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Abstract 

In this paper, a two-link manipulator system stability performance is designed and analyzed using 

Optimal control technique. The manipulator system is highly nonlinear and unstable. The system 

is modelled using Lagrangian equation and linearized in upward unstable position. The closed loop 

system is designed using optimal sliding mode controller. The system is compared with a known 

PID controller with an impulse applied and disturbance torques and a promising results has been 

obtained. 

Keywords: Manipulator, Sliding mode controller, Proportional integral derivative (PID) 
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1. Introduction 

In robotics, a manipulator is a system used to manipulate items without any help by the operator. 

The stubbornness was originally for behavior with radioactive or biohazardous materials, using 

robotic arms, or they were used in inaccessible places. In more recent development they have been 

used in diverse pedestal of application including welding automation, robotic surgery and in space. 

It is an arm-like system that consists of a design of segments, usually sliding or jointed called 

cross-slides, which nelson and protocol aim with a amounts of degree of freedom. In industrial 

ergonomics a manipulator is a lift-assist contrivance used to help laborer lift, maneuver and 

position articles in tendency that are too heavy, too hot, too large or otherwise too difficult for a 

single worker to manually handle. As opposed to simply vertical lift assists (cranes, hoists, etc.) 

manipulators have the expertise to sweeps in to tight spaces and remove work pieces. A good form 

would be banishment large stamped parts from a press and arranging them in a rack or similar 

dunnage. In welding, a rods boom manipulator is used to reprieve ejection rates, reduce human 

inaccuracies and other costs in a manufacturing setting. Additionally, manipulator tooling gives 

the lift assist the aptitude to pitch, roll, or spin the parts for appropriate placement. 

2. System Description 

Figure 1 shows the physical model of a two-link manipulator, with each joint equipped with a 

motor for providing input torque disturbance, an encoder is used to measure the joint position. The 
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objective of the of this system design is to make the joint positions 1 2and  to be stable to the 

vertical position with the presence of T1 and T2 disturbance inputs, which are specified by the 

vertical system design of the manipulator.. 

 

Figure 1 Vertically designed two link manipulator 

By using the Lagrangian equations, one can easily show that the dynamic equations of the 

manipulator are 
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Where 

1appT  Torque applied 1 
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2appT  Torque applied 2 

1disT  Torque disturbance 1 

2disT  Torque disturbance 2 

2.1 Linearizing the System 

In this paper, the system linearizing method is done for vertical unstable equilibrium by taking. 
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Then Equation (2,3 and 4) becomes 
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Then Equation (1) becomes 
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The parameters of the system are shown in Table 1 below. 

No Parameter Symbol  Value 

1 Mass of the arm 
1m  4 Kg 

2 Mass of the wrist 
2m  3 Kg 

3 Length of the arm 
1l  0.7 m 

4 Length of center of mass of arm 
1Cl  0.35 m 

5 Length of the wrist 
2l  0.6 m 

6 Length of center of mass of wrist 
2Cl  0.3 m 

7 Moment of inertia of arm 
1I  0.8 Kg m2/s2 

8 Moment of inertia of wrist 
2I  0.6 Kg m2/s2 

9 Gravitational acceleration g  10 m/s2 

 

The value of the matrix S, N and W becomes 
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The system equation becomes 
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Rearranging Equation (9) becomes 
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3. The Proposed Controllers Design 

3.1 Optimal Sliding Mode Controller 

For the linear system 
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Here, the input term is not present in the objective function (16), and the constraints are that the 

system is on the intersection on m sliding hyperplanes. Furthermore, the matrix G is not specified 

a priori and will come out as a solution to the problem. 

Using the similarity transformation 
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, the (n−m) dimensional dynamics is represented by 
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Equation 21 and Equation 22 constitute a standard LQ problem provided R > 0. If Q is chosen to 

be positive definite, R is guaranteed to be positive definite. In general, R is not guaranteed to be 

positive definite if Q is positive semidefinite. If R does not turn out to be positive definite, it has 

to be arbitrarily chosen to be a positive definite matrix. In this case, a new Q will be defined 

according to (19). 

The gain matrix K for the minimum value of J is 
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For this system the Q, R and N matrices are 

1.5 0 0 0 1.32
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0 0 1.5 0 0 1.25 1.98
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The gain matrix K becomes 

14.6424  -25.0976   25.3523    0.6597

-5.1137   47.1712   -1.1517   22.6206
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3.2 PID Controller.  

A proportional-integral-derivative controller (PID) is a mechanism employing feedback that is 

widely used in industrial control organization and a variety of other implementation requiring 

continuously modulated control. A PID controller continuously calculates an inaccuracies values 

as the unlikeness between a desired set point (SP) and a measured process variable (PV) and 

applies a adjustment based on proportional, integral, and derivative terms (denoted P, I, and D 

respectively). In practical terms it automatically applies accurate and responsive change to a 

control function.  The controller's PID algorithm restores the measured output to the desired input 

with minimal deferment and overshoot by increasing the ability of the system. The distinguishing 

feature of the PID controller is the skill to use the three control terms of proportional, integral and 

derivative pertinence on the controller output to apply accurate and optimal control.  

The proportional, integral, and derivative terms are summed to calculate the output of the PID 

controller. Defining u(t) as the controller output, the final term of the PID controller is:  

   
0

( )
( ) ( ) 24

t

p i d

de t
u t K e t K e d K

dt
     

3.2.1 Tuning 

The part of these effects is achieved by loop tuning to whip the optimal control function. The 

tuning constants are denoted as "K" and must be derived for each control application, as they 

depend on the response wood of the complete loop external to the controller. These are dependent 

on the behavior of the final control element. 

Using Chien, Hrones and Reswick (CHR) PID Tuning Algorithm method the value of the PID 

controller are 

40.4265 97.6709 2.7560P I DPID K K K    

4. Result and Discussion 

4.1 Comparison of the Two Link Manipulator with Optimal Sliding Mode and PID 

Controllers for an Impulse Input Torque 1 

The simulation results of 1 2and  for the comparison of the two link manipulator with optimal 

sliding mode and PID controllers for an impulse input torque 1 of 0.1 Nm are shown in Figure 2 

and Figure 3 respectively. 
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Figure 2 Impulse response of Theta 1 to Torque 1 

 

Figure 3 Impulse response of Theta 2 to Torque 1 

The simulation result of the impulse response of theta 1 and theta 2 to torque 1 disturbance shows 

that the manipulator with optimal sliding mode controller minimizes the overshoot and the settling 

time better than the PID controller. 
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4.2 Comparison of the Two Link Manipulator with Optimal Sliding Mode and PID 

Controllers for an Impulse Input Torque 2 

The simulation results of 1 2and  for the comparison of the two link manipulator with optimal 

sliding mode and PID controllers for an impulse input torque 2 of 0.1 Nm are shown in Figure 4 

and Figure 5 respectively. 

 

Figure 4 Impulse response of Theta 1 to Torque 2 

 

Figure 5 Impulse response of Theta 2 to Torque 2 
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The simulation result of the impulse response of theta 1 and theta 2 to torque 2 disturbance shows 

that the manipulator with optimal sliding mode controller minimizes the overshoot and the settling 

time better than the PID controller. 

5. Conclusion 

In this paper, stability control of a two link manipulator has been done using optimal sliding mode 

and proportional integral derivative controllers. The stability performance of the system has been 

analyzed using comparison simulation between the proposed controllers. The comparison 

simulation of the two link manipulator with optimal sliding mode and proportional integral 

derivative controllers has been done for an impulse input of the applied and disturbance torques 

and the simulation results prove the effectiveness of the proposed optimal sliding mode controller 

in minimizing the overshoot with a moderate settling time better than the proportional integral 

derivative controller. 
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