomenalism, has an unfortunate past. Partly due to Kant’s
influence, it became a powerful intellectual force during the nineteenth century, culminating
in the Ernst Mach’s steadfast and effective opposition to atomic theory. Gödel flatly rejects

175As it happens, Gödel himself was not a naturalist. Neither, for that matter, was Kant. But one of the
great benefits of enlightened Kantian philosophy is that theological issues can be left as a matter for personal
conscience. That is to say, the account of mathematical content offered here is consistent with ontological
naturalism as well as with deism (and perhaps even some varieties of theism).



118

this view.176 It may well have been the case, he argues, that physics in the time of Newton
was limited to discovering and clarifying “relations between appearances.” However, this
has now changed.

The abandoning of that ‘natural’ picture of the world which Kant calls the wold of ‘ap-
pearance’ is exactly the main characteristic distinguishing modern physics from Newto-
nian physics. Newtonian physics, except for the elimination of secondary qualities. . . is
only a refinement, but not a correction, of this picture of the world; modern physics,
however, has an entirely different character.[C1,27]

According to Gödel, Newtonian physics was, in principle at least, translatable into a reg-
imented laboratory language (perhaps in the way envisaged by Carnap). Today, Gödel
argues, we are not so limited. What permits modern scientific work to move beyond refined
descriptions of phenomena is precisely an increased reliance on a technical vocabulary that is
ultimately cashed out in purely mathematical terms. By degrees, and in a slow and groping
manner, Gödel suggests, our best theories thus afford us a glimpse of what things are like
in themselves [C1,27].

Time & Space. Gödel does not see his views on noumenal access as a truly radical break
with Kant. Rather, he sees his interpretation as drawing out some of the hidden potential of
Kantian critical philosophy, modifying inessential aspects, and remaining true to its spirit.
On Gödel’s reading, for instance, Kant was himself intermittently open to the possibility of
a knowledge of noumena, though “he wanted to base such knowledge on ethics.”177 Indeed,
Gödel claims to find in Kant’s discussions of subjective idealism brief moments when Kant
permits himself to comment on the nature of noumenal reality. Here is the main such
passage Gödel discusses:

Suppose . . . that I could intuit myself without being subject to this condition of sensi-
bility [i.e., time] or that another being could so intuit me; in that case the very same
modifications that we now represent to ourselves as changes would provide a cognition
in which the presentation of time, and hence also that of change, would not occur at all.
[Kant 1781, B54, translation modified to match Gödel’s]

On Gödel’s reading, the ‘modifications’ of which Kant speaks here cannot be understood
as features of our conscious lives. For the passage to make sense, Kant must be referring
to objective analogues of the phenomenal temporal changes that we experience. In Gödel’s
view, the passage is not a momentary lapse of attention on Kant’s part. Indeed, Kant cannot

176As, of course, does Einstein whose work on Brownian motion contributed significantly to the acceptance
of atomic theory and hastened the demise of Mach’s conception of physics. For some of the background and
a useful discussion see Yourgrau [2005]. For a modern throwback to those times, see van Fraassen [1998].

177In support of his contention, Gödel cites the preface to the B edition of the Critique: B xxi, B xxii n.
and B xxvi n. See [Gödel 1949, C1,29-30].
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concede that space and time are wholly subjective illusions if he is to escape the charge of
subjective idealism. Insisting merely that space and time are ubiquitous features of experi-
ence would not help; as a persistent delusion is nonetheless a delusion. On Gödel’s reading
Kant therefore quite deliberately intends to commit himself to the view that the spatial
and temporal properties of entities that we experience have an objective, mind-independent
analogue. Kant is, of course, pessimistic about being able to accurately characterize that
mind-indepedent analogue and so does not try to do so. Naming the enigmatic ‘modifica-
tions’ mentioned in the above passage is as far as his commitment to the limitative theses
allows him to go.

Taking the discussion of temporal ‘modifications’ as his starting point allows Gödel to
argue that nearly everything about Kant’s conception of time is consistent with general
relativity—indeed, that the former is a sort of inchoate forerunner of the latter. This may
seem like a hard claim to accept. Gödel is suggesting, after all, that passages such as the
following, are wholly in accord with his own realism and that they remain scientifically
respectable today:

Time is nothing but the form of our inner intuition. If we take away from time the
qualification that it is the special condition of our sensibility, then the concept of time
vanishes as well; time attaches not to objects themselves, but merely to the subject
intuiting them.[Kant 1781, B54]

The paradox, on Gödel’s reading, is apparent rather than real. It’s easily dispelled once
we unambiguously distinguish (as Kant should have done) between two meanings of ‘time’.
This, Gödel suggests with characteristic understatement, leads to a theory that is “slightly
different” from the one offered by Kant, but nonetheless consistent with the overall thrust of
his philosophical vision.178 In order to keep the terminology straight, let me here explicitly
distinguish between timeφ and timeν . Timeφ is time as creatures such as ourselves experi-
ence it: phenomenal time.179 Timeν by contrast refers to those modifications of the things
in themselves that correspond to our sense of temporal change; noumenal time, if you like.
According to Gödel’s interpretation, in nearly all passages in which Kant discusses time, he
should be read as talking about timeφ—which is to say, the temporal structure of conscious
experience. On this reading, the above passage turns out to be perfectly correct; indeed,
it’s nearly a truism. There plausibly is nothing more to timeφ than the form of our inner
intuition. And if we were to abstract the peculiarities of our receptive faculty, timeφ, would
be washed out as well. Finally, it would be a mistake to attribute many of the features of
timeφ to modifications of objects existing in themselves, just as Kant had maintained.

Gödel takes up the contrast between the features of timeφ and timeν in detail. Time,

178An interesting precursor of this idea can be found in Weyl [1927].
179I assume without argument that many nonhuman animals experience timeφ in just the way we do.
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understood now as the consciously experienced realium, is experienced as “flowing.” Admit-
tedly, the river metaphor is a bad one but it’s notoriously difficult to do better. Timeφ seems
to flow at variable pace depending, in part, on our physical state, level of alertness and the
activities we are engaged in, though on reflection we know that this variability is really a
sort of illusion; really, timeφ as such moves at a uniform pace throughout the world. These
days, educated common sense construes timeφ as having a linear structure and as being un-
bounded both into the past and into the future.180 It’s possible to characterize timeφ more
formally as well though. Construed as a relation between events, timeφ constitutes a total,
transitive, anti-symmetric order.181 In other words, all events whatsoever can be placed in
a temporal sequence relative one another; if A occurs before B and B occurs before C then
it follows that A precedes C; and, no two distinct events can precede each other. One inter-
esting consequence of this view, Gödel notes, is that at any instant in time, only a subset
of the facts that, considered as a totality constitute the cosmos, actually exists. Empirical
entities are therefore experienced as coming to be and passing away in timeφ.182

The noumenal modifications “which we represent to ourselves as changes” constitute a
mind-independent correlate of our subjective sense of time. Timeν cannot be experienced
directly. But, Gödel suggests, it has successfully been characterized by modern physics,
and by the Lorentz transformation of relativity theory in particular [Einstein 1961]. Unlike
its phenomenal counterpart, timeν does not flow and is not linear. To characterize the
temporal relationship between two events, we need to specify a frame of reference (so also
their velocities and accelerations relative that frame of reference). Specifying the temporal
coordinate of an event thus requires (not one but) four coordinates. Temporally related
events stand in no fixed relation: given two events A andB, which precedes the other depends
on the reference frame of the observer. It’s not possible therefore to localize the event in
timeν using a simple number line. Moreover, timeν does not constitute a total ordering of
occurrences since, in a relativistic universe, some events may stand in no temporal relation to
one another. As I noted earlier, Gödel was able to show that relativity permits the existence
of worlds in which no simultaneity relation can be defined. Lastly, unlike the time of common
sense, timeν it is bounded in the past and perhaps also in the future by cataclysmic cosmic
events. On the whole then, timeν is quite unlike its phenomenal counterpart.

Gödel’s treatment of space is broadly similar to his treatment of time.183 Consider the

180This has not always been a part of educated common sense. Pylyshyn [1984] traces our modern concep-
tion of timeφ to Galileo, though Kant would surely disagree. I leave this as an open question.

181One could add also that common-sense time is construed as acyclical, thereby excluding the Stoic con-
ception of the temporal order. For an interesting recent discussion of the Stoics see Sakezles [2009].

182What Kant calls ‘pure’ entities, including those of mathematics, are atemporalφ. It does not follow
however that they are atemporal in some stronger, mystical sense, as the ante rem realist holds.

183I am glossing over some inessential subtleties here. The important point is that once Gödel recognizes
that quantum theory posits a spaceν wholly unlike our spaceφ [B2,13] whatever differences there may be
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following passage from Kant:

Space represents no property whatever of any things in themselves, nor does it represent
things in themselves in their relation to one another. That is, space represents no
determination of such things, no determination that adheres to objects themselves and
that would remain even if we abstracted from all subjective conditions of intuition. [A26]

Introducing a distinction between a spaceφ and spaceν is once again helpful here. With the
distinction in place, the passage once again reads like a near truism. And, once again, the
properties of spaceφ and spaceν contrast sharply. All space we are capable of experiencing is
three dimensional and Euclidean. It is infinite in every direction. Moreover, spaceφ is unified
and homogenous, containing no gaps or lacunae.184 Finally, spaceφ is infinitely divisible both
conceptually and (we imagine) physically as well. Famously, spaceν is not like that. General
relativity teaches that spaceν is non-Euclidean and that its curvature varies with the local
mass. The spatialν dimensions of objects depend on the frame of reference from which we
view them, though this is only evident when extreme velocities are involved. Moreover,
spaceν may well prove unbounded but not infinite. And finally, spaceν there may be a lower
bound on the divisibility of physical space. Here once again then we have a contrast between
features of reality as we experience it and what our best physics tells us concerning reality
[Einstein 1961].

Adopting a realistic conception of the noumena—including spaceν and timeν—and a
robustly optimistic view of our capacity to come to know them sets Gödel apart from or-
thodox Kantians. Gödel also thereby incurs some nontrivial debts. If he is to remain
consistent, he must either reject the Kantian conception of the mind—the source of the
limitative theses—or he must show that his robust realism can be reconciled with blindness
and emptiness.185 Just as importantly, he needs to explain how it’s possible for mathemat-
ics—which, of course, Kant had grounded in the subjective forms of the sensibility—to help
us peek beneath the veil of phenomena. By clarifying how Gödel meets this challenge we
come ipso facto to understand his treatment of human access to mathematical facts.

Dual access. Though this is tendentious, I think Gödel [1949] is aware of his philosophical
obligations. Some of the evidence is circumstantial: I’ve already noted the depth of Gödel’s

between the treatment of space and time become inessential.
184The unity and continuity of spaceφ can be contested; the space of our dreams is not continuous with

the spaceφ experienced while awake. This however only lends support to the notion that neither vision nor
touch are necessary for spatial experience. See above.

185As tempting as rejecting the Kantian cognitive architecture might be, it requires one to offer an alter-
native explanation of the applicability of mathematics to the phenomena of experience, as well as to explain
from scratch our access to mathematical truths. A good deal of modern philosophy of mathematics can be
read as the rejection of Kantian transcendental psychology and the subsequent struggle to address those two
problems without the benefit of Kantian insights.
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understanding of Kantian philosophy. I’ve also noted how assiduously Gödel worked on the
[1949] paper. Ultimately however, the proof must be in the text. As I read him, Gödel
deliberately makes several subtle yet significant adaptations to the classic Kantian cognitive
architecture so as to overcome the limitative theses.186

The principal such modification concerns the interpretation of the reproductive imagi-
nation’s place within the cognitive architecture. Several commentators have noted that this
sub-faculty plays an ambiguous role in Kant’s overall scheme; it’s unclear whether it’s to
be understood as the most sophisticated aspect of a passive receptive faculty or the most
rudimentary aspect of the spontaneous intellect.187 In other words, it’s not clear whether
we should construe it as passively reproducing transduced impressions or actively comput-
ing over basic, structured representations. Earlier, I defaulted to the latter reading. Gödel
opts for the former. That is, he opts to include the reproductive imagination within the
purview of the sensibility rather than construing it as part of the intellect. The relevant
passage occurs in Gödel’s discussion of the crucial [B54] discussion concerning the existence
of objective temporalν ‘modifications’:

in this passage a view as to the nature of space and time, slightly different from that
usually ascribed to Kant, seems to be implied, which however is not incompatible with
the latter insofar as, corresponding to the two parts of the sensibility (the faculty of
sensation and of representation), both kinds of relations of the things to sensibility may
subsist beside each other.[B2,4b, added emphasis]

This may read like a cosmetic change or a trivial detail. In fact, it makes an important
difference. Recall how the emptiness restriction is characterized: intellectual concepts are
empty, Kant holds, if they are generated by the rehashing of ideas in the intellect and
float unmoored from the operations of the sensibility. If both the reproductive imagination
and the passive receptivity can be construed as semi-autonomous aspects of the sensibility
then, plausibly, each can play an independent and distinct grounding role. Indeed, they can
“subsist beside each other” and act independently to anchor experience. The bifurcation of
the sensibility helps explain some of Gödel’s otherwise puzzling commitments. According
to him, we stand in two relations to noumenal entities, their propertiesν , and relationsν : the
one is (what Gödel calls) cognitive; the other is brute and merely factual. We likewise have
two modes of access to geometric facts. We know the truths of Euclidean geometry to hold
a priori; at the same time, “geometry is in one sense an empirical science” [4b]. Let me try
to disentangle these views.

186Not everyone agrees. In his helpful commentary on Gödel [1949], Howard Stein, for instance, places a
great deal of weight on Gödel’s assertion that he is not a Kantian and consequently does not read Gödel as
attempting to meet blindness and emptiness constraints.

187See Brook [1994] for a discussion.
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Let’s start with our cognitive access to spaceφ (and timeφ) and our a priori knowledge of
Euclidean geometry. Gödel agrees with Kant that, in practice, the forms of our sensibility
guarantee that human experience will be as of a three dimensional, Euclidean space (though
see below). Any spatial relations we can expect to encounter are sure to be like that since
we are “able to form images of outer objects only by projecting our sensations on this
representation of space” [B2,14]. We can thus be certain a priori that Euclidean geometry
will apply to spaceφ as we experience it. I take Gödel here not to be introducing any
changes to the Kantian account. And, according to Kant, the reproductive imagination plays
an integral role in the phenomenal projection of even the simplest experiences, including
that of spaceφ. Without the synthesis of reproduction, “there could never arise a whole
presentation: nor could there arise. . . even the purest and most basic presentation of space
and time” [A102]. On this reading, intellectual representations of Euclidean geometric
figures are anchored in the sensibility in the standard way. A mathematician or physicist
contemplating (say) a triangle relies on the forms of the passive receptivity, the synthesis
of reproduction in the imagination, and finally a recognition of the presentation under
a concept. Note that this is consistent with general relativity’s curved space-timeν since
Euclidean relations can—Gödel points out—be defined in a non-Euclidean space, though
not as an absolute but rather in relation to a privileged coordinate system. If we take the
sensibility (construed now as sensory organs arrayed in space) as that privileged object, we
see why Gödel took Kant to have been a forerunner of Einstein. Gödel writes:

for Kant [space] is a relation to his ‘sensibility’ (which presumably means that it depends
on the special structure of his organs of sense and representation) [B2,8]

our representation of space is completely adequate to the relation which our sensibility
has to the objects.[B2,13].

To the orthodox Kantian, Gödel’s view offers rather hollow vindication. For while we
have a priori access to the truths of Euclidean geometry as well as assureance that this
geometry will correctly describe objects as we expereince them, we lose any guarantee that
such descriptions offer us any insight into what the world is like per se. Indeed, it remains
an open question, Gödel suggests, whether our spatialφ experience would be similar in a
strongly non-Euclidean world. It’s possible, he suggests, that under such conditions we
would nonetheless ‘imagine,’ or rather project, spaceφ as homogenous and Euclidean. He
speculates that what would change under those circumstances is our conception of the
motion of rigid bodies. Plausibly, we would experience solid objects changing their size and
shape as they moved through an apparently uniform, Euclidean medium [B2,14].

How then do we come to access spatialν relations, and in what sense is geometry a
posteriori? I must admit that my reconstruction here becomes somewhat speculative. I
take it however that the essence of the proposal is a direct grounding of some mathematical
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content in the activities and potential configurationsν inherent in the reproductive imag-
ination. Here’s one way this might work: if the reproductive imagination is construed as
an aspect of the sensibility distinct from the apprehension then the patternsν of activity
of the reproductive imagination can themselves become subject to a (secondary) synthe-
sis of apprehension; that is, they can themselves be taken up as the manifold that is held
fast as a unity. This is possible, note, only insofar as the reproductive imagination is con-
strued—following Gödel—as a brute, factual process, and therefore as capable of serving as
an independent ground for contentul cognition. Construed thus, the reproductive imagina-
tion is (according to a transcendental realist) a noumenal process like any other, with all the
complexity and spatio-temporalν structure this entails. Once such a secondary synthesis of
apprehension is accomplished, the subsequent cognitive processes proceed as they would in
the case of the cognizing of a external, empirical object. The held manifold is itself subject
to the synthesis of reproduction in the imagination (perhaps straining existing resources).
And the result is classed under a rule or concept—though with a difference: in the Tran-
scendental Doctrine of Method, Kant argues that empirical concepts cannot be defined but
only spelled out [A728,B756]. That’s because we “can never be sure that the distinct pre-
sentation given to [us]. . . has been developted comprehensively.” The content derived via
the second path at issue here must be regarded as empirical in just this sense. At best, our
concepts of the content involved are expositions that hope to capture the underlying reality;
they are not definitions that settle the matter by fiat. Our cognition of (say) non-Euclidean,
higher dimensional geometry is—if not wholly blind, in the Kantian sense—then severely
myopic. Research has the character of a groping the dark by means of imperfect concepts
and without the benefit of a rich phenomenology provided by the experience of external
things.188 On this reading, geometry turns out to be “an empirical science” in two senses.
On the one hand, which geometry turns out to apply to spaceν is an empirical issue. Just
as importantly, it’s not always initially clear which posits truly exist and which are mere
phantasms.189

Once the details are laid out it becomes plain that neither of the Kantian limitative theses
is violated in either of the two cases. And so Gödel is able to discharge his philosophical
debts. We are offered the rudiments of Gödel’s original, quasi-Kantian explanation of human
mathematical knowledge. And we are offered an account of why mathematics furnishes us
with (unsteady and hard-won) noumenal access. The successful conduct of this science
depends on the construction of ideas of the intellect which accurately correspond to the
factual states of the passive sensibility (itself a noumenal object). This does not violate
emptiness since both the intellect and the sensibility play their respective roles. It does not

188The lack of phenomenology in such cases is an interesting problem, one which I leave unaddressed here.
189Recall in connection with this the dispute between the constructivist and the classicist concerning com-

pleted infinities discussed in Chapter 1. Recall also that Gödel advocated accepting or rejecting set-theoretic
axioms depending on their future success. This is of a piece with the reading offered here.



125

violate blindness since, as a matter of fact, our non-Euclidean, geometric notions are nearly
blind. Geometry is ampliative in either case; its content derives from intuition rather than
by means of discursive cogitation in accordance with the principle of contradiction. It’s
precisely by means of mathematics (including non-Euclidean geometry) that we gradually
and laboriously develop a sense of the world as it is in itself.

Set-theoretic intuition. Of course, it was not geometry but rather set theory that Gödel
took to be the foundation of mathematics. And so, explaining our access to the facts of
mathematics ultimately required him to offer an account of our knowledge of set theory.
This is what Gödel sets out to provide in his celebrated [1947] essay. Before moving on,
let me highlight just how closely Gödel’s explanation of our access to the universe of sets
parallels his treatment of our access to geometry. As we are about to see, it turns out to
be harder to explain how the notion of membership can be explicated in terms of spatial or
temporal relations. Yet even if we ultimately judge Gödel’s attempt to explain our access
to the primitives of set theory to be a failure, this may not matter. Many mathematicians
and philosophers today, including Mac Lane [1997] and Hellman [2001], are willing to se-
riously entertain the possibility of alternative foundations for mathematics. It remains an
open question therefore whether the Kantian account of epistemic access to fundamental
mathematical content remains viable.

Gödel begins the main argument in the [1947] paper by offering a (valid) argument for the
existence of a faculty of mathematical intuition. Here’s how that argument runs. Let us say,
following Kant, that if a judgement embodies genuinely novel content then it is ampliative
(or synthetic, if you prefer). It can easily be shown that touch and visual perception can
give rise to ampliative judgements. Recall why: there exist unsettled questions concerning
visual and tactile properties. Limited as we are, we cannot settle these by the application
of willpower alone. The contents of our visual or tactile perceptions ‘force themselves upon
us as being true.’ Nor can undecidable perceptual questions be settled by thinking carefully
about the issues. This is because the spontaneous intellect, left to its own devices, is capable
of analytic judgements alone; it can recombine ideas and test them for mutual coherence,
but it “cannot create any qualitatively new elements.”190 Contrary to subjective idealism,
the intellect cannot therefore be the source of any new experiential content. And so, if giving
answers to open perceptual questions is to be possible at all, it must be due to the gathering
of additional experiential evidence. And since we settle such questions all the time, we
can conclude that vision and touch are genuinely ampliative. What makes the argument
interesting is that a structurally identical version can be used to show that mathematics
generally, and set theory in particular, is also ampliative. The basic content of set theory,
which is to say its principal axioms, “force themselves upon us” as being one way rather

190Note that this absolutely central Kantian insight squares with the a computational theory of mind. It
also hints at its limitations.
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than another. Alternative axiomatizations are clearly possible, but only in the sense that
alternative perspectives on the same landscape are possible; dreaming up arbitrarily different
axioms is beyond our power. Moreover, as with sensory experiences, there are genuine
surprises in mathematics; questions that may have no answer at one moment in history
(such as the independence of CH) can be determined in light of subsequent experience. If
the source of our ampliative judgements cannot be attributed to analysis and recombination
of ideas in the intellect then such judgements must involve input from without. Any such
input requires the participation of appropriate receptive faculties—the faculties that, as we
saw earlier, Kant neutrally labels intuitus. It follows therefore that we possess some form
of mathematical intuition (in the Kantian sense).

Here are all the pieces of that same argument in Gödel’s own words:

Despite their remoteness from sense experience, we do have something like a perception
of the objects of set theory, as is seen from the fact that the axioms force themselves
upon us as being true. I don’t see any reason why we should have less confidence in
this kind of perception, i.e., in mathematical intuition, than in sense perception, which
induces us to build up physical theories and to expect that future sense perceptions
will agree with them and, moreover, to believe that a question not decidable now has
meaning and may be decided in the future . . . [B]y our thinking we cannot create any
qualitatively new elements, but only reproduce and combine those that are given. . . [And
so] the set-theoretical paradoxes are hardly any more troublesome for mathematicians
than deceptions of the senses for physics...[Gödel 1947]

Having satisfactorily established (in accord with Kant and contrary to the positivists) that
mathematics is ampliative rather than analytic, and hence that it is based on some form of
contact with outside reality, Gödel moves to consider the nature of that contact. The most
obvious possibility for Gödel to pursue is that our set theoretic knowledge is simply a species
of empirical knowledge; in other words, that it derives directly from the content of sensations
themselves. Gödel does not seriously contemplate this proposal. The reason, I think, is that
he considers many pure mathematical judgements to be a priori. If that’s correct, then
the content of set theoretic judgements cannot be traced to the content of sensations alone.
Anyway, there’s a better account available. As we saw earlier, on the Kantian view, our
experience of objects generally—including mundane medium-sized, dry goods—derives in
part from what is presented in intuition and in part from subsequent mental processing.
In particular, the recognition of synchronically and diachronically unified empirical objects
depends on the three syntheses as well as on the unity of apperception. The syntheses
however depend on the forms of the sensibility. Thus even the simplest sensory experiences
contain elements due both to the presentation of content in intuition (i.e., the sensations)
and to the arraying of impressions in spaceν and timeν . If not for the latter, the synthesis of
apprehension and of reproduction would be impossible. Here’s Gödel discussing this issue:
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That something besides the sensations actually is immediately given follows (indepen-
dently of mathematics) from the fact that even our ideas referring to physical objects
contain constituents qualitatively different from sensations or mere combinations of sen-
sations, e.g., the idea of the [spatio-temporal] object itself, whereas, on the other hand,
by our thinking we cannot create any qualitatively new elements, but only reproduce
and combine those that are given.[Gödel 1947]

Gödel wants to stress that while the raw material for mathematical judgements is intuitive,
this does not mean that the sensibility as such places us in unmediated contact with sets
in the same way that it places us in contact with concrete particulars. Gödel is perfectly
comfortable making claims about noumenal reality. But that reality according to him, as we
have seen, is the one revealed by modern physics. The iterative hierarchy is not among the
posits of the general theory of relativity or any other branch of physics. So Gödel explicitly
rejects the notion that our mathematical ‘perception’ should be thought of as offering us
unmediated impressions (Eindrucke) of sets (whatever that would mean). Instead, just
as in the case of phenomenal experience more generally, the sensibility is presented with
content which, after the appropriate acts of synthesis, yields an experience of the objectsφ
of mathematics. “[A]s in the case of physical experience, we form our ideas also of those
objects on the basis of something else which is immediately given.” The important thing
to remember, both with respect to the objects encountered in phenomenal experience and
the landscape met in mathematical investigation, is that while their properties may not be
noumenally real, they are nonetheless adequate to the relation that we bear to their sources.
The phenomeal experience we have—whether that’s of empirical objects or of mathematical
ones—is non-arbitrary and highly constrained. Here’s Gödel again:

Evidently the “given” underlying mathematics is closely related to the abstract elements
contained in our empirical ideas. . . It should be noted that mathematical intuition need
not be conceived as a faculty of giving an immediate [read: unmediated] knowledge of
the objects concerned. Rather, it seems that, as in the case of physical experience, we
form our ideas also of those objects on the basis of something else which is immediately
given. Only this something else here [in the case of mathematicalia] is not, or not
primarily, the sensations. [Gödel 1947]

It might be objected that we have too little evidence to identify the “abstract elements
contained in our empirical ideas” with the forms of the sensibility. I think, given our earlier
discussion of geometry, this is a weak objection. In any case, I believe my analysis is
confirmed by the criticism that Gödel offers of Kant at the close of his discussion. Here is
that passage:

Evidently the “given” underlying mathematics is closely related to the abstract elements
contained in our empirical ideas. It by no means follows, however, that the data of this
second kind, because they cannot be associated with actions of certain things upon our
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sense organs, are something purely subjective, as Kant asserted. Rather they, too, may
represent an aspect of objective reality, but, as opposed to sensations, their presence
in us may be due to another kind of relationship between ourselves and reality. [Gödel
1947]

“The data of the second kind” cannot be identified with impressions transduced at the
sensory surfaces. Nonetheless, the data is not subjective, Gödel insists, contrary to what
Kant asserted. This, I think, cannot be read as anything other than a reaffirmation of
Gödel’s scientific realism concerning spaceν and timeν and a swipe at Kant for limiting
himself timidly to spaceφ and timeφ. As we have now seen, the justification for Gödel’s view
here can be found in his work on general relativity; he does not bother to review it here.

The reading works: Gödel, as we saw earlier, thought that our sensibility, construed as a
physical entity, stood in a factual (non cognitive) relationship to other noumenal objects in
spaceν and in timeν . It’s the representation of this relation that, on my reading, he uses to
ground our mathematical knowledge. Far from being the cri de coeur of a befuddled mystic
then, the Gödel [1947] essay embodies a sober modern reinterpretation of Kant’s solution
to the problem posted by mathematical judgements in light of developments in modern
physics and in the foundations of mathematics. At its core lies a responsible and serious
realist proposal, albeit one that has been misunderstood and so largely sidelined.191

Knowledge of architecture

Our initial motivation, recall, was to develop a theory of structure (or grammar) for the
human mathematics faculty. Gödel’s philosophy of mathematics does not give us a ready-
made solution to that problem. It does however give us a sense of how to understand the
nature of strongly equivalent models of human mathematical cognition. It also sheds some
borrowed light on the philosophical desiderata discussed earlier on. Before wrapping up the
chapter, let’s return to those.

Functional architecture. It will be helpful to translate Gödel’s somewhat archaic vocab-
ulary into a more modern, cognitive idiom. The Kantian reproductive imagination is a
rather puzzling posit. Let’s set aside the label for the moment and consider this sub-faculty
from a strictly functional perspective. As we saw, the reproductive imagination is an el-
ement of the cognitive architecture that can legitimately be described both as an aspect
of the receptivity and of the intellect. It thus occupies a unique position in the cognitive
economy: in one sense, it is a brute physical process; yet it can be viewed simultaneously
as manipulating (very basic) syntactically-individuated data-structures. Modern cognitive
science makes use of a functionally nearly identical posit to ground analyses. Recall how
explanation in cognitive science traditionally proceeds [Pylyshyn 1984]. A cognitive ability

191Among the few exceptions is Maddy’s [1990] rescue effort.
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is described in gross, functional terms. These in turn are decomposed into computation-
ally simpler functions. And those are decomposed further. Infinite regress is forestalled
by the existence of a basic level of functional decomposition—the functional architecture
(FA)—which implements directly in the hardware. The basic processes of the functional
architecture (whatever they happen to be) are understood, in other words, to be carried out
immediately by the physical machine that implements the cognitive process; in the case of
artificial models, that can be the virtual machine on which the process is running or perhaps
even the machine code itself; in the case of human beings, it’s the system of the simplest
possible representations that a cognitive process makes use of. More primitive processes are
not computational, hence non-cognitive; they are mere physical transitions upon which the
FA supervenes. More elaborate cognitive processes, by contrast, employ the structured rep-
resentations that the FA itself makes available. If we take the computer metaphor seriously,
the FA is the canonical language into which all higher level structures can (in principle) be
translated. It’s that layer of a cognitive system which remains fixed relative its higher-level,
computational states. Let me propose that, in modern terms, the reproductive imagination
corresponds to the functional architecture of the cognitive apparatus—or, at the very least,
the functional architecture of the mathematics organ. (Even if this is correct, it helps us but
little. Pylyshyn [1984] argues that human brains use functional primitives unlike those used
by von Neumann machines. At the moment we have only a very fragmentary understanding
of the FA.)192

Desiderata. One indication that this way of looking at things is on the right track is
that it helps some of our earlier desiderata fall into place. We can borrow our account
of the necessity of mathematical content directly from Kant. We have discussed this at
length already, so I will be brief. Since the FA is the canonical ‘code’ in which all higher
level representations are constructed, its constraints are inviolable (at least as far humanly
possible experience is concerned). We are literally incapable of violating its constraints
(though we can misrepresent what those constraints are). Admittedly, this Kantian notion
of necessity does not go as deep as some might like. It tells us nothing, for instance, about
whether alternative architectures more powerful than our own are possible. Still, this sort of
necessity may well be all that finite beings such as ourselves are likely to have access to.193

We can likewise borrow our account of the applicability of mathematical representations
directly from Kant. The problem, as we saw in Chapter 1, is really twofold. On the one
hand, mathematical concepts are indispensable to our descriptions of natural phenomena.
Indeed, when we are at our most precise, when we are trying to offer a maximally accurate

192Again, Biederman [1995] proposes a functional architecture for human vision. Generative grammarians
are working toward a theory of universal grammar. Jackendoff [2002] offers us a proposal concerning the
basic structures at the semantic interface.

193Let me speculate here that if the basic operations of the FA are grounded in fundamental mathematical
relations, other intelligent species operate with a relevantly similar fundamental architecture.
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description of a natural system, we resort to purely formal notions and mathematical nota-
tion. The second (and, if anything, more interesting) feature of mathematical judgements
is their uncanny capacity to guide and sometimes even to predict the course of scientific
enquiry. Gödel’s theory permits us now to start to formulate an explanation of both of these
features of mathematical concepts. Mathematics offers us the finest, most powerful language
in which to describe natural phenomena since the functional architecture is the finest-grained
representational system that our cognitive architecture employs. Little wonder then that
it’s indispensable to our scientific descriptions of the phenomena. Maths’ predictive power
is a separate issue. Recall that Gödel suggests that the reproductive imagination is (among
other things) a brute, physical, mind-independent phenomenon. Arguably, by developing
representations in it, we develop representations of some relatively basic spatio-temporal
relations and symmetries. Let me suggest that an isomorphism between local states of
the architecture and objective reality underwrites abductive applicability. In effect, we are
capable of grasping those aspects of noumenal reality that themselves structure our archi-
tecture and that we have learned to represent conceptually. Evidently, this is a speculative
solution to our problem. But it has the advantage of being compatible with ontological
naturalism (though not with naive realism) and of being substantially different from the
platonist resolution of this same issue.

Knowledge. One half of the Benacerraf puzzle was to offer an account of our mathematical
knowledge. Let me leave off by making explicit how the ideas discussed here help the epis-
temologist. Of course, it would be excessively optimistic to expect Gödel’s work to resolve
the multitude of epistemic problems that surround mathematical knowledge. Nonetheless,
I want to suggest that thanks to Gödel we gain a sense of how mathematical beliefs might
be justified. To wit, our mathematical knowledge is not any more mysterious than our
knowledge of natural language or of slow, medium-sized objects—though it is different in
kind.

Let’s ground the discussion by adopting a working characterization of knowledge, one
slightly more nuanced than our earlier attempt. It seems plausible that an agent S knows
that a state of affairs p obtains if the following conditions are met:

(1) p;
(2) S explicitly registers (or judges, or represents in an appropriate way) that p; and
(3) S is justified in registering (believing or representing) that p.

Of the three conditions, the first requires the least commentary. Since ‘to know’ is factive, the
condition is uncontentious. The second condition, likewise, has been thoroughly discussed
at this point. What is at issue are explicit conceptual structures in the parallel architecture
or the intellect. The most fraught part of the definition is surely its third plank. Gettier
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[1963] cases can be read as showing that our commonsense notion of justification readily
lands us in trouble and that a better philosophical account is needed. I want to suggest
that (much like our earlier characterization of meaning) a theory of justification needs to
be both descriptively and explanatorily satisfying. That is, it needs to offer a conception
of justification that is subtle enough to navigate past Gettier-style scenarios by accurately
separating cases of true knowledge from cases of epistemic luck. At the same time, ideally,
our account should serve to explain the underlying nature of justification in non-ciruclar,
non-epistemic terms that shed light on why some beliefs count as justified while others do
not.

The account that best meets these desiderata is, I think, Alvin Goldman’s [1979, 1986]
reliabilism.194 The core insight is that the degree of justification enjoyed by a (token) belief
varies in proportion to the reliability of the cognitive process (type) that gave rise to it.
If S’s belief that p’s are q’s came about as the result of a process that would likely have
generated that belief regardless of the state of the p’s then S’s belief does not count as
knowledge. By contrast, if S came to believe that p’s are q’s via a process that almost
certainly would have generated no such belief unless p’s really were q’s then we say that S’s
belief is justified. (Relying on reliability to account for justification links justification and
truth quite closely. But not too closely: S’s belief can be justified and false if the process
by which her belief is formed is not perfectly reliable. That’s just as it should be.)

While Goldman’s conception of justification sounds sensible enough, it departs from
our everyday notion in some important respects that it would be useful to make explicit.
In the common parlance, ‘justification’ functions as a near-synonym for ‘evidence’. One’s
justification for an opinion or position that one cleaves to is precisely the sort of thing that
one can be expected to report on demand. At the very least, it’s the sort of thing that one
ought to be able, in principle, to bring to consciousness. The technical notion of justification
elaborated by Goldman departs from this usage. A cognitive process can be reliable even
if it’s irretrievably unconscious and incapable of being clearly conceptualized. In effect, one
can hold a justified belief but be wholly incapable of articulating reasons for holding it. In
fact, an epistemic agent can hold a justified belief even if she is unaware that she holds
it. Again, all that is required for a belief to be justified—and hence potentially to count
as knowledge—is for it to have been formed by internal, cognitive processes that typically
gives rise to error-free representations of some relevant facts.195

There is one additional aspect of the theory that it will be helpful for us to make explicit.
It’s possible to distinguish two broad kinds of cognitive processes relevant to this discussion.
The first sort are reliable (or unreliable) regardless of the particular beliefs (or desires) the
agent happens to have. Simple perceptual beliefs are of this sort. Visual illusions affect us

194I confine myself here to Goldman’s reliabilism about justification.
195Notice that Goldman’s justification is not an all or nothing affair. Compare DeRose [2002].
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regardless of our artistic preferences or political beliefs. Indeed, they affect us even if we
know that we are being subjected to an illusion and how the illusion operates. Likewise,
veridical perception is epistemically reliable in the relevant sense even if we are sometimes
prone not to trust our eyes or actively misinterpret what we see. There is however another
sort of reliable cognitive process. It too is capable of giving rise to knowledge. This second
type of process can result in knowledge only on condition that the beliefs that serve as
(some of) its inputs are themselves true. Valid logical arguments are reliable in just this
sense. And so are mathematical proofs predicated on the correctness of some antecedently
assumed point of departure. The reliability of the conclusions arrived at depends on the
structure of the arguments and the truth of the premises with which we start.

Goldman [1979] proposes a definition of justified belief that distinguishes these two cases:

(3.a) If S’s belief in p at t results (‘immediately’) from a belief-independent process that is
unconditionally reliable, then S’s belief in p at t is justified.

(3.b) If S’s belief in p at t results (‘immediately’) from a belief-dependent process that is (at
least) conditionally reliable, and if the beliefs (if any) on which the process operates
in producing S’s belief in p at t are themselves justified, then S’s belief in p at t is
justified.

(3.c) No other beliefs are justified.

To sum up: Belief-independent doxogenetic processes are justified to the extent that they
themselves are reliable. Belief-dependent (conditional) representations are reliable so long as
at least one of the causal paths leading to their formation is itself reliable, but not otherwise.
Nothing else counts as justified.196

A belief in some factual state of affairs p is justified in case it results (‘immediately’) from
a belief-independent process that is unconditionally reliable. Many perceptual processes are
unconditionally reliable in this sense; they are not dependent on our beliefs, desires or other
propositional attitudes. (Visual illusions are the obvious illustration.) Moreover, visual
perception is liable to offer accurate information. Now, by construing the content of fun-
damental mathematical judgements as conceptually representing the states of the FA (in
some to be specified sense) we can take advantage of this same account.197 After all, under
one aspect, the FA is a brute physical process; it’s no less objective than physical processes

196It has been noted (inter alia by Nozick [1981]) that mathematical knowledge constitutes one of the hard
cases for the reliabilist. That’s good news however insofar as it means that we don’t stack the deck by
adopting reliabilism.

197This does not mean however that mathematical concepts are about the FA! They are, evidently, about the
extensions of mathematical concepts: the mathematical entities that we experience ourselves as manipulating.
It’s important to keep track of which of Sellars’ stereoscopic images we are working with.
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taking place at a remove from the body. Perceptual error results from mis-attributions of
properties. Similarly, mathematical error derives from a mis-representation of the states of
the architecture. We do not thereby solve the problem of error but we do show that the
problem of mathematical error is solvable modulo a description of the fundamental repre-
sentations used at FA and a solution to the problem of perceptual error more generally.
Adopting Gödel’s account we therefore gain an account of the necessity of mathematical
propositions, an account of their applicability, and an indication of how to go about con-
structing a philosophical theory of mathematical knowledge. These are, I think, nontrivial
gains. So even though we are still some distance from achieving our scientific goals, at least
some of our philosophical worries are starting to be addressed.

Conclusion

I have attempted to offer a hypothesis concerning the source of constraints operative on our
semantic representations of mathematical content. I began by arguing that current neuro-
scientific and psychological theories, while helpful, can only be a part of the story. What
we ultimately need is an account of the basic representations that underwrite mathematical
cognition as well as of how they are recombined in mathematical thought. Further, we need
an account of why these representations are special: why they track facts that are deep
enough so as not to be contingent and fine enough so as to help us make finer cuts than nat-
ural language can. In effect, we need a philosophically responsible, algorithmic-level theory
of structure for the mathematics faculty (perhaps of the sort now available for language and
for vision). In the second half of the chapter, I suggested that the beginnings of the sort
of theory we need can be found in the work of Kurt Gödel. I finished by suggesting that
Gödel’s work can be interpreted in modern terms if we read Kant’s reproductive imagination
as (in essence) the functional architecture of the mathematics faculty. I suggested also that
a reliabilist account of the justification of mathematical judgements is possible.
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5 Final Remarks

I study Mathematics as a product

of the human mind, not as absolute.

— Emil Post

The nature of mathematical reality has been a thorn in the side of ontological naturalism for
some time. Some philosophers have resigned themselves to counting acausal, abstrct objects
among legitimate naturalist posits.198 Alan Weir [2005] summarizes the current situation
with these words:

On the face of it, mathematics is an enormous Trojan Horse sitting firmly in the centre
of the citadel of naturalism. Modern natural science is mathematical through and
through: it is impossible to do physics, chemistry, molecular biology and so forth without
a very thorough and quite extensive knowledge of modern mathematics (indeed this is
true to an increasing extent of social sciences such as psychology and economics). Yet,
prima facie, mathematics provides a counter-example. . . to ontological naturalism.

Among my principal aims in this dissertation has been to disarm the threat to ontological
naturalism posed by acausal abstracta. I began by offering arguments for the reality of
mathematical entities based on math’s usefulness to deductive reasoning in the sciences, as
well as its unique role in the construction of creative analogies that push forward scientific
discovery. These two aspects of math’s indispensability to natural science should not, I
think, be ignored. They both require explanation and, in my view, only an ontologically
realist conception of mathematics has much hope of offering one. (Some may disagree.) In
Chapter 2, I argued that realism about acausal entities is a dead end. It does not help
explain our access to mathematical facts and even our best stabs at how knowledge of an
acausal domain might be achieved run counter to available empirical evidence. One of the
reasons, I think, that many researchers have felt the need to commit to abstract objects is
a problematic view of natural language semantics. It has seemed sensible to assume that
the truth of such statements as that France is a hexagonal republic requires that there ex-
ist a freestanding entity (France) with certain further properties. Things are not quite so
straightforward. In Chapter 3, I reviewed arguments showing that traditional extensional
semantics is wrongheaded; seemingly fundamental word-world relations draw inexorably on
human perceptual and conceptual capacities. The character of the Benacerraf puzzle alters
considerably once we commit to an internalist, mentalist conception of meaning. In partic-
ular, rather than trying to discover how we glean truths about otherworldly mathematical
entities, we are called upon the explain how the concepts that underwrite our mathemat-
ical reasoning are constrained. In Chapter 4, I explored the possibility that the epistemic

198Avowedly supernaturalist philosophers, including Jerrold Katz [1990] and Mark Steiner [2005], have been
more than happy to highlight the cognitive dissonance engendered by this balancing act.
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constraints on mathematical concepts derive from the structure of the human cognitive
apparatus. On this account, due originally to Gödel’s reading of Kant, mathematical con-
tent is ultimately grounded in the spatio-temporal structure of our functional architecture.
The subtle mathematical ideas manipulated by the professional involve the construction of
various complexes, elaborations, and meta-representations of that basic structure.

I’d like to end by emphasizing a corollary of the view advanced here. Namely this: If con-
straints on mathematical judgements derive directly from the structure of our transcendental
functional architecture then the structure of our transcendental functional architecture can
be recognized in what we have been calling the “mathematical landscape.” The foundations
of mathematics constitute an important source of data about the nature of the mind. The
(non-trivial) challenge facing us is to learn to systematize and interpret this data. It’s to be
hoped that by studying the foundations of mathematics we may perhaps also learn a little
about the very basic cognitive operations that make us what we are.
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Jackendoff, R. (2003). Précis of the Foundations of Language. Behavioral and Brain Sci-
ences, 26(6).

Jackendoff, R. (2007). A parallel architecture perspective on language processing. Brain
Research, pages 2–22.

Jensen, A. R. (1979). Reaction time, movement time, and intelligence. Intelligence, 3:121–
126.

Jerzykiewicz, L. and Scott, S. (2003). Psychologism and conceptual semantics: Review of
Foundations of Language. Behavioral and Brain Sciences, 26(6):682–683.

Kadosh, R. C., Kadosh, K. C., Schuhmann, T., Kaas, A., Goebel, R., Henik, A., and
Sack, A. T. (2007). Virtual dyscalculia induced by parietal-lobe tms impairs automatic
magnitude processing. Current Biology, 17:1–5.

Kager, R. (1999). Optimality Theory. Cambridge University Press.

Kant, I. (1996/1781). Critique of Pure Reason. Hackett.

Kant, I. (1997/1783). Prolegomena to Any Future Metaphysics. Cambridge University Press.

Katz, J. J. (1990). The Metaphysics of Meaning. MIT Press.

Katz, J. J. (1998). Realistic Rationalism. MIT Press.

Kawai, N. and Matsuzawa, T. (2000). Numerical memory span in a chimpanzee. Nature,
403:39–40.



144

Kitcher, P. (1983). The Nature of Mathematical Knowledge. Oxford University Press.

Kitcher, P. (1990). Kant’s Transcendental Psychology. Oxford University Press.

Kline, M. (1972). Mathematical Thought from Ancient to Modern Times. Oxford University
Press.

Kline, M. (1980). Mathematics: The loss of certainty. Oxford University Press.

Koch, C. (2004). The Quest for Consciousness. Roberts and Company.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions. University of Chicago Press.

Kusch, M. (1995). Psychologism: a case study in the sociology of philosophical knowledge.
Routledge.

Landau, B., Gleitman, H., and Spelke, E. (1981). Spatial knowledge and geometric repre-
sentation in a child blind from birth. Science, 213(4513):1275–1278.

Landau, B., Spelke, E., and Gleitman, H. (1984). Spatial knowledge in a young blind child.
Cognition, 16:225–260.

Landerl, K., Bevana, A., and Butterworth, B. (2004). Developmental dyscalculia and basic
numerical capacities: a study of 8-9-year-old students. Cognition, 93.

Larson, R. and Segal, G. (1995). Knowledge of Meaning: An Introduction to Semantic
Theory. MIT Press.

Laudan, L. (1990). Demystifying underdetermination. In Savage, W., editor, Minnesota
Studies in the Philosophy of Science. University of Minnesota Press.

Laurence, S. and Margolis, E. (2005). Number and natural language. In Carruthers, P.,
Laurence, S., and Stich, S., editors, The Innate Mind: Structure and Content, pages
216–238.

Lecours, A. R. and Joanette, Y. (1980). Linguistic and other psychological aspects of
paroxysmal aphasia. Brain and Language, 10:1–23.

Lee, S. A. and Spelke, E. S. (2008). Children’s use of geometry for reorientation. Develop-
mental Science,, 11(5):743–749.

Liebeck, M. W. (2008). The insolubiliy of the quintic. In Gowers, T., editor, The Princeton
Companion to Mathematics, pages 708–710. Princeton University Press.

Mac Lane, S. (1986). Mathematics Form and Function. Springer-Verlag.



145

Mac Lane, S. (1997). Despite physics, proof is essential in mathematics. Synthese, 111:147–
154.

Maddy, P. (1990). Realism in Mathematics. Oxford University Press.

Maddy, P. (1997). Naturalism in Mathematics. Oxford University Press.

Maddy, P. (2007). Second Philosophy: A Naturalistic Method. Oxford University Press.

Margolis, E. and Laurence, S. (1999). Concepts: Core Readings. MIT Press.

Marr, D. (1982). Vison. Freeman.

McGilvray, J. (1998). Meanings are syntactically individuated and found in the head. Mind
and Language, 13(2):225–280.

McGilvray, J. (2005). The Cambridge Companion to Chomsky. Cambridge University Press.

McGinn, C. (2000). Logical Properties. Oxford University Press.

Meck, W. H. and Church, R. M. (1983). A mode control model of counting and timing
processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(320-334).

Melnyk, A. (2003). A Physicalist Manifesto: Thoroughly Modern Materialism. Cambridge
University Press.

Miller, K. F., Kelly, M., and Zhou, X. (2005). Learning mathematics in China and the United
States: Cross-cultural insights into the nature and course of preschool mathematical
development. In Campbell, J. I., editor, Handbook of Mathematical Cognition, pages
163–178. Psychology Press.

Montague, R. (1974a). English as a formal language. In Thomason, R. H., editor, Formal
Philosophy: Selected Papers of Richard Montague, pages 188–221. Yale University Press.

Montague, R. (1974b). Formal Philosophy: Selected Papers of Richard Montague. Yale
University Press.

Montague, R. (1974c). Universal grammar. In Thomason, R. H., editor, Formal Philosophy:
Selected Papers of Richard Montague, pages 222–246. Yale University Press.
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