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ARISTOTLE’S MODAL SYLLOGISMS

Fred Johnson

Considering Aristotle’s discussion of syllogisms as a whole, the most striking point is
that its focus is the modal syllogisms — This is the point on which the logical tradition
has diverged most completely from Aristotle, as a rule giving no attention to modal
syllogisms . . .. Paul Henle

Aristotle’s system of modal syllogisms, to be found in chapters 3 and 8-22 of the first
book of the Prior Analytics, has been open to public inspection for over 2300 years.
And yet perhaps no other piece of philosophical writing has had such consistently bad
reviews. Storrs McCall

... by raising the [completeness] problem, Aristotle earns the right to be considered
not only the father of logic, but also the (grand)father of meta- logic. Jonathan Lear

Storrs McCall [1963] developed the first formal system, the L-X-M calculus, for which
a decision procedure for assertion or rejection of formal sentences is given that has any
chance of matching Aristotle’s judgments about which of the n-premised (for n > 2)
“apodeictic syllogisms” are valid or invalid. McCall’s remarkable results were achieved
by extending Jan Lukasiewicz’s [1957] decision procedure for assertion or rejection of
expressions in his formal system, LA, that is designed to capture Aristotle’s judgments
about which of the “assertoric (or plain!) syllogisms” are valid or invalid.

Lukasiewicz also considers using his four-valued modal system, the LM system, to
present Aristotle’s syllogistic but finds that the match is not very good. Peter Geach also
proposes a system for dealing with the apodeictics. But, again, the match is not very
good. After examining McCall’s L-X-M system and work related to it we shall turn to his
work on the “contingent syllogisms”. His purely syntactic system, Q-L-X-M, has some
unAristotelian features that lead us to develop a modified system, QLXM'. A semantics
for QLXM' is developed that enables us to provide formal countermodels for a large
percentage of the assertoric, apodeictic or contingent syllogisms that Aristotle explicitly
considered to be invalid.

1 LUKASIEWICZ’S ASSERTORIC SYSTEM, LA

For Lukasiewicz, Aristotle’s syllogisms are “implicational” rather than “inferential”. He
says in [1957, p. 21]:

In [1964] P. T. Geach prefers “plain’ over ‘assertoric’.

Handbook of the History of Logic. Volume 1
Dov M. Gabbay and John Woods (Editors)
(© 2004 Elsevier BV. All rights reserved.
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Syllogisms of the form: -

AllBis A;

all Cis B;
therefore

all Cis A

are not Aristotelian. We do not meet them until Alexander. This transference
of the Aristotelian syllogisms from the implicational form into the inferential
is probably due to the Stoics.

So, Lukasiewicz claims Aristotle construed the above syllogism, with traditional name
‘Barbara’, as a conditional claim: T

If all B are A then if all C are B then all C are A.

Robin Smith’s [1989, p.4] translation of Barbara at Prior Analyttcs 25b37-40 seems to
conform with Luka31ew1cz s view:

LifAls predlcated of every B and B of every C, it is necessary for A to be
predlcated of every C.

But see [Corcoran, 1972] and [Smiley, 1973] for the view that Aristotle developed natural
deduction systems rather than the axiomatic systems of the sort Lukasiewicz envisages.

Lukasiewicz uses Polish notation, a parenthesis-free notation, to express the well-
formed formulas (wffs) in his formal system, which we refer to as LA. We replace his
notation with current “standard” notation when giving the basis for it.> So, for example,
his C'pq (‘If p then q’) is our (p — ¢). His Np (‘not p’) and Kpq (‘p and q’) are our —p
and (p A q), respectively.

Pukasiewicz’s assertions and rejections are marked by "and respectwely The sys-
tem that is essentially Eukasiewicz’s will be called LA. 3

So, for example, " (Aba — (Acb — Aca)) says that Barbara is asserted in LA, which
is true. < Aba says that Aba is rejected in LA, which is true. Assertions and rejections are
relative to systems. We shall avoid using "LA , say, and rely on the context to indicate
that the assertion is relative to system E.A. o

Primitive symbols

term variables ' a,b,c,. .. (with or without subscripts)
monadic operator  —

dyadic operator —
quantifiers A1
parentheses Gy

i - R

2The manner of presentation of this system is heavily influenced by Hughes and Cresswell’s presentations
of various systems in [1996].
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Formation rules :

FR1 If @, is a quantifier and = and y are term variables then Q ,zy is a wff .
FR2 If p and q are wffs then —p and (p — q) are wffs .
FR3 The only wifs are those in virtue of FR1 and FR2.

So, for example, Aab, Iab and (Abc — —Ibc) are wifs. Read them as ‘All @ are b’,
‘Some a are b’ and ‘If all b are c then it is not true that some b are ¢’, respectively.

Definitions
SRR

DefA  (pAq) =4 ~(p— —q) R

Def &+ (p ¢ q) =gr (p = @) A (g < p)) L
DefE  FBzy =4 —~Ixy et
DefO  Ozy =4 ~Axy , N ,X,

Eab and Oab may be read as ‘No ¢ are b’ and ‘Some a are not b’, respectively.
Lukasiewicz’s LA contains theses that are “assertions” (indicated by ") as well as the-
ses that are “rejections”(indicated by ™). We begin with the former, which are generated
by assertion axioms and assertion rules.
IR
Assertion axioms

A0 (PC). If p is a wif that is valid in virtue of the propositional calculus (PC) then
. Fp(that is, p is asserted). (So, for example, " (Aab — Aab) since it is not

possible that the antecedent Aab is true and the consequent Aab is false.

And " ((Aab — Iab) — (—Iab — —Aab)) since it is not possible that all

of these conditions are met: (Aab — Iab) is true, ~Iab is true and ~Aab

is false.) IR I
Al " Aaa CvE T e
A2 Flaa - G S
A3 (Barbara) " (Abc — (Aab — Aac))
A4 (Datisi) " (Abe — (Iba — Iac)) S
Transformation rules for assertions A u .

AR1 (Uniform substitution for assertions, US) From "p infer "¢ (that is, from the as-
sertion of p infer the assertion of q) provided ¢ is obtained from p by uniformly
substituting variables for variables. (So, for example, from "' (Aab — Iba) we may
infer " (Acb — Ibc) and " (Abb — Ibb), by rule US. But rule US does not permit us
to infer that " (Aab — Iba) given that " (Abb — Ibb). i

AR2 (Modus Ponens, MP) From " (p — ¢) and "p infer "q.

AR3 (Definiens and definiendum interchange for assertions, DDI) From
F(...a...)and a =4 Binfer "(...8...), and vice versa. (So, for example, from
F(—~Iab — —Aab) infer " (Eab — Oab) by two uses of DDI, given definitions Def
E and Def O. Typically a use of DDI will be indicated by simply referring to a def-
inition that is used. So, from (~Iab — —Aab) infer " (Eab — —Aab) by Def E. It
is to be understood that DDI is also used.) oAt e
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Given the assertion portion of the basis for LA, we shall give some “assertion deduc-
tions” — sequences of wifs such that each member of the sequence is either an assertion
axiom or is entered from a prior member of the sequence by using a transformation rule
for assertions — that capture some Aristotelian principles involving conversions, subor-
dinations, and oppositions.

Theorem 1.1. (Assertoric conversions, Con) " (Iab — Iba) and " (Eab — Eba).

Proof.

1. F(Abe — (Iba — Iac)) (by A4)

2. F(Abb — (Iba — Iab)) (from 1 by US) -
3. ¥ Abb (by Al and US)
4. F(Iba — Iab) (from 2 and 3 by MP)

5. ¥ (Iab — Iba) (from 4 by US)

6. " ((Iba — Iab) — (=Iab — —Iba)) (by AQ) *% n i
7. Y (=Iab — —Iba) (from 6 and 4 by MP) S

8. "( o

F(Eab — Eba) (from 7 by Def E, using DDI) #5586 ]

[

The above reasoning may be presented more succinctly by using the following derived
rule for assertions.

R PR I

DR1 (Reversal, RV) i) From " (p — q) infer " (¢ — —p); ii) from " (p - (¢ — 7))
infer " (p — (=r — —q)); and iii) from " (p — (¢ — r)) infer " (=r - (p =

—q))-

Proof. i) Suppose " (p — q). By A0 {((p = q) — (=g = —p)). By MP " (=g — —p).
ii) Suppose "(p = (g = 1)). By AOF((p = (¢ = 7)) = (p = (=1 — —q))). By MP
F(p — (-r — —g))). Use similar reasoning for iii). -]

So, the annotation for line 7 in the above deductlon may read ‘(from 4 by RV)’. Line
6 may be deleted. 2
The following derived rules are useful in generatln(7 other pr1n<:1ples

DR2 (Assertion by antecedent interchange, Al) From (p - (g = 7)) infer "(q —

, p—=r) L
Proof. Assume " (p = (¢ — 71)). By A0 ((p— (g~ r)) = (¢ = (p— 1))). By MP

"l 0= ). ‘ - =

DR3 (Assertion by antecedent strengthening (or equivalence), AS) From " (p —(q —1))
and "(s —q) infer "(p —(s =1 )); and from " (p —(q —1)) and " (s —p) infer " (s
—(q—r).?

3¢Cut’ is also used to refer to these rules.
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DR4 (Assertion by consequent weakening (or equivalence), CW) From "(p —q) and
"(q —r) infer " (p —r); and from " (p —(q —r)) and " (r —s) infer "(p —(q =5 )).*

To prove DR3 and DR4 use A0 and MP. :

Theorem 1.2. (Assertoric subalternations, Sub-a) i) " (Aab — Iab); and ii) "(Eab —
Oab).

Proof.

F(Abc — (Iba = Iac)) (by A4)

F(Iba — (Abc — Iac)) (from 1 by AT)
F(Iaa - (Aac — Iac)) (from 2 by US)
FTaa (by A2)

" (Aac — Iac) (from 3 and 4 by MP)
"(Aab — Iab) (i, from 5 by US)
F(~Iab — —Aab) (from 6 by RV)
F(Eab — Oab) (ii) from 7 by DDI, using Def E and Def O) |

© NS WD =

Theorem 1.3. (Assertoric conversion per accidens , Con(pa)) i) " (Aab — Iba); and ii)
"(Eab — Oba)> |

Proof.

. (Aab — Iab) (by Sub-a)

. (Iab — Iba) (by Con)

. (Aab — Iba) (i, from 1 and 2 by CW)

. (Eab — Eba) (by Con)

. (Eba — Oba) (from 4 by Sub-a and US) s

. (Eab — Oba) (ii, from 4 and 5 by CW) ]

N N B W DN

The following derived rule, proven by using AO and MP, is useful in proving the next
theorem. e

DR5 (Biconditional rule, BIC) From " (p — q) and " (¢ — p) infer " (p ¢ ¢).¢

Proof. Suppose " (p — ¢) and " (g — p). By A0, ((p = ¢) = ((¢

= p) = (p < 9)))-
By two uses of MP, " (p ¢ ¢q). [ |

A

Y

Theorem 1.4. (Assertoric oppositions, Opp) i) " (—~Aab <> Oab); ii) " (—Eab > Iab);

iii) (—Iab <> Eab); and iv) (-Oab + Aab).

4“Transitivity’ and ‘Hypothetical syllogism’ are also used to refer to the first of these two rules.

51. M. Bocheriski, on p. 212 of {1963], states that the “law of accidental conversion of the universal negative
is not in Aristotle”. He is not saying that Aristotle considered inference i) to be invalid.

6This rule is discussed, but not named, on p. 29 of [Hughes and Cresswell, 1996]. ...
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Proof

1. ¥(=Aab — ~Aab) (by AO)
F(=Aab — Oab) (from 1 by Def O)
" (Oab — —~Aab) (from 1 by Def O)
F(—~Aab + Oab) (i, from 2 and 3 by BIC) *
F(=~Eab — —Eab) (by A0)
" (=Eab — —~—Iab) (by Def E)
F(=—TIab ~ Iab) (by AO)
F(=Eab — Iab) (from 6 and 7 by CW)
9. F(=—~Iab — =Eab) (from 5 by Def E)
10. " (Iab — —~—Iab) (by AO)
11. F(Iab — ~Eab) (from 10 and 9 by CW)
12. " (=Eab ¢ Iab) (ii, from 11 by BIC)
13. F((~Aab < Oab) — (—Oab « Aab)) (by A0)
14. F(=Oab « Aab) (iv, from 4 and 13 by MP)
15. F((=Eab « Iab) — (—~Iab < Eab)) (by A0)
16. F(~Iab <+ Eab) (iii, from 12 and 15 by MP) 2 ]

PNk W

The following derived rule is useful in conjunction with the assertoric oppositions.
DR6 (Substitution of equivalents, SE) From " (p 3 g) and " (...p.. )infer (... q...).
Proof. Use mathematical induction. ]

So, for example, from " (Aab — (Abc — (~Aad - —Acd))) infer " (Aab — (Abc —
(Oad — Ocd))) by SE, given the oppositions Opp.

On table 1 assertions corresponding to the familiar two-premised syllogisms are listed.
In the right column a method of deducing the assertion is given. So, for example, Barbara
is trivially asserted by using axiom A3. Celarent is asserted since the assertion of 11
(Disamis) may be transformed into ¥ (=fac — (Aba — —Ibc)) (by RV), which may
be transformed into " (Eac — (Aba — FEbc)) (by SE, since "(Fac + —Iac) and
F(Ebc « ~Ibc)), which may be transformed into 2 (by US, putting ‘b’ in place of ‘a’
and ‘a’ in place of ‘b’). Darii is asserted since the assertion of 12 may be transformed into
F(Abe — (Iab — Iac)) (by AS, since (Iab — Iba)).

1.1 RejectionintA

Eukasiewicz uses the notion of “rejection” to develop his formal system.” He shows that
the invalid sylogistic forms expressed by “‘elementary wffs” may be rejected by augment-
ing his formal system for assertions by adding one rejection axiom and four transforma-
tion rules that generate rejections. We shall illustrate this claim but not give a full account

7Smiley, in his influential article [1996], points out that Carnap and Lukasiewicz were the first logicians to
formalize the notion of rejection. Smiley attributes the shunning of rejection by most logicians to Frege’s [1960].
Smiley effectively argues that Frege’s rejection of rejection, using Occam’s razor, was unfortunate, and Smiley
shows how rejection may be put to good use in ways other than those envisioned by Carnap or Lukasiewicz. For
recent work on rejection that is stimulated by Smiley’s article see [Rumfitt, 19971 and [Johnson, 1999bl.
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Table 1. Deductions in system LA

Figure 1 Barbara (1) F(Abc — (Aab — Aac)) A3
Celarent (2) F(Ebc — (Aab — Eac)) 11,RV,SE,US
Darii (3) F(Abc — (Iab — Iac))  12,AS
Ferio (4) F(Ebc — (Iab - Oac))  12,RV,SE,US
Figure2  Cesare (5) "(Ecb — (Aab — Eac)) 12,RV,SE,AILUS
Camestres (6) F(Acb — (Eab — Eac)) 3,RV,SE,US
Festino (7) F(Ecb — (Iab — Oac))  11,RV,SE,ALUS
Baroco (8) F(Acb — (Oab — Oac)) 1,RV,SE,US
Figure 3  Darapti (9) T(Abc — (Aba — Iac)) 12,AS

Felapton (10) Y (Ebc — (Aba — Oac)) 20,RV,SE,US
Disamis (11) F(Ibc — (Aba — Iac))  12,ALUS,CW
Datisi (12) F(Abe — (Iba — Tac)) A4
Bocardo (13) F(Obc — (Aba — Oac)) 1,RV,SE,US
Ferison (14) F(Ebc — (Iba — Oac))  3,RV,SE,US
Figure 4 Bramantip (15) " (Acb — (Aba — Iac))  20,ALUS,CW
Camenes (16)  "(Acbh — (Eba — Eac)) 17,RV,SE,ALUS
Dimaris (17) F(Icb - (Aba — Iac))  3,ALUSCW
Fresison (18) F(Ecb — (Iba — Oac))  17,RV,SE,ALUS
(
(

Fesapo (19) F(Ecb — (Aba — Oac)) 15,RV,SE,ALUS
Subalterns  Barbari (20) F(Abc — (Aab — Iac)) 1,CW
Celaront (21) F(Ebc = (Aab — Oac)) 9,RV,SE,US
Cesaro (22) F(Ecb — (Aab — Oac)) 9,RV,SE,ALUS
)
)

Camestrop (23) " (Acb — (Eab — Oac 20,RV,SE,US
Camenop (24) " (Acb — (Eba — Oac 15.RV,SE,AL,US

of Lukasiewicz’s work on rejections, which would require showing that all wffs may be
“reduced” to sets of elementary wifs.

Definition 1.5. (elementary wff and simple wff) x is an elementary wff iff = has form
(zy = (2 = (3 = ...Ty) ...}, where each x; is a simple wff , a wif of form Apq, Ipg,
Opq or Epgq.

Rejection axioms for LA

R1 Y(Ach = (Aab — Iac))

Rejection transformation rules for LA

Rr1 (Rejection by uniform substitution, R-US) If "z and z is obtained from y by uniform
substitution of terms for terms, then "'y.
RR2 (Rejection by detachment (or Modus Tollens), R-D) From " (2 — %) and 7y infer
4
T
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RR3 (Slupecki’s rejection rule, R-S) From 7(x —z) and 7y -3z) infer
(x —=(y —2)) provided: i) x and y have form —Apq or ~Ipg; and ii) z has form
(z1 — (z2 = (3 — ...x,)...) where each z; is a simple sentence.

RR4 (Definiens and definiendum interchange for rejections, R-DDI) From
(...a...)and @ =4 B infer *(...3...), and vice versa. (So, for example, from
?(=Aab — —Iab) infer *(Eab — Oab) by two uses of R-DDI, given definitions
Def O and Def E.)

The following derived rules for rejections, which are counterparts of derived rules for
assertions, are useful in simplifying presentations of rejection deductions — sequences of
wifs in which each member of the sequence is either an (assertion or rejection) axiom or
is entered by an (assertion or rejection) transformation rule, where the last member of the
sequence is a rejection.

R-DR1 (Rejection by reversal, R-RV) i) From " (p — q) infer (=g — -p); ii) from
*(p - (g = 7)) infer '(p = (-r — —q)); and iii) from *(p — (g — 7)) infer
~r = (p = —q)).

Proof. i) Suppose *(p — q). By AO (or PC) "((-~¢ = —p) = (p — q)). By R-D
(=g = —p). ii) Suppose (p = (¢ = 7)). By A0 ((p = (-7 = —q)) = (p = (¢ =
7))). By R-D Y(p — (=r — —q)). Use similar reasoning for iii). |

R-DR2 (Rejection by antecedent interchange, R-Al) From *(p — (¢ — r)) infer
g —r)

Pvroof.xAssume = (@—=71).ByAd ((¢g—= (p—=1) = (p— (g—1))). BS/ R-D
Mg = (p—or)). =

R-DR3 (Rejection by antecedent weakening (or equivalence), R-AW) i) From 7(p —
(g r)and" (g — s) infer "(p = (s = 7)) ; and i) from 7(p — (¢ = 1))
and " (p - s) infer (s — (¢ = 1)).

Proof. Suppose (p = (¢ — r)) and (g — s). By AO"((¢g = s) = ((p = (s —
n) = (0~ (g = 7)) ByMP"((p = (s = 1)) = (p = (¢ = r))). ByRD
“(p = (s = r)). Use similar reasoning for if). ‘ . n

Proofs for the following two derived rules are easily constructed and will be omitted.

R-DR4 (Rejection by consequent strengthening (or equivalence), R-CS) From ™(p —q)
... and " -—q) infer '(p —r ); and from T(p —(q —r1)) and
F(s —r) infer 7 (p —(q —s)).

R-DR5 (Rejection by substitution of equivalents, R-SE) From "(p < ¢) and
H...p..)infer (L..q. ).
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R-DR6 (Rejection by implication introduction, R-II) From F? and "¢ infer
Tp—=q). = :

Proof. Suppose "p and . By A0 " (p = ((p = ¢) = q)). ByMP " ((p = ¢) — q). By
R-D(p — q). u

Given the above apparatus we are able to show how the four syllogisms referred to at
Prior Analytics 26a2-9 are rejected in LA. This is Lukasiewicz’s translation from [1957,
p. 671

If the first term belongs to all the middle [Aba], but the middle to none of the
last [Ecb], there will be no syllogism of the extremes; for nothing necessary
follows from the terms being so related; for it is possible that the first should
belong to all as well as to none of the last, so that neither a particular nor a
universal conclusion is necessary. But if there is no necessary consequence
by means of these premises, there cannot be a syllogism. Terms of belong to
all: animal, man, horse; to none: animal, man, stone.

The four syllogisms are (Aba — (Ecb — )), where z is Ica, Oca, Aca or Eca.
We shall give rejection deductions to establish the rejection of the first two (AEI-1 and
AEO-1) and then use derived rule R-CS to show the last two (AEA-1 and AEE-1) are
rejected.?

Theorem 1.6. (Rejection of AEI-1) *(Aba — (Ecb — Ica)).
Proof. e

(Ach — (Aab — Iac)) (byR1)

“(Iac — (Acb — (Aab — Iac))) (by AO)

“Tac (from 1 and 2 by R-D)

F Acc (by Al and US)

(Acc - Tac) (from 3 and 4 by R-I)

“(Acb ~— Iab) (from 5 by R-US)

(Eab — Ocb) (from 6 by R-RV and R-SE) s
“(Acb — Iac) (from 5 by R-US) .
*(Eac — Ocb) (from 8 by R-RV and R-SE) et
(Eab — (Eac — Ocb)) (from 7 and 9 by R-S) E

. Y(Acb — (Eac — Iab)) (from 10 by R-RV) i
. '(Aba — (Ecb — Ica)) (from 11 by R-US) it [ |

——
e B N ol ol  a

—_
[\

i

#In the above passage Aristotle uses the semantic counterpart of this two-stage syntactic process. First,
he shows by his counterexample that {Aba, Ecb, Aca} and {Aba, Ecb, Eca} are semantically consistent,
from which it follows that neither of the particulars Oca and Ica is a semantic consequence of {Aba, Ecb}.
Secondly, since the universal claims Eca and Aca are stronger than Oca and Ica, respectively, they cannot
be a semantic consequence of {Aba, Fcb}. Aristote is using what W. D. Ross [1949, p. 3021 calls a “proof

by contrasted instances,” to show a pair of premises is, in Jonathan Lear’s {1980, p. 54] terms, “semantically
sterile”.
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Theorem 1.7. (Rejection of AEO-1) “(Aba —(Ecb —0ca)). ¢+

Proof.

1. Y(Acb — (Aab — Iac)) (ByRI)
2. Y((Acb — (Eac — Oab)) (from1by R-RV and SE)
3. 9(Aba — (Ecb — Oca)) (from 2 by R-US) - n

Theorem 1.8. (Rejection of AEA-1 and AEE-1) i) "(Aba — (Ecb — Aca)); and i)
(Aba = (Ecb — Eca)). :

1. *(Aba — (Ecb — Ica)) (by theorem 1.6)

2. F(Aca — Ica) (by Sub-a, US)

3. (Aba — (Ecb — Aca)). (i, from 1 and 2 by R-CS)
4. '(Aba — (Ecb — Oca)) (by theorem 1.7) e
5. F(Eca — Oca) (by Sub-a, US) e .
6. *(Aba — (Ecb — Eca)) (ii, from 4 and 5 by R-CS) [ ]

The following passage clearly shows that Ross favors Lukasiewicz’s method of reject-
ing the AEx-1s over Aristotle’s. On p. 302 of [1949] Ross says:

... [Aristotle] gives no reason (my italics) for this [claim that no conclusion is
yielded by the premises of AEx-1], e.g. by pointing out that an undistributed
middle or an illicit process is involved; but he often points to an empirical .
fact. ...instead of giving the reason why All B are A, No C is B yields
no conclusion, he simply points to one set of values for A, B, C (animal,
man, horse) for which, all B being A and no C being B, all C is in fact A,
and to another set of values (animal, man, stone) for which, all B being A
and no C being B, no C is in fact A. Since in the one case all C is A, a
negative conclusion cannot be valid; and since in the other case no Cis A, an .
affirmative conclusion cannot be valid. Therefore there is no valid conclusion
(with C as subject and A as predicate).

S T

Aristotle is reasoning as follows. It is true that all men are animals, it is true that no
horses are men, and it is true that all horses are animals (and thus false that no horses are
animals and false that some horses are not animals). So neither Eca nor Oca is a logical
consequence of Aba together with Ecb. Since it is true that all men are animals, it is true
that no stones are men, and it is true that no stones are animals (and thus false that all
stones are animals and false that some stones are not animals), it follows that neither Aca
nor Ica is a logical consequence of Aba together with Ecb.

Lukasiewicz also objects to Aristotle’s reasoning, claiming in [1957, p. 72] that it:

introduces into logic terms and propositions not germane to it. ‘Man’ and
‘animal’ are not logical terms, and the proposition ‘All men are animals’ is =
not a logical thesis. Logic cannot depend on concrete terms and statements.
If we want to avoid this difficulty, we must reject some forms axiomatically.
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‘But Aristotle’s procedures have support among modern logicians. Robin Smith
(1989, p. 114] regards Aristotle’s reference to animals, men and horses as a reference to
a “countermodel” and says “countermodels are the paradigmatic means of proving inva-
lidity for modern logicians.” In the surrounding text Smith refers to Jonathan Lear [1980,
pp- 54-61 and pp. 70-75] who defends Aristotle’s techniques against criticisms by
Lukasiewicz and Geach [1972]. In the following sections we shall make extensive use
of formal countermodels to show the invalidity of apodeictic and contingent syllogisms.
Such models may also be used to show the invalidity of assertoric syllogisms.

The following passage from the Prior Analytics 27b12-23, quoted and discussed by
Lukasiewicz on p. 70 of [19571], illustrates another method Aristotle uses to reject in-
ferences. Ross [1949, p. 304] calls it an argument “from the ambiguity of a particular
proposition.” A better name for the reasoning is “rejection by premise weakening”. Ross
points out that this method of rejection is also used by Aristotle at 26b14-20, 27b27-28,
28b28-31,29a6 and 35b11. £ b

Let M belong to no IV, and not to some X. Itis possible then for IV to belong
either to all X or to no X. Terms of belonging to none: black, snow, animal.
Terms of belonging to all cannot be found, if M belongs to some X, and does
not belong to some X . For if NV belonged to all X, and M to no IV, then M
would belong to no X; but it is assumed that it belongs to some X. In this
way, then, it is not possible to take terms, and the proof must start from the
indefinite nature of the particular premise. For since it is true that M does
not belong to some X, even if it belongs to no X, and since if it belongs to
no X a syllogism is not possible, clearly it will not be possible either.

Given the semantic consistency of {No snow is black, Some animals are not black,
No animal is snow } we know by half of the “contrasted instances” argument that neither
‘Some animal is snow’ nor ‘All animals are snow’ is a logical consequence of "No snow
is black’ together with *Some animals are not black.” So, a “countermodel” is given for
the inferences from Enm and Ozm to Izn or Azn. To show that neither Ozn nor EFzn
is a semantic consequence of Enm and Oxm, Aristotle relies on two facts: i) neither
Ozxn nor Ezn is a semantic consequence of Enm and Exm; and ii) Ozm is a semantic
consequence of Exm.

InLA a purely syntactic rejection of the “implicational syllogisms” (Enm — (Ozm —
Ozn)) and (Enm — (Oxm — Exn)) is given by using R-AW.

Theorem 1.9. (Rejection of EOO-2 and EQE-2) i) (Enm — (Exm — Ozn)); and ii)

Y(Enm — (Ozm — Ezn)). ,
i3

Proof.

1. ?(Aba — (Ecb — Ica)) (by theorem 1.6 ) T
2. Y(Eca — (Ecb — Oba)) (from 1 by R-RV and R-SE)
3. "(Ecb — Obc) (by Con(pa) and US)

4. Y(Eca — (Obc — Oba)) (from 2 and 3 by R-AW) o
5. "(Eca — FEac) (by Con and US)
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(Eac = (Obc — Oba)) (from 4 and 5 by R-AW) o

Y(Enm — (Ozm — Ozn)) (i, from 4 by R-US) . !
F(Ezn — Ozn) (by Sub-a and US) ' :
Y(Enm — (Ozm — Ezn)) (ii, from 7 and 8 by R-CS) |

e

Up to this point we have rejected elementary wifs of form (z; = (z2 = ... (zn =
y) ...) where n < 2. For Lukasiewicz’s system to be fully Aristotelian he must show how
elementary sentences, where n > 2, are rejected. We illustrate such a rejection.

Theorem 1.10. (Rejection of an AAAA mood) “(Aab —(Abc —(Adc —Aad))).

Proof.

“(Ach — (Aab — Iac)) (by R1) P ;
F(Acb — (Aba — Iac)) (by Bramantip) : ;
Y((Ach — (Aba — Iac))mec(Achb — (Aab — Iac)) (from 2 and 1 by R-II)
"((Aba — Aab) = ((Acb — (Aba — Iac))me(Ach — (Aab — Iac))) (by AO)
“(Aba — Aab) (from 3 and 4 by R-D)

¥ Aaa (by A1)

Y(Aaa — (Aba — Aab)) (from 6 and 5 by R-IT)

Y(Aaa — (Aaa — (Aba — Aab))) (from 7 and 5 by R-1I)

Y(Aaa — (Aaa — (Ada — Aad))) (from 8 by R-US)

Y(Aaa — (Aac — (Adc — Aad))) (from 9 by R-US)

“(Aab — (Abc — (Ade ~ Aad))) (from 10 by R-US) ]

—

— QW e s W

bt

Lukasiewicz’s system for the assertoric syllogistic has “100% Aristotelicity”, to use
McCall’s expression. This means that every 2-premised syllogism deemed valid by Aris-
totle is asserted in Lukasiewicz’s system, and every 2-premised syllogism deemed invalid
by Aristotle is rejected in Lukasiewicz’s system. We shall see below that McCall’s L-X-M
calculus also has 100% Acristotelicity though his Q-L-X-M calculus does not.

2 LUKASIEWICZ’S MODAL SYSTEM, EM

Eukasiewicz developed his system for the assertoric syllogistic by using the non-modal
propositional calculus, what he calls the “theory of deduction,” as a “base logic”. Fol-
Jowing the procedure used in Hughes and Cresswell’s [1968] and [1996], we simplified
Lukasiewicz’s presentation of his system by simply using axiom AQ to provide his “ba-
sis”. Lukasiewicz’s approach to Aristotle’s modal logic is to develop a modal proposi-
tional logic (with quantifiers), which we refer to as the “LM system”, that will enable him
to present Aristotle’s work on the modal syllogisms.’

The following sentences are tautologies in .M, modifying Lukasiewicz’s notation in a
natural way: 1) ((p = q) = (Mp — Mgq)) and 2) ((p = q) = (Lp — Lq)), reading M
and L as ‘itis possible that” and ‘it is necessary that’, respectively. The following passages
on p. 138 of [Lukasiewicz, 1957] attempt to show that the “M-law of extensionality” (1)
and the “L-law of extensionality” (2) are endorsed by Aristotle.

98ee (19611 for Smiley’s extensions of Lukasiewicz’s work on EM. .- .
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) First it has to be said that if (if « is, § must be), then (if « is possible, 8 must
be possible too). [34a5-7]

If one should denote the premises by ¢, and the conclusion by £, it would
not only result that if « is necessary, then 3 is necessary, but also that if « is
possible, then J is possible. [34a22-24]

It has been proved that if (if « is, § is), then (if a is possible, then § is
possible). [34a29-31]

" A more natural reading of these passages is that they show that Aristotle endorsed both
3) (L(p = q) = (Mp — Mq)) and 4) (L(p — q) = (Lp — Lq))."

« That 1) - 4) are tautologies in LM is seen by considering the following four-valued
truth tables.

- Table 2. Four-valued truth tables for —, =, L and M

oW el
[UrO G VR w——y —
— N = NN
—_— ) W W
— N W A
—_— N W A
wwe——~Z
A&Nl\):

Among the four truth values 1 to 4, 1 is the only designated value, marked with an
asterisk in its entry in the first column on the table. A sentence z in the EM-system is a
tautology iff for every input of values the output value is always the designated value 1.

Theorem 2.1. (L-law of extensionality) ((p — ¢) = (Lp — Lq)) is a tautology.

Proof. Suppose ((p — q) — (Lp — Lq)) is assigned a value other than 1. Then i)
(p — q) is not assigned 4 and ii) (Lp — Lq) is not assigned 1, and iii) the value assigned
to (p — ¢) is not the value assigned to (Lp — Lgq). By i) p is not assigned 1 and ¢ is not
assigned 4. By ii) Lp is not assigned 4 and thus p is assigned neither 3 nor 4. And by ii)
Lp is not assigned the same value as Lq. So p is assigned the value 2 and ¢ is assigned
the value 3. Then (p — ¢) and (Lp — Lg) are assigned the same value, which conflicts
with iii). [ ]
-

Proofs that 1), 3) and 4) are tautologies are not required for our purposes, and we omit
the straightforward proofs.

McCall {1963, pp. 31-32} points out that Lukasiewicz’s use of the L-law of exten-
sionality yields highly unAristotelian results. For example, using McCall’s notation,
Camestres LXL (‘Necessarily all ¢ are b; no a are b; so (necessarily) necessarily no a

108ee [Hughes and Cresswell, 1968, pp. 29-30] for a discussion of this sentence, an axiom in Robert Feys’s
System T.
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are ¢”), Baroco LXL (‘Necessarily all ¢ are b; some a are not b; so necessarily some a
are not ¢’), Barbara XLL (‘All b are c; necessarily a are b; so necessarily all ¢ are ¢”) and
Ferio XLL (‘No b are ¢; necessarily some ¢ are b; so necessarily some b are ¢’), when con-
strued as “implicational syllogisms”, are asserted in Lukasiewicz’s L-system even though
Aristotle rejects all of them.

Following McCall we use ‘XXX’ after the name of a syllogism to indicate that the
syllogism is a plain, assertoric syllogism. So, for example, Camestres XXX has form
‘All ¢ are b; no a are b; so no a are ¢’. Camestres XXX, Baroco XXX, Barbara XXX
and Ferio XXX are asserted in Lukasiewicz’s assertoric system. So, given the following
theorem, Camestres LXL., Baroco LXL, Barbara XLL. and Ferio XLL are asserted in
FLukasiewicz’s E-system.

Theorem 2.2. i) ((p — (g = 7)) = (p = (Lg — Lr))); andid) "((p = (¢ = 1)) —
(Lp = (¢ = Lr))). y

Proof.

((g = r) = (Lqg — Lr)) (by theorem 2.1)

(((g—=r) > (Lg—Lr)) = ((p— (g — 1)) = {p—~ (Lg— Lr))) (by AO)
((p—=(@—=7r)— (p— (Lg— Lr))) (i, from1 and 2 by MP)
(p=@=m)=>@=>Lg—>Lr) > ((g=>@—1) = Lg— (p—
Lr))) (by AO)

5. 7((g—= (p—r1)) = (Lg = (p— Lr))) (from3and 4 by MP)

6. F((p —(q —1)) =(Lp —(q —Ln)) (ii, from 5 by US) |

T T T T

R W N =

One of the virtues of McCall’s L-X-M calculus, discussed below, is that Camestres
LXL, Baroco LXL, Barbara XLL and Ferio XLL are rejected in it. But before we examine
McCall’s system we look briefly at some recent systems of modal predicate logic that have
been used to attempt to understand Aristotle’s work on the modal syllogisms.

{
3 MODERN MODAL PREDICATE LOGIC

It is natural to try to view Aristotle’s modal logic through the eyes of modern modal
monadic first order predicate logic.!! On pp. 18-22 McCall refers to Albrecht Becker’s
[19331'? and works by others who have tried to do this. On pp. 176-181 Patterson dis-
cusses Ulrich Nortmann'’s [1990] attempt to do this. Patterson points out that the Kripkean
“possible worlds semantics” used by Nortmann does not conform with Aristotle’s onto-
logical principles. I agree. McCall argues that all uniform readings of Aristotle’s modal
propositions as sentences in a modal first order predicate logic will make some valid Aris-
totelian syllogisms invalid or will make some invalid Aristotelian syllogisms valid. I also
agree with McCall and will give some examples that support his position.

1 For recent books that contain sections on modal predicate logic see [Hughes and Cresswell, 1996}, [Fitting
and Mendelsohn, 1998], [Girle, 2000] and [Bell et al., 2001].
12See [Bocheriski, 1963, pp. 57-62] for a useful discussion of Becker’s work.
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To illustrate how invalid Aristotelian inferences may be made valid consider
Bocardo LXL, (that is, ‘LObe, Aba; so LOac’, using McCail’s notation). Suppose we
translate it into modal predicate logic as: ‘Jz(Bz AO-Cxz); Vz(Bz — Az); so 3x(Az A
O~Cxz)’ (that is, ‘There is an z such that z is a B and z is necessarily not a C; for all =
if z is a B then  is an A; so there is an z such that z is an A and z is necessarily not
a C”). We are using one of Becker’s two methods for translating LO sentences. Using
“singular sentences” such as Bm (read as m is a B, for ‘Max is a bear’, for example)
and familiar rules such as Existential Instantiation (EI)!?, Universal Instantiation (UT) and
Existential Generalization (EG) together with propositional calculus (PC) inferences we
may construct a deduction for Bocardo LXL, which Aristotle considered to be invalid.!*

Proof.

. 3z(Bz A O-Cz) (premise)

. Vz(Bz — Az) (premise)

. (Bm AO~Cz) (from1byEl) .

. (Bm — Am) (from 2 by UI)

. (Am A O~Cz) (from 3 and 4 by PC)
. dz(Az A O-Cz) (from 5 by EG) ) | |

[ R R N

To illustrate how valid Aristotelian inferences may be made invalid, consider Bo-
cardo LLL, (that is, ‘LObc; LAba; so LOac’, using McCall’s notation). Using another
Becker translation of LO sentences and a Becker translation of LA sentences the argu-
ment amounts to this: Vz(Cz — 0OBz);3z(0Az A O-Bz); so 3z(0Az A 0-Cxz),
call it the “the MPredC argument”. Aristotle at {30a6-14] gives a proof by ecthesis to
show that Bocardo LLL js valid. But using the semantics for the modal system, S5, the
translated argument is S3-invalid. For suppose there are only two possible worlds w; and
wy, where each world “sees” each world (including itself). If “the MPredC argument”
is S5-valid then the following modal propositional calculus argument is S3-valid, call it
the “the MPropC argument”: ‘((Cm — OBm) A (Cn — OBn)); ((DAm A O-Bm) V
(0An A O-Bn)); so ((DAm A O-Cm) V (0An A O=Cn))’. But then a countermodel
is constructed by: 1) letting Am, Bn and C'n be true in world wy ; ii) letting Bm, C'm and
An be false in wy; iii) letting Am, Cm and Bn be true in world ws; and iv) letting Bm,
An and Cn be false in world we. Then in wy, (Cm — OBm) is true, (Cn — OBn) is
true, (OAm A O-Bm) is true, DAm A O-Cm) is false, and (UAn A O-Chn) is false.
So “the MPropC argument” is S5-invalid. So “the MPredC argument” is invalid.

The same countermodel may be used to invalidate the argument that results by replac-
ing the premise Vo (Cz — OBz) in “the MPredC” argument with Vz(Cz — OBuz).

Geach [1964, p. 202} makes the following remarks about McCall’s comments list of
seven “Becker-type interpretations’:

3n [Johnson, 1993] Aristotle’s proofs by ecthesis are treated as essentially proofs by Existential Instantia-
tion. For alternative accounts of proofs by ecthesis see [Thom, 1993] and [Smith, 1982].

14Paul Thom in [1991] argues that Aristotle made a mistake in regarding Bocardo LXL as valid. Thom
contrasts his views with those in [Johnson, 1989], [Patterson, 1989], [Patterson, 1990} and [van Rijen, 1989].
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Here McCall has not proved what he claims: namely that no Becker-type in- .
terpretation will secure simultaneously the validity of Barbara LLL and LXL,
the invalidity of Barbara XLL, and the simple conversion of LI propositions
(C LIab LIba). For all of these results are obtained if we combine reading (1)
of LA from McCall’s list with reading (iii) or equivalently (iv) of LL.

McCall’s list on p. 21 of Becker type interpretations is given on table 3.

Table 3. Seven Becker-type interpretations

Universal Particular
() Vz(Az — OBzx) dz(Az A OBzx)
(i) OVz(Az — Bz) O3z(Axz A Bz)
(i) VzO(Az — Bz) Jz0(Az A Bz)
(iv) Vz(OAx — OBz) Jz(0Az A OBx)
(v) Vz(CAz — OBz) Jz(0Az A OBx)
(viy Vz(CAzx — Bzx) Jx(0Az A OBx)
(vii) Vz(OAx — Bz) Jz(0Az A Bz)

McCall finds interpretations (i) and (ii) in [Becker-Freyseng, 1933], (ii) in [von Wright,
19511, (i) to (v) in [Sugihara, 1957a] and [Sugihara, 1957b], and all but (v) in [Rescher,
1963].

This is what McCall says about these seven 1nterpretat10ns

None of these interpretations does justice to Aristotle’s system. Not one of -
them even simultaneously provides for the validity of Barbaras LLL, the .
invalidity of Barbara X LL, and the convertibility of the particular premise -
‘Some A is necessarily B’ into ‘Some B is necessarily A’. £

And McCall is correct. Geach is in effect proposing two more interpretations in ad-
dition to the seven on the list. Let us call one of them (viii), where L Aab is translated
as Vo(Az — DOBxz) and Llab is translated as 3z0(Az A Bz). As Geach says, the
other one is essentially the same as it. But interpretation (viii) produces results that
are not Aristotelian. For example, if Darii-LXL, valid for Aristotle, is translated using
interpretation (viii) the resulting argument is S5-invalid. McCall is looking for an in-
terpretation that provides “100% Aristotelicity”. Geach (p. 202) invites the reader to
consider an interpretation of McCall’s LAab and LOab as sentences of an extended as-
sertoric syllogistic, call it the “G-system™, that allows sentences to be formed by using
complex terms, terms of form Ap (necessarily p) and pp (possibly p), where p is a simple
term. McCall’s LAab, LEab, Liab and LOab are translated into the G- system as Aahb,
Eapb, I\aAb and Oa,ub respectively. Geach (p. 202) says: .. .

A decision procedure for this calculus can easily be devised: write every
formula so that A-terms and p-terms appear instead of categoricals prefaced
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Figure 1. The invalidity of Darii LXL in the G-system
A a

Q)

with L, add an antecedent of the form C AXaa [that is, (Alaa —] for each
A-term and one of the form C'Aapa [that is, (Aapa —] for each p-term,
and apply Lukasiewicz’s decision procedure for the plain syllogistic to the
resulting formula.

So, for example, to determine whether Bocardo LXL (that is, ‘LObc; Aba; so LOac’)
is syntactically accepted or syntactically rejected we form the following sentence in the
G-system: (Acpc — (Obuc — (Aba — Oape))). Following

Pukasiewicz’s decision procedure on pp. 121-126 of [1957], we form an elementary
sentence consisting of affirmative simple sentences that is deductively equivalent to it:
(Acpc — (Aapc — (Aba — Abpuc))) or (by interchanging terms) (Abub — (Acub —
(Aac — Aapbd))). The latter sentence fits subcase (d) of the fifth case (p. 124):

The consequent is Aab, and there are antecedents of the type Aaf with f
different from a. If there is a chain leading from a to b the expression is
asserted on the ground of axiom 3 [our A3, above], the mood Barbara; if
there is no such chain, the expression is rejected.

Since a is linked to b by the chain {Aac, Acubd}, (Abub — (Acub — (Aac —
Aapb))) is accepted. So Bocardo LXL is accepted in the G-system. But for Aristotle
Bocardo LXL is valid.

Since questions of validity in the G-system are reduced to questions of validity in the
assertoric syllogistic, the familiar Euler diagrams provide a technique for determining
whether or not arguments are valid. So, for example, the diagram in figure 1 displays the
invalidity of Darii LXL, (LAbc — (Iab — LlIac)). Since circle bis included in circle Ac,
L Abe is true. Since circle a overlaps circle b, Iab is true. Since circle Aa does not overlap
Ac, Llac is false. When constructing such diagrams these conditions must be met: for
every term z, the Az circle is included in or equal to the z circle, which is included in or
equal to the px circle. These conditions are natural since whatever is necessarily z is z,
and whatever is z is possibly z.

The diagram in figure 2 displays the invalidity of Cesare LLL, (LEch —
(LAab — LEac)). LEcb is true since circle ¢ does not overlap circle ub; LAab is
true since circle a is included in circle Ab, which is identical to circle pb; and LEac is
false since circle a overlaps circle puc.
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Figure 2. The invalidity of Cesare LLL in the G-system
[e (b, Ab

O

Geach does not claim that his G-system has “100 percent Aristotelicity”. He says on p.
203 of [1964] that it “can fit in most of Aristotle’s results about syllogisms de necessario
. But table 4 shows that the G-system does not get high marks. “V” occurs in a cell if and
only if the relevant syllogism is valid for Aristotle, and “Gc” occurs in a cell if and only
if the G-system’s judgment about the acceptance or rejection of the relevant syllogism
is in conflict with Aristotle’s. So, for example, the “Gc” in the Darii/LXL cell means
that Darii LXL is rejected in the G-system though Aristotle accepts it. The “Gc” in the
Bocardo/LXL cell means that Bocardo LXL. is accepted in the G-system though Aristotle
rejects it. The G-system’s Aristotelicity is ((3 x 14) — 13) + (3 x 14) or about 69%.

Table 4. Aristotle’s system vs. the G-system

LLL LXL XLL
Figure 1 Barbara v v
Celarent v \"

Darii \" V.,Gce
Ferio \" A"

Figure 2  Cesare V,Gec V,Ge
Camestres V,Gc V,Ge

Festino V,Ge V,Ge
Baroco V,Gc
Figure 3 Darapti v V,Ge  V,Gc

Felapton v v

Disamis \Y V,Gc
Datisi A" V,Gc
Bocardo A% Gce

Ferison A" \'%

Geach’s G-system and Lukasiewicz’s £.M illustrate two approaches to understanding
Aristotle’s work on modal logic. Martha Kneale on p. 91 of [Kneale and Kneale, 1962]
poses a dilemma for students of Aristotle given her belief that there are only two ap-
proaches to Aristotle’s work.
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If modal words modify predicates {Geach’s de re approach is taken], there is

no need for a special theory of modal syllogisms. For these are only ordinary

assertoric syllogisms of which the premises have peculiar predicates. On the

other hand, if modal words modify the whole statements to which they are
~ attached [Lukasiewicz’s de dicto approach is taken], there is no need for a

special modal syllogistic since the rules determining the logical relations be-

tween modal statements are independent of the character of the propositions
" governed by the modal words.

McCall agrees with Kneale that the two approaches described above are inadequate.
And he devises a third approach that is designed to “catch the fine distinctions Aristotle
makes between valid and invalid syllogisms (p. 96)”.

4 McCALLSL-X-M SYSTEM

The basis for L-X-M includes that of LA together with the following primitive symbols,
formation rules, definitions, axioms and transformation rules. Only some of the rejection
axioms are given here. The partial list is big enough to illustrate how rejection deductions
are constructed in L-X-M. For the full list of rejection axioms see [McCall, 1963] or
[Johnson, 19891.

Primitive symbols
monadic operator L

Formation rules

FR1' If @), is a quantifier and = and y are term variables then ¢}, zy is a categorical
expression .

FR2' If p is a categorical expression then —p is a categorical expression and Lp is a wff .
FR3' Categorical expressions are wffs .

FR4' If p and g are wffs then —p and (p — q) are wffs .

FR5' The only wffs are those in virtue of FR1’ to FR4'.

So, for example, Aab is a categorical expression by FR1', so ~Aab is a categorical
expression by FR2', so =—Aab is a categorical expression by FR2', so L——Aab is a wif
by FR2', so ~L—=Aab is a wff by FR4'. Note that LL Aab is not a wif.

Definitions
Def M ]Wp =df —'L"'p

Assertion axioms

Use A0, Al, A3 and A4 from system LA. Change A2 for LA from " Taa to " LIaa. Then
add the following axioms.
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A5 (Barbara LXL) H(LAbc — (Aab — LAac))

A6 (Cesare LXL) :* . "(LEcb — (Aab — LEac))

A7 (DariiLXL) - F(LAbc — (Iab— Llac)) P \
A8 (Ferio LXL) F(LEbc — (Iab— LOac)) ' ¢
A9 (Baroco LLL) F(LAcb = (LOab — LOac)) “ ™ "

A10 (Bocardo LLL) F(LObc — (LAba — LOac))
Al1 (LI conversion) "(LIab — LIba) '
A12 (LA subordination) " (LAab — Aab)
A13 (LI subordination) " (LIab — Iab) - i
Al14 (LO subordination) " (LOab — Oab) et

Assertion transformation rules

Use the assertion transformation rules AR1 to AR3 from LA and add the following rule.

AR4 (Assertions involving doubly negated categorical expressions, DN) From " (...p...)
infer " (... —~—p...) and vice versa, if p is a categorical expression. (So, for exam-
ple, from " (LAab — LAab) infer "(LAab — L-—-Aab) by DN. By using SE we
may infer that " (L Aab — —~—LAab) given " (LAab — LAab).)

Rejection axioms

Use R1 from system LA and add the following rejection axioms.

R2 (*5.21,p. 58) "(LAbb —(MAab —(Aac —(LAca —(LAbc —LAac)))))
R3 (*5.3,p. 58)  (LAaa —(LAcc —(MAac —(LAca —Aac))))P®
R4 (*5.6,p. 64)  “(LAaa —(LAbb —(LAcc —(LAab —(MAba —

(MAbc —(LAcb —TIac))))))

»

Page references are to McCall’s [1963]. McCall uses asterisks to refer to rejections.

. . . et
Rejection transformation rules

e

Use rejection transformation rules RR1-RR4 as well as the following rule.

RR5 (Rejections involving doubly negated categorical expressions, R-DN) From
F(...p...yinfer (... ——p...) and vice versa, if p is a categorical expression. (So,
for example, from *L——TIab infer *LIab.)

We imitate the discussion of Lukasiewicz’s LA system by proving various “immediate
inferences”. Oppositions, conversions, subalternations and subordinations are listed.

Theorem 4.1. (Apodeictic oppositions, Ap-opp) i) "(=LAab <  MOab);
ii) "(~MOQOab « LAab); iii) "(=LEab <+ MIab); iv) "(=MIab « LEab); v)

13Correction: on p. 273 of [1989] change ~» L Aacin *5.3 to — Aac.
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F(~LIab < MEab); vi) "(~MEab <> LIab); vii) "(~LOab + M Aab); and viii)
F(~M Aab ¢ LOab).

Proof. j .

—_
[USI ]

bt
— S0 N v E N

F(~LAab ¢» ~LAab) (by AO) y
F(=LAab s ~L-—Aab) (from 1 by DN)

. F(~LAab & MOab) (i, from 2 by DDI, given Def M and Def O) ;

F(~MOQab < ~—~LAab) (from 3 by RV)
F(—~-~LAab + LAab) (by AO)
F(~MOab < LAab) (ii, from 4 and 5 by SE)

. "(=LEab <> ~LEab) (by AD)

F(~LEab <> ~L—-~Eab) (from 7 by DN)
F(=LEab <> ~L-—~Iab) (from 8 by DDI, given Def E) St

. "(~LEab <> ~L~Iab) (from 9 by DN) iyl
. F(=LEab +> MIab) (iii, from 10 by DDI, given Def M) do s
. F(=MIab <+ ~—LEab) (from 11 by RV) "

. "(==LEab +» LEab) (by AQ)
14.

F(=MIab ¢ LEab) (iv, from 12 and 13 by SE) . n

Use similar reasoning for the other four asserted biconditionals. hR

Theorem 4.2. (Apodeictic conversions, ~Ap-con) 1) “(LEab -~  LEba);

i) " (LIab — LIba);iii) " (M Eab — M Eba); and iv) " (M Iab — M Iba)

Proof. : WY e-

. FAaa (AD)

R N ROl

F(LIab — LIba) (ii, by All)
F(=LIba — —LIab) (from 1 by RV),

. F(MEba — M Eab) (from 2 by SE, Ap-opp)

v (M Eab — M Eba) (iii, from 3 by US)
F(LEcb — (Aab — LEac)) (A6) .
F(LEca — LEac) (from 5 and 6 by Al, US, MP)
F(LEab — LEba) (i, from 7 by US) sk
F(MIab — MIba) (iv, from 8§ by RV, SE, US) wid a

Theorem 4.3. (Apodeictic subalternations, Ap-sub-a) i) "(LAab | —» LIab);
ii) " (LEab — LOab); iii) " (M Aab — M Iab); and iv) ¥ (MEab —sMOab).

Proof. - ¢

1.
2.
3.

F(LAab — LIba) (by All)
F(LIba — LIab) (by Ap-con, US)
F(LAab — LIab) (i, from 1 and 2 by CW)

e

S
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F(MEab — MOab) (iv, from 3 by RV, SE)

. "(LEbc — (Iab — LOac)) (by AB)
F(LEac — (Iaa = LOac)) (from 5 by US)
F(LEab — LOab) (ii, from 6 by Al, MP, US)
F(M Aab — MIab) (iii, from 7 by RV, SE)

© N oW

Theorem 4.4. (Apodeictic conversions per accidens, Ap-con(pa)) 1) F(LAab —
LIba);ii) " (M Aab — MIba);iii) " (LEab — LOba); and iv) F(MEab — MOba).

Proof.

F(LAab — LIab) (by Ap-sub-a)

F(LIab — LIba) (by Ap-con)

F(LAab — LIba) (i, from 1 and 2 by CW)

" (LEab — LEba) (by Ap-con)

. "(LEba — LOba) (by Ap-sub-a, US)

F(LEab — LOba) (iii, from 4 and 5 by CW)
F(M Aab — MIba) (i, from 6 by RV, SE, US)
F(M Eab — MOba) (iv, from 3 by RV, SE, US)

® N U R W

¥

Theorem 4.5. (Subordinations, Sub-0) i) "(LAab — Aab); ii) " (Aab — M Aab); iii)
F(LEab — Eab); iv) "(Eab — M Eab); v) " (LIab — Iab); vi) F(Iab — MIab); vii)

F(LOab — Oab); and viii) " (Oab = MOab).

Proof.

F(LOab — Oab) (vii, by Al4)

F(Aab — M Aab) (ii, from 1 by RV, SE)
F(Aaa — M Aaa) (from 2 by US)

F Aaa (by Al)

"M Aaa (from 3 and 4 by MP)

F(LEbc — (Iab — LOac)) (by A8)

" (M Aac — (Iab — MIbc)) (from 6 by RV, SE)
F(M Aaa — (Iab — MIba)) (from 7 by US)
. "(Iab = MIba) (from 5 and 8 by MP)
F(MIba — MIab) (by Ap-con, US)

. "(Iab — M1Iab) (vi, from 9 and 10 by CW)
12. "(LEab — Eab) (iii, from 11 by RV, SE, US)

I N I

—_—
- O

Proofs of the other four subordinations are straightforward and are omitted.
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We show that all of the entries marked with ‘V’ on table 4 and all of the entries marked
with a blank on table 5 correspond to asserted wifs in L-X-M. Proofs are streamlined by
assuming immediate inferences established above and any immediate inferences obtain-
able from them by US. So, for example, in the proof of Barbari LXL from Barbara LXL
by CW in theorem LXL the subalternation " (LAac — LIac) is assumed.

Theorem 4.6. All unmarked LXL and XLL cells on table 5 represent asserted wifs.

Proof.

F(LAbc = (Aab — LAac)) (Barbara LXL, by A5)

F(LAbc — (Aab — Llac)) (Barbari LXL, from 1 by CW)

F(Acb — (LAba — LIac)) (Bramantip XLL, from 2 by AI, CW, US)

F(LAbc — (Iab = LIac)) (Darii LXL, by A7)

F(LAbc — (Iba — Llac)) (Datisi LXL, from 4 by AS)

F(LAbc — (Aba — LIac)) (Darapti LXL, from 5 by AS)

F(Ibc — (LAab — Llac)) (Disamis XLL, from 5 by Al, CW, US)
Icb — (LAba — LIac)) (Dimaris XLL, from 4 by AI, CW, US)

. "(Acb — (LAba — LlIac)) (Darapti XLL, from 7 by AS)

. "(LEbc — (Iab — LOac)) (Ferio LXL, by A8)

. "(LEcbh — (Iab — LOac)) (Festino LXL, from 9 by AS)

\°.°°.\’.°\SJ‘PP)!°:—

—_ e
—_ O

-

._.
N

(
LEbc — (Iba — LOac)) (Ferison LXL, from 9 by AS)
(

F(LEbc — (Aba — LOac)) (Felapton LXL, from 11 by AS)

=
h

,_.
P

"(

(

(

(

(

(

F(LEcb — (Iba — LOac)) (Fresison LXL, from 9 by AS) ‘
F(LEch — (Aba — LOac)) (Fesapo LXL, from 13 by AS)

. "(LEcb — (Aab — LEac)) (Cesare LXL, by A6)
(
"
"
(
(L
"
"(

—_——
\xcxgn

)

)

. "(LEbc = (Aab — LEac)) (Celarent LXL, from 15 by AS)

Achb — (LEab = LEac)) (Camestres XLL, from 16 by AI, CW, US)

Acb — (LEba — LEac)) (Camenes XLL, from 17 by AS)
)
)
)
)

[ I
.O.\DS”

F(LEbc — (Aab — LEac)) (Celaront LXL, from 16 by CW)
LEcb — (Aab — LOac
Acb = (LEab — LEac
Acb — (LEba — LEac

NN
N

(Cesaro LXL, from 15 by CW)
(Camestrop XLL, from 18 by CW)
(Camenop XLL, from 19 by CW) |

)
.‘"

Theorem 4.7. All unmarked LLL cells on table 5 represent asserted wifs.

Proof. Use A9, A10 and AS with theorem 4.6. So, for example, Barbara LLL is asserted,
since Barbara LXL is asserted and " (LAab — Aab). Disamis LLL is assserted, since
Disamis XLL is asserted and " (LIab — Iab). [ |

Theorem 4.8. All unmarked MXM, XMM, LMX and MLX cells on table 5 represent
asserted wifs.
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Proof. Use theorem 4.6 and RV. So, for example, the assertion of Darii MXM is generated
from the assertion of Ferison LXL as follows. "(MAbc — (Iab — MIac)) since
F(LEac — (Iab — LObc)) (by RV and SE), since "(LEbc — (Iba — LOac)) (by
US). The assertion of Festino LMX is generated from the assertion of Celarent LXL as
follows. "(LEcb — (MIab — Oac)) since "(LEch — (Aac — LEab)) (by RV and
SE), since "(LEbc — (Aab — LEac)) (by US). The assertion of Camenes MLX is
generated from the assertion of Fresison LXL as follows. " (M Acb — (LEba — Eac)),
since " (Iac = (LEba — LOcb)) (by RV and SE), since " (LEba — (Iac — LOcb))
(by Al), since (LEcb — (Iba — LQOac)) (by US). [ |

4.1 Rejections in L-X-M

To reject the syllogisms not marked with a “V” on table 4, as well as other invalid in-
ferences, McCall adds twelve rejection axioms to the list of rejection axioms for the EA-
system. We shall illustrate how some of these rejection axioms are used to reject some
wifs.

Theorem 4.9. (Rejection of Barbara XLLL) “(Abc —(LAab —LAac)).

Proof. Recall that R2 = "o, where 0 = (LAbb — (M Aab — (Aac — (LAca —
(LAbc — LAac))))). - :

"o (by R2)

F((Aac — (LAca — LAac)) — o) (by AO) e

“(Aac = (LAca — LAac)) (from 1 and 2 by R-D)

F(Aac — (LAca — LAaa)) (by A5 and US) :

"((Aac — (LAca — LAaa)) = ((Aac - (LAaa — LAac)) - (Aac —

(LAca — LAac)))) (by AO) ‘

6. "((Aac = (LAaa — LAac)) — (Aac — (LAca — LAac))) (from 4 and 5 by
MP)

7. '(Aac — (LAaa — LAac)) (from 3 and 6 by R-D) '

8. (Abc - (LAab — LAac)) (from 7 by R-US) o [

Theorem 4.10. Baroco XMM and Bocardo MLX are rejected.

ARl

i

Proof.

(Abc — (LAab — LAac)) (by theorem 4.9) :

(Abe - (MOac — MOab)) (from 1 by theorem R-RV and R-SE)

Y(Ach = (MOab — MOac)) (Baroco XMM, from 2 by R-US)

Y(MOac — (LAab — Obc)) (from 1 by R-RV and R-SE) o

5. Y(MObc — (LAba — Oac)) (Bocardo MLX, from 4 by R-US) . |

Theorem 4.11. Barbara LMX, Baroco LXL and Bocardo XMM are rejected.

palib el

Proof. Recall that R3 = o, where o is (LAaa — (LAcc — (M Aac — (LAca —
Aac)))). -
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Yo (byR3)

F((LAcc — (M Aac — Aac)) — o) (by AS)

Y(LAcc - (M Aac —+ Aac)) (from | and 2 by R-D)

Y(LAbc — (M Aab — Aac)) (Barbara LMX, from 3 by R-US)

Y(LAbc — (Oac — LOab)) (from 4 by R-RV and R-SE) i

YL Acb — (Oab - LOac)) (Baroco LXL, from 5 by R-US)

*(Oac — (M Aab — M Obc)) (from 4 by R-RV)

(Obc — (M Aba — M Oac)) (Bocardo XMM, from 7 by R-US) [ |

© N kR W

Theorem 4.12. Barbari MLX, Bramantip LMX, Felapton XLL and Baroco XLI are

rejected. s

Proof. Recall that R4 = 7o, where o = (LAaa —)(LAbb —(LAcc —LAab —(MAba
—(MAbc —(LAcb ——)Iac))))))

x,,‘“l

4o (byR4)

F((M Abc — (LAab — Iac)) = o) (by AQ)

(M Abc — (LAab — Iac)) (Barbari MLX, from 1 and 2 by R- US)
Y(LAab — (M Abc — Iac)) (from 3 by R-AT) '+

F(Ica — Iac) (by Con) o

Y(LAab — (M Abc — Ica)) (from 4 and 5 by R-CS)

YLAcbh — (M Aba — Iac)) (Bramantip LMX, from 6 by R-US)
(Eac - (LAab — LObc)) (from 3 by R-RV and SE)

Y(Ebc — (LAba — LOac)) (Felapton XLL, from 8 by R-US)
“(Ebc — Obc) (by Sub-a and US)

11. *(Obc — (LAba — LOac)) (Baroco XLL, 9 and 10 by R-AW) [ |

© 0N U AW N

—_
©

Our purpose in this section has been to illustrate how McCall’s rejection apparatus
works. In the next section we discuss this result: whatever is rejected by using McCall’s
rejection apparatus may be shown invalid by using countermodels. McCall’s [1963] con-
tains no discussion of models. Cr iy -

¢ ; : 5
5 SEMANTICS FOR L-X-M

In [Johnson, 1989] a semantics for McCall’s L-X-M is given. Validity is defined by using
models, asserted wifs in L-X-M are shown to be valid (that is, system L-X-M is sound
), and rejected sentences are shown to be invalid. So valid wifs in X-L-M are shown to
be accepted (that is, system L-X-M is complete ) since, as McCall shows, every wif in
L-X-M is either accepted or rejected. The presentation of the semantics here will benefit
from comments about it in Thom’s [1996] and Thomason’s [1993] and [1997].1¢

16For example, 1 borrow Thom’s use of “base conditions” and “superstructural conditions” to present what
he calls a “two-layered semantics”. And I borrow Thomason’s use of “Vjs” to refer to a valuation relative to a
model. -
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The semantics for L-X-M extends the familiar semantics for the assertoric syllogistic
that assigns non-empty sets of objects to terms. To define the semantic notion of validity
we refer to models and valuations relative to models.

Definition 5.1. (model) M is a model iff M = (W,n* g% n~, ¢q~), where W is a non-
empty set and n*, g7, n~, and g~ are functions that map terms into subsets of W and
satisfy the following “base conditions”, where (z) is short for n* (z) Uq™ (z), and z oy
(z overlaps y) is short for z Ny # :

Bl If f and g are any of the functions n*, ¢", ¢~ orn™ and f # g, then, for every term
z, f(z) N g(z) = B; and for every z, n™(z) U ¢™(z) U ¢ (z) U n™(z) =

B2 Forevery x,nt(z) # §

B3  (Forevery x,yand z)if *(2) Cn~(y) and ¥ (z) C T (y) then *(z) C n~(2)

B4 If*(y) Cn'(z)and T(z)o *(y) thenn™(z)o nt(z)

B5 If*(y) Cn(z)and T(z) o T(y) thenn¥(z) o n™(2)

B6 If*(z) Cnt(y)andnt(z)o n~(y) thennt(z) o n=(2)

For an intuitive grasp of the notion of a model think of W as the world, n* (a) as the set
of things in W that are essentially a, ¢ (a) as the set of things in W that are contingently
a and are a, n~ (z) as the set of things in W that are essentially non-a, and ¢~ (a) as the
set of things in W that are contingently not a and are not a.

Definition 5.2. (valuation) A valuation V is a function that assigns ¢ or f, but not both,
to sentences, where: 1) V(—p) = tiff V(p) = f; and ii) V(p — q) = tiff V(=p) = tor
V(q) = f;andiii) V(L-—p) = tiff V(Lp) = t.

Definition 5.3. (valuation relative to model M) Let Vs, a valuation relative to a model
M ,be a valuation that satisfies the following “superstructural conditions™:

S1  (Forevery x and y) Vs (Azy) = tiff ¥(z) C T(y)
S2 Va(lzy) = tiff *(2) o +(y)

S3  Vy(LAzy) = tiff *(z) Cnt(y) o
S4 Vu(LIzy) =tiffnt(z)o nT(y) - s
S5 Vu(L-Azy) =tiffn*(z) o n™(y)

S6  Vu(L-Izy) = tiff T(z) Cn=(y)

Definition 5.4. (valid) Let o be an L-X-M sentence. o is valid (= ¢) iff, for every model
M, every valuation relative to M assigns ¢ to o. o is invalid iff o is not valid.

. In this section we shall construct models that show the invalidity of all of the syllo-
gisms that correspond to marked cells on table 5. Exactly four models suffice to show
the invalidity of the invalid LXL and XLL models marked on these tables. Models con-
structed by interchanging rows in these four models suffice to invalidate the remaining
invalid syllogisms mentioned on the table. .

Table 5 agrees with table 7 on p. 43 of [McCall, 1963] A cell on the former is marked
if and only if it is unmarked on the latter. The marks on McCall’s table indicate the
relevant syllogism is syntactically asserted in L-X-M. McCall’s discussion of L-X-M is

/
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totally syntactic. He gives no formal semantics and thus no formal definition of validity.
But as shown in [1989], the syllogisms that are syntactically asserted in L-X-M are the
syllogisms that are valid in L-X-M and vice versa. The above theorems 4.6 and 4.7 pertain
to the unmarked cells on table 5.

Table 5. Countermodels for L-X-M syllogisms

LLL LXL XLL | MXM XMM LMX MLX

Figure 1 Barbara lac 4bc 4ab 3ab 2bc

Celarent 2ac 1ba 2ab

Darii lac 3ac 2bc

Ferio 2ac 2ab Ibc
Figure 2 Cesare 2ac 1ba 2ab

Camestres 3ac 2ba lab

Festino 2ac 2ab 1bc

Baroco 3ac dac 2ba lab 4ba
Figure 3 Darapti 2cb 2bc

Felapton 2ac 3bc 1bc

Disamis lca 2cb 2bc

Datisi lac 2cb 2bc

Bocardo 4ac 2ac 3cb 4cb 1bc

Ferison 2ac 3cb 1bc
Figure 4 Bramantip Ica 2cb 3ba

Camenes 3ac 2ab lab

Dimaris lca 2cb 3ba

Fresison 2ac 3cb 1bc

Fesapo 2ac 3cb 1bc
Subalterns  Barbari lac 3ab 2bc

Celaront . 2ac 2ab

Cesaro 2ac 2ab

Camestrop 3ac 2ba lab

Camenop 3ac 2ba lab

We begin by constructing a model M, presented by table 6, that shows the invalidity
of Barbara LXL. When giving such tables we use the following conventions: set brackets
are omitted when giving the range of a function, a blank cell indicates the range of the
relevant function is the empty set, for terms z other than those explicitly mentioned on
the table, n*(z) = nt(a), ¢*(z) = ¢*(a), n~(z) = n~(a) and ¢~ (z) = ¢~ (a), and
W =nt(a)Uqgt(a)Un=(a) Ug (a).

So, for example, given table 6 the set of things that are essentially a has only one
member, namely 1. The set of things that are ¢ and are contingently ¢ has two members:
I'and 2. The set of things that are essentially not b has no members. And the set of things
that are not d and are contingently not d has 3 as its only member. W = {1,2,3}.

Table 6 expresses a model. Base conditions B1 and B2, here and below, do not require a
comment. B3, BS and B6 are trivially satisfied since, for every z and y, *(z)Nin = (y) = 0.
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Table 6. Model M;

a 2 3
b| 123
c 1,2 !

Suppose {4) C n¥(z). Then z = b. For all , n* () o n*(b). So B4 is satisfied.

Given model My: 1) Vaq, (Abe) = t since T(b) € F(e); i) Va, (LAab) =
since t(a) C nT(b); and iii) Vaq, (LAac) = f since T(a) € nt(c). So Vay, (Abc —
{(LAaB — LAac)) = f. Sol (Abc — (LAab — LAac)). So Barbara XLL is invalid.
The invalidity of Barbara X1 is marked on table 5 by putting ‘lac’ in the Barabara/XLL
cell.

Aristotle’s informal counterexample for Barbara XLL at 30a28-30 uses terms ‘motion’,
‘animal” and ‘man’. For Aristotle, Barbara XLL, construed as an inferential syllogism,
is invalid given the inference °‘All animals are (accidentally) in motion; all men are nec-
essarily animal; so all men are necessarily in motion’. Aristotle takes the premises to be
true and the conclusion false, making Barbara XL invalid.

By interchanging rows a and b in table 6 we may construct a model M. expressed
by table 7 that shows that Ferio MLX invalid.

Table 7. Model M.

a| 1,23 ‘ .
bil 2 3 :
c|3 1,2

In general, if a table satisfies conditions B1 to B6 so will a table that results from
the interchanging of its rows. For none of these conditions requires a particular ordering
of rows. Note that Vaq,,. (M Eac) = t, Vg, (LIab) = ¢ and Vayq,,, (Obe) = f. So
te (M Eac — (LIab — Oac)). That is, Ferio MLX is invalid.

This is the recipe for constructing a table 7% for model My zy (where = and y are
a, b or ¢) from a table T} for model My (where T has rows a, b and ¢): make row a
in T be row z in 15, make row ¢ in T} be row y in 75, and make row b in T3 be the
third row in T%. Every row in 7% must be an a-row, a b-row or a c-row. So, for example,
consider the Baroco/XMM cell on table 5, which is marked with ‘lab’. Use the recipe to
construct table 8 for model M 45, which invalidates Baroco XMM. (The a-row of table
6 becomes the a-row of table 8; the c-row of 6 becomes the b-row of table 8; and the
b-row of 6 becomes the c-row of table 8.) Since M, (Ach) = t, Mlab(MOab) = tand
Miap(MOac) = f, 1~ (Ach = (M Oab — MOac)). .
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Table 8. Model Mg

W

Model M expressed by table 9 may be used to show that Celarent XL is invalid.

Table 9. Model M,

|nt ¢t n™ ¢
aj|l 2 3
bl 2 3
c |2 3 1

Table 9 expresses a model. For all z and y, "z & n~ (y). So conditions B3 and B5 are
trivially satisfied. For all z and y if ¥(z) o *(y) thenn™(z) o T (y). So B4 is satisfied.
For all z and y, if *(z) C n*(y) then n™ (y) € n~(x). So B6 is satisfied.

Celarent XLL is invalid since: i) Vi, (Ebc) = t since T(b) does not overlap * (¢); ii)
Vg, (LAab) = t since T(a) C n*(b); and iii) Vi, (LEac) = f since T(a) € n™(¢).
So Vm, (Ebc = (LAab — LEac)) = f. So |k (Ebc — (LAab — LEac)).

Model M3 expressed by table 10 may be used to show that Camestres LXL. is invalid.

Table 10. Model M3z

+ — —

|nt ¢t n ¢
all 2 3
b3 2 1
cl3 2 1

Table 10 expresses a model. B3 and BS are trivially satisfied since, for every x and v,
*(z) € n~(y). For B4 note that if ¥(z) o *(y) thenn*(z) o T (y). For B6 note that if
+(z) Cn™(y) thenn~(y) C n™ ().

Camestres LXL is invalid since: 1) Vs, (L Acb) = tsince T (c) C nt (b); ii) Vi, (Eab) =
tsince T (a)N* (b) = 0; and iii) Vi, (LEac) = f since *(a) € n™(c). So Var,(LAch —
(Eab — LEac) = f. So l= (LAcb — (Eab — LEac)).

For Aristotle, Camestres LXL is invalid since Celarent XLL is invalid. A “semantic

rule” that underwrites this reduction of an invalidity to an invalidity may be stated as
follows.

e
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R¥.DR3 i) From £ (p = (¢ — 7)) and = (p — s) infer [£ (s = (g — 7)); and ii)
from [~ (p = (¢ = 1)) and |= (¢ = s) infer & (p = (s = 1)).

Proof. For i) Suppose a) = (p — (g = r)) and b) E (p — s). By a) there is a
model M such that Vis(p) = ¢, Vas(q) = t and Vu(r) = f. By b) Viu(s) = t. So
¥ (s = (g = r)). Use similar reasoning for ii). . [ ]

R¥-AW is the semantic counterpart of the syntactic rule R-DR3, which is called re-
jection by antecedent weakening (R-AW). Given the rejection of Celarent XLL (Ebc —
(LAab — LlIac)) and the conversion principle " (Ebc — Ecb), Camestres LXL is re-
jected by R-AW. Likewise, given the invalidity of Celarent XLL and the semantic conver-
sion principle = (Ebc — Ecb), Camestres LXL is invalid by RF-AW.

Semantic counterparts of other syntactic rejection rules may be put to use to establish
invalidities. We illustrate this point by considering the semantic counterpart of R-RV.

R¥-RV i) From [ (p — q) infer [£ (~g — —p); i) from }& (p — (g — 7)) infer }£
(p — (= — —q)); and iii) from [~ (p — (g — 7)) infer £ (- — (p = —q)).

Proof. For i) suppose & (p — q). So there is a model M such that Var(p) = t and
Vm(q) = f. So Var(—g) = tand Vpyy(—p) = f. So [ (—¢ — -p). Use similar
reasoning for 1i) and iii). ]

By R*-RV, since £ (Ebe — (LAab — LEac)) (Celarent XLL is invalid), |~
(Fbe — (wLEac — —~LAab)). By using semantic counterparts of other syntactic prin-
ciples stated above it is easy to conclude that Festino XMM is invalid.

To show that Baroco XLL is invalid we use model My, presented on table 11.17

Table 11. Model M,

|nt gt n™ ¢
al|l2 34

b|13 4 2

c |1 4 3 2

Table 11 expresses a model. Base conditions B3 and BS are trivially satisfied since, for
every z and y, 7 (z) € n~(y). B4 and B6 are trivially satisfied since, for every x and y,
n*(z) Z n*(y).

Given model My: i) Vg, (Acb) = t since T(c) C T(b); ii) Vaq,(LOab) = ¢
since n*{a) o n~b; and iil) Vaq, (LOac) = f since nt(a) does not overlap n=(c).
So Va, ((Acb = (LOab — LOac))) = f. So £ (Acb — (LOab — LOac)). Fol-
lowing the pattern indicated above we record on table 5 the invalidity of Baroco XLL by

Y7 Thomason [1993, p. 127] uses this table to invalidate Baroco XLL and Bocardo LXL though his definition
of “validity” is not identical to that which we are currently discussing. Thomason models are discussed below.
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putting ‘4ac’ in the Baroco/XLL cell, where ‘4’ refers to model M4 and ‘ac’ indicates
that ‘a’ and ‘c’ are taken as minor and major terms, respectively.

Aristotle’s counterexample for Baroco XLL is controversial. According to Thom on p.
148 of [1991] Aristotle used terms ‘animal’, ‘man’ and ‘white’, generating the purported
counterexample: ‘All men are animals; some whites are necessarily not animals; so some
whites are necessarily not men.” Thom says:

The problem with this counter-example is not (as van Rijen supposes [1989])
that the major premise is necessarily true. It is that, if the minor is taken to
be true then the conclusion will be true also.

In agreement with Thom, Aristotle did not provide a good counterexample for Baroco
XLL. A better informal counterexample is found in [Johnson, 1993, p. 179]: ‘All things
that are chewing are bears (Acb); some animals (dogs, say) are necessarily not bears
(LOab); so some animals are necessarily not chewing (LOac)’. We do not follow Thom
in developing formal systems that take Baroco XLL to be invalid.

Though models M; to My and variants of them constructed by interchanging rows
in them suffice to give countermodels for the invalid syllogisms marked on table 5, other
models are needed to invalidate all of McCall’s rejection axioms and thus all of the invalid
wifs. The model used in [1989] to invalidate McCall’s (LAbb —(LAff —(Aad —(LAda
—(MAae —(LAcb —(LAbd =(LAce —(Aec —(LAfc =(MAdf —+MAac)))))))))) (*5.41
on p. 59) has four members. It is presented on table 12.

Table 12. Model for *5.41

nt gt nT ¢
all234
b | 34 1,2
ctl4 3 1
d|34 1,2
e | 34 1,2
f|4 2 1,3

An implication of [Johnson, 1989] is that every invalid L-X-M wif of form (p; —
(p2 = ... = pn)...), where each p; (for 1 < i < n)is a simple wiff or the negation of
a simple wff, may be shown invalid by using a model (W, ...) in which W has no more
than 6 members. 1

In the next section we shall examine valuable attempts by Thomason to improve on the
semantics discussed in this section.

18{Johnson, 1991 shows that W does not require more than 3 members if all simple sentences are assertoric
and all terms are “chained”.
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5.1 Thomason models

In [Thomason, 1993] three notions of models are defined that enable Thomason to obtain
soundness and completeness results for McCall’s L-X-M calculus. In contrast to the
soundness and completeness proofs given in [Johnson, 1989] no use is made of rejection
axioms and rejection rules. One of these models comes close to the notion of a model
defined above. We call it a “T3-model” (his “models”) and define it as follows.

Definition 5.5. (T3-model) M is a T3-model iff M = (W,n*,q",n™,q™), where W is
a non-empty set and nt, g7, n™, and ¢~ are functions that map terms into subsets of W
and satisfy the following “base conditions”, where *(z) is short for n* (z) U ¢*(z):

B1 If f and g are any of the functions nt, ¢, ¢~ orn™ and f # g, then, for every term
z, f(z) Ng(z) = 0; and forevery z, nt(z) U ¢t (z) U ¢ () Un~(z) =W

B2 Foreveryx,nt(z) £ 0

BT3 (Forevery x and y) if T(z) o *(y) then *(z) o n*(y)

BT4 If t(z) C n=(y) then™(y) C n=(z)

BT5 If T(z) C n™(y) thenn™ (y) C n™ ()

To define “valuation relative to a model” and “validity” Thomason uses the same su-
perstructural conditions as used above.

Thomason, on p. 133 of [1997], says that in his [1993] he “tried to find simpler, and
apparently weaker, requirements for models” than those given in [Johnson, 1989]. In the
motivating section of [Thomason, 1993] he says “Johnson ...provided a semantics that
has the right validities, but the latter is in some sense contrived.” No doubt conditions
BT3, BT4 and BTS5 are more easily understood than B3, B4, BS and B6 but Thomason is
not correct in saying that the former, taken collectively, are weaker than the latter, taken
collectively. We use the following theorem to show the relationship between T3-models
and “J-models”, the models defined above that satisfy base conditions B1 to B6.

Theorem 5.6. i) Every T3-model is a J-model, but ii) there are J-models that are not
T3-models. ;

Proof. For i) suppose M is a T3-model. First, suppose ¥ (2) C n~(y) and *(z) C *(y).
Then, by BT4, *(y) C n~(z) . Then *(z) C n~(z). Then M satisfies B3. Next,
suppose *(y) C n*(z) and *(z) o *(y). Then *(y)o *(z) and, by BT3, *(y) o n* (z).
Then nt(z) o n*(z). Then M satisfies B4. Next, suppose *(y) C n~(z) and *(z) o
*(y). Then, by BT3, n*(z)o n*(z). Then M satisfies BS. Next, suppose T (z) C n*(y)
and n™(z) o n~(y). Then, by BT5, n~(y) € n~(z). Then n*(z) o n~(z). Then M
satisfies B6. :

For ii) note that M4, specified in table 11, is a J-model but not a T3-model since condition
BT3 is not satisfied. Note that *(a) o +(b) but *(a) does not overlap n* (b). u

Though both T3-models and J-models, with the superstructural conditions defined
above, will reveal the invalidity of any invalid syllogism with any finite number of an-
tecedents (or premises), it is not clear that BT3 and BTS are Aristotelian principles. Cer-
tainly BT4 is Aristotelian, given 25a27-28. And J-models may be simplified by replacing
B3 with BT4, given the following theorem. -
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Theorem 5.7. i) B3 is derivable from BT4; and ii) BT4 is derivable from B3.

Proof. For i) suppose that a) if *(z) € n~(y) then *(y) C n™(z) and that b) *(z) C
n”(y) and *(z) C *(y). Thenn't(y) C n~(2). Then *(z) C n™(z).

For 1i) suppose that c) if T(2) C n~(y) and T(z) € *(y) then *(z) C n(z) and d)
(2) € n7(y)- Since +(y) T (1), " (v) S n™(2). =

B4 (Darii LX1.), B5 (Ferio LXL) and B6 (Baroco LLL) are Aristotelian given 30a37-b2
and 30a6-14 of the Prior Analytics .

5.2 Variants of the L-X-M system

Paul Thom in [1991, p. 137] points out that condition B2, used in the definitions of J-
models and T3-models to guarantee that McCall’s axiom Llaa is valid, is unAristotelian.
He says that it is unAristotelian to think that there are walkers that are essentially walkers
and whites that are essentially white. Johnson’s [1993] and [1995] provide variants of
McCall’s L-X-M that are sound and complete systems, where condition B2 is omitted.
Both systems have 100% Aristotelicity. The systems deviate from McCall’s in that lines
in deductions need not be axioms or lines that are ultimately derived from axioms by
rules of inference. The systems are “natural deduction systems” rather than “axiomatic
systems”. Proofs of completeness assume that the inferences under discussion satisfy
what Smiley calls the “chain condition” in [Smiley, 1994, p. 27]. And the systems attempt
to accommodate Aristotle’s proofs by ecthesis .1° In the remainder of this section we
illustrate proofs by ecthesis and then discuss the chain condition in the next section.

In addition to sentences such as Abc and Labe discussed above we count m € a (m is
an a), m €, a (m is necessarily an a), m &,, a (m is necessarily not an a), etc. The latter
are singular sentences. In contrast to Thom’s view, to present proofs by ecthesis singular
sentences are required.? Consider this proof of Darapti XXX taken from Smith’s [1989,
p. 9] with my additions in square brackets:

When they [terms] are universal, then when both P [that is, c] and R [that is,
a] belong to every S [that is, b], it results of necessity that P will belong to
some R. ... Itis ... possible to carry out the demonstration through .. . the
setting out [that is, by ecthesis ]. For if both terms belong to every S, then if
some one of the S’s is chosen (for instance N [that is, m], then both P and R
will belong to this; consequently, P will belong to some R. (28a18-26)

Aristotle’s proof by ecthesis may be formalized as follows:

1. Abc (Premise)
2. Aba (Premise)

19The systems proposed by [Lukasiewicz, 1957], [Corcoran, 1972] and [Smiley, 1973] do not attempt to
accommodate Aristotle’s proofs by ecthesis . According to Thom’s {Thom, 19911 account of ecthesis both
Baroco XLL and Bocardo LXL are valid, though Aristotle regarded them as invalid.

20For an alternative method of working with singular sentences in the context of syllogistic reasoning see
[Johnson, 1999a).
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3. m € b (By ecthesis from 1. Since all b are ¢ there must be a b that may be referred
to as m.)

4. m € ¢ (From 1 and 3. Since all b are ¢ and m is a b it follows that m is a ¢.)

. m € a (From 2 and 3 by the reasoning for line 4.)

6. Iac (From 4 and 5 by “Existential Generalization” — if a particular object m. is both
an g and a ¢ then something is both an @ and a ¢.)

|

Aristotle proves that Baroco LLLL is valid in the following passage, taken from Smith’s
(1989, p. 131

... it is necessary for us to set out that part [m] to which each term [b and
c] does not belong and produce the deduction about this [m]. For it will be
necessary in application to each of these; and if it is necessary of what is set ;
out, then it will be necessary of some part [a] of the former term (for what is
set out is just a certain “that”. (30a9-15)

His proof by ecthesis may be formalized as follows:

. LAcb (Premise. Whatever is ¢ is necessarily b.) (S
. LOab (Premise. There is something that is necessarily a but necessarily notb.)
me€Ena U

H LW -

. m &, b(Lines 3 and 4 come from line 2 by ecthesis . This is a use of “Existential
Instantiation”.)
5. m €&, c(From 1 and 4. If whatever is ¢ is necessarily b and m is necessarily not in
¢ then m is necessarily not in c.)
6. LOac (From 3 and 5 by Existential Generalization.)

B

6 THE CHAIN CONDITION, RELEVANCE LOGIC AND THE AP SYSTEM

The following remarks by Smiley from two of his papers show that Aristotle held views
» 21

endorsed by contemporary “relevance logicians”.
By building onto the propositional calculus Lukasiewicz in effect
equates syllogistic implication with strict implication and thereby commits
himself to embracing the novel moods corresponding to such theorems as

211t is very surprising that Aristotle is scarcely mentioned in [Anderson and Belnap, 1975 and 1992}, which
provides authoritative discussions of relevance logic. See McCall’s discussion of “connexive implication” [1975
and 1992, pp. 434-452] for the one reference to Aristotle. In [Johnson, 1994] a syllogistic logic is developed that
is a “connexive logic”. Pleasing relevance logicians, the logic satisfies both Aristotle’s thesis (If y is the logical
consequence of a non-empty set of premises, X, then X is semantically consistent) and Boethius’s Thesis (If z
is the logical consequence of a set of premises, X Uy, then z is not the logical consequence of a set of premises
X Uy, where ¢’ contradicts y). Ironically, neither Aristotle’s nor Boethius’s thesis holds for what is now
known as the “classical propositional calculus”. In [Johnson, 1994] a theorem is proven that has as a corollary
this interesting result due to C. A. Meredith in [1953]: The number of valid n-premised assertoric syllogisms
(for n. > 2) is 3n2 4 5n 4 2. There is no question that in Chapter 25 of Book I of the Prior Analytics Aristotle
was looking for such a general result. inen the chain condition such counts are possible. .
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((Aab A Oab) — Icd) or ((Aab A Acd) — Aee). On the other hand Aris-
totle’s own omission of these syllogisms of strict implication, as they may
be called can hardly be written off as an oversight. For they violate his dic-
tum that a syllogism relating this to that proceeds from premises which relate
this to that’ (41a6). This dictum is part of a principle which is absolutely
fundamental to his syllogistic, namely the principle that the premises of a
syllogism must form a chain of predications linking the terms of the conclu-
sion. Thus his doctrine of the figures, which provides the framework for his
detailed investigation of syllogistic, is founded on this principle (40b30 ff.)
Not less important is that the chain principle is essential to the success of
his attempt at a completeness proof for the syllogistic. By this I mean his
attempt to show that every valid syllogistic inference, regardless of the num-
ber of premises, can be carried out by means of a succession of two-premise
syllogisms. [Smiley, 1973, pp. 139-140]

Probably the easiest way to formulate this ‘chain condition’ is to use the
notation AB to denote any of the forms a, e, i, o regardless whether the
subject is A or B. Then the condition is that a valid argument must be of the
form ‘AC,CD,DE, EF, ... GH, HB; therefore AB’. The chain condition
dramatically alters the character of the completeness problem (for a start,
it excludes the possibility of anything following from an infinite number of
premises) and it permits simple strategies for the proof that would otherwise
be inconceivable. It is therefore not surprising that Aristotle’s proof should
fail to fit the same picture as, for example, Corcoran’s own completeness
proof for syllogistic logic without the chain condition [Corcoran, 1972].%2
[Smiley, 1994, p. 271

Aristotle’s case for the chain condition is redolent of relevance — the need
for some overt connection of meaning between premises and conclusion as a
prerequisite for deduction. [Smiley, 1994, p. 30]

Since McCall’s presentation of the L-X-M calculus imitates Lukasiewicz’s, it also em-
braces “novel moods” of the sort mentioned by Smiley. (LAab —(- LAab —Icd)) is
asserted in L-X-M even though neither ¢ nor d occurs in the antecedent (and thus the
consequent is irrelevant to the antecedents). This follows from the completeness result,
mentioned above, for L-X-M. Note that for every model M either Vi (LAab) = f or
Vim-Laas = f- So = (LAab — (-=LAab — Ide)). And (LEab — (LEcd —
(LEef — Igg))) is asserted in L-X-M. For in every model M, Va(Igg) = t. So
= (LEab — (LEcd — (LEef — Igg))). So, by completeness, "(LEab —(LEcd
—(LEef —Igg))) even though g does not occur in any of the antecedents.

2 Corcoran gives a Henkin-style completeness proof for the assertoric syllogistic. His system validates infer-
ences such as ‘Eab; so Acc’, inferences eschewed by relevance logicians. This inference is valid for Corcoran
since the conclusion is logically true, even though the premise is irrelevant to the conclusion.
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By using the chain condition in [1973], Smiley formulates an elegant decision proce-
dure for the assertoric syllogistic. In [Johnson, 1994] a system is developed for Aristotle’s
apodeictic syllogisms, call it the “AP system”, that uses the chain condition. A decision
procedure is given for it that yields Smiley’s decision procedure as a corollary.?> Both
decision procedures are given below.

Definition 6.1. (chain condition) Let Pr; refer to “prefixes” of assertoric or apodeictic
sentences: A, E, 1,0, LA, LE, LI, LO, MA, ME, MI and MO. A chain is a set of
sentences whose members can be arranged as a sequence (Pri[ziza),
Pryfzozsl,. .., Prpzazi]), whete Prifz;x;] is either Prix;z; or Priz;z; and x; # T
ifi # j.

So, for example, {LAab, M Acb, LIcd, Ead} and {Oba, LEbc, LEdc, LAda} are
chains. But neither {LAaa} nor {LAab, Aba, M Aac, Aca} is a chain.

Definition 6.2. (abbreviations for subsets of chains) X /L Azy refers to Azy or LAzy.
X/LAz — y refers to 0 if ¢ = y; otherwise, it refers to {X/LAz 22, X/LAzz23, ...,
X/LAz,—12,}, a subset of a chain, where = 21,y = 2z, andn > 1. LAz — y refers
to § if z = y; otherwise it refers to X/LAz — z, LAzy, a subset of a chain. X/LEzy
refers to Exy or LEzy. X/ LIzy refers to [zy or LIzy. And X/LOxy refers to Ozy or
LOzxy.

So, for example, LAab, LAbc, Acd has form X/LAa — d, but does not have form
LAa —d. LAab, LAbc, Acd, LAd — e has form X/LAa — e and form LAa — e.

Definition 6.3. (contradictory of, cd) Let cd(Azy) = Ozy where ‘cd’ may be read as
‘the contradictory of”. Let cd(Izy) = Exy, cd(LAzy) = MOzy, cd(LEzy) = MIzy,
cd(LIzy) = M Ezy, and cd(LOzy) = M Azy. And let ed(cd(x)) = z. So, for exam-
ple, cd(Ezy) = Izy.

Theorem 6.4. (Johnson [1994], decision procedure for “AP-validity””) Suppose “valid 4 p”
(apodeictic syllogistic validity) is defined as in [1994]. Consider an inference in the “AP
system” from premises P1, P, ..., P, to conclusion C'. This inference is valid4 p if and
only if { P1, Pa, ..., Pn,cd(C)} is a chain that has one of the following eleven forms:

1. X/LAx-y, X/LOxy
2. LAx-z, MAzu, LAu-y, LOxy
3. X/LAx-z, LAzy, MOxy
4. X/LAz-x, X/LAz-y, X/LExy
5. X/LAz-x, X/LAz-u, MAuv, X/LAv-y, LExy (or LEyx)
6. X/LAz-x, X/LAz-u, LAuy, MExy (or MEyx)
7. X/LAz-x, X/LAu-y, X/Llzu, X/LExy (or X/LEyx)
8. X/LAz-x, X/LAu-v, MAvw, X/LAw-y, X/LIzu (or X/LIuz), LExy (or LEyx)
9. X/LAz-x, X/LAu-y, Mlzu, LExy (or LEyx)
10. LIxy, MExy (or MEyx)

23See [Johnson, 1994] and {[Johnson, 1997] for other systems that yield Smiley’s decision procedure as a
special case of a more general decision procedure.



Aristotle’s Modal Syllogisms 283

11. X/LAz-x, X/LAu-v, LAvy, X/LIzu (or X/Lluz), MExy (or MEyx)

So, for example, {LAab, LAbc, Acd, cd(Aad)} has form 1. So ‘LAab, LAbc, Acd; so
Aad’ is valid. {LAab, LAbc, Acd, cd(M Aad)} has form 1. So ‘LAab, LAbe, Acd; so
M Aad’ is valid. {Aab, cd(Obc), Acd, Oad} has form 1. So “Aab, Acd, Oad; so Obc’ is
valid. {M Aac, LAcb, cd(M Aab)} has form 2. So ‘M Aac, LAch; so M Aab’ (Barbara
LMM) is valid. {LAcb, Iac,cd(LIab)} has form 11. So ‘LAcb, Iac; so LIab’ (Darii
LXL) is valid.

Notice that since ‘E’ occurs at most once in any of the forms, it follows that no valid
syllogism, regardless of the number of premises, is such that ‘E’ occurs in two or more of
its premises. A similar comment applies to occurrences of ‘M’.

The following result is a corollary of theorem 6.4.

Theorem 6.5. (Smiley [1973], decision procedure for “AS-validity™) Suppose “valid 45”
(assertoric syllogistic validity) is defined as in [1973]. Consider an inference in the asser-
toric syllogistic from premises P, Py, ..., P, to conclusion C. This inference is valid s ¢
ifand only if { Py, Py, ..., Pn,cd(C)} is a chain that has one of the following three forms:

1. Ax-y, Oxy (restriction of form 1 of theorem 6.4)
2. Az-x, Az-y, Exy (restriction of form 4 of theorem 6.4)
3. XAz-x, Au-y, Izu, Exy (or Eyx) (restriction of form 7 of theorem 6.4)

So, for example, given form 2 of the corollary both ‘Aca, Ach; so Tab’ (Darapti) and
‘Aca, Eab; so Ocb’ (Celaront) are valid.

On table 13 a syllogism is marked as valid by referring by number to the form listed in
theorem 6.4 in virtue of which it is valid. So, for example, the first occurrence of ‘1’ on
the table indicates that Barbara XXX, XXM, XLX, XIL.M, LXX, LXM, LLX and LLM are
valid in virtue of their relationship to { X /LAx —y, X/LOzy}. The 333 valid syllogisms
marked on the table exactly match the 333 syllogisms that McCall accepts in his L-X-M
system. See p. 46 of [McCall, 1963].

7 CONTINGENT SYLLOGISMS

23y

A. N. Prior [1962, p. 188] gives a simple account of “the usual meaning of ‘contingent
in the following passage:

In the De Interpretatione Aristotle remarks that the word ‘possible” is am-
biguous; we should sometimes say that ‘It is possible that p’ follows from
‘It is necessary that p’, but sometimes that it is inconsistent with it. In the
former sense ‘possible’ means simply ‘not impossible’; in the latter sense,
‘neither impossible nor necessary’. It is for ‘possible’ in this second sense
that the word ‘contingent’ is generally used. That is, ‘It is contingent that
p’ means ‘Both p and not-p are possible’, KMpMNp [or (Mp A M-p)].
Contingency in this sense stands between necessity and impossibility, but in
quite a different way from that in which the simply factual stands between the
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Table 13. Validap 2-premised syllogisms

Xt L L X L M M X L M
XL L X L M L X M M L
XM L L L M M M M X X "
Barbara 1 3 3 2 2
Celarent 7 9 9 8 11 g8 11
Darii 7 11 11 9 8 8 9
Ferio 7 8 8 9 11 11 9
Cesare 7 9 9 8 11 8 11
Camestres 7 .9 -9 11 8 11 8
Festino 7 R} 8 . 9 11 11
Baroco 1 2 3 2 3
Darapti 4 6 6 6 5 5 5 5
Felapton 4 5 5 5 6 6 5
Disamis 7 11 - 11 8 9 9 8 '
Datisi 7 11 11 9 8 8 9
Bocardo 1 2 2 3 3
Ferison 7 8 8 9 11 11 9
Bramantip 4 6 6 5 5 5 5
Camenes 7 9 9 1 8 11 8
Dimaris 7 11 11 8 9 9 8
Fresison 7 8 8 . 9 11 11 9
Fesapo 4 5 5 5 6 6 5
Barbari 4 6 6 5 5 5 5
Celaront 4 5 5 5 6 6 5 6
Cesaro 4 5 5 5 6 6 5 6
Camestrop 4 5 5 6 5 6 5
Camenop 4 5 5 6 5 6 5
Total 8x24 24 15 8 24 24 16 7 15 8 =333

necessary and the possible. It is not that necessity implies contingency, and
contingency impossibility; rather we have three mutually exclusive alterna-
tives which divide the field between them — either a proposition is necessary,
or it is neither-necessary-nor-impossible (i.e. contingent), or it is impossible

On p. 190 of [1962] Prior introduces the symbol ‘Q’ and reads ‘Qp’ as ‘It is contingent
that p’. McCall adopts Prior’s use of ‘Q’ to refer to Aristotle’s contingency operator and
Thom [1994, p. 911 refers to [McCall, 1963] to support his use of ‘Q’ in his discussions
of contingency. In the discussion below, we shall also use ‘Q’.%*

24 The following symbols are also found in the literature that formalizes contingency: ‘Bl [Becker-Freyseng,
1933), "7 [Lukasiewicz, 1957] and ‘P()’ (Smith, 1989]. Smith’s P(Aab) is McCall’s QAab, and Smith’s PAab
is McCall’s MAab. Lukasiewicz used ‘7 instead of ‘Q’ since earlier in his book he used ‘Q’ for ‘is equivalent
to’. McCall’s Barbara LQM is Ross’s {1949] A™ A AP. Montgomery and Routley use V for contingency in
[1966] and [1968]. And Cresswell uses V for contingency and A for non-contingency in [1988].
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Thom makes the following remarks about contingency at the beginning of his article

(p-9D):

~ Aristotle’s contingency syllogistic deals with the logic of derivations involv-
ing propositions that contain an expressed mode of contingency. The contin-
gent is defined at I. 13, 3218-20, as that which is not necessary, but which
being supposed does not result in anything impossible, i.e. as two-sided pos-

- sibility.

Fitting Prior’s remarks, the two sides of contingency (Q) are necessity and impossibil-
ity. The one side of possibility (M) is impossibility.
McCall in [1963] diminishes and extends the L-X-M calculus, formulating the Q-L-X-

M calculus. We give the basis for it.

Primitive symbols

Use the primitive symbols for L-X-M together with

monadic operator @

Formation rules

Use the formation rules for L-X-M, amending FR2' as follows.

FR2' If p is a categorical expression then —p is a categorical expression and Lp and Qp

. are wffs.

Assertion axioms

Use A0-A4 from system LA and A5-Al14 from system L-X-M. So A2 is TAA. Add the

following axioms.

A1S5 (Barbara QQQ)

A16 (Darii QQQ)

Al7 (QXQ-AAE, figure 1)

A18 (Darii QXQ)

A19 (Barbara XQM)

A20 (Celarent XQM)

A21 (Ferio XQM)

A22 (complementary conversion, QE-QA)
A23 (complementary conversion, QI-QO)
A24 (complementary conversion, QO-QI)
A25 (QI conversion)

A26 (QE-ME subordination)

A27 (QI-MI subordination)

F(QAbec —(QAab =QAac))
F(QADbc —(Qlab —Qlac))
F(QAbc —(Aab —+QEac))
F(QAbc —(Iab —Qlac))
F(Abc —(QAab -MAac))
F(Ebc —(QAab —MEac))
F(Ebc —(Qlab -MOac))
F(QEab —QAab)

F(QIab —QOab)

F(QOab —Qlab)

F(Qlab —QlIba)

F(QEab —MEab)

F(Qlab —Mlab)
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A28 (QO-MO subordination) - F(QOab —sMOab) P

Assertion transformation rules
Use the assertion tranformation rules for L-X-M.

On p. 76 of [1963] McCall gives the following reason for changing A2 from Llaa to
Iaa.

If we retain the axiom Llaa, we may, by means of the substitution
CKQAacLlIaalac [((QAac A LIaa) — Iac))] of Darii QLX (proved be-

low), derive the implication CQAaclac [(QAac — Iac)], which is un-
Aristotelian. -

We shall present this reasoning systematically.

Proof.

F(Ebc — (QAab — M Eac)) (by A20)

F(QAab — (Ebc — M Eac)) (from 1 by Al)
F(QAab — (LIac — Ibc)) (from 2 by RV and SE)
F(QAab — (LIaa — Iba)) (from 2 by US)

. " LIaa (by A2 for L-X-M)

. "(QAab — Iba) (from 4 and 5 by Al and MP)

. "(QAab — Iab) (from 6 by CW, given Con)

. "(QAac — Iac) (from 7 by US) ]

LRI SN SRS

McCall devised his system Q-L-X-M so that it has this feature: (QEab — QEba)
is not accepted. He wishes to reflect Aristotle’s view that universally negative contin-
gent propositions are not convertible.?> McCall puts Aristotle’s argument for the non-
convertibility of such propositions as follows:

...1n 36b35-37a3, Aristotle gives what is in essence the following argument.
We know that Q Aab implies Q Eab, and that ) Eba implies ) Aba [by com-
plementary conversion}. Therefore if QEab implied QEba, QQAab would
imply Q Aba, which it does not. Hence QQ Eab is not convertible.

But, unfortunately, McCall’s Q-L-X-M system is too strong. It forces us, for example,
to accept (QAbc — (LAab — LAde)), which is clearly unAristotelian. It does not
satisfy the chain condition mentioned above. After showing this, we shall lay out a system
that is semantically consistent and maximizes Aristotelicity.

50n p. 198 of {1957] Lukasiewicz calls Aristotle’s view a ‘grave mistake’. Lukasiewicz says ‘He [Aris-
totle] does not draw the right consequences from his definition of contingency, and denies the convertibil-
ity of universally-negative contingent propositions, though it is obviously admissible” But, following Mc-
Call, one can attempt to formulate Aristotle’s contingency syllogistic without, in effect, defining QEab as
(=LEab A —~L—FEab).
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7.1 Overlooked acceptances in the Q-L-X-M system

McCall claims that Barbara QLX is not a thesis in his Q-L-X-M system. See table 13 on
p. 92 of [1963]. But this result is a corollary of the following theorem.

Theorem 7.1. 7 (Q Abc —+( LAab —z)), where z is any wif.
Proof.

F(Eca — (QAbc — M Eba)) (by A20 and US)

. F(LAab — LIba) (by Ap-sub-a)

F(M Eba — MOab) (from 2 by RV and SE)

F(Eca — (QAbc — MOab)) (from 1 and 3 by CW)
F(QAbc — (LAab — Ica)) (from 4 by AL RV and SE)
F(LAab — (Ica — LIcb)) (A7 and US)

F((QAbc — (LAab — Ica)) — ((LAab — (Ica — Llcb)) — (QAbc —
(LAab — LIcb)))) (by AO)

F(QAbc — (LAab — LIcb)) (from 5, 6 and 7 by MP)
9. F(QAbc — QEbc) (by CC and US)

N RN

o]

10. ¥ (QEbc — M Ebc) (by A26 and US)

11. F(M Ebc — M Ecb) (by Ap-con and US)

12. F(QAbc — M Ecb) (from 9, 10 and 11 by CW)
13. " (QAbc — —~LIcb) (from 12 by SE)

14. F((QAbc — (LAab — LIcb)) = ((QAbc — -LIcb) — (QAbc — (LAab —
z)))) (by AO)
15. " (QAbc —(LAab —2)) (from 8, 13, and 14 by MP) [ |

The following theorem provides additional evidence that McCall’s Q-L-X-M system is
too strong to be Aristotelian.

Theorem 7.2. " (LAbc —(QAab —»z)), where z is any sentence.
Proof.

F(Eac — (QIba — MObc)) (by A21 and US) v
F(QAab — QIba) (by A18, US, A2, MP)
" (Eac — (QAab — MObe)) (from 1 and 2 by AS)
F(LAbc — (QAab — Iac)) (from 3 by RV and SE)
F(Iac — Ica) (by Con)
F(LAbc — (QAab — Ica)) (from 4 and 5 by CW)
"(QAab — (Ica — QIch)) (by Al8)

F((LAbe — (QAab — Ica)) = ((QAab — (Ica — QIch)) — (LAbc —
(QAab — QlIcb)))) (by AO)
+ 9. F(LAbe — (QAab — QIch)) (from 6,7 and 8 by MP)
. 10. "(QIcb — QIbc) (by A25 and US)

11. 7(QIbc — QObc) (by A23 and US) T

.oo\losﬂ.b.w.wr—
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12. "(QObc — MObc) (by A28 and US)

13. F(LAbec — (QAab — MObc)) (from 9, 10, 11 and 12 by MP)

14. "(LAbc - (QAab — =L Abc)) (from 13 by SE)

15. F((LAbe — (QAab — ~LAbc)) — (LAbc — (QAab — z))) (by AO)

16. "(LAbc —(QAab —z)) (from 14 and 15 by MP) N

According to McCall’s table 13 on p. 92 of [McCall, 1963], sentences representing
Barbara QLX, Barbara LQX, Barbara LQQ, Baroco QXM and Bocardo XQM are not
accepted in the Q-L-X-M system, though they correspond to inferences that Aristotle
considered to be valid. But it is an immediate consequence of theorems 7.1 and 7.2 that
the first three sentences are accepted. That the last two are accepted may be seen as
follows:

F(LAbe — (QAab — Aac)) (by theorem 7.2 )

F(Oac - (QAab — MObc)) (from 1 by RV and SE)

F(Obc — (QAba — M Oac)) (Bocardo XQM, from 2 by US)
F(QAbc — (LAab — Aac)) (by theorem 7.1)

F(QAbc — (Oac — M QOab)) (from 4 by RV and SE)
F(QAch — (Oab — MOac)) (Baroco QXM, from 5 by US)

LA o

So McCall’s claim on p. 93 of [1963] that Q-L-X-M has 85% Aristotelicity needs to be
modified. Instead of 24 “non-Aristotelian moods” out of 154 moods marked on his table
13, there are 29 out of 154. So the Aristotelicity of the Q-L-X-M system is about 81%.

When determining the Aristotelicity of a system, McCall only uses figures 1, 2 and
3 and none of the “subaltern moods” such as Barbari. Given theorems 7.1 and 7.2, the
following wiffs are accepted in Q-L-X-M, though they are not marked as accepted on
McCall’s table 13: Bramantip QLQ, Camenes LQQ, Fesapo QLQ and Barbari LQQ.

In the following section we modify Q-L-X-M so that the resulting system, QLXM’,
does not have the unAristotelian features that result from theorems 7.1 and 7.2. Given
the data — that Aristotle regarded Barbara LQM as invalid and Bocardo QLM as valid, for
example — it is a virtue of the modified system that it does not have 100% Aristotelicity.
Note that if " (QObc — (LAba — M Oac)) (Bocardo QLM) then " (L Aac — (QObc —
MOba)) (Baroco LQM) by Reversal. In system QLXM' both Barbara LQM and Bocardo
QLM are invalid. In contrast, in system Q-L.-X-M both are valid.

§ QLXM'

To ensure that theorems 7.2 and 7.1 may not be proven in system QLXM’' we exclude
axioms A20 (Celarent XQM) and A21 (Ferio XQM). This decision is not difficult to
make since, as McCall points out, Aristotle’s proofs of Celarent XQM and Ferio XQM
are flawed. McCall shows that one who endorses such reasoning, thinking that “what is
impossible cannot follow from what is merely false, but not impossible”, is committed to
the absurd consequence that ‘Some B are A; all C are A; so some C are A’ is valid.

«
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Only one other Q-L-X-M axiom is excluded to form QLXM': delete axiom A28,
"(QOab — MOab). This decision is a result of semantic considerations. For A28 to
be validity preserving QOab and L Aab must be semantically inconsistent. Since LAab
is true iff *(a) C n*(b), we could make QOab and L Aab contraries by fixing the se-
mantics so that QOab is true iff T(a) o ¢(b). But then we are forced to say that Bocardo
QLQ, for example, is valid even though Aristotle considered it to be invalid. (Suppose
that Vo (QOab) = t and Vpy(LAac) = t. Then *(a) o g(b) and *(a) C n*(c). Then
nt(c) o q(b). Then *(c) o q(b). Then Va(QOcb) = t.) Note, also, that if QOab is
true iff T(a) o g(b) then we would want to ensure that QIab is true iff *(a) o ¢(b) to
guarantee the soundness of the complementary conversion principles that Aristotle clearly
supported. But then we would be forced to say that Disamis QLQ is valid even though
Aristotle considered it to be invalid. (Suppose that Va4 (QIbc) = t and Va (L Aba) = ¢.
Then *(b) o g(c) and T(b) C nt(a). Then nt(a) o g(c). Then *(a) o q(c). Then
Vm(QIac) = t.) Similar remarks may be made about Disamis QXQ, Datisi LQQ and
Datisi XQQ.

Rather than fixing the conditions for the truth of JOab as indicated above we may
let QOab be true iff either QIab or QIba is true.?® To make A28 truth preserving we
must ensure that if LAab is true then both QIab and QIba are false. Such a position
does not fit the sorts of examples Aristotle uses. Suppose, for example, that all things that
are sleeping are necessarily men. It does not follow that it is not true that some men are
contingently sleeping.

We avoid the above difficulties by deleting axiom A28 when defining QLXM'.

In this system, as in Q-L-X-M, there are no rejection axioms and no rejection rules.

Before giving a semantics for QLXM' we shall establish some immediate inferences
that are conversions, subalternations or subordinations. With them we shall show the
acceptance of various two-premised syllogisms indicated on table 15 by leaving a cell
unmarked. After the semantics is given we shall show that sentences corresponding to the
other cells, those in which numerals occur, are invalid. An occurrence of the “hat sign”
in a cell in the table means the entry conflicts with Aristotle’s judgments about validity as
recorded on McCall’s authoritative table 12 of [McCall, 196317

Theorem 8.1. (Ordinary Q-conversions, Q-con) i) (QIab — QIba); andii) " (QOab —
QOba).

Proof. i) is A25. For ii) use A23, A24 and CW. . |

Theorem 8.2. (Contingency subalternations, Q-sub-a) i) (QAab — QIab);ii) (QAab —
QOab); iii) "(QEab — QIab); and iv) " (QEab — QOab).

Proof. For i) use A18, Al, A2 and MP. For ii) use i), A23 and CW. For iii) use i), A22
and AS. For iv) use ii), A22 and AS. n

26Thom evaluates QOab in this way in [1993] and [1994].
271n the notes for table 12 McCall comments on tables in [Becker-Freyseng, 1933, p. 88] and [Ross, 1949,
after p. 286].
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Table 14. McCall’s Table 12 and RV inconsistencies

Q Q X Q L Q@ X Q L Q L

Q X Q L Q X Q L Q L Q

Q Q Q Q QMM X X M M
Barbara \ Y Vv vl v vl v '
Celarent vV VvV \Y vz V7 v v vy
Darii vV Vv \Y% v o vé 4 12y \Y
Ferio AAY, \Y NASERVA v v vy
Cesare i 3y B \Y%
Camesres . % v ¢ v 7
Festino B yit 2 v u \Y%
Baroco . 1 5 13 16
Darapti  V_ V Y vV vV '
Felapton V V \Y vV Vv vV V Vv ’
Disamis \Y A vV V V no7 oy A%
Datisi vV V \Y vV Vv 09 vy \Y
Bocardo A% A% v o vit vy
Ferison ARV \Y Ve vz &8y »

et
. ¢

s

McCall follows Ross’s use of “complementary conversion” to refer to A22 to A24.
On p. 298 of [Ross, 1949] Ross, in his discussion of 35a29-bl, identifies the following
entailments, endorsed by Aristotle, as “complementary conversions™:

‘For all B, being A is contingent’ [QAba] entails ‘For all B, not being A
is contingent’ [QEba] and ‘For some B, not being A is contingent’ [QOba].
"For all B, not being A is contingent’ [QEba] entails "For all B, being A is
contingent’ [QAba] and ‘For some B, being A is contingent’ [QIba]. ‘For
some B, being A is contingent’ [QIba] entails ‘For some B, not being A is
contingent’ [QOba]. ‘For some B, not being A is contingent’ [QQOba] entails
‘For some B, being A is contingent’ [QlIba).

Given the following theorem and US, Ross’s six complementary conversions are as-
serted in QLXM'.

Theorem 8.3. (Complementary conversion, CC) i) "(QAab — QFEab); ii) " (QAab —
QOab); iii) " (QEab - QAab); iv) (QEab — QIab); v) " (QIab — QOab); and vi)
F(QOab — QIab). |
Proof. For i) use A17, US, Al, Al and MP. For ii) use Q-sub-a, A23 and CW. iii) is A22.
For iv) use ii1), Q-sub-a and CW. v) is A23. vi) is A24. , |

Theorem 8.4. (Complementary conversions per accidens , CC(pa)) i) " (Q Aab — QIba);
ii) " (QAab — QOba); iii) " (QEab — QIba); and iv) " (QEab — QOba).
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Table 15. QLXM’ countermodels

Q Q XL Q X Q L Q L
Q XL Q X Q L Q L Q
Q Q Q M M X X M M

Barbara Sac 7ab 8ac

Celarent 6ac Tac A

Darii 5ac Tab 8ac

Ferio 6ac 7ac 5¢cb

Cesare Tac 9ca 6ac Sca Tac

Camestres  7ac 6ca 9ac  Tac Sac - -

Festino Tac 9ca  6ac 7ac - A

Baroco Tac 6ca  9ac  Tac 11bc o 11bc T 11bc

Darapti 7cb 7bc

Felapton 9bc 8be Ibc

Disamis Sca Tcb Tbe

Datisi Sca 7Tcb Tbc

Bocardo S5ca 9bc 1lac 8bc flac l/la\c

Ferison 9bc 8be 5cb A

Bramantip Sca 8ca  7ba

Camenes 10ac  6¢ca 7bc  Tac

Dimaris Sca 8ca Tba

Fresison Tac Sca  6bc 8bc

Fesapo Sca  ©6bc 8bc

Barbari Sac 7ab 8ac

Celaront 6ac Tac

Cesaro Tac 9ca  6ac Tac

Camestrop 7ac  6ca  9ac  Tac tab

Camenop 6ca Tac

Proof. For i) use Q-sub-a, Q-con, US and CW. For ii) use i), A23, US and CW. For iii)
use 1), A22 and AS. For iv) use iii), A23, US and CW. |

Theorem 8.5. (Contingency subordinations, Q-sub-o) i) "(QAab — M Aab);
i) " (QEab — M Eab); and iii) " (QIab — MIab).

Proof. For i) use A19, A1, US and MP. ii) is A26. iii) is A27. n

Uses of AS or CW in proofs of the following theorems involve only those immediate
inferences that have been proven above. So, for example, in the proof that Celarent QQQ
is asserted AS is used with Q-sub-a and US (" (QEbc — QAbc)) and CW is used with
Q-sub-aand US (F(Q Aac — QEac)).

Theorem 8.6. (asserted QQQs) The non-numbered QQQ cells on table 15 correspond to
asserted sentences.
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Proof.

—
I I I N

—
[\

F(QAbc —(QAab —QAac)) (Barbara QQQ, by A17)
" (QEbc —(QAab —QEac)) (Celarent QQQ, from 1 by AS, US, CW)
F(QAbc —(Qlab —QIac)) (Darii QQQ, by Al6)

. P(QEbe —(Qlab —Q0ac)) (Ferio QQQ, from 3 by AS, US, CW)

F(QAbe —(QAba —Qlac)) (Darapti QQQ, from 3 by AS, US)
"(QEbc —(QAba —QOac)) (Felapton QQQ, from 5 by AS, US, CW)
F(QAbc —(QIba —Qlac)) (Datisi QQQ, from 3 by AS, US)

F(QEbc —(QIba —QOac)) (Ferison QQQ, from 7 by AS, US, CW)

. "(QIbc —(QAba —Qlac)) (Disamis QQQ, from 7 by Al, CW, US)

F(QObe —(QAba —QOac)) (Bocardo QQQ, from 9 by AS, US, CW)

. F(QIcb —=(QAba —Qlac)) (Dimaris QQQ, from 9 by AS, US)

. F(QAcb —(QAba —Qlac)) (Bramantip QQQ, from 11 by AS, US)
13.
14.
15.
16.

F(QEcb —(QAba —QOac)) (Fesapo QQQ, from 12 by AS, US, CW)

F(QAbc —(QAab —QAac)) (Barbari QQQ, from 1 by CW, US)

F(QEbc —(QAab —QEac)) (Celaront QQQ, from 2 by CW, US)

F(QAcb —(QEba —QOac)) (Camenop QQQ, from 12 by AS, US, CW) - R

Theorem 8.7. (asserted QXQs and XQQs) The non-numbered QXQ and XQQ cells on
table 15 correspond to asserted sentences. ' ,

Proof.

—

11.
12.
13.
14.
15.

SR R e

F(QAbc —(Aab —QAac)) (Barbara QXQ, by Al7, US, CW)
F(QEbc —(Aab —QEac)) (Celarent QXQ, from 1 by AS, US, CW)
F(QAbc —(Tab —»Qlac)) (Darii QXQ, by Al8)

F(QEbc —(Ilab —QOac)) (Ferio QXQ, from 3 by AS, US, CW) N
F(QAbc —(Iba —Qlac)) (Datisi QXQ, from 3 by AS, US)

. F(QEbc —(Iba = QOac)) (Ferison QXQ, from 5 by AS, US, CW)

F(QAbc —(Aba —Qlac)) (Darapti QXQ, from 5 by AS, US)

F(QEbc —(Aba —QOac)) (Felapton QXQ, from 7 by AS, US, CW)

F(QAbc —(Aab —Qlac)) (Barbari QXQ, from 1 by US, CW)

F(QEbc —{Aab —QOac)) (Celaront QXQ, from 2 by US,CW) .

F(Ibc —(QAba —Qlac)) (Disamis XQQ, from 5 by Al, CW, US)

F(Abc —(QAba —Qlac)) (Darapti XQQ, from 11 by AS)

F(Icb —(QAba —Qlac)) (Dimaris XQQ, from 11 by AS) -

F(Acb —(QAba —Qlac)) (Bramantip XQQ, from 13 by AS) L

" (Acb —(QEba —+QOca)) (Camenop XQQ, from 14 by AS, CW) - H

Theorem 8.8. (asserted QLQs and LQQs) The non-numbered QLQ and LQQ cells on
table 15 correspond to asserted sentences.

Proof. Use theorem 8.7 and Sub-o. : . nm
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So, for example, " (QAbc —(LAab —QAac)) since F(QAbc —(Aab —QAac)) by the-
orem 8.7 and since "(LLAab — Aab) by Sub-o.

Theorem 8.9. (asserted QXMs and XQMs) The non-numbered QXM and XQM cells on
table 15 correspond to asserted sentences.

Proof. For non-numbered QXM and XQM cells referred to by names that do not end
with ‘o’ use theorem 8.7 wherever possible with Q-sub-o and CW. So Barbara QXM
is asserted since Barbara QXQ is assserted. And, by this reasoning, Celarent QXM,
Darii QXM, Darapti QXM, Datisi QXM, Barbari QXM, Darapti XQM, Disamis XQM,
Bramantip XQM, Camenes XQM, Dimaris XQM and Barbari XQM. For the remaining
non-numbered cells use asserted MXM syllogisms from table 13 wherever possibile with
Q-sub-0 and AS. So, Ferio QXM is accepted since Ferio MXM is accepted. And, by
this reasoning, Festino QXM, Felapton QXM, Disamis QXM, Ferison QXM, Bramantip
QXM, Dimaris QXM, Fresison QXM, Fesapo QXM, Celaront QXM, Cesaro QXM, Darii
XQM, Datisi XQM and Barbari XQM. The only remaining non-numbered QXM and
XQM cells correspond to the axiom Barbara XQM (A21) and Camenop XQM, which is
deduced from Camenes XQM by CW given Ap-sub-a. |

Theorem 8.10. (asserted QLXs and LQXs) The non-numbered QLX and LQX cells on
table 15 correspond to asserted sentences.

In the following proof the asterisks mark inconsistencies in the data as reported on
McCall’s table 12 on pp. 84-85 of [1963].

Proof. Use theorem 8.9 with RV and SE. So i) Celarent QLX is asserted since Festino
QXM is asserted; ii) Celaront QLX (is asserted) since Cesaro QXM (is asserted); 1ii)* Ce-
sare QLX since Ferio QXM; iv) Camestres QLX since Darii QXM; v)* Festino QLX since
Celarent QXM; vi)* Baroco QLX since Barbara QXM,; vii) Cesaro QLX since Celaront
QXM viii) Camestrop QLX since Barbari QXM; ix) Camenes QLX since Dimaris XQM;
x) Fresison QLX since Camenes XQM; xi) Fesapo QLX since Camenop XQM; xii) Ca-
menop QLX since Bramantip XQM; xiii) Celarent LQX since Disamis XQM; xiv) Ferio
LQX since Datisi XQM; xv) Celaront LQX since Barbari XQM; xvi) Cesare LQX since
Datisi QXM; xvii)* Camestres LQX since Ferison QXM; xviii) Festino LQX since Dis-
amis QXM; xix) Cesaro LQX since Darapti QXM; xx) Camestrop LQX since Felapton
QXM; xxi) Felapton LQX since Barbari XQM; xxii) Bocardo LQX since Barbara XQM;
xxiii)* Ferison LQX since Darii XQM; xxiv) Camenes L.QX since Fresison QXM; xxv)
Fresison LQX since Dimaris QXM; xxvi) Fesapo LQX since Bramantip QXM; and xxvii)
Camenop LQX since Fesapo QXM. n

Theorem 8.11. The non-numbered QLM and LQM cells on table 15 correspond to as-
serted sentences.

Proof. For the QLMs use: i) results for the accepted QXM syllogisms stated in theorem
8.9, Sub-o0 and AS; or ii) results for the accepted QLX syllogisms stated in theorem 8.10,
Sub-o0 and CW. So, for example, " (QAbc — (LAab — M Aac)) (Barbara QLM is as-
serted) since " (QAbc — (Aab — M Aac)) and " (L Aab — Aab) given AS. " (QEch —

<
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(LAab — M Eac)) (Cesare QLM is asserted) since (QEcb — (LAab — Eac)) and
F(Eac - MEac).

For the LQMs use results for the XQMs in theorem 8.9 or the LQXs in theorem 8.10

together with Sub-o, AS or CW. So, for example, " (LAbc — (QIab — MIac)) (Darii

LQM is asserted) since "(LAbc — (QIab — Iac)) and " (Iac — MIac). F(LEbc —

(QIab — MOac)) (Ferio LQM is asserted) since "(LEbc — (QIab — Oac)) and

F(Oac = MOac)). ]

Theorem 8.12. The non-numbered QQMs on table 15 correspond to asserted sentences.

Proof. Obtain the assertion of Barbara QQM from the assertion of Barbara QQQ by using
CW with Q-sub-0. Use similar reasoning for Celarent, Darii, Barbari, Darapti, Disamis,
Datisi, Bramantip and Dimaris. We generate the remaining four QQM:s as follows.

1. "(QEbc — (QAab — QEac)) (Celarent QQQ)
2. "(QEac — M Eac) (by Q-sub-o0)
3. "(M Eac - MOac) (by Ap-sub-a)
4. "(QEac — M Oac) (from 2 and 3 by CW)
5. "(QEbc — (QAab — MOac)) (Celaront QQM, from 1 and 4 by CW)
6. " (QAab = (QEbc — QFEac)) (from 1 by AI)
7. "(MEac — M Eca) (by Ap-con)
8. F(QEac — M Eca) (from 2 and 7 by CW)
9. " (QAab — (QEbc — M Eca)) (from 6 and 8 by CW)
10. F(QAcbh = (QEba — M Eac)) (Camenes QQM, from 9 by US)
11. "(M Eac — MOac) (Ap-sub-a and US)
12. "(QAcb — (QEba — MOac)) (Camenop QQM, from 10 and 11 by CW)
13. "(QEcb — (QAba — M Oac)) (Fesapo QQM, from 12 by CC and AS) n

8.1 Semantics for QLXM'

The semantics for QLXM’ is given by referring to Q-models.

Definition 8.13. (Q-model) M is a Q-model iff M = (W,n*, g% ,n™,q~), where W is
a non-empty set and n*, g7, n~, and ¢~ are functions that map terms into subsets of W
and satisfy the following “base conditions”:

BQ1 If f and g are any of the functions n*,¢",¢~ orn™ and f # g, then, for every
term z, f(z)Ng(z) = 0; and forevery z, nt (z)UgT () U g (z) U n~(z) = W

BQ2 (Forevery x and y) if *(z) C n~(y) then T(y) C n™(2)

BQ3 If t(y) C n*(2) and *(z) o *(y) thennt(z) o nt(2)

BQ4 If t(y) Cn~(2) and *(z) o *(y) thennt(z) o n~(z)

BQ5 If *(2) C nt(y) and nt(z) o n~(y) thennt(z) o n=(2)

BQ6 If *(y) C q(2) and *(z) C g(y) then *(z) C ¢(2)

BQ7 If *(y) € ¢(z) and *(z) o q(y) org(z) o *(y) then t(z) o g(z) orq(z) o *(z)
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BQ8 If *(y) C +(z) and * () C q(y) then nt (z) does not overlap n™ (2)

Definition 8.14. (valuation relative to a Q-model) V4 is a valuation relative to a Q-
model Miff it is is a valuation that satisfies the following “superstructural conditions™:

S1 (For every x and y) Va(Azy) = tiff t(z) C *(y)

S2 Vm(Izy) = tiff H(z) o T(y). : )
S3 Vm(LAzy) = tiff +(z) C nt(y)

S4 Vam(LiIzy) = tiff nt(z) o nt(y)
S5 Vm(L-Azy) = tiff nt(z) o n™(y)
$6 Vam(L-Izy) = tiff *(z) Cn (y)
§7 Vm(QAzy) = tiff *(z) C q(y)

S8 Vam(QIzy) = tiff +(x) o q(y) org(z) o *(y)
89 Va(@-Azy) = tiff *(z) o g(y) or g(z) o *(y)
S10 Vm(Q-Izy) = tiff *(z) C q(y)

Definition 8.15. (Q-valid) =g «a (o is Q-valid) iff, for every Q-model M,
Vam(a) = t. ais Q-invalid (|=¢ @) iff o is not Q-valid.

Theorem 8.16. (soundness) If « is an assertion in QLXM’ then =¢ a.

Proof. We need to show that i) if "« is an axiom of QLXM’ then o «; and ii) each
assertion transformation rule of QLXM' preserves Q-validity. Some examples of the rea-
soning needed are given. For Al, =g Aaa since, for every Q-model M, Vo (Aaa) =t
since *(a) C *(a). For A2, =g Iaa since, for every Q-model M, Vi(laa) =t
since *(a) o *{(a). For A5, suppose there is a Q-model M such that Vy(LAbc) = ¢,
Vam(Aab) = t and Vo {LAac) = f. Then *(b) C n*(c), T(a) € *(b) and *(a) £
nt(c), which is impossible. So =g (LAbe — (Aab — LAac)). For AlS, suppose
there is a Q-model M such that Va(Q Abe) = t, Vi (QAab) = t and Va(QAac) = f.
Then *(b) C q(c), T(a) C q(b) and *(a) € q(c), which is impossible given BQ6.
So =g (QAbc = (QAab — QAac)). For ARl suppose =g (...z...z...) but jEg
(...y...y...),where (...y...y...) is the result of replacing every occurrence of term
zin(...z...z...) with term y. Then, for some Q-model M , Vay(...y...y...) = f,
where Va(y) isset S. Let Vag(z) = S. Then Vay(...z...z...) = f. Soitis impossible
for AR1 not to preserve validity. For AR2 suppose a) =¢ (p — ¢q), b) =g pandc) ¢ ¢.
Then, for some Q-model M, Va(q) = f, given ¢). Then, by a), Va(p) = f, which
conflicts with b). So AR2 preserves validity. Reasoning for the other axioms and rules is
straightforward and is omitted. , n

t

Given the soundness of QLXM' every asserted sentence in Fukasiewicz’s LA is Q-
valid since LA is a fragment of QLXM'. All of the L-X-M syllogisms marked as asserted
on table 5 are Q-valid since all of them are asserted in QLXM’. And, given the following
theorem, all of the syllogisms marked as invalid on table 5 are Q-invalid.

Theorem 8.17. Models M;, My, M3 and M, are Q-models.
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Proof. By earlier arguments the four models satisfy conditions BQ1 to BQS. Consider
M;. Suppose T(y) C q(z). Then z = c. So BQ6 is trivially satisfied. For all z,
*(z) o g(c). So BQ7 is satisfied. For all z, n™(z) = 0. So BQ8 is satisfied. Consider
M. Suppose T(y) C q(z). Theny = aory = b, and z = ¢. So BQ6 is trivially
satisfied. For all z, + (z) o q(c). So BQ7 is satisfied. For all z, if *(¢) C* (2) thenz = c.
Since n=(c) = @, BQS is satisfied. Consider M3. Suppose *(y) C ¢q(z). Theny = bor
y = ¢, and z = a. So BQ6 is trivially satisfied. For all z, T (a)oq(z). So BQ7 is satisfied.
Forall z, if *(a) C* (z) then 2z = a. Since n™ (a) = 0, BQ8 is satisfied. Consider M.
Forall y and z, if T (y) € q(z). So BQ6, BQ7 and BQ8 are trivially satisfied. u

Table 16. Q-model M5

ajl 2 3
b |3 1 2
c |13 2

Table 16 expresses a model. BQ1 and BQ2, here and below, require no comment.
For every y and z, if +(y) C n™(z) then z = c. For every z, n™(z) o n*(c). So
BQ3 is satisfied. For every y and z, T(y) € n~(z). So BQ4 is trivially satisfied. If
*(y) C n*(z) then z = c. Forevery z, y and z, if 2 C n*(y) then n*(z) does not
overlapn™(y). So BQ5 is satisfied. For every z and y, if z C ¢(y) thenz = aand y = b.
So BQ6 is trivially satisfied. For all z, z o ¢(b). So BQ7 is satisfied. For all z, T (a) does
not overlap n~(z). So BQ8 is satisfied.

Given Q-model M3, g (LAbe — (QAab — LAac)). For, Vaq, (LAbc) = t since
() C nt(c). Vamg(QAab) = tsince t(a) C q(b). And Vpy, (QAac) = f since
*(a) € q(c). The occurrence of ‘dac’ in the Barbara/LQQ cell indicates Q-model M5 is
a countermodel for Barbara LQQ, where ‘a’ is the minor term and ‘c’ is the major term.
This method of listing minor and major terms will be followed below.

Table 17. Model Mg

|nt ¢t n q
a |l 2 3,4
b3 1 4 2
c|4 12,3

Table 17 expresses a model. For every y and z, if ¥(y) C n™(z) theny = z = ¢. For
every x and y, if ¥(z) o T (y) then z = ¢. Since n*(c) o n*(c), BQ3 is satisfied. For
every y, if *(y) C n™(a) theny = bory = c. Forevery z,if z o T(b) orz o *(c)
then n*(z) o n~(a). Forevery y,if *(y) C n™(b) theny = b. Forevery z, if z o *(b)
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then nt(z) o n~(b). For every y, if *(y) € n~(c) theny = a ory = b. For every
z,if zo *(a) orzo F(b) then nt(x) o n~(c). So B4 is satisfied. For every y and
2, if 7(z) C nt(y) then n™(y) C n~(2) (that is, Thomason’s BTS is satisfied).® So,
BQS5 is satisfied. For every = and y, if T(z) C q(y) thenz = aand ¢ = b. So BQ6 is
trivially satisfied. For all w, if *(w) o g(a) or g(w) o *(a) thenw = a or w = b. Since
+(a) o q(b) and *(b) o q(b), BQT is satisfied. For every z,if *(b) C z then z = b. Since
*(a) does not overlap n™ (b), BQ8 is satisfied.

Given Q-model Mg, not =g (LEac — (QAab = QObc)). For, Vo, (LEac) =t
since T (a) C n=(c). Ve (QAab) = t since T(a) C q(b). And Vry,(QObc) = f since
*+(b) does not overlap q(c) and q(b) does not overlap *(c). The occurrence of ‘6bc’ in
the Felapton/LQQ cell indicates that Q-model Mg is a countermodel for Felapton LQQ,
where ‘b’ is the minor term and ‘¢’ is the major term.

Table 18. Model M7

’n+ gt n g
ajl 3 2
b |2 3 1
c|1 3 2

Table 18 expresses a Q-model. Since Thomason’s BT3 (if *(z) o *(y) then *(z) o
nt(y)) is satisfied, both BQ3 and BQ4 are satisfied. Since BT5 is satisfied BQS is
satisfied. If *(z) C q(y) then y = b and either z = a or x = ¢. Then BQ6 is trivially
satisfied. If +(2) o gq(a) or g(2) o *(a) and if T(2) o g(c) or g(z) o *(c) then T (z) o T(b).
So BQ7 is satisfied. If *(b) C *(z) then z = b. Since n~ (b) = 0, BQ8 is satisfied.

Use Q-model Mg to show that Barbari LQX and others are invalid.

Table 19. Model Mg

nt ot o g
a|l 2 3 4
b4 3 1,2
c |34 2

Table 19 expresses a Q-model. Suppose *(y) C n*(z). Theny = bory = ¢, and
z = c. Since nt(b) o n*(c) and n*(c) o nt(c), BQ3 is satisfied. Since there is no
z such that n*(z) o n™(c), BQS is satisfied. Since, for every z andy, z € y, BQ4 is

28 A5 noted above, BQS5 is a weaker condition than BT5. Replacing BQS5 with BT5 in the definition of a
Q-model, forming a Q" model, yields this highly unAristotelian result: =g (QAab — Eab). For, suppose
that for some Q'-model M, Vo (Eab) = f. Then Vao(Iab) = t. By S2 and BTS, *(a) o nt(b). By 9,
Vm(QAab) = f.
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trivially satisfied. Suppose *(y) C g(z). Theny = a and z = b. Then BQG is trivially
satisfied. Since, for every z, T (z) o g(b) or g(Z) © *(b), BQT is satisfied. If+(p) C *(2)
then z = b or z = c. Since, for all z, n* (z) does not overlap n (b) and n*(z) does not
overlapn™ (c) BQ8 is satisfied.

Table 20 expresses a Q-model. If +(y) C n™(2) theny = cand either z = cor z = b.
If ¥(z) o *(c) thenz = bor z = c. Since n*(z) o n¥(z), BQ3 is satisfied. For every
y, if *(y) € n~(a) theny = c. For every z, if z o *(c) then n*(z) o n~(a). There
are no y such that y C n~(b). For every y, if T(y) C n~(c) then y = a. For every z,
ifz o *(a) thenn™(x) o n=(c). So BQ4 is satisfied. If *(z) C nT(y) then z = c and
eithery = bory = ¢. n™(z) does not overlap n=(b). f n*(z) o n™(c) thenz = a or
z = b. Since n*(a) o n~(c) and n™(b) o n~(c), BQS is satisfied. For every z and v, if
z C g(y) thenz = a and y = b. So BQ6 is trivially satisfied. For all z, if T(2) o *(a)
then z = a or z = b. Since *(a) o q(b) and *(b) o q(b), BQ7 is satisfied. For all z, if
*(b) C *(2) then b = z. Since n™(z) = 0, BQ8 is satisfied.

2R A

NP

Table 21. Model M4

Int ¢t n ¢
a|l 2 34
b |3 2 4

c |4 2 1,3

Table 21 expresses a Q-model. For every z and y, T(z) € n*(y). So BQ3 and BQ5
are satisfied. For all z and y, *(z) € n™(y). So BQ4 is satisfied. If +(z) C ¢(y) and
*(y) C q(z) thenz = a and z = ¢. So BQ6 is satisfied. For every z and y, *(z) o ¢(y)
or g(z) o *(y). So BQT is satisfied. If *(z) C ¢(y) thenz = borz = c. Forall z, n*(b)
does not overlap n~(z) and n™ (c) does not overlap n~ (z). So BQ8 is satisfied.

Table 22 expresses a Q-model. Since BT3 is satisfied, BQ3 and BQ4 are satisfied.
Since BTS is satisfied, BQS is satisfied. Forevery z and y, z € y. So BQ6 BQ7 and
BQ8 are trivially satisfied.



Aristotle’s Modal Syllogisms 299

Table 22. Model M1,

Co |nt ¢t n ¢

. a|l2
b1 2
ci12

8.2  Q-valid moods needed for completeness

Aristotle did not discuss any moods with possiblity, as opposed to contingency, premises
{or antecedents). But, given the semantics proposed for QLXM’ we must recognize the
Q-validity of some moods in which an M-wff is a premise (or an antecedent). In particular
Darii QMQ is Q-valid. So, to move in the direction of obtaining completeness results for
QLXM' we shall amend the system by making Darii QMQ axiom 29 (A29).

Theorem 8.18. (soundness of amended QLXM') Suppose QLXM' is amended by mak-
ing the assertion of Darii QMQ, "(QAbc — (MIab — QIac)) be an axiom. Leave
everything else unchanged. Then the resulting system is sound.

Proof. Suppose M is a Q-model, Vi (QAbc) = t and Va(MIab) = t. Given the
definition of a Q-model, at least one of these three conditions is met: i) *(a) o *(b), i)
*(a) o q(b) oriii) *(a) C n=(b). If i)is met then *(a) o q(c) and thus Vaq(QIac) = t.
If ii) is met then *(a) o g(c) or g(a) o *(c) and thus Vpq(QIac) = t. If iii) is met
then Vat(MIab) = t and Va(MIab) = f. Given this absurdity Va(Qlac) = t. So
=g (QAbe — (MIab — Qlac)). [ |

L

Assertions that are Q-valid correspond to unmarked cells on table 23. The marks in
cells indicate how countermodels may be found for the Q-invalid syllogisms the table
refers to.

For each unmarked cell we shall show how the indicated syllogism is asserted in the
system. Tt

Theorem 8.19. (asserted QMQs and MQQs) The non-numbered QMQ and MQQ cells

on table 23 correspond to asserted wffs. !
. [ -k

Proof.

F(QAbc — (M1Iab — QIac)) (Darii QMQ, A29)
F(QEbe = (MIab — QOac)) (Ferio QMQ, from 1 by CC, AS, CW)
"(QAbc — (MIba = QlIac)) (Datisi QMQ, from | by Ap-con, AS)
F(QAbc — (M Aba — QIac)) (Darapti QMQ, from 3 by Ap-con, AS)
F(QEbc — (M Iba — QOac)) (Ferison QMQ, from 3 by CC, AS, CW)
"(QEbc — (M Aba — QOac)) (Felapton QMQ, from 4 by CC, AS, CW)
*_(QAbc — (MAab — QIac)) (Barbari QMQ, from 1 by Ap-sub-a, AS)

.‘19\9‘:';.‘”!\’2—‘
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Table 23. Additional Q-syllogisms

oMQ MQQ QMM MQM QLL LQL QQM
Figure 1 Barbara 12ac Sac 12ac 15ca 7ab 8ac

Celarent 12ac Gac 13ac Tac Tab
Darii Sac 15ca Tab 14bc
Ferio 6ac 14ac 14ac Tab 15ba ldac
Figure 2 Cesare 9ca 6ac Tac Tac 14ab Tac
Camestres  6¢a 9ac Tac Tac 14ba 7ac
Festino 9ca 6ac Tac Tac 13ab 15ba 7ac
Baroco 6ca 9ac Tac 7Jac 12ab  14ba 7ac
Figure 3 Darapti Tcb Tbe
.- Felapton . 9bc 14ac 14ac 7cb I5bc  14ac
Disamis  5ca 15ac 7cb 7bc
Datisi . Sca 15ca Tcb 14bc
Bocardo ~ 5ca 9bc 14ac 8bc 7¢cb 15ba l4ac
Ferison 9bc 14ac ldac Tcb iSba ldac
Figure 4 Bramantip  Sca 15ac 8ca 7ba
" Camenes 6ca Tbc Tac 13ca Tba
Dimaris -~ Sca 15ac Tcb 7ba
Fresison Sca 6bc Tac Tac 13ab  15ba  7ca
Fesapo Sca 6bc Tac 8bc 16cb  15ba
Subalterns  Barbari Sac 15ac Tab 14bc
Celaront 6ac 13ac Tac 7ab
. Cesaro 9ca 6ac Tac Tac 13ab Tac
Camestrop  6ca 9ac Tac Tac 14ba  7ac
Camenop 6ca Tac l6ac 7ba

8. "(QEbc — (M Aab = QOac)) (Celaront QMQ, from 7 by CC, AS, CW)

9. F(MIbc — (QAba — QIac)) (Disamis MQQ, from 3 by Al, Q-con, CW)
10. F(M Abc — (QAba — QIac)) (Darapti MQQ, from 3 by Ap-sub-a, AS)
11. "(M1Icb — (QAba — QIac)) (Dimaris MQQ, from 1 by Al Q-con, CW, US)
12. F(M Acb = (QAba — QIac)) (Bramantip MQQ, from 11 by Ap-sub-a, AS)
13. Y(M Acb = (QEba — QOac)) (Camenop MQQ, from 12 by CC, AS, CW)

Theorem 8.20. (asserted QMMs and MQMs) The non-numbered QMM and MQM cells
on table 23 correspond to asserted sentences.

Proof. Use theorem 8.19 and Q-sub-o. ' |

Theorem 8.21. (asserted QLLs and LQLs) The non-numbered QLL and LQL cells on
table 23 correspond to asserted wifs.
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Proof. Use theorem 8.20 and RV. |

Theorem 8.22. (asserted QQMs) The non-numbered QQM cells on table 23 correspond
to asserted wffs.

Proof. Use theorem 8.6, Q-sub-o and CW for cells other than Camenes, Fesapo, Celaront
and Camenop QQM. For them use the following reasoning.

F(QEbc — (QAab — M Eac)) (Celarent QQM)

F(QEbc — (QAab — MOac)) (Celaront QQM, from 1 by Ap-sub-a, CW)
F(QAch — (QAba — M Eac)) (Camenes QQM, from 1 by AI, Ap-con, CW, US)
F(QAch - (QAba — MOac)) (Camenop QQM, from 3 by Ap-sub-a, CW)
F(QEch — (QAba — MOac)) (Fesapo QQM, from 4 by CC, AS) [ |

AR S e

Table 24. Model M2

+ gt = g

|t gt n ¢
all 2 3 4
b3 4 2 1
c |2 3 1 4

Table 24 expresses a Q-model. For every z and y, *(z) € n*(y). So BQ3 and BQ5
are trivially satisfied. For every z and y, T(x) € n~(y). So BQ4 is trivially satisfied.
Suppose T(y) C q(z). Theny = band z = ¢. So BQ6 is trivially satisfied. For every z,
*(z) o q(b) or q(z) o *(b). So BQ7 is satisfied. If T(c) C z then z = ¢. Since n*(b)
does not overlap n~(c), BQ8 is satisfied.

Table 25. Model M3

+ — —

|nt ¢t n ¢
al|l 2 3 4
bl4a 3 2 1
cl12 3 4

Table 25 expresses a Q-model. Suppose *(y) C nt(z). Theny = a and z = c.
If *(z) o *(a) thenz = aor z = c. Since n*(a) o n*(c), BQ3 is satisfied. Since
n~(c) = 0, BQSis trivially satisfied. For every z and y, ¥(z) € n~(y). So BQ4 is
trivially satisfied. Suppose T(y) C ¢(z). Theny = band z = ¢. So BQG is trivially
satisfied. For all z, *(c) o q(z). So BQ7 is satisfied. Since n~(z) = 0, BQ8 is satisfied.

Table 26 expresses a Q-model. For every = and y, if T (z) C n*(y) then z = a and
y =c Ift(z) o T(a) then nt(x) o n(c). So BQ3 is satisfied. For every x and y,
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Table 26. Model Mys

|nt ¢ n ¢
a|l 2 34
- b3 4 1 2
c|12 4 3

T(z) € n~(y). So BQ4 is satisfied. Since n~(c) = 0, BQS is satisfied. For every z and
y,if 7(z) C q(y) theny = a or y = c. So BQG is trivially satisfied. For every z, * o g(a)
or g(z) o *(a). And forevery z,% o g(c) or g(z) o T(c). So BQ7 is satisfied. For every
z,if ¥(a) C *(z) then z = a. And for every z, if ¥(¢) C T(z) then z = ¢. Since
n~ (a) =P andn~(a) = §, BQS is satisfied.

Table 27. Model M5

|nt g% n™ ¢
ajl 23 4
b|4 3 © 1,2
c |2 1.4 3

Table 27 expresses a Q-model. Since BT3 is satisfied, both BQ3 and BQ4 are satisfied.
Since BTS is satisfied BQS is satisfied. Suppose T(y) C ¢(z). Then z = b. So BQ6 is
trivially satisfied. For all z, z o q(b). So BQ7 is satisfied. If T(b) C *(z) then z = b.
Since n~(b) = (), BQ8 is satisfied. . .

Table 28. Model Mg

+ p— —_

|n+ n

q
1 2
2 3
1,2

o o e
W = W

Table 28 expresses a Q-model. Suppose *(y) C nt(z). Then z = ¢. Since, for all
z,nt(z) o nt(c), BQ3 is satisfied. Since n™(c) = 0, BQS is satisfied. Since, for all
and y, ' (z) € n~(y), BQ4 is trivially satisfied. Suppose *(y) C ¢(z). Theny = b and
z = a. So BQ6 is trivially satisfied. For all z, z o q(a ) So BQ7 is satisfied. For all z,
n~(z) = . So BQ8 is trivially satisfied. .

Note that the acceptance of all but two of the QLM and LQM moods is generated from
acceptances involving the MLM and LMM moods. '
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9 THE ARISTOTELICITY OF QLXM'

Of the 154 first, second or third figure syllogisms referred to on table 15 there are exactly
thirteen that are Q-valid but invalid for Aristotle. And there are exactly nine that are
Q-invalid but are valid for Aristotle. So the Aristotelicity of QLXM' system is about
86%. Of the twenty-two discrepancies seventeen are due to mistakes involving the use of
Reversal. These mistakes are marked on table 14 by using pairs of numbers from 1 to 17.
So, for example, on this table both Barbara QXM and Baroco QLX are marked with ‘1’,
indicating that by Reversal both should be valid or both should be invalid. But Aristotle
regarded only the former as valid. Both Ferison QLM and Camestres LQM are marked
with ‘17°, indicating that by Reversal both should be valid or both should be invalid.
Aristotle regarded only the former as valid.

So, there are five remaining discrepancies to account for. i) Darapti XQQ: Aristotle
could have used Disamis XQQ to show its validity. ii) Darapti LQQ: Aristotle could have
used Darapti XQQ to show its validity. iii) Festino QXM: As noted by McCall in [1963,
p- 93], Aristotle could have used Festino MXM to show its validity. Given Reversal,
Festino MXM is valid in virtue of Disamis XLL. iv) Celarent QLX: Aristotle could have
used Reversal and Festino QXM to show it is valid. v) Felapton XQM: Aristotle properly
regarded it as valid since he regarded Ferio XQM as valid. Given our interest in devel-
oping a formal system that would not have the unAristotelian results, noted in theorem
7.2, which are present in McCall’s Q-L-X-M system, we chose to regard Ferio XQM as
Q-invalid.

|

10 TALLY OF THE TWO-PREMISED Q-VALID SYLLOGISMS

The 333 syllogisms marked on Table 13 are the Q-valid apodeictic two-premised syllo-
gisms in which no contingent wff is a premise or a conclusion. Table 15 and table 23 refer
to some of the Q-valid 2-premised syllogisms that involve contingent wifs. To count all
of them we need to take account of complementary conversions. Note, for example, that
AEA QQQ-figure 1 (that is (QAbc — (QEab — QAac))) is Q-valid by complemen-
tary conversion since Barbara QQQ is Q-valid.?® In this section we shall count all of the
2-premised syllogisms that are Q-valid.

When counting the valid moods we shall use ‘[A]” to mean that the premise or conclu-
sion indicated may be either an A or an E wif. Similarly we shall use ‘[I}’ to mean the
premise or the conclusion indicated may be either an I or an O formula. So, by saying
that QQQ [A][A][A] in figure 1 is Q-valid, we are claiming the validity of eight figure 1
QQQ syllogisms: QQQ AAA (AAE, AEA, AEE, EAA, EAE, EEA, and EEE). By saying
that QXQ [AJI[I] in figure 1 is Q-valid, we are claiming the Q-validity of four figure 1
QXQ syllogisms: QXQ AII (AIO, EIi, and EIO).

29See Ross’s table in [1949, facing p. 286] for references to this as well as several other syllogisms that may
be validated by using complementary conversion.
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Q-valid QQQs (64):
Figure 1: [AJ[A][A], [A][TIL], [ANA]
Figure 3: [AJ[AJ(L], (I(AL, (AT
Figure 4: [A][A][T], [1I[A][1]

Q-valid QXQs and QLQs (40); te
Figure 1: [AJA[A], [AJIT], [AJA[L], v
Figure 3: [AJA[I], [AJI[I] -

Q-valid XQQs and LQQs (32)
Figure 3: A[A][1], [[A]]
Figure 4: A[A][I], [TA]J[I]

Q-valid QXMs (34)
Figure 1: [AJAA, [A]AE, [A]LL, [A]IO, [A]JAL [AJAO
Figure 2: {A]IO, [A]JAO
Figure 3: [A]AL [A]JAO, [T]AL [AJLL [AJIO
Figure 4: [A]AL [T]AL [A]IO, [AJAO

Q-valid XQMs (20):
Figure 1: A[A]A, A[I]L, A[A]I
Figure 3: A[A]L I[A]L, A[T]L,
Figure 4: A[A]L A[A]E, I[A]L A[A]O

Q-valid QLXs (24):
Figure 1: [AJAE, [AJAO
Figure 2: [A]AE, [A]EE, [A]IO, [A]OO, [A]AO, [AJEO
Figure 4: [A]EE, [A]IO, [A]AO, [AJEO

Q-valid LQXs (30):
Figure 1: E[A]E, E[110, E{A]O
Figure 2: E[A]E, A[A]E, E[1]O, E[A]O, A[A]O
Figure 3: E[A]O, O[A]O, E[T]O
Figure 4: A[A]E E{[O, E[A]O, A[A]JO

Q-valid QLMs (46)
Figure 1: [A]JAA, [A]AE, [A]IL, [A]IO, [A]AI [A]AO
Figure 2: [A]JAE, [A]EE, {AJIO, [A]OQ, {AJAQ, [AJEO
Fi.gure 3: [A]AL [A]AOQ, [T]AL [A]LL [AJIO
Figure 4: [A]AL [A]EE, [TJAL [A]IO, [A]JAO, [AJEO

Q-valid LQMs (46):
Figure 1: A[A]A, E[AJE, A[I]L, E[I]O, A[A]L, E[A]O
Figure 2: E[A]E, A[A]E, E[1]O, E[A]O, A[A]O
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Figure 3: A[A]], E[A]O, I[A]L, A[I]L, O[A]O, E[1]O '
Figure 4: A[A]L, A[A]E, I[A]L, E[1]O, E[A]O, A[A]O

Q-valid QMQs (16): l
Figure 1: [AJI[I], [A]A[I)
Figure 3: [A)A[I], [A]I[]]

Q-valid MQQs (16):
Figure 3: A[A][I], I[A]{1]
Figure 4: A[A][1), I[A{I]

Q-valid QMMs (8):
Figure 1: [A]IL, [A]AI
Figure 3: [A]JAL [AJI

i
Q-valid MQMs (8):

Figure 3: A[A]L I[A]l

Figure 4: A[A]L I[A]T

Q-valid QLLs (8): !
Figure 2: [AJEE, [A]JEO
Figure 4: [AJEE, [AJEO

Q-valid LQLs (8): o
Figure 1: E[A]E, E[A]O (‘ -
Figure 2: E[A]E, E[A]O ' il

Q-valid QQMs (48):
Figure 1: [A][A]A, [A][A]E, [AI]L [AJ{A]L [AJ[A]O
Figure 3: [A][AJL [TI[AL [AJ{T]T
Figure 4: [A][A]L [A][AJE, [I]{A]L [A][A]O

There are 333 + 64 + 40 + 32 + 34 +20 + 24 + 30 + 46 + 46 + 16 + 16 + 8 + 8
+ 8 + 8 + 48 (that is, 781) Q-valid 2-premised syllogisms found in thirty five “general
moods”: LLX, LLM, LXX, LXM, XLX, XLM, XXX, XXM, LLL, LXL, XLL, LMM,
MLM, MXM, XMM, LMX, MLX, QQQ, QXQ, QLQ, XQQ, LQQ, QXM, XQM, QLX
LQX, QLM, LQM, QMQ, MQQ, QMM, MQM, QLL, LQL, and QQM.

o oot 4

11 EXTENSIONS e y

Uuaedind

The most natural extension of the above work on QLXM' would be to develop a Smiley-
type decision procedure for validity for the n-premised syllogisms, forn > 2, where these
syllogisms meet the chain condition. Though Smiley’s decision procedure for the asser-
toric syllogistic pairs inconsistent sets of wfs with syllogisms construed as inferences,
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the pairing could also be between sets of wifs and syllogisms constructed as implications.
The decision procedure would list Q-inconsistent sets such as { Py Az 22, PyAzzzy, . . .,
PpAzo,_1T2n, QAZ 29, }, where: i) each P, for 1 <4 < n,is X, L or Q; ii) Py is @;
and iii) @ (the negation of @) is a new quantifier. Given the decision procedure it would
follow that (QAab — (Abc — (LAcd — (QAde — Q) Aae)))), for example, is Q-valid.
Though it is argued above that QLXM' is more Aristotelian than McCall’s Q-L-X-M
there are several other systems that could be developed to bring coherence into Aristotle’s
discussions of modalities. For example, consider Barbara XQM. McCall points out that
Aristotle’s defense of its validity is flawed, but McCall chooses to take it as an axiom in
his Q-L-X-M. It is also an axiom in QLXM'. Dropping this axiom would mean that the
semantics for the weaker system would be simpler. ‘
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